WorldWideScience

Sample records for networks evolve rapidly

  1. Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins

    Directory of Open Access Journals (Sweden)

    Tsoka Sophia

    2011-05-01

    Full Text Available Abstract Background Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation. Results We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes. Conclusions Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.

  2. Evolving digital ecological networks.

    Directory of Open Access Journals (Sweden)

    Miguel A Fortuna

    Full Text Available "It is hard to realize that the living world as we know it is just one among many possibilities" [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved.

  3. Ranking in evolving complex networks

    Science.gov (United States)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  4. Asymmetric evolving random networks

    Science.gov (United States)

    Coulomb, S.; Bauer, M.

    2003-10-01

    We generalize the Poissonian evolving random graph model of M. Bauer and D. Bernard (2003), to deal with arbitrary degree distributions. The motivation comes from biological networks, which are well-known to exhibit non Poissonian degree distributions. A node is added at each time step and is connected to the rest of the graph by oriented edges emerging from older nodes. This leads to a statistical asymmetry between incoming and outgoing edges. The law for the number of new edges at each time step is fixed but arbitrary. Thermodynamical behavior is expected when this law has a large time limit. Although (by construction) the incoming degree distributions depend on this law, this is not the case for most qualitative features concerning the size distribution of connected components, as long as the law has a finite variance. As the variance grows above 1/4, the average being < 1/2, a giant component emerges, which connects a finite fraction of the vertices. Below this threshold, the distribution of component sizes decreases algebraically with a continuously varying exponent. The transition is of infinite order, in sharp contrast with the case of static graphs. The local-in-time profiles for the components of finite size allow to give a refined description of the system.

  5. Evolving production network structures

    DEFF Research Database (Denmark)

    Grunow, Martin; Gunther, H.O.; Burdenik, H.

    2007-01-01

    When deciding about future production network configurations, the current structures have to be taken into account. Further, core issues such as the maturity of the products and the capacity requirements for test runs and ramp-ups must be incorporated. Our approach is based on optimization...... modelling and assigns products and capacity expansions to production sites under the above constraints. It also considers the production complexity at the individual sites and the flexibility of the network. Our implementation results for a large manufacturing network reveal substantial possible cost...... reductions compared to the traditional manual planning results of our industrial partner....

  6. Analyzing Evolving Social Network 2 (EVOLVE2)

    Science.gov (United States)

    2015-04-01

    social media. We have demonstrated recently that information spread cannot be modeled as an epidemic diffusion. Instead, cognitive constraints, such as...respond to any one stimulus. Cognitive constraints the nature of social interactions and therefore, how central nodes are identified. Now a node’s...link prediction task and their properties. network nodes edges missing density social networks dolphins 62 159 16 0.084 email 1133 5452 545 0.0085

  7. Evolving Deep Networks Using HPC

    Energy Technology Data Exchange (ETDEWEB)

    Young, Steven R. [ORNL, Oak Ridge; Rose, Derek C. [ORNL, Oak Ridge; Johnston, Travis [ORNL, Oak Ridge; Heller, William T. [ORNL, Oak Ridge; Karnowski, thomas P. [ORNL, Oak Ridge; Potok, Thomas E. [ORNL, Oak Ridge; Patton, Robert M. [ORNL, Oak Ridge; Perdue, Gabriel [Fermilab; Miller, Jonathan [Santa Maria U., Valparaiso

    2017-01-01

    While a large number of deep learning networks have been studied and published that produce outstanding results on natural image datasets, these datasets only make up a fraction of those to which deep learning can be applied. These datasets include text data, audio data, and arrays of sensors that have very different characteristics than natural images. As these “best” networks for natural images have been largely discovered through experimentation and cannot be proven optimal on some theoretical basis, there is no reason to believe that they are the optimal network for these drastically different datasets. Hyperparameter search is thus often a very important process when applying deep learning to a new problem. In this work we present an evolutionary approach to searching the possible space of network hyperparameters and construction that can scale to 18, 000 nodes. This approach is applied to datasets of varying types and characteristics where we demonstrate the ability to rapidly find best hyperparameters in order to enable practitioners to quickly iterate between idea and result.

  8. Quantifying evolvability in small biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Mugler, Andrew [COLUMBIA UNIV; Ziv, Etay [COLUMBIA UNIV; Wiggins, Chris H [COLUMBIA UNIV

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  9. Managing Evolving Global Operations Networks

    DEFF Research Database (Denmark)

    Mykhaylenko, Alona; Wæhrens, Brian Vejrum; Johansen, John

    2015-01-01

    the network, challenging the HB’s ability to sustain its centrality over time. To counteract this tendency, this paper addresses the gap in the literature regarding the development of the network management capability of the HB within the context of its network. Data was collected through a retrospective...... longitudinal case study of an intra-organisational operations network of one OEM and its three foreign subsidiaries. The findings suggest a row of strategic roles and corresponding managerial capabilities, which the HB needs to develop depending on the changing subsidiaries’ competencies and HB...

  10. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  11. Infrastructural Networks for Evolved Tourism

    Directory of Open Access Journals (Sweden)

    Leonardo Brizzi

    2014-12-01

    Full Text Available The work starts from the redevelopment of a large abandoned architecture in a resort of the Cesena Apennines to handle a wider issue: that of the smaller towns in Italy. It is part of a Relevant National Interest Project that deals with the Detection of innovative instruments for the protection and development of settlement systems. Their crisis is mainly due to abandonment, however they still constitute a precious cultural and economic heritage. There are some indications about the fields of investigation (first of all that the tourist phenomena and the guidelines to give these systems a role in contemporary society, recognizing the importance of creating networks, both hard and soft, between various centers, to develop synergies and complementarities.

  12. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved......, CPPNs can theoretically compute any function and can build on those present in traditional synthesizers (e.g. square, sawtooth, triangle, and sine waves functions) to produce completely novel timbres. Evolved with NeuroEvolution of Augmenting Topologies (NEAT), the aim of this paper is to explore...... the space of potential sounds that can be generated through such compositional sound synthesis networks (CSSNs). To study the effect of evolution on subjective appreciation, participants in a listener study ranked evolved timbres by personal preference, resulting in preferences skewed toward the first...

  13. Epidemic spreading on evolving signed networks

    CERN Document Server

    Saeedian, M; Jafari, G R; Kertesz, J

    2016-01-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences peoples willingness to contact others: A friendly contact may be turned to unfriendly to avoid infection. We study the susceptible-infected (SI) disease spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heiders theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte-Carlo simulations on complete networks to test the energy landscape, where we find loc...

  14. Netgram: Visualizing Communities in Evolving Networks.

    Directory of Open Access Journals (Sweden)

    Raghvendra Mall

    Full Text Available Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems.

  15. Netgram: Visualizing Communities in Evolving Networks

    Science.gov (United States)

    Mall, Raghvendra; Langone, Rocco; Suykens, Johan A. K.

    2015-01-01

    Real-world complex networks are dynamic in nature and change over time. The change is usually observed in the interactions within the network over time. Complex networks exhibit community like structures. A key feature of the dynamics of complex networks is the evolution of communities over time. Several methods have been proposed to detect and track the evolution of these groups over time. However, there is no generic tool which visualizes all the aspects of group evolution in dynamic networks including birth, death, splitting, merging, expansion, shrinkage and continuation of groups. In this paper, we propose Netgram: a tool for visualizing evolution of communities in time-evolving graphs. Netgram maintains evolution of communities over 2 consecutive time-stamps in tables which are used to create a query database using the sql outer-join operation. It uses a line-based visualization technique which adheres to certain design principles and aesthetic guidelines. Netgram uses a greedy solution to order the initial community information provided by the evolutionary clustering technique such that we have fewer line cross-overs in the visualization. This makes it easier to track the progress of individual communities in time evolving graphs. Netgram is a generic toolkit which can be used with any evolutionary community detection algorithm as illustrated in our experiments. We use Netgram for visualization of topic evolution in the NIPS conference over a period of 11 years and observe the emergence and merging of several disciplines in the field of information processing systems. PMID:26356538

  16. Resiliently evolving supply-demand networks.

    Science.gov (United States)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S

    2014-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.

  17. Functional Topology of Evolving Urban Drainage Networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs ((A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  18. Epidemic spreading on evolving signed networks

    Science.gov (United States)

    Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.

    2017-02-01

    Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.

  19. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  20. Developing Collective Learning Extension for Rapidly Evolving Information System Courses

    Science.gov (United States)

    Agarwal, Nitin; Ahmed, Faysal

    2017-01-01

    Due to rapidly evolving Information System (IS) technologies, instructors find themselves stuck in the constant game of catching up. On the same hand students find their skills obsolete almost as soon as they graduate. As part of IS curriculum and education, we need to emphasize more on teaching the students "how to learn" while keeping…

  1. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)

    1997-04-15

    The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic ...

  2. Challenges on Probabilistic Modeling for Evolving Networks

    OpenAIRE

    Ding, Jianguo; Bouvry, Pascal

    2013-01-01

    With the emerging of new networks, such as wireless sensor networks, vehicle networks, P2P networks, cloud computing, mobile Internet, or social networks, the network dynamics and complexity expands from system design, hardware, software, protocols, structures, integration, evolution, application, even to business goals. Thus the dynamics and uncertainty are unavoidable characteristics, which come from the regular network evolution and unexpected hardware defects, unavoidable software errors,...

  3. ON THE NATURE OF RAPIDLY ROTATING SINGLE EVOLVED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, R. Rodrigues; Canto Martins, B. L.; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-03-01

    We present an analysis of the nature of the rapidly rotating, apparently single giant based on rotational and radial velocity measurements carried out by the CORAVEL spectrometers. From the analyzed sample, composed of 2010 spectroscopic, apparently single, evolved stars of luminosity classes IV, III, II, and Ib with spectral types G and K, we classified 30 stars that presented unusual, moderate to rapid rotation. This work reports, for the first time, the presence of these abnormal rotators among subgiant, bright giant, and Ib supergiant stars. To date, this class of stars was reported only among giant stars of luminosity class III. Most of these abnormal rotators present an IRAS infrared excess, which, in principle, can be related to dust around these stars.

  4. Loops and autonomy promote evolvability of ecosystem networks.

    Science.gov (United States)

    Luo, Jianxi

    2014-09-29

    The structure of ecological networks, in particular food webs, determines their ability to evolve further, i.e. evolvability. The knowledge about how food web evolvability is determined by the structures of diverse ecological networks can guide human interventions purposefully to either promote or limit evolvability of ecosystems. However, the focus of prior food web studies was on stability and robustness; little is known regarding the impact of ecological network structures on their evolvability. To correlate ecosystem structure and evolvability, we adopt the NK model originally from evolutionary biology to generate and assess the ruggedness of fitness landscapes of a wide spectrum of model food webs with gradual variation in the amount of feeding loops and link density. The variation in network structures is controlled by linkage rewiring. Our results show that more feeding loops and lower trophic link density, i.e. higher autonomy of species, of food webs increase the potential for the ecosystem to generate heritable variations with improved fitness. Our findings allow the prediction of the evolvability of actual food webs according to their network structures, and provide guidance to enhancing or controlling the evolvability of specific ecosystems.

  5. Microsatellites evolve more rapidly in humans than in chimpanzees

    Energy Technology Data Exchange (ETDEWEB)

    Rubinsztein, D.C.; Leggo, J.; Amos, W. [Cambridge Univ. (United Kingdom)

    1995-12-10

    Microsatellites are highly polymorphic markers consisting of varying numbers of tandem repeats. At different loci, these repeats can consist of one to five nucleotides. Microsatellites have been used in many fields of genetics, including genetic mapping, linkage disequilibrium analyses, forensic studies, and population genetics. It is important that we understand their mutational processes better so that they can be exploited optimally for studies of human diversity and evolutionary genetics. We have analyzed 24 microsatellite loci in chimpanzees, East Anglians, and Sub-Saharan Africans. The stepwise-weighted genetic distances between the humans and the chimpanzees and between the two human populations were calculated according to the method described by Deka et al. The ratio of the genetic distances between the chimpanzees and the humans relative to that between the Africans and the East Anglians was more than 10 times smaller than expected. This suggests that microsatellites have evolved more rapidly in humans than in chimpanzees. 12 refs., 1 tab.

  6. Emergence of segregation in evolving social networks.

    Science.gov (United States)

    Henry, Adam Douglas; Prałat, Paweł; Zhang, Cun-Quan

    2011-05-24

    In many social networks, there is a high correlation between the similarity of actors and the existence of relationships between them. This paper introduces a model of network evolution where actors are assumed to have a small aversion from being connected to others who are dissimilar to themselves, and yet no actor strictly prefers a segregated network. This model is motivated by Schelling's [Schelling TC (1969) Models of segregation. Am Econ Rev 59:488-493] classic model of residential segregation, and we show that Schelling's results also apply to the structure of networks; namely, segregated networks always emerge regardless of the level of aversion. In addition, we prove analytically that attribute similarity among connected network actors always reaches a stationary distribution, and this distribution is independent of network topology and the level of aversion bias. This research provides a basis for more complex models of social interaction that are driven in part by the underlying attributes of network actors and helps advance our understanding of why dysfunctional social network structures may emerge.

  7. Social Network Privacy via Evolving Access Control

    Science.gov (United States)

    di Crescenzo, Giovanni; Lipton, Richard J.

    We study the problem of limiting privacy loss due to data shared in a social network, where the basic underlying assumptions are that users are interested in sharing data and cannot be assumed to constantly follow appropriate privacy policies. Note that if these two assumptions do not hold, social network privacy is theoretically very easy to achieve; for instance, via some form of access control and confidentiality transformation on the data.

  8. Histone variant innovation in a rapidly evolving chordate lineage

    Directory of Open Access Journals (Sweden)

    Jansen Pascal WTC

    2011-07-01

    Full Text Available Abstract Background Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. Results We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. Conclusions These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.

  9. Evolving chromosomes and gene regulatory networks

    Indian Academy of Sciences (India)

    Aswin

    Many processes change genomes. Koonin and Wolf. 2008. Page 5 .. including horizontal gene transfer. Koonin and Wolf. 2008. Page 6. Horizontal gene transfer. Drastic modification of genetic material. Rapid exploration of ne niches and phenot pes. Page 7. Horizontal gene transfer regulates. New selective forces for gene ...

  10. Simulating public private networks as evolving systems

    NARCIS (Netherlands)

    Deljoo, A.; Janssen, M.F.W.H.A.; Klievink, A.J.

    2013-01-01

    Public-private service networks (PPSN) consist of social and technology components. Development of PPSN is ill-understood as these are dependent on a complex mix of interactions among stakeholders and their technologies and is influenced by contemporary developments. The aim of this paper is to

  11. Multivariate sexual selection in a rapidly evolving speciation phenotype.

    Science.gov (United States)

    Oh, Kevin P; Shaw, Kerry L

    2013-06-22

    Estimating the fitness surface of rapidly evolving secondary sexual traits can elucidate the origins of sexual isolation and thus speciation. Evidence suggests that sexual selection is highly complex in nature, often acting on multivariate sexual characters that sometimes include non-heritable components of variation, thus presenting a challenge for predicting patterns of sexual trait evolution. Laupala crickets have undergone an explosive species radiation marked by divergence in male courtship song and associated female preferences, yet patterns of sexual selection that might explain this diversification remain unknown. We used female phonotaxis trials to estimate the fitness surface for acoustic characters within one population of Laupala cerasina, a species with marked geographical variation in male song and female preferences. Results suggested significant directional sexual selection on three major song traits, while canonical rotation of the matrix of nonlinear selection coefficients (γ) revealed the presence of significant convex (stabilizing) sexual selection along combinations of characters. Analysis of song variation within and among males indicated significantly higher repeatability along the canonical axis of greatest stabilizing selection than along the axis of greatest linear selection. These results are largely consistent with patterns of song divergence that characterize speciation and suggest that different song characters have the potential to indicate distinct information to females during courtship.

  12. Reproductive behaviour evolves rapidly when intralocus sexual conflict is removed.

    Directory of Open Access Journals (Sweden)

    Stéphanie Bedhomme

    Full Text Available BACKGROUND: Intralocus sexual conflict can inhibit the evolution of each sex towards its own fitness optimum. In a previous study, we confirmed this prediction through the experimental removal of female selection pressures in Drosophila melanogaster, achieved by limiting the expression of all major chromosomes to males. Compared to the control populations (C(1-4 where the genomes are exposed to selection in both sexes, the populations with male-limited genomes (ML(1-4 showed rapid increases in male fitness, whereas the fitness of females expressing ML-evolved chromosomes decreased. METHODOLOGY/PRINCIPAL FINDINGS: Here we examine the behavioural phenotype underlying this sexual antagonism. We show that males expressing the ML genomes have a reduced courtship level but acquire the same number of matings. On the other hand, our data suggest that females expressing the ML genomes had reduced attractiveness, stimulating a lower rate of courtship from males. Moreover, females expressing ML genomes tend to display reduced yeast-feeding behaviour, which is probably linked to the reduction of their fecundity. CONCLUSION/SIGNIFICANCE: These results suggest that reproductive behaviour is shaped by opposing selection on males and females, and that loci influencing attractiveness and foraging were polymorphic for alleles with sexually antagonistic expression patterns prior to ML selection. Hence, intralocus sexual conflict appears to play a role in the evolution of a wide range of fitness-related traits and may be a powerful mechanism for the maintenance of genetic variation in fitness.

  13. Genetic basis for rapidly evolved tolerance in the wild ...

    Science.gov (United States)

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of the genetic basis for DLC tolerance in killifish inhabiting an urban estuary contaminated with PCB congeners, the most toxic of which are DLCs. Consistent with mechanistic knowledge of DLC toxicity in fish and other vertebrates, the Aryl Hydrocarbon Receptor (ahr2) region accounts for 17% of trait variation; however, QTLs on independent linkage groups and their interactions have even greater explanatory power (44%). QTLs interpreted within the context of recently available Fundulus genomic resources and shared synteny among fish species suggest adaptation via inter-acting components of a complex stress response network. Some QTLs were also enriched in other killifish populations characterized as DLC tolerant and residing in distant urban estuaries contaminated with unique mixtures of pollutants. Together, our results suggest that DLC tolerance in killifish represents an emerging example of parallel contemporary evolution that has been driven by intense human-mediated selection on natural populations. This manuscript describes experimental studies that contribute to our understanding of the ecological

  14. Evolving networks-Using past structure to predict the future

    Science.gov (United States)

    Shang, Ke-ke; Yan, Wei-sheng; Small, Michael

    2016-08-01

    Many previous studies on link prediction have focused on using common neighbors to predict the existence of links between pairs of nodes. More broadly, research into the structural properties of evolving temporal networks and temporal link prediction methods have recently attracted increasing attention. In this study, for the first time, we examine the use of links between a pair of nodes to predict their common neighbors and analyze the relationship between the weight and the structure in static networks, evolving networks, and in the corresponding randomized networks. We propose both new unweighted and weighted prediction methods and use six kinds of real networks to test our algorithms. In unweighted networks, we find that if a pair of nodes connect to each other in the current network, they will have a higher probability to connect common nodes both in the current and the future networks-and the probability will decrease with the increase of the number of neighbors. Furthermore, we find that the original networks have their particular structure and statistical characteristics which benefit link prediction. In weighted networks, the prediction algorithm performance of networks which are dominated by human factors decrease with the decrease of weight and are in general better in static networks. Furthermore, we find that geographical position and link weight both have significant influence on the transport network. Moreover, the evolving financial network has the lowest predictability. In addition, we find that the structure of non-social networks has more robustness than social networks. The structure of engineering networks has both best predictability and also robustness.

  15. Information filtering in evolving online networks

    Science.gov (United States)

    Chen, Bo-Lun; Li, Fen-Fen; Zhang, Yong-Jun; Ma, Jia-Lin

    2018-02-01

    Recommender systems use the records of users' activities and profiles of both users and products to predict users' preferences in the future. Considerable works towards recommendation algorithms have been published to solve the problems such as accuracy, diversity, congestion, cold-start, novelty, coverage and so on. However, most of these research did not consider the temporal effects of the information included in the users' historical data. For example, the segmentation of the training set and test set was completely random, which was entirely different from the real scenario in recommender systems. More seriously, all the objects are treated as the same, regardless of the new, the popular or obsoleted products, so do the users. These data processing methods always lose useful information and mislead the understanding of the system's state. In this paper, we detailed analyzed the difference of the network structure between the traditional random division method and the temporal division method on two benchmark data sets, Netflix and MovieLens. Then three classical recommendation algorithms, Global Ranking method, Collaborative Filtering and Mass Diffusion method, were employed. The results show that all these algorithms became worse in all four key indicators, ranking score, precision, popularity and diversity, in the temporal scenario. Finally, we design a new recommendation algorithm based on both users' and objects' first appearance time in the system. Experimental results showed that the new algorithm can greatly improve the accuracy and other metrics.

  16. Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks.

    Directory of Open Access Journals (Sweden)

    Christopher F Steiner

    Full Text Available The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or "evolvability" can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise compared to populations in stable or randomly varying (white noise environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions.

  17. Social networks: Evolving graphs with memory dependent edges

    Science.gov (United States)

    Grindrod, Peter; Parsons, Mark

    2011-10-01

    The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.

  18. How people interact in evolving online affiliation networks

    CERN Document Server

    Gallos, Lazaros K; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernan A

    2011-01-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We first show that an accurate estimation of these probabilistic tendencies can only be achieved by following the time evolution of the network. For example, actions that are attributed to the usual friend of a friend mechanism through a static snapshot of the network are overestimated by a factor of two. A detailed analysis of the dynamic network evolution shows that half of those triangles were generated through other mechanisms, in spite of the characteristic static pattern. We start by characterizing every single link when the tie was established in the network. This allows us to describe the probabilistic tendencies of tie formation and extract sociological conclusions as...

  19. Gravity Effects on Information Filtering and Network Evolving

    Science.gov (United States)

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162

  20. Intelligent reservoir operation system based on evolving artificial neural networks

    Science.gov (United States)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  1. How People Interact in Evolving Online Affiliation Networks

    Science.gov (United States)

    Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.

    2012-07-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  2. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  3. Modeling the Chinese language as an evolving network

    Science.gov (United States)

    Liang, Wei; Shi, Yuming; Huang, Qiuling

    2014-01-01

    The evolution of Chinese language has three main features: the total number of characters is gradually increasing, new words are generated in the existing characters, and some old words are no longer used in daily-life language. Based on the features, we propose an evolving language network model. Finally, we use this model to simulate the character co-occurrence networks (nodes are characters, and two characters are connected by an edge if they are adjacent to each other) constructed from essays in 11 different periods of China, and find that characters that appear with high frequency in old words are likely to be reused when new words are formed.

  4. How rapidly does the human mitochondrial genome evolve?

    Energy Technology Data Exchange (ETDEWEB)

    Howell, N.; Kubacka, I. [Univ. of Texas Medical Branch, Galveston, TX (United States); Mackey, D.A. [Univ. of Melbourne (Australia)]|[Univ. of Tasmania, Launceston (Australia)

    1996-09-01

    The results of an empirical nucleotide-sequencing approach indicate that the evolution of the human mitochondrial noncoding D-loop is both more rapid and more complex than is revealed by standard phylogenetic approaches. The nucleotide sequence of the D-loop region of the mitochondrial genome was determined for 45 members of a large matrilineal Leber hereditary optic neuropathy pedigree. Two germ-line mutations have arisen in members of one branch of the family, thereby leading to triplasmic descendants with three mitochondrial genotypes. Segregation toward the homoplasmic state can occur within a single generation in some of these descendants, a result that suggests rapid fixation of mitochondrial mutations as a result of developmental bottlenecking. However, slow segregation was observed in other offspring, and therefore no single or simple pattern of segregation can be generalized from the available data. Evidence for rare mtDNA recombination within the D-loop was obtained for one family member. In addition to these germ-line mutations, a somatic mutation was found in the D-loop of one family member. When this genealogical approach was applied to the nucleotide sequences of mitochondrial coding regions, the results again indicated a very rapid rate of evolution. 44 refs., 2 figs., 2 tabs.

  5. How People Interact in Evolving Online Affiliation Networks

    Directory of Open Access Journals (Sweden)

    Lazaros K. Gallos

    2012-08-01

    Full Text Available The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  6. Evolving RBF neural networks for adaptive soft-sensor design.

    Science.gov (United States)

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  7. A weighted network evolving model with capacity constraints

    Science.gov (United States)

    Wu, XiaoHuan; Zhu, JinFu; Wu, WeiWei; Ge, Wei

    2013-09-01

    Most of existing works on complex network assumed that the nodes and edges were uncapacitated during the evolving process, and displayed "rich club" phenomenon. Here we will show that the "rich club" could be changed to "common rich" if we consider the node capacity. In this paper, we define the node and edge attractive index with node capacity, and propose a new evolving model on the base of BBV model, with evolving simulations of the networks. In the new model, an entering node is linked with an existing node according to the preferential attachment mechanism defined with the attractive index of the existing node. We give the theoretical approximation and simulation solutions. If node capacity is finite, the rich node may not be richer further when the node strength approaches or gets to the node capacity. This is confirmed by analyzing the passenger traffic and routes of Chinese main airports. Due to node strength being function of time t, we can use the theoretical approximation solution to forecast how node strength changes and the time when node strength reaches its maximum value.

  8. Evolving Neural Networks for the Classification of Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Paz, E; Kamath, C

    2002-01-23

    The FIRST survey (Faint Images of the Radio Sky at Twenty-cm) is scheduled to cover 10,000 square degrees of the northern and southern galactic caps. Until recently, astronomers classified radio-emitting galaxies through a visual inspection of FIRST images. Besides being subjective, prone to error and tedious, this manual approach is becoming infeasible: upon completion, FIRST will include almost a million galaxies. This paper describes the application of six methods of evolving neural networks (NNs) with genetic algorithms (GAs) to identify bent-double galaxies. The objective is to demonstrate that GAs can successfully address some common problems in the application of NNs to classification problems, such as training the networks, choosing appropriate network topologies, and selecting relevant features. The results indicate that most of the methods perform equally well on our data, but the feature selection method gives superior results.

  9. Evolving ATLAS Computing For Today’s Networks

    CERN Document Server

    Campana, S; The ATLAS collaboration; Jezequel, S; Negri, G; Serfon, C; Ueda, I

    2012-01-01

    The ATLAS computing infrastructure was designed many years ago based on the assumption of rather limited network connectivity between computing centres. ATLAS sites have been organized in a hierarchical model, where only a static subset of all possible network links can be exploited and a static subset of well connected sites (CERN and the T1s) can cover important functional roles such as hosting master copies of the data. The pragmatic adoption of such simplified approach, in respect of a more relaxed scenario interconnecting all sites, was very beneficial during the commissioning of the ATLAS distributed computing system and essential in reducing the operational cost during the first two years of LHC data taking. In the mean time, networks evolved far beyond this initial scenario: while a few countries are still poorly connected with the rest of the WLCG infrastructure, most of the ATLAS computing centres are now efficiently interlinked. Our operational experience in running the computing infrastructure in ...

  10. Evolving neural networks using a genetic algorithm for heartbeat classification.

    Science.gov (United States)

    Sekkal, Mansouria; Chikh, Mohamed Amine; Settouti, Nesma

    2011-07-01

    This study investigates the effectiveness of a genetic algorithm (GA) evolved neural network (NN) classifier and its application to the classification of premature ventricular contraction (PVC) beats. As there is no standard procedure to determine the network structure for complicated cases, generally the design of the NN would be dependent on the user's experience. To prevent this problem, we propose a neural classifier that uses a GA for the determination of optimal connections between neurons for better recognition. The MIT-BIH arrhythmia database is employed to evaluate its accuracy. First, the topology of the NN was determined using the trial and error method. Second, the genetic operators were carefully designed to optimize the neural network structure. Performance and accuracy of the two techniques are presented and compared. Copyright © 2011 Informa UK, Ltd.

  11. A Markovian model of evolving world input-output network.

    Science.gov (United States)

    Moosavi, Vahid; Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money.

  12. A rapidly evolving secretome builds and patterns a sea shell

    Directory of Open Access Journals (Sweden)

    Green Kathryn

    2006-11-01

    Full Text Available Abstract Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables

  13. Evolving Spiking Neural Networks for Control of Artificial Creatures

    Directory of Open Access Journals (Sweden)

    Arash Ahmadi

    2013-10-01

    Full Text Available To understand and analysis behavior of complicated and intelligent organisms, scientists apply bio-inspired concepts including evolution and learning to mathematical models and analyses. Researchers utilize these perceptions in different applications, searching for improved methods andapproaches for modern computational systems. This paper presents a genetic algorithm based evolution framework in which Spiking Neural Network (SNN of artificial creatures are evolved for higher chance of survival in a virtual environment. The artificial creatures are composed ofrandomly connected Izhikevich spiking reservoir neural networks using population activity rate coding. Inspired by biological neurons, the neuronal connections are considered with different axonal conduction delays. Simulations results prove that the evolutionary algorithm has thecapability to find or synthesis artificial creatures which can survive in the environment successfully.

  14. EVOLVE

    CERN Document Server

    Deutz, André; Schütze, Oliver; Legrand, Pierrick; Tantar, Emilia; Tantar, Alexandru-Adrian

    2017-01-01

    This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.

  15. Gap Gene Regulatory Dynamics Evolve along a Genotype Network

    Science.gov (United States)

    Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-01-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability). PMID:26796549

  16. Emergence of bursts and communities in evolving weighted networks.

    Science.gov (United States)

    Jo, Hang-Hyun; Pan, Raj Kumar; Kaski, Kimmo

    2011-01-01

    Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.

  17. Emergence of bursts and communities in evolving weighted networks.

    Directory of Open Access Journals (Sweden)

    Hang-Hyun Jo

    Full Text Available Understanding the patterns of human dynamics and social interaction and the way they lead to the formation of an organized and functional society are important issues especially for techno-social development. Addressing these issues of social networks has recently become possible through large scale data analysis of mobile phone call records, which has revealed the existence of modular or community structure with many links between nodes of the same community and relatively few links between nodes of different communities. The weights of links, e.g., the number of calls between two users, and the network topology are found correlated such that intra-community links are stronger compared to the weak inter-community links. This feature is known as Granovetter's "The strength of weak ties" hypothesis. In addition to this inhomogeneous community structure, the temporal patterns of human dynamics turn out to be inhomogeneous or bursty, characterized by the heavy tailed distribution of time interval between two consecutive events, i.e., inter-event time. In this paper, we study how the community structure and the bursty dynamics emerge together in a simple evolving weighted network model. The principal mechanisms behind these patterns are social interaction by cyclic closure, i.e., links to friends of friends and the focal closure, links to individuals sharing similar attributes or interests, and human dynamics by task handling process. These three mechanisms have been implemented as a network model with local attachment, global attachment, and priority-based queuing processes. By comprehensive numerical simulations we show that the interplay of these mechanisms leads to the emergence of heavy tailed inter-event time distribution and the evolution of Granovetter-type community structure. Moreover, the numerical results are found to be in qualitative agreement with empirical analysis results from mobile phone call dataset.

  18. Network-based Mobility with DVB-RCS2 using the Evolved Packet Core

    NARCIS (Netherlands)

    Walraven, F.A.; Venemans, P.H.A.; Velt, R. in 't; Fransen, F.

    2013-01-01

    The network of the future consists of a combination of different access networks, each providing a level of network availability and mobility suited for a wide range of applications. Mobile network developments culminated in work on the E-UTRAN and Evolved Packet Core (EPC) network and can provide

  19. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks

    National Research Council Canada - National Science Library

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    .... It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks...

  20. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    Science.gov (United States)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  1. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    Science.gov (United States)

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  2. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.

    Science.gov (United States)

    Ten Tusscher, Kirsten H; Hogeweg, Paulien

    2011-10-01

    A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation and

  3. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Escuela Politecnica Superior, Departamento de Electrotecnia y Electronica, Avda. Menendez Pidal s/n, Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego D, E.; Lorente F, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, ETSI Industriales, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E., E-mail: morvymm@yahoo.com.m [CIEMAT, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, 28040 Madrid (Spain)

    2011-02-15

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  4. The Evolving Wide Area Network Infrastructure in the LHC era

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The global network is more than ever taking its role as the great "enabler" for many branches of science and research. Foremost amongst such science drivers is of course the LHC/LCG programme, although there are several other sectors with growing demands of the network. Common to all of these is the realisation that a straightforward over provisioned best efforts wide area IP service is probably not enough for the future. This talk will summarise the needs of several science sectors, and the advances being made to exploit the current best efforts infrastructure. It will then describe current projects aimed as provisioning "better than best efforts" services (such bandwidth on demand), the global optical R&D testbeds and the strategy of the research network providers to move towards hybrid multi-service networks for the next generation of the global wide area production network.

  5. Evolving networks of relative care : alliance and exclusion

    OpenAIRE

    O'Brien, Valerie

    1999-01-01

    The chapter traces the processes involved through the decision-making, assessment and post-assessment stages of kinship Care. It examines the ways in which case management practices, derived primarily from an application of a traditional foster care approach, impact on the evolution of the kinship care networks. A process-oriented descriptive account of the evolution of the networks is presented. The multiple perspectives on issues offered by the birth parents, children, relatives and social ...

  6. Connecting network properties of rapidly disseminating epizoonotics.

    Directory of Open Access Journals (Sweden)

    Ariel L Rivas

    Full Text Available To effectively control the geographical dissemination of infectious diseases, their properties need to be determined. To test that rapid microbial dispersal requires not only susceptible hosts but also a pre-existing, connecting network, we explored constructs meant to reveal the network properties associated with disease spread, which included the road structure.Using geo-temporal data collected from epizoonotics in which all hosts were susceptible (mammals infected by Foot-and-mouth disease virus, Uruguay, 2001; birds infected by Avian Influenza virus H5N1, Nigeria, 2006, two models were compared: 1 'connectivity', a model that integrated bio-physical concepts (the agent's transmission cycle, road topology into indicators designed to measure networks ('nodes' or infected sites with short- and long-range links, and 2 'contacts', which focused on infected individuals but did not assess connectivity.THE CONNECTIVITY MODEL SHOWED FIVE NETWORK PROPERTIES: 1 spatial aggregation of cases (disease clusters, 2 links among similar 'nodes' (assortativity, 3 simultaneous activation of similar nodes (synchronicity, 4 disease flows moving from highly to poorly connected nodes (directionality, and 5 a few nodes accounting for most cases (a "20:80" pattern. In both epizoonotics, 1 not all primary cases were connected but at least one primary case was connected, 2 highly connected, small areas (nodes accounted for most cases, 3 several classes of nodes were distinguished, and 4 the contact model, which assumed all primary cases were identical, captured half the number of cases identified by the connectivity model. When assessed together, the synchronicity and directionality properties explained when and where an infectious disease spreads.Geo-temporal constructs of Network Theory's nodes and links were retrospectively validated in rapidly disseminating infectious diseases. They distinguished classes of cases, nodes, and networks, generating information usable

  7. Randomly evolving idiotypic networks: modular mean field theory.

    Science.gov (United States)

    Schmidtchen, Holger; Behn, Ulrich

    2012-07-01

    We develop a modular mean field theory for a minimalistic model of the idiotypic network. The model comprises the random influx of new idiotypes and a deterministic selection. It describes the evolution of the idiotypic network towards complex modular architectures, the building principles of which are known. The nodes of the network can be classified into groups of nodes, the modules, which share statistical properties. Each node experiences only the mean influence of the groups to which it is linked. Given the size of the groups and linking between them the statistical properties such as mean occupation, mean lifetime, and mean number of occupied neighbors are calculated for a variety of patterns and compared with simulations. For a pattern which consists of pairs of occupied nodes correlations are taken into account.

  8. Mean-field approach to evolving spatial networks, with an application to osteocyte network formation

    Science.gov (United States)

    Taylor-King, Jake P.; Basanta, David; Chapman, S. Jonathan; Porter, Mason A.

    2017-07-01

    We consider evolving networks in which each node can have various associated properties (a state) in addition to those that arise from network structure. For example, each node can have a spatial location and a velocity, or it can have some more abstract internal property that describes something like a social trait. Edges between nodes are created and destroyed, and new nodes enter the system. We introduce a "local state degree distribution" (LSDD) as the degree distribution at a particular point in state space. We then make a mean-field assumption and thereby derive an integro-partial differential equation that is satisfied by the LSDD. We perform numerical experiments and find good agreement between solutions of the integro-differential equation and the LSDD from stochastic simulations of the full model. To illustrate our theory, we apply it to a simple model for osteocyte network formation within bones, with a view to understanding changes that may take place during cancer. Our results suggest that increased rates of differentiation lead to higher densities of osteocytes, but with a smaller number of dendrites. To help provide biological context, we also include an introduction to osteocytes, the formation of osteocyte networks, and the role of osteocytes in bone metastasis.

  9. Interconnecting astronomical networks: evolving from single networks to meta-networks

    Science.gov (United States)

    White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.

    2006-06-01

    Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.

  10. Evolving Paradigms in the Networked World and their implications ...

    African Journals Online (AJOL)

    information society, e-government, digital divide, and e-learning/digital scholarship. This paper provides an overview of the paradigm shifts sweeping the information landscape in the networked world and the implications for the creation and management of information, especially in African libraries. African Journal of ...

  11. Coevolution of quantum and classical strategies on evolving random networks.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available We study the coevolution of quantum and classical strategies on weighted and directed random networks in the realm of the prisoner's dilemma game. During the evolution, agents can break and rewire their links with the aim of maximizing payoffs, and they can also adjust the weights to indicate preferences, either positive or negative, towards their neighbors. The network structure itself is thus also subject to evolution. Importantly, the directionality of links does not affect the accumulation of payoffs nor the strategy transfers, but serves only to designate the owner of each particular link and with it the right to adjust the link as needed. We show that quantum strategies outperform classical strategies, and that the critical temptation to defect at which cooperative behavior can be maintained rises, if the network structure is updated frequently. Punishing neighbors by reducing the weights of their links also plays an important role in maintaining cooperation under adverse conditions. We find that the self-organization of the initially random network structure, driven by the evolutionary competition between quantum and classical strategies, leads to the spontaneous emergence of small average path length and a large clustering coefficient.

  12. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.

  13. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    ution, P(k) ∼ exp(−k/m), where m is a constant. Empirical results demonstrate that many networks in nature appear to exhibit ... There are many examples where the distribution is neither power-law nor exponential, such ..... [13] Z Hou, X Kong, D Shi, G Chen and Q Zhao, cond-mat/09011418. [14] O Stolz, Vorlesungen uber ...

  14. Empirical Models of Social Learning in a Large, Evolving Network.

    Directory of Open Access Journals (Sweden)

    Ayşe Başar Bener

    Full Text Available This paper advances theories of social learning through an empirical examination of how social networks change over time. Social networks are important for learning because they constrain individuals' access to information about the behaviors and cognitions of other people. Using data on a large social network of mobile device users over a one-month time period, we test three hypotheses: 1 attraction homophily causes individuals to form ties on the basis of attribute similarity, 2 aversion homophily causes individuals to delete existing ties on the basis of attribute dissimilarity, and 3 social influence causes individuals to adopt the attributes of others they share direct ties with. Statistical models offer varied degrees of support for all three hypotheses and show that these mechanisms are more complex than assumed in prior work. Although homophily is normally thought of as a process of attraction, people also avoid relationships with others who are different. These mechanisms have distinct effects on network structure. While social influence does help explain behavior, people tend to follow global trends more than they follow their friends.

  15. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we

  16. Evolving neural networks for strategic decision-making problems.

    Science.gov (United States)

    Kohl, Nate; Miikkulainen, Risto

    2009-04-01

    Evolution of neural networks, or neuroevolution, has been a successful approach to many low-level control problems such as pole balancing, vehicle control, and collision warning. However, certain types of problems-such as those involving strategic decision-making-have remained difficult for neuroevolution to solve. This paper evaluates the hypothesis that such problems are difficult because they are fractured: The correct action varies discontinuously as the agent moves from state to state. A method for measuring fracture using the concept of function variation is proposed and, based on this concept, two methods for dealing with fracture are examined: neurons with local receptive fields, and refinement based on a cascaded network architecture. Experiments in several benchmark domains are performed to evaluate how different levels of fracture affect the performance of neuroevolution methods, demonstrating that these two modifications improve performance significantly. These results form a promising starting point for expanding neuroevolution to strategic tasks.

  17. Rapid innovation diffusion in social networks.

    Science.gov (United States)

    Kreindler, Gabriel E; Young, H Peyton

    2014-07-22

    Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents' responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks.

  18. Rodent-specific alternative exons are more frequent in rapidly evolving genes and in paralogs

    Directory of Open Access Journals (Sweden)

    Mironov Andrey A

    2009-06-01

    Full Text Available Abstract Background Alternative splicing is an important mechanism for generating functional and evolutionary diversity of proteins in eukaryotes. Here, we studied the frequency and functionality of recently gained, rodent-specific alternative exons. Results We projected the data about alternative splicing of mouse genes to the rat, human, and dog genomes, and identified exons conserved in the rat genome, but missing in more distant genomes. We estimated the frequency of rodent-specific exons while controlling for possible residual conservation of spurious exons. The frequency of rodent-specific exons is higher among predominantly skipped exons and exons disrupting the reading frame. Separation of all genes by the rate of sequence evolution and by gene families has demonstrated that rodent-specific cassette exons are more frequent in rapidly evolving genes and in rodent-specific paralogs. Conclusion Thus we demonstrated that recently gained exons tend to occur in fast-evolving genes, and their inclusion rate tends to be lower than that of older exons. This agrees with the theory that gain of alternative exons is one of the major mechanisms of gene evolution.

  19. Ecological connectivity networks in rapidly expanding cities.

    Science.gov (United States)

    Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M

    2017-06-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow (Passer montanus) and Yellow-vented bulbul (Pycnonotus goiavier) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for

  20. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.

    Science.gov (United States)

    Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M

    2017-08-01

    Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Health and Occupation Research Network: An Evolving Surveillance System

    Directory of Open Access Journals (Sweden)

    Melanie Carder

    2017-09-01

    Full Text Available Vital to the prevention of work-related ill-health (WRIH is the availability of good quality data regarding WRIH burden and risks. Physician-based surveillance systems such as The Health and Occupation Research (THOR network in the UK are often established in response to limitations of statutory, compensation-based systems for addressing certain epidemiological aspects of disease surveillance. However, to fulfil their purpose, THOR and others need to have methodologic rigor in capturing and ascertaining cases. This article describes how data collected by THOR and analogous systems can inform WRIH incidence, trends, and other determinants. An overview of the different strands of THOR research is provided, including methodologic advancements facilitated by increased data quantity/quality over time and the value of the research outputs for informing Government and other policy makers. In doing so, the utility of data collected by systems such as THOR to address a wide range of research questions, both in relation to WRIH and to wider issues of public and social health, is demonstrated.

  2. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Paul Tonelli

    Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  3. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Science.gov (United States)

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  4. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.

    Science.gov (United States)

    Yuan, Jing; Li, Xiang; Zhang, Jinhe; Luo, Liao; Dong, Qinglin; Lv, Jinglei; Zhao, Yu; Jiang, Xi; Zhang, Shu; Zhang, Wei; Liu, Tianming

    2017-11-09

    Many recent literature studies have revealed interesting dynamics patterns of functional brain networks derived from fMRI data. However, it has been rarely explored how functional networks spatially overlap (or interact) and how such connectome-scale network interactions temporally evolve. To explore these unanswered questions, this paper presents a novel framework for spatio-temporal modeling of connectome-scale functional brain network interactions via two main effective computational methodologies. First, to integrate, pool and compare brain networks across individuals and their cognitive states under task performances, we designed a novel group-wise dictionary learning scheme to derive connectome-scale consistent brain network templates that can be used to define the common reference space of brain network interactions. Second, the temporal dynamics of spatial network interactions is modeled by a weighted time-evolving graph, and then a data-driven unsupervised learning algorithm based on the dynamic behavioral mixed-membership model (DBMM) is adopted to identify behavioral patterns of brain networks during the temporal evolution process of spatial overlaps/interactions. Experimental results on the Human Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful, diverse behavior patterns of connectome-scale network interactions. In particular, those networks' behavior patterns are distinct across HCP tasks such as motor, working memory, language and social tasks, and their dynamics well correspond to the temporal changes of specific task designs. In general, our framework offers a new approach to characterizing human brain function by quantitative description for the temporal evolution of spatial overlaps/interactions of connectome-scale brain networks in a standard reference space. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks: e79138

    National Research Council Canada - National Science Library

    Paul Tonelli; Jean-Baptiste Mouret

    2013-01-01

    .... It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks...

  6. Modeling Slump of Ready Mix Concrete Using Genetically Evolved Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2014-01-01

    Full Text Available Artificial neural networks (ANNs have been the preferred choice for modeling the complex and nonlinear material behavior where conventional mathematical approaches do not yield the desired accuracy and predictability. Despite their popularity as a universal function approximator and wide range of applications, no specific rules for deciding the architecture of neural networks catering to a specific modeling task have been formulated. The research paper presents a methodology for automated design of neural network architecture, replacing the conventional trial and error technique of finding the optimal neural network. The genetic algorithms (GA stochastic search has been harnessed for evolving the optimum number of hidden layer neurons, transfer function, learning rate, and momentum coefficient for backpropagation ANN. The methodology has been applied for modeling slump of ready mix concrete based on its design mix constituents, namely, cement, fly ash, sand, coarse aggregates, admixture, and water-binder ratio. Six different statistical performance measures have been used for evaluating the performance of the trained neural networks. The study showed that, in comparison to conventional trial and error technique of deciding the neural network architecture and training parameters, the neural network architecture evolved through GA was of reduced complexity and provided better prediction performance.

  7. On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    2017-01-01

    Full Text Available Influence maximization problem aims to identify the most influential individuals so as to help in developing effective viral marketing strategies over social networks. Previous studies mainly focus on designing efficient algorithms or heuristics on a static social network. As a matter of fact, real-world social networks keep evolving over time and a recalculation upon the changed network inevitably leads to a long running time. In this paper, we propose an incremental approach, IncInf, which can efficiently locate the top-K influential individuals in evolving social networks based on previous information instead of calculation from scratch. In particular, IncInf quantitatively analyzes the influence spread changes of nodes by localizing the impact of topology evolution to only local regions, and a pruning strategy is further proposed to narrow the search space into nodes experiencing major increases or with high degrees. To evaluate the efficiency and effectiveness, we carried out extensive experiments on real-world dynamic social networks: Facebook, NetHEPT, and Flickr. Experimental results demonstrate that, compared with the state-of-the-art static algorithm, IncInf achieves remarkable speedup in execution time while maintaining matching performance in terms of influence spread.

  8. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    Science.gov (United States)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  9. Adaptive control of dynamical synchronization on evolving networks with noise disturbances

    Science.gov (United States)

    Yuan, Wu-Jie; Zhou, Jian-Fang; Sendiña-Nadal, Irene; Boccaletti, Stefano; Wang, Zhen

    2018-02-01

    In real-world networked systems, the underlying structure is often affected by external and internal unforeseen factors, making its evolution typically inaccessible. An adaptive strategy was introduced for maintaining synchronization on unpredictably evolving networks [Sorrentino and Ott, Phys. Rev. Lett. 100, 114101 (2008), 10.1103/PhysRevLett.100.114101], which yet does not consider the noise disturbances widely existing in networks' environments. We provide here strategies to control dynamical synchronization on slowly and unpredictably evolving networks subjected to noise disturbances which are observed at the node and at the communication channel level. With our strategy, the nodes' coupling strength is adaptively adjusted with the aim of controlling synchronization, and according only to their received signal and noise disturbances. We first provide a theoretical analysis of the control scheme by introducing an error potential function to seek for the minimization of the synchronization error. Then, we show numerical experiments which verify our theoretical results. In particular, it is found that our adaptive strategy is effective even for the case in which the dynamics of the uncontrolled network would be explosive (i.e., the states of all the nodes would diverge to infinity).

  10. Evolving patterns in a collaboration network of global R&D on monoclonal antibodies.

    Science.gov (United States)

    Kong, Xiangjun; Wan, Jian-Bo; Hu, Hao; Su, Shibing; Hu, Yuanjia

    2017-10-01

    We investigated the evolution process of collaborative inter-organizational network of the research and development (R&D) on monoclonal antibody (mAb) over the past 30 y. The annual detection of the collaboration network provides dynamics on network structures and relationship changes among different organizations. Our research showed continuous growth of the network's scale and complexity due to the constant entry of new organizations and the forging of new partnering relationships. The evolving topological features reveal a core-periphery structure that became clearer over time and an increasing heterogeneity within the collaborative mAb R&D network. As measured by the number of network participants, dedicated biotechnology firms (DBFs) were the dominant organization form in the field of mAb development, but their average centrality was reduced during the period of 2004-2009, when pharmaceutical companies took over the positions of DBFs. Along with the network evolution, 2 waves of substitution on the leading positions were driven by technological innovations and mergers and acquisitions (M&A). In addition, this study analyzed organizational-level behaviors to help understand the evolution of network structures over the field of mAb development across the different technologically innovative or economic contexts.

  11. Evolvability of feed-forward loop architecture biases its abundance in transcription networks

    Directory of Open Access Journals (Sweden)

    Widder Stefanie

    2012-01-01

    Full Text Available Abstract Background Transcription networks define the core of the regulatory machinery of cellular life and are largely responsible for information processing and decision making. At the small scale, interaction motifs have been characterized based on their abundance and some seemingly general patterns have been described. In particular, the abundance of different feed-forward loop motifs in gene regulatory networks displays systematic biases towards some particular topologies, which are much more common than others. The causative process of this pattern is still matter of debate. Results We analyzed the entire motif-function landscape of the feed-forward loop using the formalism developed in a previous work. We evaluated the probabilities to implement possible functions for each motif and found that the kurtosis of these distributions correlate well with the natural abundance pattern. Kurtosis is a standard measure for the peakedness of probability distributions. Furthermore, we examined the functional robustness of the motifs facing mutational pressure in silico and observed that the abundance pattern is biased by the degree of their evolvability. Conclusions The natural abundance pattern of the feed-forward loop can be reconstructed concerning its intrinsic plasticity. Intrinsic plasticity is associated to each motif in terms of its capacity of implementing a repertoire of possible functions and it is directly linked to the motif's evolvability. Since evolvability is defined as the potential phenotypic variation of the motif upon mutation, the link plausibly explains the abundance pattern.

  12. Evolvability of feed-forward loop architecture biases its abundance in transcription networks.

    Science.gov (United States)

    Widder, Stefanie; Solé, Ricard; Macía, Javier

    2012-01-19

    Transcription networks define the core of the regulatory machinery of cellular life and are largely responsible for information processing and decision making. At the small scale, interaction motifs have been characterized based on their abundance and some seemingly general patterns have been described. In particular, the abundance of different feed-forward loop motifs in gene regulatory networks displays systematic biases towards some particular topologies, which are much more common than others. The causative process of this pattern is still matter of debate. We analyzed the entire motif-function landscape of the feed-forward loop using the formalism developed in a previous work. We evaluated the probabilities to implement possible functions for each motif and found that the kurtosis of these distributions correlate well with the natural abundance pattern. Kurtosis is a standard measure for the peakedness of probability distributions. Furthermore, we examined the functional robustness of the motifs facing mutational pressure in silico and observed that the abundance pattern is biased by the degree of their evolvability. The natural abundance pattern of the feed-forward loop can be reconstructed concerning its intrinsic plasticity. Intrinsic plasticity is associated to each motif in terms of its capacity of implementing a repertoire of possible functions and it is directly linked to the motif's evolvability. Since evolvability is defined as the potential phenotypic variation of the motif upon mutation, the link plausibly explains the abundance pattern.

  13. Resilience of Networked Infrastructure with Evolving Component Conditions: Pavement Network Application

    DEFF Research Database (Denmark)

    Levenberg, Eyal; Miller-Hooks, Elise; Asadabadi, Ali

    2017-01-01

    This paper deals with quantifying the resilience of a network of pavements. Calculations were carried out by modeling network performance under a set of possible damage-meteorological scenarios with known probability of occurrence. Resilience evaluation was performed a priori while accounting...

  14. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  15. Network analysis of breast cancer progression and reversal using a tree-evolving network algorithm.

    Directory of Open Access Journals (Sweden)

    Ankur P Parikh

    2014-07-01

    Full Text Available The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a "pan-cell-state" strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.

  16. Evolving a Network of Networks: The Experience of Partnerships in the National Digital Information Infrastructure and Preservation Program

    Directory of Open Access Journals (Sweden)

    Martha Anderson

    2008-08-01

    Full Text Available The National Digital Information Infrastructure and Preservation Program (NDIIPP was initiated in December 2000 when the U.S. Congress authorized the Library of Congress to work with a broad range of institutions to develop a national strategy for the preservation of at-risk digital content. Guided by a strategy of collaboration and iteration, the Library of Congress began the formation of a national network of partners dedicated to collecting and preserving important born-digital information. Over the last six years, the Library and its partners have been engaged in learning through action that has resulted in an evolving understanding of the most appropriate roles and functions for a national network of diverse stakeholders. The emerging network is complex and inclusive of a variety of stakeholders; content producers, content stewards and service providers from the public and private sectors. Lessons learned indicate that interoperability is a challenge in all aspects of collaborative work.

  17. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application.

    Science.gov (United States)

    Johnston, S P; Prasad, G; Maguire, L; McGinnity, T M

    2010-12-01

    This paper presents an approach that permits the effective hardware realization of a novel Evolvable Spiking Neural Network (ESNN) paradigm on Field Programmable Gate Arrays (FPGAs). The ESNN possesses a hybrid learning algorithm that consists of a Spike Timing Dependent Plasticity (STDP) mechanism fused with a Genetic Algorithm (GA). The design and implementation direction utilizes the latest advancements in FPGA technology to provide a partitioned hardware/software co-design solution. The approach achieves the maximum FPGA flexibility obtainable for the ESNN paradigm. The algorithm was applied as an embedded intelligent system robotic controller to solve an autonomous navigation and obstacle avoidance problem.

  18. Evolving dynamics of trading behavior based on coordination game in complex networks

    Science.gov (United States)

    Bian, Yue-tang; Xu, Lu; Li, Jin-sheng

    2016-05-01

    This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.

  19. Long-term variability of importance of brain regions in evolving epileptic brain networks

    Science.gov (United States)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  20. Sensitivity analysis of a branching process evolving on a network with application in epidemiology

    CERN Document Server

    Hautphenne, Sophie; Delvenne, Jean-Charles; Blondel, Vincent D

    2015-01-01

    We perform an analytical sensitivity analysis for a model of a continuous-time branching process evolving on a fixed network. This allows us to determine the relative importance of the model parameters to the growth of the population on the network. We then apply our results to the early stages of an influenza-like epidemic spreading among a set of cities connected by air routes in the United States. We also consider vaccination and analyze the sensitivity of the total size of the epidemic with respect to the fraction of vaccinated people. Our analysis shows that the epidemic growth is more sensitive with respect to transmission rates within cities than travel rates between cities. More generally, we highlight the fact that branching processes offer a powerful stochastic modeling tool with analytical formulas for sensitivity which are easy to use in practice.

  1. Acquiring Efficient Locomotion in a Simulated Quadruped through Evolving Random and Predefined Neural Networks

    DEFF Research Database (Denmark)

    Veenstra, Frank; Struck, Alexander; Krauledat, Matthias

    2015-01-01

    The acquisition and optimization of dynamically stable locomotion is important to engender fast and energy efficient locomotion in animals. Conventional optimization strategies tend to have difficulties in acquiring dynamically stable gaits in legged robots. In this paper, an evolving neural...... network (ENN) was implemented with the aim to optimize the locomotive behavior of a four-legged simulated robot. In the initial generation, individuals had neural networks (NNs) that were either predefined or randomly initialized. Additional investigations show that the efficiency of applying additional...... sensors to the simulated quadruped improved the performance of the ENN slightly. Promising results were seen in the evolutionary runs where the initial predefined NNs of the population contributed to slight movements of the limbs. This paper shows how a predefined ENNs linked to bio-inspired sensors can...

  2. Long-term variability of importance of brain regions in evolving epileptic brain networks.

    Science.gov (United States)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  3. Evolving modular genetic regulatory networks with a recursive, top-down approach.

    Science.gov (United States)

    Garcia-Bernardo, Javier; Eppstein, Margaret J

    2015-12-01

    Being able to design genetic regulatory networks (GRNs) to achieve a desired cellular function is one of the main goals of synthetic biology. However, determining minimal GRNs that produce desired time-series behaviors is non-trivial. In this paper, we propose a 'top-down' approach to evolving small GRNs and then use these to recursively boot-strap the identification of larger, more complex, modular GRNs. We start with relatively dense GRNs and then use differential evolution (DE) to evolve interaction coefficients. When the target dynamical behavior is found embedded in a dense GRN, we narrow the focus of the search and begin aggressively pruning out excess interactions at the end of each generation. We first show that the method can quickly rediscover known small GRNs for a toggle switch and an oscillatory circuit. Next we include these GRNs as non-evolvable subnetworks in the subsequent evolution of more complex, modular GRNs. Successful solutions found in canonical DE where we truncated small interactions to zero, with or without an interaction penalty term, invariably contained many excess interactions. In contrast, by incorporating aggressive pruning and the penalty term, the DE was able to find minimal or nearly minimal GRNs in all test problems.

  4. Sensationalistic journalism and tales of snakebite: are rattlesnakes rapidly evolving more toxic venom?

    Science.gov (United States)

    Hayes, William K; Mackessy, Stephen P

    2010-03-01

    Recent reports in the lay press have suggested that bites by rattlesnakes in the last several years have been more severe than those in the past. The explanation, often citing physicians, is that rattlesnakes are evolving more toxic venom, perhaps in response to anthropogenic causes. We suggest that other explanations are more parsimonious, including factors dependent on the snake and factors associated with the bite victim's response to envenomation. Although bites could become more severe from an increased proportion of bites from larger or more provoked snakes (ie, more venom injected), the venom itself evolves much too slowly to explain the severe symptoms occasionally seen. Increased snakebite severity could also result from a number of demographic changes in the victim profile, including age and body size, behavior toward the snake (provocation), anatomical site of bite, clothing, and general health including asthma prevalence and sensitivity to foreign antigens. Clinical management of bites also changes perpetually, rendering comparisons of snakebite severity over time tenuous. Clearly, careful study taking into consideration many factors will be essential to document temporal changes in snakebite severity or venom toxicity. Presently, no published evidence for these changes exists. The sensationalistic coverage of these atypical bites and accompanying speculation is highly misleading and can produce many detrimental results, such as inappropriate fear of the outdoors and snakes, and distraction from proven snakebite management needs, including a consistent supply of antivenom, adequate health care, and training. We urge healthcare providers to avoid propagating misinformation about snakes and snakebites. Copyright (c) 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  5. Navigating the Perfect Storm: Research Strategies for Socialecological Systems in a Rapidly Evolving World

    Science.gov (United States)

    Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.

    2012-04-01

    The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.

  6. From Rapid to Delayed and Remote Postconditioning: the Evolving Concept of Ischemic Postconditioning in Brain Ischemia

    Science.gov (United States)

    Zhao, Heng; Ren, Chuancheng; Chen, Xingmiao; Shen, Jiangang

    2012-01-01

    Ischemic postconditioning is a concept originally defined to contrast with that of ischemic preconditioning. While both preconditioning and postconditioning confer a neuroprotective effect on brain ischemia, preconditioning is a sublethal insult performed in advance of brain ischemia, and postconditioning, which conventionally refers to a series of brief occlusions and reperfusions of the blood vessels, is conducted after ischemia/reperfusion. In this article, we first briefly review the history of preconditioning, including the experimentation that initially uncovered its neuroprotective effects and later revealed its underlying mechanisms-of-action. We then discuss how preconditioning research evolved into that of postconditioning – a concept that now represents a broad range of stimuli or triggers, including delayed postconditioning, pharmacological postconditioning, remote postconditioning – and its underlying protective mechanisms involving the Akt, MAPK, PKC and KATP channel cell-signaling pathways. Because the concept of postconditioning is so closely associated with that of preconditioning, and both share some common protective mechanisms, we also discuss whether a combination of preconditioning and postconditioning offers greater protection than preconditioning or postconditioning alone. PMID:22204317

  7. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    Science.gov (United States)

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  8. INDIAN BUSINESSMEN IN FRANCE: AN INITIAL EXAMINATION OF THEIR ACTIVITIES IN A RAPIDLY-EVOLVING CONTEXT

    Directory of Open Access Journals (Sweden)

    Vasoodeven Vuddamalay

    2010-12-01

    Full Text Available The aim of this article is to understand the implications of the recent economic and political evolution of Indian immigration in Europe, and specifically in France, their businesses and entrepreneurial groups, as well as their links with the countries of origin/welcoming countries and their transnational networks, using an historical and geoanthropological approach. The analysis also covers the essential links that the transnational entrepreneurs establish between France/Europe and the rest of the world, particularly with the emerging cities of Asia, the Middle East and, possibly, certain parts of Africa, such as South Africa, the Mascarene Islands and East Africa. To that end, the author begins by contextualising Indian business projects in France, before going on to examine the current situation of ethnic shops, the transnational companies of traditional trading communities and, to some extent, their Institute of Information Technology networks. The author also carries out a study of the “Mittal Case” as a new paradigm of research within the changing world economy, as the traditional North-South separation is undermined and the complexities of fields in research on trading and business groups is renewed. Finally, the author situates these debates within the growing world knowledge of the communities of Indian immigrants in France and their small ethnic businessmen and traders.

  9. Deploying IPv6 in 3GPP networks evolving mobile broadband from 2G to LTE and beyond

    CERN Document Server

    Korhonen, Jouni; Soininen, Jonne

    2013-01-01

    Deploying IPv6 in 3GPP Networks - Evolving Mobile Broadband from 2G to LTE and Beyond  A practical guide enabling mobile operators to deploy IPv6 with confidence The most widely used cellular mobile broadband network technology is based on the 3GPP standards. The history and background of the 3GPP technology is in the Global Mobile Service (GSM) technology and the work done in European Telecommunications Standards Institute (ETSI). This primary voice service network has evolved to be the dominant mobile Internet access technology. Deploying IPv6 in

  10. An evolving model for the supply network in a tourism destination

    CERN Document Server

    Hernández, Juan M

    2016-01-01

    Tourism is a complex dynamic system including multiple actors which are related each other composing an evolving social network. This paper presents a growing bipartite network model that explains the rise of the supply network in a tourism destination from the beginning phases of development. The nodes are the lodgings and services in a destination and a link between them appears if a representative tourist hosted in the lodging visits/consumes the service during his/her stay. The specific link between both categories are determined by a random and preferential attachment rule. The analytic results show that the long-term degree distribution of services follows a shifted power-law distribution. The numerical simulations show slight disagreements with the theoretical results in the case of the one-mode degree distribution of services, due to the low order of convergence to zero of X-motifs. The model predictions are compared with real data coming from a popular tourist destination in Gran Canaria, Spain, show...

  11. An evolving model for the lodging-service network in a tourism destination

    Science.gov (United States)

    Hernández, Juan M.; González-Martel, Christian

    2017-09-01

    Tourism is a complex dynamic system including multiple actors which are related each other composing an evolving social network. This paper presents a growing model that explains how part of the supply components in a tourism system forms a social network. Specifically, the lodgings and services in a destination are the network nodes and a link between them appears if a representative tourist hosted in the lodging visits/consumes the service during his/her stay. The specific link between both categories are determined by a random and preferential attachment rule. The analytic results show that the long-term degree distribution of services follows a shifted power-law distribution. The numerical simulations show slight disagreements with the theoretical results in the case of the one-mode degree distribution of services, due to the low order of convergence to zero of X-motifs. The model predictions are compared with real data coming from a popular tourist destination in Gran Canaria, Spain, showing a good agreement between analytical and empirical data for the degree distribution of services. The theoretical model was validated assuming four type of perturbations in the real data.

  12. Identification of genetic interaction networks via an evolutionary algorithm evolved Bayesian network.

    Science.gov (United States)

    Li, Ruowang; Dudek, Scott M; Kim, Dokyoon; Hall, Molly A; Bradford, Yuki; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; McCarty, Catherine A; Bao, Le; Ritchie, Marylyn D

    2016-01-01

    The future of medicine is moving towards the phase of precision medicine, with the goal to prevent and treat diseases by taking inter-individual variability into account. A large part of the variability lies in our genetic makeup. With the fast paced improvement of high-throughput methods for genome sequencing, a tremendous amount of genetics data have already been generated. The next hurdle for precision medicine is to have sufficient computational tools for analyzing large sets of data. Genome-Wide Association Studies (GWAS) have been the primary method to assess the relationship between single nucleotide polymorphisms (SNPs) and disease traits. While GWAS is sufficient in finding individual SNPs with strong main effects, it does not capture potential interactions among multiple SNPs. In many traits, a large proportion of variation remain unexplained by using main effects alone, leaving the door open for exploring the role of genetic interactions. However, identifying genetic interactions in large-scale genomics data poses a challenge even for modern computing. For this study, we present a new algorithm, Grammatical Evolution Bayesian Network (GEBN) that utilizes Bayesian Networks to identify interactions in the data, and at the same time, uses an evolutionary algorithm to reduce the computational cost associated with network optimization. GEBN excelled in simulation studies where the data contained main effects and interaction effects. We also applied GEBN to a Type 2 diabetes (T2D) dataset obtained from the Marshfield Personalized Medicine Research Project (PMRP). We were able to identify genetic interactions for T2D cases and controls and use information from those interactions to classify T2D samples. We obtained an average testing area under the curve (AUC) of 86.8 %. We also identified several interacting genes such as INADL and LPP that are known to be associated with T2D. Developing the computational tools to explore genetic associations beyond main

  13. Adaptive cyclically dominating game on co-evolving networks: numerical and analytic results

    Science.gov (United States)

    Choi, Chi Wun; Xu, Chen; Hui, Pak Ming

    2017-10-01

    A co-evolving and adaptive Rock (R)-Paper (P)-Scissors (S) game (ARPS) in which an agent uses one of three cyclically dominating strategies is proposed and studied numerically and analytically. An agent takes adaptive actions to achieve a neighborhood to his advantage by rewiring a dissatisfying link with a probability p or switching strategy with a probability 1 - p. Numerical results revealed two phases in the steady state. An active phase for p pc has three separate clusters of agents using only R, P, and S, respectively with terminated adaptive actions. A mean-field theory based on the link densities in co-evolving network is formulated and the trinomial closure scheme is applied to obtain analytical solutions. The analytic results agree with simulation results on ARPS well. In addition, the different probabilities of winning, losing, and drawing a game among the agents are identified as the origin of the small discrepancy between analytic and simulation results. As a result of the adaptive actions, agents of higher degrees are often those being taken advantage of. Agents with a smaller (larger) degree than the mean degree have a higher (smaller) probability of winning than losing. The results are informative for future attempts on formulating more accurate theories.

  14. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain.

    Science.gov (United States)

    Demiris, G

    2016-05-20

    Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges.

  15. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    Science.gov (United States)

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  16. Rapidly evolving marmoset MSMB genes are differently expressed in the male genital tract

    Directory of Open Access Journals (Sweden)

    Ceder Yvonne

    2009-09-01

    Full Text Available Abstract Background Beta-microseminoprotein, an abundant component in prostatic fluid, is encoded by the potential tumor suppressor gene MSMB. Some New World monkeys carry several copies of this gene, in contrast to most mammals, including humans, which have one only. Here we have investigated the background for the species difference by analyzing the chromosomal organization and expression of MSMB in the common marmoset (Callithrix jacchus. Methods Genes were identified in the Callithrix jacchus genome database using bioinformatics and transcripts were analyzed by RT-PCR and quantified by real time PCR in the presence of SYBR green. Results The common marmoset has five MSMB: one processed pseudogene and four functional genes. The latter encompass homologous genomic regions of 32-35 kb, containing the genes of 12-14 kb and conserved upstream and downstream regions of 14-19 kb and 3-4 kb. One gene, MSMB1, occupies the same position on the chromosome as the single human gene. On the same chromosome, but several Mb away, is another MSMB locus situated with MSMB2, MSMB3 and MSMB4 arranged in tandem. Measurements of transcripts demonstrated that all functional genes are expressed in the male genital tract, generating very high transcript levels in the prostate. The transcript levels in seminal vesicles and testis are two and four orders of magnitude lower. A single gene, MSMB3, accounts for more than 90% of MSMB transcripts in both the prostate and the seminal vesicles, whereas in the testis around half of the transcripts originate from MSMB2. These genes display rapid evolution with a skewed distribution of mutated nucleotides; in MSMB2 they affect nucleotides encoding the N-terminal Greek key domain, whereas in MSMB3 it is the C-terminal MSMB-unique domain that is affected. Conclusion Callitrichide monkeys have four functional MSMB that are all expressed in the male genital tract, but the product from one gene, MSMB3, will predominate in seminal

  17. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.

    Directory of Open Access Journals (Sweden)

    Josephine A Reinhardt

    Full Text Available How non-coding DNA gives rise to new protein-coding genes (de novo genes is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs, while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important.

  18. The Genomics, Epigenomics, and Transcriptomics of HPV-Associated Oropharyngeal Cancer--Understanding the Basis of a Rapidly Evolving Disease.

    Science.gov (United States)

    Lechner, M; Fenton, T R

    2016-01-01

    Human papillomavirus (HPV) has been shown to represent a major independent risk factor for head and neck squamous cell cancer, in particular for oropharyngeal carcinoma. This type of cancer is rapidly evolving in the Western world, with rising trends particularly in the young, and represents a distinct epidemiological, clinical, and molecular entity. It is the aim of this review to give a detailed description of genomic, epigenomic, transcriptomic, and posttranscriptional changes that underlie the phenotype of this deadly disease. The review will also link these changes and examine what is known about the interactions between the host genome and viral genome, and investigate changes specific for the viral genome. These data are then integrated into an updated model of HPV-induced head and neck carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    Science.gov (United States)

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  20. Emerging trends in evolving networks: Recent behaviour dominant and non-dominant model

    Science.gov (United States)

    Abbas, Khushnood; Shang, Mingsheng; Luo, Xin; Abbasi, Alireza

    2017-10-01

    Novel phenomenon receives similar attention as popular one. Therefore predicting novelty is as important as popularity. Emergence is the side effect of competition and ageing in evolving systems. Recent behaviour or recent link gain in networks plays an important role in emergence. We exploited this wisdom and came up with two models considering different scenarios and systems. Where recent behaviour dominates over total behaviour (total link gain) in the first one, and recent behaviour is as important as total behaviour for future link gain in the second one. It supposes that random walker walks on a network and can jump to any node, the probability of jumping or making a connection to other node is based on which node is recently more active or receiving more links. In our assumption, the random walker can also jump to the node which is already popular but recently not popular. We are able to predict emerging nodes which are generally suppressed under preferential attachment effect. To show the performance of our model we have conducted experiments on four real data sets namely, MovieLens, Netflix, Facebook and Arxiv High Energy Physics paper citation. For testing our model we used four information retrieval indices namely Precision, Novelty, Area Under Receiving Operating Characteristic (AUC) and Kendal's rank correlation coefficient. We have used four benchmark models for validating our proposed models. Although our model does not perform better in all the cases but, it has theoretical significance in working better for recent behaviour dominated systems.

  1. Clique size and network characteristics in hyperlink cinema. Constraints of evolved psychology.

    Science.gov (United States)

    Krems, Jaimie Arona; Dunbar, R I M

    2013-12-01

    Hyperlink cinema is an emergent film genre that seeks to push the boundaries of the medium in order to mirror contemporary life in the globalized community. Films in the genre thus create an interacting network across space and time in such a way as to suggest that people's lives can intersect on scales that would not have been possible without modern technologies of travel and communication. This allows us to test the hypothesis that new kinds of media might permit us to break through the natural cognitive constraints that limit the number and quality of social relationships we can manage in the conventional face-to-face world. We used network analysis to test this hypothesis with data from 12 hyperlink films, using 10 motion pictures from a more conventional film genre as a control. We found few differences between hyperlink cinema films and the control genre, and few differences between hyperlink cinema films and either the real world or classical drama (e.g., Shakespeare's plays). Conversation group size seems to be especially resilient to alteration. It seems that, despite many efficiency advantages, modern media are unable to circumvent the constraints imposed by our evolved psychology.

  2. Patient with rapidly evolving neurological disease with neuropathological lesions of Creutzfeldt-Jakob disease, Lewy body dementia, chronic subcortical vascular encephalopathy and meningothelial meningioma.

    Science.gov (United States)

    Vita, Maria Gabriella; Tiple, Dorina; Bizzarro, Alessandra; Ladogana, Anna; Colaizzo, Elisa; Capellari, Sabina; Rossi, Marcello; Parchi, Piero; Masullo, Carlo; Pocchiari, Maurizio

    2017-04-01

    We report a case of rapidly evolving neurological disease in a patient with neuropathological lesions of Creutzfeldt-Jakob disease (CJD), Lewy body dementia (LBD), chronic subcortical vascular encephalopathy and meningothelial meningioma. The coexistence of severe multiple pathologies in a single patient strengthens the need to perform accurate clinical differential diagnoses in rapidly progressive dementias. © 2016 Japanese Society of Neuropathology.

  3. Three perspectives on the evolving electric vehicles innovation network of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Rasanen, R.-S.; Temmes, A.; Lovio, R.

    2013-06-01

    This report compiles the electric vehicle related work done in 2012 in the project: Future innovation and technology policy for sustainable system-level transitions: the case of transport (FIP-Trans). The project focuses on researching alternative and complementary socio-technical pathways and related policy options for sustainable transition in the Finnish transport sector. The project is financed by Tekes - the Finnish Funding Agency for Technology and Innovation. Analysis is continued in 2013. In this paper we study the evolving electric vehicle innovation network of Finland. The analysis is built on combining the theoretical aspects of Strategic Niche Management and Technology Innovation Systems. Based on the literature we develop a framework for analyzing the development of innovation networks. The framework contains four steps. The first step is the identification and analysis of the main actors and their activities. The second step is the identification and analysis of the main events affecting the development of the industry. This step is based on the use of event structure analysis. The third step consists of the analysis of development of the architecture of the system while the fourth step deals with the description and analysis of the niche and innovation system development processes in a combined manner. The data consists of interviews, policy and consultation papers, newspaper articles, press releases and other enterprise publications and of private databases containing financial information of the enterprises. Based on the theoretical framework, the four separate, but complementing qualitative analyses were made. The electric vehicle niche has evolved through the interaction of private and public sector actors. The involvement of public sector affected strongly on the evolution of the system arenas and was an important event for the resource mobilization of the industry. As with other Finnish industries, the importance of the international dimension

  4. Can We Recognize an Innovation? Perspective from an Evolving Network Model

    Science.gov (United States)

    Jain, Sanjay; Krishna, Sandeep

    "Innovations" are central to the evolution of societies and the evolution of life. But what constitutes an innovation? We can often agree after the event, when its consequences and impact over a long term are known, whether something was an innovation, and whether it was a "big" innovation or a "minor" one. But can we recognize an innovation "on the fly" as it appears? Successful entrepreneurs often can. Is it possible to formalize that intuition? We discuss this question in the setting of a mathematical model of evolving networks. The model exhibits self-organization , growth, stasis, and collapse of a complex system with many interacting components, reminiscent of real-world phenomena. A notion of "innovation" is formulated in terms of graph-theoretic constructs and other dynamical variables of the model. A new node in the graph gives rise to an innovation, provided it links up "appropriately" with existing nodes; in this view innovation necessarily depends upon the existing context. We show that innovations, as defined by us, play a major role in the birth, growth, and destruction of organizational structures. Furthermore, innovations can be categorized in terms of their graph-theoretic structure as they appear. Different structural classes of innovation have potentially different qualitative consequences for the future evolution of the system, some minor and some major. Possible general lessons from this specific model are briefly discussed.

  5. Rapid identifying high-influence nodes in complex networks

    Science.gov (United States)

    Song, Bo; Jiang, Guo-Ping; Song, Yu-Rong; Xia, Ling-Ling

    2015-10-01

    A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method (RIM) to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered (SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness, and eigenvector centrality methods. Project supported by the National Natural Science Foundation of China (Grant Nos. 61374180 and 61373136), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund Project, China (Grant No. 12YJAZH120), and the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. RLD201212).

  6. A rapid protection switching method in carrier ethernet ring networks

    Science.gov (United States)

    Yuan, Liang; Ji, Meng

    2008-11-01

    Abstract: Ethernet is the most important Local Area Network (LAN) technology since more than 90% data traffic in access layer is carried on Ethernet. From 10M to 10G, the improving Ethernet technology can be not only used in LAN, but also a good choice for MAN even WAN. MAN are always constructed in ring topology because the ring network could provide resilient path protection by using less resource (fibre or cable) than other network topologies. In layer 2 data networks, spanning tree protocol (STP) is always used to protect transmit link and preventing the formation of logic loop in networks. However, STP cannot guarantee the efficiency of service convergence when link fault happened. In fact, convergent time of networks with STP is about several minutes. Though Rapid Spanning Tree Protocol (RSTP) and Multi-Spanning Tree Protocol (MSTP) improve the STP technology, they still need a couple of seconds to achieve convergence, and can not provide sub-50ms protection switching. This paper presents a novel rapid ring protection method (RRPM) for carrier Ethernet. Unlike other link-fault detection method, it adopts distributed algorithm to detect link fault rapidly (sub-50ms). When networks restore from link fault, it can revert to the original working state. RRPM can provide single ring protection and interconnected ring protection without the formation of super loop. In normal operation, the master node blocks the secondary port for all non-RRPM Ethernet frames belonging to the given RRPM Ring, thereby avoiding a loop in the ring. When link fault happens, the node on which the failure happens moves from the "ring normal" state to the "ring fault" state. It also sends "link down" frame immediately to other nodes and blocks broken port and flushes its forwarding database. Those who receive "link down" frame will flush forwarding database and master node should unblock its secondary port. When the failure restores, the whole ring will revert to the normal state. That is

  7. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    Science.gov (United States)

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms.

    Science.gov (United States)

    Müller, Kai F; Borsch, Thomas; Hilu, Khidir W

    2006-10-01

    The prevailing view in molecular systematics is that relationships among distantly related taxa should be inferred using DNA segments with low rates of evolution. However, recent analyses of sequences from the rapidly evolving matK and trnT-trnF regions yielded well resolved and highly supported trees for early diverging angiosperms. We compare here the phylogenetic structure in matK, trnT-F, and rbcL datasets for the same 42, primarily basal angiosperm taxa. Phylogenetic trees based on matK or trnT-F are far more robust than those based on rbcL. Combined analysis of the rapidly evolving regions provides support for higher-level relationships stronger than that derived from analyses of multi-gene datasets of up to several fold the number of characters analyzed here. In addition to displaying a higher percentage of parsimony-informative characters, the average phylogenetic signal per informative character is significantly higher in the datasets from rapidly evolving DNA than in the more slowly evolving rbcL, as detected using resampling of identical numbers of parsimony-informative characters from the data matrices and subjecting different statistics for overall tree robustness and phylogenetic signal to significance tests. Automated via a set of scripts, the method used here should be easily extendable to comparisons of a broader range of genomic regions for varying taxon samplings. The relative performance of markers correlates not only with a lower mean homoplasy in matK and trnT-trnF compared to rbcL, but in particular correlates negatively with the percentage of sites exhibiting maximum or close to maximum homoplasy. A likelihood ratio test confirms that the rapidly evolving gene matK evolves significantly closer to neutrality, which may be one of the underlying factors for lower levels of overall homoplasy. Our results are in line with evidence from simulation studies suggesting that the deleterious effect of multiple hits in using rapidly evolving DNA at

  9. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.

    Directory of Open Access Journals (Sweden)

    David A Garfield

    2013-10-01

    Full Text Available Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear, allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.

  10. An optimally evolved connective ratio of neural networks that maximizes the occurrence of synchronized bursting behavior

    Science.gov (United States)

    2012-01-01

    Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685

  11. A roadmap for evolving towards optical intra-data-center networks

    DEFF Research Database (Denmark)

    Dittmann, Lars; Fagertun, Anna Manolova; Kamchevska, Valerija

    2016-01-01

    The first part of this paper focuses on presenting an updated view on the state of the art in data center networks. The European project COSIGN has provided industrial optical data center network roadmaps, strategies and a techno-economic analysis of the involved industrial partners’ value...

  12. Beyond Dyadic Interdependence: Actor-Oriented Models for Co-Evolving Social Networks and Individual Behaviors

    Science.gov (United States)

    Burk, William J.; Steglich, Christian E. G.; Snijders, Tom A. B.

    2007-01-01

    Actor-oriented models are described as a longitudinal strategy for examining the co-evolution of social networks and individual behaviors. We argue that these models provide advantages over conventional approaches due to their ability to account for inherent dependencies between individuals embedded in a social network (i.e., reciprocity,…

  13. Evolving ICT and governance in organizational networks: Conceptual and theoretical foundations

    NARCIS (Netherlands)

    Loukis, E; Janssen, M.F.W.H.A.; Dawes, S.; Zheng, L

    2016-01-01

    Both private and public sector organizations tend to participate in networks in order to gain access to knowledge, skills and resources of other organizations and to create synergies to achieve highly demanding and complex goals they cannot attain individually. The governance of these networks has

  14. Evolvable Block-Based Neural Network Design for Applications in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Saumil G. Merchant

    2010-01-01

    Full Text Available Dedicated hardware implementations of artificial neural networks promise to provide faster, lower-power operation when compared to software implementations executing on microprocessors, but rarely do these implementations have the flexibility to adapt and train online under dynamic conditions. A typical design process for artificial neural networks involves offline training using software simulations and synthesis and hardware implementation of the obtained network offline. This paper presents a design of block-based neural networks (BbNNs on FPGAs capable of dynamic adaptation and online training. Specifically the network structure and the internal parameters, the two pieces of the multiparametric evolution of the BbNNs, can be adapted intrinsically, in-field under the control of the training algorithm. This ability enables deployment of the platform in dynamic environments, thereby significantly expanding the range of target applications, deployment lifetimes, and system reliability. The potential and functionality of the platform are demonstrated using several case studies.

  15. A Hardware Design of Neuromolecular Network with Enhanced Evolvability: A Bioinspired Approach

    Directory of Open Access Journals (Sweden)

    Yo-Hsien Lin

    2012-01-01

    Full Text Available Silicon-based computer systems have powerful computational capability. However, they are easy to malfunction because of a slight program error. Organisms have better adaptability than computer systems in dealing with environmental changes or noise. A close structure-function relation inherent in biological structures is an important feature for providing great malleability to environmental changes. An evolvable neuromolecular hardware motivated by some biological evidence, which integrates inter- and intraneuronal information processing, was proposed. The hardware was further applied to the pattern-recognition domain. The circuit was tested with Quartus II system, a digital circuit simulation tool. The experimental result showed that the artificial neuromolecularware exhibited a close structure-function relationship, possessed several evolvability-enhancing features combined to facilitate evolutionary learning, and was capable of functioning continuously in the face of noise.

  16. Human mobility networks and persistence of rapidly mutating pathogens

    CERN Document Server

    Aleta, Alberto; Meloni, Sandro; Poletto, Chiara; Colizza, Vittoria; Moreno, Yamir

    2016-01-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in subpopulations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of differen...

  17. Link removal for the control of stochastically evolving epidemics over networks: A comparison of approaches

    Science.gov (United States)

    Brandeau, Margaret L.

    2015-01-01

    For many communicable diseases, knowledge of the underlying contact network through which the disease spreads is essential to determining appropriate control measures. When behavior change is the primary intervention for disease prevention, it is important to understand how to best modify network connectivity using the limited resources available to control disease spread. We describe and compare four algorithms for selecting a limited number of links to remove from a network: two “preventive” approaches (edge centrality, R0 minimization), where the decision of which links to remove is made prior to any disease outbreak and depends only on the network structure; and two “reactive” approaches (S-I edge centrality, optimal quarantining), where information about the initial disease states of the nodes is incorporated into the decision of which links to remove. We evaluate the performance of these algorithms in minimizing the total number of infections that occur over the course of an acute outbreak of disease. We consider different network structures, including both static and dynamic Erdős-Rényi random networks with varying levels of connectivity, a real-world network of residential hotels connected through injection drug use, and a network exhibiting community structure. We show that reactive approaches outperform preventive approaches in averting infections. Among reactive approaches, removing links in order of S-I edge centrality is favored when the link removal budget is small, while optimal quarantining performs best when the link removal budget is sufficiently large. The budget threshold above which optimal quarantining outperforms the S-I edge centrality algorithm is a function of both network structure (higher for unstructured Erdős-Rényi random networks compared to networks with community structure or the real-world network) and disease infectiousness (lower for highly infectious diseases). We conduct a value-of-information analysis of knowing

  18. Human mobility networks and persistence of rapidly mutating pathogens.

    Science.gov (United States)

    Aleta, Alberto; Hisi, Andreia N S; Meloni, Sandro; Poletto, Chiara; Colizza, Vittoria; Moreno, Yamir

    2017-03-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in sub-populations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large-scale spreading. Findings are highlighted in reference to previous studies and to real scenarios. Our work uncovers the crucial role of hosts' mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.

  19. Macroscopic description of complex adaptive networks co-evolving with dynamic node states

    CERN Document Server

    Wiedermann, Marc; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-01-01

    In many real-world complex systems, the time-evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here, we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we show that in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability play a crucial role for the sustainability of the system's equilibrium state. We derive a macroscopic description of the system which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network and is applicable to many fields of study, such as epidemic spreading or social modeling.

  20. Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould.

    Science.gov (United States)

    Tsompanas, Michail-Antisthenis I; Sirakoulis, Georgios Ch; Adamatzky, Andrew I

    2015-09-01

    Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould Physarum polycephalum (P. polycephalum), which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although P. polycephalum is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of P. polycephalum. The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with P. polycephalum. Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost identical to the tubular networks of the real-slime mould.

  1. PGTandMe: social networking-based genetic testing and the evolving research model.

    Science.gov (United States)

    Koch, Valerie Gutmann

    2012-01-01

    The opportunity to use extensive genetic data, personal information, and family medical history for research purposes may be naturally appealing to the personal genetic testing (PGT) industry, which is already coupling direct-to-consumer (DTC) products with social networking technologies, as well as to potential industry or institutional partners. This article evaluates the transformation in research that the hybrid of PGT and social networking will bring about, and--highlighting the challenges associated with a new paradigm of "patient-driven" genomic research--focuses on the consequences of shifting the structure, locus, timing, and scope of research through genetic crowd-sourcing. This article also explores potential ethical, legal, and regulatory issues that arise from the hybrid between personal genomic research and online social networking, particularly regarding informed consent, institutional review board (IRB) oversight, and ownership/intellectual property (IP) considerations.

  2. Order Patterns Networks (orpan – a method toestimate time-evolving functional connectivity frommultivariate time series

    Directory of Open Access Journals (Sweden)

    Stefan eSchinkel

    2012-11-01

    Full Text Available Complex networks provide an excellent framework for studying the functionof the human brain activity. Yet estimating functional networks from mea-sured signals is not trivial, especially if the data is non-stationary and noisyas it is often the case with physiological recordings. In this article we proposea method that uses the local rank structure of the data to define functionallinks in terms of identical rank structures. The method yields temporal se-quences of networks which permits to trace the evolution of the functionalconnectivity during the time course of the observation. We demonstrate thepotentials of this approach with model data as well as with experimentaldata from an electrophysiological study on language processing.

  3. Understanding contracts in evolving agro-economies: Fermers, dekhqans and networks in Khorezm, Uzbekistan

    NARCIS (Netherlands)

    Djanibekov, U.; Assche, van K.A.M.; Boezeman, D.; Djanibekov, N.

    2013-01-01

    We combine institutional economic perspectives and actor-network theory to elucidate the role of contracts in the evolution of transitional agricultural systems. Such combination of theories can shed a light on the mutual constitution of actors and institutions, and the formation of economic

  4. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014

    Science.gov (United States)

    Chan, Martin C. W.; Lee, Nelson; Hung, Tin-Nok; Kwok, Kirsty; Cheung, Kelton; Tin, Edith K. Y.; Lai, Raymond W. M.; Nelson, E. Anthony S.; Leung, Ting F.; Chan, Paul K. S.

    2015-01-01

    Norovirus genogroup II genotype 4 (GII.4) has been the predominant cause of viral gastroenteritis since 1996. Here we show that during the winter of 2014–2015, an emergent variant of a previously rare norovirus GII.17 genotype, Kawasaki 2014, predominated in Hong Kong and outcompeted contemporary GII.4 Sydney 2012 in hospitalized cases. GII.17 cases were significantly older than GII.4 cases. Root-to-tip and Bayesian BEAST analyses estimate GII.17 viral protein 1 (VP1) evolves one order of magnitude faster than GII.4 VP1. Residue substitutions and insertion occur in four of five inferred antigenic epitopes, suggesting immune evasion. Sequential GII.4-GII.17 infections are noted, implicating a lack of cross-protection. Virus bound to saliva of secretor histo-blood groups A, B and O, indicating broad susceptibility. This fast-evolving, broadly recognizing and probably immune-escaped emergent GII.17 variant causes severe gastroenteritis and hospitalization across all age groups, including populations who were previously less vulnerable to GII.4 variants; therefore, the global spread of GII.17 Kawasaki 2014 needs to be monitored. PMID:26625712

  5. Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists.

    Science.gov (United States)

    Aguileta, Gabriela; Refrégier, Guislaine; Yockteng, Roxana; Fournier, Elisabeth; Giraud, Tatiana

    2009-07-01

    The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions.

  6. Evolving Small-Cell Communications towards Mobile-over-FTTx Networks

    OpenAIRE

    Zhang, Jian A.; Collings, Iain B.; Chen, Chung Shue; Laurent, Roullet; Luo, Lin; Siu-Wai, Ho; Yuan, Jinhong

    2013-01-01

    International audience; Small cell techniques are recognized as the best way to deliver high capacity for broadband cellular communications. Femtocell and distributed antenna systems (DAS) are important components in the overall small cell story, but are not the complete solution. They have major disadvantages of very limited cooperation capability and expensive deployment cost, respectively. In this article, we propose a novel mobile-over-FTTx (MoF) network architecture, where a fiber-to-the...

  7. An Analysis of Quality of Service (QoS In Live Video Streaming Using Evolved HSPA Network Media

    Directory of Open Access Journals (Sweden)

    Achmad Zakaria Azhar

    2016-10-01

    Full Text Available Evolved High Speed Packet Access (HSPA+ is a mobile telecommunication system technology and the evolution of HSPA technology. This technology has a packet data based service with downlink speeds up to 21.1 Mbps and uplink speed up to 11.5 Mbps on the bandwidth 5MHz. This technology is expected to fulfill and support the needs for information that involves all aspects of multimedia such as video and audio, especially live video streaming. By utilizing this technology it will facilitate communicating the information, for example to monitoring the situation of the house, the news coverage at some certain area, and other events in real time. This thesis aims to identify and test the Quality of Service (QoS performance on the network that is used for live video streaming with the parameters of throughput, delay, jitter and packet loss. The software used for monitoring the data traffic of the live video streaming network is wireshark network analyzer. From the test results it is obtained that the average throughput of provider B is 5,295 Kbps bigger than the provider A, the average delay of provider B is 0.618 ms smaller than the provider A, the average jitter of provider B is 0.420 ms smaller than the provider A and the average packet loss of provider B is 0.451% smaller than the provider A.

  8. Rapidly evolving asymptomatic eosinophilia in a patient with lung adenocarcinoma causes cognitive disturbance and respiratory insufficiency: Case report.

    Science.gov (United States)

    Lo, Cheng-Hsiang; Jen, Yee-Min; Tsai, Wen-Chiuan; Chung, Ping-Ying; Kao, Woei-Yau

    2013-02-01

    Paraneoplastic eosinophilia is an unusual manifestation that usually remains asymptomatic. In this report, we presented the case of an 82-year-old patient with poorly differentiated lung adenocarcinoma and asymptomatic eosinophilia. The patient's condition worsened rapidly over a week, with episodes of cognitive disturbance, shortness of breath and acute kidney dysfunction. These symptoms were associated with a 4-fold increase in circulating eosinophil counts. The poor condition hindered further anticancer treatment. Treatment of the eosinophilia with corticosteroids and hydroxyurea significantly reduced circulating eosinophil counts to below the initial levels. Results of this case report suggested that lung cancer patients should be monitored closely for rapidly worsening symptoms of cognitive disturbance and respiratory insufficiency as signs of life-threatening asymptomatic eosinophilia, in order to initiate corticosteroid treatment.

  9. Evolving neural network optimization of cholesteryl ester separation by reversed-phase HPLC.

    Science.gov (United States)

    Jansen, Michael A; Kiwata, Jacqueline; Arceo, Jennifer; Faull, Kym F; Hanrahan, Grady; Porter, Edith

    2010-07-01

    Cholesteryl esters have antimicrobial activity and likely contribute to the innate immunity system. Improved separation techniques are needed to characterize these compounds. In this study, optimization of the reversed-phase high-performance liquid chromatography separation of six analyte standards (four cholesteryl esters plus cholesterol and tri-palmitin) was accomplished by modeling with an artificial neural network-genetic algorithm (ANN-GA) approach. A fractional factorial design was employed to examine the significance of four experimental factors: organic component in the mobile phase (ethanol and methanol), column temperature, and flow rate. Three separation parameters were then merged into geometric means using Derringer's desirability function and used as input sources for model training and testing. The use of genetic operators proved valuable for the determination of an effective neural network structure. Implementation of the optimized method resulted in complete separation of all six analytes, including the resolution of two previously co-eluting peaks. Model validation was performed with experimental responses in good agreement with model-predicted responses. Improved separation was also realized in a complex biological fluid, human milk. Thus, the first known use of ANN-GA modeling for improving the chromatographic separation of cholesteryl esters in biological fluids is presented and will likely prove valuable for future investigators involved in studying complex biological samples.

  10. Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life.

    Science.gov (United States)

    Vasas, Vera; Szathmáry, Eörs; Santos, Mauro

    2010-01-26

    A basic property of life is its capacity to experience Darwinian evolution. The replicator concept is at the core of genetics-first theories of the origin of life, which suggest that self-replicating oligonucleotides or their similar ancestors may have been the first "living" systems and may have led to the evolution of an RNA world. But problems with the nonenzymatic synthesis of biopolymers and the origin of template replication have spurred the alternative metabolism-first scenario, where self-reproducing and evolving proto-metabolic networks are assumed to have predated self-replicating genes. Recent theoretical work shows that "compositional genomes" (i.e., the counts of different molecular species in an assembly) are able to propagate compositional information and can provide a setup on which natural selection acts. Accordingly, if we stick to the notion of replicator as an entity that passes on its structure largely intact in successive replications, those macromolecular aggregates could be dubbed "ensemble replicators" (composomes) and quite different from the more familiar genes and memes. In sharp contrast with template-dependent replication dynamics, we demonstrate here that replication of compositional information is so inaccurate that fitter compositional genomes cannot be maintained by selection and, therefore, the system lacks evolvability (i.e., it cannot substantially depart from the asymptotic steady-state solution already built-in in the dynamical equations). We conclude that this fundamental limitation of ensemble replicators cautions against metabolism-first theories of the origin of life, although ancient metabolic systems could have provided a stable habitat within which polymer replicators later evolved.

  11. UPPAAL in Practice: Quantitative Verication of a RapidIO Network

    NARCIS (Netherlands)

    Xing, J.S.; Theelen, Bart D.; Langerak, Romanus; van de Pol, Jan Cornelis; Tretmans, G.J.; Voeten, J.P.M.; Margaria, Tiziana; Katoen, Joost P.; Steffen, Bernhard

    2010-01-01

    Packet switched networks are widely used for interconnecting distributed computing platforms. RapidIO (Rapid Input/Output) is an industry standard for packet switched networks to interconnect multiple processor boards. Key performance metrics for these platforms include average-case and worst-case

  12. Combating Weapons of Mass Destruction: Models, Complexity, and Algorithms in Complex Dynamic and Evolving Networks

    Science.gov (United States)

    2015-11-01

    NLP Blondel Oslom Infomap 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 N M I (N = 5 0 0 0 ) µ SCD SCD- NLP Blondel Oslom Infomap A...Networks with minC ,maxC unconstrained. 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 N M I (N = 1 0 0 0 ) µ SCD SCD- NLP Blondel Oslom Infomap 0...0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 N M I (N = 5 0 0 0 ) µ SCD SCD- NLP Blondel Oslom Infomap B

  13. Congenic strain analysis reveals genes that are rapidly evolving components of a prezygotic isolation mechanism mediating incipient reinforcement.

    Directory of Open Access Journals (Sweden)

    Christina M Laukaitis

    Full Text Available Two decades ago, we developed a congenic strain of Mus musculus, called b-congenic, by replacing the androgen-binding protein Abpa27(a allele in the C3H/HeJ genome with the Abpa27(b allele from DBA/2J. We and other researchers used this b-congenic strain and its C3H counterpart, the a-congenic strain, to test the hypothesis that, given the choice between signals from two strains with different a27 alleles on the same genetic background, test subjects would prefer the homosubspecific one. It was our purpose in undertaking this study to characterize the segment transferred from DBA to the C3H background in producing the b-congenic strain on which a role for ABPA27 in behavior has been predicated. We determined the size of the chromosome 7 segment transferred from DBA and the genes it contains that might influence preference. We found that the "functional" DBA segment is about 1% the size of the mouse haploid genome and contains at least 29 genes expressed in salivary glands, however, only three of these encode proteins identified in the mouse salivary proteome. At least two of the three genes Abpa27, Abpbg26 and Abpbg27 encoding the subunits of androgen-binding protein ABP dimers evolved under positive selection and the third one may have also. In the sense that they are subunits of the same two functional entities, the ABP dimers, we propose that their evolutionary histories might not be independent of each other.

  14. Rapid response seismic networks in Europe: lessons learnt from the L'Aquila earthquake emergency

    Directory of Open Access Journals (Sweden)

    Angelo Strollo

    2011-08-01

    Full Text Available

    The largest dataset ever recorded during a normal fault seismic sequence was acquired during the 2009 seismic emergency triggered by the damaging earthquake in L'Aquila (Italy. This was possible through the coordination of different rapid-response seismic networks in Italy, France and Germany. A seismic network of more than 60 stations recorded up to 70,000 earthquakes. Here, we describe the different open-data archives where it is possible to find this unique set of data for studies related to hazard, seismotectonics and earthquake physics. Moreover, we briefly describe some immediate and direct applications of emergency seismic networks. At the same time, we note the absence of communication platforms between the different European networks. Rapid-response networks need to agree on common strategies for network operations. Hopefully, over the next few years, the European Rapid-Response Seismic Network will became a reality.

  15. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Stephan Poppe

    2015-07-01

    Full Text Available The speciation of pathogens can be driven by divergent host specialization. Specialization to a new host is possible via the acquisition of advantageous mutations fixed by positive selection. Comparative genome analyses of closely related species allows for the identification of such key substitutions via inference of genome-wide signatures of positive selection. We previously used a comparative genomics framework to identify genes that have evolved under positive selection during speciation of the prominent wheat pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola. In this study, we conducted functional analyses of four genes exhibiting strong signatures of positive selection in Z. tritici. We deleted the four genes in Z. tritici and confirm a virulence-related role of three of the four genes ΔZt80707, ΔZt89160 and ΔZt103264. The two mutants ΔZt80707 and ΔZt103264 show a significant reduction in virulence during infection of wheat; the ΔZt89160 mutant causes a hypervirulent phenotype in wheat. Mutant phenotypes of ΔZt80707, ΔZt89160 and ΔZt103264 can be restored by insertion of the wild-type genes. However, the insertion of the Zt80707 and Zt89160 orthologs from Z. pseudotritici and Z. ardabiliae do not restore wild-type levels of virulence, suggesting that positively selected substitutions in Z. tritici may relate to divergent host specialization. Interestingly, the gene Zt80707 encodes also a secretion signal that targets the protein for cell secretion. This secretion signal is however only transcribed in Z. tritici, suggesting that Z. tritici-specific substitutions relate to a new function of the protein in the extracellular space of the wheat-Z. tritici interaction. Together, the results presented here highlight that Zt80707, Zt103264 and Zt89160 represent key genes involved in virulence and host-specific disease development of Z. tritici. Our findings illustrate that evolutionary predictions provide a powerful tool

  16. A history into genetic and epigenetic evolution of food tolerance: how humanity rapidly evolved by drinking milk and eating wheat.

    Science.gov (United States)

    Blanchard, Carine

    2017-12-01

    Human exposure to wheat and milk is almost global worldwide. Yet the introduction of milk and wheat is very recent (5000-10 000 years) when compared to the human evolution. The last 4 decades have seen a rise in food allergy and food intolerance to milk and wheat. Often described as plurifactorial, the cause of allergic diseases is the result from an interplay between genetic predisposition and epigenetic in the context of environmental changes. Genetic and epigenetic understanding and their contribution to allergy or other antigen-driven diseases have considerably advanced in the last few years. Yet, environmental factors are also quite difficult to identify and associate with disease risk. Can we rethink our old findings and learn from human history and recent genetic studies? More than one million years separate Homo habilis to today's mankind, more than 1 million years to develop abilities to obtain food by foraging in diverse environments. One million year to adjust and fine-tune our genetic code and adapt; and only 1% of this time, 10 000 years, to face the three biggest revolutions of the human kind: the agricultural revolution, the industrial revolution and the postindustrial revolution. With big and rapid environmental changes come adaptation but with no time for fine-tuning. Today tolerance and adverse reactions to food may be a testimony of adaptation successes and mistakes.

  17. Dissociation of rapid response learning and facilitation in perceptual and conceptual networks of person recognition.

    Science.gov (United States)

    Valt, Christian; Klein, Christoph; Boehm, Stephan G

    2015-08-01

    Repetition priming is a prominent example of non-declarative memory, and it increases the accuracy and speed of responses to repeatedly processed stimuli. Major long-hold memory theories posit that repetition priming results from facilitation within perceptual and conceptual networks for stimulus recognition and categorization. Stimuli can also be bound to particular responses, and it has recently been suggested that this rapid response learning, not network facilitation, provides a sound theory of priming of object recognition. Here, we addressed the relevance of network facilitation and rapid response learning for priming of person recognition with a view to advance general theories of priming. In four experiments, participants performed conceptual decisions like occupation or nationality judgments for famous faces. The magnitude of rapid response learning varied across experiments, and rapid response learning co-occurred and interacted with facilitation in perceptual and conceptual networks. These findings indicate that rapid response learning and facilitation in perceptual and conceptual networks are complementary rather than competing theories of priming. Thus, future memory theories need to incorporate both rapid response learning and network facilitation as individual facets of priming. © 2014 The British Psychological Society.

  18. A digital social network for rapid collection of earthquake disaster information

    Science.gov (United States)

    Xu, J. H.; Nie, G. Z.; Xu, X.

    2013-02-01

    Acquiring disaster information quickly after an earthquake is crucial for disaster and emergency rescue management. This study examines a digital social network - an earthquake disaster information reporting network - for rapid collection of earthquake disaster information. Based on the network, the disaster information rapid collection method is expounded in this paper. The structure and components of the reporting network are introduced. Then the work principles of the reporting network are discussed, in which the rapid collection of disaster information is realised by using Global System for Mobile Communications (GSM) messages to report the disaster information and Geographic information system (GIS) to analyse and extract useful disaster information. This study introduces some key technologies for the work principles, including the methods of mass sending and receiving of SMS for disaster management, the reporting network grouping management method, brief disaster information codes, and the GIS modelling of the reporting network. Finally, a city earthquake disaster information quick reporting system is developed and with the support of this system the reporting network obtained good results in a real earthquake and earthquake drills. This method is a semi-real time disaster information collection method which extends current SMS based method and meets the need of small and some moderate earthquakes.

  19. Applying Bayesian belief networks in rapid response situations

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, William L [Los Alamos National Laboratory; Deborah, Leishman, A. [Los Alamos National Laboratory; Van Eeckhout, Edward [Los Alamos National Laboratory

    2008-01-01

    The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.

  20. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage.

    Directory of Open Access Journals (Sweden)

    Huan-Chieh Chien

    Full Text Available Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06 that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES cells and fetal as well as adult neural stem cells (NSCs. Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.

  1. On the Rapid Rise of Social Networking Sites: New Findings and Policy Implications

    Science.gov (United States)

    Livingstone, Sonia; Brake, David R

    2010-01-01

    Social networking sites have been rapidly adopted by children and, especially, teenagers and young people worldwide, enabling new opportunities for the presentation of the self, learning, construction of a wide circle of relationships, and the management of privacy and intimacy. On the other hand, there are also concerns that social networking…

  2. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  3. Importance, Cohesion and Structural Equivalence in the Evolving Citation Network of the International Journal of Research in Marketing

    NARCIS (Netherlands)

    Pieters, R.; Baumgartner, H.; Vermunt, J.K.; Bijmolt, T.H.A.

    1998-01-01

    The citation network of the International Journal of Research in Marketing (IJRM) is examined from 1981 to 1995. We propose a model that contains log-linear and logmultiplicative terms to estimate simultaneously the importance, cohesion, and structural equivalence of journals in the network across

  4. Specific and Evolving Resting-State Network Alterations in Post-Concussion Syndrome Following Mild Traumatic Brain Injury

    OpenAIRE

    Arnaud Messé; Sophie Caplain; Mélanie Pélégrini-Issac; Sophie Blancho; Richard Lévy; Nozar Aghakhani; Michèle Montreuil; Habib Benali; Stéphane Lehéricy

    2013-01-01

    Post-concussion syndrome has been related to axonal damage in patients with mild traumatic brain injury, but little is known about the consequences of injury on brain networks. In the present study, our aim was to characterize changes in functional brain networks following mild traumatic brain injury in patients with post-concussion syndrome using resting-state functional magnetic resonance imaging data. We investigated 17 injured patients with persistent post-concussion syndrome (under the D...

  5. Specific and evolving resting-state network alterations in post-concussion syndrome following mild traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Arnaud Messé

    Full Text Available Post-concussion syndrome has been related to axonal damage in patients with mild traumatic brain injury, but little is known about the consequences of injury on brain networks. In the present study, our aim was to characterize changes in functional brain networks following mild traumatic brain injury in patients with post-concussion syndrome using resting-state functional magnetic resonance imaging data. We investigated 17 injured patients with persistent post-concussion syndrome (under the DSM-IV criteria at 6 months post-injury compared with 38 mild traumatic brain injury patients with no post-concussion syndrome and 34 healthy controls. All patients underwent magnetic resonance imaging examinations at the subacute (1-3 weeks and late (6 months phases after injury. Group-wise differences in functional brain networks were analyzed using graph theory measures. Patterns of long-range functional networks alterations were found in all mild traumatic brain injury patients. Mild traumatic brain injury patients with post-concussion syndrome had greater alterations than patients without post-concussion syndrome. In patients with post-concussion syndrome, changes specifically affected temporal and thalamic regions predominantly at the subacute stage and frontal regions at the late phase. Our results suggest that the post-concussion syndrome is associated with specific abnormalities in functional brain network that may contribute to explain deficits typically observed in PCS patients.

  6. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  7. Evaluating the electricity intensity of evolving water supply mixes: the case of California’s water network

    Science.gov (United States)

    Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad

    2017-11-01

    Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water–energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m‑3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water–energy parameters.

  8. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L

  9. Geometrical features assessment of liver's tumor with application of artificial neural network evolved by imperialist competitive algorithm.

    Science.gov (United States)

    Keshavarz, M; Mojra, A

    2015-05-01

    Geometrical features of a cancerous tumor embedded in biological soft tissue, including tumor size and depth, are a necessity in the follow-up procedure and making suitable therapeutic decisions. In this paper, a new socio-politically motivated global search strategy which is called imperialist competitive algorithm (ICA) is implemented to train a feed forward neural network (FFNN) to estimate the tumor's geometrical characteristics (FFNNICA). First, a viscoelastic model of liver tissue is constructed by using a series of in vitro uniaxial and relaxation test data. Then, 163 samples of the tissue including a tumor with different depths and diameters are generated by making use of PYTHON programming to link the ABAQUS and MATLAB together. Next, the samples are divided into 123 samples as training dataset and 40 samples as testing dataset. Training inputs of the network are mechanical parameters extracted from palpation of the tissue through a developing noninvasive technology called artificial tactile sensing (ATS). Last, to evaluate the FFNNICA performance, outputs of the network including tumor's depth and diameter are compared with desired values for both training and testing datasets. Deviations of the outputs from desired values are calculated by a regression analysis. Statistical analysis is also performed by measuring Root Mean Square Error (RMSE) and Efficiency (E). RMSE in diameter and depth estimations are 0.50 mm and 1.49, respectively, for the testing dataset. Results affirm that the proposed optimization algorithm for training neural network can be useful to characterize soft tissue tumors accurately by employing an artificial palpation approach. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Evolving 'self'-management: exploring the role of social network typologies on individual long-term condition management.

    Science.gov (United States)

    Morris, Rebecca L; Kennedy, Anne; Sanders, Caroline

    2016-10-01

    Whilst there has been a focus on the importance of social support for managing long-term conditions, there has been little specific focus on the characteristics of social networks that shape self-management. Policy emphasis is placed on individual responsibility for self-care, and this influences commissioning of health-care services. Assumptions are often made by policymakers about accessibility and preference for support and the influence of the social context on chronic illness management. To examine the social networks of individuals with long-term conditions and identify how the characteristics of their composition influences support needs. Thirty participants completed initial face-to-face in-depth interviews, telephone follow-ups and final face-to-face interviews in the north-west of England. A longitudinal qualitative design was used to elicit the subtle changes in relationships over a year. The findings suggest that the relationships which constitute a social network influence perceived support needs and attitudes to self-management. The amalgamation of relationships was characterized into three network typologies (family focused, friend focused or health-care professional focused) according to which types of relationships were dominant. In the absence of support, accounts highlighted a small number of substitutes who could provide support at times of critical need. This study challenges the notion of 'self'-management as an individual construct as many of the practices of illness management involved the support and/or negotiation of roles with others. By examining the nuances of relationships, this study has highlighted the tacit boundaries of practical and emotional support provision. © 2015 The Authors. Health Expectations published by John Wiley & Sons Ltd.

  11. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  12. Knowledge-based network ties in early rapidly internationalising small firms

    DEFF Research Database (Denmark)

    Masango, Shingairai Grace; Marinova, Svetla Trifonova

    2014-01-01

    This paper sets out to establish the sources of the relationships underpinning Early Rapidly Internationalising Small Firm (ERISF) cross border activities, the main characteristics and specific functions of these relationships, and their process of development. Using interview data from ten South...... strong knowledge-based contacts. The ERISF acts as the source that provides the technical information and knowledge, which is then adopted by their network partners. This means that the ERISF’s product and technological capabilities drive the international knowledge creation process. The findings provide...

  13. Rapid-response Sensor Networks Leveraging Open Standards and the Internet of Things

    Science.gov (United States)

    Bermudez, L. E.; Lieberman, J. E.; Lewis, L.; Botts, M.; Liang, S.

    2016-12-01

    New sensor technologies provide an unparalleled capability to collect large numbers of diverse observations about the world around us. Networks of such sensors are especially effective for capturing and analyzing unexpected, fast moving events if they can be deployed with a minimum of time, effort, and cost. A rapid-response sensing and processing capability is extremely important in quickly unfolding events not only to collect data for future research.but also to support response efforts that may be needed by providing up-to-date knowledge of the situation. A recent pilot activity coordinated by the Open Geospatial Consortium combined Sensor Web Enablement (SWE) standards with Internet of Things (IoT) practices to understand better how to set up rapid-response sensor networks in comparable event situations involving accidents or disasters. The networks included weather and environmental sensors, georeferenced UAV and PTZ imagery collectors, and observations from "citizen sensors", as well as virtual observations generated by predictive models. A key feature of each "SWE-IoT" network was one or more Sensor Hubs that connected local, often proprietary sensor device protocols to a common set of standard SWE data types and standard Web interfaces on an IP-based internetwork. This IoT approach provided direct, common, interoperable access to all sensor readings from anywhere on the internetwork of sensors, Hubs, and applications. Sensor Hubs also supported an automated discovery protocol in which activated Hubs registered themselves with a canonical catalog service. As each sensor (wireless or wired) was activated within range of an authorized Hub, it registered itself with that Hub, which in turn registered the sensor and its capabilities with the catalog. Sensor Hub functions were implemented in a range of component types, from personal devices such as smartphones and Raspberry Pi's to full cloud-based sensor services platforms. Connected into a network

  14. Cancer stem cells display extremely large evolvability: alternating plastic and rigid networks as a potential Mechanism: network models, novel therapeutic target strategies, and the contributions of hypoxia, inflammation and cellular senescence.

    Science.gov (United States)

    Csermely, Peter; Hódsági, János; Korcsmáros, Tamás; Módos, Dezső; Perez-Lopez, Áron R; Szalay, Kristóf; Veres, Dániel V; Lenti, Katalin; Wu, Ling-Yun; Zhang, Xiang-Sun

    2015-02-01

    Cancer is increasingly perceived as a systems-level, network phenomenon. The major trend of malignant transformation can be described as a two-phase process, where an initial increase of network plasticity is followed by a decrease of plasticity at late stages of tumor development. The fluctuating intensity of stress factors, like hypoxia, inflammation and the either cooperative or hostile interactions of tumor inter-cellular networks, all increase the adaptation potential of cancer cells. This may lead to the bypass of cellular senescence, and to the development of cancer stem cells. We propose that the central tenet of cancer stem cell definition lies exactly in the indefinability of cancer stem cells. Actual properties of cancer stem cells depend on the individual "stress-history" of the given tumor. Cancer stem cells are characterized by an extremely large evolvability (i.e. a capacity to generate heritable phenotypic variation), which corresponds well with the defining hallmarks of cancer stem cells: the possession of the capacity to self-renew and to repeatedly re-build the heterogeneous lineages of cancer cells that comprise a tumor in new environments. Cancer stem cells represent a cell population, which is adapted to adapt. We argue that the high evolvability of cancer stem cells is helped by their repeated transitions between plastic (proliferative, symmetrically dividing) and rigid (quiescent, asymmetrically dividing, often more invasive) phenotypes having plastic and rigid networks. Thus, cancer stem cells reverse and replay cancer development multiple times. We describe network models potentially explaining cancer stem cell-like behavior. Finally, we propose novel strategies including combination therapies and multi-target drugs to overcome the Nietzschean dilemma of cancer stem cell targeting: "what does not kill me makes me stronger". Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry.

    Science.gov (United States)

    Morrish, Fionnuala; Neretti, Nicola; Sedivy, John M; Hockenbery, David M

    2008-04-15

    The c-myc proto-oncogene is rapidly activated by serum and regulates genes involved in metabolism and cell cycle progression. This gene is thereby uniquely poised to coordinate both the metabolic and cell cycle regulatory events required for cell cycle entry. However, this function of Myc has not been evaluated. Using a rat fibroblast model of isogenic cell lines, myc(-/-), myc(+/-), myc(+/+) and myc(-/-) cells with an inducible c-myc transgene (mycER), we show that the Myc protein programs cells to utilize both oxidative phosphorylation and glycolysis to drive cell cycle progression. We demonstrate this coordinate regulation of metabolic networks is essential, as specific inhibitors of these pathways block Myc-induced proliferation. Metabolic events temporally correlated with cell cycle entry include increased oxygen consumption, mitochondrial function, pyruvate and lactate production, and ATP generation. Treatment of normal cells with inhibitors of oxidative phosphorylation recapitulates the myc(-/-) phenotype, resulting in impaired cell cycle entry and reduced metabolism. Combined with a kinetic expression profiling analysis of genes linked to mitochondrial function, our study indicates that Myc's ability to coordinately regulate the mitochondrial metabolic network transcriptome is required for rapid cell cycle entry. This function of Myc may underlie the pervasive presence of Myc in many human cancers.

  16. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  17. Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI.

    Science.gov (United States)

    Manor, Ran; Geva, Amir B

    2015-01-01

    Brain computer interfaces rely on machine learning (ML) algorithms to decode the brain's electrical activity into decisions. For example, in rapid serial visual presentation (RSVP) tasks, the subject is presented with a continuous stream of images containing rare target images among standard images, while the algorithm has to detect brain activity associated with target images. Here, we continue our previous work, presenting a deep neural network model for the use of single trial EEG classification in RSVP tasks. Deep neural networks have shown state of the art performance in computer vision and speech recognition and thus have great promise for other learning tasks, like classification of EEG samples. In our model, we introduce a novel spatio-temporal regularization for EEG data to reduce overfitting. We show improved classification performance compared to our earlier work on a five categories RSVP experiment. In addition, we compare performance on data from different sessions and validate the model on a public benchmark data set of a P300 speller task. Finally, we discuss the advantages of using neural network models compared to manually designing feature extraction algorithms.

  18. Convolutional Neural Network for Multi-Category Rapid Serial Visual Presentation BCI

    Directory of Open Access Journals (Sweden)

    Ran eManor

    2015-12-01

    Full Text Available Brain computer interfaces rely on machine learning algorithms to decode the brain's electrical activity into decisions. For example, in rapid serial visual presentation (RSVP tasks, the subject is presented with a continuous stream of images containing rare target images among standard images, while the algorithm has to detect brain activity associated with target images. Here, we continue our previous work, presenting a deep neural network model for the use of single trial EEG classification in RSVP tasks. Deep neural networks have shown state of the art performance in computer vision and speech recognition and thus have great promise for other learning tasks, like classification of EEG samples. In our model, we introduce a novel spatio-temporal regularization for EEG data to reduce overfitting. We show improved classification performance compared to our earlier work on a five categories RSVP experiment. In addition, we compare performance on data from different sessions and validate the model on a public benchmark data set of a P300 speller task. Finally, we discuss the advantages of using neural network models compared to manually designing feature extraction algorithms.

  19. Mapping, Learning, Visualization, Classification, and Understanding of fMRI Data in the NeuCube Evolving Spatiotemporal Data Machine of Spiking Neural Networks.

    Science.gov (United States)

    Kasabov, Nikola K; Doborjeh, Maryam Gholami; Doborjeh, Zohreh Gholami

    2017-04-01

    This paper introduces a new methodology for dynamic learning, visualization, and classification of functional magnetic resonance imaging (fMRI) as spatiotemporal brain data. The method is based on an evolving spatiotemporal data machine of evolving spiking neural networks (SNNs) exemplified by the NeuCube architecture [1]. The method consists of several steps: mapping spatial coordinates of fMRI data into a 3-D SNN cube (SNNc) that represents a brain template; input data transformation into trains of spikes; deep, unsupervised learning in the 3-D SNNc of spatiotemporal patterns from data; supervised learning in an evolving SNN classifier; parameter optimization; and 3-D visualization and model interpretation. Two benchmark case study problems and data are used to illustrate the proposed methodology-fMRI data collected from subjects when reading affirmative or negative sentences and another one-on reading a sentence or seeing a picture. The learned connections in the SNNc represent dynamic spatiotemporal relationships derived from the fMRI data. They can reveal new information about the brain functions under different conditions. The proposed methodology allows for the first time to analyze dynamic functional and structural connectivity of a learned SNN model from fMRI data. This can be used for a better understanding of brain activities and also for online generation of appropriate neurofeedback to subjects for improved brain functions. For example, in this paper, tracing the 3-D SNN model connectivity enabled us for the first time to capture prominent brain functional pathways evoked in language comprehension. We found stronger spatiotemporal interaction between left dorsolateral prefrontal cortex and left temporal while reading a negated sentence. This observation is obviously distinguishable from the patterns generated by either reading affirmative sentences or seeing pictures. The proposed NeuCube-based methodology offers also a superior classification accuracy

  20. A Rapid Deployment Seismological network (RaDeSeis) for real time aftershock studies

    Science.gov (United States)

    Hloupis, G.; Vallianatos, F.; Makris, J. P.

    2009-04-01

    The understanding of earthquake faulting process is one of the main factors that contribute to earthquake damage. One of the most valuable and essential tools for the understanding of faulting process in the analysis of aftershocks. The critical point for successful aftershock studies is the mobile seismological network that will deployed in order to provide the required data. The main problem that arise for these networks is how fast the recorded data are available to data centres in order to estimate the focal mechanisms, the source parameters estimation as well as to examine microseismic activity. The ideal situation is to have these data available in real time but this is limited by the different telemetry requirements for every individual installation. Based on the experience gained from several installations in Hellenic Seismological Network of Crete (HSNC) we propose a mobile network scheme (called RaDeSeis) capable of installed in a limited amount of time and provide real time seismological data. RaDeSeis is an hybrid network based on VSAT and WiFi communication links between seismological stations and data centre. The network is deployed in star topology where the central station is the communication hub at the same time. Dedicated point-to-point links between central station and border station established using WiFi links. Communication between central station and data centre is established by VSAT. With appropriate routing on central station the data centre is collecting, control and monitor all the stations from the area of interest in real time. In order to decrease the time needed for each installation a specific software (RaLiEs - Rapid Link Establishment) is originated for the quicker link establishment between border stations and central station (with an average distance of 40km LOS) as well as to data centre. By using this software each telecommunication installation needs less than half an hour to complete the necessary link adjustments

  1. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.

    Science.gov (United States)

    Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan

    2015-07-29

    Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.

  2. Rapid microwave-assisted growth of silver nanoparticles on 3D graphene networks for supercapacitor application.

    Science.gov (United States)

    Khamlich, S; Khamliche, T; Dhlamini, M S; Khenfouch, M; Mothudi, B M; Maaza, M

    2017-05-01

    Silver nanoparticles (AgNPs) grown on a three dimensional (3d) graphene networks (GNs) has been successfully prepared by an efficient and rapid microwave-assisted growth process to form GNs/AgNPs nanocomposite electrode materials for supercapacitor application. The 3d nature of the used GNs offers a unique architecture, which creates an efficient conduction networks and maximum utilization of space and interface, and acts as a conductive layer for the deposited AgNPs. The electrochemical performances of the fabricated electrode were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) tests. Specifically, the optimal GNs/AgNPs nanocomposite exhibits remarkable performances with a high specific capacitance of 528Fg-1 at a current density of 1Ag-1 and excellent capacitance retention of ∼93% after 3000cycles. Moreover, this microwave-assisted growth strategy of AgNPs is simple and effective, which could be extended to the construction of other three dimensional graphene based metallic composites for energy storage and conversion applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Design of deep convolutional networks for prediction of image rapid serial visual presentation events.

    Science.gov (United States)

    Zijing Mao; Wan Xiang Yao; Yufe Huang

    2017-07-01

    We report in this paper an investigation of convolutional neural network (CNN) models for target prediction in time-locked image rapid serial visual presentation (RSVP) experiment. We investigated CNN models with 11 different designs of convolution filters in capturing spatial and temporal correlations in EEG data. We showed that for both within-subject and cross-subject predictions, the CNN models outperform the state-of-the-art algorithms: Bayesian linear discriminant analysis (BLDA) and xDAWN spatial filtering and achieved >6% improvement. Among the 11 different CNN models, the global spatial filter and our proposed region of interest (ROI) achieved best performance. We also implemented the deconvolution network to show how we can visualize from activated hidden units for target/nontarget events learned by the ROI-CNN. Our study suggests that deep learning is a powerful tool for RSVP target prediction and the proposed model is applicable for general EEG-based classifications in brain computer interaction research. The code of this project is available at https://github.com/ZijingMao/ROICNN.

  4. Improved rapid magnitude estimation for a community-based, low-cost MEMS accelerometer network

    Science.gov (United States)

    Chung, Angela I.; Cochran, Elizabeth S.; Kaiser, Anna E.; Christensen, Carl M.; Yildirim, Battalgazi; Lawrence, Jesse F.

    2015-01-01

    Immediately following the Mw 7.2 Darfield, New Zealand, earthquake, over 180 Quake‐Catcher Network (QCN) low‐cost micro‐electro‐mechanical systems accelerometers were deployed in the Canterbury region. Using data recorded by this dense network from 2010 to 2013, we significantly improved the QCN rapid magnitude estimation relationship. The previous scaling relationship (Lawrence et al., 2014) did not accurately estimate the magnitudes of nearby (estimates earthquake magnitudes within 1 magnitude unit of the GNS Science GeoNet earthquake catalog magnitudes for 99% of the events tested, within 0.5 magnitude units for 90% of the events, and within 0.25 magnitude units for 57% of the events. These magnitudes are reliably estimated within 3 s of the initial trigger recorded on at least seven stations. In this report, we present the methods used to calculate a new scaling relationship and demonstrate the accuracy of the revised magnitude estimates using a program that is able to retrospectively estimate event magnitudes using archived data.

  5. Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue. III. Two new low-mass systems with rapidly evolving spots

    Science.gov (United States)

    Hełminiak, K. G.; Konacki, M.; Złoczewski, K.; Ratajczak, M.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Crain, J. A.; Foster, A. C.; Nysewander, M. C.; Lacluyze, A. P.

    2011-03-01

    Aims: We present the results of our spectroscopic and photometric analysis of two newly discovered low-mass detached eclipsing binaries found in the All-Sky Automated Survey (ASAS) catalogue: ASAS J093814-0104.4 and ASAS J212954-5620.1. Methods: Using the Grating Instrument for Radiation Analysis with a Fibre-Fed Echelle (GIRAFFE) on the 1.9-m Radcliffe telescope at the South African Astronomical Observatory (SAAO) and the University College London Echelle Spectrograph (UCLES) on the 3.9-m Anglo-Australian Telescope, we obtained high-resolution spectra of both objects and derived their radial velocities (RVs) at various orbital phases. The RVs of both objects were measured with the two-dimensional cross-correlation technique (TODCOR) using synthetic template spectra as references. We also obtained V and I band photometry using the 1.0-m Elizabeth telescope at SAAO and the 0.4-m Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) located at the Cerro Tololo Inter-American Observatory (CTIO). The orbital and physical parameters of the systems were derived with PHOEBE and JKTEBOP codes. We compared our results with several sets of widely-used isochrones. Results: Our multi-epoch photometric observations demonstrate that both objects show significant out-of-eclipse modulations, which vary in time. We believe that this effect is caused by stellar spots, which evolve on time scales of tens of days. For this reason, we constructed our models on the basis of photometric observations spanning short time scales (less than a month). Our modeling indicates that (1) ASAS J093814-0104.04 is a main sequence active system with nearly-twin components with masses of M1 = 0.771 ± 0.033 M⊙, M2 = 0.768 ± 0.021 M⊙ and radii of R1 = 0.772 ± 0.012 R⊙ and R2 = 0.769 ± 0.013 R⊙. (2) ASAS J212954-5620.1 is a main sequence active binary with component masses of M1 = 0.833 ± 0.017 M⊙, M2 = 0.703 ± 0.013 M⊙ and radii of R1 = 0.845 ± 0.012 R⊙ and R2

  6. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    Science.gov (United States)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of

  7. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    Science.gov (United States)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an

  8. Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running.

    Directory of Open Access Journals (Sweden)

    Gregory N Ruegsegger

    Full Text Available In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA. IPA was chosen to assist in the understanding of complex 'omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10-11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05 between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.

  9. Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running.

    Science.gov (United States)

    Ruegsegger, Gregory N; Company, Joseph M; Toedebusch, Ryan G; Roberts, Christian K; Roberts, Michael D; Booth, Frank W

    2015-01-01

    In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex 'omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10-11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life.

  10. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.

    Directory of Open Access Journals (Sweden)

    Sidhartha Chaudhury

    Full Text Available In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of

  11. Ecosytem Services: A Rapid Assessment Method Tested at 35 Sites of the LTER-Europe Network

    Directory of Open Access Journals (Sweden)

    Dick Jan

    2014-08-01

    Full Text Available The identification of parameters to monitor the ecosystem services delivered at a site is fundamental to the concept’s adoption as a useful policy instrument at local, national and international scales. In this paper we (i describe the process of developing a rapid comprehensive ecosystem service assessment methodology and (ii test the applicability of the protocol at 35 long-term research (LTER sites across 14 countries in the LTER-Europe network (www.lter-europe.net including marine, urban, agricultural, forest, desert and conservation sites. An assessment of probability of occurrence with estimated confidence score using 83 ecosystem service parameters was tested. The parameters were either specific services like food production or proxies such as human activities which were considered surrogates for cultural diversity and economic activity. This initial test of the ecosystem service parameter list revealed that the parameters tested were relatively easy to score by site managers with a high level of certainty (92% scored as either occurring or not occurring at the site with certainty of over 90%. Based on this assessment, we concluded that (i this approach to operationalise the concept of ecosystem services is practical and applicable by many sectors of civil society as a first screen of the ecosystem services present at a site, (ii this study has direct relevance to land management and policy decision makers as a transparent vehicle to focus testing scenarios and target data gathering, but (iii further work beyond the scale investigated here is required to ensure global applicability.

  12. Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode.

    Science.gov (United States)

    Sorokin, Jordan M; Davidson, Thomas J; Frechette, Eric; Abramian, Armen M; Deisseroth, Karl; Huguenard, John R; Paz, Jeanne T

    2017-01-04

    Thalamic relay neurons have well-characterized dual firing modes: bursting and tonic spiking. Studies in brain slices have led to a model in which rhythmic synchronized spiking (phasic firing) in a population of relay neurons leads to hyper-synchronous oscillatory cortico-thalamo-cortical rhythms that result in absence seizures. This model suggests that blocking thalamocortical phasic firing would treat absence seizures. However, recent in vivo studies in anesthetized animals have questioned this simple model. Here we resolve this issue by developing a real-time, mode-switching approach to drive thalamocortical neurons into or out of a phasic firing mode in two freely behaving genetic rodent models of absence epilepsy. Toggling between phasic and tonic firing in thalamocortical neurons launched and aborted absence seizures, respectively. Thus, a synchronous thalamocortical phasic firing state is required for absence seizures, and switching to tonic firing rapidly halts absences. This approach should be useful for modulating other networks that have mode-dependent behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electrochemical Sensing for a Rapidly Evolving World

    Science.gov (United States)

    Mullen, Max Robertson

    This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding technology we move from performing non-scalable experiments to produce one sensor at a time to scalable experiments producing six. The bonding methods we use are compatible with wafer scale processing. Practically speaking this means that the oxygen sensor design is scalable to produce thousands of sensors from one single bond. Using this bonding technology we develop a generalized sensing platform that could be used for a variety of sensing applications, including oxygen sensing, but also potentially involving CO2 or NOx as well. Future efforts will involve completing of O2 sensor construction and adaption of the design for CO2 and NOx sensing. The final project focuses on a novel ammonia sensor and sensing mechanism in Ag loaded zeolite Y. The sensor resistance changes upon exposure to ammonia due to the molecular recognition of Ag+ and ammonia, producing Ag(NH3)x+ species. The sensing mechanism is a Grothuss like mechanism based on the hoping of Ag+ centers. The hopping frequency of Ag+ changes upon introduction of ammonia due to the reduced electrostatic interactions between Ag+ and the negatively charged zeolite framework upon formation of Ag(NH3) x+. The change in hopping frequency results in a measurable change in impedance.

  14. Using Bayesian Belief Network (BBN) modelling for rapid source term prediction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knochenhauer, M.; Swaling, V.H.; Dedda, F.D.; Hansson, F.; Sjoekvist, S.; Sunnegaerd, K. [Lloyd' s Register Consulting AB, Sundbyberg (Sweden)

    2013-10-15

    The project presented in this report deals with a number of complex issues related to the development of a tool for rapid source term prediction (RASTEP), based on a plant model represented as a Bayesian belief network (BBN) and a source term module which is used for assigning relevant source terms to BBN end states. Thus, RASTEP uses a BBN to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, composition, timing, and release path of released radio-nuclides). The output is a set of possible source terms with associated probabilities. One major issue has been associated with the integration of probabilistic and deterministic analyses are addressed, dealing with the challenge of making the source term determination flexible enough to give reliable and valid output throughout the accident scenario. The potential for connecting RASTEP to a fast running source term prediction code has been explored, as well as alternative ways of improving the deterministic connections of the tool. As part of the investigation, a comparison of two deterministic severe accident analysis codes has been performed. A second important task has been to develop a general method where experts' beliefs can be included in a systematic way when defining the conditional probability tables (CPTs) in the BBN. The proposed method includes expert judgement in a systematic way when defining the CPTs of a BBN. Using this iterative method results in a reliable BBN even though expert judgements, with their associated uncertainties, have been used. It also simplifies verification and validation of the considerable amounts of quantitative data included in a BBN. (Author)

  15. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  16. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    Science.gov (United States)

    Simpson, Annie; Jarnevich, Catherine S.; Madsen, John; Westbrooks, Randy G.; Fournier, Christine; Mehrhoff, Les; Browne, Michael; Graham, Jim; Sellers, Elizabeth A.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  17. Secure Military Social Networking and Rapid Sensemaking in Domain Specific Concept Systems: Research Issues and Future Solutions

    Directory of Open Access Journals (Sweden)

    Richard Picking

    2012-03-01

    Full Text Available This paper identifies the need for a secure military social networking site and the underlying research issues linked to the successful development of such sites. The paper further proposes a solution to the most basic issues by identifying and tackling known potential security threats to military personnel and their families. The paper further defines the base platform for this development to facilitate rapid sensemaking to inform critical communications and rapid decision making processes during abrupt governance and eco-system change, and how the plethora of information (termed as Big Data on social networking sites can be analysed and harnessed. Underlying architectural issues, efficiency and complexity are explored and their future development is considered.

  18. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  19. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  20. WSC-07: Evolving the Web Services Challenge

    NARCIS (Netherlands)

    Blake, M. Brian; Cheung, William K.W.; Jaeger, Michael C.; Wombacher, Andreas

    Service-oriented architecture (SOA) is an evolving architectural paradigm where businesses can expose their capabilities as modular, network-accessible software services. By decomposing capabilities into modular services, organizations can share their offerings at multiple levels of granularity

  1. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas

    Science.gov (United States)

    Caselle, Jennifer E.; Rassweiler, Andrew; Hamilton, Scott L.; Warner, Robert R.

    2015-09-01

    Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance.

  2. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas.

    Science.gov (United States)

    Caselle, Jennifer E; Rassweiler, Andrew; Hamilton, Scott L; Warner, Robert R

    2015-09-16

    Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance.

  3. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    Science.gov (United States)

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.

  4. A Neural Network Architecture For Rapid Model Indexing In Computer Vision Systems

    Science.gov (United States)

    Pawlicki, Ted

    1988-03-01

    Models of objects stored in memory have been shown to be useful for guiding the processing of computer vision systems. A major consideration in such systems, however, is how stored models are initially accessed and indexed by the system. As the number of stored models increases, the time required to search memory for the correct model becomes high. Parallel distributed, connectionist, neural networks' have been shown to have appealing content addressable memory properties. This paper discusses an architecture for efficient storage and reference of model memories stored as stable patterns of activity in a parallel, distributed, connectionist, neural network. The emergent properties of content addressability and resistance to noise are exploited to perform indexing of the appropriate object centered model from image centered primitives. The system consists of three network modules each of which represent information relative to a different frame of reference. The model memory network is a large state space vector where fields in the vector correspond to ordered component objects and relative, object based spatial relationships between the component objects. The component assertion network represents evidence about the existence of object primitives in the input image. It establishes local frames of reference for object primitives relative to the image based frame of reference. The spatial relationship constraint network is an intermediate representation which enables the association between the object based and the image based frames of reference. This intermediate level represents information about possible object orderings and establishes relative spatial relationships from the image based information in the component assertion network below. It is also constrained by the lawful object orderings in the model memory network above. The system design is consistent with current psychological theories of recognition by component. It also seems to support Marr's notions

  5. A rapidly deployable chemical sensing network for the real-time monitoring of toxic airborne contaminant releases in urban environments

    Science.gov (United States)

    Lepley, Jason J.; Lloyd, David R.

    2010-04-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders in providing a rapid, reliable on-scene analysis of the dispersion of toxic airborne contaminants following their malicious or accidental release into a rural, urban or industrial environment. We describe the development of a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  6. The Athena Breast Health Network: developing a rapid learning system in breast cancer prevention, screening, treatment, and care.

    Science.gov (United States)

    Elson, Sarah L; Hiatt, Robert A; Anton-Culver, Hoda; Howell, Lydia P; Naeim, Arash; Parker, Barbara A; Van't Veer, Laura J; Hogarth, Michael; Pierce, John P; Duwors, Robert J; Hajopoulos, Kathy; Esserman, Laura J

    2013-07-01

    The term breast cancer covers many different conditions, whose clinical course ranges from indolent to aggressive. However, current practice in breast cancer prevention and care, and in breast cancer epidemiology, does not take into account the heterogeneity of the disease. A comprehensive understanding of the etiology and progression of different breast cancer subtypes would enable a more patient-centered approach to breast health care: assessing an individual's risk of getting specific subtypes of the disease, providing risk-based screening and prevention recommendations, and, for those diagnosed with the disease, tailored treatment options based on risk and timing of progression and mortality. The Athena Breast Health Network is an initiative of the five University of California medical and cancer centers to prototype this approach and to enable the development of a rapid learning system-connecting risk and outcome information from a heterogeneous patient population in real time and using new knowledge from research to continuously improve the quality of care. The Network is based on integrating clinical and research processes to create a comprehensive approach to accelerating patient-centered breast health care. Since its inception in 2009, the Network has developed a multi-site, transdisciplinary collaboration that enables the learning system. The five-campus collaboration has implemented a shared informatics platform, standardized electronic patient intake questionnaires, and common biospecimen protocols, as well as new clinical programs and multi-center research projects. The Athena Breast Health Network can serve as a model of a rapid learning system that integrates epidemiologic, behavioral, and clinical research with clinical care improvements.

  7. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs.

    Directory of Open Access Journals (Sweden)

    Minh T N Le

    2011-09-01

    Full Text Available MicroRNAs regulate networks of genes to orchestrate cellular functions. MiR-125b, the vertebrate homologue of the Caenorhabditis elegans microRNA lin-4, has been implicated in the regulation of neural and hematopoietic stem cell homeostasis, analogous to how lin-4 regulates stem cells in C. elegans. Depending on the cell context, miR-125b has been proposed to regulate both apoptosis and proliferation. Because the p53 network is a central regulator of both apoptosis and proliferation, the dual roles of miR-125b raise the question of what genes in the p53 network might be regulated by miR-125b. By using a gain- and loss-of-function screen for miR-125b targets in humans, mice, and zebrafish and by validating these targets with the luciferase assay and a novel miRNA pull-down assay, we demonstrate that miR-125b directly represses 20 novel targets in the p53 network. These targets include both apoptosis regulators like Bak1, Igfbp3, Itch, Puma, Prkra, Tp53inp1, Tp53, Zac1, and also cell-cycle regulators like cyclin C, Cdc25c, Cdkn2c, Edn1, Ppp1ca, Sel1l, in the p53 network. We found that, although each miRNA-target pair was seldom conserved, miR-125b regulation of the p53 pathway is conserved at the network level. Our results lead us to propose that miR-125b buffers and fine-tunes p53 network activity by regulating the dose of both proliferative and apoptotic regulators, with implications for tissue stem cell homeostasis and oncogenesis.

  8. The evolvability of programmable hardware

    Science.gov (United States)

    Raman, Karthik; Wagner, Andreas

    2011-01-01

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598

  9. Rapid Countermeasure Discovery against Francisella tularensis Based on a Metabolic Network Reconstruction

    Science.gov (United States)

    2013-05-21

    a given drug target. First, the selection of a subset of genes deemed to be essential for bacterial survival overlooks non-essential genes that may... Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol 3: 38. 19. Shen Y, Liu J, Estiu G, Isin B, Ahn YY, et al. (2010) Blueprint for...and Medicine 48: 330–333. 69. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival : application to proliferation and

  10. Corticosterone induces rapid spinogenesis via synaptic glucocorticoid receptors and kinase networks in hippocampus.

    Directory of Open Access Journals (Sweden)

    Yoshimasa Komatsuzaki

    Full Text Available BACKGROUND: Modulation of dendritic spines under acute stress is attracting much attention. Exposure to acute stress induces corticosterone (CORT secretion from the adrenal cortex, resulting in rapid increase of CORT levels in plasma and the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated the mechanisms of rapid effect (∼1 h of CORT on the density and morphology of spines by imaging neurons in adult male rat hippocampal slices. The application of CORT at 100-1000 nM induced a rapid increase in the density of spines of CA1 pyramidal neurons. The density of small-head spines (0.2-0.4 µm was increased even at low CORT levels (100-200 nM. The density of middle-head spines (0.4-0.5 µm was increased at high CORT levels between 400-1000 nM. The density of large-head spines (0.5-1.0 µm was increased only at 1000 nM CORT. Co-administration of RU486, an antagonist of glucocorticoid receptor (GR, abolished the effect of CORT. Blocking a single kinase, such as MAPK, PKA, PKC or PI3K, suppressed CORT-induced enhancement of spinogenesis. Blocking NMDA receptors suppressed the CORT effect. CONCLUSIONS/SIGNIFICANCE: These results imply that stress levels of CORT (100-1000 nM drive the spinogenesis via synaptic GR and multiple kinase pathways.

  11. IcyTree: rapid browser-based visualization for phylogenetic trees and networks.

    Science.gov (United States)

    Vaughan, Timothy G

    2017-08-01

    IcyTree is an easy-to-use application which can be used to visualize a wide variety of phylogenetic trees and networks. While numerous phylogenetic tree viewers exist already, IcyTree distinguishes itself by being a purely online tool, having a responsive user interface, supporting phylogenetic networks (ancestral recombination graphs in particular), and efficiently drawing trees that include information such as ancestral locations or trait values. IcyTree also provides intuitive panning and zooming utilities that make exploring large phylogenetic trees of many thousands of taxa feasible. IcyTree is a web application and can be accessed directly at http://tgvaughan.github.com/icytree . Currently supported web browsers include Mozilla Firefox and Google Chrome. IcyTree is written entirely in client-side JavaScript (no plugin required) and, once loaded, does not require network access to run. IcyTree is free software, and the source code is made available at http://github.com/tgvaughan/icytree under version 3 of the GNU General Public License. tgvaughan@gmail.com.

  12. Directional Communication in Evolved Multiagent Teams

    Science.gov (United States)

    2013-06-10

    networks. Artificial Life, 15(2):185– 212, 2009. [23] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies ...paper. 2.2 Neuroevolution of Augmenting Topologies The HyperNEAT approach is itself an extension of the original NEAT (Neu- roevolution of Augmenting ...Gauci and K. O. Stanley. Autonomous evolution of topographic regu- larities in artificial neural networks. Neural Computation, 22(7):1860–1898, 2010

  13. Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running

    OpenAIRE

    Ruegsegger, Gregory N.; Company, Joseph M.; Toedebusch, Ryan G.; Roberts, Christian K.; Roberts, Michael D.; Booth, Frank W.

    2015-01-01

    In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated wi...

  14. Interaction rewiring and the rapid turnover of plant-pollinator networks.

    Science.gov (United States)

    CaraDonna, Paul J; Petry, William K; Brennan, Ross M; Cunningham, James L; Bronstein, Judith L; Waser, Nickolas M; Sanders, Nathan J

    2017-03-01

    Whether species interactions are static or change over time has wide-reaching ecological and evolutionary consequences. However, species interaction networks are typically constructed from temporally aggregated interaction data, thereby implicitly assuming that interactions are fixed. This approach has advanced our understanding of communities, but it obscures the timescale at which interactions form (or dissolve) and the drivers and consequences of such dynamics. We address this knowledge gap by quantifying the within-season turnover of plant-pollinator interactions from weekly censuses across 3 years in a subalpine ecosystem. Week-to-week turnover of interactions (1) was high, (2) followed a consistent seasonal progression in all years of study and (3) was dominated by interaction rewiring (the reassembly of interactions among species). Simulation models revealed that species' phenologies and relative abundances constrained both total interaction turnover and rewiring. Our findings reveal the diversity of species interactions that may be missed when the temporal dynamics of networks are ignored. © 2017 John Wiley & Sons Ltd/CNRS.

  15. Rapid in vivo exploration of a 5S rRNA neutral network.

    Science.gov (United States)

    Zhang, Zhengdong D; Nayar, Madhavi; Ammons, David; Rampersad, Joanne; Fox, George E

    2009-02-01

    A partial knockout compensation method to screen 5S ribosomal RNA sequence variants in vivo is described. The system utilizes an Escherichia coli strain in which five of eight genomic 5S rRNA genes were deleted in conjunction with a plasmid which is compensatory when carrying a functionally active 5S rRNA. The partial knockout strain is transformed with a population of potentially compensatory plasmids each carrying a randomly generated 5S rRNA gene variant. a The ability to compensate the slow growth rate of the knockout strain is used in conjunction with sequencing to rapidly identify variant 5S rRNAs that are functional as well as those that likely are not. The assay is validated by showing that the growth rate of 15 variants separately expressed in the partial knockout strain can be accurately correlated with in vivo assessments of the potential validity of the same variants. A region of 5S rRNA was mutagenized with this approach and nine novel variants were recovered and characterized. Unlike a complete knockout system, the method allows recovery of both deleterious and functional variants.. The method can be used to study variants of any 5S rRNA in the E. coli context including those of E. coli.

  16. HCCI Intelligent Rapid Modeling by Artificial Neural Network and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    AbdoulAhad Validi

    2012-01-01

    Full Text Available A Dynamic model of Homogeneous Charge Compression Ignition (HCCI, based on chemical kinetics principles and artificial intelligence, is developed. The model can rapidly predict the combustion probability, thermochemistry properties, and exact timing of the Start of Combustion (SOC. A realization function is developed on the basis of the Sandia National Laboratory chemical kinetics model, and GRI3.0 methane chemical mechanism. The inlet conditions are optimized by Genetic Algorithm (GA, so that combustion initiates and SOC timing posits in the desired crank angle. The best SOC timing to achieve higher performance and efficiency in HCCI engines is between 5 and 15 degrees crank angle (CAD after top dead center (TDC. To achieve this SOC timing, in the first case, the inlet temperature and equivalence ratio are optimized simultaneously and in the second case, compression ratio is optimized by GA. The model’s results are validated with previous works. The SOC timing can be predicted in less than 0.01 second and the CPU time savings are encouraging. This model can successfully be used for real engine control applications.

  17. Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Knochenhauer, M.; Swaling, V.H.; Alfheim, P. [Scandpower AB, Sundbyberg (Sweden)

    2012-09-15

    The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)

  18. Rapid detection and identification of pedestrian impacts using a distributed sensor network

    Science.gov (United States)

    Kim, Andrew C.; Chang, Fu-Kuo

    2005-05-01

    Pedestrian fatalities from automobile accidents often occur as a result of head injuries suffered from impacts with an automobile front end. Active pedestrian protection systems with proper pedestrian recognition algorithms can protect pedestrians from such head trauma. An investigation was conducted to assess the feasibility of using a network of piezoelectric sensors mounted on the front bumper beam of an automobile to discriminate between impacts with "pedestrian" and "non-pedestrian" objects. This information would be used to activate a safety device (e.g., external airbag or pop-up hood) to provide protection for the vulnerable pedestrian. An analytical foundation for the object-bumper impact problem will be presented, as well as the classical beam impact theory. The mechanical waves that propagate in the structure from an external impact contain a wealth of information about the specifics of a particular impact -- object mass, size, impact speed, etc. -- but most notably the object stiffness, which identifies the impacted object. Using the frequency content of the sensor signals, it can be shown that impacts with a "pedestrian" object of varying size, weight, and speed can be easily differentiated from impacts with other "non-pedestrian" objects. Simulation results will illustrate this phenomenon, and experimental tests will verify the results. A comprehensive series of impact tests were performed for validation, using both a stationary front bumper with a drop-pendulum impactor and a moving car with stationary impact objects. Results from both tests will be presented.

  19. Morning rapid eye movement sleep naps facilitate broad access to emotional semantic networks.

    Science.gov (United States)

    Carr, Michelle; Nielsen, Tore

    2015-03-01

    The goal of the study was to assess semantic priming to emotion and nonemotion cue words using a novel measure of associational breadth for participants who either took rapid eye movement (REM) or nonrapid eye movement (NREM) naps or who remained awake; assess relation of priming to REM sleep consolidation and REM sleep inertia effects. The associational breadth task was applied in both a priming condition, where cue-words were signaled to be memorized prior to sleep (primed), and a nonpriming condition, where cue words were not memorized (nonprimed). Cue words were either emotional (positive, negative) or nonemotional. Participants were randomly assigned to either an awake (WAKE) or a sleep condition, which was subsequently split into NREM or REM groups depending on stage at awakening. Hospital-based sleep laboratory. Fifty-eight healthy participants (22 male) ages 18 to 35 y (Mage = 23.3 ± 4.08 y). The REM group scored higher than the NREM or WAKE groups on primed, but not nonprimed emotional cue words; the effect was stronger for positive than for negative cue words. However, REM time and percent correlated negatively with degree of emotional priming. Priming occurred for REM awakenings but not for NREM awakenings, even when the latter sleep episodes contained some REM sleep. Associational breadth may be selectively consolidated during REM sleep for stimuli that have been tagged as important for future memory retrieval. That priming decreased with REM time and was higher only for REM sleep awakenings is consistent with two explanatory REM sleep processes: REM sleep consolidation serving emotional downregulation and REM sleep inertia. © 2015 Associated Professional Sleep Societies, LLC.

  20. Mentoring: An Evolving Relationship.

    Science.gov (United States)

    Block, Michelle; Florczak, Kristine L

    2017-04-01

    The column concerns itself with mentoring as an evolving relationship between mentor and mentee. The collegiate mentoring model, the transformational transcendence model, and the humanbecoming mentoring model are considered in light of a dialogue with mentors at a Midwest university and conclusions are drawn.

  1. Measurably evolving populations

    DEFF Research Database (Denmark)

    Drummond, Alexei James; Pybus, Oliver George; Rambaut, Andrew

    2003-01-01

    processes through time. Populations for which such studies are possible � measurably evolving populations (MEPs) � are characterized by sufficiently long or numerous sampled sequences and a fast mutation rate relative to the available range of sequence sampling times. The impact of sequences sampled through...... understanding of evolutionary processes in diverse organisms, from viruses to vertebrates....

  2. Primordial evolvability: Impasses and challenges.

    Science.gov (United States)

    Vasas, Vera; Fernando, Chrisantha; Szilágyi, András; Zachár, István; Santos, Mauro; Szathmáry, Eörs

    2015-09-21

    While it is generally agreed that some kind of replicating non-living compounds were the precursors of life, there is much debate over their possible chemical nature. Metabolism-first approaches propose that mutually catalytic sets of simple organic molecules could be capable of self-replication and rudimentary chemical evolution. In particular, the graded autocatalysis replication domain (GARD) model, depicting assemblies of amphiphilic molecules, has received considerable interest. The system propagates compositional information across generations and is suggested to be a target of natural selection. However, evolutionary simulations indicate that the system lacks selectability (i.e. selection has negligible effect on the equilibrium concentrations). We elaborate on the lessons learnt from the example of the GARD model and, more widely, on the issue of evolvability, and discuss the implications for similar metabolism-first scenarios. We found that simple incorporation-type chemistry based on non-covalent bonds, as assumed in GARD, is unlikely to result in alternative autocatalytic cycles when catalytic interactions are randomly distributed. An even more serious problem stems from the lognormal distribution of catalytic factors, causing inherent kinetic instability of such loops, due to the dominance of efficiently catalyzed components that fail to return catalytic aid. Accordingly, the dynamics of the GARD model is dominated by strongly catalytic, but not auto-catalytic, molecules. Without effective autocatalysis, stable hereditary propagation is not possible. Many repetitions and different scaling of the model come to no rescue. Despite all attempts to show the contrary, the GARD model is not evolvable, in contrast to reflexively autocatalytic networks, complemented by rare uncatalyzed reactions and compartmentation. The latter networks, resting on the creation and breakage of chemical bonds, can generate novel ('mutant') autocatalytic loops from a given set of

  3. Rapid identification and classification of Listeria spp. and serotype assignment of Listeria monocytogenes using fourier transform-infrared spectroscopy and artificial neural network analysis

    Science.gov (United States)

    The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software, NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains...

  4. Application of electrical capacitance tomography and artificial neural networks to rapid estimation of cylindrical shape parameters of industrial flow structure

    Directory of Open Access Journals (Sweden)

    Garbaa Hela

    2016-12-01

    Full Text Available A new approach to solve the inverse problem in electrical capacitance tomography is presented. The proposed method is based on an artificial neural network to estimate three different parameters of a circular object present inside a pipeline, i.e. radius and 2D position coordinates. This information allows the estimation of the distribution of material inside a pipe and determination of the characteristic parameters of a range of flows, which are characterised by a circular objects emerging within a cross section such as funnel flow in a silo gravitational discharging process. The main advantages of the proposed approach are explicitly: the desired characteristic flow parameters are estimated directly from the measured capacitances and rapidity, which in turn is crucial for online flow monitoring. In a classic approach in order to obtain these parameters in the first step the image is reconstructed and then the parameters are estimated with the use of image processing methods. The obtained results showed significant reduction of computations time in comparison to the iterative LBP or Levenberg-Marquard algorithms.

  5. Rapid broad area search and detection of Chinese surface-to-air missile sites using deep convolutional neural networks

    Science.gov (United States)

    Marcum, Richard A.; Davis, Curt H.; Scott, Grant J.; Nivin, Tyler W.

    2017-10-01

    We evaluated how deep convolutional neural networks (DCNN) could assist in the labor-intensive process of human visual searches for objects of interest in high-resolution imagery over large areas of the Earth's surface. Various DCNN were trained and tested using fewer than 100 positive training examples (China only) from a worldwide surface-to-air-missile (SAM) site dataset. A ResNet-101 DCNN achieved a 98.2% average accuracy for the China SAM site data. The ResNet-101 DCNN was used to process ˜19.6 M image chips over a large study area in southeastern China. DCNN chip detections (˜9300) were postprocessed with a spatial clustering algorithm to produce a ranked list of ˜2100 candidate SAM site locations. The combination of DCNN processing and spatial clustering effectively reduced the search area by ˜660X (0.15% of the DCNN-processed land area). An efficient web interface was used to facilitate a rapid serial human review of the candidate SAM sites in the China study area. Four novice imagery analysts with no prior imagery analysis experience were able to complete a DCNN-assisted SAM site search in an average time of ˜42 min. This search was ˜81X faster than a traditional visual search over an equivalent land area of ˜88,640 km2 while achieving nearly identical statistical accuracy (˜90% F1).

  6. Rapid Network Design

    Science.gov (United States)

    2013-09-01

    end if 8: end forreturn BroadcastCosti In algorithm 1, we first create a graph using the Dijkstra algorithm [9], with the candidate switch as the root...me to successfully navigate through this program and complete my studies. Words cannot describe my gratitude to both my wife and son for everything...expertise and sound guidance helped me navigate and successfully complete the thesis process. Your technical insight and encouragement helped make this

  7. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  8. The network evolves | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-07-08

    Jul 8, 2011 ... Canada, China collaborate to encourage “brain flow” between the two countries. The "brain flow" between Canada and China involves the movement of Chinese students, researchers, and faculty to Canadian educational institutions,. View moreCanada, China collaborate to encourage “brain flow” between ...

  9. Coupled 1-D sewer and street networks and 2-D flooding model to rapidly evaluate surface inundation

    Science.gov (United States)

    Kao, Hong-Ming; Hsu, Hao-Ming

    2017-04-01

    Flash floods have occurred frequently in the urban areas around the world and cause the infrastructure and people living to expose continuously in the high risk level of pluvial flooding. According to historical surveys, the major reasons of severe surface inundations in the urban areas can be attributed to heavy rainfall in the short time and/or drainage system failure. In order to obtain real-time flood forecasting with high accuracy and less uncertainty, an appropriate system for predicting floods is necessary. For the reason, this study coupled 1-D sewer and street networks and 2-D flooding model as an operational modelling system for rapidly evaluating surface inundation. The proposed system is constructed by three significant components: (1) all the rainfall-runoff of a sub-catchment collected via gullies is simulated by the RUNOFF module of the Storm Water Management Model (SWMM); (2) and directly drained to the 1-D sewer and street networks via manholes as inflow discharges to conduct flow routing by using the EXTRAN module of SWMM; (3) after the 1-D simulations, the surcharges from manholes are considered as point sources in 2-D overland flow simulations that are executed by the WASH123D model. It can thus be used for urban flood modelling that reflects the rainfall-runoff processes, and the dynamic flow interactions between the storm sewer system and the ground surface in urban areas. In the present study, we adopted the Huwei Science and Technology Park, located in the south-western part of Taiwan, as the demonstration area because of its high industrial values. The region has an area about 1 km2 with approximately 1 km in both length and width. It is as isolated urban drainage area in which there is a complete sewer system that collects the runoff and drains to the detention pond. Based on the simulated results, the proposed modelling system was found that the simulated floods fit to the survey records because the physical rainfall-runoff phenomena in

  10. Declarative Networking

    CERN Document Server

    Loo, Boon Thau

    2012-01-01

    Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, decla

  11. Regolith Evolved Gas Analyzer

    Science.gov (United States)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  12. Evolving PSTN to NGN

    Science.gov (United States)

    Wu, Liang T.

    2004-04-01

    The concept of Next Generation Network (NGN) was conceived around 1998 as an integrated solution to combine the quality and features of the PSTN with the low cost and routing flexibility of the Internet to provide a single infrastructure for the future public network. This carrier grade Internet solution calls for the creation of a consolidated, packet transport and switching infrastructure and the development of a flexible, open, software switch (softswitch) to handle voice telephony as well as multimedia services. Almost all the telecom equipment manufacturers as well as some Internet equipment vendors immediately subscribed to this vision and joined the race to create convergent products for the NGN market.

  13. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    OpenAIRE

    Alberto Chávez-Aragón; Rizwan Macknojia; Pierre Payeur; Robert Laganière

    2013-01-01

    This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is position...

  14. Evolving haloalkane dehalogenases

    NARCIS (Netherlands)

    Janssen, D.B.

    Mechanistic insight into the biochemistry of carbon–halogen bond cleavage is rapidly growing because of recent structural, biochemical and computational studies that have provided further insight into how haloalkane dehalogenases achieve their impressive catalytic activity. An occluded water-free

  15. Extension of in-situ stress test analysis to rapid hole evacuation at Yucca Mountain due to a network of open conduits

    Energy Technology Data Exchange (ETDEWEB)

    Davies, J.B.

    1994-01-01

    Yucca Mountain is underlain by tuffaceous rocks that are highly fractured and jointed. During drilling of bore-holes at Yucca Mountain there were numerous occurrences of lost circulation when whole mud was taken by the formation. This evidence suggests that parts of Yucca Mountain are controlled hydrologicaly by a network of open conduits along the existing joints and fractures. Also at Yucca Mountain, stress tests have been performed in-situ by charging a small section along the boreholes with an excess pressure head of water. For many of these tests, the initial drop in water head was so rapid that within seconds up to hundreds of meters of fall had occurred. The opening of fractures as the excess head increases has previously been proposed as an important factor in explaining the shape of the stress test curves at lower pressures. We propose that such induced hydraulic fractures, under increasing water heads, can grow to a length sufficient to intersect the existing network of open joints and fractures. We extend our previous model to incorporate flow out along these open conduits and examine the initial rapid drop in terms of these extended models. We show that this rapid evacuation model fits the observed data from many slug tests in wells in the vicinity of Yucca Mountain. This result is confirmation of the drilling evidence that a network of open conduits exists at various depths below the water table and over a large geographic region around Yucca Mountain.

  16. Kinect Technology Game Play to Mimic Quake Catcher Network (QCN) Sensor Deployment During a Rapid Aftershock Mobilization Program (RAMP)

    Science.gov (United States)

    Kilb, D. L.; Yang, A.; Rohrlick, D.; Cochran, E. S.; Lawrence, J.; Chung, A. I.; Neighbors, C.; Choo, Y.

    2011-12-01

    The Kinect technology allows for hands-free game play, greatly increasing the accessibility of gaming for those uncomfortable using controllers. How it works is the Kinect camera transmits invisible near-infrared light and measures its "time of flight" to reflect off an object, allowing it to distinguish objects within 1 centimeter in depth and 3 mm in height and width. The middleware can also respond to body gestures and voice commands. Here, we use the Kinect Windows SDK software to create a game that mimics how scientists deploy seismic instruments following a large earthquake. The educational goal of the game is to allow the players to explore 3D space as they learn about the Quake Catcher Network's (QCN) Rapid Aftershock Mobilization Program (RAMP). Many of the scenarios within the game are taken from factual RAMP experiences. To date, only the PC platform (or a Mac running PC emulator software) is available for use, but we hope to move to other platforms (e.g., Xbox 360, iPad, iPhone) as they become available. The game is written in programming language C# using Microsoft XNA and Visual Studio 2010, graphic shading is added using High Level Shader Language (HLSL), and rendering is produced using XNA's graphics libraries. Key elements of the game include selecting sensor locations, adequately installing the sensor, and monitoring the incoming data. During game play aftershocks can occur unexpectedly, as can other problems that require attention (e.g., power outages, equipment failure, and theft). The player accrues points for quickly deploying the first sensor (recording as many initial aftershocks as possible), correctly installing the sensors (orientation with respect to north, properly securing, and testing), distributing the sensors adequately in the region, and troubleshooting problems. One can also net points for efficient use of game play time. Setting up for game play in your local environment requires: (1) the Kinect hardware ( $145); (2) a computer

  17. Attention: an evolving construct.

    Science.gov (United States)

    Joyce, Arthur; Hrin, Skip

    2015-01-01

    We review the implications of large-scale brain systems on the construct of attention by first focusing on significant theories and discoveries during the previous 150 years and then considering how the comparatively recent discovery of large-scale brain systems may render previous conceptualizations of attention outdated. Seven functional brain networks are briefly reviewed and the implications of emerging principles of brain functioning for test construction and neuropsychological evaluation are considered. To remain a relevant discipline moving into the 21st century, the field of neuropsychology needs to apply the principles that have been discovered about brain networks to better inform our understanding of attention as well as our ever-refining evaluation of this construct.

  18. CERN internal communication is evolving

    CERN Multimedia

    2016-01-01

    CERN news will now be regularly updated on the CERN People page (see here).      Dear readers, All over the world, communication is becoming increasingly instantaneous, with news published in real time on websites and social networks. In order to keep pace with these changes, CERN's internal communication is evolving too. From now on, you will be informed of what’s happening at CERN more often via the “CERN people” page, which will frequently be updated with news. The Bulletin is following this trend too: twice a month, we will compile the most important articles published on the CERN site, with a brand-new layout. You will receive an e-mail every two weeks as soon as this new form of the Bulletin is available. If you have interesting news or stories to share, tell us about them through the form at: https://communications.web.cern.ch/got-story-cern-website​. You can also find out about news from CERN in real time...

  19. Fat: an evolving issue

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2012-09-01

    Work on obesity is evolving, and obesity is a consequence of our evolutionary history. In the space of 50 years, we have become an obese species. The reasons why can be addressed at a number of different levels. These include separating between whether the primary cause lies on the food intake or energy expenditure side of the energy balance equation, and determining how genetic and environmental effects contribute to weight variation between individuals. Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important. There is more of a consensus that genetics explains most (probably around 65% of weight variation between individuals. Recent advances in genome-wide association studies have identified many polymorphisms that are linked to obesity, yet much of the genetic variance remains unexplained. Finding the causes of this unexplained variation will be an impetus of genetic and epigenetic research on obesity over the next decade. Many environmental factors – including gut microbiota, stress and endocrine disruptors – have been linked to the risk of developing obesity. A better understanding of gene-by-environment interactions will also be key to understanding obesity in the years to come.

  20. Evolving Concepts of Asthma

    Science.gov (United States)

    Ray, Anuradha; Wenzel, Sally E.

    2015-01-01

    Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792

  1. Evolving endoscopic surgery.

    Science.gov (United States)

    Sakai, Paulo; Faintuch, Joel

    2014-06-01

    Since the days of Albukasim in medieval Spain, natural orifices have been regarded not only as a rather repugnant source of bodily odors, fluids and excreta, but also as a convenient invitation to explore and treat the inner passages of the organism. However, surgical ingenuity needed to be matched by appropriate tools and devices. Lack of technologically advanced instrumentation was a strong deterrent during almost a millennium until recent decades when a quantum jump materialized. Endoscopic surgery is currently a vibrant and growing subspecialty, which successfully handles millions of patients every year. Additional opportunities lie ahead which might benefit millions more, however, requiring even more sophisticated apparatuses, particularly in the field of robotics, artificial intelligence, and tissue repair (surgical suturing). This is a particularly exciting and worthwhile challenge, namely of larger and safer endoscopic interventions, followed by seamless and scarless recovery. In synthesis, the future is widely open for those who use together intelligence and creativity to develop new prototypes, new accessories and new techniques. Yet there are many challenges in the path of endoscopic surgery. In this new era of robotic endoscopy, one will likely need a virtual simulator to train and assess the performance of younger doctors. More evidence will be essential in multiple evolving fields, particularly to elucidate whether more ambitious and complex pathways, such as intrathoracic and intraperitoneal surgery via natural orifice transluminal endoscopic surgery (NOTES), are superior or not to conventional techniques. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  2. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  3. Assessing SfM-Photogrammetry potential at micro-scale on a rapidly evolving mud-bank: case study on a mesocosm study within pioneer mangroves in French Guiana (South America)

    Science.gov (United States)

    Fleury, Jules; Brunier, Guillaume; Michaud, Emma; Anthony, Edward; Dussouillez, Philippe; Morvan, Sylvain

    2016-04-01

    Mud banks are the loci of rich bio-geo-chemical processes occuring rapidly at infra-tide frequency. Their surface topography is commonly affected by many of these processes, including bioturbation, water drainage or dessication. Quantifying surface morphology and changes on a mud bank at the micro-scale is a challenging task due to a number of issues. First, the water-saturated nature of the soil makes it difficult to measure High Resolution Topography (HRT) with classical methods. Second, setting up an instrumented experiment without disrupting the signal being studied is hardly achieved at micro-scale. Finally, the highly mobile nature of this environment enhancing strong spatio-temporal heterogeneity is hard to capture. Terrestrial Laser Scanning (TLS) and SfM (Surface from Motion)-Photogrammetry are two techniques that enable mapping of micro-scale features, but the first technique is not suitable because of the poor quality of the backscattered laser signal on wet surfaces and the need to set up several measuring stations on a complex, unstable substrate. Thus, we set up an experiment to assess the feasibility and the accuracy of SfM in such a context. We took the opportunity of the installation of a pontoon dedicated to the study of bio-geochemical processes within benthic mesocosms installed on a mud bank inhabited by pioneer mangroves trees to develop an adapted photogrammetry protocol based on a full-frame remotely triggered camera sensor mounted on a pole. The incident light on the surface was also controlled with a light-diffusing device. We obtained sub-millimetric resolution 3D-topography and visible imagery. Surveys were carried out every 2 hours at low tide to detect surface changes due to water content variation as well as bioturbation mainly caused by crabs digging galleries and feeding on sediment surface. Both the qualitative and quantitative results seem very promising and lead us to expect new insights into heterogeneous surface processes on a

  4. Microwave assisted rapid growth of Mg(OH){sub 2} nanosheet networks for ethanol chemical sensor application

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hazmi, Faten [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Umar, Ahmad, E-mail: ahmadumar786@gmail.com [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Dar, G.N. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Al-Ghamdi, A.A.; Al-Sayari, S.A. [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Al-Hajry, A. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Kim, S.H. [Promising Centre for Sensors and Electronic Devices (PCSED) and Centre for Advanced Materials and Nano-Research (CAMNR), Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Al-Tuwirqi, Reem M. [Department of Physics, College of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21569 (Saudi Arabia); Alnowaiserb, Fowzia [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2012-04-05

    Highlights: Black-Right-Pointing-Pointer A facile microwave-assisted synthesis and characterizations of magnesium hydroxide (Mg(OH){sub 2}) nanosheet networks. Black-Right-Pointing-Pointer Fabrication of ethanol sensor based on (Mg(OH){sub 2}) nanosheet networks. Black-Right-Pointing-Pointer Good sensitivity ({approx}3.991 {mu}A cm{sup -2} mM{sup -1}) and lower detection limit (5 {mu}M). Black-Right-Pointing-Pointer This research opens a way to utilize Mg(OH){sub 2} nanostructures for chemical sensors applications. - Abstract: This paper reports a facile microwave-assisted synthesis of magnesium hydroxide (Mg(OH){sub 2}) nanosheet networks and their utilization for the fabrication of efficient ethanol chemical sensor. The synthesized nanosheets networks were characterized in terms of their morphological, structural and optical properties using various analysis techniques such as field emission scanning electron microscopy (FESEM), X-ray diffraction pattern (XRD), Fourier transform infrared (FTIR) and UV-Vis spectroscopy. The detailed morphological and structural investigations reveal that the synthesized (Mg(OH){sub 2}) products are nanosheet networks, grown in high density, and possessing hexagonal crystal structure. The optical band gap of as-synthesized Mg(OH){sub 2} nanosheet networks was examined by UV-Vis absorption spectrum, and found to be 5.76 eV. The synthesized nanosheet networks were used as supporting matrices for the fabrication of I-V technique based efficient ethanol chemical sensor. The fabricated ethanol sensor based on nanosheet networks exhibits good sensitivity ({approx}3.991 {mu}A cm{sup -2} mM{sup -1}) and lower detection limit (5 {mu}M), with linearity (R = 0.9925) in short response time (10.0 s). This work demonstrate that the simply synthesized Mg(OH){sub 2} nanosheet networks can effectively be used for the fabrication of efficient ethanol chemical sensors.

  5. EVOLVE : International Conference

    CERN Document Server

    Deutz, Andre; Schuetze, Oliver; Bäck, Thomas; Tantar, Emilia; Tantar, Alexandru-Adrian; Moral, Pierre; Legrand, Pierrick; Bouvry, Pascal; Coello, Carlos

    2013-01-01

    Numerical and computational methods are nowadays used in a wide range of contexts in complex systems research, biology, physics, and engineering.  Over the last decades different methodological schools have emerged with emphasis on different aspects of computation, such as nature-inspired algorithms, set oriented numerics, probabilistic systems and Monte Carlo methods. Due to the use of different terminologies and emphasis on different aspects of algorithmic performance there is a strong need for a more integrated view and opportunities for cross-fertilization across particular disciplines. These proceedings feature 20 original publications from distinguished authors in the cross-section of computational sciences, such as machine learning algorithms and probabilistic models, complex networks and fitness landscape analysis, set oriented numerics and cell mapping, evolutionary multiobjective optimization, diversity-oriented search, and the foundations of genetic programming algorithms. By presenting cutting ed...

  6. Rapid Identification and Classification of Listeria spp. and Serotype Assignment of Listeria monocytogenes Using Fourier Transform-Infrared Spectroscopy and Artificial Neural Network Analysis.

    Directory of Open Access Journals (Sweden)

    K F Romanolo

    Full Text Available The use of Fourier Transform-Infrared Spectroscopy (FT-IR in conjunction with Artificial Neural Network software NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains of Listeria spp. to give a biochemical fingerprint from which identification of unknown samples were made. This technology was able to accurately distinguish the Listeria species with 99.03% accuracy. Eleven serotypes of Listeria monocytogenes including 1/2a, 1/2b, and 4b were identified with 96.58% accuracy. In addition, motile and non-motile forms of Listeria were used to create a more robust model for identification. FT-IR coupled with NeuroDeveloper™ appear to be a more accurate and economic choice for rapid identification of pathogenic Listeria spp. than current methods.

  7. Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices.

    Science.gov (United States)

    Lee, Jiwon; Paek, Jungwook; Kim, Jaeyoun

    2012-08-07

    We present a new fabrication scheme for 3D-networked, cylindrical microfluidic (MF) channels based on shaping, bonding, and assembly of sucrose fibers. It is a simple, cleanroom-free, and environment-friendly method, ideal for rapid prototyping of lab-on-a-chip devices. Despite its simplicity, it can realize complex 3D MF channel architectures such as cylindrical tapers, internal loops, end-to-side junctions, tapered junctions, and stenosis. The last two will be of special use for realizing vaso-mimetic MF structures. It also enables molding with polymers incompatible with high-temperature processing.

  8. Telecommunication networks

    CERN Document Server

    Iannone, Eugenio

    2011-01-01

    Many argue that telecommunications network infrastructure is the most impressive and important technology ever developed. Analyzing the telecom market's constantly evolving trends, research directions, infrastructure, and vital needs, Telecommunication Networks responds with revolutionized engineering strategies to optimize network construction. Omnipresent in society, telecom networks integrate a wide range of technologies. These include quantum field theory for the study of optical amplifiers, software architectures for network control, abstract algebra required to design error correction co

  9. Evolutionary rewiring of bacterial regulatory networks

    Directory of Open Access Journals (Sweden)

    Tiffany B. Taylor

    2015-07-01

    Full Text Available Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015, 347(6225] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.

  10. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  11. Disgust: Evolved function and structure

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.; Kurzban, R.; DeScioli, P.

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and

  12. Evolving virtual creatures and catapults.

    Science.gov (United States)

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  13. A framework for rapid post-earthquake assessment of bridges and restoration of transportation network functionality using structural health monitoring

    Science.gov (United States)

    Omenzetter, Piotr; Ramhormozian, Shahab; Mangabhai, Poonam; Singh, Ravikash; Orense, Rolando

    2013-04-01

    Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined.

  14. Tissue Microarray: A rapidly evolving diagnostic and research tool

    Science.gov (United States)

    Jawhar, Nazar M.T.

    2009-01-01

    Tissue microarray is a recent innovation in the field of pathology. A microarray contains many small representative tissue samples from hundreds of different cases assembled on a single histologic slide, and therefore allows high throughput analysis of multiple specimens at the same time. Tissue microarrays are paraffin blocks produced by extracting cylindrical tissue cores from different paraffin donor blocks and re-embedding these into a single recipient (microarray) block at defined array coordinates. Using this technique, up to 1000 or more tissue samples can be arrayed into a single paraffin block. It can permit simultaneous analysis of molecular targets at the DNA, mRNA, and protein levels under identical, standardized conditions on a single glass slide, and also provide maximal preservation and use of limited and irreplaceable archival tissue samples. This versatile technique, in which data analysis is automated facilitates retrospective and prospective human tissue studies. It is a practical and effective tool for high-throughput molecular analysis of tissues that is helping to identify new diagnostic and prognostic markers and targets in human cancers, and has a range of potential applications in basic research, prognostic oncology and drug discovery. This article summarizes the technical aspects of tissue microarray construction and sectioning, advantages, application, and limitations. PMID:19318744

  15. Emerging Zika Virus Infection: A Rapidly Evolving Situation.

    Science.gov (United States)

    Bordi, Licia; Avsic-Zupanc, Tatjana; Lalle, Eleonora; Vairo, Francesco; Capobianchi, Maria Rosaria; da Costa Vasconcelos, Pedro Fernando

    2017-01-01

    Zika virus is a mosquito-borne flavivirus, firstly identified in Uganda and responsible for sporadic human cases in Africa and Asia until recently, when large outbreak occurred in Pacific Ocean and the Americas. Since the main vectors during its spread outside of Africa have been Ae. albopictus and Ae. aegypti mosquitoes, which are widely distributed all over the world, there is urgent need for a coordinated response for prevention and spread of ZIKV epidemics.Despite clinical manifestation of Zika virus infection are usually mild and self limiting, there are reports suggesting, during the recent epidemic, an association of ZIKV infection with severe consequences, including fetal/newborn microcephaly, due to vertical in utero transmission, autoimmune-neurological presentations including cranial nerve dysfunction, and Guillain-Barré Syndrome in adults. The primary mode of transmission of Zika virus between humans is through the bite of an infected female mosquito of the Aedes genus, but also sexual and blood transfusion transmission may occur. Moreover, a case of non-sexual spread from one person to another has been described, indicating that we still have more to learn about Zika transmission.Biological basis for pathogenetic effects are under investigation. Laboratory diagnosis is challenging since, so far, there are no "gold standard" diagnostic tools, and the low and short viremia in the acute phase, and together with the high cross-reactivity among the members of flavivirus genus are the most challenging aspects to be overcome.

  16. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)

    tribpo

    1997-04-15

    Apr 15, 1997 ... The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. ... (1991), where they observed X-class flares near the sites of. EFR. Wang & Shi (1993) suggested that ... region using the USΟ video magnetograph (Mathew et al. 1998). The active region. 233 ...

  17. The Rapidly Evolving Concept of Whole Heart Engineering

    Directory of Open Access Journals (Sweden)

    Laura Iop

    2017-01-01

    Full Text Available Whole heart engineering represents an incredible journey with as final destination the challenging aim to solve end-stage cardiac failure with a biocompatible and living organ equivalent. Its evolution started in 2008 with rodent organs and is nowadays moving closer to clinical application thanks to scaling-up strategies to human hearts. This review will offer a comprehensive examination on the important stages to be reached for the bioengineering of the whole heart, by describing the approaches of organ decellularization, repopulation, and maturation so far applied and the novel technologies of potential interest. In addition, it will carefully address important demands that still need to be satisfied in order to move to a real clinical translation of the whole bioengineering heart concept.

  18. "Reinventing Life": Introductory Biology for a Rapidly Evolving World

    Science.gov (United States)

    Coker, Jeffrey Scott

    2009-01-01

    Evolutionary concepts are essential for a scientific understanding of most issues surrounding modern medicine, agriculture, biotechnology, and the environment. If the mantra for biology education in the 20th century was, "Nothing in biology makes sense except in the light of evolution," the mantra for the 21st century must be, "Nothing in biology…

  19. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  20. Emerging localized food networks in Denmark

    DEFF Research Database (Denmark)

    Kristensen, Niels Heine; Hansen, Mette Weinreich

    2012-01-01

    One of the fastest growing food related social movements are citizen driven food networks. The Danish initiatives emerged in Copenhagen from an open culinary, social, environmental and organic oriented network. The theories and strategies of the original initiative is presented in this paper......, together with an analysis of how this has evolved and expanded. The challenges this rapid expansion puts on the internal network and organisation, and on the local food supplieres - the organic farmers - are elaborated in this paper. Also – from a rural sociology perspective – the interaction...

  1. SU-E-T-23: A Developing Australian Network for Datamining and Modelling Routine Radiotherapy Clinical Data and Radiomics Information for Rapid Learning and Clinical Decision Support

    Energy Technology Data Exchange (ETDEWEB)

    Thwaites, D [University of Sydney, Camperdown, Sydney (Australia); Holloway, L [Ingham Institute, Sydney, NSW (Australia); Bailey, M; Carolan, M; Miller, A [Illawarra Cancer Care Centre, Wollongong, NSW (Australia); Barakat, S; Field, M [University of Sydney, Sydney, NSW (Australia); Delaney, G; Vinod, S [Liverpool Hospital, Liverpool, NSW (Australia); Dekker, A [Maastro Clinic, Maastricht (Netherlands); Lustberg, T; Soest, J van; Walsh, S [MAASTRO Clinic, Maastricht (Netherlands)

    2015-06-15

    Purpose: Large amounts of routine radiotherapy (RT) data are available, which can potentially add clinical evidence to support better decisions. A developing collaborative Australian network, with a leading European partner, aims to validate, implement and extend European predictive models (PMs) for Australian practice and assess their impact on future patient decisions. Wider objectives include: developing multi-institutional rapid learning, using distributed learning approaches; and assessing and incorporating radiomics information into PMs. Methods: Two initial standalone pilots were conducted; one on NSCLC, the other on larynx, patient datasets in two different centres. Open-source rapid learning systems were installed, for data extraction and mining to collect relevant clinical parameters from the centres’ databases. The European DSSs were learned (“training cohort”) and validated against local data sets (“clinical cohort”). Further NSCLC studies are underway in three more centres to pilot a wider distributed learning network. Initial radiomics work is underway. Results: For the NSCLC pilot, 159/419 patient datasets were identified meeting the PM criteria, and hence eligible for inclusion in the curative clinical cohort (for the larynx pilot, 109/125). Some missing data were imputed using Bayesian methods. For both, the European PMs successfully predicted prognosis groups, but with some differences in practice reflected. For example, the PM-predicted good prognosis NSCLC group was differentiated from a combined medium/poor prognosis group (2YOS 69% vs. 27%, p<0.001). Stage was less discriminatory in identifying prognostic groups. In the good prognosis group two-year overall survival was 65% in curatively and 18% in palliatively treated patients. Conclusion: The technical infrastructure and basic European PMs support prognosis prediction for these Australian patient groups, showing promise for supporting future personalized treatment decisions

  2. When did oxygenic photosynthesis evolve?

    National Research Council Canada - National Science Library

    Roger Buick

    2008-01-01

    ...2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event...

  3. Marshal: Maintaining Evolving Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  4. MANAGING GLOBAL OPERATIONS NETWORKS IN MOTION

    DEFF Research Database (Denmark)

    Slepniov, Dmitrij; Jørgensen, Claus; Sørensen, Brian Vejrum

    2008-01-01

    in corporate strategic repositioning, re-configurations of sites, and changes to the underlying capabilities. The paper is based on cases of 3 Danish companies and their global supply networks. These networks are not in a steady state, they evolve as a consequence of the ongoing co-evolution between the focal...... organisation and network partners as well as various contexts that surround them. This paper addresses this ongoing co-evolution and finds a number of common patterns: strategic re-focusing of the focal organisation downstream; changing roles of individual sites within the supply network; and shifting...... capabilities and intensified need for transfer, assimilation and augmentation of activities and know-how within the network. Based on these the paper highlights some organisational effects and managerial challenges the companies face regarding rapid changes in their networks configurations and capabilities....

  5. A Rapid Identification Method for Calamine Using Near-Infrared Spectroscopy Based on Multi-Reference Correlation Coefficient Method and Back Propagation Artificial Neural Network.

    Science.gov (United States)

    Sun, Yangbo; Chen, Long; Huang, Bisheng; Chen, Keli

    2017-07-01

    As a mineral, the traditional Chinese medicine calamine has a similar shape to many other minerals. Investigations of commercially available calamine samples have shown that there are many fake and inferior calamine goods sold on the market. The conventional identification method for calamine is complicated, therefore as a result of the large scale of calamine samples, a rapid identification method is needed. To establish a qualitative model using near-infrared (NIR) spectroscopy for rapid identification of various calamine samples, large quantities of calamine samples including crude products, counterfeits and processed products were collected and correctly identified using the physicochemical and powder X-ray diffraction method. The NIR spectroscopy method was used to analyze these samples by combining the multi-reference correlation coefficient (MRCC) method and the error back propagation artificial neural network algorithm (BP-ANN), so as to realize the qualitative identification of calamine samples. The accuracy rate of the model based on NIR and MRCC methods was 85%; in addition, the model, which took comprehensive multiple factors into consideration, can be used to identify crude calamine products, its counterfeits and processed products. Furthermore, by in-putting the correlation coefficients of multiple references as the spectral feature data of samples into BP-ANN, a BP-ANN model of qualitative identification was established, of which the accuracy rate was increased to 95%. The MRCC method can be used as a NIR-based method in the process of BP-ANN modeling.

  6. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón

    2013-01-01

    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  7. The Evolving Status of Photojournalism Education. ERIC Digest.

    Science.gov (United States)

    Cookman, Claude

    Noting that new technologies are resulting in extensive changes in the field of photojournalism, both as it is practiced and taught, this Digest reviews this rapidly evolving field of education and professional practice. It discusses what digital photography is; the history of digital photography; how digital photography has changed…

  8. The urban watershed continuum: evolving spatial and temporal dimensions

    Science.gov (United States)

    Sujay S. Kaushal; Kenneth T. Belt

    2012-01-01

    Urban ecosystems are constantly evolving, and they are expected to change in both space and time with active management or degradation. An urban watershed continuum framework recognizes a continuum of engineered and natural hydrologic flowpaths that expands hydrologic networks in ways that are seldom considered. It recognizes that the nature of hydrologic connectivity...

  9. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010

    NARCIS (Netherlands)

    Brinckmann, Sarah; Da Costa, Kelly; van Gils, Marit J.; Hallengärd, David; Klein, Katja; Madeira, Luisa; Mainetti, Lara; Palma, Paolo; Raue, Katharina; Reinhart, David; Reudelsterz, Marc; Ruffin, Nicolas; Seifried, Janna; Schäfer, Katrein; Sheik-Khalil, Enas; Sköld, Annette; Uchtenhagen, Hannes; Vabret, Nicolas; Ziglio, Serena; Scarlatti, Gabriella; Shattock, Robin; Wahren, Britta; Gotch, Frances

    2011-01-01

    Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental

  10. BOOK REVIEW: OPENING SCIENCE, THE EVOLVING GUIDE ...

    Science.gov (United States)

    The way we get our funding, collaborate, do our research, and get the word out has evolved over hundreds of years but we can imagine a more open science world, largely facilitated by the internet. The movement towards this more open way of doing and presenting science is coming, and it is not taking hundreds of years. If you are interested in these trends, and would like to find out more about where this is all headed and what it means to you, consider downloding Opening Science, edited by Sönke Bartling and Sascha Friesike, subtitled The Evolving Guide on How the Internet is Changing Research, Collaboration, and Scholarly Publishing. In 26 chapters by various authors from a range of disciplines the book explores the developing world of open science, starting from the first scientific revolution and bringing us to the next scientific revolution, sometimes referred to as “Science 2.0”. Some of the articles deal with the impact of the changing landscape of how science is done, looking at the impact of open science on Academia, or journal publishing, or medical research. Many of the articles look at the uses, pitfalls, and impact of specific tools, like microblogging (think Twitter), social networking, and reference management. There is lots of discussion and definition of terms you might use or misuse like “altmetrics” and “impact factor”. Science will probably never be completely open, and Twitter will probably never replace the journal article,

  11. Automatically assessing properties of dynamic cameras for camera selection and rapid deployment of video content analysis tasks in large-scale ad-hoc networks

    Science.gov (United States)

    den Hollander, Richard J. M.; Bouma, Henri; van Rest, Jeroen H. C.; ten Hove, Johan-Martijn; ter Haar, Frank B.; Burghouts, Gertjan J.

    2017-10-01

    Video analytics is essential for managing large quantities of raw data that are produced by video surveillance systems (VSS) for the prevention, repression and investigation of crime and terrorism. Analytics is highly sensitive to changes in the scene, and for changes in the optical chain so a VSS with analytics needs careful configuration and prompt maintenance to avoid false alarms. However, there is a trend from static VSS consisting of fixed CCTV cameras towards more dynamic VSS deployments over public/private multi-organization networks, consisting of a wider variety of visual sensors, including pan-tilt-zoom (PTZ) cameras, body-worn cameras and cameras on moving platforms. This trend will lead to more dynamic scenes and more frequent changes in the optical chain, creating structural problems for analytics. If these problems are not adequately addressed, analytics will not be able to continue to meet end users' developing needs. In this paper, we present a three-part solution for managing the performance of complex analytics deployments. The first part is a register containing meta data describing relevant properties of the optical chain, such as intrinsic and extrinsic calibration, and parameters of the scene such as lighting conditions or measures for scene complexity (e.g. number of people). A second part frequently assesses these parameters in the deployed VSS, stores changes in the register, and signals relevant changes in the setup to the VSS administrator. A third part uses the information in the register to dynamically configure analytics tasks based on VSS operator input. In order to support the feasibility of this solution, we give an overview of related state-of-the-art technologies for autocalibration (self-calibration), scene recognition and lighting estimation in relation to person detection. The presented solution allows for rapid and robust deployment of Video Content Analysis (VCA) tasks in large scale ad-hoc networks.

  12. The Evolving Resource Metadata Infrastructure

    Science.gov (United States)

    Biemesderfer, Chris

    The search and discovery mechanisms that will facilitate and simplify systematic research on the Internet depend on systematic classifications of resources, as well as on standardized access to such metadata. The principles and technologies that will make this possible are evolving in the work of the Internet Engineering Task Force and the digital library initiatives, among others. The desired outcome is a set of standards, tools, and practices that permits both cataloging and retrieval to be comprehensive and efficient.

  13. The 'E' factor -- evolving endodontics.

    Science.gov (United States)

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  14. EvoCommander: A Novel Game Based on Evolving and Switching Between Artificial Brains

    DEFF Research Database (Denmark)

    Jallov, D.; Risi, S.; Togelius, J.

    2016-01-01

    Neuroevolution (i.e. evolving artificial neural networks (ANNs) through evolutionary algorithms) has shown promise in evolving agents and robot controllers, which display complex behaviours and can adapt to their environments. These properties are also relevant to video games, since they can...

  15. Supply Networks and Value Creation in High Innovation and Strong Network Externalities Industry

    Directory of Open Access Journals (Sweden)

    Fernando Claro Tomaselli

    2013-12-01

    Full Text Available The rapid developing product and service markets and developments in information technologies have accelerated growth in outsourcing of peripheral activities and critical business as well, enhancing the importance of network supply chain management. This paper analyzes the dynamics of supply chain management and the creation of value in an industry with strong network effects and constantly introduction of disruptive technologies, the videogame industry. This industry evolves at a high velocity, with a lifecycle of five to six years for consoles, which features a new generation of consoles, where new companies and technologies appear and disappear at each generation.

  16. Drug discovery in the era of Facebook--new tools for scientific networking.

    Science.gov (United States)

    Bailey, David S; Zanders, Edward D

    2008-10-01

    Social networking is beginning to make an impact on the drug discovery process. While bioinformatics and chemoinformatics underpin research at a scientific level, rapid communication between individual researchers across continents now allows the global exchange of ideas, tools and technologies. Networking at this level of speed and reach is quite a recent phenomenon. It facilitates the development of common interests, accelerates technology transfer and increases cooperative and competitive behaviour. In this review, we critically evaluate different web based networking approaches as effective resources for the drug discovery scientist. We also ask whether social networking sites will evolve into serious and credible resources for the drug discovery community.

  17. The Evolving Demographic and Health Transition in Four Low- and Middle-Income Countries: Evidence from Four Sites in the INDEPTH Network of Longitudinal Health and Demographic Surveillance Systems.

    Directory of Open Access Journals (Sweden)

    Ayaga Bawah

    Full Text Available This paper contributes evidence documenting the continued decline in all-cause mortality and changes in the cause of death distribution over time in four developing country populations in Africa and Asia. We present levels and trends in age-specific mortality (all-cause and cause-specific from four demographic surveillance sites: Agincourt (South Africa, Navrongo (Ghana in Africa; Filabavi (Vietnam, Matlab (Bangladesh in Asia. We model mortality using discrete time event history analysis. This study illustrates how data from INDEPTH Network centers can provide a comparative, longitudinal examination of mortality patterns and the epidemiological transition. Health care systems need to be reconfigured to deal simultaneously with continuing challenges of communicable disease and increasing incidence of non-communicable diseases that require long-term care. In populations with endemic HIV, long-term care of HIV patients on ART will add to the chronic care needs of the community.

  18. The Evolving Demographic and Health Transition in Four Low- and Middle-Income Countries: Evidence from Four Sites in the INDEPTH Network of Longitudinal Health and Demographic Surveillance Systems.

    Science.gov (United States)

    Bawah, Ayaga; Houle, Brian; Alam, Nurul; Razzaque, Abdur; Streatfield, Peter Kim; Debpuur, Cornelius; Welaga, Paul; Oduro, Abraham; Hodgson, Abraham; Tollman, Stephen; Collinson, Mark; Kahn, Kathleen; Toan, Tran Khan; Phuc, Ho Dang; Chuc, Nguyen Thi Kim; Sankoh, Osman; Clark, Samuel J

    2016-01-01

    This paper contributes evidence documenting the continued decline in all-cause mortality and changes in the cause of death distribution over time in four developing country populations in Africa and Asia. We present levels and trends in age-specific mortality (all-cause and cause-specific) from four demographic surveillance sites: Agincourt (South Africa), Navrongo (Ghana) in Africa; Filabavi (Vietnam), Matlab (Bangladesh) in Asia. We model mortality using discrete time event history analysis. This study illustrates how data from INDEPTH Network centers can provide a comparative, longitudinal examination of mortality patterns and the epidemiological transition. Health care systems need to be reconfigured to deal simultaneously with continuing challenges of communicable disease and increasing incidence of non-communicable diseases that require long-term care. In populations with endemic HIV, long-term care of HIV patients on ART will add to the chronic care needs of the community.

  19. An Evolving Identity: How Chronic Care Is Transforming What it Means to Be a Physician.

    Science.gov (United States)

    Bogetz, Alyssa L; Bogetz, Jori F

    2015-12-01

    Physician identity and the professional role physicians play in health care is rapidly evolving. Over 130 million adults and children in the USA have complex and chronic diseases, each of which is shaped by aspects of the patient's social, psychological, and economic status. These patients have lifelong health care needs that require the ongoing care of multiple health care providers, access to community services, and the involvement of patients' family support networks. To date, physician professional identity formation has centered on autonomy, authority, and the ability to "heal." These notions of identity may be counterproductive in chronic disease care, which demands interdependency between physicians, their patients, and teams of multidisciplinary health care providers. Medical educators can prepare trainees for practice in the current health care environment by providing training that legitimizes and reinforces a professional identity that emphasizes this interdependency. This commentary outlines the important challenges related to this change and suggests potential strategies to reframe professional identity to better match the evolving role of physicians today.

  20. Anomaly Detection in Time-Evolving Climate Graphs

    Science.gov (United States)

    Liess, S.; Agrawal, S.; Das, K.; Atluri, G.; Steinbach, M.; Steinhaeuser, K.; Kumar, V.

    2016-12-01

    The spatio­-temporal observations that are available for different climate variables such as pressure, temperature, wind, humidity etc., have been studied to understand how changes in one variable at a location exhibit similarity with changes in a different variable at a location thousands of kilometers away. These non-trivial long distance relationships, called teleconnections, are often useful in understanding the underlying physical phenomenon driving extreme events, which are becoming more common with the changing climate. Networks constructed using these data sets have the ability to capture these relationships at a global scale. These networks have been analyzed using a variety of network based approaches such as community detection and anomaly detection that have shown promise in capturing interesting climate phenomenon. In this research we plan to construct time-evolving climate networks such that their edges represent causal relationships, and then discover anomalies in such 'causal' climate networks. As part of this research, we will address several limitations of previous work in anomaly detection using climate networks. First, we will take into account spatial and temporal dependencies while constructing the networks, that has been largely ignored by existing work. Second, we will learn Granger causality to define causal relationships among different nodes. Third, we will build heterogeneous climate networks that will involve nodes from different climate variables. Fourth, we will construct a Granger graphical model to understand the long-range temporal dependency in the data. Finally, we will use community evolution based notion of anomaly detection on the time-evolving causal networks to discover deviations in expected behavior.

  1. Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010

    Science.gov (United States)

    Warner, Tom A.; Cummins, Kenneth L.; Orville, Richard E.

    2012-10-01

    We report on upward lightning observations from ten tall towers (91-191 m) in Rapid City, South Dakota, USA and compare with National Lightning Detection Network (NLDN) data. A total of 81 upward flashes were observed from 2004-2010 using GPS time-stamped optical sensors, and in all but one case, visible flash activity preceded the development of the upward leaders. Time-correlated analysis showed that the NLDN recorded an event within 50 km of towers and within 500 ms prior to upward leader development from the tower(s) for 83% (67/81) of the upward flashes. A preceding positive cloud-to-ground stroke (+CG) was detected in 57% (46/81) of the cases, and a preceding positive intracloud flash (+IC) in 23% (19/81) of the cases. However, 8 of the 19 NLDN-indicated +IC events were actually +CG strokes based on optical observations. Preceding negative intracloud flashes (-IC) were recorded for 2% (2/81) of the cases. Analysis also showed that for 44% (36/81) of the upward flashes, the NLDN reported subsequent negative cloud-to-ground (-CG) strokes and/or -IC events at one or more tower locations. Of the 151 subsequent events, 70% (105/151) were -CG reports and 30% (46/151) were listed as -IC events. The geometric mean/median location accuracy and peak current for subsequent events were 194 m/206 m and -12.9 kA/-12.4 kA respectively. These correlated observations suggest that a majority of the upward lightning flashes were triggered by a preceding flash with the dominant triggering type being the +CG flash.

  2. Peripartum hysterectomy: an evolving picture.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    Peripartum hysterectomy (PH) is one of the obstetric catastrophes. Evidence is emerging that the role of PH in modern obstetrics is evolving. Improving management of postpartum hemorrhage and newer surgical techniques should decrease PH for uterine atony. Rising levels of repeat elective cesarean deliveries should decrease PH following uterine scar rupture in labor. Increasing cesarean rates, however, have led to an increase in the number of PHs for morbidly adherent placenta. In the case of uterine atony or rupture where PH is required, a subtotal PH is often sufficient. In the case of pathological placental localization involving the cervix, however, a total hysterectomy is required. Furthermore, the involvement of other pelvic structures may prospectively make the diagnosis difficult and the surgery challenging. If resources permit, PH for pathological placental localization merits a multidisciplinary approach. Despite advances in clinical practice, it is likely that peripartum hysterectomy will be more challenging for obstetricians in the future.

  3. Extreme evolved solar systems (EESS)

    Science.gov (United States)

    Gaensicke, Boris

    2017-08-01

    In just 20 years, we went from not knowing if the solar system is a fluke of Nature to realising that it is totally normal for stars to have planets. More remarkably, it is now clear that planet formation is a robust process, as rich multi-planet systems are found around stars more massive and less massive than the Sun. More recently, planetary systems have been identified in increasingly complex architectures, including circumbinary planets, wide binaries with planets orbiting one or both stellar components, and planets in triple stellar systems.We have also learned that many planetary systems will survive the evolution of their host stars into the white dwarf phase. Small bodies are scattered by unseen planets into the gravitational field of the white dwarfs, tidally disrupt, form dust discs, and eventually accrete onto the white dwarf, where they can be spectroscopically detected. HST/COS has played a critical role in the study these evolved planetary systems, demonstrating that overall the bulk composition of the debris is rocky and resembles in composition the inner the solar system, including evidence for water-rich planetesimals. Past observations of planetary systems at white dwarfs have focused on single stars with main-sequence progenitors of 1.5 to 2.5Msun. Here we propose to take the study of evolved planetary systems into the extremes of parameter ranges to answer questions such as: * How efficient is planet formation around 4-10Msun stars? * What are the metallicities of the progenitors of debris-accreting white dwarfs?* What is the fate of circumbinary planets?* Can star-planet interactions generate magnetic fields in the white dwarf host?

  4. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Directory of Open Access Journals (Sweden)

    Arno Steinacher

    Full Text Available Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest

  5. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  6. Approximating centrality in evolving graphs: toward sublinearity

    Science.gov (United States)

    Priest, Benjamin W.; Cybenko, George

    2017-05-01

    The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.

  7. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Hansen, Jonas; Roetter, Daniel Enrique Lucani; Krigslund, Jeppe

    2015-01-01

    . The inherent flexibility of both SDN and NC provides fertile ground to envision more efficient, robust, and secure networking designs, which may also incorporate content caching and storage, all of which are key challenges of the upcoming 5G networks. This article not only proposes the fundamentals......Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm...

  8. Evolving MPSoC Solutions

    DEFF Research Database (Denmark)

    Madsen, Jan

    2006-01-01

    A key challenge of implementing an embedded systems application on a heterogeneous multiprocessor SoC platform is to find the right partitioning of the application onto the platform architecture. The right partitioning is dependent on the characteristics of the processors and the network connecting...... them, as well as the application. We present an evolutionary approach to solve the problem of mapping a set of task graphs onto a heterogeneous multiprocessor platform. The objective is to meet all real-time deadlines subject to minimizing system cost and power consumption, while staying within bounds...... on local memory sizes and interface buffer sizes. Our approach allows to explore the mapping onto a fixed platform architecture as well as to a flexible platform architecture where architectural changes are explored during the mapping. We demonstrate our approach through an exploration of a smart phone...

  9. Evolving MPSoC Solutions

    DEFF Research Database (Denmark)

    A key challenge of implementing an embedded systems application on a heterogeneous multiprocessor SoC platform is to find the right partitioning of the application onto the platform architecture. The right partitioning is dependent on the characteristics of the processors and the network connecting...... them, as well as the application. We present an evolutionary approach to solve the problem of mapping a set of task graphs onto a heterogeneous multiprocessor platform. The objective is to meet all real-time deadlines subject to minimizing system cost and power consumption, while staying within bounds...... on local memory sizes and interface buffer sizes. Our approach allows to explore the mapping onto a fixed platform architecture as well as to a flexible platform architecture where architectural changes are explored during the mapping. We demonstrate our approach through an exploration of a smart phone...

  10. Pareto evolution of gene networks: an algorithm to optimize multiple fitness objectives.

    Science.gov (United States)

    Warmflash, Aryeh; Francois, Paul; Siggia, Eric D

    2012-10-01

    The computational evolution of gene networks functions like a forward genetic screen to generate, without preconceptions, all networks that can be assembled from a defined list of parts to implement a given function. Frequently networks are subject to multiple design criteria that cannot all be optimized simultaneously. To explore how these tradeoffs interact with evolution, we implement Pareto optimization in the context of gene network evolution. In response to a temporal pulse of a signal, we evolve networks whose output turns on slowly after the pulse begins, and shuts down rapidly when the pulse terminates. The best performing networks under our conditions do not fall into categories such as feed forward and negative feedback that also encode the input-output relation we used for selection. Pareto evolution can more efficiently search the space of networks than optimization based on a single ad hoc combination of the design criteria.

  11. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  12. Dynamical and bursty interactions in social networks

    Science.gov (United States)

    Stehlé, Juliette; Barrat, Alain; Bianconi, Ginestra

    2010-03-01

    We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents’ behavior at short time scales in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group or vice versa. Different distributions of contact times and intercontact times between individuals are obtained by considering transition probabilities with memory effects, i.e., the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change in state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information or spreading of diseases.

  13. Evolving treatment strategies for management of cardiorenal syndrome.

    Science.gov (United States)

    Dandamudi, Sanjay; Chen, Horng H

    2011-12-01

    aspects about our evolving understanding of the cardiorenal system are the innovative treatments that have emerged as a result. The creation of chimeric natriuretic peptides, targeted intra-renal pharmacotherapy, the novel use of phosphodiesterase inhibitors, and combination treatment strategies demonstrate that despite our varied success in treating cardiorenal syndrome in the past, there are highly encouraging translational therapies rapidly developing in the pipeline.

  14. Climate in Context - How partnerships evolve in regions

    Science.gov (United States)

    Parris, A. S.

    2014-12-01

    In 2015, NOAA's RISA program will celebrate its 20th year of exploration in the development of usable climate information. In the mid-1990s, a vision emerged to develop interdisciplinary research efforts at the regional scale for several important reasons. Recognizable climate patterns, such as the El Nino Southern Oscillation (ENSO), emerge at the regional level where our understanding of observations and models coalesce. Critical resources for society are managed in a context of regional systems, such as water supply and human populations. Multiple scales of governance (local, state, and federal) with complex institutional relationships can be examined across a region. Climate information (i.e. data, science, research etc) developed within these contexts has greater potential for use. All of this work rests on a foundation of iterative engagement between scientists and decision makers. Throughout these interactions, RISAs have navigated diverse politics, extreme events and disasters, socio-economic and ecological disruptions, and advances in both science and technology. Our understanding of information needs is evolving into a richer understanding of complex institutional, legal, political, and cultural contexts within which people can use science to make informed decisions. The outcome of RISA work includes both cases where climate information was used in decisions and cases where capacity for using climate information and making climate resilient decisions has increased over time. In addition to balancing supply and demand of scientific information, RISAs are engaged in a social process of reconciling climate information use with important drivers of society. Because partnerships are critical for sustained engagement, and because engagement is critically important to the use of science, the rapid development of new capacity in regionally-based science programs focused on providing climate decision support is both needed and challenging. New actors can bolster

  15. Evolving Interoperable Network Architectures for NATO Coalition Forces

    National Research Council Canada - National Science Library

    Sowerbutts, Barry; Sharman, Richard; West, Mark

    2005-01-01

    .... Various factors, such as security, subnetworking, information management and mobility management for NATO requirements are examined in this light and a proposal made for a generic Defence Intranet Architecture (DIA...

  16. Bayesian Mixed-Membership Models of Complex and Evolving Networks

    Science.gov (United States)

    2006-12-01

    are based on the stochastic block model (SBM) formalism for psychometric and sociological analysis pioneered 71 3.1. ADMIXTURE OF LATENT BLOCKS MODEL... Biotechnology , 23:1562–1567, 2005. T. Van Zandt. Decentralized information processing in the theory of organizations. In M. Ser- tel, editor, Contemporary

  17. Evolving artificial neural networks for cross-adaptive audio effects

    OpenAIRE

    Jordal, Iver

    2017-01-01

    Cross-adaptive audio effects have many applications within music technology, including for automatic mixing and live music. Commonly used methods of signal analysis capture the acoustical and mathematical features of the signal well, but struggle to capture the musical meaning. Together with the vast number of possible signal interactions, this makes manual exploration of signal interactions difficult and tedious. This project investigates Artificial Intelligence (AI) methods for finding usef...

  18. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  19. DNA evolved to minimize frameshift mutations

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    Point mutations can surely be dangerous but what is worst than to lose the reading frame?! Does DNA evolved a strategy to try to limit frameshift mutations?! Here we investigate if DNA sequences effectively evolved a system to minimize frameshift mutations analyzing the transcripts of proteins with high molecular weights.

  20. Functional modules of sigma factor regulons guarantee adaptability and evolvability

    Science.gov (United States)

    Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael

    2016-02-01

    The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability.

  1. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  2. Simulated evolution of protein-protein interaction networks with realistic topology.

    Science.gov (United States)

    Peterson, G Jack; Pressé, Steve; Peterson, Kristin S; Dill, Ken A

    2012-01-01

    We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.

  3. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    Science.gov (United States)

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  4. Excess mutual catalysis is required for effective evolvability.

    Science.gov (United States)

    Markovitch, Omer; Lancet, Doron

    2012-01-01

    It is widely accepted that autocatalysis constitutes a crucial facet of effective replication and evolution (e.g., in Eigen's hypercycle model). Other models for early evolution (e.g., by Dyson, Gánti, Varela, and Kauffman) invoke catalytic networks, where cross-catalysis is more apparent. A key question is how the balance between auto- (self-) and cross- (mutual) catalysis shapes the behavior of model evolving systems. This is investigated using the graded autocatalysis replication domain (GARD) model, previously shown to capture essential features of reproduction, mutation, and evolution in compositional molecular assemblies. We have performed numerical simulations of an ensemble of GARD networks, each with a different set of lognormally distributed catalytic values. We asked what is the influence of the catalytic content of such networks on beneficial evolution. Importantly, a clear trend was observed, wherein only networks with high mutual catalysis propensity (p(mc)) allowed for an augmented diversity of composomes, quasi-stationary compositions that exhibit high replication fidelity. We have reexamined a recent analysis that showed meager selection in a single GARD instance and for a few nonstationary target compositions. In contrast, when we focused here on compotypes (clusters of composomes) as targets for selection in populations of compositional assemblies, appreciable selection response was observed for a large portion of the networks simulated. Further, stronger selection response was seen for high p(mc) values. Our simulations thus demonstrate that GARD can help analyze important facets of evolving systems, and indicate that excess mutual catalysis over self-catalysis is likely to be important for the emergence of molecular systems capable of evolutionlike behavior.

  5. Insight to the express transport network

    Science.gov (United States)

    Yang, Hua; Nie, Yuchao; Zhang, Hongbin; Di, Zengru; Fan, Ying

    2009-09-01

    The express delivery industry is developing rapidly in recent years and has attracted attention in many fields. Express shipment service requires that parcels be delivered in a limited time with a low operation cost, which requests a high level and efficient express transport network (ETN). The ETN is constructed based on the public transport networks, especially the airline network. It is similar to the airline network in some aspects, while it has its own feature. With the complex network theory, the topological properties of the ETN are analyzed deeply. We find that the ETN has the small-world property, with disassortative mixing behavior and rich club phenomenon. It also shows difference from the airline network in some features, such as edge density and average shortest path. Analysis on the corresponding distance-weighted network shows that the distance distribution displays a truncated power-law behavior. At last, an evolving model, which takes both geographical constraint and preference attachment into account, is proposed. The model shows similar properties with the empirical results.

  6. Evolving the Evolving: Territory, Place and Rewilding in the California Delta

    Directory of Open Access Journals (Sweden)

    Brett Milligan

    2017-10-01

    Full Text Available Current planning and legislation in California’s Sacramento-San Joaquin Delta call for the large-scale ecological restoration of aquatic and terrestrial habitats. These ecological mandates have emerged in response to the region’s infrastructural transformation and the Delta’s predominant use as the central logistical hub in the state’s vast water conveyance network. Restoration is an attempt to recover what was externalized by the logic and abstractions of this logistical infrastructure. However, based on findings from our research, which examined how people are using restored and naturalized landscapes in the Delta and how these landscapes are currently planned for, we argue that as mitigatory response, restoration planning continues some of the same spatial abstractions and inequities by failing to account for the Delta as an urbanized, cultural and unique place. In interpreting how these conditions have come to be, we give attention to a pluralistic landscape approach and a coevolutionary reading of planning, policy, science and landscapes to discuss the conservation challenges presented by “Delta as an Evolving Place”. We suggest that for rewilding efforts to be successful in the Delta, a range of proactive, opportunistic, grounded and participatory tactics will be required to shift towards a more socio-ecological approach.

  7. Acquisition: Acquisition of the Evolved SEASPARROW Missile

    National Research Council Canada - National Science Library

    2002-01-01

    .... The Evolved SEASPARROW Missile, a Navy Acquisition Category II program, is an improved version of the RIM-7P SEASPARROW missile that will intercept high-speed maneuvering, anti-ship cruise missiles...

  8. Biomimetic molecular design tools that learn, evolve, and adapt.

    Science.gov (United States)

    Winkler, David A

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  9. Biomimetic molecular design tools that learn, evolve, and adapt

    Directory of Open Access Journals (Sweden)

    David A Winkler

    2017-06-01

    Full Text Available A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  10. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  11. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  12. Cyberspace Operations: Influence Upon Evolving War Theory

    Science.gov (United States)

    2011-03-18

    St ra te gy R es ea rc h Pr oj ec t CYBERSPACE OPERATIONS: INFLUENCE UPON EVOLVING WAR THEORY BY COLONEL KRISTIN BAKER United States...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Cyberspace Operations: Influence Upon Evolving War Theory 5a. CONTRACT NUMBER... Leadership 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S

  13. Evolving effective incremental SAT solvers with GP

    OpenAIRE

    Bader, Mohamed; Poli, R.

    2008-01-01

    Hyper-Heuristics could simply be defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT. We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

  14. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    R Coronae Borealis (RCB) stars form a small class of cool, carbon-rich supergiants that have almost no hydrogen. They undergo extreme, irregular declines in brightness of up to 8 magnitudes due to the formation of thick clouds of carbon dust. Two scenarios have been proposed for the origin of an RCB star: the merger of a CO/He white dwarf (WD) binary and a final helium-shell flash. We are using a combination of 3D hydrodynamics codes and the 1D MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code including nucleosynthesis to construct post-merger spherical models based on realistic merger progenitor models and on our hydrodynamical simulations, and then following the evolution into the region of the HR diagram where RCB stars are located. We are investigating nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed.Our MESA modeling consists of two steps: first mimicking the WD merger event using two different techniques, (a) by choosing a very high mass accretion rate with appropriate abundances and (b) by applying "stellar engineering" to an initial CO WD model to account for the newly merged material by applying an entropy adjusting procedure. Second, we follow the post-merger evolution using a large nuclear reaction network including the effects of convective and rotational instabilities to the mixing of material in order to match the observed RCB abundances. MESA follows the evolution of the merger product as it expands and cools to become an RCB star. We then examine the surface abundances and compare them to the observed RCB abundances. We also investigate how long fusion continues in the He shell near the core and how this processed material is mixed up to the surface of the star. We then model the later evolution of RCB stars to determine their likely lifetimes and endpoints when they have returned to

  15. Toward a theory of multilevel evolution: long-term information integration shapes the mutational landscape and enhances evolvability.

    Science.gov (United States)

    Hogeweg, Paulien

    2012-01-01

    Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.

  16. Molecular initiating events of the intersex phenotype: Low-dose exposure to 17α-ethinylestradiol rapidly regulates molecular networks associated with gonad differentiation in the adult fathead minnow testis

    Energy Technology Data Exchange (ETDEWEB)

    Feswick, April; Loughery, Jennifer R.; Isaacs, Meghan A.; Munkittrick, Kelly R.; Martyniuk, Christopher J., E-mail: cmartyni@yahoo.ca

    2016-12-15

    testis, despite the fact that dmrt1 itself was not different in expression from control males. Transcriptional networks involving forkhead box L2 (foxl2) (transcript involved in ovarian follicle development) were increased in expression in the testis. Noteworthy was that a gene network associated to granulosa cell development was increased over 100%, suggesting that this transcriptome network may be important for monitoring estrogenic exposures. Other cell processes rapidly downregulated by EE2 at the transcript level included glucose homeostasis, response to heavy metal, amino acid catabolism, and the cyclooxygenase pathway. Conversely, lymphocyte chemotaxis, intermediate filament polymerization, glucocorticoid metabolism, carbohydrate utilization, and anterior/posterior axis specification were increased. These data provide new insight into the transcriptional responses that are perturbed prior to gonadal remodeling and intersex following exposure to estrogens. These data demonstrate that low concentrations of EE2 (1) rapidly suppresses male hormone production, (2) down-regulate molecular networks related to male sex differentiation, and (3) induce transcriptional networks related to granulosa cell development in the adult testis. These responses are hypothesized to be key molecular initiating events that occur prior to the development of the intersex phenotype following estrogenic exposures.

  17. Evolvement of uniformity and volatility in the stressed global financial village.

    Science.gov (United States)

    Kenett, Dror Y; Raddant, Matthias; Lux, Thomas; Ben-Jacob, Eshel

    2012-01-01

    In the current era of strong worldwide market couplings the global financial village became highly prone to systemic collapses, events that can rapidly sweep throughout the entire village. We present a new methodology to assess and quantify inter-market relations. The approach is based on the correlations between the market index, the index volatility, the market Index Cohesive Force and the meta-correlations (correlations between the intra-correlations.) We investigated the relations between six important world markets--U.S., U.K., Germany, Japan, China and India--from January 2000 until December 2010. We found that while the developed "western" markets (U.S., U.K., Germany) are highly correlated, the interdependencies between these markets and the developing "eastern" markets (India and China) are volatile and with noticeable maxima at times of global world events. The Japanese market switches "identity"--it switches between periods of high meta-correlations with the "western" markets and periods when it behaves more similarly to the "eastern" markets. The methodological framework presented here provides a way to quantify the evolvement of interdependencies in the global market, evaluate a world financial network and quantify changes in the world inter market relations. Such changes can be used as precursors to the agitation of the global financial village. Hence, the new approach can help to develop a sensitive "financial seismograph" to detect early signs of global financial crises so they can be treated before they develop into worldwide events.

  18. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu

    2010-01-01

    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  19. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    Science.gov (United States)

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.

  20. Equation-free analysis of a dynamically evolving multigraph

    Science.gov (United States)

    Holiday, A.; Kevrekidis, I. G.

    2016-09-01

    In order to illustrate the adaptation of traditional continuum numerical techniques to the study of complex network systems, we use the equation-free framework to analyze a dynamically evolving multigraph. This approach is based on coupling short intervals of direct dynamic network simulation with appropriately-defined lifting and restriction operators, mapping the detailed network description to suitable macroscopic (coarse-grained) variables and back. This enables the acceleration of direct simulations through Coarse Projective Integration (CPI), as well as the identification of coarse stationary states via a Newton-GMRES method. We also demonstrate the use of data-mining, both linear (principal component analysis, PCA) and nonlinear (diffusion maps, DMAPS) to determine good macroscopic variables (observables) through which one can coarse-grain the model. These results suggest methods for decreasing simulation times of dynamic real-world systems such as epidemiological network models. Additionally, the data-mining techniques could be applied to a diverse class of problems to search for a succint, low-dimensional description of the system in a small number of variables.

  1. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    One hallmark of natural organisms is their significant evolvability, i.e.,their increased potential for further evolution. However, reproducing such evolvability in artificial evolution remains a challenge, which both reduces the performance of evolutionary algorithms and inhibits the study...... of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...

  2. Evolved atmospheric entry corridor with safety factor

    Science.gov (United States)

    Liang, Zixuan; Ren, Zhang; Li, Qingdong

    2018-02-01

    Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.

  3. First Time Rapid and Accurate Detection of Massive Number of Metal Absorption Lines in the Early Universe Using Deep Neural Network

    Science.gov (United States)

    Zhao, Yinan; Ge, Jian; Yuan, Xiaoyong; Li, Xiaolin; Zhao, Tiffany; Wang, Cindy

    2018-01-01

    Metal absorption line systems in the distant quasar spectra have been used as one of the most powerful tools to probe gas content in the early Universe. The MgII λλ 2796, 2803 doublet is one of the most popular metal absorption lines and has been used to trace gas and global star formation at redshifts between ~0.5 to 2.5. In the past, machine learning algorithms have been used to detect absorption lines systems in the large sky survey, such as Principle Component Analysis, Gaussian Process and decision tree, but the overall detection process is not only complicated, but also time consuming. It usually takes a few months to go through the entire quasar spectral dataset from each of the Sloan Digital Sky Survey (SDSS) data release. In this work, we applied the deep neural network, or “ deep learning” algorithms, in the most recently SDSS DR14 quasar spectra and were able to randomly search 20000 quasar spectra and detect 2887 strong Mg II absorption features in just 9 seconds. Our detection algorithms were verified with previously released DR12 and DR7 data and published Mg II catalog and the detection accuracy is 90%. This is the first time that deep neural network has demonstrated its promising power in both speed and accuracy in replacing tedious, repetitive human work in searching for narrow absorption patterns in a big dataset. We will present our detection algorithms and also statistical results of the newly detected Mg II absorption lines.

  4. Online social networking: a primer for radiology.

    Science.gov (United States)

    Prasanna, Prasanth M; Seagull, F Jacob; Nagy, Paul

    2011-10-01

    Online social networking is an immature, but rapidly evolving industry of web-based technologies that allow individuals to develop online relationships. News stories populate the headlines about various websites which can facilitate patient and doctor interaction. There remain questions about protecting patient confidentiality and defining etiquette in order to preserve the doctor/patient relationship and protect physicians. How much social networking-based communication or other forms of E-communication is effective? What are the potential benefits and pitfalls of this form of communication? Physicians are exploring how social networking might provide a forum for interacting with their patients, and advance collaborative patient care. Several organizations and institutions have set forth policies to address these questions and more. Though still in its infancy, this form of media has the power to revolutionize the way physicians interact with their patients and fellow health care workers. In the end, physicians must ask what value is added by engaging patients or other health care providers in a social networking format. Social networks may flourish in health care as a means of distributing information to patients or serve mainly as support groups among patients. Physicians must tread a narrow path to bring value to interactions in these networks while limiting their exposure to unwanted liability.

  5. Exploring the T-Maze: Evolving Learning-Like Robot Behaviors using CTRNNs

    OpenAIRE

    Blynel, J.; Floreano, D.

    2003-01-01

    This paper explores the capabilities of continuous time recurrent neural networks (CTRNNs) to display reinforcement learning-like abilities on a set of T-Maze and double T-Maze navigation tasks, where the robot has to locate and "remember'' the position of a reward-zone. The "learning'' comes about without modifications of synapse strengths, but simply from internal network dynamics, as proposed by [12]. Neural controllers are evolved in simulation and in the simple case evalua...

  6. How the first biopolymers could have evolved.

    Science.gov (United States)

    Abkevich, V I; Gutin, A M; Shakhnovich, E I

    1996-01-01

    In this work, we discuss a possible origin of the first biopolymers with stable unique structures. We suggest that at the prebiotic stage of evolution, long organic polymers had to be compact to avoid hydrolysis and had to be soluble and thus must not be exceedingly hydrophobic. We present an algorithm that generates such sequences for model proteins. The evolved sequences turn out to have a stable unique structure, into which they quickly fold. This result illustrates the idea that the unique three-dimensional native structures of first biopolymers could have evolved as a side effect of nonspecific physicochemical factors acting at the prebiotic stage of evolution. PMID:8570645

  7. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  8. Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches.

    Science.gov (United States)

    Thangsunan, Patcharapong; Kittiwachana, Sila; Meepowpan, Puttinan; Kungwan, Nawee; Prangkio, Panchika; Hannongbua, Supa; Suree, Nuttee

    2016-06-01

    Improving performance of scoring functions for drug docking simulations is a challenging task in the modern discovery pipeline. Among various ways to enhance the efficiency of scoring function, tuning of energetic component approach is an attractive option that provides better predictions. Herein we present the first development of rapid and simple tuning models for predicting and scoring inhibitory activity of investigated ligands docked into catalytic core domain structures of HIV-1 integrase (IN) enzyme. We developed the models using all energetic terms obtained from flexible ligand-rigid receptor dockings by AutoDock4, followed by a data analysis using either partial least squares (PLS) or self-organizing maps (SOMs). The models were established using 66 and 64 ligands of mercaptobenzenesulfonamides for the PLS-based and the SOMs-based inhibitory activity predictions, respectively. The models were then evaluated for their predictability quality using closely related test compounds, as well as five different unrelated inhibitor test sets. Weighting constants for each energy term were also optimized, thus customizing the scoring function for this specific target protein. Root-mean-square error (RMSE) values between the predicted and the experimental inhibitory activities were determined to be <1 (i.e. within a magnitude of a single log scale of actual IC50 values). Hence, we propose that, as a pre-functional assay screening step, AutoDock4 docking in combination with these subsequent rapid weighted energy tuning methods via PLS and SOMs analyses is a viable approach to predict the potential inhibitory activity and to discriminate among small drug-like molecules to target a specific protein of interest.

  9. EvoCommander: A Novel Game Based on Evolving and Switching Between Artificial Brains

    DEFF Research Database (Denmark)

    Jallov, D.; Risi, S.; Togelius, J.

    2016-01-01

    Neuroevolution (i.e. evolving artificial neural networks (ANNs) through evolutionary algorithms) has shown promise in evolving agents and robot controllers, which display complex behaviours and can adapt to their environments. These properties are also relevant to video games, since they can...... increase their longevity and replayability. However, the design of most current games precludes the use of any techniques which might yield unpredictable or even open-ended results. This article describes the game EvoCommander, with the goal to further demonstrate the potential of neuroevolution in games....... In EvoCommander the player incrementally evolves an arsenal of ANN-controlled behaviors (e.g. ranged attack, flee, etc.) for a simple robot that has to battle other player and computer controlled robots. The game introduces the novel game mechanic of “brain switching”, selecting which evolved neural...

  10. Preface: evolving rotifers, evolving science: Proceedings of the XIV International Rotifer Symposium

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Fontaneto, D.; Jersabek, Ch.D.; Welch, D.B.M.; May, L.; Walsh, E.J.

    2017-01-01

    Roč. 796, č. 1 (2017), s. 1-6 ISSN 0018-8158 Institutional support: RVO:60077344 Keywords : evolving rotifers * 14th International Rotifer Symposium * evolving science Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.056, year: 2016

  11. Thermal and Evolved-Gas Analyzer Illustration

    Science.gov (United States)

    2008-01-01

    This is a computer-aided drawing of the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Apollo 16 Evolved Lithology Sodic Ferrogabbro

    Science.gov (United States)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.

    2014-01-01

    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  13. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  14. Transition Towards An Integrated Network Organisation

    DEFF Research Database (Denmark)

    Mykhaylenko, Alona; Wæhrens, Brian Vejrum

    2016-01-01

    Management of internationally dispersed and networked operations has been in the focus of research attention. However, the existing studies underestimate the incrementality of changes shaping such organisations. This work investigates how organisations evolve into network structures, with particu......Management of internationally dispersed and networked operations has been in the focus of research attention. However, the existing studies underestimate the incrementality of changes shaping such organisations. This work investigates how organisations evolve into network structures...

  15. Assessing the evolving fragility of the global food system

    Science.gov (United States)

    Puma, Michael J.; Bose, Satyajit; Chon, So Young; Cook, Benjamin I.

    2015-02-01

    The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992-2009 to analyse the changing properties of the global food system. Over the 18 year study period, we show that the global food system is relatively homogeneous (85% of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90%, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9% (3.8%) for 1992-1996, increasing to 11% (5.7%) for 2005-2009. Over the same intervals, rice losses increase from 8.2% (2.2%) to 14% (5.2%). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity.

  16. Assessing the Evolving Fragility of the Global Food System

    Science.gov (United States)

    Puma, Michael Joseph; Bose, Satyajit; Chon, So Young; Cook, Benjamin I.

    2015-01-01

    The world food crisis in 2008 highlighted the susceptibility of the global food system to price shocks. Here we use annual staple food production and trade data from 1992-2009 to analyse the changing properties of the global food system. Over the 18-year study period, we show that the global food system is relatively homogeneous (85 of countries have low or marginal food self-sufficiency) and increases in complexity, with the number of global wheat and rice trade connections doubling and trade flows increasing by 42 and 90, respectively. The increased connectivity and flows within these global trade networks suggest that the global food system is vulnerable to systemic disruptions, especially considering the tendency for exporting countries to switch to non-exporting states during times of food scarcity in the global markets. To test this hypothesis, we superimpose continental-scale disruptions on the wheat and rice trade networks. We find greater absolute reductions in global wheat and rice exports along with larger losses in network connectivity as the networks evolve due to disruptions in European wheat and Asian rice production. Importantly, our findings indicate that least developed countries suffer greater import losses in more connected networks through their increased dependence on imports for staple foods (due to these large-scale disturbances): mean (median) wheat losses as percentages of staple food supply are 8.9 (3.8) for 1992-1996, increasing to 11 (5.7) for 20052009. Over the same intervals, rice losses increase from 8.2 (2.2) to 14 (5.2). Our work indicates that policy efforts should focus on balancing the efficiency of international trade (and its associated specialization) with increased resilience of domestic production and global demand diversity.

  17. Affinity driven social networks

    Science.gov (United States)

    Ruyú, B.; Kuperman, M. N.

    2007-04-01

    In this work we present a model for evolving networks, where the driven force is related to the social affinity between individuals of a population. In the model, a set of individuals initially arranged on a regular ordered network and thus linked with their closest neighbors are allowed to rearrange their connections according to a dynamics closely related to that of the stable marriage problem. We show that the behavior of some topological properties of the resulting networks follows a non trivial pattern.

  18. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    Science.gov (United States)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  19. Evolving Concepts and Translational Relevance of Enteroendocrine Cell Biology.

    Science.gov (United States)

    Drucker, Daniel J

    2016-03-01

    Classical enteroenteroendocrine cell (EEC) biology evolved historically from identification of scattered hormone-producing endocrine cells within the epithelial mucosa of the stomach, small and large intestine. Purification of functional EEC hormones from intestinal extracts, coupled with molecular cloning of cDNAs and genes expressed within EECs has greatly expanded the complexity of EEC endocrinology, with implications for understanding the contribution of EECs to disease pathophysiology. Pubmed searches identified manuscripts highlighting new concepts illuminating the molecular biology, classification and functional role(s) of EECs and their hormonal products. Molecular interrogation of EECs has been transformed over the past decade, raising multiple new questions that challenge historical concepts of EEC biology. Evidence for evolution of the EEC from a unihormonal cell type with classical endocrine actions, to a complex plurihormonal dynamic cell with pleiotropic interactive functional networks within the gastrointestinal mucosa is critically assessed. We discuss gaps in understanding how EECs sense and respond to nutrients, cytokines, toxins, pathogens, the microbiota, and the microbial metabolome, and highlight the expanding translational relevance of EECs in the pathophysiology and therapy of metabolic and inflammatory disorders. The EEC system represents the largest specialized endocrine network in human physiology, integrating environmental and nutrient cues, enabling neural and hormonal control of metabolic homeostasis. Updating EEC classification systems will enable more accurate comparative analyses of EEC subpopulations and endocrine networks in multiple regions of the gastrointestinal tract.

  20. Communal Cooperation in Sensor Networks for Situation Management

    Science.gov (United States)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin,Chunsheng

    2006-01-01

    Situation management is a rapidly evolving science where managed sources are processed as realtime streams of events and fused in a way that maximizes comprehension, thus enabling better decisions for action. Sensor networks provide a new technology that promises ubiquitous input and action throughout an environment, which can substantially improve information available to the process. Here we describe a NASA program that requires improvements in sensor networks and situation management. We present an approach for massively deployed sensor networks that does not rely on centralized control but is founded in lessons learned from the way biological ecosystems are organized. In this approach, fully distributed data aggregation and integration can be performed in a scalable fashion where individual motes operate based on local information, making local decisions that achieve globally-meaningful results. This exemplifies the robust, fault-tolerant infrastructure required for successful situation management systems.

  1. Why, when, and how did yeast evolve alcoholic fermentation?

    Science.gov (United States)

    Dashko, Sofia; Zhou, Nerve; Compagno, Concetta; Piškur, Jure

    2014-09-01

    The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol under aerobic conditions and at the expense of decreasing biomass production? We hereby review the recent data on the carbon metabolism in Saccharomycetaceae species and attempt to reconstruct the ancient environment, which could promote the evolution of alcoholic fermentation. We speculate that the first step toward the so-called fermentative lifestyle was the exploration of anaerobic niches resulting in an increased metabolic capacity to degrade sugar to ethanol. The strengthened glycolytic flow had in parallel a beneficial effect on the microbial competition outcome and later evolved as a "new" tool promoting the yeast competition ability under aerobic conditions. The basic aerobic alcoholic fermentation ability was subsequently "upgraded" in several lineages by evolving additional regulatory steps, such as glucose repression in the S. cerevisiae clade, to achieve a more precise metabolic control. © 2014 The Authors. FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  2. IR Spectroscopy of Gasses Evolved During Roasting Coffee Beans

    Science.gov (United States)

    Clain, Alexander; Capaldi, Xavier; Amanuel, Samuel

    2014-03-01

    We measured the IR spectra of the gasses that evolve during roasting of coffee beans. The spectra recorded at different temperature revealed that the intensity of certain IR bands increase as the temperature increases. For instance, the intensity of the CO2 band increased by a factor of four and reached a plateau as the roasting temperature approached 200°C. The intensity further increased as the temperature increased above 200°C, however, in two steps. Similarly the intensity of the OH bands monotonically increased until 200°C and then increased further in two rapid steps above 200°C. The temperature ranges where IR intensities change in two steps coincides with the temperature ranges where typically commercial roasting is done and where the first and second ``cracks'' are heard during roasting.

  3. Incremental Frequent Subgraph Mining on Large Evolving Graphs

    KAUST Repository

    Abdelhamid, Ehab

    2017-08-22

    Frequent subgraph mining is a core graph operation used in many domains, such as graph data management and knowledge exploration, bioinformatics and security. Most existing techniques target static graphs. However, modern applications, such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem on a single large evolving graph. We adapt the notion of “fringe” to the graph context, that is the set of subgraphs on the border between frequent and infrequent subgraphs. IncGM+ maintains fringe subgraphs and exploits them to prune the search space. To boost the efficiency, we propose an efficient index structure to maintain selected embeddings with minimal memory overhead. These embeddings are utilized to avoid redundant expensive subgraph isomorphism operations. Moreover, the proposed system supports batch updates. Using large real-world graphs, we experimentally verify that IncGM+ outperforms existing methods by up to three orders of magnitude, scales to much larger graphs and consumes less memory.

  4. Modeling promoter grammars with evolving hidden Markov models

    DEFF Research Database (Denmark)

    Won, Kyoung-Jae; Sandelin, Albin; Marstrand, Troels Torben

    2008-01-01

    factors are involved in the regulation of a set of co-regulated genes. If so, promoters can be modeled with connected regulatory features, where the network of connections is characteristic for a particular mode of regulation. RESULTS: With the goal of automatically deciphering such regulatory structures......MOTIVATION: Describing and modeling biological features of eukaryotic promoters remains an important and challenging problem within computational biology. The promoters of higher eukaryotes in particular display a wide variation in regulatory features, which are difficult to model. Often several......, we present a method that iteratively evolves an ensemble of regulatory grammars using a hidden Markov Model (HMM) architecture composed of interconnected blocks representing transcription factor binding sites (TFBSs) and background regions of promoter sequences. The ensemble approach reduces the risk...

  5. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Sun Xuan

    2010-10-01

    Full Text Available Abstract Background The pathological hallmarks of Parkinson's disease (PD include the presence of alpha-synuclein (α-syn rich Lewy bodies and neurites and the loss of dopaminergic (DA neurons of the substantia nigra (SN. Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV, or green fluorescent protein (GFP, the latter to control for the possibility that high levels of protein in themselves might contribute to damage. Results We show that following a single 2 μl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%, and to a lesser extent by GFP (24%, compared to EV controls (both P P Conclusions In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and may not be specific for A53T α-syn. Future studies will thus be required to optimise the dose of

  6. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease.

    Science.gov (United States)

    Koprich, James B; Johnston, Tom H; Reyes, M Gabriela; Sun, Xuan; Brotchie, Jonathan M

    2010-10-28

    The pathological hallmarks of Parkinson's disease (PD) include the presence of alpha-synuclein (α-syn) rich Lewy bodies and neurites and the loss of dopaminergic (DA) neurons of the substantia nigra (SN). Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV), or green fluorescent protein (GFP), the latter to control for the possibility that high levels of protein in themselves might contribute to damage. We show that following a single 2 μl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%), and to a lesser extent by GFP (24%), compared to EV controls (both P AAV1/2-A53T α-syn injection produced dystrophic neurites and a significant reduction in tyrosine hydroxylase levels (by 53%, P AAV1/2-GFP condition. In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and

  7. Evolving wormhole geometries within nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Aaron V B [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, El Cerrillo, Piedras Blancas, CP 50200, Toluca (Mexico); Lobo, Francisco S N [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed C8 1749-016 Lisbon (Portugal)

    2006-10-21

    In this work, we explore the possibility of evolving (2 + 1) and (3 + 1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For (3 + 1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat; however, for a pure magnetic field the solution is regular. For (2 + 1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3 + 1)-dimensional wormhole solutions, in the presence of an electric field, and (2 + 1)-dimensional case coupled to nonlinear electrodynamics.

  8. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENT......) approach is able to perform one-shot learning in a reinforcement learning task without catastrophic forgetting of previously stored associations.......Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM...

  9. Designing Garments to Evolve Over Time

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Grose, Lynda

    2017-01-01

    This paper proposes a REDO of the current fashion paradigm by investigating how garments might be designed to evolve over time. The purpose is to discuss ways of expanding the traditional role of the designer to include temporal dimensions of creating, producing and using clothes and to suggest a...... to a REDO of design education, to further research and the future fashion and textile industry.......This paper proposes a REDO of the current fashion paradigm by investigating how garments might be designed to evolve over time. The purpose is to discuss ways of expanding the traditional role of the designer to include temporal dimensions of creating, producing and using clothes and to suggest...... a range of potential fashion futures that decouple from declining resources. In the first part literature on 'Past and Present' historical and current aspects of sustainability in fashion and textiles are presented. In the second part, three exploratory case studies are described: Two projects by students...

  10. The utility of dermoscopy in the diagnosis of evolving lesions of vitiligo

    Directory of Open Access Journals (Sweden)

    Sarvesh S Thatte

    2014-01-01

    Full Text Available Background: Early lesions of vitiligo can be confused with various other causes of hypopigmentation and depigmentation. Few workers have utilized dermoscopy for the diagnosis of evolving lesions of vitiligo. Aim: To analyze the dermoscopic findings of evolving lesions in diagnosed cases of vitiligo and to correlate them histopathologically. Methods: Dermoscopy of evolving lesions in 30 diagnosed cases of vitiligo was performed using both polarized light and ultraviolet light. Result: On polarized light examination, the pigmentary network was found to be reduced in 12 (40% of 30 patients, absent in 9 (30%, and reversed in 6 (20% patients; 2 patients (6.7% showed perifollicular hyperpigmentation and 1 (3.3% had perilesional hyperpigmentation. A diffuse white glow was demonstrable in 27 (90% of 30 patients on ultraviolet light examination. Melanocytes were either reduced in number or absent in 12 (40% of 30 patients on histopathology. Conclusion: Pigmentary network changes, and perifollicular and perilesional hyperpigmentation on polarized light examination, and a diffuse white glow on ultraviolet light examination were noted in evolving vitiligo lesions. Histopathological examination was comparatively less reliable. Dermoscopy appears to be better than routine histopathology in the diagnosis of evolving lesions of vitiligo and can obviate the need for a skin biopsy.

  11. Antibody therapeutics - the evolving patent landscape.

    Science.gov (United States)

    Petering, Jenny; McManamny, Patrick; Honeyman, Jane

    2011-09-01

    The antibody patent landscape has evolved dramatically over the past 30 years, particularly in areas of technology relating to antibody modification to reduce immunogenicity in humans or improve antibody function. In some cases antibody techniques that were developed in the 1980s are still the subject of patent protection in the United States or Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. The evolving epidemiology of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, Fergus

    2009-07-01

    Epidemiologic studies in inflammatory bowel disease (IBD) include assessments of disease burden and evolving patterns of disease presentation. Although it is hoped that sound epidemiologic studies provide aetiological clues, traditional risk factor-based epidemiology has provided limited insights into either Crohn\\'s disease or ulcerative colitis etiopathogenesis. In this update, we will summarize how the changing epidemiology of IBD associated with modernization can be reconciled with current concepts of disease mechanisms and will discuss studies of clinically significant comorbidity in IBD.

  13. The Evolving Leadership Path of Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

    2012-01-02

    This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

  14. Raeder paratrigeminal neuralgia evolving to hemicrania continua.

    Science.gov (United States)

    Porzukowiak, Tina Renae

    2015-04-01

    Raeder paratrigeminal neuralgia is most commonly characterized as deep, boring, nonpulsatile, severe, unilateral facial and head pain in the distribution of the V1 area combined with ipsilateral oculosympathetic palsy and autonomic symptoms. Raeder paratrigeminal neuralgia evolving into hemicrania continua, a rare primary, chronic headache syndrome characterized by unilateral pain and response to indomethacin, has rarely been documented. The purpose of this case report is to contribute to the medical literature a single case of Raeder paratrigeminal neuralgia presenting as multiple cranial nerve palsies that evolved into hemicrania continua that was successfully treated with onabotulinumtoxinA. A 52-year-old white woman presented to the emergency department with the complaint of severe, aching, constant eye pain radiating to the V1 area for 1 week with associated ptosis and photophobia of the left eye. Ocular examination revealed involvement of cranial nerves II, III, V, and VI. Additional symptoms included ipsilateral lacrimation, eyelid edema, and rhinorrhea. Extensive medical work-up showed normal results. Raeder paratrigeminal neuralgia was diagnosed with multiple cranial nerve involvement; the headache component became chronic with periodic exacerbations of autonomic symptoms evolving to a diagnosis of hemicrania continua. The patient was intolerant to traditional indomethacin treatment, and the headache was successfully treated with onabotulinumtoxinA injections. Recognition of ipsilateral signs such as miosis, ptosis, hydrosis, eyelid edema, hyperemia, rhinorrhea, or nasal congestion is useful in the differential diagnosis of painful ophthalmoplegia, particularly in the diagnosis of Raeder paratrigeminal neuralgia and hemicrania continua. This case study illustrates a rare presentation of Raeder paratrigeminal neuralgia evolving into hemicrania continua presenting as a painful ophthalmoplegia with multiple cranial nerve involvement. The example supports the

  15. Evolvability of Amyloidogenic Proteins in Human Brain

    Science.gov (United States)

    Hashimoto, Makoto; Ho, Gilbert; Sugama, Shuei; Takamatsu, Yoshiki; Shimizu, Yuka; Takenouchi, Takato; Waragai, Masaaki; Masliah, Eliezer

    2018-01-01

     Currently, the physiological roles of amyloidogenic proteins (APs) in human brain, such as amyloid-β and α-synuclein, are elusive. Given that many APs arose by gene duplication and have been resistant against the pressures of natural selection, APs may be associated with some functions that are advantageous for survival of offspring. Nonetheless, evolvability is the sole physiological quality of APs that has been characterized in microorganisms such as yeast. Since yeast and human brain may share similar strategies in coping with diverse range of critical environmental stresses, the objective of this paper was to discuss the potential role of evolvability of APs in aging-associated neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. Given the heterogeneity of APs in terms of structure and cytotoxicity, it is argued that APs might be involved in preconditioning against diverse stresses in human brain. It is further speculated that these stress-related APs, most likely protofibrillar forms, might be transmitted to offspring via the germline, conferring preconditioning against forthcoming stresses. Thus, APs might represent a vehicle for the inheritance of the acquired characteristics against environmental stresses. Curiously, such a characteristic of APs is reminiscent of Charles Darwin’s ‘gemmules’, imagined molecules of heritability described in his pangenesis theory. We propose that evolvability might be a physiological function of APs during the reproductive stage and neurodegenerative diseases could be a by-product effect manifested later in aging. Collectively, our evolvability hypothesis may play a complementary role in the pathophysiology of APs with the conventional amyloid cascade hypothesis. PMID:29439348

  16. High-order evolving surface finite element method for parabolic problems on evolving surfaces

    OpenAIRE

    Kovács, Balázs

    2016-01-01

    High-order spatial discretisations and full discretisations of parabolic partial differential equations on evolving surfaces are studied. We prove convergence of the high-order evolving surface finite element method, by showing high-order versions of geometric approximation errors and perturbation error estimates and by the careful error analysis of a modified Ritz map. Furthermore, convergence of full discretisations using backward difference formulae and implicit Runge-Kutta methods are als...

  17. Making Sense of Evolving Reference Frames for North America

    Science.gov (United States)

    Craymer, M.; Sella, G.

    2007-05-01

    The World Geodetic System 1984 (WGS84) and North American Datum of 1983 (NAD83) are the most widely- used spatial reference systems in North America. NAD83 is the national reference system used for georeferencing by most federal and provincial/state agencies while WGS84 is the default "native" system used by the Global Positioning System (GPS) and commercial GPS receivers. The physical realization of these reference systems have undergone several updates since they were first introduced over two decades ago. NAD83 has evolved from a traditional, ground-based horizontal control network to a space-based 3D realization fully supporting modern GPS techniques and the integration of both horizontal and vertical reference systems. WGS84, on the other hand, has no publicly accessible ground-based network. It is accessible only via broadcast orbits that provide positions with an accuracy of about a meter at best (with augmented corrections). More recently, a new reference systems called the Stable North American Reference Frame (SNARF) has been created primarily in support of Plate Boundary Observatory component of the EarthScope project. We explain the differences between these global and regional reference frames and as well as their relationship to each other. We also discuss some problems that occur when these relationships are not properly represented as done, for example, with NAD83 in the vast majority of GPS receivers.

  18. Computing approximate blocking probability of inverse multiplexing and sub-band conversion in the flexible-grid optical networks

    Science.gov (United States)

    Gu, Yamei; You, Shanhong

    2016-07-01

    With the rapid growth of data rate, the optical network is evolving from fixed-grid to flexible-grid to provide spectrum-efficient and scalable transport of 100 Gb/s services and beyond. Also, the deployment of wavelength converter in the existing network can increase the flexibility of routing and wavelength allocation (RWA) and improve blocking performance of the optical networks. In this paper, we present a methodology for computing approximate blocking probabilities of the provision of multiclass services in the flexible-grid optical networks with sub-band spectrum conversion and inverse multiplexing respectively. Numerical calculation results based on the model are compared to the simulation results for the different cases. It is shown that the calculation results match well with the simulation results for the flexible-grid optical networks at different scenarios.

  19. Survivability is more fundamental than evolvability.

    Directory of Open Access Journals (Sweden)

    Michael E Palmer

    Full Text Available For a lineage to survive over long time periods, it must sometimes change. This has given rise to the term evolvability, meaning the tendency to produce adaptive variation. One lineage may be superior to another in terms of its current standing variation, or it may tend to produce more adaptive variation. However, evolutionary outcomes depend on more than standing variation and produced adaptive variation: deleterious variation also matters. Evolvability, as most commonly interpreted, is not predictive of evolutionary outcomes. Here, we define a predictive measure of the evolutionary success of a lineage that we call the k-survivability, defined as the probability that the lineage avoids extinction for k generations. We estimate the k-survivability using multiple experimental replicates. Because we measure evolutionary outcomes, the initial standing variation, the full spectrum of generated variation, and the heritability of that variation are all incorporated. Survivability also accounts for the decreased joint likelihood of extinction of sub-lineages when they 1 disperse in space, or 2 diversify in lifestyle. We illustrate measurement of survivability with in silico models, and suggest that it may also be measured in vivo using multiple longitudinal replicates. The k-survivability is a metric that enables the quantitative study of, for example, the evolution of 1 mutation rates, 2 dispersal mechanisms, 3 the genotype-phenotype map, and 4 sexual reproduction, in temporally and spatially fluctuating environments. Although these disparate phenomena evolve by well-understood microevolutionary rules, they are also subject to the macroevolutionary constraint of long-term survivability.

  20. Present weather and climate: evolving conditions

    Science.gov (United States)

    Hoerling, Martin P; Dettinger, Michael; Wolter, Klaus; Lukas, Jeff; Eischeid, Jon K.; Nemani, Rama; Liebmann, Brant; Kunkel, Kenneth E.

    2013-01-01

    This chapter assesses weather and climate variability and trends in the Southwest, using observed climate and paleoclimate records. It analyzes the last 100 years of climate variability in comparison to the last 1,000 years, and links the important features of evolving climate conditions to river flow variability in four of the region’s major drainage basins. The chapter closes with an assessment of the monitoring and scientific research needed to increase confidence in understanding when climate episodes, events, and phenomena are attributable to human-caused climate change.

  1. f( R) gravity solutions for evolving wormholes

    Science.gov (United States)

    Bhattacharya, Subhra; Chakraborty, Subenoy

    2017-08-01

    The scalar-tensor f( R) theory of gravity is considered in the framework of a simple inhomogeneous space-time model. In this research we use the reconstruction technique to look for possible evolving wormhole solutions within viable f( R) gravity formalism. These f( R) models are then constrained so that they are consistent with existing experimental data. Energy conditions related to the matter threading the wormhole are analyzed graphically and are in general found to obey the null energy conditions (NEC) in regions around the throat, while in the limit f(R)=R, NEC can be violated at large in regions around the throat.

  2. Information theory, evolutionary innovations and evolvability.

    Science.gov (United States)

    Wagner, Andreas

    2017-12-05

    How difficult is it to 'discover' an evolutionary adaptation or innovation? I here suggest that information theory, in combination with high-throughput DNA sequencing, can help answer this question by quantifying a new phenotype's information content. I apply this framework to compute the phenotypic information associated with novel gene regulation and with the ability to use novel carbon sources. The framework can also help quantify how DNA duplications affect evolvability, estimate the complexity of phenotypes and clarify the meaning of 'progress' in Darwinian evolution.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  3. Evolving Random Forest for Preference Learning

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through a combination of an evolutionary method and random forest. Grammatical evolution is used to describe the structure of the trees in the Random Forest (RF) and to handle the process of evolution. Evolved random forests ...... obtained for predicting pairwise self-reports of users for the three emotional states engagement, frustration and challenge show very promising results that are comparable and in some cases superior to those obtained from state-of-the-art methods....

  4. Evolvement of Uniformity and Volatility in the Stressed Global Financial Village

    Science.gov (United States)

    Kenett, Dror Y.; Raddant, Matthias; Lux, Thomas; Ben-Jacob, Eshel

    2012-01-01

    Background In the current era of strong worldwide market couplings the global financial village became highly prone to systemic collapses, events that can rapidly sweep throughout the entire village. Methodology/Principal Findings We present a new methodology to assess and quantify inter-market relations. The approach is based on the correlations between the market index, the index volatility, the market Index Cohesive Force and the meta-correlations (correlations between the intra-correlations.) We investigated the relations between six important world markets—U.S., U.K., Germany, Japan, China and India—from January 2000 until December 2010. We found that while the developed “western” markets (U.S., U.K., Germany) are highly correlated, the interdependencies between these markets and the developing “eastern” markets (India and China) are volatile and with noticeable maxima at times of global world events. The Japanese market switches “identity”—it switches between periods of high meta-correlations with the “western” markets and periods when it behaves more similarly to the “eastern” markets. Conclusions/Significance The methodological framework presented here provides a way to quantify the evolvement of interdependencies in the global market, evaluate a world financial network and quantify changes in the world inter market relations. Such changes can be used as precursors to the agitation of the global financial village. Hence, the new approach can help to develop a sensitive “financial seismograph” to detect early signs of global financial crises so they can be treated before they develop into worldwide events. PMID:22347444

  5. Sharing network resources

    CERN Document Server

    Parekh, Abhay

    2014-01-01

    Resource Allocation lies at the heart of network control. In the early days of the Internet the scarcest resource was bandwidth, but as the network has evolved to become an essential utility in the lives of billions, the nature of the resource allocation problem has changed. This book attempts to describe the facets of resource allocation that are most relevant to modern networks. It is targeted at graduate students and researchers who have an introductory background in networking and who desire to internalize core concepts before designing new protocols and applications. We start from the fun

  6. Mobile networks architecture

    CERN Document Server

    Perez, Andre

    2013-01-01

    This book explains the evolutions of architecture for mobiles and summarizes the different technologies:- 2G: the GSM (Global System for Mobile) network, the GPRS (General Packet Radio Service) network and the EDGE (Enhanced Data for Global Evolution) evolution;- 3G: the UMTS (Universal Mobile Telecommunications System) network and the HSPA (High Speed Packet Access) evolutions:- HSDPA (High Speed Downlink Packet Access),- HSUPA (High Speed Uplink Packet Access),- HSPA+;- 4G: the EPS (Evolved Packet System) network.The telephone service and data transmission are the

  7. Evolving MEMS Resonator Designs for Fabrication

    Science.gov (United States)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  8. NASA's Space Launch System: An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  9. Networks in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00260714; The ATLAS collaboration

    2017-01-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks....

  10. Networks in ATLAS

    CERN Document Server

    Mc Kee, Shawn Patrick; The ATLAS collaboration

    2016-01-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks....

  11. Co-evolving prisoner's dilemma: Performance indicators and analytic approaches

    Science.gov (United States)

    Zhang, W.; Choi, C. W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2017-02-01

    Understanding the intrinsic relation between the dynamical processes in a co-evolving network and the necessary ingredients in formulating a reliable theory is an important question and a challenging task. Using two slightly different definitions of performance indicator in the context of a co-evolving prisoner's dilemma game, it is shown that very different cooperative levels result and theories of different complexity are required to understand the key features. When the payoff per opponent is used as the indicator (Case A), non-cooperative strategy has an edge and dominates in a large part of the parameter space formed by the cutting-and-rewiring probability and the strategy imitation probability. When the payoff from all opponents is used (Case B), cooperative strategy has an edge and dominates the parameter space. Two distinct phases, one homogeneous and dynamical and another inhomogeneous and static, emerge and the phase boundary in the parameter space is studied in detail. A simple theory assuming an average competing environment for cooperative agents and another for non-cooperative agents is shown to perform well in Case A. The same theory, however, fails badly for Case B. It is necessary to include more spatial correlation into a theory for Case B. We show that the local configuration approximation, which takes into account of the different competing environments for agents with different strategies and degrees, is needed to give reliable results for Case B. The results illustrate that formulating a proper theory requires both a conceptual understanding of the effects of the adaptive processes in the problem and a delicate balance between simplicity and accuracy.

  12. Online professional networks for physicians: risk management.

    Science.gov (United States)

    Hyman, Jon L; Luks, Howard J; Sechrest, Randale

    2012-05-01

    The rapidly developing array of online physician-only communities represents a potential extraordinary advance in the availability of educational and informational resources to physicians. These online communities provide physicians with a new range of controls over the information they process, but use of this social media technology carries some risk. The purpose of this review was to help physicians manage the risks of online professional networking and discuss the potential benefits that may come with such networks. This article explores the risks and benefits of physicians engaging in online professional networking with peers and provides suggestions on risk management. Through an Internet search and literature review, we scrutinized available case law, federal regulatory code, and guidelines of conduct from professional organizations and consultants. We reviewed the OrthoMind.com site as a case example because it is currently the only online social network exclusively for orthopaedic surgeons. Existing case law suggests potential liability for orthopaedic surgeons who engage with patients on openly accessible social network platforms. Current society guidelines in both the United States and Britain provide sensible rules that may mitigate such risks. However, the overall lack of a strong body of legal opinions, government regulations as well as practical experience for most surgeons limit the suitability of such platforms. Closed platforms that are restricted to validated orthopaedic surgeons may limit these downside risks and hence allow surgeons to collaborate with one another both as clinicians and practice owners. Educating surgeons about the pros and cons of participating in these networking platforms is helping them more astutely manage risks and optimize benefits. This evolving online environment of professional interaction is one of few precedents, but the application of risk management strategies that physicians use in daily practice carries over

  13. Ecological connectivity networks in rapidly expanding cities

    OpenAIRE

    Nor, A.N.M.; R. Corstanje; Harris, J.A.; Grafius, D.R.; Siriwardena, G.M.

    2017-01-01

    Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for ...

  14. Counseling and Family Therapy in India: Evolving Professions in a Rapidly Developing Nation

    Science.gov (United States)

    Carson, David K.; Jain, Sachin; Ramirez, Sylvia

    2009-01-01

    Outpatient counseling is a relatively new concept and form of clinical practice in India. This article provides an overview of the need for and current status of counseling and family therapy in India. Examples of training programs are presented, and future prospects for the counseling and family therapy professions are highlighted. The authors…

  15. Origin of a rapidly evolving homeostatic control system programming testis function.

    Science.gov (United States)

    Bu, Pengli; Yagi, Shintaro; Shiota, Kunio; Alam, S M Khorshed; Vivian, Jay L; Wolfe, Michael W; Rumi, M A Karim; Chakraborty, Damayanti; Kubota, Kaiyu; Dhakal, Pramod; Soares, Michael J

    2017-08-01

    Mammals share common strategies for regulating reproduction, including a conserved hypothalamic-pituitary-gonadal axis; yet, individual species exhibit differences in reproductive performance. In this report, we describe the discovery of a species-restricted homeostatic control system programming testis growth and function. Prl3c1 is a member of the prolactin gene family and its protein product (PLP-J) was discovered as a uterine cytokine contributing to the establishment of pregnancy. We utilized mouse mutagenesis of Prl3c1 and revealed its involvement in the regulation of the male reproductive axis. The Prl3c1-null male reproductive phenotype was characterized by testiculomegaly and hyperandrogenism. The larger testes in the Prl3c1-null mice were associated with an expansion of the Leydig cell compartment. Prl3c1 locus is a template for two transcripts (Prl3c1-v1 and Prl3c1-v2) expressed in a tissue-specific pattern. Prl3c1-v1 is expressed in uterine decidua, while Prl3c1-v2 is expressed in Leydig cells of the testis. 5'RACE, chromatin immunoprecipitation and DNA methylation analyses were used to define cell-specific promoter usage and alternative transcript expression. We examined the Prl3c1 locus in five murid rodents and showed that the testicular transcript and encoded protein are the result of a recent retrotransposition event at the Mus musculus Prl3c1 locus. Prl3c1-v1 encodes PLP-J V1 and Prl3c1-v2 encodes PLP-J V2. Each protein exhibits distinct intracellular targeting and actions. PLP-J V2 possesses Leydig cell-static actions consistent with the Prl3c1-null testicular phenotype. Analysis of the biology of the Prl3c1 gene has provided insight into a previously unappreciated homeostatic setpoint control system programming testicular growth and function. © 2017 Society for Endocrinology.

  16. The Information Technology Program Manager’s Dilemma: Rapidly Evolving Technology and Stagnant Processes

    Science.gov (United States)

    2010-08-01

    information technology systems. The current DoDI 5000.02 leaves IT project and program managers wondering how the current process applies to them, as the guidance is fairly rigid and does not allow for the flexibility required to appropriately manage IT programs. Until very recently, in comparison to the development of a traditional weapons system, IT programs seemed to have been viewed as a utility or service instead of a critical component to national security. Perhaps that is because data passing through cables cannot be observed with the naked senses and therefore an

  17. Development of rapidly evolving intron markers to estimate multilocus species trees of rodents.

    Directory of Open Access Journals (Sweden)

    Ana Rodríguez-Prieto

    Full Text Available One of the major challenges in the analysis of closely related species, speciation and phylogeography is the identification of variable sequence markers that allow the determination of genealogical relationships in multiple genomic regions using coalescent and species tree approaches. Rodent species represent nearly half of the mammalian diversity, but so far no systematic study has been carried out to detect suitable informative markers for this group. Here, we used a bioinformatic pipeline to extract intron sequences from rodent genomes available in databases and applied a series of filters that allowed the identification of 208 introns that adequately fulfilled several criteria for these studies. The main required characteristics of the introns were that they had the maximum possible mutation rates, that they were part of single-copy genes, that they had an appropriate sequence length for amplification, and that they were flanked by exons with suitable regions for primer design. In addition, in order to determine the validity of this approach, we chose ten of these introns for primer design and tested them in a panel of eleven rodent species belonging to different representative families. We show that all these introns can be amplified in the majority of species and that, overall, 79% of the amplifications worked with minimum optimization of the annealing temperature. In addition, we confirmed for a pair of sister species the relatively high level of sequence divergence of these introns. Therefore, we provide here a set of adequate intron markers that can be applied to different species of Rodentia for their use in studies that require significant sequence variability.

  18. The rapidly evolving therapies for advanced melanoma--Towards immunotherapy, molecular targeted therapy, and beyond.

    Science.gov (United States)

    Zhu, Ziqiang; Liu, Wei; Gotlieb, Vladimir

    2016-03-01

    The incidence of melanoma in both males and females continues to rise during the past 40 years despite the stable or declining trends for most cancer types. Due to the tremendous advance in immunobiology and molecular biology, breakthroughs in both immunotherapies and molecular targeted therapies have recently revolutionized the standard of care for patients with advanced melanoma. In 2011, US Food and Drug Administration (FDA) approved ipilimumab, an anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) antibody for metastatic melanoma therapy. Since then, novel drugs including antibodies to programmed cell death 1 (PD-1) such as pembrolizumab and nivolumab (both approved in 2014), selective BRAF inhibitors such as vemurafenib (approved in 2011), dabrafenib (approved in 2013); and MEK inhibitor trametinib (approved in 2013), have greatly extended the potential of immunotherapy and molecular targeted therapy for advanced melanoma. All of which have been demonstrated a significant increase in overall survival rate, and long-term benefits in multiple large clinical trials. Several new agents and novel therapies are currently under phase III clinical trials with the hope of being approved in the near future. We already entered a golden era in oncology that are providing significant survival improvement. In the meantime, new challenges for clinicians also started to emerge. In this review, we presented the existing evidence for the newest treatments for advanced melanoma, including CTLA-4, PD-1/PD-L1 checkpoint inhibitors and BRAF, MEK inhibitors. We also discussed the strengths, limitations and challenges of using these novel therapies, and potential solutions as well as highlighted the areas requiring further research. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Rapidly evolving circularly polarized emission during the 1994 outburst of GRO J1655-40

    NARCIS (Netherlands)

    Macquart, JP; Wu, K; Sault, RJ; Hannikainen, DC

    2002-01-01

    We report the detection of circular polarization during the 1994 outburst of the Galactic microquasar GRO J1655-40. The circular polarization is clearly detected at 1.4 and 2.4 GHz, but not at 4.8 and 8.4 GHz, where its magnitude never exceeds 5 mJy. Both the sign and magnitude of the circular

  20. Evolving Technology, Shifting Expectations: Cultivating Pedagogy for a Rapidly Changing GIS Landscape

    Science.gov (United States)

    Ricker, Britta; Thatcher, Jim

    2017-01-01

    As humans and natural processes continuously reshape the surface of the Earth, there is an unceasing need to document and analyze them through the use of Geographic Information Systems (GIS). The public is gaining more access to spatial technologies that were once only available to highly trained professionals. With technological evolution comes a…

  1. Transforming Research in Oceanography through Education, Ethnography and Rapidly Evolving Technologies: An NSF-INSPIRE project.

    Science.gov (United States)

    German, C. R.; Croff Bell, K. L.; Pallant, A.; Mirmalek, Z.; Jasanoff, S.; Rajan, K.

    2014-12-01

    This paper will discuss a new NSF-INSPIRE project that brings together research conducted in the fields of Ocean Sciences, Education & Human Resources and Computer and Information Science & Engineering. Specifically, our objective is to investigate new methods by which telepresence can be used to conduct cutting edge research and provide authentic educational experiences to undergraduate students, remotely. We choose to conduct this research in an Oceanographic context for two reasons: first with the move toward smaller research ships in the national Oceanographic research fleet, we anticipate that access to berth space at sea will continue to be at a premium. Any component of traditional oceanographic research that can be ported to shore without loss of effectiveness would be of immediate benefit to the Ocean Sciences. Equally, however, we argue that any improvements to work place and/or education practices that we can identify while delivering research and education from the bottom of the deep ocean should be readily mappable to any other scientific or engineering activities that seek to make use of telepresence in less extreme remote environments. Work on our TREET project, to-date, has included recruitment of 6 early career scientists keen to take advantage of the research opportunity provided, together with two senior science mentors with experience using Telepresence and a cohort of undergraduate students at three of the ECS partner Universities, spanning 4 time zones across the continental US. Following a 12-week synchronous on-line seminar series taught in Spring-Summer 2014, the entire team joined together at the Inner Space Center in Sept-Oct 2014 to participate, virtually, in a cruise of research and exploration to the Kick'Em Jenny underwater volcano and adjacent cold seep sites, conducted by the Ocean Exploration Trust's ROV Hercules aboard the Exploration Vessel Nautilus. Our presentation will include preliminary results from that cruise.

  2. An RNA gene expressed during cortical development evolved rapidly in humans

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; Lambert, Nelle

    2006-01-01

    of the human brain. We devised a ranking of regions in the human genome that show significant evolutionary acceleration. Here we report that the most dramatic of these 'human accelerated regions', HAR1, is part of a novel RNA gene (HAR1F) that is expressed specifically in Cajal-Retzius neurons...

  3. Evolving Digital Publishing Opportunities across Composition Studies

    Science.gov (United States)

    Hawishler, Gail E.; Selfe, Cynthia L.

    2014-01-01

    In this article, the authors report since the early 1980s, the profession has seen plenty of changes in the arena of digital scholarly publishing: during this time, while the specific challenges have seldom remained the same, the presence and the pressures of rapid technological change endure. In fact, as an editorial team that has, in part,…

  4. Duplicated genes evolve independently in allopolyploid cotton.

    Science.gov (United States)

    Richard C. Cronn; Randall L. Small; Jonathan F. Wendel

    1999-01-01

    Of the many processes that generate gene duplications, polyploidy is unique in that entire genomes are duplicated. This process has been important in the evolution of many eukaryotic groups, and it occurs with high frequency in plants. Recent evidence suggests that polyploidization may be accompanied by rapid genomic changes, but the evolutionary fate of discrete loci...

  5. Evolving water science in the Anthropocene

    NARCIS (Netherlands)

    Savenije, H.H.G.; Hoekstra, A.Y.; Van der Zaag, P.

    2013-01-01

    This paper reviews the changing relation between man and water since the industrial revolution, the period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet.We show how the rapidly changing reality urges us to continuously improve our

  6. Evolving water science in the Anthropocene

    NARCIS (Netherlands)

    Savenije, H.H.G.; Hoekstra, Arjen Ysbert; van der Zaag, P.

    2014-01-01

    This paper reviews the changing relation between human beings and water since the Industrial Revolution, a period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet during this time. We show how the rapidly changing world urges us to

  7. Evolvability as a Quality Attribute of Software Architectures

    NARCIS (Netherlands)

    Ciraci, S.; van den Broek, P.M.; Duchien, Laurence; D'Hondt, Maja; Mens, Tom

    We review the definition of evolvability as it appears on the literature. In particular, the concept of software evolvability is compared with other system quality attributes, such as adaptability, maintainability and modifiability.

  8. Tracking correlated, simultaneously evolving target populations, II

    Science.gov (United States)

    Mahler, Ronald

    2017-05-01

    This paper is the sixth in a series aimed at weakening the independence assumptions that are typically presumed in multitarget tracking. Earlier papers investigated Bayes …lters that propagate the correlations between two evolving multitarget systems. Last year at this conference we attempted to derive PHD …lter-type approximations that account for both spatial correlation and cardinality correlation (i.e., correlation between the target numbers of the two systems). Unfortunately, this approach required heuristic models of both clutter and target appearance in order to incorporate both spatial and cardinality correlation. This paper describes a fully rigorous approach- provided, however, that spatial correlation between the two populations is ignored and only their cardinality correlations are taken into account. We derive the time-update and measurement-update equations for a CPHD …lter describing the evolution of such correlated multitarget populations.

  9. A local-world evolving hypernetwork model

    Science.gov (United States)

    Yang, Guang-Yong; Liu, Jian-Guo

    2014-01-01

    Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mechanisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is γ = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypernetwork model shares the scale-free and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems.

  10. The Evolving Theory of Evolutionary Radiations.

    Science.gov (United States)

    Simões, M; Breitkreuz, L; Alvarado, M; Baca, S; Cooper, J C; Heins, L; Herzog, K; Lieberman, B S

    2016-01-01

    Evolutionary radiations have intrigued biologists for more than 100 years, and our understanding of the patterns and processes associated with these radiations continues to grow and evolve. Recently it has been recognized that there are many different types of evolutionary radiation beyond the well-studied adaptive radiations. We focus here on multifarious types of evolutionary radiations, paying special attention to the abiotic factors that might trigger diversification in clades. We integrate concepts such as exaptation, species selection, coevolution, and the turnover-pulse hypothesis (TPH) into the theoretical framework of evolutionary radiations. We also discuss other phenomena that are related to, but distinct from, evolutionary radiations that have relevance for evolutionary biology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Finch: A System for Evolving Java (Bytecode)

    Science.gov (United States)

    Orlov, Michael; Sipper, Moshe

    The established approach in genetic programming (GP) involves the definition of functions and terminals appropriate to the problem at hand, after which evolution of expressions using these definitions takes place. We have recently developed a system, dubbed FINCH (Fertile Darwinian Bytecode Harvester), to evolutionarily improve actual, extant software, which was not intentionally written for the purpose of serving as a GP representation in particular, nor for evolution in general. This is in contrast to existing work that uses restricted subsets of the Java bytecode instruction set as a representation language for individuals in genetic programming. The ability to evolve Java programs will hopefully lead to a valuable new tool in the software engineer's toolkit.

  12. A group evolving-based framework with perturbations for link prediction

    Science.gov (United States)

    Si, Cuiqi; Jiao, Licheng; Wu, Jianshe; Zhao, Jin

    2017-06-01

    Link prediction is a ubiquitous application in many fields which uses partially observed information to predict absence or presence of links between node pairs. The group evolving study provides reasonable explanations on the behaviors of nodes, relations between nodes and community formation in a network. Possible events in group evolution include continuing, growing, splitting, forming and so on. The changes discovered in networks are to some extent the result of these events. In this work, we present a group evolving-based characterization of node's behavioral patterns, and via which we can estimate the probability they tend to interact. In general, the primary aim of this paper is to offer a minimal toy model to detect missing links based on evolution of groups and give a simpler explanation on the rationality of the model. We first introduce perturbations into networks to obtain stable cluster structures, and the stable clusters determine the stability of each node. Then fluctuations, another node behavior, are assumed by the participation of each node to its own belonging group. Finally, we demonstrate that such characteristics allow us to predict link existence and propose a model for link prediction which outperforms many classical methods with a decreasing computational time in large scales. Encouraging experimental results obtained on real networks show that our approach can effectively predict missing links in network, and even when nearly 40% of the edges are missing, it also retains stationary performance.

  13. Money Laundering Detection Framework to Link the Disparate and Evolving Schemes

    Directory of Open Access Journals (Sweden)

    Murad Mehmet

    2013-09-01

    Full Text Available Money launderers hide traces of their transactions with the involvement of entities that participate in sophisticated schemes. Money laundering detection requires unraveling concealed connections among multiple but seemingly unrelated human money laundering networks, ties among actors of those schemes, and amounts of funds transferred among those entities. The link among small networks, either financial or social, is the primary factor that facilitates money laundering. Hence, the analysis of relations among money laundering networks is required to present the full structure of complex schemes. We propose a framework that uses sequence matching, case-based analysis, social network analysis, and complex event processing to detect money laundering. Our framework captures an ongoing single scheme as an event, and associations among such ongoing sequence of events to capture complex relationships among evolving money laundering schemes. The framework can detect associated multiple money laundering networks even in the absence of some evidence. We validated the accuracy of detecting evolving money laundering schemes using a multi-phases test methodology. Our test used data generated from real-life cases, and extrapolated to generate more data from real-life schemes generator that we implemented.

  14. The evolution of distributed association networks in the human brain.

    Science.gov (United States)

    Buckner, Randy L; Krienen, Fenna M

    2013-12-01

    The human cerebral cortex is vastly expanded relative to other primates and disproportionately occupied by distributed association regions. Here we offer a hypothesis about how association networks evolved their prominence and came to possess circuit properties vital to human cognition. The rapid expansion of the cortical mantle may have untethered large portions of the cortex from strong constraints of molecular gradients and early activity cascades that lead to sensory hierarchies. What fill the gaps between these hierarchies are densely interconnected networks that widely span the cortex and mature late into development. Limitations of the tethering hypothesis are discussed as well as its broad implications for understanding critical features of the human brain as a byproduct of size scaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers

    Science.gov (United States)

    Foster, J.T.; Woodworth, B.L.; Eggert, L.E.; Hart, P.J.; Palmer, D.; Duffy, D.C.; Fleischer, R.C.

    2007-01-01

    Infectious diseases now threaten wildlife populations worldwide but population recovery following local extinction has rarely been observed. In such a case, do resistant individuals recolonize from a central remnant population, or do they spread from small, perhaps overlooked, populations of resistant individuals? Introduced avian malaria (Plasmodium relictum) has devastated low-elevation populations of native birds in Hawaii, but at least one species (Hawaii amakihi, Hemignathus virens) that was greatly reduced at elevations below about 1000 m tolerates malaria and has initiated a remarkable and rapid recovery. We assessed mitochondrial and nuclear DNA markers from amakihi and two other Hawaiian honeycreepers, apapane (Himatione sanguinea) and iiwi (Vestiaria coccinea), at nine primary study sites from 2001 to 2003 to determine the source of re-establishing birds. In addition, we obtained sequences from tissue from amakihi museum study skins (1898 and 1948-49) to assess temporal changes in allele distributions. We found that amakihi in lowland areas are, and have historically been, differentiated from birds at high elevations and had unique alleles retained through time; that is, their genetic signature was not a subset of the genetic variation at higher elevations. We suggest that high disease pressure rapidly selected for resistance to malaria at low elevation, leaving small pockets of resistant birds, and this resistance spread outward from the scattered remnant populations. Low-elevation amakihi are currently isolated from higher elevations (> 1000 m) where disease emergence and transmission rates appear to vary seasonally and annually. In contrast to results from amakihi, no genetic differentiation between elevations was found in apapane and iiwi, indicating that slight variation in genetic or life-history attributes can determine disease resistance and population recovery. Determining the conditions that allow for the development of resistance to disease is

  16. Noise and the evolution of neural network modularity.

    Science.gov (United States)

    Høverstad, Boye Annfelt

    2011-01-01

    We study the selective advantage of modularity in artificially evolved networks. Modularity abounds in complex systems in the real world. However, experimental evidence for the selective advantage of network modularity has been elusive unless it has been supported or mandated by the genetic representation. The evolutionary origin of modularity is thus still debated: whether networks are modular because of the process that created them, or the process has evolved to produce modular networks. It is commonly argued that network modularity is beneficial under noisy conditions, but experimental support for this is still very limited. In this article, we evolve nonlinear artificial neural network classifiers for a binary classification task with a modular structure. When noise is added to the edge weights of the networks, modular network topologies evolve, even without representational support.

  17. The evolving energy budget of accretionary wedges

    Science.gov (United States)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the

  18. The Evolving Diagnostic and Genetic Landscapes of Autism Spectrum Disorder.

    Science.gov (United States)

    Ziats, Mark N; Rennert, Owen M

    2016-01-01

    The autism spectrum disorders (ASD) are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  19. The evolving diagnostic and genetic landscapes of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Mark Nicholas Ziats

    2016-04-01

    Full Text Available The autism spectrum disorders (ASD are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  20. Evolving Nonthermal Electron Distributions in Simulations of Sgr A*

    Science.gov (United States)

    Chael, Andrew; Narayan, Ramesh

    2018-01-01

    The accretion flow around Sagittarius A* (Sgr A*), the black hole at the Galactic Center, produces strong variability from the radio to X-rays on timescales of minutes to hours. This rapid, powerful variability is thought to be powered by energetic particle acceleration by plasma processes like magnetic reconnection and shocks. These processes can accelerate particles into non-thermal distributions which do not quickly isothermal in the low densities found around hot accretion flows. Current state-of-the-art simulations of accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. We present results from incorporating the self-consistent evolution of a non-thermal electron population in a GRRMHD simulation of Sgr A*. The electron distribution is evolved across space, time, and Lorentz factor in parallel with background thermal ion, electron, and radiation fluids. Energy injection into the non-thermal distribution is modeled with a sub-grid prescription based on results from particle-in-cell simulations of magnetic reconnection. The energy distribution of the non-thermal electrons shows strong variability, and the spectral shape traces the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity. Results from these simulations will be used in interpreting forthcoming data from the Event Horizon Telescope that resolves Sgr A*'s sub-mm variability in both time and space.

  1. Meiosis evolves: adaptation to external and internal environments.

    Science.gov (United States)

    Bomblies, Kirsten; Higgins, James D; Yant, Levi

    2015-10-01

    306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. No surviving evolved companions of the progenitor of SN 1006.

    Science.gov (United States)

    González Hernández, Jonay I; Ruiz-Lapuente, Pilar; Tabernero, Hugo M; Montes, David; Canal, Ramon; Méndez, Javier; Bedin, Luigi R

    2012-09-27

    Type Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type Ia supernovae, but the relative proportions of their contributions remain a fundamental puzzle in astronomy. Previous searches for remnant companions have revealed one possible case for SN 1572 (refs 8, 9), although that has been questioned. More recently, observations have restricted surviving companions to be small, main-sequence stars, ruling out giant companions but still allowing the single-degenerate channel. Here we report the results of a search for surviving companions of the progenitor of SN 1006 (ref. 14). None of the stars within 4 arc minutes of the apparent site of the explosion is associated with the supernova remnant, and we can firmly exclude all giant and subgiant stars from being companions of the progenitor. In combination with previous results, our findings indicate that fewer than 20 per cent of type Ia supernovae occur through the single-degenerate channel.

  3. The Systems Biology Research Tool: evolvable open-source software.

    Science.gov (United States)

    Wright, Jeremiah; Wagner, Andreas

    2008-06-29

    Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput) experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT) to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability), to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  4. The Systems Biology Research Tool: evolvable open-source software

    Directory of Open Access Journals (Sweden)

    Wright Jeremiah

    2008-06-01

    Full Text Available Abstract Background Research in the field of systems biology requires software for a variety of purposes. Software must be used to store, retrieve, analyze, and sometimes even to collect the data obtained from system-level (often high-throughput experiments. Software must also be used to implement mathematical models and algorithms required for simulation and theoretical predictions on the system-level. Results We introduce a free, easy-to-use, open-source, integrated software platform called the Systems Biology Research Tool (SBRT to facilitate the computational aspects of systems biology. The SBRT currently performs 35 methods for analyzing stoichiometric networks and 16 methods from fields such as graph theory, geometry, algebra, and combinatorics. New computational techniques can be added to the SBRT via process plug-ins, providing a high degree of evolvability and a unifying framework for software development in systems biology. Conclusion The Systems Biology Research Tool represents a technological advance for systems biology. This software can be used to make sophisticated computational techniques accessible to everyone (including those with no programming ability, to facilitate cooperation among researchers, and to expedite progress in the field of systems biology.

  5. On the Critical Role of Divergent Selection in Evolvability

    Directory of Open Access Journals (Sweden)

    Joel Lehman

    2016-08-01

    Full Text Available An ambitious goal in evolutionary robotics is to evolve increasingly complex robotic behaviors with minimal human design effort. Reaching this goal requires evolutionary algorithms that can unlock from genetic encodings their latent potential for evolvability. One issue clouding this goal is conceptual confusion about evolvability, which often obscures the aspects of evolvability that are important or desirable. The danger from such confusion is that it may establish unrealistic goals for evolvability that prove unproductive in practice. An important issue separate from conceptual confusion is the common misalignment between selection and evolvability in evolutionary robotics. While more expressive encodings can represent higher-level adaptations (e.g. sexual reproduction or developmental systems that increase long-term evolutionary potential (i.e. evolvability, realizing such potential requires gradients of fitness and evolvability to align. In other words, selection is often a critical factor limiting increasing evolvability. Thus, drawing from a series of recent papers, this article seeks to both (1 clarify and focus the ways in which the term evolvability is used within artificial evolution, and (2 argue for the importance of one type of selection, i.e. divergent selection, for enabling evolvability. The main argument is that there is a fundamental connection between divergent selection and evolvability (on both the individual and population level that does not hold for typical goal-oriented selection. The conclusion is that selection pressure plays a critical role in realizing the potential for evolvability, and that divergent selection in particular provides a principled mechanism for encouraging evolvability in artificial evolution.

  6. How does cognition evolve? Phylogenetic comparative psychology

    Science.gov (United States)

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  7. How does cognition evolve? Phylogenetic comparative psychology.

    Science.gov (United States)

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  8. On the Discovery of Evolving Truth.

    Science.gov (United States)

    Li, Yaliang; Li, Qi; Gao, Jing; Su, Lu; Zhao, Bo; Fan, Wei; Han, Jiawei

    2015-08-01

    In the era of big data, information regarding the same objects can be collected from increasingly more sources. Unfortunately, there usually exist conflicts among the information coming from different sources. To tackle this challenge, truth discovery, i.e., to integrate multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. In many real world applications, however, the information may come sequentially, and as a consequence, the truth of objects as well as the reliability of sources may be dynamically evolving. Existing truth discovery methods, unfortunately, cannot handle such scenarios. To address this problem, we investigate the temporal relations among both object truths and source reliability, and propose an incremental truth discovery framework that can dynamically update object truths and source weights upon the arrival of new data. Theoretical analysis is provided to show that the proposed method is guaranteed to converge at a fast rate. The experiments on three real world applications and a set of synthetic data demonstrate the advantages of the proposed method over state-of-the-art truth discovery methods.

  9. Sexual regret: evidence for evolved sex differences.

    Science.gov (United States)

    Galperin, Andrew; Haselton, Martie G; Frederick, David A; Poore, Joshua; von Hippel, William; Buss, David M; Gonzaga, Gian C

    2013-10-01

    Regret and anticipated regret enhance decision quality by helping people avoid making and repeating mistakes. Some of people's most intense regrets concern sexual decisions. We hypothesized evolved sex differences in women's and men's experiences of sexual regret. Because of women's higher obligatory costs of reproduction throughout evolutionary history, we hypothesized that sexual actions, particularly those involving casual sex, would be regretted more intensely by women than by men. In contrast, because missed sexual opportunities historically carried higher reproductive fitness costs for men than for women, we hypothesized that poorly chosen sexual inactions would be regretted more by men than by women. Across three studies (Ns = 200, 395, and 24,230), we tested these hypotheses using free responses, written scenarios, detailed checklists, and Internet sampling to achieve participant diversity, including diversity in sexual orientation. Across all data sources, results supported predicted psychological sex differences and these differences were localized in casual sex contexts. These findings are consistent with the notion that the psychology of sexual regret was shaped by recurrent sex differences in selection pressures operating over deep time.

  10. Extracting evolving pathologies via spectral clustering.

    Science.gov (United States)

    Bernardis, Elena; Pohl, Kilian M; Davatzikos, Christos

    2013-01-01

    A bottleneck in the analysis of longitudinal MR scans with white matter brain lesions is the temporally consistent segmentation of the pathology. We identify pathologies in 3D+t(ime) within a spectral graph clustering framework. Our clustering approach simultaneously segments and tracks the evolving lesions by identifying characteristic image patterns at each time-point and voxel correspondences across time-points. For each 3D image, our method constructs a graph where weights between nodes capture the likeliness of two voxels belonging to the same region. Based on these weights, we then establish rough correspondences between graph nodes at different time-points along estimated pathology evolution directions. We combine the graphs by aligning the weights to a reference time-point, thus integrating temporal information across the 3D images, and formulate the 3D+t segmentation problem as a binary partitioning of this graph. The resulting segmentation is very robust to local intensity fluctuations and yields better results than segmentations generated for each time-point.

  11. The Evolving Classification of Pulmonary Hypertension.

    Science.gov (United States)

    Foshat, Michelle; Boroumand, Nahal

    2017-05-01

    - An explosion of information on pulmonary hypertension has occurred during the past few decades. The perception of this disease has shifted from purely clinical to incorporate new knowledge of the underlying pathology. This transfer has occurred in light of advancements in pathophysiology, histology, and molecular medical diagnostics. - To update readers about the evolving understanding of the etiology and pathogenesis of pulmonary hypertension and to demonstrate how pathology has shaped the current classification. - Information presented at the 5 World Symposia on pulmonary hypertension held since 1973, with the last meeting occurring in 2013, was used in this review. - Pulmonary hypertension represents a heterogeneous group of disorders that are differentiated based on differences in clinical, hemodynamic, and histopathologic features. Early concepts of pulmonary hypertension were largely influenced by pharmacotherapy, hemodynamic function, and clinical presentation of the disease. The initial nomenclature for pulmonary hypertension segregated the clinical classifications from pathologic subtypes. Major restructuring of this disease classification occurred between the first and second symposia, which was the first to unite clinical and pathologic information in the categorization scheme. Additional changes were introduced in subsequent meetings, particularly between the third and fourth World Symposia meetings, when additional pathophysiologic information was gained. Discoveries in molecular diagnostics significantly progressed the understanding of idiopathic pulmonary arterial hypertension. Continued advancements in imaging modalities, mechanistic pathogenicity, and molecular biomarkers will enable physicians to define pulmonary hypertension phenotypes based on the pathobiology and allow for treatment customization.

  12. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  13. Evolving application of biomimetic nanostructured hydroxyapatite.

    Science.gov (United States)

    Roveri, Norberto; Iafisco, Michele

    2010-11-09

    By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical-physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical-physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical-physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.

  14. UKAEA'S evolving contract philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, R. D. [UK Atomic Energy Authority, UKAEA, Harwell, Oxfordshire (United Kingdom)

    2003-07-01

    The United Kingdom Atomic Energy Authority (UKAEA) has gone through fundamental change over the last ten years. At the heart of this change has been UKAEA's relationship with the contracting and supply market. This paper describes the way in which UKAEA actively developed the market to support the decommissioning programme, and how the approach to contracting has evolved as external pressures and demands have changed. UKAEA's pro-active approach to industry has greatly assisted the development of a healthy, competitive market for services supporting decommissioning in the UK. There have been difficult changes and many challenges along the way, and some retrenchment was necessary to meet regulatory requirements. Nevertheless, UKAEA has sustained a high level of competition - now measured in terms of competed spend as a proportion of competable spend - with annual out-turns consistently over 80%. The prime responsibility for market development will pass to the new Nuclear Decommissioning Authority (NDA) in 2005, as the owner, on behalf of the Government, of the UK's civil nuclear liabilities. The preparatory work for the NDA indicates that the principles established by UKAEA will be carried forward. (author)

  15. Damage spreading on networks: Clustering effects

    Indian Academy of Sciences (India)

    The damage spreading of the Ising model on three kinds of networks is studied with Glauber dynamics. One of the networks is generated by evolving the hexagonal lattice with the star-triangle transformation. Another kind of network is constructed by connecting the midpoints of the edges of the topological hexagonal lattice.

  16. Networks in ATLAS

    Science.gov (United States)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  17. Relationship among phenotypic plasticity, phenotypic fluctuations, robustness, and evolvability; Waddington's legacy revisited under the spirit of Einstein.

    Science.gov (United States)

    Kaneko, Kunihiko

    2009-10-01

    Questions on possible relationship between phenotypic plasticity and evolvability, and that between robustness and evolution have been addressed over decades in the field of evolution-development. Based on laboratory evolution experiments and numerical simulations of gene expression dynamics model with an evolving transcription network, we propose quantitative relationships on plasticity, phenotypic fluctuations, and evolvability. By introducing an evolutionary stability assumption on the distribution of phenotype and genotype, the proportionality among phenotypic plasticity against environmental change, variances of phenotype fluctuations of genetic and developmental origins, and evolution speed is obtained. The correlation between developmental robustness to noise and evolutionary robustness to mutation is analysed by simulations of the gene network model. These results provide quantitative formulation on canalization and genetic assimilation, in terms of fluctuations of gene expression levels.

  18. Rapid serial visual presentation design for cognition

    CERN Document Server

    Spence, Robert

    2013-01-01

    A powerful new image presentation technique has evolved over the last twenty years, and its value demonstrated through its support of many and varied common tasks. Conceptually, Rapid Serial Visual Presentation (RSVP) is basically simple, exemplified in the physical world by the rapid riffling of the pages of a book in order to locate a known image. Advances in computation and graphics processing allow RSVP to be applied flexibly and effectively to a huge variety of common tasks such as window shopping, video fast-forward and rewind, TV channel selection and product browsing. At its heart is a

  19. Implementation of rapid diagnostics with antimicrobial stewardship.

    Science.gov (United States)

    Minejima, Emi; Wong-Beringer, Annie

    2016-11-01

    Antimicrobial stewardship (ASP) is an intervention-based program to improve patient outcomes to infection while limiting spread of resistance and unintended consequences. Many rapid diagnostic tools are now FDA cleared for clinical use, with three evaluated across multiple settings: Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, Verigene, and FilmArray. Areas covered: This review will focus on studies published that evaluated ASP intervention with rapid diagnostic implementation on outcomes of infection. A description of the key ASP personnel, rapid diagnostic notification methods, hours of notification, and scope of ASP intervention is summarized. Expert commentary: It is critical that ASPs continually re-evaluate and evolve with technological advances. Rapid diagnostic tools are powerful in their ability to identify organisms quickly. A trained clinician is needed to evaluate the results and interact with the providers to educate them on result interpretation and optimal antimicrobial selection to maximize treatment success.

  20. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    Science.gov (United States)

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to

  1. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    Science.gov (United States)

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to

  2. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    Directory of Open Access Journals (Sweden)

    Kai Olav Ellefsen

    2015-04-01

    Full Text Available A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand. To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1 that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2 that one benefit of the modularity ubiquitous in the brains of natural animals

  3. Capacity Limit, Link Scheduling and Power Control in Wireless Networks

    Science.gov (United States)

    Zhou, Shan

    2013-01-01

    The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different…

  4. Quantum mechanics in an evolving Hilbert space

    Science.gov (United States)

    Artacho, Emilio; O'Regan, David D.

    2017-03-01

    Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalization, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fiber bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge implied by a smoothly varying basis set readily connects with Berry's formalism for geometric phases. Generalized expressions for the Berry connection and curvature are obtained for a parameter-dependent occupied Hilbert space spanned by nonorthogonal Wannier functions. The formalism is applicable to basis sets made of atomic-like orbitals and also more adaptative moving basis functions (such as in methods using Wannier functions as intermediate or support bases), but should also apply to other situations in which nonorthogonal functions or related projectors should arise. The formalism is applied to the time-dependent quantum evolution of electrons for moving atoms. The geometric insights provided here allow us to propose new finite-difference time integrators, and also better understand those already proposed.

  5. The evolving role of tiotropium in asthma

    Directory of Open Access Journals (Sweden)

    McIvor ER

    2017-08-01

    Full Text Available Emma R McIvor,1 R Andrew McIvor2 1Queen’s University, Belfast, UK; 2Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, Ontario, Canada Abstract: Tiotropium is a long-acting muscarinic antagonist (LAMA that exerts its bronchodilatory effect by blocking endogenous acetylcholine receptors in the airways. Its safety and efficacy are well established for the treatment of COPD, and it is now being recognized for its role in improving lung function and control in asthma. This review discusses the evolving role of tiotropium delivered by the Respimat® in patients across the range of asthma severities and ages, and provides an overview of safety and efficacy data. Tiotropium is the only LAMA currently approved for the treatment of asthma, and evidence from a large-scale clinical trial program, including several Phase III studies in adults, has demonstrated that tiotropium improves lung function and asthma control, with a safety profile comparable with that of placebo. Clinical trials in adolescent patients (aged 12–17 years have also shown improvements in lung function and trends toward improved asthma control. Of note, the efficacy and safety profiles are consistent regardless of baseline characteristics and phenotype. Given the large and growing body of evidence, it is likely that as clinical experience with tiotropium increases, this treatment may possibly emerge as the key choice for add-on therapy to inhaled corticosteroids/long-acting β2-agonists, and in patients who do not tolerate long-acting bronchodilators or other medications, in the future. Keywords: tiotropium, anticholinergics, asthma, efficacy

  6. Emergent spacetime in stochastically evolving dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Afshordi, Niayesh [Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500 (United States); Stojkovic, Dejan, E-mail: ds77@buffalo.edu [Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, ON, N2L 2Y5 (Canada); HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500 (United States)

    2014-12-12

    Changing the dimensionality of the space–time at the smallest and largest distances has manifold theoretical advantages. If the space is lower dimensional in the high energy regime, then there are no ultraviolet divergencies in field theories, it is possible to quantize gravity, and the theory of matter plus gravity is free of divergencies or renormalizable. If the space is higher dimensional at cosmological scales, then some cosmological problems (including the cosmological constant problem) can be attacked from a completely new perspective. In this paper, we construct an explicit model of “evolving dimensions” in which the dimensions open up as the temperature of the universe drops. We adopt the string theory framework in which the dimensions are fields that live on the string worldsheet, and add temperature dependent mass terms for them. At the Big Bang, all the dimensions are very heavy and are not excited. As the universe cools down, dimensions open up one by one. Thus, the dimensionality of the space we live in depends on the energy or temperature that we are probing. In particular, we provide a kinematic Brandenberger–Vafa argument for how a discrete causal set, and eventually a continuum (3+1)-dim spacetime along with Einstein gravity emerges in the Infrared from the worldsheet action. The (3+1)-dim Planck mass and the string scale become directly related, without any compactification. Amongst other predictions, we argue that LHC might be blind to new physics even if it comes at the TeV scale. In contrast, cosmic ray experiments, especially those that can register the very beginning of the shower, and collisions with high multiplicity and density of particles, might be sensitive to the dimensional cross-over.

  7. Emergent spacetime in stochastically evolving dimensions

    Science.gov (United States)

    Afshordi, Niayesh; Stojkovic, Dejan

    2014-12-01

    Changing the dimensionality of the space-time at the smallest and largest distances has manifold theoretical advantages. If the space is lower dimensional in the high energy regime, then there are no ultraviolet divergencies in field theories, it is possible to quantize gravity, and the theory of matter plus gravity is free of divergencies or renormalizable. If the space is higher dimensional at cosmological scales, then some cosmological problems (including the cosmological constant problem) can be attacked from a completely new perspective. In this paper, we construct an explicit model of ;evolving dimensions; in which the dimensions open up as the temperature of the universe drops. We adopt the string theory framework in which the dimensions are fields that live on the string worldsheet, and add temperature dependent mass terms for them. At the Big Bang, all the dimensions are very heavy and are not excited. As the universe cools down, dimensions open up one by one. Thus, the dimensionality of the space we live in depends on the energy or temperature that we are probing. In particular, we provide a kinematic Brandenberger-Vafa argument for how a discrete causal set, and eventually a continuum (3 + 1)-dim spacetime along with Einstein gravity emerges in the Infrared from the worldsheet action. The (3 + 1)-dim Planck mass and the string scale become directly related, without any compactification. Amongst other predictions, we argue that LHC might be blind to new physics even if it comes at the TeV scale. In contrast, cosmic ray experiments, especially those that can register the very beginning of the shower, and collisions with high multiplicity and density of particles, might be sensitive to the dimensional cross-over.

  8. Emergent spacetime in stochastically evolving dimensions

    Directory of Open Access Journals (Sweden)

    Niayesh Afshordi

    2014-12-01

    Full Text Available Changing the dimensionality of the space–time at the smallest and largest distances has manifold theoretical advantages. If the space is lower dimensional in the high energy regime, then there are no ultraviolet divergencies in field theories, it is possible to quantize gravity, and the theory of matter plus gravity is free of divergencies or renormalizable. If the space is higher dimensional at cosmological scales, then some cosmological problems (including the cosmological constant problem can be attacked from a completely new perspective. In this paper, we construct an explicit model of “evolving dimensions” in which the dimensions open up as the temperature of the universe drops. We adopt the string theory framework in which the dimensions are fields that live on the string worldsheet, and add temperature dependent mass terms for them. At the Big Bang, all the dimensions are very heavy and are not excited. As the universe cools down, dimensions open up one by one. Thus, the dimensionality of the space we live in depends on the energy or temperature that we are probing. In particular, we provide a kinematic Brandenberger–Vafa argument for how a discrete causal set, and eventually a continuum (3+1-dim spacetime along with Einstein gravity emerges in the Infrared from the worldsheet action. The (3+1-dim Planck mass and the string scale become directly related, without any compactification. Amongst other predictions, we argue that LHC might be blind to new physics even if it comes at the TeV scale. In contrast, cosmic ray experiments, especially those that can register the very beginning of the shower, and collisions with high multiplicity and density of particles, might be sensitive to the dimensional cross-over.

  9. Evolvable Cryogenics (ECRYO) Pressure Transducer Calibration Test

    Science.gov (United States)

    Diaz, Carlos E., Jr.

    2015-01-01

    This paper provides a summary of the findings of recent activities conducted by Marshall Space Flight Center's (MSFC) In-Space Propulsion Branch and MSFC's Metrology and Calibration Lab to assess the performance of current "state of the art" pressure transducers for use in long duration storage and transfer of cryogenic propellants. A brief historical narrative in this paper describes the Evolvable Cryogenics program and the relevance of these activities to the program. This paper also provides a review of three separate test activities performed throughout this effort, including: (1) the calibration of several pressure transducer designs in a liquid nitrogen cryogenic environmental chamber, (2) the calibration of a pressure transducer in a liquid helium Dewar, and (3) the calibration of several pressure transducers at temperatures ranging from 20 to 70 degrees Kelvin (K) using a "cryostat" environmental chamber. These three separate test activities allowed for study of the sensors along a temperature range from 4 to 300 K. The combined data shows that both the slope and intercept of the sensor's calibration curve vary as a function of temperature. This homogeneous function is contrary to the linearly decreasing relationship assumed at the start of this investigation. Consequently, the data demonstrates the need for lookup tables to change the slope and intercept used by any data acquisition system. This ultimately would allow for more accurate pressure measurements at the desired temperature range. This paper concludes with a review of a request for information (RFI) survey conducted amongst different suppliers to determine the availability of current "state of the art" flight-qualified pressure transducers. The survey identifies requirements that are most difficult for the suppliers to meet, most notably the capability to validate the sensor's performance at temperatures below 70 K.

  10. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  11. Public psychiatry fellowships: a developing network of public-academic collaborations.

    Science.gov (United States)

    Le Melle, Stephanie; Mangurian, Christina; Ali, Osman M; Giggie, Marisa A; Hadley, Trevor; Lewis, Marshall E; Runnels, Patrick; Sowers, Wesley; Steiner, Jeanne L; Trujillo, Manuel; Ranz, Jules M

    2012-09-01

    In response to the expanding public behavioral health care system, a network of 15 public-community psychiatry fellowships has developed over the past six years. The fellowship directors meet yearly to sustain and develop fellowships to recruit and retain psychiatrists in the public sector. This column describes five types of public-academic collaborations on which the fellowships are based. The collaborations focus on structural and fiscal arrangements; recruitment and retention; program evaluation, program research, and policy; primary care integration; and career development. These collaborations serve to train psychiatrists who will play a key role in the rapidly evolving health care system.

  12. Emerging subspecialties in neurology: deep brain stimulation and electrical neuro-network modulation.

    Science.gov (United States)

    Hassan, Anhar; Okun, Michael S

    2013-01-29

    Deep brain stimulation (DBS) is a surgical therapy that involves the delivery of an electrical current to one or more brain targets. This technology has been rapidly expanding to address movement, neuropsychiatric, and other disorders. The evolution of DBS has created a niche for neurologists, both in the operating room and in the clinic. Since DBS is not always deep, not always brain, and not always simply stimulation, a more accurate term for this field may be electrical neuro-network modulation (ENM). Fellowships will likely in future years evolve their scope to include other technologies, and other nervous system regions beyond typical DBS therapy.

  13. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies

    Directory of Open Access Journals (Sweden)

    Aleksandra Adamska

    2017-06-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC, which constitutes 90% of pancreatic cancers, is the fourth leading cause of cancer-related deaths in the world. Due to the broad heterogeneity of genetic mutations and dense stromal environment, PDAC belongs to one of the most chemoresistant cancers. Most of the available treatments are palliative, with the objective of relieving disease-related symptoms and prolonging survival. Currently, available therapeutic options are surgery, radiation, chemotherapy, immunotherapy, and use of targeted drugs. However, thus far, therapies targeting cancer-associated molecular pathways have not given satisfactory results; this is due in part to the rapid upregulation of compensatory alternative pathways as well as dense desmoplastic reaction. In this review, we summarize currently available therapies and clinical trials, directed towards a plethora of pathways and components dysregulated during PDAC carcinogenesis. Emerging trends towards targeted therapies as the most promising approach will also be discussed.

  14. Diversity Generation in Evolving Microbial Populations

    DEFF Research Database (Denmark)

    Markussen, Trine

    to get a better understanding of how bacterial populations adapt to new, complex and heterogeneous environments with multiple selective pressures over long periods, and to analyse diversification during this adaptation. Using the P. aeruginosa chronic infection as a model system, and by combining...... bacterial genome sequencing, phenotypic profiling and unique sampling materials which included clonal bacterial isolates sampled for more than 4 decades from chronically infected CF patients, we were able to investigate the diversity generation of the clinical important and highly successful P. aeruginosa...... and maintenance of population diversity of infecting pathogens. Furthermore, fine-tuning of global regulatory networks by modification of transcriptional regulators has fundamental roles in successful adaptation of P. aeruginosa to the CF environment....

  15. Network evolution: rewiring and signatures of conservation in signaling.

    Directory of Open Access Journals (Sweden)

    Mark G F Sun

    Full Text Available The analysis of network evolution has been hampered by limited availability of protein interaction data for different organisms. In this study, we investigate evolutionary mechanisms in Src Homology 3 (SH3 domain and kinase interaction networks using high-resolution specificity profiles. We constructed and examined networks for 23 fungal species ranging from Saccharomyces cerevisiae to Schizosaccharomyces pombe. We quantify rates of different rewiring mechanisms and show that interaction change through binding site evolution is faster than through gene gain or loss. We found that SH3 interactions evolve swiftly, at rates similar to those found in phosphoregulation evolution. Importantly, we show that interaction changes are sufficiently rapid to exhibit saturation phenomena at the observed timescales. Finally, focusing on the SH3 interaction network, we observe extensive clustering of binding sites on target proteins by SH3 domains and a strong correlation between the number of domains that bind a target protein (target in-degree and interaction conservation. The relationship between in-degree and interaction conservation is driven by two different effects, namely the number of clusters that correspond to interaction interfaces and the number of domains that bind to each cluster leads to sequence specific conservation, which in turn results in interaction conservation. In summary, we uncover several network evolution mechanisms likely to generalize across peptide recognition modules.

  16. Orthogonally Evolved AI to Improve Difficulty Adjustment in Video Games

    DEFF Research Database (Denmark)

    Hintze, Arend; Olson, Randal; Lehman, Joel Anthony

    2016-01-01

    (i.e. agents subject to fewer generations of evolution) make for easier opponents, while highly-evolved agents are more challenging to overcome. In this publication we test a new approach for difficulty adjustment in games: orthogonally evolved AI, where the player receives support from collaborating...... opponents. Furthermore, human interaction can modulate (and be informed by) the performance and behavior of collaborating agents. In this way, orthogonally evolved AI both facilitates smoother difficulty adjustment and enables new game experiences....

  17. Security Issues in Networks with Internet Access

    National Research Council Canada - National Science Library

    Landwehr, Carl E; Goldschlag, David M

    1997-01-01

    .... The principles are illustrated by describing the security issues a hypothetical company faces as the networks that support its operations evolve from strictly private, through a mix of Internet...

  18. Temporal network epidemiology

    CERN Document Server

    Holme, Petter

    2017-01-01

    This book covers recent developments in epidemic process models and related data on temporally varying networks. It is widely recognized that contact networks are indispensable for describing, understanding, and intervening to stop the spread of infectious diseases in human and animal populations; “network epidemiology” is an umbrella term to describe this research field. More recently, contact networks have been recognized as being highly dynamic. This observation, also supported by an increasing amount of new data, has led to research on temporal networks, a rapidly growing area. Changes in network structure are often informed by epidemic (or other) dynamics, in which case they are referred to as adaptive networks. This volume gathers contributions by prominent authors working in temporal and adaptive network epidemiology, a field essential to understanding infectious diseases in real society.

  19. Linking Behavior in the Physics Education Research Coauthorship Network

    Science.gov (United States)

    Anderson, Katharine A.; Crespi, Matthew; Sayre, Eleanor C.

    2017-01-01

    There is considerable long-term interest in understanding the dynamics of collaboration networks, and how these networks form and evolve over time. Most of the work done on the dynamics of social networks focuses on well-established communities. Work examining emerging social networks is rarer, simply because data are difficult to obtain in real…

  20. The Relation Between Structure and Function in Brain Networks : A network science perspective

    NARCIS (Netherlands)

    Meier, J.M.

    2017-01-01

    Over the last two decades the field of network science has been evolving fast. Many useful applications in a wide variety of disciplines have been found. The application of network science to the brain initiated the interdisciplinary field of complex brain networks. On a macroscopic level, brain

  1. Evolving water science in the Anthropocene

    Science.gov (United States)

    Savenije, H. H. G.; Hoekstra, A. Y.; van der Zaag, P.

    2014-01-01

    This paper reviews the changing relation between human beings and water since the Industrial Revolution, a period that has been called the Anthropocene because of the unprecedented scale at which humans have altered the planet during this time. We show how the rapidly changing world urges us to continuously improve our understanding of the complex interactions between humans and the water system. The paper starts by demonstrating that hydrology and the science of managing water resources have played key roles in human and economic development throughout history; yet these roles have often been marginalised or obscured. Knowledge of hydrology and water resources engineering and management helped to transform the landscape, and thus also the very hydrology within catchments itself. It is only fairly recent that water experts have become conscious of such mechanisms, exemplified by several concepts that try to incorporate them - integrated water resources management, eco-hydrology, socio-hydrology. We have reached a stage at which a more systemic understanding of scale interdependencies can inform the sustainable governance of water systems, using new concepts like precipitation sheds, virtual water transfers, water footprints, and water value flow.

  2. Evolving Perspectives on Lyme Borreliosis in Canada

    Science.gov (United States)

    Sperling, JLH; Middelveen, MJ; Klein, D; Sperling, FAH

    2012-01-01

    With cases now documented in every province, Lyme borreliosis (LB) is emerging as a serious public health risk in Canada. Controversy over the contribution of LB to the burden of chronic disease is maintained by difficulty in capturing accurate Canadian statistics, especially early clinical cases of LB. The use of dogs as sentinel species demon-strates that potential contact with Borrelia burgdorferi spirochetes, as detected by C6 peptide, extends across the country. Dissemination of infected ticks by migratory birds and rapid establishment of significant levels of infection have been well described. Canadian public health response has focused on identification of established populations of the tick vectors, Ixodes scapularis and I. pacificus, on the assumption that these are the only important vectors of the disease across Canada. Strains of B. burgdorferi circulating in Canada and the full range of their reservoir species and coinfections remain to be explored. Ongoing surveys and historical records demonstrate that Borrelia-positive Ixodes species are regu-larly present in regions of Canada that have previously been considered to be outside of the ranges of these species in re-cent modeling efforts. We present data demonstrating that human cases of LB are found across the nation. Consequently, physician education and better early diagnoses are needed to prevent long term sequelae. An international perspective will be paramount for developing improved Canadian guidelines that recognize the complexity and diversity of Lyme borreliosis. PMID:23091570

  3. Evolving Techniques for Surgical Treatment of Benign Prostatic Hyperplasia

    Directory of Open Access Journals (Sweden)

    Andrea Tubaro

    2015-05-01

    Full Text Available The management of lower urinary tract symptoms due to benign prostatic hyperplasia (BPH is one of the most topical areas in urology. Although most patients are adequately managed conservatively, many still require surgery to reduce bladder outlet obstruction or relieve symptoms by removing the inflamed adenomatous tissue. Transurethral resection of the prostate (TURP remains the gold standard treatment in all national and international guidelines, with open prostatectomy and laser enucleation reserved for patients with a prostate >80 ml. The current trend in the surgical management of BPH is threefold: replacing open prostatectomy with transurethral enucleation of the adenoma, managing high-risk patients by photoselective vaporisation of the prostate thus minimising blood loss, and moving BPH surgery to ambulatory day surgery and one-day surgery units in selected patients. Laser enucleation has been pioneered using the Holmium laser, although the GreenLightTM laser has been recently proposed as an alternative approach. The absence of any bleeding in photovaporisation of the prostate allows surgery to be performed in a growing population of patients on anti-aggregant and anticoagulant medications. Randomised trials of the GreenLight XPSTM laser with the MoXy™ fibre versus TURP proved the effectiveness of photovaporisation in the surgical management of BPH and suggested that 50% of patients could be discharged within 24 hours. The demand for BPH surgery remains high and urologists have rapidly adapted to the increasing demand for minimally invasive surgery. Prostate surgery evolved from a heroic procedure that remained in the memories of the entire patient family for life into a day-case procedure, and the future hopefully holds ejaculation-sparing surgery.

  4. Adoption of Geospatial Systems towards evolving Sustainable Himalayan Mountain Development

    Science.gov (United States)

    Murthy, M. S. R.; Bajracharya, B.; Pradhan, S.; Shestra, B.; Bajracharya, R.; Shakya, K.; Wesselmann, S.; Ali, M.; Bajracharya, S.; Pradhan, S.

    2014-11-01

    Natural resources dependence of mountain communities, rapid social and developmental changes, disaster proneness and climate change are conceived as the critical factors regulating sustainable Himalayan mountain development. The Himalayan region posed by typical geographic settings, diverse physical and cultural diversity present a formidable challenge to collect and manage data, information and understands varied socio-ecological settings. Recent advances in earth observation, near real-time data, in-situ measurements and in combination of information and communication technology have transformed the way we collect, process, and generate information and how we use such information for societal benefits. Glacier dynamics, land cover changes, disaster risk reduction systems, food security and ecosystem conservation are a few thematic areas where geospatial information and knowledge have significantly contributed to informed decision making systems over the region. The emergence and adoption of near-real time systems, unmanned aerial vehicles (UAV), board-scale citizen science (crowd-sourcing), mobile services and mapping, and cloud computing have paved the way towards developing automated environmental monitoring systems, enhanced scientific understanding of geophysical and biophysical processes, coupled management of socio-ecological systems and community based adaptation models tailored to mountain specific environment. There are differentiated capacities among the ICIMOD regional member countries with regard to utilization of earth observation and geospatial technologies. The region can greatly benefit from a coordinated and collaborative approach to capture the opportunities offered by earth observation and geospatial technologies. The regional level data sharing, knowledge exchange, and Himalayan GEO supporting geospatial platforms, spatial data infrastructure, unique region specific satellite systems to address trans-boundary challenges would go a long way in

  5. Novel Drugs of Abuse: A Snapshot of an Evolving Marketplace

    Science.gov (United States)

    Vandrey, Ryan; Johnson, Matthew W.; Johnson, Patrick S.; Khalil, Miral A.

    2014-01-01

    Background & objectives Over the past decade, non-medical use of novel drugs has proliferated worldwide. In most cases these are synthetic drugs first synthesized in academic or pharmaceutical laboratories for research or drug development purposes, but also include naturally occurring substances that do not fit the typical pharmacological or behavioral profile of traditional illicit substances. Perhaps most unique to this generation of new drugs is that they are being sold over the counter and on the Internet as “legal highs” or substitutes for traditional illicit drugs such as cannabis, cocaine, amphetamines, MDMA, and LSD. The purpose of this review is to provide an overview of novel drugs in current use, including the epidemiology of use and toxicologic and pharmacological properties, and to offer some guidelines to clinicians who see patients experiencing adverse effects from these drugs. Method We review the known scientific literature on recently introduced synthetic drug types, synthetic cannabinoids and synthetic cathinones, and the hallucinogen Salvia divinorum. Results These substances comprise part of a rapidly evolving and controversial drug market that has challenged definitions of what is legal and illegal, has benefitted from open commercial sales without regulatory oversight, and is noteworthy for the pace at which new substances are introduced. Conclusions This emerging trend in substance use presents significant and unique public health and criminal justice challenges. At this time, these substances are not detected in routine drug screens and substance-specific treatment for cases of use-related toxicity are not available. Clinicians are encouraged to learn characteristic signs associated with misuse of novel drugs to recognize cases in their practice, and are recommended to use a symptom-specific approach for treatment in each case. PMID:24921061

  6. Optical network design and planning

    CERN Document Server

    Simmons, Jane M

    2014-01-01

    This book takes a pragmatic approach to designing state-of-the-art optical networks for backbone, regional, and metro-core networks.   Algorithms and methodologies related to routing, regeneration, wavelength assignment, subrate-traffic grooming, and protection are presented, with an emphasis on optical-bypass-enabled (or all-optical) networks. There are numerous case studies throughout the text to illustrate the concepts, using realistic networks and traffic sets. A full chapter of economic studies offers guidelines as to when and how optical-bypass technology should be deployed. There is also extensive coverage of recent research to provide insight into how optical networks are likely to evolve. The second edition includes new chapters on dynamic optical networking and flexible/elastic optical networks. There is expanded coverage of new physical-layer technology and its impact on network design, along with enhanced coverage of ROADM architectures, including the colorless, directionless, contentionless, a...

  7. Protein structural modularity and robustness are associated with evolvability.

    Science.gov (United States)

    Rorick, Mary M; Wagner, Günter P

    2011-01-01

    Theory suggests that biological modularity and robustness allow for maintenance of fitness under mutational change, and when this change is adaptive, for evolvability. Empirical demonstrations that these traits promote evolvability in nature remain scant however. This is in part because modularity, robustness, and evolvability are difficult to define and measure in real biological systems. Here, we address whether structural modularity and/or robustness confer evolvability at the level of proteins by looking for associations between indices of protein structural modularity, structural robustness, and evolvability. We propose a novel index for protein structural modularity: the number of regular secondary structure elements (helices and strands) divided by the number of residues in the structure. We index protein evolvability as the proportion of sites with evidence of being under positive selection multiplied by the average rate of adaptive evolution at these sites, and we measure this as an average over a phylogeny of 25 mammalian species. We use contact density as an index of protein designability, and thus, structural robustness. We find that protein evolvability is positively associated with structural modularity as well as structural robustness and that the effect of structural modularity on evolvability is independent of the structural robustness index. We interpret these associations to be the result of reduced constraints on amino acid substitutions in highly modular and robust protein structures, which results in faster adaptation through natural selection.

  8. Adaptation of Escherichia coli to glucose promotes evolvability in lactose.

    Science.gov (United States)

    Phillips, Kelly N; Castillo, Gerardo; Wünsche, Andrea; Cooper, Tim F

    2016-02-01

    The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose-limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations--six from a population subsample and six from a single randomly selected clone--from each of the six glucose-evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose-limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes--iclR, nadR, spoT, and rbs--that were mutated in most glucose-evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short-term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  9. "Hidden" Social Networks in Behavior Change Interventions

    OpenAIRE

    Hunter, Ruth F; McAneney, Helen; Davis, Michael; Mark A. Tully; Valente, Thomas W.; Kee, Frank

    2015-01-01

    We investigated whether “hidden” (or unobserved) social networks were evident in a 2011 physical activity behavior change intervention in Belfast, Northern Ireland. Results showed evidence of unobserved social networks in the intervention and illustrated how the network evolved over short periods and affected behavior. Behavior change interventions should account for the interaction among participants (i.e., social networks) and how such interactions affect intervention outcome.

  10. "Hidden" social networks in behavior change interventions.

    Science.gov (United States)

    Hunter, Ruth F; McAneney, Helen; Davis, Michael; Tully, Mark A; Valente, Thomas W; Kee, Frank

    2015-03-01

    We investigated whether "hidden" (or unobserved) social networks were evident in a 2011 physical activity behavior change intervention in Belfast, Northern Ireland. Results showed evidence of unobserved social networks in the intervention and illustrated how the network evolved over short periods and affected behavior. Behavior change interventions should account for the interaction among participants (i.e., social networks) and how such interactions affect intervention outcome.

  11. Systems understanding of plant—pathogen interactions through genome-wide protein—protein interaction networks

    Directory of Open Access Journals (Sweden)

    Hong LI,Ziding ZHANG

    2016-06-01

    Full Text Available Plants are frequently affected by pathogen infections. To effectively defend against such infections, two major modes of innate immunity have evolved in plants; pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. Although the molecular components as well as the corresponding pathways involved in these two processes have been identified, many aspects of the molecular mechanisms of the plant immune system remain elusive. Recently, the rapid development of omics techniques (e.g., genomics, proteomics and transcriptomics has provided a great opportunity to explore plant—pathogen interactions from a systems perspective and studies on protein—protein interactions (PPIs between plants and pathogens have been carried out and characterized at the network level. In this review, we introduce experimental and computational identification methods of PPIs, popular PPI network analysis approaches, and existing bioinformatics resources/tools related to PPIs. Then, we focus on reviewing the progress in genome-wide PPI networks related to plant—pathogen interactions, including pathogen-centric PPI networks, plant-centric PPI networks and interspecies PPI networks between plants and pathogens. We anticipate genome-wide PPI network analysis will provide a clearer understanding of plant—pathogen interactions and will offer some new opportunities for crop protection and improvement.

  12. Social Networking: Changing the way we communicate and do business.

    OpenAIRE

    Jones, Kevin

    2009-01-01

    This paper reviews the value of social networking and the impact it can have on small and large businesses. The paper also reviews the Social Networking Business Plan and the power of recommender networks. Examples are given of inbound and outbound marketing techniques. Social Networking is an integral part of inbound marketing. A synopsis of the evolving demographic of social networkers is presented to add clarity and show potential for social networking websites and tools.

  13. Optical network democratization.

    Science.gov (United States)

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  14. Network evolution of body plans.

    Directory of Open Access Journals (Sweden)

    Koichi Fujimoto

    Full Text Available One of the major goals in evolutionary developmental biology is to understand the relationship between gene regulatory networks and the diverse morphologies and their functionalities. Are the diversities solely triggered by random events, or are they inevitable outcomes of an interplay between evolving gene networks and natural selection? Segmentation in arthropod embryogenesis represents a well-known example of body plan diversity. Striped patterns of gene expression that lead to the future body segments appear simultaneously or sequentially in long and short germ-band development, respectively. Moreover, a combination of both is found in intermediate germ-band development. Regulatory genes relevant for stripe formation are evolutionarily conserved among arthropods, therefore the differences in the observed traits are thought to have originated from how the genes are wired. To reveal the basic differences in the network structure, we have numerically evolved hundreds of gene regulatory networks that produce striped patterns of gene expression. By analyzing the topologies of the generated networks, we show that the characteristics of stripe formation in long and short germ-band development are determined by Feed-Forward Loops (FFLs and negative Feed-Back Loops (FBLs respectively, and those of intermediate germ-band development are determined by the interconnections between FFL and negative FBL. Network architectures, gene expression patterns and knockout responses exhibited by the artificially evolved networks agree with those reported in the fly Drosophila melanogaster and the beetle Tribolium castaneum. For other arthropod species, principal network architectures that remain largely unknown are predicted. Our results suggest that the emergence of the three modes of body segmentation in arthropods is an inherent property of the evolving networks.

  15. Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus x Simmental cattle fed high-starch or low-starch diets

    National Research Council Canada - National Science Library

    Graugnard, Daniel E; Piantoni, Paola; Bionaz, Massimo; Berger, Larry L; Faulkner, Dan B; Loor, Juan J

    2009-01-01

    .... Post-weaning alterations in gene expression networks driving adipogenesis, lipid filling, and intracellular energy metabolism provide a means to evaluate long-term effects of nutrition on longissimus...

  16. Evolution of complex modular biological networks.

    Science.gov (United States)

    Hintze, Arend; Adami, Christoph

    2008-02-01

    Biological networks have evolved to be highly functional within uncertain environments while remaining extremely adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and robustness in complex artificial metabolic networks that encode an increasing amount of information about their environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved complex networks as well as for the yeast protein-protein interaction network, synthetic lethal gene pairs consist mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor gene pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks.

  17. Evolution of complex modular biological networks.

    Directory of Open Access Journals (Sweden)

    Arend Hintze

    2008-02-01

    Full Text Available Biological networks have evolved to be highly functional within uncertain environments while remaining extremely adaptable. One of the main contributors to the robustness and evolvability of biological networks is believed to be their modularity of function, with modules defined as sets of genes that are strongly interconnected but whose function is separable from those of other modules. Here, we investigate the in silico evolution of modularity and robustness in complex artificial metabolic networks that encode an increasing amount of information about their environment while acquiring ubiquitous features of biological, social, and engineering networks, such as scale-free edge distribution, small-world property, and fault-tolerance. These networks evolve in environments that differ in their predictability, and allow us to study modularity from topological, information-theoretic, and gene-epistatic points of view using new tools that do not depend on any preconceived notion of modularity. We find that for our evolved complex networks as well as for the yeast protein-protein interaction network, synthetic lethal gene pairs consist mostly of redundant genes that lie close to each other and therefore within modules, while knockdown suppressor gene pairs are farther apart and often straddle modules, suggesting that knockdown rescue is mediated by alternative pathways or modules. The combination of network modularity tools together with genetic interaction data constitutes a powerful approach to study and dissect the role of modularity in the evolution and function of biological networks.

  18. Rapid response learning of brand logo priming: Evidence that brand priming is not dominated by rapid response learning.

    Science.gov (United States)

    Boehm, Stephan G; Smith, Ciaran; Muench, Niklas; Noble, Kirsty; Atherton, Catherine

    2017-08-31

    Repetition priming increases the accuracy and speed of responses to repeatedly processed stimuli. Repetition priming can result from two complementary sources: rapid response learning and facilitation within perceptual and conceptual networks. In conceptual classification tasks, rapid response learning dominates priming of object recognition, but it does not dominate priming of person recognition. This suggests that the relative engagement of network facilitation and rapid response learning depends on the stimulus domain. Here, we addressed the importance of the stimulus domain for rapid response learning by investigating priming in another domain, brands. In three experiments, participants performed conceptual decisions for brand logos. Strong priming was present, but it was not dominated by rapid response learning. These findings add further support to the importance of the stimulus domain for the relative importance of network facilitation and rapid response learning, and they indicate that brand priming is more similar to person recognition priming than object recognition priming, perhaps because priming of both brands and persons requires individuation.

  19. Mobile ad hoc networking

    CERN Document Server

    John Wiley & Sons

    2004-01-01

    "Assimilating the most up-to-date information on research and development activities in this rapidly growing area, Mobile Ad Hoc Networking covers physical, data link, network, and transport layers, as well as application, security, simulation, and power management issues in sensor, local area, personal, and mobile ad hoc networks. Each of the book's sixteen chapters has been written by a top expert and discusses in-depth the most important topics in the field. Mobile Ad Hoc Networking is an excellent reference and guide for professionals seeking an in-depth examination of topics that also provides a comprehensive overview of the current state-of-the-art."--Jacket.

  20. Self-Evolvable Systems Machine Learning in Social Media

    CERN Document Server

    Iordache, Octavian

    2012-01-01

    This monograph presents key method to successfully manage the growing  complexity of systems  where conventional engineering and scientific methodologies and technologies based on learning and adaptability come to their limits and new ways are nowadays required. The transition from adaptable to evolvable and finally to self-evolvable systems is highlighted, self-properties such as self-organization, self-configuration, and self-repairing are introduced and challenges and limitations of the self-evolvable engineering systems are evaluated.

  1. Utilizing Information Technology to Facilitate Rapid Acquisition

    Science.gov (United States)

    2006-06-01

    ordering systems to facilitate streamlined commercial item acquisitions that reap the benefits of improved efficiency, reduced overall costs, and...PAGES 109 14. SUBJECT TERMS Rapid Acquisition, eCommerce , eProcurement, Information Technology, Contracting, Global Information Network...streamlined commercial item acquisitions that reap the benefits of improved efficiency, reduced overall costs, and timeliness. This thesis

  2. One Health in social networks and social media.

    Science.gov (United States)

    Mekaru, S R; Brownstein, J S

    2014-08-01

    In the rapidly evolving world of social media, social networks, mobile applications and citizen science, online communities can develop organically and separately from larger or more established organisations. The One Health online community is experiencing expansion from both the bottom up and the top down. In this paper, the authors review social media's strengths and weaknesses, earlier work examining Internet resources for One Health, the current state of One Health in social media (e.g. Facebook, Twitter, YouTube) and online social networking sites (e.g. LinkedIn and ResearchGate), as well as social media in One Health-related citizen science projects. While One Health has a fairly strong presence on websites, its social media presence is more limited and has an uneven geographic distribution. In work following the Stone Mountain Meeting,the One Health Global Network Task Force Report recommended the creation of an online community of practice. Professional social networks as well as the strategic use of social media should be employed in this effort. Finally, One Health-related research projects using volunteers (citizen science) often use social media to enhance their recruitment. Including these researchers in a community of practitioners would take full advantage of their existing social media presence. In conclusion, the interactive nature of social media, combined with increasing global Internet access, provides the One Health community with opportunities to meaningfully expand their community and promote their message.

  3. Network modularity promotes cooperation.

    Science.gov (United States)

    Marcoux, Marianne; Lusseau, David

    2013-05-07

    Cooperation in animals and humans is widely observed even if evolutionary biology theories predict the evolution of selfish individuals. Previous game theory models have shown that cooperation can evolve when the game takes place in a structured population such as a social network because it limits interactions between individuals. Modularity, the natural division of a network into groups, is a key characteristic of all social networks but the influence of this crucial social feature on the evolution of cooperation has never been investigated. Here, we provide novel pieces of evidence that network modularity promotes the evolution of cooperation in 2-person prisoner's dilemma games. By simulating games on social networks of different structures, we show that modularity shapes interactions between individuals favouring the evolution of cooperation. Modularity provides a simple mechanism for the evolution of cooperation without having to invoke complicated mechanisms such as reputation or punishment, or requiring genetic similarity among individuals. Thus, cooperation can evolve over wider social contexts than previously reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Evolving food retail environments in Thailand and implications for the health and nutrition transition.

    Science.gov (United States)

    Banwell, Cathy; Dixon, Jane; Seubsman, Sam-Ang; Pangsap, S; Kelly, Matthew; Sleigh, Adrian

    2013-04-01

    To investigate evolving food retail systems in Thailand. Rapid assessment procedures based on qualitative research methods including interviews, focus groups discussions and site visits. Seven fresh markets located in the four main regions of Thailand. Managers, food specialists, vendors and shoppers from seven fresh markets who participated in interviews and focus group discussions. Fresh markets are under economic pressure and are declining in number. They are attempting to resist the competition from supermarkets by improving convenience, food diversity, quality and safety. Obesity has increased in Thailand at the same time as rapid growth of modern food retail formats has occurred. As fresh markets are overtaken by supermarkets there is a likely loss of fresh, healthy, affordable food for poorer Thais, and a diminution of regional culinary culture, women's jobs and social capital, with implications for the health and nutrition transition in Thailand.

  5. In situ regeneration of bioactive coatings enabled by an evolved Staphylococcus aureus sortase A

    Science.gov (United States)

    Ham, Hyun Ok; Qu, Zheng; Haller, Carolyn A.; Dorr, Brent M.; Dai, Erbin; Kim, Wookhyun; Liu, David R.; Chaikof, Elliot L.

    2016-04-01

    Surface immobilization of bioactive molecules is a central paradigm in the design of implantable devices and biosensors with improved clinical performance capabilities. However, in vivo degradation or denaturation of surface constituents often limits the long-term performance of bioactive films. Here we demonstrate the capacity to repeatedly regenerate a covalently immobilized monomolecular thin film of bioactive molecules through a two-step stripping and recharging cycle. Reversible transpeptidation by a laboratory evolved Staphylococcus aureus sortase A (eSrtA) enabled the rapid immobilization of an anti-thrombogenic film in the presence of whole blood and permitted multiple cycles of film regeneration in vitro that preserved its biological activity. Moreover, eSrtA transpeptidation facilitated surface re-engineering of medical devices in situ after in vivo implantation through removal and restoration film constituents. These studies establish a rapid, orthogonal and reversible biochemical scheme to regenerate selective molecular constituents with the potential to extend the lifetime of bioactive films.

  6. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  7. Network coded software defined networking: enabling 5G transmission and storage networks

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Lucani Rötter, Daniel Enrique

    2015-01-01

    Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm....... The inherent flexibility of both SDN and NC provides fertile ground to envision more efficient, robust, and secure networking designs, which may also incorporate content caching and storage, all of which are key challenges of the upcoming 5G networks. This article not only proposes the fundamentals...

  8. Adapting Morphology to Multiple Tasks in Evolved Virtual Creatures

    DEFF Research Database (Denmark)

    Lessin, Dan; Fussell, Don; Miikkulainen, Risto

    2014-01-01

    The ESP method for evolving virtual creatures (Lessin et al., 2013) consisted of an encapsulation mechanism to preserve learned skills, a human-designed syllabus to build higherlevel skills by combining lower-level skills systematically, and a pandemonium mechanism to resolve conflicts between...... encapsulated skills in a single creature’s brain. Previous work with ESP showed that it is possible to evolve much more complex behavior than before, even when fundamental morphology (i.e., skeletal segments and joints) was evolved only for the first skill. This paper introduces a more general form of ESP...... in which full morphological development can continue beyond the first skill, allowing creatures to adapt their morphology to multiple tasks. This extension increases the variety and quality of evolved creature results significantly, while maintaining the original ESP system’s ability to incrementally...

  9. Orthogonally Evolved AI to Improve Difficulty Adjustment in Video Games

    DEFF Research Database (Denmark)

    Hintze, Arend; Olson, Randal; Lehman, Joel Anthony

    2016-01-01

    (i.e. agents subject to fewer generations of evolution) make for easier opponents, while highly-evolved agents are more challenging to overcome. In this publication we test a new approach for difficulty adjustment in games: orthogonally evolved AI, where the player receives support from collaborating...... agents that are co-evolved with opponent agents (where collaborators and opponents have orthogonal incentives). The advantage is that game difficulty can be adjusted more granularly by manipulating two independent axes: by having more or less adept collaborators, and by having more or less adept...... opponents. Furthermore, human interaction can modulate (and be informed by) the performance and behavior of collaborating agents. In this way, orthogonally evolved AI both facilitates smoother difficulty adjustment and enables new game experiences....

  10. Complex networks an algorithmic perspective

    CERN Document Server

    Erciyes, Kayhan

    2014-01-01

    Network science is a rapidly emerging field of study that encompasses mathematics, computer science, physics, and engineering. A key issue in the study of complex networks is to understand the collective behavior of the various elements of these networks.Although the results from graph theory have proven to be powerful in investigating the structures of complex networks, few books focus on the algorithmic aspects of complex network analysis. Filling this need, Complex Networks: An Algorithmic Perspective supplies the basic theoretical algorithmic and graph theoretic knowledge needed by every r

  11. Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Chou

    Full Text Available Metabolic networks revolve around few metabolites recognized by diverse enzymes and involved in myriad reactions. Though hub metabolites are considered as stepping stones to facilitate the evolutionary expansion of biochemical pathways, changes in their production or consumption often impair cellular physiology through their system-wide connections. How does metabolism endure perturbations brought immediately by pathway modification and restore hub homeostasis in the long run? To address this question we studied laboratory evolution of pathway-engineered Escherichia coli that underproduces the redox cofactor NADPH on glucose. Literature suggests multiple possibilities to restore NADPH homeostasis. Surprisingly, genetic dissection of isolates from our twelve evolved populations revealed merely two solutions: (1 modulating the expression of membrane-bound transhydrogenase (mTH in every population; (2 simultaneously consuming glucose with acetate, an unfavored byproduct normally excreted during glucose catabolism, in two subpopulations. Notably, mTH displays broad phylogenetic distribution and has also played a predominant role in laboratory evolution of Methylobacterium extorquens deficient in NADPH production. Convergent evolution of two phylogenetically and metabolically distinct species suggests mTH as a conserved buffering mechanism that promotes the robustness and evolvability of metabolism. Moreover, adaptive diversification via evolving dual substrate consumption highlights the flexibility of physiological systems to exploit ecological opportunities.

  12. (N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Arostica, Fernanda; Bahamonde, Sebastian [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile)

    2013-08-15

    In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann-Robertson-Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources. (orig.)

  13. Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Baldauf, Brian; Conti, Alberto

    2016-01-01

    The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal

  14. A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)

    Science.gov (United States)

    Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian

    2017-01-01

    The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and

  15. Conference Proceedings of International High Speed Networks for Scientific and Technical Information, Held at Ottawa, Canada on 6-7 October 1993 (Les Reseaux Internationaux Rapides D’Echange D’Information Scientifique et Technique)

    Science.gov (United States)

    1994-02-01

    34, in 4th Joint [101 Rios, Y., "Catdlogos en lines de acceso p.blico: European Networking Conference, May 10-13, 1993 seleccifn bibliogrifica...Networking 93, [81 Altuna, B., "El valor de la informacion desde la London, May 1993, ISBN 0-88736-936-7. perspectiva del usuario y el papel de las...bibliotecas y unidades de informacion en ia empresa", Documentaci6n Cientifica, Jul-Sep 1992, ISSN 0210-0614. li-I TRAINING & OPERATIONS SUPPORT SYSTEM

  16. Plant Evolution: A Manufacturing Network Perspective

    DEFF Research Database (Denmark)

    Yang, Cheng; Johansen, John; Boer, Harry

    2009-01-01

    Viewing them as portfolios of products and processes, we aim to address how plants evolve in the context of a manufacturing network and how the evolution of one plant impacts other plants in the same manufacturing network. Based on discussions of ten plants from three Danish companies, we identif...

  17. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    We study the effect of learning dynamics on network topology. Firstly, a network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity (STDP). This incorporates ...

  18. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    Corresponding author. E-mail: Kiran.Kolwankar@gmail.com. Abstract. We study the effect of learning dynamics on network topology. Firstly, a network of dis- crete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the ...

  19. Facilitating value co-creation in networks

    DEFF Research Database (Denmark)

    Rasmussen, Mette Apollo

    participants in varied ways come to grasp the meaning of networking. The dissertation draws on insights from the Service-Dominant (S-D) Logic to explain how networks can be seen as spheres for value co-creation. Co-creation as a theoretical construct has evolved from varied streams of service marketing...

  20. Topological dynamics in spike-timing dependent plastic model neural networks

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2013-04-01

    Full Text Available Spike-timing dependent plasticity (STDP is a biologically constrained unsupervised form of learning that potentiates or depresses synaptic connections based on the precise timing of pre-synaptic and post-synaptic firings. The effects of on-going STDP on the topology of evolving model neural networks were assessed in 50 unique simulations which modeled two hours of activity. After a period of stabilization, a number of global and local topological features were monitored periodically to quantify on-going changes in network structure. Global topological features included the total number of remaining synapses, average synaptic strengths, and average number of synapses per neuron (degree. Under a range of different input regimes and initial network configurations, each network maintained a robust and highly stable global structure across time. Local topology was monitored by assessing state changes of all three-neuron subgraphs (triads present in the networks. Overall counts and the range of triad configurations varied little across the simulations; however, a substantial set of individual triads continued to undergo rapid state changes and revealed a dynamic local topology. In addition, specific small-world properties also fluctuated across time. These findings suggest that on-going STDP provides an efficient means of selecting and maintaining a stable yet flexible network organization.

  1. A network of networks.

    Science.gov (United States)

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more

  2. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  3. Whole-genome sequencing of a laboratory-evolved yeast strain

    Directory of Open Access Journals (Sweden)

    Dunham Maitreya J

    2010-02-01

    Full Text Available Abstract Background Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

  4. Network response synchronization enhanced by synaptic plasticity

    Science.gov (United States)

    Lobov, S.; Simonov, A.; Kastalskiy, I.; Kazantsev, V.

    2016-02-01

    Synchronization of neural network response on spatially localized periodic stimulation was studied. The network consisted of synaptically coupled spiking neurons with spike-timing-dependent synaptic plasticity (STDP). Network connectivity was defined by time evolving matrix of synaptic weights. We found that the steady-state spatial pattern of the weights could be rearranged due to locally applied external periodic stimulation. A method for visualization of synaptic weights as vector field was introduced to monitor the evolving connectivity matrix. We demonstrated that changes in the vector field and associated weight rearrangements underlay an enhancement of synchronization range.

  5. Rapid prototyping of composite aircraft structures

    Science.gov (United States)

    Bennett, George; Rais-Rohani, Masoud; Hall, Kenneth; Holifield, Walt; Sullivan, Rani; Brown, Scott

    The faculty, staff and students of the Raspet Flight Research Laboratory (RFRL) have developed a rapid prototyping capability in a series of research aircraft and unmanned aircraft development projects. There has been a steady change in the technologies used to accomplish these tasks at the RFRL. The most recent development has been the utilization of computer graphics and a 5-axis gantry robot router to accelerate the design, moldmaking and parts trimming tasks. The composite structure fabrication processes at the RFRL have evolved from wet-lay-up to autoclave curve. Currently, the feasibility of the stitched composite material preform and resin transfer molding process is being explored.

  6. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    Science.gov (United States)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  7. Páramo is the world’s fastest evolving and coolest biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    Santiago eMadriñán

    2013-10-01

    Full Text Available Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800–4700 m with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177 occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations.

  8. From sensors to spikes: evolving receptive fields to enhance sensorimotor information in a robot-arm.

    Science.gov (United States)

    Luque, Niceto R; Garrido, Jesús A; Ralli, Jarno; Laredo, Juanlu J; Ros, Eduardo

    2012-08-01

    In biological systems, instead of actual encoders at different joints, proprioception signals are acquired through distributed receptive fields. In robotics, a single and accurate sensor output per link (encoder) is commonly used to track the position and the velocity. Interfacing bio-inspired control systems with spiking neural networks emulating the cerebellum with conventional robots is not a straight forward task. Therefore, it is necessary to adapt this one-dimensional measure (encoder output) into a multidimensional space (inputs for a spiking neural network) to connect, for instance, the spiking cerebellar architecture; i.e. a translation from an analog space into a distributed population coding in terms of spikes. This paper analyzes how evolved receptive fields (optimized towards information transmission) can efficiently generate a sensorimotor representation that facilitates its discrimination from other "sensorimotor states". This can be seen as an abstraction of the Cuneate Nucleus (CN) functionality in a robot-arm scenario. We model the CN as a spiking neuron population coding in time according to the response of mechanoreceptors during a multi-joint movement in a robot joint space. An encoding scheme that takes into account the relative spiking time of the signals propagating from peripheral nerve fibers to second-order somatosensory neurons is proposed. Due to the enormous number of possible encodings, we have applied an evolutionary algorithm to evolve the sensory receptive field representation from random to optimized encoding. Following the nature-inspired analogy, evolved configurations have shown to outperform simple hand-tuned configurations and other homogenized configurations based on the solution provided by the optimization engine (evolutionary algorithm). We have used artificial evolutionary engines as the optimization tool to circumvent nonlinearity responses in receptive fields.

  9. Primary Progressive Multiple Sclerosis Evolving From Radiologically Isolated Syndrome.

    Science.gov (United States)

    Kantarci, Orhun H; Lebrun, Christine; Siva, Aksel; Keegan, Mark B; Azevedo, Christina J; Inglese, Matilde; Tintoré, Mar; Newton, Braeden D; Durand-Dubief, Francoise; Amato, Maria Pia; De Stefano, Nicola; Sormani, Maria Pia; Pelletier, Daniel; Okuda, Darin T

    2016-02-01

    The aim of this work was to evaluate the preprogressive phase in subjects with radiologically isolated syndrome (RIS) who evolve to primary progressive multiple sclerosis (PPMS). A multicenter RIS cohort was previously established. Demographic, clinical, and radiological characteristics of subjects with RIS that evolved directly to PPMS were compared to those that developed a relapsing disease course from onset (clinically isolated syndrome [CIS] or relapsing-remitting MS) and were also compared to two other population- and clinic-based PPMS cohorts. Of the 453 subjects with RIS, 128 evolved to symptomatic MS during the follow-up (113 developed a first acute clinical event consistent with CIS/MS, 15 evolved to PPMS). PPMS prevalence (11.7%) and onset age (mean ± standard deviation; 49.1 ± 12.1) in the RIS group were comparable to other PPMS populations (p > 0.05). Median time to PPMS was 3.5 years (range, 1.6-5.4). RIS evolved to PPMS more commonly in men (p = 0.005) and at an older age (p < 0.001) when compared to CIS/MS, independent of follow-up duration. Subjects who evolved to PPMS had more spinal cord lesions (100%) before symptomatic evolution than those that developed CIS/MS (64%) and those that remained asymptomatic (23%) within the follow-up period (P = 0.005). Other MRI characteristics in the preprogressive phase of PPMS were indistinguishable from CIS/MS. Subjects with RIS evolve to PPMS at the same frequency as expected from general MS populations in an age-dependent manner. Besides age, unequivocal presence of spinal cord lesions and being male predicted evolution to PPMS. Our findings further suggest that RIS is biologically part of the MS spectrum. © 2015 American Neurological Association.

  10. A Survey of Signed Network Mining in Social Media

    OpenAIRE

    Tang, Jiliang; Chang, Yi; Aggarwal, Charu; Liu, Huan

    2015-01-01

    Many real-world relations can be represented by signed networks with positive and negative links, as a result of which signed network analysis has attracted increasing attention from multiple disciplines. With the increasing prevalence of social media networks, signed network analysis has evolved from developing and measuring theories to mining tasks. In this article, we present a review of mining signed networks in the context of social media and discuss some promising research directions an...

  11. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  12. MIMO Communication for Cellular Networks

    CERN Document Server

    Huang, Howard; Venkatesan, Sivarama

    2012-01-01

    As the theoretical foundations of multiple-antenna techniques evolve and as these multiple-input multiple-output (MIMO) techniques become essential for providing high data rates in wireless systems, there is a growing need to understand the performance limits of MIMO in practical networks. To address this need, MIMO Communication for Cellular Networks presents a systematic description of MIMO technology classes and a framework for MIMO system design that takes into account the essential physical-layer features of practical cellular networks. In contrast to works that focus on the theoretical performance of abstract MIMO channels, MIMO Communication for Cellular Networks emphasizes the practical performance of realistic MIMO systems. A unified set of system simulation results highlights relative performance gains of different MIMO techniques and provides insights into how best to use multiple antennas in cellular networks under various conditions. MIMO Communication for Cellular Networks describes single-user,...

  13. Network testbed creation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  14. Network testbed creation and validation

    Science.gov (United States)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-04-18

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  15. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  16. Simple, Reliable, Scalable and Energy Efficient Wireless Sensor Networks

    NARCIS (Netherlands)

    Guo, C.

    2010-01-01

    Wireless communication and networking technology has facilitated people to be connected with each other closely. Cellular network is evolving now from the third generation to the fourth generation. In the meanwhile we are experiencing the demand for wireless networks which can facilitate the

  17. GSM Network Traffic Analysis | Ani | Nigerian Journal of Technology

    African Journals Online (AJOL)

    GSM networks are traffic intensive specifically the signaling traffic. Evolvement of effective and efficient performance management strategy requires accurate quantification of network signaling traffic volume along side with the user traffic volume. Inaccurate quantification may lead to serious network traffic congestion and ...

  18. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  19. Discovery of a Rapid, Luminous Nova in NGC 300 by the KMTNet Supernova Program

    Science.gov (United States)

    Antoniadis, John; Moon, Dae-Sik; Ni, Yuan Qi; Kim, Dong-Jin; Lee, Yongseok; Neilson, Hilding

    2017-08-01

    We present the discovery of a rapidly evolving transient by the Korean Microlensing Telescope Network Supernova Program (KSP). KSP is a novel high-cadence supernova survey that offers deep (˜21.5 mag in BV I bands), nearly continuous wide-field monitoring for the discovery of early and/or fast optical transients. KSP-OT-201509a, reported here, was discovered on 2015 September 27 during the KSP commissioning run in the direction of the nearby galaxy NGC 300, and stayed above detection limit for ˜22 days. We use our BV I light curves to constrain the ascent rate, -3.7(7) mag day-1 in V, decay timescale, {t}2V=1.7(6) days, and peak absolute magnitude, -9.65≤slant {M}V≤slant -9.25 mag. We also find evidence for a short-lived pre-maximum halt in all bands. The peak luminosity and light-curve evolution make KSP-OT-201509a consistent with a bright, rapidly decaying nova outburst. We discuss constraints on the nature of the progenitor and its environment using archival Hubble Space Telescope (HST)/ACS images and conclude with a broad discussion on the nature of the system.

  20. A rapid two step protocol of in vitro propagation of an important ...

    African Journals Online (AJOL)

    The present investigation aimed at developing rapid micro propagation protocol, which can be used for conservation of Centella asiatica and mass multiplication of a valuable medicinal plant to meet out the pharmaceutical demand and its conservation. Attempts were made to evolve a rapid in vitro technology to conserve, ...