WorldWideScience

Sample records for networks evolutionary computing

  1. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  2. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  3. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  4. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  5. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

    Science.gov (United States)

    Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

    2014-01-16

    To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

  6. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    Science.gov (United States)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  7. Design of a computation tool for neutron spectrometry and dosimetry through evolutionary neural networks

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Vega C, H. R.; Martinez B, M. R.; Gallego, E.

    2009-10-01

    The neutron dosimetry is one of the most complicated tasks of radiation protection, due to it is a complex technique and highly dependent of neutron energy. One of the first devices used to perform neutron spectrometry is the system known as spectrometric system of Bonner spheres, that continuous being one of spectrometers most commonly used. This system has disadvantages such as: the components weight, the low resolution of spectrum, long and drawn out procedure for the spectra reconstruction, which require an expert user in system management, the need of use a reconstruction code as BUNKIE, SAND, etc., which are based on an iterative reconstruction algorithm and whose greatest inconvenience is that for the spectrum reconstruction, are needed to provide to system and initial spectrum as close as possible to the desired spectrum get. Consequently, researchers have mentioned the need to developed alternative measurement techniques to improve existing monitoring systems for workers. Among these alternative techniques have been reported several reconstruction procedures based on artificial intelligence techniques such as genetic algorithms, artificial neural networks and hybrid systems of evolutionary artificial neural networks using genetic algorithms. However, the use of these techniques in the nuclear science area is not free of problems, so it has been suggested that more research is conducted in such a way as to solve these disadvantages. Because they are emerging technologies, there are no tools for the results analysis, so in this paper we present first the design of a computation tool that allow to analyze the neutron spectra and equivalent doses, obtained through the hybrid technology of neural networks and genetic algorithms. This tool provides an user graphical environment, friendly, intuitive and easy of operate. The speed of program operation is high, executing the analysis in a few seconds, so it may storage and or print the obtained information for

  8. Evolutionary optimization of neural networks with heterogeneous computation: study and implementation

    OpenAIRE

    FE, JORGE DEOLINDO; Aliaga Varea, Ramón José; Gadea Gironés, Rafael

    2015-01-01

    In the optimization of artificial neural networks (ANNs) via evolutionary algorithms and the implementation of the necessary training for the objective function, there is often a trade-off between efficiency and flexibility. Pure software solutions on general-purpose processors tend to be slow because they do not take advantage of the inherent parallelism, whereas hardware realizations usually rely on optimizations that reduce the range of applicable network topologies, or they...

  9. Applications of Evolutionary Computation

    NARCIS (Netherlands)

    Mora, Antonio M.; Squillero, Giovanni; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Smith, Stephen L; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Mora, Antonio M.; Squillero, Giovanni; Jan, Mathieu; Matthias, M; Di Chio, C; Agapitos, Alexandros; Cagnoni, Stefano; Cotta, Carlos; Fernández De Vega, F; Di Caro, G A; Drechsler, R.; Ekárt, A; Esparcia-Alcázar, Anna I.; Farooq, M; Langdon, W B; Merelo-Guervós, J.J.; Preuss, M; Richter, O.-M.H.; Silva, Sara; Sim$\\$~oes, A; Squillero, Giovanni; Tarantino, Ernesto; Tettamanzi, Andrea G B; Togelius, J; Urquhart, Neil; Uyar, A S; Yannakakis, G N; Caserta, Marco; Ramirez, Adriana; Voß, Stefan; Squillero, Giovanni; Burelli, Paolo; Esparcia-Alcazar, Anna I; Silva, Sara; Agapitos, Alexandros; Cotta, Carlos; De Falco, Ivanoe; Cioppa, Antonio Della; Diwold, Konrad; Ekart, Aniko; Tarantino, Ernesto; Vega, Francisco Fernandez De; Burelli, Paolo; Sim, Kevin; Cagnoni, Stefano; Simoes, Anabela; Merelo, J.J.; Urquhart, Neil; Haasdijk, Evert; Zhang, Mengjie; Squillero, Giovanni; Eiben, A E; Tettamanzi, Andrea G B; Glette, Kyrre; Rohlfshagen, Philipp; Schaefer, Robert; Caserta, Marco; Ramirez, Adriana; Voß, Stefan

    2015-01-01

    The application of genetic and evolutionary computation to problems in medicine has increased rapidly over the past five years, but there are specific issues and challenges that distinguish it from other real-world applications. Obtaining reliable and coherent patient data, establishing the clinical

  10. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    of Computational Intelligence. First, comprehensive surveys of genetic algorithms, genetic programming, evolution strategies, parallel evolutionary algorithms are presented, which are readable and constructive so that a large audience might find them useful and – to some extent – ready to use. Some more general...... kinds of evolutionary algorithms, have been prudently analyzed. This analysis was followed by a thorough analysis of various issues involved in stochastic local search algorithms. An interesting survey of various technological and industrial applications in mechanical engineering and design has been...... topics like the estimation of distribution algorithms, indicator-based selection, etc., are also discussed. An important problem, from a theoretical and practical point of view, of learning classifier systems is presented in depth. Multiobjective evolutionary algorithms, which constitute one of the most...

  11. Practical advantages of evolutionary computation

    Science.gov (United States)

    Fogel, David B.

    1997-10-01

    Evolutionary computation is becoming a common technique for solving difficult, real-world problems in industry, medicine, and defense. This paper reviews some of the practical advantages to using evolutionary algorithms as compared with classic methods of optimization or artificial intelligence. Specific advantages include the flexibility of the procedures, as well as their ability to self-adapt the search for optimum solutions on the fly. As desktop computers increase in speed, the application of evolutionary algorithms will become routine.

  12. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  13. Optimum topology for radial networks by using evolutionary computer programming; Topologia optima de redes radiais utilizando programacao evolucionaria

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Joao Luis [Instituto de Engenhariade Sistemas e Computadores (INESC), Porto (Portugal). E-mail: jpinto@duque.inescn.pt; Proenca, Luis Miguel [Instituto Superior de Linguas e Administracao (ISLA), Gaia (Portugal). E-mail: lproenca@inescn.pt

    1999-07-01

    This paper describes the using of Evolutionary Programming techniques for determination of the radial electric network topology, considering investment costs and losses. The work aims to demonstrate the particular easiness of coding and implementation and the parallelism implicit to the method as well, giving outstanding performance levels. As test example, a 43 bars and 75 alternative lines network has been used by describing an implementation of the algorithm in an Object Oriented platform.

  14. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Science.gov (United States)

    2007-03-01

    Optimization Coello, Van Veldhuizen , and Lamont define global optimization as, “the process of finding the global minimum4 within some search space S [CVL02...Technology, Shapes Markets, and Manages People, Simon & Schuster, New York, 1995. [CVL02] Coello, C., Van Veldhuizen , D., Lamont, G.B., Evolutionary...Anomaly Detection, Technical Report CS- 2003-02, Computer Science Department, Florida Institute of Technology, 2003. [Marmelstein99] Marmelstein, R., Van

  15. Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing.

    Science.gov (United States)

    Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio

    2009-01-01

    Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate

  16. Parallel Evolutionary Optimization for Neuromorphic Network Training

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)

    2016-01-01

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.

  17. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  18. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  19. Evolutionary Based Solutions for Green Computing

    CERN Document Server

    Kołodziej, Joanna; Li, Juan; Zomaya, Albert

    2013-01-01

    Today’s highly parameterized large-scale distributed computing systems may be composed  of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system’s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems.   This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing’’ systems. The recent evolutionary and general metaheuristic-based solutions ...

  20. computer networks

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  1. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  2. Prospective Algorithms for Quantum Evolutionary Computation

    OpenAIRE

    Sofge, Donald A.

    2008-01-01

    This effort examines the intersection of the emerging field of quantum computing and the more established field of evolutionary computation. The goal is to understand what benefits quantum computing might offer to computational intelligence and how computational intelligence paradigms might be implemented as quantum programs to be run on a future quantum computer. We critically examine proposed algorithms and methods for implementing computational intelligence paradigms, primarily focused on ...

  3. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  4. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    Science.gov (United States)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  5. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  6. International Conference of Intelligence Computation and Evolutionary Computation ICEC 2012

    CERN Document Server

    Intelligence Computation and Evolutionary Computation

    2013-01-01

    2012 International Conference of Intelligence Computation and Evolutionary Computation (ICEC 2012) is held on July 7, 2012 in Wuhan, China. This conference is sponsored by Information Technology & Industrial Engineering Research Center.  ICEC 2012 is a forum for presentation of new research results of intelligent computation and evolutionary computation. Cross-fertilization of intelligent computation, evolutionary computation, evolvable hardware and newly emerging technologies is strongly encouraged. The forum aims to bring together researchers, developers, and users from around the world in both industry and academia for sharing state-of-art results, for exploring new areas of research and development, and to discuss emerging issues facing intelligent computation and evolutionary computation.

  7. Evolutionary computation in zoology and ecology.

    Science.gov (United States)

    Boone, Randall B

    2017-12-01

    Evolutionary computational methods have adopted attributes of natural selection and evolution to solve problems in computer science, engineering, and other fields. The method is growing in use in zoology and ecology. Evolutionary principles may be merged with an agent-based modeling perspective to have individual animals or other agents compete. Four main categories are discussed: genetic algorithms, evolutionary programming, genetic programming, and evolutionary strategies. In evolutionary computation, a population is represented in a way that allows for an objective function to be assessed that is relevant to the problem of interest. The poorest performing members are removed from the population, and remaining members reproduce and may be mutated. The fitness of the members is again assessed, and the cycle continues until a stopping condition is met. Case studies include optimizing: egg shape given different clutch sizes, mate selection, migration of wildebeest, birds, and elk, vulture foraging behavior, algal bloom prediction, and species richness given energy constraints. Other case studies simulate the evolution of species and a means to project shifts in species ranges in response to a changing climate that includes competition and phenotypic plasticity. This introduction concludes by citing other uses of evolutionary computation and a review of the flexibility of the methods. For example, representing species' niche spaces subject to selective pressure allows studies on cladistics, the taxon cycle, neutral versus niche paradigms, fundamental versus realized niches, community structure and order of colonization, invasiveness, and responses to a changing climate.

  8. Quality-of-service sensitivity to bio-inspired/evolutionary computational methods for intrusion detection in wireless ad hoc multimedia sensor networks

    Science.gov (United States)

    Hortos, William S.

    2012-06-01

    In the author's previous work, a cross-layer protocol approach to wireless sensor network (WSN) intrusion detection an identification is created with multiple bio-inspired/evolutionary computational methods applied to the functions of the protocol layers, a single method to each layer, to improve the intrusion-detection performance of the protocol over that of one method applied to only a single layer's functions. The WSN cross-layer protocol design embeds GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layer, respectively. The construct neglects to assess the net effect of the combined bioinspired methods on the quality-of-service (QoS) performance for "normal" data streams, that is, streams without intrusions. Analytic expressions of throughput, delay, and jitter, coupled with simulation results for WSNs free of intrusion attacks, are the basis for sensitivity analyses of QoS metrics for normal traffic to the bio-inspired methods.

  9. Evolutionary games on multilayer networks: a colloquium

    Science.gov (United States)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  10. Massively parallel evolutionary computation on GPGPUs

    CERN Document Server

    Tsutsui, Shigeyoshi

    2013-01-01

    Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened u

  11. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    failure probability. Multiobjective Evolutionary Computation algorithms (MOEAs) are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary Algorithms such as Multiobjective Genetic. Algorithm (MOGA) and Multiobjective Evolutionary Programming (MOEP) with.

  12. Function Follows Performance in Evolutionary Computational Processing

    DEFF Research Database (Denmark)

    Pasold, Anke; Foged, Isak Worre

    2011-01-01

    As the title ‘Function Follows Performance in Evolutionary Computational Processing’ suggests, this paper explores the potentials of employing multiple design and evaluation criteria within one processing model in order to account for a number of performative parameters desired within varied...

  13. Social traits, social networks and evolutionary biology.

    Science.gov (United States)

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic

  14. Evolutionary Cell Computing: From Protocells to Self-Organized Computing

    Science.gov (United States)

    Colombano, Silvano; New, Michael H.; Pohorille, Andrew; Scargle, Jeffrey; Stassinopoulos, Dimitris; Pearson, Mark; Warren, James

    2000-01-01

    On the path from inanimate to animate matter, a key step was the self-organization of molecules into protocells - the earliest ancestors of contemporary cells. Studies of the properties of protocells and the mechanisms by which they maintained themselves and reproduced are an important part of astrobiology. These studies also have the potential to greatly impact research in nanotechnology and computer science. Previous studies of protocells have focussed on self-replication. In these systems, Darwinian evolution occurs through a series of small alterations to functional molecules whose identities are stored. Protocells, however, may have been incapable of such storage. We hypothesize that under such conditions, the replication of functions and their interrelationships, rather than the precise identities of the functional molecules, is sufficient for survival and evolution. This process is called non-genomic evolution. Recent breakthroughs in experimental protein chemistry have opened the gates for experimental tests of non-genomic evolution. On the basis of these achievements, we have developed a stochastic model for examining the evolutionary potential of non-genomic systems. In this model, the formation and destruction (hydrolysis) of bonds joining amino acids in proteins occur through catalyzed, albeit possibly inefficient, pathways. Each protein can act as a substrate for polymerization or hydrolysis, or as a catalyst of these chemical reactions. When a protein is hydrolyzed to form two new proteins, or two proteins are joined into a single protein, the catalytic abilities of the product proteins are related to the catalytic abilities of the reactants. We will demonstrate that the catalytic capabilities of such a system can increase. Its evolutionary potential is dependent upon the competition between the formation of bond-forming and bond-cutting catalysts. The degree to which hydrolysis preferentially affects bonds in less efficient, and therefore less well

  15. Deterministic network interdiction optimization via an evolutionary approach

    International Nuclear Information System (INIS)

    Rocco S, Claudio M.; Ramirez-Marquez, Jose Emmanuel

    2009-01-01

    This paper introduces an evolutionary optimization approach that can be readily applied to solve deterministic network interdiction problems. The network interdiction problem solved considers the minimization of the maximum flow that can be transmitted between a source node and a sink node for a fixed network design when there is a limited amount of resources available to interdict network links. Furthermore, the model assumes that the nominal capacity of each network link and the cost associated with their interdiction can change from link to link. For this problem, the solution approach developed is based on three steps that use: (1) Monte Carlo simulation, to generate potential network interdiction strategies, (2) Ford-Fulkerson algorithm for maximum s-t flow, to analyze strategies' maximum source-sink flow and, (3) an evolutionary optimization technique to define, in probabilistic terms, how likely a link is to appear in the final interdiction strategy. Examples for different sizes of networks and network behavior are used throughout the paper to illustrate the approach. In terms of computational effort, the results illustrate that solutions are obtained from a significantly restricted solution search space. Finally, the authors discuss the need for a reliability perspective to network interdiction, so that solutions developed address more realistic scenarios of such problem

  16. Evolutionary Computing for Intelligent Power System Optimization and Control

    DEFF Research Database (Denmark)

    This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....

  17. Evolutionary computation techniques a comparative perspective

    CERN Document Server

    Cuevas, Erik; Oliva, Diego

    2017-01-01

    This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

  18. Evolutionary Computing Methods for Spectral Retrieval

    Science.gov (United States)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  19. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  20. Introduction to computer networking

    CERN Document Server

    Robertazzi, Thomas G

    2017-01-01

    This book gives a broad look at both fundamental networking technology and new areas that support it and use it. It is a concise introduction to the most prominent, recent technological topics in computer networking. Topics include network technology such as wired and wireless networks, enabling technologies such as data centers, software defined networking, cloud and grid computing and applications such as networks on chips, space networking and network security. The accessible writing style and non-mathematical treatment makes this a useful book for the student, network and communications engineer, computer scientist and IT professional. • Features a concise, accessible treatment of computer networking, focusing on new technological topics; • Provides non-mathematical introduction to networks in their most common forms today;< • Includes new developments in switching, optical networks, WiFi, Bluetooth, LTE, 5G, and quantum cryptography.

  1. Optimizing a reconfigurable material via evolutionary computation

    Science.gov (United States)

    Wilken, Sam; Miskin, Marc Z.; Jaeger, Heinrich M.

    2015-08-01

    Rapid prototyping by combining evolutionary computation with simulations is becoming a powerful tool for solving complex design problems in materials science. This method of optimization operates in a virtual design space that simulates potential material behaviors and after completion needs to be validated by experiment. However, in principle an evolutionary optimizer can also operate on an actual physical structure or laboratory experiment directly, provided the relevant material parameters can be accessed by the optimizer and information about the material's performance can be updated by direct measurements. Here we provide a proof of concept of such direct, physical optimization by showing how a reconfigurable, highly nonlinear material can be tuned to respond to impact. We report on an entirely computer controlled laboratory experiment in which a 6 ×6 grid of electromagnets creates a magnetic field pattern that tunes the local rigidity of a concentrated suspension of ferrofluid and iron filings. A genetic algorithm is implemented and tasked to find field patterns that minimize the force transmitted through the suspension. Searching within a space of roughly 1010 possible configurations, after testing only 1500 independent trials the algorithm identifies an optimized configuration of layered rigid and compliant regions.

  2. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  3. Evolutionary Scheduler for the Deep Space Network

    Science.gov (United States)

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  4. Basics of Computer Networking

    CERN Document Server

    Robertazzi, Thomas

    2012-01-01

    Springer Brief Basics of Computer Networking provides a non-mathematical introduction to the world of networks. This book covers both technology for wired and wireless networks. Coverage includes transmission media, local area networks, wide area networks, and network security. Written in a very accessible style for the interested layman by the author of a widely used textbook with many years of experience explaining concepts to the beginner.

  5. Genetic networks and soft computing.

    Science.gov (United States)

    Mitra, Sushmita; Das, Ranajit; Hayashi, Yoichi

    2011-01-01

    The analysis of gene regulatory networks provides enormous information on various fundamental cellular processes involving growth, development, hormone secretion, and cellular communication. Their extraction from available gene expression profiles is a challenging problem. Such reverse engineering of genetic networks offers insight into cellular activity toward prediction of adverse effects of new drugs or possible identification of new drug targets. Tasks such as classification, clustering, and feature selection enable efficient mining of knowledge about gene interactions in the form of networks. It is known that biological data is prone to different kinds of noise and ambiguity. Soft computing tools, such as fuzzy sets, evolutionary strategies, and neurocomputing, have been found to be helpful in providing low-cost, acceptable solutions in the presence of various types of uncertainties. In this paper, we survey the role of these soft methodologies and their hybridizations, for the purpose of generating genetic networks.

  6. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  7. Parallel evolutionary computation in bioinformatics applications.

    Science.gov (United States)

    Pinho, Jorge; Sobral, João Luis; Rocha, Miguel

    2013-05-01

    A large number of optimization problems within the field of Bioinformatics require methods able to handle its inherent complexity (e.g. NP-hard problems) and also demand increased computational efforts. In this context, the use of parallel architectures is a necessity. In this work, we propose ParJECoLi, a Java based library that offers a large set of metaheuristic methods (such as Evolutionary Algorithms) and also addresses the issue of its efficient execution on a wide range of parallel architectures. The proposed approach focuses on the easiness of use, making the adaptation to distinct parallel environments (multicore, cluster, grid) transparent to the user. Indeed, this work shows how the development of the optimization library can proceed independently of its adaptation for several architectures, making use of Aspect-Oriented Programming. The pluggable nature of parallelism related modules allows the user to easily configure its environment, adding parallelism modules to the base source code when needed. The performance of the platform is validated with two case studies within biological model optimization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Classroom Computer Network.

    Science.gov (United States)

    Lent, John

    1984-01-01

    This article describes a computer network system that connects several microcomputers to a single disk drive and one copy of software. Many schools are switching to networks as a cheaper and more efficient means of computer instruction. Teachers may be faced with copywriting problems when reproducing programs. (DF)

  9. Computer-communication networks

    CERN Document Server

    Meditch, James S

    1983-01-01

    Computer- Communication Networks presents a collection of articles the focus of which is on the field of modeling, analysis, design, and performance optimization. It discusses the problem of modeling the performance of local area networks under file transfer. It addresses the design of multi-hop, mobile-user radio networks. Some of the topics covered in the book are the distributed packet switching queuing network design, some investigations on communication switching techniques in computer networks and the minimum hop flow assignment and routing subject to an average message delay constraint

  10. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  11. ELeaRNT: Evolutionary Learning of Rich Neural Network Topologies

    National Research Council Canada - National Science Library

    Matteucci, Matteo

    2006-01-01

    In this paper we present ELeaRNT an evolutionary strategy which evolves rich neural network topologies in order to find an optimal domain specific non linear function approximator with a good generalization performance...

  12. Evolutionary neural networks: a new alternative for neutron spectrometry

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Galleo, E.

    2009-10-01

    A device used to perform neutron spectroscopy is the system known as a system of Bonner spheres spectrometer, this system has some disadvantages, one of these is the need for reconstruction using a code that is based on an iterative reconstruction algorithm, whose greater inconvenience is the need for a initial spectrum, as close as possible to the spectrum that is desired to avoid this inconvenience has been reported several procedures in reconstruction, combined with various types of experimental methods, based on artificial intelligence technology how genetic algorithms, artificial neural networks and hybrid systems evolved artificial neural networks using genetic algorithms. This paper analyzes the intersection of neural networks and evolutionary algorithms applied in the neutron spectroscopy and dosimetry. Due to this is an emerging technology, there are not tools for doing analysis of the obtained results, by what this paper presents a computing tool to analyze the neutron spectra and the equivalent doses obtained through the hybrid technology of neural networks and genetic algorithms. The toolmaker offers a user graphical environment, friendly and easy to operate. (author)

  13. Hidden long evolutionary memory in a model biochemical network

    Science.gov (United States)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  14. Modelling computer networks

    International Nuclear Information System (INIS)

    Max, G

    2011-01-01

    Traffic models in computer networks can be described as a complicated system. These systems show non-linear features and to simulate behaviours of these systems are also difficult. Before implementing network equipments users wants to know capability of their computer network. They do not want the servers to be overloaded during temporary traffic peaks when more requests arrive than the server is designed for. As a starting point for our study a non-linear system model of network traffic is established to exam behaviour of the network planned. The paper presents setting up a non-linear simulation model that helps us to observe dataflow problems of the networks. This simple model captures the relationship between the competing traffic and the input and output dataflow. In this paper, we also focus on measuring the bottleneck of the network, which was defined as the difference between the link capacity and the competing traffic volume on the link that limits end-to-end throughput. We validate the model using measurements on a working network. The results show that the initial model estimates well main behaviours and critical parameters of the network. Based on this study, we propose to develop a new algorithm, which experimentally determines and predict the available parameters of the network modelled.

  15. Conversion Rate Optimization through Evolutionary Computation

    OpenAIRE

    Miikkulainen, Risto; Iscoe, Neil; Shagrin, Aaron; Cordell, Ron; Nazari, Sam; Schoolland, Cory; Brundage, Myles; Epstein, Jonathan; Dean, Randy; Lamba, Gurmeet

    2017-01-01

    Conversion optimization means designing a web interface so that as many users as possible take a desired action on it, such as register or purchase. Such design is usually done by hand, testing one change at a time through A/B testing, or a limited number of combinations through multivariate testing, making it possible to evaluate only a small fraction of designs in a vast design space. This paper describes Sentient Ascend, an automatic conversion optimization system that uses evolutionary op...

  16. Offline computing and networking

    International Nuclear Information System (INIS)

    Appel, J.A.; Avery, P.; Chartrand, G.

    1985-01-01

    This note summarizes the work of the Offline Computing and Networking Group. The report is divided into two sections; the first deals with the computing and networking requirements and the second with the proposed way to satisfy those requirements. In considering the requirements, we have considered two types of computing problems. The first is CPU-intensive activity such as production data analysis (reducing raw data to DST), production Monte Carlo, or engineering calculations. The second is physicist-intensive computing such as program development, hardware design, physics analysis, and detector studies. For both types of computing, we examine a variety of issues. These included a set of quantitative questions: how much CPU power (for turn-around and for through-put), how much memory, mass-storage, bandwidth, and so on. There are also very important qualitative issues: what features must be provided by the operating system, what tools are needed for program design, code management, database management, and for graphics

  17. Measuring the evolutionary rewiring of biological networks.

    Directory of Open Access Journals (Sweden)

    Chong Shou

    Full Text Available We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.

  18. Evolutionary computing in Nuclear Engineering Institute/CNEN-Brazil

    International Nuclear Information System (INIS)

    Pereira, Claudio M.N.A.; Lapa, Celso M.F.; Lapa, Nelbia da Silva; Mol, Antonio C.

    2000-01-01

    This paper aims to discuss the importance of evolutionary computation (CE) for nuclear engineering and the development of this area in the Instituto de Engenharia Nuclear (IEN) at the last years. Are describe, briefly, the applications realized in this institute by the technical group of CE. For example: nuclear reactor core design optimization, preventive maintenance scheduling optimizing and nuclear reactor transient identifications. It is also shown a novel computational tool to implementation of genetic algorithm that was development in this institute and applied in those works. Some results were presents and the gains obtained with the evolutionary computation were discussing. (author)

  19. 10th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Lin, Jerry; Wang, Chia-Hung; Jiang, Xin

    2017-01-01

    This book gathers papers presented at the 10th International Conference on Genetic and Evolutionary Computing (ICGEC 2016). The conference was co-sponsored by Springer, Fujian University of Technology in China, the University of Computer Studies in Yangon, University of Miyazaki in Japan, National Kaohsiung University of Applied Sciences in Taiwan, Taiwan Association for Web Intelligence Consortium, and VSB-Technical University of Ostrava, Czech Republic. The ICGEC 2016, which was held from November 7 to 9, 2016 in Fuzhou City, China, was intended as an international forum for researchers and professionals in all areas of genetic and evolutionary computing.

  20. From evolutionary computation to the evolution of things

    NARCIS (Netherlands)

    Eiben, A.E.; Smith, J.E.

    2015-01-01

    Evolution has provided a source of inspiration for algorithm designers since the birth of computers. The resulting field, evolutionary computation, has been successful in solving engineering tasks ranging in outlook from the molecular to the astronomical. Today, the field is entering a new phase as

  1. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  2. Robust and Flexible Scheduling with Evolutionary Computation

    DEFF Research Database (Denmark)

    Jensen, Mikkel T.

    Over the last ten years, there have been numerous applications of evolutionary algorithms to a variety of scheduling problems. Like most other research on heuristic scheduling, the primary aim of the research has been on deterministic formulations of the problems. This is in contrast to real world...... scheduling problems which are usually not deterministic. Usually at the time the schedule is made some information about the problem and processing environment is available, but this information is uncertain and likely to change during schedule execution. Changes frequently encountered in scheduling...... environments include machine breakdowns, uncertain processing times, workers getting sick, materials being delayed and the appearance of new jobs. These possible environmental changes mean that a schedule which was optimal for the information available at the time of scheduling can end up being highly...

  3. Evolutionary Computation Techniques for Predicting Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Amine Marref

    2013-01-01

    Full Text Available Corrosion occurs in many engineering structures such as bridges, pipelines, and refineries and leads to the destruction of materials in a gradual manner and thus shortening their lifespan. It is therefore crucial to assess the structural integrity of engineering structures which are approaching or exceeding their designed lifespan in order to ensure their correct functioning, for example, carrying ability and safety. An understanding of corrosion and an ability to predict corrosion rate of a material in a particular environment plays a vital role in evaluating the residual life of the material. In this paper we investigate the use of genetic programming and genetic algorithms in the derivation of corrosion-rate expressions for steel and zinc. Genetic programming is used to automatically evolve corrosion-rate expressions while a genetic algorithm is used to evolve the parameters of an already engineered corrosion-rate expression. We show that both evolutionary techniques yield corrosion-rate expressions that have good accuracy.

  4. Preferential attachment in evolutionary earthquake networks

    Science.gov (United States)

    Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein

    2018-04-01

    Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.

  5. Design of a computation tool for neutron spectrometry and dosimetry through evolutionary neural networks; Diseno de una herramienta de computo para la espectrometria y dosimetria de neutrones por medio de redes neuronales evolutivas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico); Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, E-28006 Madrid (Spain)], e-mail: morvymmyahoo@com.mx

    2009-10-15

    The neutron dosimetry is one of the most complicated tasks of radiation protection, due to it is a complex technique and highly dependent of neutron energy. One of the first devices used to perform neutron spectrometry is the system known as spectrometric system of Bonner spheres, that continuous being one of spectrometers most commonly used. This system has disadvantages such as: the components weight, the low resolution of spectrum, long and drawn out procedure for the spectra reconstruction, which require an expert user in system management, the need of use a reconstruction code as BUNKIE, SAND, etc., which are based on an iterative reconstruction algorithm and whose greatest inconvenience is that for the spectrum reconstruction, are needed to provide to system and initial spectrum as close as possible to the desired spectrum get. Consequently, researchers have mentioned the need to developed alternative measurement techniques to improve existing monitoring systems for workers. Among these alternative techniques have been reported several reconstruction procedures based on artificial intelligence techniques such as genetic algorithms, artificial neural networks and hybrid systems of evolutionary artificial neural networks using genetic algorithms. However, the use of these techniques in the nuclear science area is not free of problems, so it has been suggested that more research is conducted in such a way as to solve these disadvantages. Because they are emerging technologies, there are no tools for the results analysis, so in this paper we present first the design of a computation tool that allow to analyze the neutron spectra and equivalent doses, obtained through the hybrid technology of neural networks and genetic algorithms. This tool provides an user graphical environment, friendly, intuitive and easy of operate. The speed of program operation is high, executing the analysis in a few seconds, so it may storage and or print the obtained information for

  6. Coevolution of Artificial Agents Using Evolutionary Computation in Bargaining Game

    Directory of Open Access Journals (Sweden)

    Sangwook Lee

    2015-01-01

    Full Text Available Analysis of bargaining game using evolutionary computation is essential issue in the field of game theory. This paper investigates the interaction and coevolutionary process among heterogeneous artificial agents using evolutionary computation (EC in the bargaining game. In particular, the game performance with regard to payoff through the interaction and coevolution of agents is studied. We present three kinds of EC based agents (EC-agent participating in the bargaining game: genetic algorithm (GA, particle swarm optimization (PSO, and differential evolution (DE. The agents’ performance with regard to changing condition is compared. From the simulation results it is found that the PSO-agent is superior to the other agents.

  7. Study on the evolutionary optimization of the topology of network control systems

    DEFF Research Database (Denmark)

    Zhou, Z.; Chen, B.; Wang, H.

    2010-01-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology...... control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative...

  8. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  9. Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory

    Directory of Open Access Journals (Sweden)

    Nai-Ru Xu

    2016-01-01

    Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.

  10. Computer Networks and Globalization

    Directory of Open Access Journals (Sweden)

    J. Magliaro

    2007-07-01

    Full Text Available Communication and information computer networks connect the world in ways that make globalization more natural and inequity more subtle. As educators, we look at these phenomena holistically analyzing them from the realist’s view, thus exploring tensions, (in equity and (injustice, and from the idealist’s view, thus embracing connectivity, convergence and development of a collective consciousness. In an increasingly market- driven world we find examples of openness and human generosity that are based on networks, specifically the Internet. After addressing open movements in publishing, software industry and education, we describe the possibility of a dialectic equilibrium between globalization and indigenousness in view of ecologically designed future smart networks

  11. Online networks, social interaction and segregation: An evolutionary approach

    OpenAIRE

    Antoci, Angelo; Sabatini, Fabio

    2018-01-01

    There is growing evidence that face-to-face interaction is declining in many countries, exacerbating the phenomenon of social isolation. On the other hand, social interaction through online networking sites is steeply rising. To analyze these societal dynamics, we have built an evolutionary game model in which agents can choose between three strategies of social participation: 1) interaction via both online social networks and face-to-face encounters; 2) interaction by exclusive means of face...

  12. Interior spatial layout with soft objectives using evolutionary computation

    NARCIS (Netherlands)

    Chatzikonstantinou, I.; Bengisu, E.

    2016-01-01

    This paper presents the design problem of furniture arrangement in a residential interior living space, and addresses it by means of evolutionary computation. Interior arrangement is an important and interesting problem that occurs commonly when designing living spaces. It entails determining the

  13. A network growth model based on the evolutionary ultimatum game

    International Nuclear Information System (INIS)

    Deng, L L; Zhou, G G; Cai, J H; Wang, C; Tang, W S

    2012-01-01

    In this paper, we provide a network growth model with incorporation into the ultimatum game dynamics. The network grows on the basis of the payoff-oriented preferential attachment mechanism, where a new node is added into the network and attached preferentially to nodes with higher payoffs. The interplay between the network growth and the game dynamics gives rise to quite interesting dynamical behaviors. Simulation results show the emergence of altruistic behaviors in the ultimatum game, which is affected by the growing network structure. Compared with the static counterpart case, the levels of altruistic behaviors are promoted. The corresponding strategy distributions and wealth distributions are also presented to further demonstrate the strategy evolutionary dynamics. Subsequently, we turn to the topological properties of the evolved network, by virtue of some statistics. The most studied characteristic path length and the clustering coefficient of the network are shown to indicate their small-world effect. Then the degree distributions are analyzed to clarify the interplay of structure and evolutionary dynamics. In particular, the difference between our growth network and the static counterpart is revealed. To explain clearly the evolved networks, the rich-club ordering and the assortative mixing coefficient are exploited to reveal the degree correlation. (paper)

  14. Evolutionary Algorithms For Neural Networks Binary And Real Data Classification

    Directory of Open Access Journals (Sweden)

    Dr. Hanan A.R. Akkar

    2015-08-01

    Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.

  15. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

    Science.gov (United States)

    Smith, Robert W; van Sluijs, Bob; Fleck, Christian

    2017-12-02

    Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

  16. BONFIRE: benchmarking computers and computer networks

    OpenAIRE

    Bouckaert, Stefan; Vanhie-Van Gerwen, Jono; Moerman, Ingrid; Phillips, Stephen; Wilander, Jerker

    2011-01-01

    The benchmarking concept is not new in the field of computing or computer networking. With “benchmarking tools”, one usually refers to a program or set of programs, used to evaluate the performance of a solution under certain reference conditions, relative to the performance of another solution. Since the 1970s, benchmarking techniques have been used to measure the performance of computers and computer networks. Benchmarking of applications and virtual machines in an Infrastructure-as-a-Servi...

  17. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Li, Michael; Knyaz, Christina; Tamura, Koichiro

    2018-06-01

    The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.

  18. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  19. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design

    International Nuclear Information System (INIS)

    Menges, Achim

    2012-01-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies. (paper)

  20. Computing and Network - Overview

    International Nuclear Information System (INIS)

    Jakubowski, Z.

    1999-01-01

    Full text: The responsibility of the Network Group covers: - providing central services like WWW, DNS (Domain Name Server), mail, etc.; - maintenance and support of the Local Area Networks,; - operation of the Wide Area Networks (LAN); - the support of the central UNIX servers and desktop workstations; - VAX/VMS cluster operation and support. The two-processor HP-UNIX K-200 and 6-processor SGI Challenge XL servers were delivering stable services to our users. Both servers were upgraded during the past year. SGI Challenge received additional 256 MB of memory. It was necessary in order to get all benefits of true 64-bit architecture of the SGI IRIX 6.2. The upgrade of our HP K-200 server were problematic so we decided to buy a new powerful machine and join the old and new machine via the fast network. Besides these main servers we have more than 30 workstations from IBM, DEC, HP, SGI and SUN. We observed a real race in PC technology in the past year. Intel processors deliver currently a performance that is comparable with HP or SUN workstations at very low costs. These CPU power is especially visible under Linux that is free Unix-like operating system. The clusters of cheap PC computers should be seriously considered in planning the computing power for the future experiments. The CPU power was further decentralized-smaller but powerful computers cover growing computing demands of our work-groups creating a small ''local computing centers''. The stable network and the concept of central services plays the essential role in this scenario. Unfortunately the network performance for the international communications is persistently unacceptable. We believe that attempts to join the European Quantum project is the only way to achieve the reasonable international network performance. In these plan polish scientific community will gain 34 Mbps international link. The growing costs of the ''real meetings'' give us no alternative to ''virtual meetings'' via the network in the

  1. Evolutionary fuzzy ARTMAP neural networks for classification of semiconductor defects.

    Science.gov (United States)

    Tan, Shing Chiang; Watada, Junzo; Ibrahim, Zuwairie; Khalid, Marzuki

    2015-05-01

    Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.

  2. Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network

    International Nuclear Information System (INIS)

    Ma Qianli; Zheng Qilun; Peng Hong; Qin Jiangwei; Zhong Tanwei

    2008-01-01

    This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it estimates the proper parameters of phase space reconstruction and optimizes the structure of recurrent neural networks by co-evolutionary strategy. The searching space was separated into two subspaces and the individuals are trained in a parallel computational procedure. It can dynamically combine the embedding method with the capability of recurrent neural network to incorporate past experience due to internal recurrence. The effectiveness of CERNN is evaluated by using three benchmark chaotic time series data sets: the Lorenz series, Mackey-Glass series and real-world sun spot series. The simulation results show that CERNN improves the performances of multi-step-prediction of chaotic time series

  3. Regulatory RNA design through evolutionary computation and strand displacement.

    Science.gov (United States)

    Rostain, William; Landrain, Thomas E; Rodrigo, Guillermo; Jaramillo, Alfonso

    2015-01-01

    The discovery and study of a vast number of regulatory RNAs in all kingdoms of life over the past decades has allowed the design of new synthetic RNAs that can regulate gene expression in vivo. Riboregulators, in particular, have been used to activate or repress gene expression. However, to accelerate and scale up the design process, synthetic biologists require computer-assisted design tools, without which riboregulator engineering will remain a case-by-case design process requiring expert attention. Recently, the design of RNA circuits by evolutionary computation and adapting strand displacement techniques from nanotechnology has proven to be suited to the automated generation of DNA sequences implementing regulatory RNA systems in bacteria. Herein, we present our method to carry out such evolutionary design and how to use it to create various types of riboregulators, allowing the systematic de novo design of genetic control systems in synthetic biology.

  4. Network-level architecture and the evolutionary potential of underground metabolism.

    Science.gov (United States)

    Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-08-12

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.

  5. An evolutionary computation approach to examine functional brain plasticity

    Directory of Open Access Journals (Sweden)

    Arnab eRoy

    2016-04-01

    Full Text Available One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN and the executive control network (ECN during recovery from traumatic brain injury (TBI; the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in

  6. Computing networks from cluster to cloud computing

    CERN Document Server

    Vicat-Blanc, Pascale; Guillier, Romaric; Soudan, Sebastien

    2013-01-01

    "Computing Networks" explores the core of the new distributed computing infrastructures we are using today:  the networking systems of clusters, grids and clouds. It helps network designers and distributed-application developers and users to better understand the technologies, specificities, constraints and benefits of these different infrastructures' communication systems. Cloud Computing will give the possibility for millions of users to process data anytime, anywhere, while being eco-friendly. In order to deliver this emerging traffic in a timely, cost-efficient, energy-efficient, and

  7. Iris double recognition based on modified evolutionary neural network

    Science.gov (United States)

    Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai

    2017-11-01

    Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.

  8. Solution of Fractional Order System of Bagley-Torvik Equation Using Evolutionary Computational Intelligence

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Zahoor Raja

    2011-01-01

    Full Text Available A stochastic technique has been developed for the solution of fractional order system represented by Bagley-Torvik equation. The mathematical model of the equation was developed with the help of feed-forward artificial neural networks. The training of the networks was made with evolutionary computational intelligence based on genetic algorithm hybrid with pattern search technique. Designed scheme was successfully applied to different forms of the equation. Results are compared with standard approximate analytic, stochastic numerical solvers and exact solutions.

  9. Exploring the miRNA regulatory network using evolutionary correlations.

    Directory of Open Access Journals (Sweden)

    Benedikt Obermayer

    2014-10-01

    Full Text Available Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective.

  10. Study on the evolutionary optimisation of the topology of network control systems

    Science.gov (United States)

    Zhou, Zude; Chen, Benyuan; Wang, Hong; Fan, Zhun

    2010-08-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology optimisation theory and methods of the network control system based on switched Ethernet in an industrial context. Factors that affect the real-time performance of the industrial control network are presented in detail, and optimisation criteria with their internal relations are analysed. After the definition of performance parameters, the normalised indices for the evaluation of the topology optimisation are proposed. The topology optimisation problem is formulated as a multi-objective optimisation problem and the evolutionary algorithm is applied to solve it. Special communication characteristics of the industrial control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative relation method and the objective function combination method, for reducing the computational cost of the algorithm, are given. Simulation tests show that the performance of the proposed algorithm is preferable and superior compared to other algorithms. The final solution greatly improves the following indices: traffic localisation, traffic balance and utilisation rate balance of switches. In addition, a new performance index with its estimation process is proposed.

  11. Statistical physics and computational methods for evolutionary game theory

    CERN Document Server

    Javarone, Marco Alberto

    2018-01-01

    This book presents an introduction to Evolutionary Game Theory (EGT) which is an emerging field in the area of complex systems attracting the attention of researchers from disparate scientific communities. EGT allows one to represent and study several complex phenomena, such as the emergence of cooperation in social systems, the role of conformity in shaping the equilibrium of a population, and the dynamics in biological and ecological systems. Since EGT models belong to the area of complex systems, statistical physics constitutes a fundamental ingredient for investigating their behavior. At the same time, the complexity of some EGT models, such as those realized by means of agent-based methods, often require the implementation of numerical simulations. Therefore, beyond providing an introduction to EGT, this book gives a brief overview of the main statistical physics tools (such as phase transitions and the Ising model) and computational strategies for simulating evolutionary games (such as Monte Carlo algor...

  12. How altruism works: An evolutionary model of supply networks

    Science.gov (United States)

    Ge, Zehui; Zhang, Zi-Ke; Lü, Linyuan; Zhou, Tao; Xi, Ning

    2012-02-01

    Recently, supply networks have attracted increasing attention from the scientific community. However, it lacks serious consideration of social preference in Supply Chain Management. In this paper, we develop an evolutionary decision-making model to characterize the effects of suppliers' altruism in supply networks, and find that the performances of both suppliers and supply chains are improved by introducing the role of altruism. Furthermore, an interesting and reasonable phenomenon is discovered that the suppliers' and whole network's profits do not change monotonously with suppliers' altruistic preference, η, but reach the best at η=0.6 and η=0.4, respectively. This work may shed some light on the in-depth understanding of the effects of altruism for both research and commercial applications.

  13. 9th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Lin, Jerry; Pan, Jeng-Shyang; Tin, Pyke; Yokota, Mitsuhiro; Genetic and Evolutionary Computing

    2016-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at ICGEC 2015, the 9th International Conference on Genetic and Evolutionary Computing. The conference this year was technically co-sponsored by Ministry of Science and Technology, Myanmar, University of Computer Studies, Yangon, University of Miyazaki in Japan, Kaohsiung University of Applied Science in Taiwan, Fujian University of Technology in China and VSB-Technical University of Ostrava. ICGEC 2015 is held from 26-28, August, 2015 in Yangon, Myanmar. Yangon, the most multiethnic and cosmopolitan city in Myanmar, is the main gateway to the country. Despite being the commercial capital of Myanmar, Yangon is a city engulfed by its rich history and culture, an integration of ancient traditions and spiritual heritage. The stunning SHWEDAGON Pagoda is the center piece of Yangon city, which itself is famous for the best British colonial era architecture. Of particular interest in many shops of Bogyoke Aung San Market,...

  14. Computing spin networks

    International Nuclear Information System (INIS)

    Marzuoli, Annalisa; Rasetti, Mario

    2005-01-01

    We expand a set of notions recently introduced providing the general setting for a universal representation of the quantum structure on which quantum information stands. The dynamical evolution process associated with generic quantum information manipulation is based on the (re)coupling theory of SU (2) angular momenta. Such scheme automatically incorporates all the essential features that make quantum information encoding much more efficient than classical: it is fully discrete; it deals with inherently entangled states, naturally endowed with a tensor product structure; it allows for generic encoding patterns. The model proposed can be thought of as the non-Boolean generalization of the quantum circuit model, with unitary gates expressed in terms of 3nj coefficients connecting inequivalent binary coupling schemes of n + 1 angular momentum variables, as well as Wigner rotations in the eigenspace of the total angular momentum. A crucial role is played by elementary j-gates (6j symbols) which satisfy algebraic identities that make the structure of the model similar to 'state sum models' employed in discretizing topological quantum field theories and quantum gravity. The spin network simulator can thus be viewed also as a Combinatorial QFT model for computation. The semiclassical limit (large j) is discussed

  15. 8th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Yang, Chin-Yu; Lin, Chun-Wei; Pan, Jeng-Shyang; Snasel, Vaclav; Abraham, Ajith

    2015-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at ICGEC 2014, the 8th International Conference on Genetic and Evolutionary Computing. The conference this year was technically co-sponsored by Nanchang Institute of Technology in China, Kaohsiung University of Applied Science in Taiwan, and VSB-Technical University of Ostrava. ICGEC 2014 is held from 18-20 October 2014 in Nanchang, China. Nanchang is one of is the capital of Jiangxi Province in southeastern China, located in the north-central portion of the province. As it is bounded on the west by the Jiuling Mountains, and on the east by Poyang Lake, it is famous for its scenery, rich history and cultural sites. Because of its central location relative to the Yangtze and Pearl River Delta regions, it is a major railroad hub in Southern China. The conference is intended as an international forum for the researchers and professionals in all areas of genetic and evolutionary computing.

  16. 7th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Krömer, Pavel; Snášel, Václav

    2014-01-01

    Genetic and Evolutionary Computing This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at ICGEC 2013, the 7th International Conference on Genetic and Evolutionary Computing. The conference this year was technically co-sponsored by The Waseda University in Japan, Kaohsiung University of Applied Science in Taiwan, and VSB-Technical University of Ostrava. ICGEC 2013 was held in Prague, Czech Republic. Prague is one of the most beautiful cities in the world whose magical atmosphere has been shaped over ten centuries. Places of the greatest tourist interest are on the Royal Route running from the Powder Tower through Celetna Street to Old Town Square, then across Charles Bridge through the Lesser Town up to the Hradcany Castle. One should not miss the Jewish Town, and the National Gallery with its fine collection of Czech Gothic art, collection of old European art, and a beautiful collection of French art. The conference was intended as an international forum for the res...

  17. How mutation alters the evolutionary dynamics of cooperation on networks

    Science.gov (United States)

    Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki

    2018-05-01

    Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.

  18. Network survivability performance (computer diskette)

    Science.gov (United States)

    1993-11-01

    File characteristics: Data file; 1 file. Physical description: 1 computer diskette; 3 1/2 in.; high density; 2.0MB. System requirements: Mac; Word. This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunication networks to user expectations for network survivability.

  19. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  20. Understanding and designing computer networks

    CERN Document Server

    King, Graham

    1995-01-01

    Understanding and Designing Computer Networks considers the ubiquitous nature of data networks, with particular reference to internetworking and the efficient management of all aspects of networked integrated data systems. In addition it looks at the next phase of networking developments; efficiency and security are covered in the sections dealing with data compression and data encryption; and future examples of network operations, such as network parallelism, are introduced.A comprehensive case study is used throughout the text to apply and illustrate new techniques and concepts as th

  1. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  2. Evolutionary Topology of a Currency Network in Asia

    Science.gov (United States)

    Feng, Xiaobing; Wang, Xiaofan

    Although recently there are extensive research on currency network using minimum spanning trees approach, the knowledge about the actual evolution of a currency web in Asia is still limited. In the paper, we study the structural evolution of an Asian network using daily exchange rate data. It was found that the correlation between Asian currencies and US Dollar, the previous regional key currency has become weaker and the intra-Asia interactions have increased. This becomes more salient after the exchange rate reform of China. Different from the previous studies, we further reveal that it is the trade volume, national wealth gap and countries growth cycle that has contributed to the evolutionary topology of the minimum spanning tree. These findings provide a valuable platform for theoretical modeling and further analysis.

  3. Android malware detection based on evolutionary super-network

    Science.gov (United States)

    Yan, Haisheng; Peng, Lingling

    2018-04-01

    In the paper, an android malware detection method based on evolutionary super-network is proposed in order to improve the precision of android malware detection. Chi square statistics method is used for selecting characteristics on the basis of analyzing android authority. Boolean weighting is utilized for calculating characteristic weight. Processed characteristic vector is regarded as the system training set and test set; hyper edge alternative strategy is used for training super-network classification model, thereby classifying test set characteristic vectors, and it is compared with traditional classification algorithm. The results show that the detection method proposed in the paper is close to or better than traditional classification algorithm. The proposed method belongs to an effective Android malware detection means.

  4. Evolutionary neural network modeling for software cumulative failure time prediction

    International Nuclear Information System (INIS)

    Tian Liang; Noore, Afzel

    2005-01-01

    An evolutionary neural network modeling approach for software cumulative failure time prediction based on multiple-delayed-input single-output architecture is proposed. Genetic algorithm is used to globally optimize the number of the delayed input neurons and the number of neurons in the hidden layer of the neural network architecture. Modification of Levenberg-Marquardt algorithm with Bayesian regularization is used to improve the ability to predict software cumulative failure time. The performance of our proposed approach has been compared using real-time control and flight dynamic application data sets. Numerical results show that both the goodness-of-fit and the next-step-predictability of our proposed approach have greater accuracy in predicting software cumulative failure time compared to existing approaches

  5. Evolutionary Artificial Neural Network Weight Tuning to Optimize Decision Making for an Abstract Game

    Science.gov (United States)

    2010-03-01

    EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT...AFIT/GCS/ENG/10-06 EVOLUTIONARY ARTIFICIAL NEURAL NETWORK WEIGHT TUNING TO OPTIMIZE DECISION MAKING FOR AN ABSTRACT GAME THESIS Presented...35 14: Diagram of pLoGANN’s Artificial Neural Network and

  6. A security mechanism based on evolutionary game in fog computing.

    Science.gov (United States)

    Sun, Yan; Lin, Fuhong; Zhang, Nan

    2018-02-01

    Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  7. A security mechanism based on evolutionary game in fog computing

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2018-02-01

    Full Text Available Fog computing is a distributed computing paradigm at the edge of the network and requires cooperation of users and sharing of resources. When users in fog computing open their resources, their devices are easily intercepted and attacked because they are accessed through wireless network and present an extensive geographical distribution. In this study, a credible third party was introduced to supervise the behavior of users and protect the security of user cooperation. A fog computing security mechanism based on human nervous system is proposed, and the strategy for a stable system evolution is calculated. The MATLAB simulation results show that the proposed mechanism can reduce the number of attack behaviors effectively and stimulate users to cooperate in application tasks positively.

  8. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  9. Wavelet evolutionary network for complex-constrained portfolio rebalancing

    Science.gov (United States)

    Suganya, N. C.; Vijayalakshmi Pai, G. A.

    2012-07-01

    Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.

  10. Evolutionary image simplification for lung nodule classification with convolutional neural networks.

    Science.gov (United States)

    Lückehe, Daniel; von Voigt, Gabriele

    2018-05-29

    Understanding decisions of deep learning techniques is important. Especially in the medical field, the reasons for a decision in a classification task are as crucial as the pure classification results. In this article, we propose a new approach to compute relevant parts of a medical image. Knowing the relevant parts makes it easier to understand decisions. In our approach, a convolutional neural network is employed to learn structures of images of lung nodules. Then, an evolutionary algorithm is applied to compute a simplified version of an unknown image based on the learned structures by the convolutional neural network. In the simplified version, irrelevant parts are removed from the original image. In the results, we show simplified images which allow the observer to focus on the relevant parts. In these images, more than 50% of the pixels are simplified. The simplified pixels do not change the meaning of the images based on the learned structures by the convolutional neural network. An experimental analysis shows the potential of the approach. Besides the examples of simplified images, we analyze the run time development. Simplified images make it easier to focus on relevant parts and to find reasons for a decision. The combination of an evolutionary algorithm employing a learned convolutional neural network is well suited for the simplification task. From a research perspective, it is interesting which areas of the images are simplified and which parts are taken as relevant.

  11. Artificial Intelligence, Evolutionary Computing and Metaheuristics In the Footsteps of Alan Turing

    CERN Document Server

    2013-01-01

    Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation.  Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo sear...

  12. Computer networks and advanced communications

    International Nuclear Information System (INIS)

    Koederitz, W.L.; Macon, B.S.

    1992-01-01

    One of the major methods for getting the most productivity and benefits from computer usage is networking. However, for those who are contemplating a change from stand-alone computers to a network system, the investigation of actual networks in use presents a paradox: network systems can be highly productive and beneficial; at the same time, these networks can create many complex, frustrating problems. The issue becomes a question of whether the benefits of networking are worth the extra effort and cost. In response to this issue, the authors review in this paper the implementation and management of an actual network in the LSU Petroleum Engineering Department. The network, which has been in operation for four years, is large and diverse (50 computers, 2 sites, PC's, UNIX RISC workstations, etc.). The benefits, costs, and method of operation of this network will be described, and an effort will be made to objectively weigh these elements from the point of view of the average computer user

  13. An evolutionary computing frame work toward object extraction from satellite images

    Directory of Open Access Journals (Sweden)

    P.V. Arun

    2013-12-01

    Full Text Available Image interpretation domains have witnessed the application of many intelligent methodologies over the past decade; however the effective use of evolutionary computing techniques for feature detection has been less explored. In this paper, we critically analyze the possibility of using cellular neural network for accurate feature detection. Contextual knowledge has been effectively represented by incorporating spectral and spatial aspects using adaptive kernel strategy. Developed methodology has been compared with traditional approaches in an object based context and investigations revealed that considerable success has been achieved with the procedure. Intelligent interpretation, automatic interpolation, and effective contextual representations are the features of the system.

  14. Basic emotions and adaptation. A computational and evolutionary model.

    Science.gov (United States)

    Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior

  15. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  16. Computer Network Operations Methodology

    Science.gov (United States)

    2004-03-01

    means of their computer information systems. Disrupt - This type of attack focuses on disrupting as “attackers might surreptitiously reprogram enemy...by reprogramming the computers that control distribution within the power grid. A disruption attack introduces disorder and inhibits the effective...between commanders. The use of methodologies is widespread and done subconsciously to assist individuals in decision making. The processes that

  17. Protein 3D structure computed from evolutionary sequence variation.

    Directory of Open Access Journals (Sweden)

    Debora S Marks

    Full Text Available The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org. This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of

  18. Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Schell Thomas

    2003-01-01

    Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.

  19. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  20. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  1. Computer Network Security- The Challenges of Securing a Computer Network

    Science.gov (United States)

    Scotti, Vincent, Jr.

    2011-01-01

    This article is intended to give the reader an overall perspective on what it takes to design, implement, enforce and secure a computer network in the federal and corporate world to insure the confidentiality, integrity and availability of information. While we will be giving you an overview of network design and security, this article will concentrate on the technology and human factors of securing a network and the challenges faced by those doing so. It will cover the large number of policies and the limits of technology and physical efforts to enforce such policies.

  2. Basic emotions and adaptation. A computational and evolutionary model.

    Directory of Open Access Journals (Sweden)

    Daniela Pacella

    Full Text Available The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then

  3. Crowd Computing as a Cooperation Problem: An Evolutionary Approach

    Science.gov (United States)

    Christoforou, Evgenia; Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A.; Sánchez, Angel

    2013-05-01

    Cooperation is one of the socio-economic issues that has received more attention from the physics community. The problem has been mostly considered by studying games such as the Prisoner's Dilemma or the Public Goods Game. Here, we take a step forward by studying cooperation in the context of crowd computing. We introduce a model loosely based on Principal-agent theory in which people (workers) contribute to the solution of a distributed problem by computing answers and reporting to the problem proposer (master). To go beyond classical approaches involving the concept of Nash equilibrium, we work on an evolutionary framework in which both the master and the workers update their behavior through reinforcement learning. Using a Markov chain approach, we show theoretically that under certain----not very restrictive—conditions, the master can ensure the reliability of the answer resulting of the process. Then, we study the model by numerical simulations, finding that convergence, meaning that the system reaches a point in which it always produces reliable answers, may in general be much faster than the upper bounds given by the theoretical calculation. We also discuss the effects of the master's level of tolerance to defectors, about which the theory does not provide information. The discussion shows that the system works even with very large tolerances. We conclude with a discussion of our results and possible directions to carry this research further.

  4. Optical computer switching network

    Science.gov (United States)

    Clymer, B.; Collins, S. A., Jr.

    1985-01-01

    The design for an optical switching system for minicomputers that uses an optical spatial light modulator such as a Hughes liquid crystal light valve is presented. The switching system is designed to connect 80 minicomputers coupled to the switching system by optical fibers. The system has two major parts: the connection system that connects the data lines by which the computers communicate via a two-dimensional optical matrix array and the control system that controls which computers are connected. The basic system, the matrix-based connecting system, and some of the optical components to be used are described. Finally, the details of the control system are given and illustrated with a discussion of timing.

  5. Microcomputers and computer networks

    International Nuclear Information System (INIS)

    Owens, J.L.

    1976-01-01

    Computers, for all their speed and efficiency, have their foibles and failings. Until the advent of minicomputers, users often had to supervise their programs personally to make sure they executed correctly. Minicomputers could take over some of these chores, but they were too expensive to be dedicated to any but the most vital services. Inexpensive, easily programmed microcomputers are easing this limitation, and permitting a flood of new applications. 3 figures

  6. Conformity enhances network reciprocity in evolutionary social dilemmas.

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2015-02-06

    The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behaviour in humans and social animals also compel to conformity in their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favour of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalized payoffs are applied. Conformity may thus be beneficial for the resolution of social dilemmas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Hyperswitch Network For Hypercube Computer

    Science.gov (United States)

    Chow, Edward; Madan, Herbert; Peterson, John

    1989-01-01

    Data-driven dynamic switching enables high speed data transfer. Proposed hyperswitch network based on mixed static and dynamic topologies. Routing header modified in response to congestion or faults encountered as path established. Static topology meets requirement if nodes have switching elements that perform necessary routing header revisions dynamically. Hypercube topology now being implemented with switching element in each computer node aimed at designing very-richly-interconnected multicomputer system. Interconnection network connects great number of small computer nodes, using fixed hypercube topology, characterized by point-to-point links between nodes.

  8. Networking DEC and IBM computers

    Science.gov (United States)

    Mish, W. H.

    1983-01-01

    Local Area Networking of DEC and IBM computers within the structure of the ISO-OSI Seven Layer Reference Model at a raw signaling speed of 1 Mops or greater are discussed. After an introduction to the ISO-OSI Reference Model nd the IEEE-802 Draft Standard for Local Area Networks (LANs), there follows a detailed discussion and comparison of the products available from a variety of manufactures to perform this networking task. A summary of these products is presented in a table.

  9. Computing motion using resistive networks

    Science.gov (United States)

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  10. An introduction to computer networks

    CERN Document Server

    Rizvi, SAM

    2011-01-01

    AN INTRODUCTION TO COMPUTER NETWORKS is a comprehensive text book which is focused and designed to elaborate the technical contents in the light of TCP/IP reference model exploring both digital and analog data communication. Various communication protocols of different layers are discussed along with their pseudo-code. This book covers the detailed and practical information about the network layer alongwith information about IP including IPV6, OSPF, and internet multicasting. It also covers TCP congestion control and emphasizes on the basic principles of fundamental importance concerning the technology and architecture and provides detailed discussion of leading edge topics of data communication, LAN & Network Layer.

  11. Collective network for computer structures

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  12. Spin networks and quantum computation

    International Nuclear Information System (INIS)

    Kauffman, L.; Lomonaco, S. Jr.

    2008-01-01

    We review the q-deformed spin network approach to Topological Quantum Field Theory and apply these methods to produce unitary representations of the braid groups that are dense in the unitary groups. The simplest case of these models is the Fibonacci model, itself universal for quantum computation. We here formulate these braid group representations in a form suitable for computation and algebraic work. (authors)

  13. Evolutionary Game for Mining Pool Selection in Blockchain Networks

    OpenAIRE

    Liu, Xiaojun; Wang, Wenbo; Niyato, Dusit; Zhao, Narisa; Wang, Ping

    2017-01-01

    In blockchain networks adopting the proof-of-work schemes, the monetary incentive is introduced by the Nakamoto consensus protocol to guide the behaviors of the full nodes (i.e., block miners) in the process of maintaining the consensus about the blockchain state. The block miners have to devote their computation power measured in hash rate in a crypto-puzzle solving competition to win the reward of publishing (a.k.a., mining) new blocks. Due to the exponentially increasing difficulty of the ...

  14. Research on Information Sharing Mechanism of Network Organization Based on Evolutionary Game

    Science.gov (United States)

    Wang, Lin; Liu, Gaozhi

    2018-02-01

    This article first elaborates the concept and effect of network organization, and the ability to share information is analyzed, secondly introduces the evolutionary game theory, network organization for information sharing all kinds of limitations, establishes the evolutionary game model, analyzes the dynamic evolution of network organization of information sharing, through reasoning and evolution. The network information sharing by the initial state and two sides of the game payoff matrix of excess profits and information is the information sharing of cost and risk sharing are the influence of network organization node information sharing decision.

  15. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The ecological and evolutionary implications of merging different types of networks

    NARCIS (Netherlands)

    Fontaine, C.; Guimaraes, P.R.; Kéfi, S.; Loeuille, N.; Memmott, J.; Putten, van der W.H.; Veen, F.J.; Thébault, E.

    2011-01-01

    Interactions among species drive the ecological and evolutionary processes in ecological communities. These interactions are effectively key components of biodiversity. Studies that use a network approach to study the structure and dynamics of communities of interacting species have revealed many

  17. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han; Yang, Yong Liang; Bao, Fan; Fink, Daniel; Yan, Dongming; Wonka, Peter; Mitra, Niloy J.

    2016-01-01

    of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications

  18. Computer Networks as a New Data Base.

    Science.gov (United States)

    Beals, Diane E.

    1992-01-01

    Discusses the use of communication on computer networks as a data source for psychological, social, and linguistic research. Differences between computer-mediated communication and face-to-face communication are described, the Beginning Teacher Computer Network is discussed, and examples of network conversations are appended. (28 references) (LRW)

  19. Computer Networking Laboratory for Undergraduate Computer Technology Program

    National Research Council Canada - National Science Library

    Naghedolfeizi, Masoud

    2000-01-01

    ...) To improve the quality of education in the existing courses related to computer networks and data communications as well as other computer science courses such programming languages and computer...

  20. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  1. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

    Science.gov (United States)

    Xu, Xiao-Feng

    2018-03-01

    Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

  2. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  3. Personal computer local networks report

    CERN Document Server

    1991-01-01

    Please note this is a Short Discount publication. Since the first microcomputer local networks of the late 1970's and early 80's, personal computer LANs have expanded in popularity, especially since the introduction of IBMs first PC in 1981. The late 1980s has seen a maturing in the industry with only a few vendors maintaining a large share of the market. This report is intended to give the reader a thorough understanding of the technology used to build these systems ... from cable to chips ... to ... protocols to servers. The report also fully defines PC LANs and the marketplace, with in-

  4. Traffic Dynamics of Computer Networks

    Science.gov (United States)

    Fekete, Attila

    2008-10-01

    Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer to the total packet loss rate. This formula makes it possible to treat buffer-losses as if they were link-losses. Finally, I studied computer networks from a structural perspective. I demonstrated through fluid simulations that the distribution of resources, specifically the link bandwidth, has a serious impact on the global performance of the network. Then I analyzed the distribution of edge betweenness in a growing scale-free tree under the condition that a local property, the in-degree of the "younger" node of an arbitrary edge, is known in order to find an optimum distribution of link capacity. The derived formula is exact even for finite-sized networks. I also calculated the conditional expectation of edge betweenness, rescaled for infinite networks.

  5. Multiobjective RFID Network Optimization Using Multiobjective Evolutionary and Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2014-01-01

    Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.

  6. Software defined network inference with evolutionary optimal observation matrices

    OpenAIRE

    Malboubi, M; Gong, Y; Yang, Z; Wang, X; Chuah, CN; Sharma, P

    2017-01-01

    © 2017 Elsevier B.V. A key requirement for network management is the accurate and reliable monitoring of relevant network characteristics. In today's large-scale networks, this is a challenging task due to the scarcity of network measurement resources and the hard constraints that this imposes. This paper proposes a new framework, called SNIPER, which leverages the flexibility provided by Software-Defined Networking (SDN) to design the optimal observation or measurement matrix that can lead t...

  7. Exploring social influence on evolutionary prisoner’s dilemma games in networks

    Science.gov (United States)

    Zong, Hengshan; Jia, Guozhu; Cheng, Yang

    2015-11-01

    Though numerous studies demonstrate the importance of social influence in deciding individual decision-making process in networks, little has been done to explore its impact on players’ behavioral patterns in evolutionary prisoner’s dilemma games (PDGs). This study investigates how social influenced strategy updating rules may affect the final equilibrium of game dynamics. The results show that weak social influence usually inhibits cooperation, while strong social influence has a mediating effect. The impacts of network structure and the existence of rebels in social influence scenarios are also tested. The paper provides a comprehensive interpretation on social influence effects on evolutionary PDGs in networks.

  8. Robustness of cooperation in the evolutionary prisoner's dilemma on complex networks

    International Nuclear Information System (INIS)

    Poncela, J; Gomez-Gardenes, J; FlorIa, L M; Moreno, Y

    2007-01-01

    Recent studies on the evolutionary dynamics of the prisoner's dilemma game in scale-free networks have demonstrated that the heterogeneity of the network interconnections enhances the evolutionary success of cooperation. In this paper we address the issue of how the characterization of the asymptotic states of the evolutionary dynamics depends on the initial concentration of cooperators. We find that the measure and the connectedness properties of the set of nodes where cooperation reaches fixation is largely independent of initial conditions, in contrast with the behaviour of both the set of nodes where defection is fixed, and the fluctuating nodes. We also check for the robustness of these results when varying the degree heterogeneity along a one-parametric family of networks interpolating between the class of Erdos-Renyi graphs and the Barabasi-Albert networks

  9. Computing the Quartet Distance Between Evolutionary Trees in Time O(n log n)

    DEFF Research Database (Denmark)

    Brodal, Gerth Sølfting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm

    2003-01-01

    Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, McMorris, and ...... unrooted evolutionary trees of n species, where all internal nodes have degree three, in time O(n log n. The previous best algorithm for the problem uses time O(n 2).......Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, Mc......Morris, and Meacham. The quartet distance between two unrooted evolutionary trees is the number of quartet topology differences between the two trees, where a quartet topology is the topological subtree induced by four species. In this paper we present an algorithm for computing the quartet distance between two...

  10. Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2011-01-01

    Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read...... and to apply since it requires two bounds on the moment-generating (exponential) function of the drift. A recent work identifies a specialization of this drift theorem that is much easier to apply. Nevertheless, it is not as simple and not as general as possible. The present paper picks up Hajek’s line...

  11. Practical Applications of Evolutionary Computation to Financial Engineering Robust Techniques for Forecasting, Trading and Hedging

    CERN Document Server

    Iba, Hitoshi

    2012-01-01

    “Practical Applications of Evolutionary Computation to Financial Engineering” presents the state of the art techniques in Financial Engineering using recent results in Machine Learning and Evolutionary Computation. This book bridges the gap between academics in computer science and traders and explains the basic ideas of the proposed systems and the financial problems in ways that can be understood by readers without previous knowledge on either of the fields. To cement the ideas discussed in the book, software packages are offered that implement the systems described within. The book is structured so that each chapter can be read independently from the others. Chapters 1 and 2 describe evolutionary computation. The third chapter is an introduction to financial engineering problems for readers who are unfamiliar with this area. The following chapters each deal, in turn, with a different problem in the financial engineering field describing each problem in detail and focusing on solutions based on evolutio...

  12. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  13. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  14. Network Restoration for Next-Generation Communication and Computing Networks

    Directory of Open Access Journals (Sweden)

    B. S. Awoyemi

    2018-01-01

    Full Text Available Network failures are undesirable but inevitable occurrences for most modern communication and computing networks. A good network design must be robust enough to handle sudden failures, maintain traffic flow, and restore failed parts of the network within a permissible time frame, at the lowest cost achievable and with as little extra complexity in the network as possible. Emerging next-generation (xG communication and computing networks such as fifth-generation networks, software-defined networks, and internet-of-things networks have promises of fast speeds, impressive data rates, and remarkable reliability. To achieve these promises, these complex and dynamic xG networks must be built with low failure possibilities, high network restoration capacity, and quick failure recovery capabilities. Hence, improved network restoration models have to be developed and incorporated in their design. In this paper, a comprehensive study on network restoration mechanisms that are being developed for addressing network failures in current and emerging xG networks is carried out. Open-ended problems are identified, while invaluable ideas for better adaptation of network restoration to evolving xG communication and computing paradigms are discussed.

  15. A case study of evolutionary computation of biochemical adaptation

    International Nuclear Information System (INIS)

    François, Paul; Siggia, Eric D

    2008-01-01

    Simulations of evolution have a long history, but their relation to biology is questioned because of the perceived contingency of evolution. Here we provide an example of a biological process, adaptation, where simulations are argued to approach closer to biology. Adaptation is a common feature of sensory systems, and a plausible component of other biochemical networks because it rescales upstream signals to facilitate downstream processing. We create random gene networks numerically, by linking genes with interactions that model transcription, phosphorylation and protein–protein association. We define a fitness function for adaptation in terms of two functional metrics, and show that any reasonable combination of them will yield the same adaptive networks after repeated rounds of mutation and selection. Convergence to these networks is driven by positive selection and thus fast. There is always a path in parameter space of continuously improving fitness that leads to perfect adaptation, implying that the actual mutation rates we use in the simulation do not bias the results. Our results imply a kinetic view of evolution, i.e., it favors gene networks that can be learned quickly from the random examples supplied by mutation. This formulation allows for deductive predictions of the networks realized in nature

  16. An Improved Method for Reconfiguring and Optimizing Electrical Active Distribution Network Using Evolutionary Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Nur Faziera Napis

    2018-05-01

    Full Text Available The presence of optimized distributed generation (DG with suitable distribution network reconfiguration (DNR in the electrical distribution network has an advantage for voltage support, power losses reduction, deferment of new transmission line and distribution structure and system stability improvement. However, installation of a DG unit at non-optimal size with non-optimal DNR may lead to higher power losses, power quality problem, voltage instability and incremental of operational cost. Thus, an appropriate DG and DNR planning are essential and are considered as an objective of this research. An effective heuristic optimization technique named as improved evolutionary particle swarm optimization (IEPSO is proposed in this research. The objective function is formulated to minimize the total power losses (TPL and to improve the voltage stability index (VSI. The voltage stability index is determined for three load demand levels namely light load, nominal load, and heavy load with proper optimal DNR and DG sizing. The performance of the proposed technique is compared with other optimization techniques, namely particle swarm optimization (PSO and iteration particle swarm optimization (IPSO. Four case studies on IEEE 33-bus and IEEE 69-bus distribution systems have been conducted to validate the effectiveness of the proposed IEPSO. The optimization results show that, the best achievement is done by IEPSO technique with power losses reduction up to 79.26%, and 58.41% improvement in the voltage stability index. Moreover, IEPSO has the fastest computational time for all load conditions as compared to other algorithms.

  17. The evolutionary and ecological consequences of animal social networks: emerging issues.

    Science.gov (United States)

    Kurvers, Ralf H J M; Krause, Jens; Croft, Darren P; Wilson, Alexander D M; Wolf, Max

    2014-06-01

    The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Computing preimages of Boolean networks.

    Science.gov (United States)

    Klotz, Johannes; Bossert, Martin; Schober, Steffen

    2013-01-01

    In this paper we present an algorithm based on the sum-product algorithm that finds elements in the preimage of a feed-forward Boolean networks given an output of the network. Our probabilistic method runs in linear time with respect to the number of nodes in the network. We evaluate our algorithm for randomly constructed Boolean networks and a regulatory network of Escherichia coli and found that it gives a valid solution in most cases.

  19. Evolutionary and Swarm computing for the Semantic Web

    NARCIS (Netherlands)

    Guéret, C.; Schlobach, S.; Dentler, K.; Schut, M.; Eiben, G.

    2012-01-01

    The Semantic Web has become a dynamic and enormous network of typed links between data sets stored on different machines. These data sets are machine readable and unambiguously interpretable, thanks to their underlying standard representation languages. The expressiveness and flexibility of the

  20. Evolutionary and Swarm Computing for the Semantic Web

    NARCIS (Netherlands)

    Guéret, Christophe

    2015-01-01

    The Semantic Web has become a dynamic and enormous network of typed links between data sets stored on different machines. These data sets are machine readable and unambiguously interpretable, thanks to their underlying standard representation languages. The expressiveness and flexibility of the

  1. Time scales in evolutionary game on adaptive networks

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Rui, E-mail: congrui0000@126.com [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wu, Te; Qiu, Yuan-Ying [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Wang, Long [School of Mechano-Electronic Engineering, Xidian University, Xi' an (China); Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing (China)

    2014-02-01

    Most previous studies concerning spatial games have assumed strategy updating occurs with a fixed ratio relative to interactions. We here set up a coevolutionary model to investigate how different ratio affects the evolution of cooperation on adaptive networks. Simulation results demonstrate that cooperation can be significantly enhanced under our rewiring mechanism, especially with slower natural selection. Meanwhile, slower selection induces larger network heterogeneity. Strong selection contracts the parameter area where cooperation thrives. Therefore, cooperation prevails whenever individuals are offered enough chances to adapt to the environment. Robustness of the results has been checked under rewiring cost or varied networks.

  2. Mobile Agents in Networking and Distributed Computing

    CERN Document Server

    Cao, Jiannong

    2012-01-01

    The book focuses on mobile agents, which are computer programs that can autonomously migrate between network sites. This text introduces the concepts and principles of mobile agents, provides an overview of mobile agent technology, and focuses on applications in networking and distributed computing.

  3. Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks.

    Directory of Open Access Journals (Sweden)

    Nolan Priedigkeit

    2015-02-01

    Full Text Available Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC, is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.

  4. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    Science.gov (United States)

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  5. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  6. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  7. Active Computer Network Defense: An Assessment

    Science.gov (United States)

    2001-04-01

    sufficient base of knowledge in information technology can be assumed to be working on some form of computer network warfare, even if only defensive in...the Defense Information Infrastructure (DII) to attack. Transmission Control Protocol/ Internet Protocol (TCP/IP) networks are inherently resistant to...aims to create this part of information superiority, and computer network defense is one of its fundamental components. Most of these efforts center

  8. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    Science.gov (United States)

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  9. Integrating Network Management for Cloud Computing Services

    Science.gov (United States)

    2015-06-01

    Backend Distributed Datastore High-­‐level   Objec.ve   Network   Policy   Perf.   Metrics   SNAT  IP   Alloca.on   Controller...azure.microsoft.com/. 114 [16] Microsoft Azure ExpressRoute. http://azure.microsoft.com/en-us/ services/expressroute/. [17] Mobility and Networking...Networking Technologies, Services, and Protocols; Performance of Computer and Commu- nication Networks; Mobile and Wireless Communications Systems

  10. Low Computational Complexity Network Coding For Mobile Networks

    DEFF Research Database (Denmark)

    Heide, Janus

    2012-01-01

    Network Coding (NC) is a technique that can provide benefits in many types of networks, some examples from wireless networks are: In relay networks, either the physical or the data link layer, to reduce the number of transmissions. In reliable multicast, to reduce the amount of signaling and enable......-flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...

  11. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han

    2016-07-11

    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

  12. Parallel computing and networking; Heiretsu keisanki to network

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, E; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper describes the trend of parallel computers used in geophysical exploration. Around 1993 was the early days when the parallel computers began to be used for geophysical exploration. Classification of these computers those days was mainly MIMD (multiple instruction stream, multiple data stream), SIMD (single instruction stream, multiple data stream) and the like. Parallel computers were publicized in the 1994 meeting of the Geophysical Exploration Society as a `high precision imaging technology`. Concerning the library of parallel computers, there was a shift to PVM (parallel virtual machine) in 1993 and to MPI (message passing interface) in 1995. In addition, the compiler of FORTRAN90 was released with support implemented for data parallel and vector computers. In 1993, networks used were Ethernet, FDDI, CDDI and HIPPI. In 1995, the OC-3 products under ATM began to propagate. However, ATM remains to be an interoffice high speed network because the ATM service has not spread yet for the public network. 1 ref.

  13. Evolutionary Analysis of DELLA-Associated Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Miguel A. Blázquez

    2017-04-01

    Full Text Available DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs, whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins, Physcomitrella patens (with GA-independent DELLA proteins and Chlamydomonas reinhardtii (a green alga without DELLA, and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory ‘hubs’ became further consolidated after their recruitment by GA signaling in higher plants.

  14. A Study on Standard Competition with Network Effect Based on Evolutionary Game Model

    Science.gov (United States)

    Wang, Ye; Wang, Bingdong; Li, Kangning

    Owing to networks widespread in modern society, standard competition with network effect is now endowed with new connotation. This paper aims to study the impact of network effect on standard competition; it is organized in the mode of "introduction-model setup-equilibrium analysis-conclusion". Starting from a well-structured model of evolutionary game, it is then extended to a dynamic analysis. This article proves both theoretically and empirically that whether or not a standard can lead the market trends depends on the utility it would bring, and the author also discusses some advisable strategies revolving around the two factors of initial position and border break.

  15. Investigating the Multi-memetic Mind Evolutionary Computation Algorithm Efficiency

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2017-01-01

    Full Text Available In solving practically significant problems of global optimization, the objective function is often of high dimensionality and computational complexity and of nontrivial landscape as well. Studies show that often one optimization method is not enough for solving such problems efficiently - hybridization of several optimization methods is necessary.One of the most promising contemporary trends in this field are memetic algorithms (MA, which can be viewed as a combination of the population-based search for a global optimum and the procedures for a local refinement of solutions (memes, provided by a synergy. Since there are relatively few theoretical studies concerning the MA configuration, which is advisable for use to solve the black-box optimization problems, many researchers tend just to adaptive algorithms, which for search select the most efficient methods of local optimization for the certain domains of the search space.The article proposes a multi-memetic modification of a simple SMEC algorithm, using random hyper-heuristics. Presents the software algorithm and memes used (Nelder-Mead method, method of random hyper-sphere surface search, Hooke-Jeeves method. Conducts a comparative study of the efficiency of the proposed algorithm depending on the set and the number of memes. The study has been carried out using Rastrigin, Rosenbrock, and Zakharov multidimensional test functions. Computational experiments have been carried out for all possible combinations of memes and for each meme individually.According to results of study, conducted by the multi-start method, the combinations of memes, comprising the Hooke-Jeeves method, were successful. These results prove a rapid convergence of the method to a local optimum in comparison with other memes, since all methods perform the fixed number of iterations at the most.The analysis of the average number of iterations shows that using the most efficient sets of memes allows us to find the optimal

  16. Characteristics of the TRISTAN control computer network

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Oide, Katsunobu; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    Twenty-four minicomputers forming an N-to-N token-ring network control the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on NODAL, a multicomputer interpretive language developed at the CERN SPS. The high-level services offered to the users of the network are remote execution by the EXEC, EXEC-P and IMEX commands of NODAL and uniform file access throughout the system. The network software was designed to achieve the fast response of the EXEC command. The performance of the network is also reported. Tasks that overload the minicomputers are processed on the KEK central computers. One minicomputer in the network serves as a gateway to KEKNET, which connects the minicomputer network and the central computers. The communication with the central computers is managed within the framework of the KEK NODAL system. NODAL programs communicate with the central computers calling NODAL functions; functions for exchanging data between a data set on the central computers and a NODAL variable, submitting a batch job to the central computers, checking the status of the submitted job, etc. are prepared. (orig.)

  17. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  18. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  19. Recurrent autoassociative networks and holistic computations

    NARCIS (Netherlands)

    Stoianov, [No Value; Amari, SI; Giles, CL; Gori, M; Piuri,

    2000-01-01

    The paper presents an experimental study of holistic computations over distributed representations (DRs) of sequences developed by the Recurrent Autoassociative Networks (KAN). Three groups of holistic operators are studied: extracting symbols at fixed position, extracting symbols at a variable

  20. Conceptual metaphors in computer networking terminology ...

    African Journals Online (AJOL)

    Lakoff & Johnson, 1980) is used as a basic framework for analysing and explaining the occurrence of metaphor in the terminology used by computer networking professionals in the information technology (IT) industry. An analysis of linguistic ...

  1. Nuclear Physics computer networking: Report of the Nuclear Physics Panel on Computer Networking

    International Nuclear Information System (INIS)

    Bemis, C.; Erskine, J.; Franey, M.; Greiner, D.; Hoehn, M.; Kaletka, M.; LeVine, M.; Roberson, R.; Welch, L.

    1990-05-01

    This paper discusses: the state of computer networking within nuclear physics program; network requirements for nuclear physics; management structure; and issues of special interest to the nuclear physics program office

  2. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  3. Computer systems and networks: Status and perspectives

    International Nuclear Information System (INIS)

    Zacharov, Z.

    1981-01-01

    The properties of computers are discussed, both as separate units and in inter-coupled systems. The main elements of modern processor thechnology are reviewed and the associated peripheral components are disscussed in the light of the prevailling rapid pace of developments. Particular emphais is given to the impact of very large scale integrated circuitry in these developments. Computer networks, and considered in some detail, including comon-carrier and local-area networks and the problem of inter-working is included in the discussion. Components of network systems and the associated technology are also among the topics treated. (orig.)

  4. Computer systems and networks status and perspectives

    CERN Document Server

    Zacharov, V

    1981-01-01

    The properties of computers are discussed, both as separate units and in inter-coupled systems. The main elements of modern processor technology are reviewed and the associated peripheral components are discussed in the light of the prevailing rapid pace of developments. Particular emphasis is given to the impact of very large scale integrated circuitry in these developments. Computer networks are considered in some detail, including common-carrier and local-area networks, and the problem of inter-working is included in the discussion. Components of network systems and the associated technology are also among the topics treated.

  5. Autonomic computing enabled cooperative networked design

    CERN Document Server

    Wodczak, Michal

    2014-01-01

    This book introduces the concept of autonomic computing driven cooperative networked system design from an architectural perspective. As such it leverages and capitalises on the relevant advancements in both the realms of autonomic computing and networking by welding them closely together. In particular, a multi-faceted Autonomic Cooperative System Architectural Model is defined which incorporates the notion of Autonomic Cooperative Behaviour being orchestrated by the Autonomic Cooperative Networking Protocol of a cross-layer nature. The overall proposed solution not only advocates for the inc

  6. Ni-MH batteries state-of-charge prediction based on immune evolutionary network

    International Nuclear Information System (INIS)

    Cheng Bo; Zhou Yanlu; Zhang Jiexin; Wang Junping; Cao Binggang

    2009-01-01

    Based on clonal selection theory, an improved immune evolutionary strategy is presented. Compared with conventional evolutionary strategy algorithm (CESA) and immune monoclonal strategy algorithm (IMSA), experimental results show that the proposed algorithm is of high efficiency and can effectively prevent premature convergence. A three-layer feed-forward neural network is presented to predict state-of-charge (SOC) of Ni-MH batteries. Initially, partial least square regression (PLSR) is used to select input variables. Then, five variables, battery terminal voltage, voltage derivative, voltage second derivative, discharge current and battery temperature, are selected as the inputs of NN. In order to overcome the weakness of BP algorithm, the new algorithm is adopted to train weights. Finally, under the state of dynamic power cycle, the predicted SOC and the actual SOC are compared to verify the proposed neural network with acceptable accuracy (5%).

  7. Spontaneous ad hoc mobile cloud computing network.

    Science.gov (United States)

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  8. Computer network time synchronization the network time protocol

    CERN Document Server

    Mills, David L

    2006-01-01

    What started with the sundial has, thus far, been refined to a level of precision based on atomic resonance: Time. Our obsession with time is evident in this continued scaling down to nanosecond resolution and beyond. But this obsession is not without warrant. Precision and time synchronization are critical in many applications, such as air traffic control and stock trading, and pose complex and important challenges in modern information networks.Penned by David L. Mills, the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol

  9. Computational chaos in massively parallel neural networks

    Science.gov (United States)

    Barhen, Jacob; Gulati, Sandeep

    1989-01-01

    A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.

  10. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  11. The influence of tie strength on evolutionary games on networks: An empirical investigation

    Science.gov (United States)

    Buesser, Pierre; Peña, Jorge; Pestelacci, Enea; Tomassini, Marco

    2011-11-01

    Extending previous work on unweighted networks, we present here a systematic numerical investigation of standard evolutionary games on weighted networks. In the absence of any reliable model for generating weighted social networks, we attribute weights to links in a few ways supported by empirical data ranging from totally uncorrelated to weighted bipartite networks. The results of the extensive simulation work on standard complex network models show that, except in a case that does not seem to be common in social networks, taking the tie strength into account does not change in a radical manner the long-run steady-state behavior of the studied games. Besides model networks, we also included a real-life case drawn from a coauthorship network. In this case also, taking the weights into account only changes the results slightly with respect to the raw unweighted graph, although to draw more reliable conclusions on real social networks many more cases should be studied as these weighted networks become available.

  12. Social networks a framework of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2014-01-01

    This volume provides the audience with an updated, in-depth and highly coherent material on the conceptually appealing and practically sound information technology of Computational Intelligence applied to the analysis, synthesis and evaluation of social networks. The volume involves studies devoted to key issues of social networks including community structure detection in networks, online social networks, knowledge growth and evaluation, and diversity of collaboration mechanisms.  The book engages a wealth of methods of Computational Intelligence along with well-known techniques of linear programming, Formal Concept Analysis, machine learning, and agent modeling.  Human-centricity is of paramount relevance and this facet manifests in many ways including personalized semantics, trust metric, and personal knowledge management; just to highlight a few of these aspects. The contributors to this volume report on various essential applications including cyber attacks detection, building enterprise social network...

  13. A cyber kill chain based taxonomy of banking Trojans for evolutionary computational intelligence

    OpenAIRE

    Kiwia, D; Dehghantanha, A; Choo, K-KR; Slaughter, J

    2017-01-01

    Malware such as banking Trojans are popular with financially-motivated cybercriminals. Detection of banking Trojans remains a challenging task, due to the constant evolution of techniques used to obfuscate and circumvent existing detection and security solutions. Having a malware taxonomy can facilitate the design of mitigation strategies such as those based on evolutionary computational intelligence. Specifically, in this paper, we propose a cyber kill chain based taxonomy of banking Trojans...

  14. Evaluation of Network Reliability for Computer Networks with Multiple Sources

    Directory of Open Access Journals (Sweden)

    Yi-Kuei Lin

    2012-01-01

    Full Text Available Evaluating the reliability of a network with multiple sources to multiple sinks is a critical issue from the perspective of quality management. Due to the unrealistic definition of paths of network models in previous literature, existing models are not appropriate for real-world computer networks such as the Taiwan Advanced Research and Education Network (TWAREN. This paper proposes a modified stochastic-flow network model to evaluate the network reliability of a practical computer network with multiple sources where data is transmitted through several light paths (LPs. Network reliability is defined as being the probability of delivering a specified amount of data from the sources to the sink. It is taken as a performance index to measure the service level of TWAREN. This paper studies the network reliability of the international portion of TWAREN from two sources (Taipei and Hsinchu to one sink (New York that goes through a submarine and land surface cable between Taiwan and the United States.

  15. SUNSEED — An evolutionary path to smart grid comms over converged telco and energy provider networks

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Popovski, Petar; Jorguseski, Ljupco

    2014-01-01

    of energy distribution service operators (DSO) and telecom operators (telco) for the future smart grid operations and services. To achieve this objective, SUNSEED proposes an evolutionary approach to converge existing DSO and telco networks, consisting of six steps: overlap, interconnect, interoperate......SUNSEED, “Sustainable and robust networking for smart electricity distribution”, is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure...

  16. Effective seeding strategy in evolutionary prisoner's dilemma games on online social networks

    Science.gov (United States)

    Xu, Bo; Shi, Huibin; Wang, Jianwei; Huang, Yun

    2015-04-01

    This paper explores effective seeding strategies in prisoner's dilemma game (PDG) on online social networks, i.e. the optimal strategy to obtain global cooperation with minimum cost. Three distinct seeding strategies are compared by performing computer simulations on real online social network datasets. Our finding suggests that degree centrality seeding outperforms other strategies regardless of the initial payoff setting or network size. Celebrities of online social networks play key roles in preserving cooperation.

  17. A program to compute the soft Robinson-Foulds distance between phylogenetic networks.

    Science.gov (United States)

    Lu, Bingxin; Zhang, Louxin; Leong, Hon Wai

    2017-03-14

    Over the past two decades, phylogenetic networks have been studied to model reticulate evolutionary events. The relationships among phylogenetic networks, phylogenetic trees and clusters serve as the basis for reconstruction and comparison of phylogenetic networks. To understand these relationships, two problems are raised: the tree containment problem, which asks whether a phylogenetic tree is displayed in a phylogenetic network, and the cluster containment problem, which asks whether a cluster is represented at a node in a phylogenetic network. Both the problems are NP-complete. A fast exponential-time algorithm for the cluster containment problem on arbitrary networks is developed and implemented in C. The resulting program is further extended into a computer program for fast computation of the Soft Robinson-Foulds distance between phylogenetic networks. Two computer programs are developed for facilitating reconstruction and validation of phylogenetic network models in evolutionary and comparative genomics. Our simulation tests indicated that they are fast enough for use in practice. Additionally, the distribution of the Soft Robinson-Foulds distance between phylogenetic networks is demonstrated to be unlikely normal by our simulation data.

  18. International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems

    CERN Document Server

    Vijayakumar, K; Panigrahi, Bijaya; Das, Swagatam

    2017-01-01

    The volume is a collection of high-quality peer-reviewed research papers presented in the International Conference on Artificial Intelligence and Evolutionary Computation in Engineering Systems (ICAIECES 2016) held at SRM University, Chennai, Tamilnadu, India. This conference is an international forum for industry professionals and researchers to deliberate and state their research findings, discuss the latest advancements and explore the future directions in the emerging areas of engineering and technology. The book presents original work and novel ideas, information, techniques and applications in the field of communication, computing and power technologies.

  19. International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems

    CERN Document Server

    Bhaskar, M; Panigrahi, Bijaya; Das, Swagatam

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems (ICAIECES -2015) held at Velammal Engineering College (VEC), Chennai, India during 22 – 23 April 2015. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academic and industry present their original work and exchange ideas, information, techniques and applications in the field of Communication, Computing and Power Technologies.

  20. Self-Awareness in Computer Networks

    Directory of Open Access Journals (Sweden)

    Ariane Keller

    2014-01-01

    Full Text Available The Internet architecture works well for a wide variety of communication scenarios. However, its flexibility is limited because it was initially designed to provide communication links between a few static nodes in a homogeneous network and did not attempt to solve the challenges of today’s dynamic network environments. Although the Internet has evolved to a global system of interconnected computer networks, which links together billions of heterogeneous compute nodes, its static architecture remained more or less the same. Nowadays the diversity in networked devices, communication requirements, and network conditions vary heavily, which makes it difficult for a static set of protocols to provide the required functionality. Therefore, we propose a self-aware network architecture in which protocol stacks can be built dynamically. Those protocol stacks can be optimized continuously during communication according to the current requirements. For this network architecture we propose an FPGA-based execution environment called EmbedNet that allows for a dynamic mapping of network protocols to either hardware or software. We show that our architecture can reduce the communication overhead significantly by adapting the protocol stack and that the dynamic hardware/software mapping of protocols considerably reduces the CPU load introduced by packet processing.

  1. Evolutionary neural networks: a new alternative for neutron spectrometry; Redes neuronales evolutivas: una nueva alternativa para la espectrometria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Departamento de Electrotecnia y Electronica, Escuela Politecnica Superior, Av. Menendez Pidal s/n, 14004 Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Galleo, E. [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], e-mail: morvymm@yahoo.com.mx

    2009-10-15

    A device used to perform neutron spectroscopy is the system known as a system of Bonner spheres spectrometer, this system has some disadvantages, one of these is the need for reconstruction using a code that is based on an iterative reconstruction algorithm, whose greater inconvenience is the need for a initial spectrum, as close as possible to the spectrum that is desired to avoid this inconvenience has been reported several procedures in reconstruction, combined with various types of experimental methods, based on artificial intelligence technology how genetic algorithms, artificial neural networks and hybrid systems evolved artificial neural networks using genetic algorithms. This paper analyzes the intersection of neural networks and evolutionary algorithms applied in the neutron spectroscopy and dosimetry. Due to this is an emerging technology, there are not tools for doing analysis of the obtained results, by what this paper presents a computing tool to analyze the neutron spectra and the equivalent doses obtained through the hybrid technology of neural networks and genetic algorithms. The toolmaker offers a user graphical environment, friendly and easy to operate. (author)

  2. The origins and evolutionary history of human non-coding RNA regulatory networks.

    Science.gov (United States)

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  3. Anonymous Transactions in Computer Networks

    Science.gov (United States)

    Dolev, Shlomi; Kopeetsky, Marina

    We present schemes for providing anonymous transactions while privacy and anonymity are preserved, providing user anonymous authentication in distributed networks such as the Internet. We first present a practical scheme for anonymous transactions while the transaction resolution is assisted by a Trusted Authority. This practical scheme is extended to a theoretical scheme where a Trusted Authority is not involved in the transaction resolution. Given an authority that generates for each player hard to produce evidence EVID (e. g., problem instance with or without a solution) to each player, the identity of a user U is defined by the ability to prove possession of said evidence. We use Zero-Knowledge proof techniques to repeatedly identify U by providing a proof that U has evidence EVID, without revealing EVID, therefore avoiding identity theft.

  4. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  5. International Symposium on Computing and Network Sustainability

    CERN Document Server

    Akashe, Shyam

    2017-01-01

    The book is compilation of technical papers presented at International Research Symposium on Computing and Network Sustainability (IRSCNS 2016) held in Goa, India on 1st and 2nd July 2016. The areas covered in the book are sustainable computing and security, sustainable systems and technologies, sustainable methodologies and applications, sustainable networks applications and solutions, user-centered services and systems and mobile data management. The novel and recent technologies presented in the book are going to be helpful for researchers and industries in their advanced works.

  6. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    Science.gov (United States)

    Mrowinski, Maciej J; Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  7. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    Directory of Open Access Journals (Sweden)

    Maciej J Mrowinski

    Full Text Available With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy. Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  8. Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing.

    Science.gov (United States)

    Nguyen, Nga Thi Thuy; Vincens, Pierre; Roest Crollius, Hugues; Louis, Alexandra

    2018-01-04

    Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Combining evolutionary game theory and network theory to analyze human cooperation patterns

    International Nuclear Information System (INIS)

    Scatà, Marialisa; Di Stefano, Alessandro; La Corte, Aurelio; Liò, Pietro; Catania, Emanuele; Guardo, Ermanno; Pagano, Salvatore

    2016-01-01

    Highlights: • We investigate the evolutionary dynamics of human cooperation in a social network. • We introduce the concepts of “Critical Mass”, centrality measure and homophily. • The emergence of cooperation is affected by the spatial choice of the “Critical Mass”. • Our findings show that homophily speeds up the convergence towards cooperation. • Centrality and “Critical Mass” spatial choice partially offset the impact of homophily. - Abstract: As natural systems continuously evolve, the human cooperation dilemma represents an increasingly more challenging question. Humans cooperate in natural and social systems, but how it happens and what are the mechanisms which rule the emergence of cooperation, represent an open and fascinating issue. In this work, we investigate the evolution of cooperation through the analysis of the evolutionary dynamics of behaviours within the social network, where nodes can choose to cooperate or defect following the classical social dilemmas represented by Prisoner’s Dilemma and Snowdrift games. To this aim, we introduce a sociological concept and statistical estimator, “Critical Mass”, to detect the minimum initial seed of cooperators able to trigger the diffusion process, and the centrality measure to select within the social network. Selecting different spatial configurations of the Critical Mass nodes, we highlight how the emergence of cooperation can be influenced by this spatial choice of the initial core in the network. Moreover, we target to shed light how the concept of homophily, a social shaping factor for which “birds of a feather flock together”, can affect the evolutionary process. Our findings show that homophily allows speeding up the diffusion process and make quicker the convergence towards human cooperation, while centrality measure and thus the Critical Mass selection, play a key role in the evolution showing how the spatial configurations can create some hidden patterns, partially

  10. Computation, cryptography, and network security

    CERN Document Server

    Rassias, Michael

    2015-01-01

    Analysis, assessment, and data management are core competencies for operation research analysts. This volume addresses a number of issues and developed methods for improving those skills. It is an outgrowth of a conference held in April 2013 at the Hellenic Military Academy, and brings together a broad variety of mathematical methods and theories with several applications. It discusses directions and pursuits of scientists that pertain to engineering sciences. It is also presents the theoretical background required for algorithms and techniques applied to a large variety of concrete problems. A number of open questions as well as new future areas are also highlighted.   This book will appeal to operations research analysts, engineers, community decision makers, academics, the military community, practitioners sharing the current “state-of-the-art,” and analysts from coalition partners. Topics covered include Operations Research, Games and Control Theory, Computational Number Theory and Information Securi...

  11. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  12. Bipartite Network Analysis of the Archaeal Virosphere: Evolutionary Connections between Viruses and Capsidless Mobile Elements.

    Science.gov (United States)

    Iranzo, Jaime; Koonin, Eugene V; Prangishvili, David; Krupovic, Mart

    2016-12-15

    Archaea and particularly hyperthermophilic crenarchaea are hosts to many unusual viruses with diverse virion shapes and distinct gene compositions. As is typical of viruses in general, there are no universal genes in the archaeal virosphere. Therefore, to obtain a comprehensive picture of the evolutionary relationships between viruses, network analysis methods are more productive than traditional phylogenetic approaches. Here we present a comprehensive comparative analysis of genomes and proteomes from all currently known taxonomically classified and unclassified, cultivated and uncultivated archaeal viruses. We constructed a bipartite network of archaeal viruses that includes two classes of nodes, the genomes and gene families that connect them. Dissection of this network using formal community detection methods reveals strong modularity, with 10 distinct modules and 3 putative supermodules. However, compared to similar previously analyzed networks of eukaryotic and bacterial viruses, the archaeal virus network is sparsely connected. With the exception of the tailed viruses related to bacteriophages of the order Caudovirales and the families Turriviridae and Sphaerolipoviridae that are linked to a distinct supermodule of eukaryotic and bacterial viruses, there are few connector genes shared by different archaeal virus modules. In contrast, most of these modules include, in addition to viruses, capsidless mobile elements, emphasizing tight evolutionary connections between the two types of entities in archaea. The relative contributions of distinct evolutionary origins, in particular from nonviral elements, and insufficient sampling to the sparsity of the archaeal virus network remain to be determined by further exploration of the archaeal virosphere. Viruses infecting archaea are among the most mysterious denizens of the virosphere. Many of these viruses display no genetic or even morphological relationship to viruses of bacteria and eukaryotes, raising questions

  13. Student Motivation in Computer Networking Courses

    Directory of Open Access Journals (Sweden)

    Wen-Jung Hsin

    2007-01-01

    Full Text Available This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  14. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    various classification modes (decision trees, rulesets, boosting, softening thresholds) regarding the classification accuracy and the time required to create the classifier. We showed how to use our VBS tool to obtain per-flow, per-application, and per-content statistics of traffic in computer networks...

  15. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  16. Student Motivation in Computer Networking Courses

    OpenAIRE

    Wen-Jung Hsin, PhD

    2007-01-01

    This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  17. The co-evolutionary dynamics of directed network of spin market agents

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3social networks.

  18. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Science.gov (United States)

    2018-01-01

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures. PMID:29690587

  19. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments

    Directory of Open Access Journals (Sweden)

    Alejandro Baldominos

    2018-04-01

    Full Text Available Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  20. Evolutionary Design of Convolutional Neural Networks for Human Activity Recognition in Sensor-Rich Environments.

    Science.gov (United States)

    Baldominos, Alejandro; Saez, Yago; Isasi, Pedro

    2018-04-23

    Human activity recognition is a challenging problem for context-aware systems and applications. It is gaining interest due to the ubiquity of different sensor sources, wearable smart objects, ambient sensors, etc. This task is usually approached as a supervised machine learning problem, where a label is to be predicted given some input data, such as the signals retrieved from different sensors. For tackling the human activity recognition problem in sensor network environments, in this paper we propose the use of deep learning (convolutional neural networks) to perform activity recognition using the publicly available OPPORTUNITY dataset. Instead of manually choosing a suitable topology, we will let an evolutionary algorithm design the optimal topology in order to maximize the classification F1 score. After that, we will also explore the performance of committees of the models resulting from the evolutionary process. Results analysis indicates that the proposed model was able to perform activity recognition within a heterogeneous sensor network environment, achieving very high accuracies when tested with new sensor data. Based on all conducted experiments, the proposed neuroevolutionary system has proved to be able to systematically find a classification model which is capable of outperforming previous results reported in the state-of-the-art, showing that this approach is useful and improves upon previously manually-designed architectures.

  1. Multiple network alignment on quantum computers

    Science.gov (United States)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  2. Multi-objective optimization of HVAC system with an evolutionary computation algorithm

    International Nuclear Information System (INIS)

    Kusiak, Andrew; Tang, Fan; Xu, Guanglin

    2011-01-01

    A data-mining approach for the optimization of a HVAC (heating, ventilation, and air conditioning) system is presented. A predictive model of the HVAC system is derived by data-mining algorithms, using a dataset collected from an experiment conducted at a research facility. To minimize the energy while maintaining the corresponding IAQ (indoor air quality) within a user-defined range, a multi-objective optimization model is developed. The solutions of this model are set points of the control system derived with an evolutionary computation algorithm. The controllable input variables - supply air temperature and supply air duct static pressure set points - are generated to reduce the energy use. The results produced by the evolutionary computation algorithm show that the control strategy saves energy by optimizing operations of an HVAC system. -- Highlights: → A data-mining approach for the optimization of a heating, ventilation, and air conditioning (HVAC) system is presented. → The data used in the project has been collected from an experiment conducted at an energy research facility. → The approach presented in the paper leads to accomplishing significant energy savings without compromising the indoor air quality. → The energy savings are accomplished by computing set points for the supply air temperature and the supply air duct static pressure.

  3. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks.

    Science.gov (United States)

    Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio

    2010-05-01

    This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.

  4. Computing with networks of nonlinear mechanical oscillators.

    Directory of Open Access Journals (Sweden)

    Jean C Coulombe

    Full Text Available As it is getting increasingly difficult to achieve gains in the density and power efficiency of microelectronic computing devices because of lithographic techniques reaching fundamental physical limits, new approaches are required to maximize the benefits of distributed sensors, micro-robots or smart materials. Biologically-inspired devices, such as artificial neural networks, can process information with a high level of parallelism to efficiently solve difficult problems, even when implemented using conventional microelectronic technologies. We describe a mechanical device, which operates in a manner similar to artificial neural networks, to solve efficiently two difficult benchmark problems (computing the parity of a bit stream, and classifying spoken words. The device consists in a network of masses coupled by linear springs and attached to a substrate by non-linear springs, thus forming a network of anharmonic oscillators. As the masses can directly couple to forces applied on the device, this approach combines sensing and computing functions in a single power-efficient device with compact dimensions.

  5. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  6. A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks

    Directory of Open Access Journals (Sweden)

    Guoqiang Chen

    2013-01-01

    Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.

  7. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    In the last few decades, identification of transition states has experienced significant growth in research interests from various scientific communities. As per the transition states theory, reaction paths and landscape analysis as well as many thermodynamic properties of biochemical systems can...... be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... paradigm under a Molecular Memetic Computing (MMC) framework. In essence, the MMC is equipped with the tree-based representation of non-cyclic molecules and the covalent-bond-driven evolutionary operators, in addition to the typical backbone of memetic algorithms. Herein, we employ genetic algorithm...

  8. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  9. International Symposium on Complex Computing-Networks

    CERN Document Server

    Sevgi, L; CCN2005; Complex computing networks: Brain-like and wave-oriented electrodynamic algorithms

    2006-01-01

    This book uniquely combines new advances in the electromagnetic and the circuits&systems theory. It integrates both fields regarding computational aspects of common interest. Emphasized subjects are those methods which mimic brain-like and electrodynamic behaviour; among these are cellular neural networks, chaos and chaotic dynamics, attractor-based computation and stream ciphers. The book contains carefully selected contributions from the Symposium CCN2005. Pictures from the bestowal of Honorary Doctorate degrees to Leon O. Chua and Leopold B. Felsen are included.

  10. Computer network for experimental research using ISDN

    International Nuclear Information System (INIS)

    Ida, Katsumi; Nakanishi, Hideya

    1997-01-01

    This report describes the development of a computer network that uses the Integrated Service Digital Network (ISDN) for real-time analysis of experimental plasma physics and nuclear fusion research. Communication speed, 64/128kbps (INS64) or 1.5Mbps (INS1500) per connection, is independent of how busy the network is. When INS-1500 is used, the communication speed, which is proportional to the public telephone connection fee, can be dynamically varied from 64kbps to 1472kbps (depending on how much data are being transferred using the Bandwidth-on-Demand (BOD) function in the ISDN Router. On-demand dial-up and time-out disconnection reduce the public telephone connection fee by 10%-97%. (author)

  11. A complex network approach to cloud computing

    International Nuclear Information System (INIS)

    Travieso, Gonzalo; Ruggiero, Carlos Antônio; Bruno, Odemir Martinez; Costa, Luciano da Fontoura

    2016-01-01

    Cloud computing has become an important means to speed up computing. One problem influencing heavily the performance of such systems is the choice of nodes as servers responsible for executing the clients’ tasks. In this article we report how complex networks can be used to model such a problem. More specifically, we investigate the performance of the processing respectively to cloud systems underlaid by Erdős–Rényi (ER) and Barabási-Albert (BA) topology containing two servers. Cloud networks involving two communities not necessarily of the same size are also considered in our analysis. The performance of each configuration is quantified in terms of the cost of communication between the client and the nearest server, and the balance of the distribution of tasks between the two servers. Regarding the latter, the ER topology provides better performance than the BA for smaller average degrees and opposite behaviour for larger average degrees. With respect to cost, smaller values are found in the BA topology irrespective of the average degree. In addition, we also verified that it is easier to find good servers in ER than in BA networks. Surprisingly, balance and cost are not too much affected by the presence of communities. However, for a well-defined community network, we found that it is important to assign each server to a different community so as to achieve better performance. (paper: interdisciplinary statistical mechanics )

  12. Electricity demand and spot price forecasting using evolutionary computation combined with chaotic nonlinear dynamic model

    International Nuclear Information System (INIS)

    Unsihuay-Vila, C.; Zambroni de Souza, A.C.; Marangon-Lima, J.W.; Balestrassi, P.P.

    2010-01-01

    This paper proposes a new hybrid approach based on nonlinear chaotic dynamics and evolutionary strategy to forecast electricity loads and prices. The main idea is to develop a new training or identification stage in a nonlinear chaotic dynamic based predictor. In the training stage five optimal parameters for a chaotic based predictor are searched through an optimization model based on evolutionary strategy. The objective function of the optimization model is the mismatch minimization between the multi-step-ahead forecasting of predictor and observed data such as it is done in identification problems. The first contribution of this paper is that the proposed approach is capable of capturing the complex dynamic of demand and price time series considered resulting in a more accuracy forecasting. The second contribution is that the proposed approach run on-line manner, i.e. the optimal set of parameters and prediction is executed automatically which can be used to prediction in real-time, it is an advantage in comparison with other models, where the choice of their input parameters are carried out off-line, following qualitative/experience-based recipes. A case study of load and price forecasting is presented using data from New England, Alberta, and Spain. A comparison with other methods such as autoregressive integrated moving average (ARIMA) and artificial neural network (ANN) is shown. The results show that the proposed approach provides a more accurate and effective forecasting than ARIMA and ANN methods. (author)

  13. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  14. The research of computer network security and protection strategy

    Science.gov (United States)

    He, Jian

    2017-05-01

    With the widespread popularity of computer network applications, its security is also received a high degree of attention. Factors affecting the safety of network is complex, for to do a good job of network security is a systematic work, has the high challenge. For safety and reliability problems of computer network system, this paper combined with practical work experience, from the threat of network security, security technology, network some Suggestions and measures for the system design principle, in order to make the masses of users in computer networks to enhance safety awareness and master certain network security technology.

  15. The Effects of Sacred Value Networks Within an Evolutionary, Adversarial Game

    Science.gov (United States)

    McCalla, Scott G.; Short, Martin B.; Brantingham, P. Jeffrey

    2013-05-01

    The effects of personal relationships and shared ideologies on levels of crime and the formation of criminal coalitions are studied within the context of an adversarial, evolutionary game first introduced in Short et al. (Phys. Rev. E 82:066114, 2010). Here, we interpret these relationships as connections on a graph of N players. These connections are then used in a variety of ways to define each player's "sacred value network"—groups of individuals that are subject to special consideration or treatment by that player. We explore the effects on the dynamics of the system that these networks introduce, through various forms of protection from both victimization and punishment. Under local protection, these networks introduce a new fixed point within the game dynamics, which we find through a continuum approximation of the discrete game. Under more complicated, extended protection, we numerically observe the emergence of criminal coalitions, or "gangs". We also find that a high-crime steady state is much more frequent in the context of extended protection networks, in both the case of Erdős-Rényi and small world random graphs.

  16. Using satellite communications for a mobile computer network

    Science.gov (United States)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  17. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  18. Computational Evolutionary Methodology for Knowledge Discovery and Forecasting in Epidemiology and Medicine

    International Nuclear Information System (INIS)

    Rao, Dhananjai M.; Chernyakhovsky, Alexander; Rao, Victoria

    2008-01-01

    Humanity is facing an increasing number of highly virulent and communicable diseases such as avian influenza. Researchers believe that avian influenza has potential to evolve into one of the deadliest pandemics. Combating these diseases requires in-depth knowledge of their epidemiology. An effective methodology for discovering epidemiological knowledge is to utilize a descriptive, evolutionary, ecological model and use bio-simulations to study and analyze it. These types of bio-simulations fall under the category of computational evolutionary methods because the individual entities participating in the simulation are permitted to evolve in a natural manner by reacting to changes in the simulated ecosystem. This work describes the application of the aforementioned methodology to discover epidemiological knowledge about avian influenza using a novel eco-modeling and bio-simulation environment called SEARUMS. The mathematical principles underlying SEARUMS, its design, and the procedure for using SEARUMS are discussed. The bio-simulations and multi-faceted case studies conducted using SEARUMS elucidate its ability to pinpoint timelines, epicenters, and socio-economic impacts of avian influenza. This knowledge is invaluable for proactive deployment of countermeasures in order to minimize negative socioeconomic impacts, combat the disease, and avert a pandemic

  19. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  20. Tensor network method for reversible classical computation

    Science.gov (United States)

    Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.

    2018-03-01

    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.

  1. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  2. EVOLVE : a Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II

    CERN Document Server

    Coello, Carlos; Tantar, Alexandru-Adrian; Tantar, Emilia; Bouvry, Pascal; Moral, Pierre; Legrand, Pierrick; EVOLVE 2012

    2013-01-01

    This book comprises a selection of papers from the EVOLVE 2012 held in Mexico City, Mexico. The aim of the EVOLVE is to build a bridge between probability, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques ensuring performance guarantee factors. By gathering researchers with different backgrounds, a unified view and vocabulary can emerge where the theoretical advancements may echo in different domains. Summarizing, the EVOLVE focuses on challenging aspects arising at the passage from theory to new paradigms and aims to provide a unified view while raising questions related to reliability,  performance guarantees and modeling. The papers of the EVOLVE 2012 make a contribution to this goal. 

  3. Performance of the TRISTAN computer control network

    International Nuclear Information System (INIS)

    Koiso, H.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Kurihara, N.; Kurokawa, S.; Oide, K.; Shinomoto, M.

    1985-01-01

    An N-to-N token ring network of twenty-four minicomputers controls the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on the NODAL, a multi-computer interpreter language developed at CERN SPS. Typical messages exchanged between computers are NODAL programs and NODAL variables transmitted by the EXEC and the REMIT commands. These messages are exchanged as a cluster of packets whose maximum size is 512 bytes. At present, eleven minicomputers are connected to the network and the total length of the ring is 1.5 km. In this condition, the maximum attainable throughput is 980 kbytes/s. The response of a pair of an EXEC and a REMIT transactions which transmit a NODAL array A and one line of program 'REMIT A' and immediately remit the A is measured to be 95+0.039/chi/ ms, where /chi/ is the array size in byte. In ordinary accelerator operations, the maximum channel utilization is 2%, the average packet length is 96 bytes and the transmission rate is 10 kbytes/s

  4. Can evolutionary design of social networks make it easier to be 'green'?

    Science.gov (United States)

    Dickinson, Janis L; Crain, Rhiannon L; Reeve, H Kern; Schuldt, Jonathon P

    2013-09-01

    The social Web is swiftly becoming a living laboratory for understanding human cooperation on massive scales. It has changed how we organize, socialize, and tackle problems that benefit from the efforts of a large crowd. A new, applied, behavioral ecology has begun to build on theoretical and empirical studies of cooperation, integrating research in the fields of evolutionary biology, social psychology, social networking, and citizen science. Here, we review the ways in which these disciplines inform the design of Internet environments to support collective pro-environmental behavior, tapping into proximate prosocial mechanisms and models of social evolution, as well as generating opportunities for 'field studies' to discover how we can support massive collective action and shift environmental social norms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A new evolutionary solution method for dynamic expansion planning of DG-integrated primary distribution networks

    International Nuclear Information System (INIS)

    Ahmadigorji, Masoud; Amjady, Nima

    2014-01-01

    Highlights: • A new dynamic distribution network expansion planning model is presented. • A Binary Enhanced Particle Swarm Optimization (BEPSO) algorithm is proposed. • A Modified Differential Evolution (MDE) algorithm is proposed. • A new bi-level optimization approach composed of BEPSO and MDE is presented. • The effectiveness of the proposed optimization approach is extensively illustrated. - Abstract: Reconstruction in the power system and appearing of new technologies for generation capacity of electrical energy has led to significant innovation in Distribution Network Expansion Planning (DNEP). Distributed Generation (DG) includes the application of small/medium generation units located in power distribution networks and/or near the load centers. Appropriate utilization of DG can affect the various technical and operational indices of the distribution network such as the feeder loading, energy losses and voltage profile. In addition, application of DG in proper size is an essential tool to achieve the DG maximum potential benefits. In this paper, a time-based (dynamic) model for DNEP is proposed to determine the optimal size, location and installation year of DG in distribution system. Also, in this model, the Optimal Power Flow (OPF) is exerted to determine the optimal generation of DGs for every potential solution in order to minimize the investment and operation costs following the load growth in a specified planning period. Besides, the reinforcement requirements of existing distribution feeders are considered, simultaneously. The proposed optimization problem is solved by the combination of evolutionary methods of a new Binary Enhanced Particle Swarm Optimization (BEPSO) and Modified Differential Evolution (MDE) to find the optimal expansion strategy and solve OPF, respectively. The proposed planning approach is applied to two typical primary distribution networks and compared with several other methods. These comparisons illustrate the

  6. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    Science.gov (United States)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  7. Computer network security and cyber ethics

    CERN Document Server

    Kizza, Joseph Migga

    2014-01-01

    In its 4th edition, this book remains focused on increasing public awareness of the nature and motives of cyber vandalism and cybercriminals, the weaknesses inherent in cyberspace infrastructure, and the means available to protect ourselves and our society. This new edition aims to integrate security education and awareness with discussions of morality and ethics. The reader will gain an understanding of how the security of information in general and of computer networks in particular, on which our national critical infrastructure and, indeed, our lives depend, is based squarely on the individ

  8. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  9. Quantum computation over the butterfly network

    International Nuclear Information System (INIS)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio

    2011-01-01

    In order to investigate distributed quantum computation under restricted network resources, we introduce a quantum computation task over the butterfly network where both quantum and classical communications are limited. We consider deterministically performing a two-qubit global unitary operation on two unknown inputs given at different nodes, with outputs at two distinct nodes. By using a particular resource setting introduced by M. Hayashi [Phys. Rev. A 76, 040301(R) (2007)], which is capable of performing a swap operation by adding two maximally entangled qubits (ebits) between the two input nodes, we show that unitary operations can be performed without adding any entanglement resource, if and only if the unitary operations are locally unitary equivalent to controlled unitary operations. Our protocol is optimal in the sense that the unitary operations cannot be implemented if we relax the specifications of any of the channels. We also construct protocols for performing controlled traceless unitary operations with a 1-ebit resource and for performing global Clifford operations with a 2-ebit resource.

  10. Proceedings of workshop on distributed computing and network

    International Nuclear Information System (INIS)

    Abe, F.; Yuasa, F.

    1993-02-01

    'Distributed Computing and Network' is one of hot topics in the field of computing. Recent progress in the computer technology is providing new paradigm for computing even in High Energy Physics. Particularly the workstation based computer system is opening new active field of computer application to sciences. The major topics discussed in this symposium are distributed computing and wide area research network for domestic and international link. The two days symposium provided so enough topics to foresee the next direction of our computing environment. 70 people have got together to discuss on these interesting thema as well as information exchange on the computer technologies. (J.P.N.)

  11. Cloud Computing Services for Seismic Networks

    Science.gov (United States)

    Olson, Michael

    This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.

  12. Choice Of Computer Networking Cables And Their Effect On Data ...

    African Journals Online (AJOL)

    Computer networking is the order of the day in this Information and Communication Technology (ICT) age. Although a network can be through a wireless device most local connections are done using cables. There are three main computer-networking cables namely coaxial cable, unshielded twisted pair cable and the optic ...

  13. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2013-01-01

    Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  14. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    Science.gov (United States)

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  15. Evolutionary prisoner's dilemma games on the network with punishment and opportunistic partner switching

    Science.gov (United States)

    Takesue, H.

    2018-02-01

    Punishment and partner switching are two well-studied mechanisms that support the evolution of cooperation. Observation of human behaviour suggests that the extent to which punishment is adopted depends on the usage of alternative mechanisms, including partner switching. In this study, we investigate the combined effect of punishment and partner switching in evolutionary prisoner's dilemma games conducted on a network. In the model, agents are located on the network and participate in the prisoner's dilemma games with punishment. In addition, they can opportunistically switch interaction partners to improve their payoff. Our Monte Carlo simulation showed that a large frequency of punishers is required to suppress defectors when the frequency of partner switching is low. In contrast, cooperation is the most abundant strategy when the frequency of partner switching is high regardless of the strength of punishment. Interestingly, cooperators become abundant not because they avoid the cost of inflicting punishment and earn a larger average payoff per game but rather because they have more numerous opportunities to be referred to as a role agent by defectors. Our results imply that the fluidity of social relationships has a profound effect on the adopted strategy in maintaining cooperation.

  16. Evolutionary-Optimized Photonic Network Structure in White Beetle Wing Scales.

    Science.gov (United States)

    Wilts, Bodo D; Sheng, Xiaoyuan; Holler, Mirko; Diaz, Ana; Guizar-Sicairos, Manuel; Raabe, Jörg; Hoppe, Robert; Liu, Shu-Hao; Langford, Richard; Onelli, Olimpia D; Chen, Duyu; Torquato, Salvatore; Steiner, Ullrich; Schroer, Christian G; Vignolini, Silvia; Sepe, Alessandro

    2018-05-01

    Most studies of structural color in nature concern periodic arrays, which through the interference of light create color. The "color" white however relies on the multiple scattering of light within a randomly structured medium, which randomizes the direction and phase of incident light. Opaque white materials therefore must be much thicker than periodic structures. It is known that flying insects create "white" in extremely thin layers. This raises the question, whether evolution has optimized the wing scale morphology for white reflection at a minimum material use. This hypothesis is difficult to prove, since this requires the detailed knowledge of the scattering morphology combined with a suitable theoretical model. Here, a cryoptychographic X-ray tomography method is employed to obtain a full 3D structural dataset of the network morphology within a white beetle wing scale. By digitally manipulating this 3D representation, this study demonstrates that this morphology indeed provides the highest white retroreflection at the minimum use of material, and hence weight for the organism. Changing any of the network parameters (within the parameter space accessible by biological materials) either increases the weight, increases the thickness, or reduces reflectivity, providing clear evidence for the evolutionary optimization of this morphology. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A sense of life: computational and experimental investigations with models of biochemical and evolutionary processes.

    Science.gov (United States)

    Mishra, Bud; Daruwala, Raoul-Sam; Zhou, Yi; Ugel, Nadia; Policriti, Alberto; Antoniotti, Marco; Paxia, Salvatore; Rejali, Marc; Rudra, Archisman; Cherepinsky, Vera; Silver, Naomi; Casey, William; Piazza, Carla; Simeoni, Marta; Barbano, Paolo; Spivak, Marina; Feng, Jiawu; Gill, Ofer; Venkatesh, Mysore; Cheng, Fang; Sun, Bing; Ioniata, Iuliana; Anantharaman, Thomas; Hubbard, E Jane Albert; Pnueli, Amir; Harel, David; Chandru, Vijay; Hariharan, Ramesh; Wigler, Michael; Park, Frank; Lin, Shih-Chieh; Lazebnik, Yuri; Winkler, Franz; Cantor, Charles R; Carbone, Alessandra; Gromov, Mikhael

    2003-01-01

    We collaborate in a research program aimed at creating a rigorous framework, experimental infrastructure, and computational environment for understanding, experimenting with, manipulating, and modifying a diverse set of fundamental biological processes at multiple scales and spatio-temporal modes. The novelty of our research is based on an approach that (i) requires coevolution of experimental science and theoretical techniques and (ii) exploits a certain universality in biology guided by a parsimonious model of evolutionary mechanisms operating at the genomic level and manifesting at the proteomic, transcriptomic, phylogenic, and other higher levels. Our current program in "systems biology" endeavors to marry large-scale biological experiments with the tools to ponder and reason about large, complex, and subtle natural systems. To achieve this ambitious goal, ideas and concepts are combined from many different fields: biological experimentation, applied mathematical modeling, computational reasoning schemes, and large-scale numerical and symbolic simulations. From a biological viewpoint, the basic issues are many: (i) understanding common and shared structural motifs among biological processes; (ii) modeling biological noise due to interactions among a small number of key molecules or loss of synchrony; (iii) explaining the robustness of these systems in spite of such noise; and (iv) cataloging multistatic behavior and adaptation exhibited by many biological processes.

  18. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  19. Computational Aspects of Sensor Network Protocols (Distributed Sensor Network Simulator

    Directory of Open Access Journals (Sweden)

    Vasanth Iyer

    2009-08-01

    Full Text Available In this work, we model the sensor networks as an unsupervised learning and clustering process. We classify nodes according to its static distribution to form known class densities (CCPD. These densities are chosen from specific cross-layer features which maximizes lifetime of power-aware routing algorithms. To circumvent computational complexities of a power-ware communication STACK we introduce path-loss models at the nodes only for high density deployments. We study the cluster heads and formulate the data handling capacity for an expected deployment and use localized probability models to fuse the data with its side information before transmission. So each cluster head has a unique Pmax but not all cluster heads have the same measured value. In a lossless mode if there are no faults in the sensor network then we can show that the highest probability given by Pmax is ambiguous if its frequency is ≤ n/2 otherwise it can be determined by a local function. We further show that the event detection at the cluster heads can be modelled with a pattern 2m and m, the number of bits can be a correlated pattern of 2 bits and for a tight lower bound we use 3-bit Huffman codes which have entropy < 1. These local algorithms are further studied to optimize on power, fault detection and to maximize on the distributed routing algorithm used at the higher layers. From these bounds in large network, it is observed that the power dissipation is network size invariant. The performance of the routing algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed that if the network size is kept constant and the density of the nodes is kept closer then the local pathloss model effects the performance of the routing algorithms. We also obtain the maximum intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., the lifetime of sensor network.

  20. Planning and management of cloud computing networks

    Science.gov (United States)

    Larumbe, Federico

    The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a

  1. The Handicap Principle for Trust in Computer Security, the Semantic Web and Social Networking

    Science.gov (United States)

    Ma, Zhanshan (Sam); Krings, Axel W.; Hung, Chih-Cheng

    Communication is a fundamental function of life, and it exists in almost all living things: from single-cell bacteria to human beings. Communication, together with competition and cooperation,arethree fundamental processes in nature. Computer scientists are familiar with the study of competition or 'struggle for life' through Darwin's evolutionary theory, or even evolutionary computing. They may be equally familiar with the study of cooperation or altruism through the Prisoner's Dilemma (PD) game. However, they are likely to be less familiar with the theory of animal communication. The objective of this article is three-fold: (i) To suggest that the study of animal communication, especially the honesty (reliability) of animal communication, in which some significant advances in behavioral biology have been achieved in the last three decades, should be on the verge to spawn important cross-disciplinary research similar to that generated by the study of cooperation with the PD game. One of the far-reaching advances in the field is marked by the publication of "The Handicap Principle: a Missing Piece of Darwin's Puzzle" by Zahavi (1997). The 'Handicap' principle [34][35], which states that communication signals must be costly in some proper way to be reliable (honest), is best elucidated with evolutionary games, e.g., Sir Philip Sidney (SPS) game [23]. Accordingly, we suggest that the Handicap principle may serve as a fundamental paradigm for trust research in computer science. (ii) To suggest to computer scientists that their expertise in modeling computer networks may help behavioral biologists in their study of the reliability of animal communication networks. This is largely due to the historical reason that, until the last decade, animal communication was studied with the dyadic paradigm (sender-receiver) rather than with the network paradigm. (iii) To pose several open questions, the answers to which may bear some refreshing insights to trust research in

  2. Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.

    Science.gov (United States)

    Pierre, Samuel

    2001-01-01

    Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…

  3. Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance

    Directory of Open Access Journals (Sweden)

    Sayed Ahmed Imran Bellary

    2016-01-01

    Full Text Available To reduce the total design and optimization time, numerical analysis with surrogate-based approaches is being used in turbomachinery optimization. In this work, multiple surrogates are coupled with an evolutionary genetic algorithm to find the Pareto optimal fronts (PoFs of two centrifugal pumps with different specifications in order to enhance their performance. The two pumps were used a centrifugal pump commonly used in industry (Case I and an electrical submersible pump used in the petroleum industry (Case II. The objectives are to enhance head and efficiency of the pumps at specific flow rates. Surrogates such as response surface approximation (RSA, Kriging (KRG, neural networks and weighted-average surrogates (WASs were used to determine the PoFs. To obtain the objective functions’ values and to understand the flow physics, Reynolds-averaged Navier–Stokes equations were solved. It is found that the WAS performs better for both the objectives than any other individual surrogate. The best individual surrogates or the best predicted error sum of squares (PRESS surrogate (BPS obtained from cross-validation (CV error estimations produced better PoFs but was still unable to compete with the WAS. The high CV error-producing surrogate produced the worst PoFs. The performance improvement in this study is due to the change in flow pattern in the passage of the impeller of the pumps.

  4. Network and computing infrastructure for scientific applications in Georgia

    Science.gov (United States)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  5. Mechanisms of protection of information in computer networks and systems

    Directory of Open Access Journals (Sweden)

    Sergey Petrovich Evseev

    2011-10-01

    Full Text Available Protocols of information protection in computer networks and systems are investigated. The basic types of threats of infringement of the protection arising from the use of computer networks are classified. The basic mechanisms, services and variants of realization of cryptosystems for maintaining authentication, integrity and confidentiality of transmitted information are examined. Their advantages and drawbacks are described. Perspective directions of development of cryptographic transformations for the maintenance of information protection in computer networks and systems are defined and analyzed.

  6. 2013 International Conference on Computer Engineering and Network

    CERN Document Server

    Zhu, Tingshao

    2014-01-01

    This book aims to examine innovation in the fields of computer engineering and networking. The book covers important emerging topics in computer engineering and networking, and it will help researchers and engineers improve their knowledge of state-of-art in related areas. The book presents papers from The Proceedings of the 2013 International Conference on Computer Engineering and Network (CENet2013) which was held on July 20-21, in Shanghai, China.

  7. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  8. Computer network for electric power control systems. Chubu denryoku (kabu) denryoku keito seigyoyo computer network

    Energy Technology Data Exchange (ETDEWEB)

    Tsuneizumi, T. (Chubu Electric Power Co. Inc., Nagoya (Japan)); Shimomura, S.; Miyamura, N. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1992-06-03

    A computer network for electric power control system was developed that is applied with the open systems interconnection (OSI), an international standard for communications protocol. In structuring the OSI network, a direct session layer was accessed from the operation functions when high-speed small-capacity information is transmitted. File transfer, access and control having a function of collectively transferring large-capacity data were applied when low-speed large-capacity information is transmitted. A verification test for the realtime computer network (RCN) mounting regulation was conducted according to a verification model using a mini-computer, and a result that can satisfy practical performance was obtained. For application interface, kernel, health check and two-route transmission functions were provided as a connection control function, so were transmission verification function and late arrival abolishing function. In system mounting pattern, dualized communication server (CS) structure was adopted. A hardware structure may include a system to have the CS function contained in a host computer and a separate installation system. 5 figs., 6 tabs.

  9. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    Science.gov (United States)

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  10. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.

    Directory of Open Access Journals (Sweden)

    Eric Venner

    Full Text Available High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks.

  11. Quantum Random Networks for Type 2 Quantum Computers

    National Research Council Canada - National Science Library

    Allara, David L; Hasslacher, Brosl

    2006-01-01

    Random boolean networks (RBNs) have been studied theoretically and computationally in order to be able to use their remarkable self-healing and large basins of altercation properties as quantum computing architectures, especially...

  12. The Security Challenges in the IoT Enabled Cyber-Physical Systems and Opportunities for Evolutionary Computing & Other Computational Intelligence

    OpenAIRE

    He, H.; Maple, C.; Watson, T.; Tiwari, A.; Mehnen, J.; Jin, Y.; Gabrys, Bogdan

    2016-01-01

    Internet of Things (IoT) has given rise to the fourth industrial revolution (Industrie 4.0), and it brings great benefits by connecting people, processes and data. However, cybersecurity has become a critical challenge in the IoT enabled cyber physical systems, from connected supply chain, Big Data produced by huge amount of IoT devices, to industry control systems. Evolutionary computation combining with other computational intelligence will play an important role for cybersecurity, such as ...

  13. Email networks and the spread of computer viruses

    Science.gov (United States)

    Newman, M. E.; Forrest, Stephanie; Balthrop, Justin

    2002-09-01

    Many computer viruses spread via electronic mail, making use of computer users' email address books as a source for email addresses of new victims. These address books form a directed social network of connections between individuals over which the virus spreads. Here we investigate empirically the structure of this network using data drawn from a large computer installation, and discuss the implications of this structure for the understanding and prevention of computer virus epidemics.

  14. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  15. An Overview of Computer Network security and Research Technology

    OpenAIRE

    Rathore, Vandana

    2016-01-01

    The rapid development in the field of computer networks and systems brings both convenience and security threats for users. Security threats include network security and data security. Network security refers to the reliability, confidentiality, integrity and availability of the information in the system. The main objective of network security is to maintain the authenticity, integrity, confidentiality, availability of the network. This paper introduces the details of the technologies used in...

  16. Optimized smart grid energy procurement for LTE networks using evolutionary algorithms

    KAUST Repository

    Ghazzai, Hakim

    2014-11-01

    Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Moreover, introducing renewable energy as an alternative power source has become a real challenge among network operators. In this paper, we formulate an optimization problem that aims to maximize the profit of Long-Term Evolution (LTE) cellular operators and to simultaneously minimize the CO2 emissions in green wireless cellular networks without affecting the desired quality of service (QoS). The BS sleeping strategy lends itself to an interesting implementation using several heuristic approaches, such as the genetic (GA) and particle swarm optimization (PSO) algorithms. In this paper, we propose GA-based and PSO-based methods that reduce the energy consumption of BSs by not only shutting down underutilized BSs but by optimizing the amounts of energy procured from different retailers (renewable energy and electricity retailers), as well. A comparison with another previously proposed algorithm is also carried out to evaluate the performance and the computational complexity of the employed methods.

  17. Computer Network Attacks and Modern International Law

    Directory of Open Access Journals (Sweden)

    Andrey L. Kozik

    2014-01-01

    Full Text Available Computer network attacks (CNA is a no doubt actual theoretical and practical topic today. Espionage, public and private computer-systems disruptions committed by states have been a real life. States execute CNA's involving its agents or hiring private hacker groups. However, the application of lex lata remains unclear in practice and still undeveloped in doctrine. Nevertheless the international obligations, which states have accepted under the UN Charter and other treaties as well as customs - with any related exemptions and reservations - are still in force and create a legal framework, which one cannot ignore. Taking into account the intensity level or the consequences of a CNA the later could be considered as an unfriendly, but legal doing, or, as a use of force (prohibited under the article 2(4 of the UN Charter, or - in the case the proper threshold is taken - as an armed attack (which gives the victim-state the right to use force in self-defence under the customs and the article 51 of the UN Charter. Researches in the field of lex lata applicability to the CNAs could highlight gaps and week points of the nowadays legal regime. The subject is on agenda in western doctrine, and it is a pity - not in Russian one - the number of publication here is still unsatisfied. The article formulates issues related to CNAs and the modern international legal regime. The author explores the definition, legal volume of the term CNA, highlights main issues, which have to be analyzed from the point of the contemporary law.

  18. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences.

    Science.gov (United States)

    Zheng, Xiaoyan; Cai, Danying; Potter, Daniel; Postman, Joseph; Liu, Jing; Teng, Yuanwen

    2014-11-01

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  20. ORGANIZATION OF CLOUD COMPUTING INFRASTRUCTURE BASED ON SDN NETWORK

    Directory of Open Access Journals (Sweden)

    Alexey A. Efimenko

    2013-01-01

    Full Text Available The article presents the main approaches to cloud computing infrastructure based on the SDN network in present data processing centers (DPC. The main indexes of management effectiveness of network infrastructure of DPC are determined. The examples of solutions for the creation of virtual network devices are provided.

  1. Security of fixed and wireless computer networks

    NARCIS (Netherlands)

    Verschuren, J.; Degen, A.J.G.; Veugen, P.J.M.

    2003-01-01

    A few decades ago, most computers were stand-alone machines: they were able to process information using their own resources. Later, computer systems were connected to each other enabling a computer system to exchange data with another computer and to use resources of another computer. With the

  2. 4th International Conference on Computer Engineering and Networks

    CERN Document Server

    2015-01-01

    This book aims to examine innovation in the fields of computer engineering and networking. The book covers important emerging topics in computer engineering and networking, and it will help researchers and engineers improve their knowledge of state-of-art in related areas. The book presents papers from the 4th International Conference on Computer Engineering and Networks (CENet2014) held July 19-20, 2014 in Shanghai, China.  ·       Covers emerging topics for computer engineering and networking ·       Discusses how to improve productivity by using the latest advanced technologies ·       Examines innovation in the fields of computer engineering and networking  

  3. Ecological Interface Design for Computer Network Defense.

    Science.gov (United States)

    Bennett, Kevin B; Bryant, Adam; Sushereba, Christen

    2018-05-01

    A prototype ecological interface for computer network defense (CND) was developed. Concerns about CND run high. Although there is a vast literature on CND, there is some indication that this research is not being translated into operational contexts. Part of the reason may be that CND has historically been treated as a strictly technical problem, rather than as a socio-technical problem. The cognitive systems engineering (CSE)/ecological interface design (EID) framework was used in the analysis and design of the prototype interface. A brief overview of CSE/EID is provided. EID principles of design (i.e., direct perception, direct manipulation and visual momentum) are described and illustrated through concrete examples from the ecological interface. Key features of the ecological interface include (a) a wide variety of alternative visual displays, (b) controls that allow easy, dynamic reconfiguration of these displays, (c) visual highlighting of functionally related information across displays, (d) control mechanisms to selectively filter massive data sets, and (e) the capability for easy expansion. Cyber attacks from a well-known data set are illustrated through screen shots. CND support needs to be developed with a triadic focus (i.e., humans interacting with technology to accomplish work) if it is to be effective. Iterative design and formal evaluation is also required. The discipline of human factors has a long tradition of success on both counts; it is time that HF became fully involved in CND. Direct application in supporting cyber analysts.

  4. Creating a two-layered augmented artificial immune system for application to computer network intrusion detection

    Science.gov (United States)

    Judge, Matthew G.; Lamont, Gary B.

    2009-05-01

    Computer network security has become a very serious concern of commercial, industrial, and military organizations due to the increasing number of network threats such as outsider intrusions and insider covert activities. An important security element of course is network intrusion detection which is a difficult real world problem that has been addressed through many different solution attempts. Using an artificial immune system has been shown to be one of the most promising results. By enhancing jREMISA, a multi-objective evolutionary algorithm inspired artificial immune system, with a secondary defense layer; we produce improved accuracy of intrusion classification and a flexibility in responsiveness. This responsiveness can be leveraged to provide a much more powerful and accurate system, through the use of increased processing time and dedicated hardware which has the flexibility of being located out of band.

  5. Studying the evolutionary relationships and phylogenetic trees of 21 groups of tRNA sequences based on complex networks.

    Science.gov (United States)

    Wei, Fangping; Chen, Bowen

    2012-03-01

    To find out the evolutionary relationships among different tRNA sequences of 21 amino acids, 22 networks are constructed. One is constructed from whole tRNAs, and the other 21 networks are constructed from the tRNAs which carry the same amino acids. A new method is proposed such that the alignment scores of any two amino acids groups are determined by the average degree and the average clustering coefficient of their networks. The anticodon feature of isolated tRNA and the phylogenetic trees of 21 group networks are discussed. We find that some isolated tRNA sequences in 21 networks still connect with other tRNAs outside their group, which reflects the fact that those tRNAs might evolve by intercrossing among these 21 groups. We also find that most anticodons among the same cluster are only one base different in the same sites when S ≥ 70, and they stay in the same rank in the ladder of evolutionary relationships. Those observations seem to agree on that some tRNAs might mutate from the same ancestor sequences based on point mutation mechanisms.

  6. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  7. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  8. Virus world as an evolutionary network of viruses and capsidless selfish elements.

    Science.gov (United States)

    Koonin, Eugene V; Dolja, Valerian V

    2014-06-01

    Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. Highly reliable computer network for real time system

    International Nuclear Information System (INIS)

    Mohammed, F.A.; Omar, A.A.; Ayad, N.M.A.; Madkour, M.A.I.; Ibrahim, M.K.

    1988-01-01

    Many of computer networks have been studied different trends regarding the network architecture and the various protocols that govern data transfers and guarantee a reliable communication among all a hierarchical network structure has been proposed to provide a simple and inexpensive way for the realization of a reliable real-time computer network. In such architecture all computers in the same level are connected to a common serial channel through intelligent nodes that collectively control data transfers over the serial channel. This level of computer network can be considered as a local area computer network (LACN) that can be used in nuclear power plant control system since it has geographically dispersed subsystems. network expansion would be straight the common channel for each added computer (HOST). All the nodes are designed around a microprocessor chip to provide the required intelligence. The node can be divided into two sections namely a common section that interfaces with serial data channel and a private section to interface with the host computer. This part would naturally tend to have some variations in the hardware details to match the requirements of individual host computers. fig 7

  10. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  11. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-06

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  12. Local computer network of the JINR Neutron Physics Laboratory

    International Nuclear Information System (INIS)

    Alfimenkov, A.V.; Vagov, V.A.; Vajdkhadze, F.

    1988-01-01

    New high-speed local computer network, where intelligent network adapter (NA) is used as hardware base, is developed in the JINR Neutron Physics Laboratory to increase operation efficiency and data transfer rate. NA consists of computer bus interface, cable former, microcomputer segment designed for both program realization of channel-level protocol and organization of bidirectional transfer of information through direct access channel between monochannel and computer memory with or witout buffering in NA operation memory device

  13. A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter

    DEFF Research Database (Denmark)

    Salonitis, Konstantinos; Chantzis, Dimitrios; Kappatos, Vasileios

    2017-01-01

    approaches or with the use of topology optimization methodologies. An optimization approach utilizing multipurpose optimization algorithms has not been proposed yet. This paper presents a novel user-friendly method for the design optimization of lattice components towards weight minimization, which combines...... finite element analysis and evolutionary computation. The proposed method utilizes the cell homogenization technique in order to reduce the computational cost of the finite element analysis and a genetic algorithm in order to search for the most lightweight lattice configuration. A bracket consisting...

  14. Software network analyzer for computer network performance measurement planning over heterogeneous services in higher educational institutes

    OpenAIRE

    Ismail, Mohd Nazri

    2009-01-01

    In 21st century, convergences of technologies and services in heterogeneous environment have contributed multi-traffic. This scenario will affect computer network on learning system in higher educational Institutes. Implementation of various services can produce different types of content and quality. Higher educational institutes should have a good computer network infrastructure to support usage of various services. The ability of computer network should consist of i) higher bandwidth; ii) ...

  15. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  16. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  17. Data communications and computer communications network

    International Nuclear Information System (INIS)

    Kim, Jang Gwon; Gu, Chang Hoe

    2005-03-01

    This textbook is composed of twelve chapters, which are communication network introduction, foundation of data communication, data link control, circuit switching system, packet switching system, multiple access communication system, protocol and architecture, LAN, MAN communication network, integrated service digital network, internet and Asymmetric digital subscriber Line and Wireless Local Loop. Each chapter has the introduction of the technique, structure, function and practice problems. It also has the appendix on electricity and communication standards organization, characteristic table and glossary.

  18. Fairness in Communication and Computer Network Design

    OpenAIRE

    Nilsson, Pål

    2006-01-01

    In communication networks, fair sharing of resources is an important issue for one main reason. The growth of network capacity is in general not matching the rapid growth of traffic. Consequently, the resources consumed by each user have to be limited. This implies that users cannot always be assigned the end-to-end bandwidth they ask for. Instead, the limited network resources should be distributed to users in a way that assures fair end-to-end bandwidth assignment among them. Obtaini...

  19. HeNCE: A Heterogeneous Network Computing Environment

    Directory of Open Access Journals (Sweden)

    Adam Beguelin

    1994-01-01

    Full Text Available Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM. The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.

  20. Computing representative networks for braided rivers

    NARCIS (Netherlands)

    Kleinhans, M.; van Kreveld, M.J.; Ophelders, T.A.E.; Sonke, W.M.; Speckmann, B.; Verbeek, K.A.B.; Aronov, Boris; Katz, Matthew

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  1. Computing Representative Networks for Braided Rivers

    NARCIS (Netherlands)

    Kleinhans, Maarten; van Kreveld, M.J.; Ophelders, Tim; Sonke, Willem; Speckmann, Bettina; Verbeek, Kevin

    2017-01-01

    Drainage networks on terrains have been studied extensively from an algorithmic perspective. However, in drainage networks water flow cannot bifurcate and hence they do not model braided rivers (multiple channels which split and join, separated by sediment bars). We initiate the algorithmic study of

  2. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  3. Phoebus: Network Middleware for Next-Generation Network Computing

    Energy Technology Data Exchange (ETDEWEB)

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  4. High Efficiency Computation of the Variances of Structural Evolutionary Random Responses

    Directory of Open Access Journals (Sweden)

    J.H. Lin

    2000-01-01

    Full Text Available For structures subjected to stationary or evolutionary white/colored random noise, their various response variances satisfy algebraic or differential Lyapunov equations. The solution of these Lyapunov equations used to be very difficult. A precise integration method is proposed in the present paper, which solves such Lyapunov equations accurately and very efficiently.

  5. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  6. Effective Response to Attacks On Department of Defense Computer Networks

    National Research Council Canada - National Science Library

    Shaha, Patrick

    2001-01-01

    .... For the Commanders-in-Chief (CINCs), computer networking has proven especially useful in maintaining contact and sharing data with elements forward deployed as well as with host nation governments and agencies...

  7. Computer Network Attack Versus Operational Maneuver from the Sea

    National Research Council Canada - National Science Library

    Herdegen, Dale

    2000-01-01

    ...) vulnerable to computer network attack (CNA). Mission command and control can reduce the impact of the loss of command and control, but it can not overcome the vast and complex array of threats...

  8. Computer network prepared to handle massive data flow

    CERN Multimedia

    2006-01-01

    "Massive quantities of data will soon begin flowing from the largest scientific instrument ever built into an internationl network of computer centers, including one operated jointly by the University of Chicago and Indiana University." (2 pages)

  9. AN OVERVIEW OF QUALITY OF SERVICE COMPUTER NETWORK

    OpenAIRE

    Mrs. Amandeep Kaur

    2011-01-01

    This paper highlights some of the basic concepts of QoS. The major research areas of Quality of Service Computer Networks are highlighted. The paper also compares some of the current QoS Routing techniques.

  10. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies.

    Science.gov (United States)

    Yutin, Natalya; Raoult, Didier; Koonin, Eugene V

    2013-05-23

    Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide

  11. Optical processing for future computer networks

    Science.gov (United States)

    Husain, A.; Haugen, P. R.; Hutcheson, L. D.; Warrior, J.; Murray, N.; Beatty, M.

    1986-01-01

    In the development of future data management systems, such as the NASA Space Station, a major problem represents the design and implementation of a high performance communication network which is self-correcting and repairing, flexible, and evolvable. To obtain the goal of designing such a network, it will be essential to incorporate distributed adaptive network control techniques. The present paper provides an outline of the functional and communication network requirements for the Space Station data management system. Attention is given to the mathematical representation of the operations being carried out to provide the required functionality at each layer of communication protocol on the model. The possible implementation of specific communication functions in optics is also considered.

  12. Networking Micro-Processors for Effective Computer Utilization in Nursing

    OpenAIRE

    Mangaroo, Jewellean; Smith, Bob; Glasser, Jay; Littell, Arthur; Saba, Virginia

    1982-01-01

    Networking as a social entity has important implications for maximizing computer resources for improved utilization in nursing. This paper describes the one process of networking of complementary resources at three institutions. Prairie View A&M University, Texas A&M University and the University of Texas School of Public Health, which has effected greater utilization of computers at the college. The results achieved in this project should have implications for nurses, users, and consumers in...

  13. Integrated Optoelectronic Networks for Application-Driven Multicore Computing

    Science.gov (United States)

    2017-05-08

    AFRL-AFOSR-VA-TR-2017-0102 Integrated Optoelectronic Networks for Application- Driven Multicore Computing Sudeep Pasricha COLORADO STATE UNIVERSITY...AND SUBTITLE Integrated Optoelectronic Networks for Application-Driven Multicore Computing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0110 5c...and supportive materials with innovative architectural designs that integrate these components according to system-wide application needs. 15

  14. Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks

    NARCIS (Netherlands)

    Miandoabchi, Elnaz; Farahani, Reza Zanjirani; Dullaert, Wout; Szeto, W. Y.

    This paper addresses a bi-modal multi-objective discrete urban road network design problem with automobile and bus flow interaction. The problem considers the concurrent urban road and bus network design in which the authorities play a major role in designing bus network topology. The road network

  15. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  16. The University of Michigan's Computer-Aided Engineering Network.

    Science.gov (United States)

    Atkins, D. E.; Olsen, Leslie A.

    1986-01-01

    Presents an overview of the Computer-Aided Engineering Network (CAEN) of the University of Michigan. Describes its arrangement of workstations, communication networks, and servers. Outlines the factors considered in hardware and software decision making. Reviews the program's impact on students. (ML)

  17. The Role of Computer Networks in Aerospace Engineering.

    Science.gov (United States)

    Bishop, Ann Peterson

    1994-01-01

    Presents selected results from an empirical investigation into the use of computer networks in aerospace engineering based on data from a national mail survey. The need for user-based studies of electronic networking is discussed, and a copy of the questionnaire used in the survey is appended. (Contains 46 references.) (LRW)

  18. Evolving ATLAS Computing For Today’s Networks

    CERN Document Server

    Campana, S; The ATLAS collaboration; Jezequel, S; Negri, G; Serfon, C; Ueda, I

    2012-01-01

    The ATLAS computing infrastructure was designed many years ago based on the assumption of rather limited network connectivity between computing centres. ATLAS sites have been organized in a hierarchical model, where only a static subset of all possible network links can be exploited and a static subset of well connected sites (CERN and the T1s) can cover important functional roles such as hosting master copies of the data. The pragmatic adoption of such simplified approach, in respect of a more relaxed scenario interconnecting all sites, was very beneficial during the commissioning of the ATLAS distributed computing system and essential in reducing the operational cost during the first two years of LHC data taking. In the mean time, networks evolved far beyond this initial scenario: while a few countries are still poorly connected with the rest of the WLCG infrastructure, most of the ATLAS computing centres are now efficiently interlinked. Our operational experience in running the computing infrastructure in ...

  19. Co-Evolutionary Mechanisms of Emotional Bursts in Online Social Dynamics and Networks

    Directory of Open Access Journals (Sweden)

    Bosiljka Tadić

    2013-11-01

    Full Text Available Collective emotional behavior of users is frequently observed on various Web portals; however, its complexity and the role of emotions in the acting mechanisms are still not thoroughly understood. In this work, using the empirical data and agent-based modeling, a parallel analysis is performed of two archetypal systems—Blogs and Internet-Relayed-Chats—both of which maintain self-organized dynamics but not the same communication rules and time scales. The emphasis is on quantifying the collective emotions by means of fractal analysis of the underlying processes as well as topology of social networks, which arise and co-evolve in these stochastic processes. The results reveal that two distinct mechanisms, which are based on different use of emotions (an emotion is characterized by two components, arousal and valence, are intrinsically associated with two classes of emergent social graphs. Their hallmarks are the evolution of communities in accordance with the excess of the negative emotions on popular Blogs, on one side, and smooth spreading of the Bot’s emotional impact over the entire hierarchical network of chats, on the other. Another emphasis of this work is on the understanding of nonextensivity of the emotion dynamics; it was found that, in its own way, each mechanism leads to a reduced phase space of the emotion components when the collective dynamics takes place. That a non-additive entropy describes emotion dynamics, is further confirmed by computing the q-generalized Kolmogorov-Sinai entropy rate in the empirical data of chats as well as in the simulations of interacting emotional agents and Bots.

  20. At the crossroads of evolutionary computation and music: self-programming synthesizers, swarm orchestras and the origins of melody.

    Science.gov (United States)

    Miranda, Eduardo Reck

    2004-01-01

    This paper introduces three approaches to using Evolutionary Computation (EC) in Music (namely, engineering, creative and musicological approaches) and discusses examples of representative systems that have been developed within the last decade, with emphasis on more recent and innovative works. We begin by reviewing engineering applications of EC in Music Technology such as Genetic Algorithms and Cellular Automata sound synthesis, followed by an introduction to applications where EC has been used to generate musical compositions. Next, we introduce ongoing research into EC models to study the origins of music and detail our own research work on modelling the evolution of melody. Copryright 2004 Massachusetts Institute of Technology

  1. A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Science.gov (United States)

    2011-03-01

    pertinent example of the application of Evolutionary Algorithms to pattern recognition comes from Radtke et al. [130]. The authors apply Multi- Objective...J., T. Zseby, and B. Claise. S. Zander,” Requirements for IP Flow Information Export (IPFIX). Technical report, RFC 3917, October 2004. [130] Radtke ...hal.inria.fr/inria-00104200/en/. [131] Radtke , P.V.W., T. Wong, and R. Sabourin. “A multi-objective memetic al- gorithm for intelligent feature extraction

  2. Development of the computer network of IFIN-HH

    International Nuclear Information System (INIS)

    Danet, A.; Mirica, M.; Constantinescu, S.

    1998-01-01

    The general computer network of Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), as part of RNC (Romanian National Computer Network for scientific research and technological development), offers the Romanian physics research community an efficient and cost-effective infrastructure to communicate and collaborate with fellow researchers abroad, and to collect and exchange the most up-to-date information in their research area. RNC is the national project co-ordinated and established by the Ministry of Research and Technology targeted on the following main objectives: - setting up a technical and organizational infrastructure meant to provide national and international electronic services for the Romanian scientific research community; - providing a rapid and competitive tool for the exchange information in the framework of R-D community; - using the scientific and technical data bases available in the country and offered by the national networks from other countries through international networks; - providing a support for information, documentation, scientific and technical co-operation. The guiding principle in elaborating the project of general computer network of IFIN-HH was to implement an open system based on OSI standards without technical barriers in communication between different communities using different computing hardware and software. The major objectives achieved in 1997 in the direction of developing the general computer network of IFIN-HH (over 250 computers connected) were: - connecting all the existing and newly installed computer equipment and providing an adequate connectivity; - providing the usual Internet services: e-mail, ftp, telnet, finger, gopher; - providing access to the World Wide Web resources; - providing on-line statistics of IP traffic (input and output) of each node of the domain computer network; - improving the performance of the connection with the central node RNC. (authors)

  3. Recurrent Neural Network for Computing Outer Inverse.

    Science.gov (United States)

    Živković, Ivan S; Stanimirović, Predrag S; Wei, Yimin

    2016-05-01

    Two linear recurrent neural networks for generating outer inverses with prescribed range and null space are defined. Each of the proposed recurrent neural networks is based on the matrix-valued differential equation, a generalization of dynamic equations proposed earlier for the nonsingular matrix inversion, the Moore-Penrose inversion, as well as the Drazin inversion, under the condition of zero initial state. The application of the first approach is conditioned by the properties of the spectrum of a certain matrix; the second approach eliminates this drawback, though at the cost of increasing the number of matrix operations. The cases corresponding to the most common generalized inverses are defined. The conditions that ensure stability of the proposed neural network are presented. Illustrative examples present the results of numerical simulations.

  4. Applications of the parallel computing system using network

    International Nuclear Information System (INIS)

    Ido, Shunji; Hasebe, Hiroki

    1994-01-01

    Parallel programming is applied to multiple processors connected in Ethernet. Data exchanges between tasks located in each processing element are realized by two ways. One is socket which is standard library on recent UNIX operating systems. Another is a network connecting software, named as Parallel Virtual Machine (PVM) which is a free software developed by ORNL, to use many workstations connected to network as a parallel computer. This paper discusses the availability of parallel computing using network and UNIX workstations and comparison between specialized parallel systems (Transputer and iPSC/860) in a Monte Carlo simulation which generally shows high parallelization ratio. (author)

  5. Efficient computation in adaptive artificial spiking neural networks

    NARCIS (Netherlands)

    D. Zambrano (Davide); R.B.P. Nusselder (Roeland); H.S. Scholte; S.M. Bohte (Sander)

    2017-01-01

    textabstractArtificial Neural Networks (ANNs) are bio-inspired models of neural computation that have proven highly effective. Still, ANNs lack a natural notion of time, and neural units in ANNs exchange analog values in a frame-based manner, a computationally and energetically inefficient form of

  6. Evolutionary optimization with data collocation for reverse engineering of biological networks.

    Science.gov (United States)

    Tsai, Kuan-Yao; Wang, Feng-Sheng

    2005-04-01

    Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.

  7. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  8. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  9. Optical interconnection networks for high-performance computing systems

    International Nuclear Information System (INIS)

    Biberman, Aleksandr; Bergman, Keren

    2012-01-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. (review article)

  10. Fast computation with spikes in a recurrent neural network

    International Nuclear Information System (INIS)

    Jin, Dezhe Z.; Seung, H. Sebastian

    2002-01-01

    Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as models of the brain. Here we analytically study a counterexample, a network consisting of N integrate-and-fire neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all computation for all possible external inputs and initial states of the network. The computation is done very quickly: As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the network. In general, there are M potential winners, corresponding to the top M external inputs. When the external inputs are close in magnitude, M tends to be larger. If M>1, the selection of the actual winner is strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied, the network always selects the neuron with the maximum external input as the winner

  11. The Role of Networks in Cloud Computing

    Science.gov (United States)

    Lin, Geng; Devine, Mac

    The confluence of technology advancements and business developments in Broadband Internet, Web services, computing systems, and application software over the past decade has created a perfect storm for cloud computing. The "cloud model" of delivering and consuming IT functions as services is poised to fundamentally transform the IT industry and rebalance the inter-relationships among end users, enterprise IT, software companies, and the service providers in the IT ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).

  12. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research

  13. Computational Complexity of Bosons in Linear Networks

    Science.gov (United States)

    2017-03-01

    is between one and two orders-of-magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric downconversion...expected to perform tasks intractable for a classical computer, yet requiring minimal non-classical resources as compared to full- scale quantum computers...implementations to date employed sources based on inefficient processes—spontaneous parametric downconversion—that only simulate heralded single

  14. Computer networks and their implications for nuclear data

    International Nuclear Information System (INIS)

    Carlson, J.

    1992-01-01

    Computer networks represent a valuable resource for accessing information. Just as the computer has revolutionized the ability to process and analyze information, networks have and will continue to revolutionize data collection and access. A number of services are in routine use that would not be possible without the presence of an (inter)national computer network (which will be referred to as the internet). Services such as electronic mail, remote terminal access, and network file transfers are almost a required part of any large scientific/research organization. These services only represent a small fraction of the potential uses of the internet; however, the remainder of this paper discusses some of these uses and some technological developments that may influence these uses

  15. Automated classification of computer network attacks

    CSIR Research Space (South Africa)

    Van Heerden, R

    2013-11-01

    Full Text Available according to the relevant types of attack scenarios depicted in the ontology. The two network attack instances are the Distributed Denial of Service attack on SpamHaus in 2013 and the theft of 42 million Rand ($6.7 million) from South African Postbank...

  16. Computer program for compressible flow network analysis

    Science.gov (United States)

    Wilton, M. E.; Murtaugh, J. P.

    1973-01-01

    Program solves problem of an arbitrarily connected one dimensional compressible flow network with pumping in the channels and momentum balancing at flow junctions. Program includes pressure drop calculations for impingement flow and flow through pin fin arrangements, as currently found in many air cooled turbine bucket and vane cooling configurations.

  17. 1st International Conference on Signal, Networks, Computing, and Systems

    CERN Document Server

    Mohapatra, Durga; Nagar, Atulya; Sahoo, Manmath

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on Signal, Networks, Computing, and Systems (ICSNCS 2016) held at Jawaharlal Nehru University, New Delhi, India during February 25–27, 2016. The book is organized in to two volumes and primarily focuses on theory and applications in the broad areas of communication technology, computer science and information security. The book aims to bring together the latest scientific research works of academic scientists, professors, research scholars and students in the areas of signal, networks, computing and systems detailing the practical challenges encountered and the solutions adopted.

  18. CX: A Scalable, Robust Network for Parallel Computing

    Directory of Open Access Journals (Sweden)

    Peter Cappello

    2002-01-01

    Full Text Available CX, a network-based computational exchange, is presented. The system's design integrates variations of ideas from other researchers, such as work stealing, non-blocking tasks, eager scheduling, and space-based coordination. The object-oriented API is simple, compact, and cleanly separates application logic from the logic that supports interprocess communication and fault tolerance. Computations, of course, run to completion in the presence of computational hosts that join and leave the ongoing computation. Such hosts, or producers, use task caching and prefetching to overlap computation with interprocessor communication. To break a potential task server bottleneck, a network of task servers is presented. Even though task servers are envisioned as reliable, the self-organizing, scalable network of n- servers, described as a sibling-connected height-balanced fat tree, tolerates a sequence of n-1 server failures. Tasks are distributed throughout the server network via a simple "diffusion" process. CX is intended as a test bed for research on automated silent auctions, reputation services, authentication services, and bonding services. CX also provides a test bed for algorithm research into network-based parallel computation.

  19. SPLAI: Computational Finite Element Model for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ruzana Ishak

    2006-01-01

    Full Text Available Wireless sensor network refers to a group of sensors, linked by a wireless medium to perform distributed sensing task. The primary interest is their capability in monitoring the physical environment through the deployment of numerous tiny, intelligent, wireless networked sensor nodes. Our interest consists of a sensor network, which includes a few specialized nodes called processing elements that can perform some limited computational capabilities. In this paper, we propose a model called SPLAI that allows the network to compute a finite element problem where the processing elements are modeled as the nodes in the linear triangular approximation problem. Our model also considers the case of some failures of the sensors. A simulation model to visualize this network has been developed using C++ on the Windows environment.

  20. The challenge of networked enterprises for cloud computing interoperability

    OpenAIRE

    Mezgár, István; Rauschecker, Ursula

    2014-01-01

    Manufacturing enterprises have to organize themselves into effective system architectures forming different types of Networked Enterprises (NE) to match fast changing market demands. Cloud Computing (CC) is an important up to date computing concept for NE, as it offers significant financial and technical advantages beside high-level collaboration possibilities. As cloud computing is a new concept the solutions for handling interoperability, portability, security, privacy and standardization c...

  1. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    Science.gov (United States)

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  2. Biophysical constraints on the computational capacity of biochemical signaling networks

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj

    Biophysics fundamentally constrains the computations that cells can carry out. Here, we derive fundamental bounds on the computational capacity of biochemical signaling networks that utilize post-translational modifications (e.g. phosphorylation). To do so, we combine ideas from the statistical physics of disordered systems and the observation by Tony Pawson and others that the biochemistry underlying protein-protein interaction networks is combinatorial and modular. Our results indicate that the computational capacity of signaling networks is severely limited by the energetics of binding and the need to achieve specificity. We relate our results to one of the theoretical pillars of statistical learning theory, Cover's theorem, which places bounds on the computational capacity of perceptrons. PM and CHW were supported by a Simons Investigator in the Mathematical Modeling of Living Systems Grant, and NIH Grant No. 1R35GM119461 (both to PM).

  3. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    Science.gov (United States)

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  4. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    Science.gov (United States)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  5. Computer network access to scientific information systems for minority universities

    Science.gov (United States)

    Thomas, Valerie L.; Wakim, Nagi T.

    1993-08-01

    The evolution of computer networking technology has lead to the establishment of a massive networking infrastructure which interconnects various types of computing resources at many government, academic, and corporate institutions. A large segment of this infrastructure has been developed to facilitate information exchange and resource sharing within the scientific community. The National Aeronautics and Space Administration (NASA) supports both the development and the application of computer networks which provide its community with access to many valuable multi-disciplinary scientific information systems and on-line databases. Recognizing the need to extend the benefits of this advanced networking technology to the under-represented community, the National Space Science Data Center (NSSDC) in the Space Data and Computing Division at the Goddard Space Flight Center has developed the Minority University-Space Interdisciplinary Network (MU-SPIN) Program: a major networking and education initiative for Historically Black Colleges and Universities (HBCUs) and Minority Universities (MUs). In this paper, we will briefly explain the various components of the MU-SPIN Program while highlighting how, by providing access to scientific information systems and on-line data, it promotes a higher level of collaboration among faculty and students and NASA scientists.

  6. Computer networks in future accelerator control systems

    International Nuclear Information System (INIS)

    Dimmler, D.G.

    1977-03-01

    Some findings of a study concerning a computer based control and monitoring system for the proposed ISABELLE Intersecting Storage Accelerator are presented. Requirements for development and implementation of such a system are discussed. An architecture is proposed where the system components are partitioned along functional lines. Implementation of some conceptually significant components is reviewed

  7. A new fault detection method for computer networks

    International Nuclear Information System (INIS)

    Lu, Lu; Xu, Zhengguo; Wang, Wenhai; Sun, Youxian

    2013-01-01

    Over the past few years, fault detection for computer networks has attracted extensive attentions for its importance in network management. Most existing fault detection methods are based on active probing techniques which can detect the occurrence of faults fast and precisely. But these methods suffer from the limitation of traffic overhead, especially in large scale networks. To relieve traffic overhead induced by active probing based methods, a new fault detection method, whose key is to divide the detection process into multiple stages, is proposed in this paper. During each stage, only a small region of the network is detected by using a small set of probes. Meanwhile, it also ensures that the entire network can be covered after multiple detection stages. This method can guarantee that the traffic used by probes during each detection stage is small sufficiently so that the network can operate without severe disturbance from probes. Several simulation results verify the effectiveness of the proposed method

  8. FY 1999 Blue Book: Computing, Information, and Communications: Networked Computing for the 21st Century

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — U.S.research and development R and D in computing, communications, and information technologies has enabled unprecedented scientific and engineering advances,...

  9. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  10. Tactical Airborne Distributed Computing and Networks

    Science.gov (United States)

    1981-10-01

    an CnRlni-.Cj , qui ost utilis6 pour Xcuerrcpind iot q~eol CNQ on a un ’R(E~ .gui ost utilisAs pour damr-ndor la~~~~~~ ~ rernmsinLeWmot ulCP] Lea...function can result in the lailure of that tunction and cause the m.. s,.: iot , to be abandoned. For a safety critical function there is an add.iional...Controller; AP-101 interface. 30-6 ENABLE TO SRIALMANCHESTER MODULATOR CONVERTER ENCODER IDRIVER ]J .I BUS CONTROLLER - NETWORK INTERFACE Figure 5. Bus

  11. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks

    DEFF Research Database (Denmark)

    Schleuning, Matthias; Ingmann, Lili; Strauß, Rouven

    2014-01-01

    Modularity is a recurrent and important property of bipartite ecological networks. Although well-resolved ecological networks describe interaction frequencies between species pairs, modularity of bipartite networks has been analysed only on the basis of binary presence-absence data. We employ a new...... algorithm to detect modularity in weighted bipartite networks in a global analysis of avian seed-dispersal networks. We define roles of species, such as connector values, for weighted and binary networks and associate them with avian species traits and phylogeny. The weighted, but not binary, analysis...... identified a positive relationship between climatic seasonality and modularity, whereas past climate stability and phylogenetic signal were only weakly related to modularity. Connector values were associated with foraging behaviour and were phylogenetically conserved. The weighted modularity analysis...

  12. Characterization and Planning for Computer Network Operations

    Science.gov (United States)

    2010-07-01

    have been proposed to get around these problems ranging from pruning the state space of the kth order models [55] to using mixtures of Markov chains [40...demonstrate this, below are the top four results for the query java coffee . 71 SCORE CATEGORY...4.0189 Shopping/Food/Beverages/Coffee_and_Tea/ Coffee /Espresso 3.8427 Shopping/Food/Beverages/Coffee_and_Tea/ Coffee /Espresso 2.3447 Computers

  13. Wirelessly powered sensor networks and computational RFID

    CERN Document Server

    2013-01-01

    The Wireless Identification and Sensing Platform (WISP) is the first of a new class of RF-powered sensing and computing systems.  Rather than being powered by batteries, these sensor systems are powered by radio waves that are either deliberately broadcast or ambient.  Enabled by ongoing exponential improvements in the energy efficiency of microelectronics, RF-powered sensing and computing is rapidly moving along a trajectory from impossible (in the recent past), to feasible (today), toward practical and commonplace (in the near future). This book is a collection of key papers on RF-powered sensing and computing systems including the WISP.  Several of the papers grew out of the WISP Challenge, a program in which Intel Corporation donated WISPs to academic applicants who proposed compelling WISP-based projects.  The book also includes papers presented at the first WISP Summit, a workshop held in Berkeley, CA in association with the ACM Sensys conference, as well as other relevant papers. The book provides ...

  14. Six networks on a universal neuromorphic computing substrate

    Directory of Open Access Journals (Sweden)

    Thomas ePfeil

    2013-02-01

    Full Text Available In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

  15. Six networks on a universal neuromorphic computing substrate.

    Science.gov (United States)

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality.

  16. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  17. Computing with competition in biochemical networks.

    Science.gov (United States)

    Genot, Anthony J; Fujii, Teruo; Rondelez, Yannick

    2012-11-16

    Cells rely on limited resources such as enzymes or transcription factors to process signals and make decisions. However, independent cellular pathways often compete for a common molecular resource. Competition is difficult to analyze because of its nonlinear global nature, and its role remains unclear. Here we show how decision pathways such as transcription networks may exploit competition to process information. Competition for one resource leads to the recognition of convex sets of patterns, whereas competition for several resources (overlapping or cascaded regulons) allows even more general pattern recognition. Competition also generates surprising couplings, such as correlating species that share no resource but a common competitor. The mechanism we propose relies on three primitives that are ubiquitous in cells: multiinput motifs, competition for a resource, and positive feedback loops.

  18. The Origin of Value Through Information Networks : A Preliminary Framework from an Evolutionary Holonic Perspective

    NARCIS (Netherlands)

    Madureira, A.; Bakena, N.; Bouwman, H.

    2010-01-01

    The worldwide extraordinary level of interest in digital information networks deployment among nations is due to the strong perception that they bring economic, social and environmental value. Our literature review on studies aiming at clarifying the value of information networks, led us to conclude

  19. Energy Aware Computing in Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    In this work the idea of cooperation is applied to wireless communication systems. It is generally accepted that energy consumption is a significant design constraint for mobile handheld systems. We propose a novel method of cooperative task computing by distributing tasks among terminals over...... the unreliable wireless link. Principles of multi–processor energy aware task scheduling are used exploiting performance scalable technologies such as Dynamic Voltage Scaling (DVS). We introduce a novel mechanism referred to as D2VS and here it is shown by means of simulation that savings of 40% can be achieved....

  20. A computer network attack taxonomy and ontology

    CSIR Research Space (South Africa)

    Van Heerden, RP

    2012-01-01

    Full Text Available of the attack that occur after the attack goal has been achieved, and occurs because the attacker loses control of some systems. For example, after the launch of a DDOS (Distributed Denial of Service) attack, zombie computers may still connect to the target...-scrap- value-of-a-hacked-pc-revisited/ . Lancor, L., & Workman, R. (2007). Using Google Hacking to Enhance Defense Strategies. ACM SIGCSE Bulletin, 39 (1), 491-495. Lau, F., Rubin, S. H., Smith, M. H., & Trajkovic, L. (2000). Distributed Denial of Service...

  1. A Distributed Computing Network for Real-Time Systems.

    Science.gov (United States)

    1980-11-03

    7 ) AU2 o NAVA TUNDEWATER SY$TEMS CENTER NEWPORT RI F/G 9/2 UIS RIBUT E 0 COMPUTIN G N LTWORK FOR REAL - TIME SYSTEMS .(U) UASSIFIED NOV Al 6 1...MORAIS - UT 92 dLEVEL c A Distributed Computing Network for Real - Time Systems . 11 𔃺-1 Gordon E/Morson I7 y tm- ,r - t "en t As J 2 -p .. - 7 I’ cNaval...NUMBER TD 5932 / N 4. TITLE mand SubotI. S. TYPE OF REPORT & PERIOD COVERED A DISTRIBUTED COMPUTING NETWORK FOR REAL - TIME SYSTEMS 6. PERFORMING ORG

  2. Computing all hybridization networks for multiple binary phylogenetic input trees.

    Science.gov (United States)

    Albrecht, Benjamin

    2015-07-30

    The computation of phylogenetic trees on the same set of species that are based on different orthologous genes can lead to incongruent trees. One possible explanation for this behavior are interspecific hybridization events recombining genes of different species. An important approach to analyze such events is the computation of hybridization networks. This work presents the first algorithm computing the hybridization number as well as a set of representative hybridization networks for multiple binary phylogenetic input trees on the same set of taxa. To improve its practical runtime, we show how this algorithm can be parallelized. Moreover, we demonstrate the efficiency of the software Hybroscale, containing an implementation of our algorithm, by comparing it to PIRNv2.0, which is so far the best available software computing the exact hybridization number for multiple binary phylogenetic trees on the same set of taxa. The algorithm is part of the software Hybroscale, which was developed specifically for the investigation of hybridization networks including their computation and visualization. Hybroscale is freely available(1) and runs on all three major operating systems. Our simulation study indicates that our approach is on average 100 times faster than PIRNv2.0. Moreover, we show how Hybroscale improves the interpretation of the reported hybridization networks by adding certain features to its graphical representation.

  3. Service-oriented Software Defined Optical Networks for Cloud Computing

    Science.gov (United States)

    Liu, Yuze; Li, Hui; Ji, Yuefeng

    2017-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.

  4. Several problems of algorithmization in integrated computation programs on third generation computers for short circuit currents in complex power networks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, V.A.; Pisarenko, V.P.

    1982-01-01

    Methods of modeling complex power networks with short circuits in the networks are described. The methods are implemented in integrated computation programs for short circuit currents and equivalents in electrical networks with a large number of branch points (up to 1000) on a computer with a limited on line memory capacity (M equals 4030 for the computer).

  5. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M

    1980-01-01

    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  6. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  7. Test experience on an ultrareliable computer communication network

    Science.gov (United States)

    Abbott, L. W.

    1984-01-01

    The dispersed sensor processing mesh (DSPM) is an experimental, ultra-reliable, fault-tolerant computer communications network that exhibits an organic-like ability to regenerate itself after suffering damage. The regeneration is accomplished by two routines - grow and repair. This paper discusses the DSPM concept for achieving fault tolerance and provides a brief description of the mechanization of both the experiment and the six-node experimental network. The main topic of this paper is the system performance of the growth algorithm contained in the grow routine. The characteristics imbued to DSPM by the growth algorithm are also discussed. Data from an experimental DSPM network and software simulation of larger DSPM-type networks are used to examine the inherent limitation on growth time by the growth algorithm and the relationship of growth time to network size and topology.

  8. Distributed Problem Solving: Adaptive Networks with a Computer Intermediary Resource. Intelligent Executive Computer Communication

    Science.gov (United States)

    1991-06-01

    Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent

  9. Energy Efficient Clustering in Multi-hop Wireless Sensor Networks Using Differential Evolutionary MOPSO

    Directory of Open Access Journals (Sweden)

    D. Rajendra Prasad

    Full Text Available ABSTRACT The primary challenge in organizing sensor networks is energy efficacy. This requisite for energy efficacy is because sensor nodes capacities are limited and replacing them is not viable. This restriction further decreases network lifetime. Node lifetime varies depending on the requisites expected of its battery. Hence, primary element in constructing sensor networks is resilience to deal with decreasing lifetime of all sensor nodes. Various network infrastructures as well as their routing protocols for reduction of power utilization as well as to prolong network lifetime are studied. After analysis, it is observed that network constructions that depend on clustering are the most effective methods in terms of power utilization. Clustering divides networks into inter-related clusters such that every cluster has several sensor nodes with a Cluster Head (CH at its head. Sensor gathered information is transmitted to data processing centers through CH hierarchy in clustered environments. The current study utilizes Multi-Objective Particle Swarm Optimization (MOPSO-Differential Evolution (DE (MOPSO-DE technique for optimizing clustering.

  10. THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS

    OpenAIRE

    Mary Violeta Bar

    2014-01-01

    The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...

  11. Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics

    Science.gov (United States)

    Ahmad, Iftikhar; Ahmad, Sufyan; Awais, Muhammad; Ul Islam Ahmad, Siraj; Asif Zahoor Raja, Muhammad

    2018-05-01

    The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.

  12. US computer research networks: Current and future

    Science.gov (United States)

    Kratochvil, D.; Sood, D.; Verostko, A.

    1989-01-01

    During the last decade, NASA LeRC's Communication Program has conducted a series of telecommunications forecasting studies to project trends and requirements and to identify critical telecommunications technologies that must be developed to meet future requirements. The Government Networks Division of Contel Federal Systems has assisted NASA in these studies, and the current study builds upon these earlier efforts. The current major thrust of the NASA Communications Program is aimed at developing the high risk, advanced, communications satellite and terminal technologies required to significantly increase the capacity of future communications systems. Also, major new technological, economic, and social-political events and trends are now shaping the communications industry of the future. Therefore, a re-examination of future telecommunications needs and requirements is necessary to enable NASA to make management decisions in its Communications Program and to ensure the proper technologies and systems are addressed. This study, through a series of Task Orders, is helping NASA define the likely communication service needs and requirements of the future and thereby ensuring that the most appropriate technology developments are pursued.

  13. Test scheduling optimization for 3D network-on-chip based on cloud evolutionary algorithm of Pareto multi-objective

    Science.gov (United States)

    Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan

    2018-03-01

    In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.

  14. Optimization of Artificial Neural Network using Evolutionary Programming for Prediction of Cascading Collapse Occurrence due to the Hidden Failure Effect

    Science.gov (United States)

    Idris, N. H.; Salim, N. A.; Othman, M. M.; Yasin, Z. M.

    2018-03-01

    This paper presents the Evolutionary Programming (EP) which proposed to optimize the training parameters for Artificial Neural Network (ANN) in predicting cascading collapse occurrence due to the effect of protection system hidden failure. The data has been collected from the probability of hidden failure model simulation from the historical data. The training parameters of multilayer-feedforward with backpropagation has been optimized with objective function to minimize the Mean Square Error (MSE). The optimal training parameters consists of the momentum rate, learning rate and number of neurons in first hidden layer and second hidden layer is selected in EP-ANN. The IEEE 14 bus system has been tested as a case study to validate the propose technique. The results show the reliable prediction of performance validated through MSE and Correlation Coefficient (R).

  15. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    Science.gov (United States)

    2016-09-01

    factors that can cause the variations in trajectory computation time. First of all, these cases are initially computed using the guess-free mode of DIDO... Goldberg [91]. This concept essentially states that fundamental building blocks, or lower order schemata are pieced together by the genetic algorithms in...in Section 3.13.2. While this idea is very straightforward and logical, Goldberg also later points out that there are deceptive problems where these

  16. Identifying failure in a tree network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.

    2010-08-24

    Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.

  17. Optimized smart grid energy procurement for LTE networks using evolutionary algorithms

    KAUST Repository

    Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

    2014-01-01

    Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off

  18. Effect of network topology on the evolutionary ultimatum game based on the net-profit decision

    Science.gov (United States)

    Ye, Shun-Qiang; Wang, Lu; Jones, Michael C.; Ye, Ye; Wang, Meng; Xie, Neng-Gang

    2016-04-01

    The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player's strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ - 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.

  19. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information.

    Science.gov (United States)

    An, Ji-Yong; Zhang, Lei; Zhou, Yong; Zhao, Yu-Jun; Wang, Da-Fu

    2017-08-18

    Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection based on evolutionary information contained protein sequence. In the work, we presented a novel computational approach named WELM-LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analysis (PCA) approach is used to reduce the impact of noise. The WELM-LAG method gave very high average accuracies of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Comparative results indicated that our approach is very promising and may provide a cost-effective alternative for predicting SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server is available at http://219.219.62.123:8888/WELMLAG/ .

  20. Modeling Temporal Variation in Social Network: An Evolutionary Web Graph Approach

    Science.gov (United States)

    Mitra, Susanta; Bagchi, Aditya

    A social network is a social structure between actors (individuals, organization or other social entities) and indicates the ways in which they are connected through various social relationships like friendships, kinships, professional, academic etc. Usually, a social network represents a social community, like a club and its members or a city and its citizens etc. or a research group communicating over Internet. In seventies Leinhardt [1] first proposed the idea of representing a social community by a digraph. Later, this idea became popular among other research workers like, network designers, web-service application developers and e-learning modelers. It gave rise to a rapid proliferation of research work in the area of social network analysis. Some of the notable structural properties of a social network are connectedness between actors, reachability between a source and a target actor, reciprocity or pair-wise connection between actors with bi-directional links, centrality of actors or the important actors having high degree or more connections and finally the division of actors into sub-structures or cliques or strongly-connected components. The cycles present in a social network may even be nested [2, 3]. The formal definition of these structural properties will be provided in Sect. 8.2.1. The division of actors into cliques or sub-groups can be a very important factor for understanding a social structure, particularly the degree of cohesiveness in a community. The number, size, and connections among the sub-groups in a network are useful in understanding how the network, as a whole, is likely to behave.

  1. Evolutionary dynamics on networks of selectively neutral genotypes: effects of topology and sequence stability.

    Science.gov (United States)

    Aguirre, Jacobo; Buldú, Javier M; Manrubia, Susanna C

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  2. Evolutionary dynamics on networks of selectively neutral genotypes: Effects of topology and sequence stability

    Science.gov (United States)

    Aguirre, Jacobo; Buldú, Javier M.; Manrubia, Susanna C.

    2009-12-01

    Networks of selectively neutral genotypes underlie the evolution of populations of replicators in constant environments. Previous theoretical analysis predicted that such populations will evolve toward highly connected regions of the genome space. We first study the evolution of populations of replicators on simple networks and quantify how the transient time to equilibrium depends on the initial distribution of sequences on the neutral network, on the topological properties of the latter, and on the mutation rate. Second, network neutrality is broken through the introduction of an energy for each sequence. This allows to study the competition between two features (neutrality and energetic stability) relevant for survival and subjected to different selective pressures. In cases where the two features are negatively correlated, the population experiences sudden migrations in the genome space for values of the relevant parameters that we calculate. The numerical study of larger networks indicates that the qualitative behavior to be expected in more realistic cases is already seen in representative examples of small networks.

  3. Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks

    Directory of Open Access Journals (Sweden)

    Huan Chen

    2017-04-01

    Full Text Available Heating oil is an extremely important heating fuel to consumers in northeastern United States. This paper studies the fluctuations law and dynamic behavior of heating oil spot and futures prices by setting up their complex network models based on the data of America in recent 30 years. Firstly, modes are defined by the method of coarse graining, the spot price fluctuation network of heating oil (HSPFN and its futures price fluctuation network (HFPFN in different periods are established to analyze the transformation characteristics between the modes. Secondly, several indicators are investigated: average path length, node strength and strength distribution, betweeness, etc. In addition, a function is established to measure and analyze the network similarity. The results show the cumulative time of new nodes appearing in either spot or futures price network is not random but exhibits a growth trend of straight line. Meanwhile, the power law distributions of spot and futures price fluctuations in different periods present regularity and complexity. Moreover, these prices are strongly correlated in stable fluctuation period but weak in the phase of sharp fluctuation. Finally, the time distribution characteristics of important modes in the networks and the evolution results of the topological properties mentioned above are obtained.

  4. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.

    Science.gov (United States)

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark

    2010-05-18

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.

  5. Evolutionary Approach of Virtual Communities of Practice: A Reflection within a Network of Spanish Rural Schools

    Science.gov (United States)

    Frossard, Frédérique; Trifonova, Anna; Barajas Frutos, Mario

    The isolation of rural communities creates special necessities for teachers and students in rural schools. The present article describes "Rural Virtual School", a Virtual Community of Practice (VCoP) in which Spanish teachers of rural schools share learning resources and teaching methodologies through social software applications. The article arrives to an evolutionary model, in which the use of the social software tools evolves together with the needs and the activities of the VCoP through the different stages of its lifetime. Currently, the community has reached a high level of maturity and, in order to keep its momentum, the members intentionally use appropriate technologies specially designed to enhance rich innovative educational approaches, through which they collaboratively generate creative practices.

  6. Recurrent Neural Network for Computing the Drazin Inverse.

    Science.gov (United States)

    Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin

    2015-11-01

    This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.

  7. Hybrid computing using a neural network with dynamic external memory.

    Science.gov (United States)

    Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis

    2016-10-27

    Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

  8. Latest developments for a computer aided thermohydraulic network

    International Nuclear Information System (INIS)

    Alemberti, A.; Graziosi, G.; Mini, G.; Susco, M.

    1999-01-01

    Thermohydraulic networks are I-D systems characterized by a small number of basic components (pumps, valves, heat exchangers, etc) connected by pipes and limited spatially by a defined number of boundary conditions (tanks, atmosphere, etc). The network system is simulated by the well known computer program RELAPS/mod3. Information concerning the network geometry component behaviour, initial and boundary conditions are usually supplied to the RELAPS code using an ASCII input file by means of 'input cards'. CATNET (Computer Aided Thermalhydraulic NETwork) is a graphically user interface that, under specific user guidelines which completely define its range of applicability, permits a very high level of standardization and simplification of the RELAPS/mod3 input deck development process as well as of the output processing. The characteristics of the components (pipes, valves, pumps etc), defining the network system can be entered through CATNET. The CATNET interface is provided by special functions to compute form losses in the most typical bending and branching configurations. When the input of all system components is ready, CATNET is able to generate the RELAPS/mod3 input file. Finally, by means of CATNET, the RELAPS/mod3 code can be run and its output results can be transformed to an intuitive display form. The paper presents an example of application of the CATNET interface as well as the latest developments which greatly simplified the work of the users and allowed to reduce the possibility of input errors. (authors)

  9. A three-dimensional computational model of collagen network mechanics.

    Directory of Open Access Journals (Sweden)

    Byoungkoo Lee

    Full Text Available Extracellular matrix (ECM strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned. We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions.

  10. The Poor Man's Guide to Computer Networks and their Applications

    DEFF Research Database (Denmark)

    Sharp, Robin

    2003-01-01

    These notes for DTU course 02220, Concurrent Programming, give an introduction to computer networks, with focus on the modern Internet. Basic Internet protocols such as IP, TCP and UDP are presented, and two Internet application protocols, SMTP and HTTP, are described in some detail. Techniques...

  11. Improving a Computer Networks Course Using the Partov Simulation Engine

    Science.gov (United States)

    Momeni, B.; Kharrazi, M.

    2012-01-01

    Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…

  12. Development of a UNIX network compatible reactivity computer

    International Nuclear Information System (INIS)

    Sanchez, R.F.; Edwards, R.M.

    1996-01-01

    A state-of-the-art UNIX network compatible controller and UNIX host workstation with MATLAB/SIMULINK software were used to develop, implement, and validate a digital reactivity calculation. An objective of the development was to determine why a Macintosh-based reactivity computer reactivity output drifted intolerably

  13. High speed switching for computer and communication networks

    NARCIS (Netherlands)

    Dorren, H.J.S.

    2014-01-01

    The role of data centers and computers are vital for the future of our data-centric society. Historically the performance of data-centers is increasing with a factor 100-1000 every ten years and as a result of this the capacity of the data-center communication network has to scale accordingly. This

  14. Computing Nash Equilibrium in Wireless Ad Hoc Networks

    DEFF Research Database (Denmark)

    Bulychev, Peter E.; David, Alexandre; Larsen, Kim G.

    2012-01-01

    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem...

  15. Computer-Supported Modelling of Multi modal Transportation Networks Rationalization

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-09-01

    Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by

  16. Developments of the general computer network of NIPNE-HH

    International Nuclear Information System (INIS)

    Mirica, M.; Constantinescu, S.; Danet, A.

    1997-01-01

    Since 1991 the general computer network of NIPNE-HH was developed and connected to RNCN (Romanian National Computer Network) for research and development and it offers to the Romanian physics research community an efficient and cost-effective infrastructure to communicate and collaborate with fellow researchers abroad, and to collect and exchange the most up-to-date information in their research area. RNCN is targeted on the following main objectives: Setting up a technical and organizational infrastructure meant to provide national and international electronic services for the Romanian scientific research community; - Providing a rapid and competitive tool for the exchange of information in the framework of Research and Development (R-D) community; - Using the scientific and technical data bases available in the country and offered by the national networks from other countries through international networks; - Providing a support for information, scientific and technical co-operation. RNCN has two international links: to EBONE via ACONET (64kbps) and to EuropaNET via Hungarnet (64 kbps). The guiding principle in designing the project of general computer network of NIPNE-HH, as part of RNCN, was to implement an open system based on OSI standards taking into account the following criteria: - development of a flexible solution, according to OSI specifications; - solutions of reliable gateway with the existing network already in use,allowing the access to the worldwide networks; - using the TCP/IP transport protocol for each Local Area Network (LAN) and for the connection to RNCN; - ensuring the integration of different and heterogeneous software and hardware platforms (DOS, Windows, UNIX, VMS, Linux, etc) through some specific interfaces. The major objectives achieved in direction of developing the general computer network of NIPNE-HH are: - linking all the existing and newly installed computer equipment and providing an adequate connectivity. LANs from departments

  17. Computer network time synchronization the network time protocol on earth and in space

    CERN Document Server

    Mills, David L

    2010-01-01

    Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib

  18. Network architecture test-beds as platforms for ubiquitous computing.

    Science.gov (United States)

    Roscoe, Timothy

    2008-10-28

    Distributed systems research, and in particular ubiquitous computing, has traditionally assumed the Internet as a basic underlying communications substrate. Recently, however, the networking research community has come to question the fundamental design or 'architecture' of the Internet. This has been led by two observations: first, that the Internet as it stands is now almost impossible to evolve to support new functionality; and second, that modern applications of all kinds now use the Internet rather differently, and frequently implement their own 'overlay' networks above it to work around its perceived deficiencies. In this paper, I discuss recent academic projects to allow disruptive change to the Internet architecture, and also outline a radically different view of networking for ubiquitous computing that such proposals might facilitate.

  19. A dynamic evolutionary clustering perspective: Community detection in signed networks by reconstructing neighbor sets

    Science.gov (United States)

    Chen, Jianrui; Wang, Hua; Wang, Lina; Liu, Weiwei

    2016-04-01

    Community detection in social networks has been intensively studied in recent years. In this paper, a novel similarity measurement is defined according to social balance theory for signed networks. Inter-community positive links are found and deleted due to their low similarity. The positive neighbor sets are reconstructed by this method. Then, differential equations are proposed to imitate the constantly changing states of nodes. Each node will update its state based on the difference between its state and average state of its positive neighbors. Nodes in the same community will evolve together with time and nodes in the different communities will evolve far away. Communities are detected ultimately when states of nodes are stable. Experiments on real world and synthetic networks are implemented to verify detection performance. The thorough comparisons demonstrate the presented method is more efficient than two acknowledged better algorithms.

  20. Genetic characterization and evolutionary inference of TNF-α through computational analysis

    Directory of Open Access Journals (Sweden)

    Gauri Awasthi

    Full Text Available TNF-α is an important human cytokine that imparts dualism in malaria pathogenicity. At high dosages, TNF-α is believed to provoke pathogenicity in cerebral malaria; while at lower dosages TNF-α is protective against severe human malaria. In order to understand the human TNF-α gene and to ascertain evolutionary aspects of its dualistic nature for malaria pathogenicity, we characterized this gene in detail in six different mammalian taxa. The avian taxon, Gallus gallus was included in our study, as TNF-α is not present in birds; therefore, a tandemly placed duplicate of TNF-α (LT-α or TNF-β was included. A comparative study was made of nucleotide length variations, intron and exon sizes and number variations, differential compositions of coding to non-coding bases, etc., to look for similarities/dissimilarities in the TNF-α gene across all seven taxa. A phylogenetic analysis revealed the pattern found in other genes, as humans, chimpanzees and rhesus monkeys were placed in a single clade, and rats and mice in another; the chicken was in a clearly separate branch. We further focused on these three taxa and aligned the amino acid sequences; there were small differences between humans and chimpanzees; both were more different from the rhesus monkey. Further, comparison of coding and non-coding nucleotide length variations and coding to non-coding nucleotide ratio between TNF-α and TNF-β among these three mammalian taxa provided a first-hand indication of the role of the TNF-α gene, but not of TNF-β in the dualistic nature of TNF-α in malaria pathogenicity.

  1. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  2. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  3. Global tree network for computing structures enabling global processing operations

    Science.gov (United States)

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  4. Computer simulation of randomly cross-linked polymer networks

    International Nuclear Information System (INIS)

    Williams, Timothy Philip

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneities were observed in the swollen model networks and were analysed by considering constituent substructures of varying size. The network connectivity determined the length scales at which the majority of the substructure unfolding process occurred. Simulated stress-strain curves and diffraction patterns for uniaxially deformed swollen networks, were found to be consistent with experimental findings. Analysis of the relaxation dynamics of various network components revealed a dramatic slowdown due to the network connectivity. The cross-link junction spatial fluctuations for networks close to the sol-gel threshold, were observed to be at least comparable with the phantom network prediction. The dangling chain ends were found to display the largest characteristic relaxation time. (author)

  5. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    Science.gov (United States)

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  6. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  7. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  8. Proceedings: Distributed digital systems, plant process computers, and networks

    International Nuclear Information System (INIS)

    1995-03-01

    These are the proceedings of a workshop on Distributed Digital Systems, Plant Process Computers, and Networks held in Charlotte, North Carolina on August 16--18, 1994. The purpose of the workshop was to provide a forum for technology transfer, technical information exchange, and education. The workshop was attended by more than 100 representatives of electric utilities, equipment manufacturers, engineering service organizations, and government agencies. The workshop consisted of three days of presentations, exhibitions, a panel discussion and attendee interactions. Original plant process computers at the nuclear power plants are becoming obsolete resulting in increasing difficulties in their effectiveness to support plant operations and maintenance. Some utilities have already replaced their plant process computers by more powerful modern computers while many other utilities intend to replace their aging plant process computers in the future. Information on recent and planned implementations are presented. Choosing an appropriate communications and computing network architecture facilitates integrating new systems and provides functional modularity for both hardware and software. Control room improvements such as CRT-based distributed monitoring and control, as well as digital decision and diagnostic aids, can improve plant operations. Commercially available digital products connected to the plant communications system are now readily available to provide distributed processing where needed. Plant operations, maintenance activities, and engineering analyses can be supported in a cost-effective manner. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  10. Computing Tutte polynomials of contact networks in classrooms

    Science.gov (United States)

    Hincapié, Doracelly; Ospina, Juan

    2013-05-01

    Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network

  11. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Evolutionary Origins of Hierarchy.

    Science.gov (United States)

    Mengistu, Henok; Huizinga, Joost; Mouret, Jean-Baptiste; Clune, Jeff

    2016-06-01

    Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  13. The Evolutionary Origins of Hierarchy

    Science.gov (United States)

    Huizinga, Joost; Clune, Jeff

    2016-01-01

    Hierarchical organization—the recursive composition of sub-modules—is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments). Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force–the cost of connections–promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics. PMID:27280881

  14. The Evolutionary Origins of Hierarchy.

    Directory of Open Access Journals (Sweden)

    Henok Mengistu

    2016-06-01

    Full Text Available Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments. Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  15. Spatial Analysis Along Networks Statistical and Computational Methods

    CERN Document Server

    Okabe, Atsuyuki

    2012-01-01

    In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process

  16. Evolutionary analysis of apolipoprotein E by Maximum Likelihood and complex network methods

    Directory of Open Access Journals (Sweden)

    Leandro de Jesus Benevides

    Full Text Available Abstract Apolipoprotein E (apo E is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL and a group of high-density lipoproteins (HDL. Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML, and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1 and another with fish (C2, and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups.

  17. AN EVOLUTIONARY ALGORITHM FOR CHANNEL ASSIGNMENT PROBLEM IN WIRELESS MOBILE NETWORKS

    Directory of Open Access Journals (Sweden)

    Yee Shin Chia

    2012-12-01

    Full Text Available The channel assignment problem in wireless mobile network is the assignment of appropriate frequency spectrum to incoming calls while maintaining a satisfactory level of electromagnetic compatibility (EMC constraints. An effective channel assignment strategy is important due to the limited capacity of frequency spectrum in wireless mobile network. Most of the existing channel assignment strategies are based on deterministic methods. In this paper, an adaptive genetic algorithm (GA based channel assignment strategy is introduced for resource management and to reduce the effect of EMC interferences. The most significant advantage of the proposed optimization method is its capability to handle both the reassignment of channels for existing calls as well as the allocation of channel to a new incoming call in an adaptive process to maximize the utility of the limited resources. It is capable to adapt the population size to the number of eligible channels for a particular cell upon new call arrivals to achieve reasonable convergence speed. The MATLAB simulation on a 49-cells network model for both uniform and nonuniform call traffic distributions showed that the proposed channel optimization method can always achieve a lower average new incoming call blocking probability compared to the deterministic based channel assignment strategy.

  18. Study of natural circulation for the design of a research reactor using computational fluid dynamics and evolutionary computation techniques

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de

    2012-01-01

    Safety is one of the most important and desirable characteristics in a nuclear plant Natural circulation cooling systems are noted for providing passive safety. These systems can be used as mechanism for removing the residual heat from the reactor, or even as the main cooling system for heated sections, such as the core. In this work, a computational fluid dynamics (CFD) code called CFX is used to simulate the process of natural circulation in a research reactor pool after its shutdown. The physical model studied is similar to the Open Pool Australian Light water reactor (OPAL), and contains the core, cooling pool, reflecting tank, circulation pipes and chimney. For best computing performance, the core region was modeled as a porous medium, where the parameters were obtained from a separately detailed CFD analysis. This work also aims to study the viability of the implementation of Differential Evolution algorithm for optimization the physical and operational parameters that, obeying the laws of similarity, lead to a test section on a reduced scale of the reactor pool.

  19. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    OpenAIRE

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of tra...

  20. Computationally Efficient Nonlinear Bell Inequalities for Quantum Networks

    Science.gov (United States)

    Luo, Ming-Xing

    2018-04-01

    The correlations in quantum networks have attracted strong interest with new types of violations of the locality. The standard Bell inequalities cannot characterize the multipartite correlations that are generated by multiple sources. The main problem is that no computationally efficient method is available for constructing useful Bell inequalities for general quantum networks. In this work, we show a significant improvement by presenting new, explicit Bell-type inequalities for general networks including cyclic networks. These nonlinear inequalities are related to the matching problem of an equivalent unweighted bipartite graph that allows constructing a polynomial-time algorithm. For the quantum resources consisting of bipartite entangled pure states and generalized Greenberger-Horne-Zeilinger (GHZ) states, we prove the generic nonmultilocality of quantum networks with multiple independent observers using new Bell inequalities. The violations are maximal with respect to the presented Tsirelson's bound for Einstein-Podolsky-Rosen states and GHZ states. Moreover, these violations hold for Werner states or some general noisy states. Our results suggest that the presented Bell inequalities can be used to characterize experimental quantum networks.

  1. Compiling gate networks on an Ising quantum computer

    International Nuclear Information System (INIS)

    Bowdrey, M.D.; Jones, J.A.; Knill, E.; Laflamme, R.

    2005-01-01

    Here we describe a simple mechanical procedure for compiling a quantum gate network into the natural gates (pulses and delays) for an Ising quantum computer. The aim is not necessarily to generate the most efficient pulse sequence, but rather to develop an efficient compilation algorithm that can be easily implemented in large spin systems. The key observation is that it is not always necessary to refocus all the undesired couplings in a spin system. Instead, the coupling evolution can simply be tracked and then corrected at some later time. Although described within the language of NMR, the algorithm is applicable to any design of quantum computer based on Ising couplings

  2. Computer, Network, Software, and Hardware Engineering with Applications

    CERN Document Server

    Schneidewind, Norman F

    2012-01-01

    There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integr

  3. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  4. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  5. An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking

    Directory of Open Access Journals (Sweden)

    Hyunhun Cho

    2015-05-01

    Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.

  6. Topology and computational performance of attractor neural networks

    International Nuclear Information System (INIS)

    McGraw, Patrick N.; Menzinger, Michael

    2003-01-01

    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world, and scale-free topologies. The random configuration is the most efficient for storage and retrieval of patterns by the network as a whole. However, in the scale-free case retrieval errors are not distributed uniformly among the nodes. The portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. The implications of these findings for brain function and social dynamics are suggestive

  7. A probabilistic computational framework for bridge network optimal maintenance scheduling

    International Nuclear Information System (INIS)

    Bocchini, Paolo; Frangopol, Dan M.

    2011-01-01

    This paper presents a probabilistic computational framework for the Pareto optimization of the preventive maintenance applications to bridges of a highway transportation network. The bridge characteristics are represented by their uncertain reliability index profiles. The in/out of service states of the bridges are simulated taking into account their correlation structure. Multi-objective Genetic Algorithms have been chosen as numerical tool for the solution of the optimization problem. The design variables of the optimization are the preventive maintenance schedules of all the bridges of the network. The two conflicting objectives are the minimization of the total present maintenance cost and the maximization of the network performance indicator. The final result is the Pareto front of optimal solutions among which the managers should chose, depending on engineering and economical factors. A numerical example illustrates the application of the proposed approach.

  8. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  9. Application of computer graphics to regional trunk road network planning

    OpenAIRE

    M Odani

    1992-01-01

    The author attempts to demonstrate the use of computer graphics to provide an efficient and effective visual presentation method for tranbsprtation planning. First, the basic concept of the visual presentation method of planning is explained and the required hardware is introduced. The information presented graphically by the proposed method is then shown for each step in the process of regional trunk road network planning in the Keihanshin Metropolitan Area of Japan: analysis of the traffic-...

  10. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    Virginia 22203 Air Force Research Laboratory Air Force Materiel Command 1 Final Performance Report: AFOSR T.C. Henderson , V.J. Mathews, and D...AFRL-AFOSR-VA-TR-2016-0094 Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring. Thomas Henderson UNIVERSITY OF UTAH SALT...The people who worked on this project include: Thomas C. Henderson , John Mathews, Jingru Zhou, Daimei Zhij, Ahmad Zoubi, Sabita Nahata, Dan Adams

  11. Power Consumption Evaluation of Distributed Computing Network Considering Traffic Locality

    Science.gov (United States)

    Ogawa, Yukio; Hasegawa, Go; Murata, Masayuki

    When computing resources are consolidated in a few huge data centers, a massive amount of data is transferred to each data center over a wide area network (WAN). This results in increased power consumption in the WAN. A distributed computing network (DCN), such as a content delivery network, can reduce the traffic from/to the data center, thereby decreasing the power consumed in the WAN. In this paper, we focus on the energy-saving aspect of the DCN and evaluate its effectiveness, especially considering traffic locality, i.e., the amount of traffic related to the geographical vicinity. We first formulate the problem of optimizing the DCN power consumption and describe the DCN in detail. Then, numerical evaluations show that, when there is strong traffic locality and the router has ideal energy proportionality, the system's power consumption is reduced to about 50% of the power consumed in the case where a DCN is not used; moreover, this advantage becomes even larger (up to about 30%) when the data center is located farthest from the center of the network topology.

  12. Convolutional networks for fast, energy-efficient neuromorphic computing.

    Science.gov (United States)

    Esser, Steven K; Merolla, Paul A; Arthur, John V; Cassidy, Andrew S; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J; McKinstry, Jeffrey L; Melano, Timothy; Barch, Davis R; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D; Modha, Dharmendra S

    2016-10-11

    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer.

  13. Convolutional networks for fast, energy-efficient neuromorphic computing

    Science.gov (United States)

    Esser, Steven K.; Merolla, Paul A.; Arthur, John V.; Cassidy, Andrew S.; Appuswamy, Rathinakumar; Andreopoulos, Alexander; Berg, David J.; McKinstry, Jeffrey L.; Melano, Timothy; Barch, Davis R.; di Nolfo, Carmelo; Datta, Pallab; Amir, Arnon; Taba, Brian; Flickner, Myron D.; Modha, Dharmendra S.

    2016-01-01

    Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware’s underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning. This approach allows the algorithmic power of deep learning to be merged with the efficiency of neuromorphic processors, bringing the promise of embedded, intelligent, brain-inspired computing one step closer. PMID:27651489

  14. Why do Reservoir Computing Networks Predict Chaotic Systems so Well?

    Science.gov (United States)

    Lu, Zhixin; Pathak, Jaideep; Girvan, Michelle; Hunt, Brian; Ott, Edward

    Recently a new type of artificial neural network, which is called a reservoir computing network (RCN), has been employed to predict the evolution of chaotic dynamical systems from measured data and without a priori knowledge of the governing equations of the system. The quality of these predictions has been found to be spectacularly good. Here, we present a dynamical-system-based theory for how RCN works. Basically a RCN is thought of as consisting of three parts, a randomly chosen input layer, a randomly chosen recurrent network (the reservoir), and an output layer. The advantage of the RCN framework is that training is done only on the linear output layer, making it computationally feasible for the reservoir dimensionality to be large. In this presentation, we address the underlying dynamical mechanisms of RCN function by employing the concepts of generalized synchronization and conditional Lyapunov exponents. Using this framework, we propose conditions on reservoir dynamics necessary for good prediction performance. By looking at the RCN from this dynamical systems point of view, we gain a deeper understanding of its surprising computational power, as well as insights on how to design a RCN. Supported by Army Research Office Grant Number W911NF1210101.

  15. An AmI-Based Software Architecture Enabling Evolutionary Computation in Blended Commerce: The Shopping Plan Application

    Directory of Open Access Journals (Sweden)

    Giuseppe D’Aniello

    2015-01-01

    Full Text Available This work describes an approach to synergistically exploit ambient intelligence technologies, mobile devices, and evolutionary computation in order to support blended commerce or ubiquitous commerce scenarios. The work proposes a software architecture consisting of three main components: linked data for e-commerce, cloud-based services, and mobile apps. The three components implement a scenario where a shopping mall is presented as an intelligent environment in which customers use NFC capabilities of their smartphones in order to handle e-coupons produced, suggested, and consumed by the abovesaid environment. The main function of the intelligent environment is to help customers define shopping plans, which minimize the overall shopping cost by looking for best prices, discounts, and coupons. The paper proposes a genetic algorithm to find suboptimal solutions for the shopping plan problem in a highly dynamic context, where the final cost of a product for an individual customer is dependent on his previous purchases. In particular, the work provides details on the Shopping Plan software prototype and some experimentation results showing the overall performance of the genetic algorithm.

  16. Parallel Computation of Unsteady Flows on a Network of Workstations

    Science.gov (United States)

    1997-01-01

    Parallel computation of unsteady flows requires significant computational resources. The utilization of a network of workstations seems an efficient solution to the problem where large problems can be treated at a reasonable cost. This approach requires the solution of several problems: 1) the partitioning and distribution of the problem over a network of workstation, 2) efficient communication tools, 3) managing the system efficiently for a given problem. Of course, there is the question of the efficiency of any given numerical algorithm to such a computing system. NPARC code was chosen as a sample for the application. For the explicit version of the NPARC code both two- and three-dimensional problems were studied. Again both steady and unsteady problems were investigated. The issues studied as a part of the research program were: 1) how to distribute the data between the workstations, 2) how to compute and how to communicate at each node efficiently, 3) how to balance the load distribution. In the following, a summary of these activities is presented. Details of the work have been presented and published as referenced.

  17. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Science.gov (United States)

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  18. NEPTUNIX 2: Operating on computers network - Catalogued procedures

    International Nuclear Information System (INIS)

    Roux, Pierre.

    1982-06-01

    NEPTUNIX 2 is a package which carries out the simulation of complex processes described by numerous non linear algebro-differential equations. Main features are: non linear or time dependent parameters, implicit form, stiff systems, dynamic change of equations leading to discontinuities on some variables. Thus the mathematical model is built with an equations set F(x,x',1,t), where t is the independent variable, x' the derivative of x and 1 an ''algebrized'' logical variable. The NEPTUNIX 2 package is divided into two successive major steps: a non numerical step and a numerical step. The numerical step, using results from a picture of the model translated in FORTRAN language, in a form fitted for the executive computer, carries out the simulmations; in this way, NEPTUNIX 2 numerical step is portable. On the opposite, the non numerical step must be executed on a series 370 IBM computer or on a compatible computer. The present manual describes NEPTUNIX 2 operating procedures when the two steps are executed on the same computer and also when the numerical step is executed on an other computer connected or not on the same computing network [fr

  19. Computational Models and Emergent Properties of Respiratory Neural Networks

    Science.gov (United States)

    Lindsey, Bruce G.; Rybak, Ilya A.; Smith, Jeffrey C.

    2012-01-01

    Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components, including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions, enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered. PMID:23687564

  20. Monte Carlo simulation of a simple gene network yields new evolutionary insights.

    Science.gov (United States)

    Andrecut, M; Cloud, D; Kauffman, S A

    2008-02-07

    Monte Carlo simulations of a genetic toggle switch show that its behavior can be more complex than analytic models would suggest. We show here that as a result of the interplay between frequent and infrequent reaction events, such a switch can have more stable states than an analytic model would predict, and that the number and character of these states depend to a large extent on the propensity of transcription factors to bind to and dissociate from promoters. The effects of gene duplications differ even more; in analytic models, these seem to result in the disappearance of bi-stability and thus a loss of the switching function, but a Monte Carlo simulation shows that they can result in the appearance of new stable states without the loss of old ones, and thus in an increase of the complexity of the switch's behavior which may facilitate the evolution of new cellular functions. These differences are of interest with respect to the evolution of gene networks, particularly in clonal lines of cancer cells, where the duplication of active genes is an extremely common event, and often seems to result in the appearance of viable new cellular phenotypes.

  1. Open Problems in Network-aware Data Management in Exa-scale Computing and Terabit Networking Era

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Byna, Surendra

    2011-12-06

    Accessing and managing large amounts of data is a great challenge in collaborative computing environments where resources and users are geographically distributed. Recent advances in network technology led to next-generation high-performance networks, allowing high-bandwidth connectivity. Efficient use of the network infrastructure is necessary in order to address the increasing data and compute requirements of large-scale applications. We discuss several open problems, evaluate emerging trends, and articulate our perspectives in network-aware data management.

  2. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    Science.gov (United States)

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  3. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  4. Line-plane broadcasting in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.

    2010-06-08

    Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.

  5. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network

    Science.gov (United States)

    Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun

    2016-05-01

    Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 ;complex networks; articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.

  6. An efficient network for interconnecting remote monitoring instruments and computers

    International Nuclear Information System (INIS)

    Halbig, J.K.; Gainer, K.E.; Klosterbuer, S.F.

    1994-01-01

    Remote monitoring instrumentation must be connected with computers and other instruments. The cost and intrusiveness of installing cables in new and existing plants presents problems for the facility and the International Atomic Energy Agency (IAEA). The authors have tested a network that could accomplish this interconnection using mass-produced commercial components developed for use in industrial applications. Unlike components in the hardware of most networks, the components--manufactured and distributed in North America, Europe, and Asia--lend themselves to small and low-powered applications. The heart of the network is a chip with three microprocessors and proprietary network software contained in Read Only Memory. In addition to all nonuser levels of protocol, the software also contains message authentication capabilities. This chip can be interfaced to a variety of transmission media, for example, RS-485 lines, fiber topic cables, rf waves, and standard ac power lines. The use of power lines as the transmission medium in a facility could significantly reduce cabling costs

  7. Reducing Computational Overhead of Network Coding with Intrinsic Information Conveying

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Pedersen, Morten V.

    is RLNC (Random Linear Network Coding) and the goal is to reduce the amount of coding operations both at the coding and decoding node, and at the same time remove the need for dedicated signaling messages. In a traditional RLNC system, coding operation takes up significant computational resources and adds...... the coding operations must be performed in a particular way, which we introduce. Finally we evaluate the suggested system and find that the amount of coding can be significantly reduced both at nodes that recode and decode.......This paper investigated the possibility of intrinsic information conveying in network coding systems. The information is embedded into the coding vector by constructing the vector based on a set of predefined rules. This information can subsequently be retrieved by any receiver. The starting point...

  8. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  9. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions...... that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... traversal is assigned a score that is distributed among the road segments covered by the route according to a score distribution model. The query returns the road segment(s) with the highest score. To achieve low latency, it is essential to prune the very large search space. We propose two algorithms...

  10. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    Science.gov (United States)

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  11. Energy-efficient computing and networking. Revised selected papers

    Energy Technology Data Exchange (ETDEWEB)

    Hatziargyriou, Nikos; Dimeas, Aris [Ethnikon Metsovion Polytechneion, Athens (Greece); Weidlich, Anke (eds.) [SAP Research Center, Karlsruhe (Germany); Tomtsi, Thomai

    2011-07-01

    This book constitutes the postproceedings of the First International Conference on Energy-Efficient Computing and Networking, E-Energy, held in Passau, Germany in April 2010. The 23 revised papers presented were carefully reviewed and selected for inclusion in the post-proceedings. The papers are organized in topical sections on energy market and algorithms, ICT technology for the energy market, implementation of smart grid and smart home technology, microgrids and energy management, and energy efficiency through distributed energy management and buildings. (orig.)

  12. A virtual network computer's optical storage virtualization scheme

    Science.gov (United States)

    Wang, Jianzong; Hu, Huaixiang; Wan, Jiguang; Wang, Peng

    2008-12-01

    In this paper, we present the architecture and implementation of a virtual network computers' (VNC) optical storage virtualization scheme called VOSV. Its task is to manage the mapping of virtual optical storage to physical optical storage, a technique known as optical storage virtualization. The design of VOSV aims at the optical storage resources of different clients and servers that have high read-sharing patterns. VOSV uses several schemes such as a two-level Cache mechanism, a VNC server embedded module and the iSCSI protocols to improve the performance. The results measured on the prototype are encouraging, and indicating that VOSV provides the high I/O performance.

  13. Application of a distributed network in computational fluid dynamic simulations

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.; Deshpande, Ashish

    1994-01-01

    A general-purpose 3-D, incompressible Navier-Stokes algorithm is implemented on a network of concurrently operating workstations using parallel virtual machine (PVM) and compared with its performance on a CRAY Y-MP and on an Intel iPSC/860. The problem is relatively computationally intensive, and has a communication structure based primarily on nearest-neighbor communication, making it ideally suited to message passing. Such problems are frequently encountered in computational fluid dynamics (CDF), and their solution is increasingly in demand. The communication structure is explicitly coded in the implementation to fully exploit the regularity in message passing in order to produce a near-optimal solution. Results are presented for various grid sizes using up to eight processors.

  14. Efficient computation in networks of spiking neurons: simulations and theory

    International Nuclear Information System (INIS)

    Natschlaeger, T.

    1999-01-01

    One of the most prominent features of biological neural systems is that individual neurons communicate via short electrical pulses, the so called action potentials or spikes. In this thesis we investigate possible mechanisms which can in principle explain how complex computations in spiking neural networks (SNN) can be performed very fast, i.e. within a few 10 milliseconds. Some of these models are based on the assumption that relevant information is encoded by the timing of individual spikes (temporal coding). We will also discuss a model which is based on a population code and still is able to perform fast complex computations. In their natural environment biological neural systems have to process signals with a rich temporal structure. Hence it is an interesting question how neural systems process time series. In this context we explore possible links between biophysical characteristics of single neurons (refractory behavior, connectivity, time course of postsynaptic potentials) and synapses (unreliability, dynamics) on the one hand and possible computations on times series on the other hand. Furthermore we describe a general model of computation that exploits dynamic synapses. This model provides a general framework for understanding how neural systems process time-varying signals. (author)

  15. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  16. Many-objective Groundwater Monitoring Network Design Using Bias-Aware Ensemble Kalman Filtering and Evolutionary Optimization

    Science.gov (United States)

    Kollat, J. B.; Reed, P. M.

    2009-12-01

    This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman filtering (EnKF) and many-objective evolutionary optimization. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were optimized to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem

  17. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  18. Universal quantum computation in a semiconductor quantum wire network

    International Nuclear Information System (INIS)

    Sau, Jay D.; Das Sarma, S.; Tewari, Sumanta

    2010-01-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10 -3 to 10 -4 in ordinary unprotected quantum computation.

  19. Computing and the electrical transport properties of coupled quantum networks

    Science.gov (United States)

    Cain, Casey Andrew

    In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.

  20. Computed tomography of x-ray images using neural networks

    Science.gov (United States)

    Allred, Lloyd G.; Jones, Martin H.; Sheats, Matthew J.; Davis, Anthony W.

    2000-03-01

    Traditional CT reconstruction is done using the technique of Filtered Backprojection. While this technique is widely employed in industrial and medical applications, it is not generally understood that FB has a fundamental flaw. Gibbs phenomena states any Fourier reconstruction will produce errors in the vicinity of all discontinuities, and that the error will equal 28 percent of the discontinuity. A number of years back, one of the authors proposed a biological perception model whereby biological neural networks perceive 3D images from stereo vision. The perception model proports an internal hard-wired neural network which emulates the external physical process. A process is repeated whereby erroneous unknown internal values are used to generate an emulated signal with is compared to external sensed data, generating an error signal. Feedback from the error signal is then sued to update the erroneous internal values. The process is repeated until the error signal no longer decrease. It was soon realized that the same method could be used to obtain CT from x-rays without having to do Fourier transforms. Neural networks have the additional potential for handling non-linearities and missing data. The technique has been applied to some coral images, collected at the Los Alamos high-energy x-ray facility. The initial images show considerable promise, in some instances showing more detail than the FB images obtained from the same data. Although routine production using this new method would require a massively parallel computer, the method shows promise, especially where refined detail is required.

  1. Applied and computational harmonic analysis on graphs and networks

    Science.gov (United States)

    Irion, Jeff; Saito, Naoki

    2015-09-01

    In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.

  2. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    Science.gov (United States)

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  3. A new approach in development of data flow control and investigation system for computer networks

    International Nuclear Information System (INIS)

    Frolov, I.; Vaguine, A.; Silin, A.

    1992-01-01

    This paper describes a new approach in development of data flow control and investigation system for computer networks. This approach was developed and applied in the Moscow Radiotechnical Institute for control and investigations of Institute computer network. It allowed us to solve our network current problems successfully. Description of our approach is represented below along with the most interesting results of our work. (author)

  4. The Model of the Software Running on a Computer Equipment Hardware Included in the Grid network

    Directory of Open Access Journals (Sweden)

    T. A. Mityushkina

    2012-12-01

    Full Text Available A new approach to building a cloud computing environment using Grid networks is proposed in this paper. The authors describe the functional capabilities, algorithm, model of software running on a computer equipment hardware included in the Grid network, that will allow to implement cloud computing environment using Grid technologies.

  5. Using distributed processing on a local area network to increase available computing power

    International Nuclear Information System (INIS)

    Capps, K.S.; Sherry, K.J.

    1996-01-01

    The migration from central computers to desktop computers distributed the total computing horsepower of a system over many different machines. A typical engineering office may have several networked desktop computers that are sometimes idle, especially after work hours and when people are absent. Users would benefit if applications were able to use these networked computers collectively. This paper describes a method of distributing the workload of an application on one desktop system to otherwise idle systems on the network. The authors present this discussion from a developer's viewpoint, because the developer must modify an application before the user can realize any benefit of distributed computing on available systems

  6. DIMACS Workshop on Interconnection Networks and Mapping, and Scheduling Parallel Computations

    CERN Document Server

    Rosenberg, Arnold L; Sotteau, Dominique; NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science; Interconnection networks and mapping and scheduling parallel computations

    1995-01-01

    The interconnection network is one of the most basic components of a massively parallel computer system. Such systems consist of hundreds or thousands of processors interconnected to work cooperatively on computations. One of the central problems in parallel computing is the task of mapping a collection of processes onto the processors and routing network of a parallel machine. Once this mapping is done, it is critical to schedule computations within and communication among processor from universities and laboratories, as well as practitioners involved in the design, implementation, and application of massively parallel systems. Focusing on interconnection networks of parallel architectures of today and of the near future , the book includes topics such as network topologies,network properties, message routing, network embeddings, network emulation, mappings, and efficient scheduling. inputs for a process are available where and when the process is scheduled to be computed. This book contains the refereed pro...

  7. High Energy Physics Computer Networking: Report of the HEPNET Review Committee

    International Nuclear Information System (INIS)

    1988-06-01

    This paper discusses the computer networks available to high energy physics facilities for transmission of data. Topics covered in this paper are: Existing and planned networks and HEPNET requirements

  8. Including Internet insurance as part of a hospital computer network security plan.

    Science.gov (United States)

    Riccardi, Ken

    2002-01-01

    Cyber attacks on a hospital's computer network is a new crime to be reckoned with. Should your hospital consider internet insurance? The author explains this new phenomenon and presents a risk assessment for determining network vulnerabilities.

  9. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  10. Sharing waste management data over a wide area computer network

    International Nuclear Information System (INIS)

    Menke, W.; Friberg, P.

    1992-01-01

    In this paper the authors envision a time when waste management professionals from any institution will be able to access high quality data, regardless of where this data may actually be archived. They will not have to know anything about where the data actually resides or what format it is stored in. They will only have to specify the type of data and the workstation software will handle the rest of the details of finding them and accessing them. A method - now in use at the Lamont-Doherty Geological Observatory of Columbia University and several other institutions - of achieving this vision is described in this paper. Institutions make views of their databases publicly available to users of the wide-area network (e.g. Internet), using database serving software that runs on one of their computers. This software completely automates the process of finding out what kind of data are available and of retrieving them

  11. Computer simulation of the Blumlein pulse forming network

    International Nuclear Information System (INIS)

    Edwards, C.B.

    1981-03-01

    A computer simulation of the Blumlein pulse-forming network is described. The model is able to treat the case of time varying loads, non-zero conductor resistance, and switch closure effects as exhibited by real systems employing non-ohmic loads such as field-emission vacuum diodes in which the impedance is strongly time and voltage dependent. The application of the code to various experimental arrangements is discussed, with particular reference to the prediction of the behaviour of the output circuit of 'ELF', the electron beam generator in operation at the Rutherford Laboratory. The output from the code is compared directly with experimentally obtained voltage waveforms applied to the 'ELF' diode. (author)

  12. Computational optical tomography using 3-D deep convolutional neural networks

    Science.gov (United States)

    Nguyen, Thanh; Bui, Vy; Nehmetallah, George

    2018-04-01

    Deep convolutional neural networks (DCNNs) offer a promising performance for many image processing areas, such as super-resolution, deconvolution, image classification, denoising, and segmentation, with outstanding results. Here, we develop for the first time, to our knowledge, a method to perform 3-D computational optical tomography using 3-D DCNN. A simulated 3-D phantom dataset was first constructed and converted to a dataset of phase objects imaged on a spatial light modulator. For each phase image in the dataset, the corresponding diffracted intensity image was experimentally recorded on a CCD. We then experimentally demonstrate the ability of the developed 3-D DCNN algorithm to solve the inverse problem by reconstructing the 3-D index of refraction distributions of test phantoms from the dataset from their corresponding diffraction patterns.

  13. Dynamic Security Assessment Of Computer Networks In Siem-Systems

    Directory of Open Access Journals (Sweden)

    Elena Vladimirovna Doynikova

    2015-10-01

    Full Text Available The paper suggests an approach to the security assessment of computer networks. The approach is based on attack graphs and intended for Security Information and Events Management systems (SIEM-systems. Key feature of the approach consists in the application of the multilevel security metrics taxonomy. The taxonomy allows definition of the system profile according to the input data used for the metrics calculation and techniques of security metrics calculation. This allows specification of the security assessment in near real time, identification of previous and future attacker steps, identification of attackers goals and characteristics. A security assessment system prototype is implemented for the suggested approach. Analysis of its operation is conducted for several attack scenarios.

  14. LightKone Project: Lightweight Computation for Networks at the Edge

    OpenAIRE

    Van Roy, Peter; TEKK Tour Digital Wallonia

    2017-01-01

    LightKone combines two recent advances in distributed computing to enable general-purpose computing on edge networks: * Synchronization-free programming: Large-scale applications can run efficiently on edge networks by using convergent data structures (based on Lasp and Antidote from previous project SyncFree) → tolerates dynamicity and loose coupling of edge networks * Hybrid gossip: Communication can be made highly resilient on edge networks by combining gossip with classical distributed al...

  15. A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    OpenAIRE

    Wang, Shuo; Zhang, Xing; Zhang, Yan; Wang, Lin; Yang, Juwo; Wang, Wenbo

    2017-01-01

    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at th...

  16. Optimización multiobjetivo para enrutamiento multicast en overlay networks utilizando algoritmos evolutivos Multiobjective Optimization for Multicast Routing in Overlay Networks using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Juan Carlos Montoya M.

    2008-06-01

    Full Text Available Multicast juega un papel muy importante para soportar una nueva generación de aplicaciones. En la actualidad y por diferentes razones, técnicas y no técnicas, multicast IP no ha sido totalmente adoptado en Internet. Durante los últimos a˜nos, un área de investigación activa es la de implementar este tipo de tráfico desde la perspectiva del nivel de aplicación, donde la funcionalidad de multicast no es responsabilidad de los enrutadores sino de los hosts, a lo que se le conoce como Multicast Overlay Network (MON. En este artículo se plantea el enrutamiento en MON como un problema de Optimización Multiobjetivo (MOP donde se optimizan dos funciones: 1 el retardo total extremo a extremo del árbol multicast, y 2 la máxima utilización de los enlaces. La optimización simultánea de estas dos funciones es un problema NP completo y para resolverlo se propone utilizar Algoritmos Evolutivos Multiobjetivos (MOEA, específicamente NSGAIMulticast plays an important role in supporting a new generation of applications. At present and for different reasons, technical and non–technical, multicast IP hasn’t yet been totally adopted for Internet. During recent years, an active area of research is that of implementing this kind of traffic in the application layer where the multicast functionality isn´t a responsibility of the routers but that of the hosts, which we know as Multicast Overlay Networks (MON. In this article, routing in an MON is put forward as a multiobjective optimization problem (MOP where two functions are optimized: 1 the total end to end delay of the multicast tree and 2 the maximum link utilization. The simultaneous optimization of these two functions is an NP–Complete problem and to solve this we suggest using Multiobjective Evolutionary Algorithms (MOEA, specifically NSGA–II.

  17. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective

    Directory of Open Access Journals (Sweden)

    Shuo Gu

    2017-01-01

    Full Text Available With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  18. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective.

    Science.gov (United States)

    Gu, Shuo; Pei, Jianfeng

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  19. Multilevel Evolutionary Algorithm that Optimizes the Structure of Scale-Free Networks for the Promotion of Cooperation in the Prisoner's Dilemma game.

    Science.gov (United States)

    Liu, Penghui; Liu, Jing

    2017-06-28

    Understanding the emergence of cooperation has long been a challenge across disciplines. Even if network reciprocity reflected the importance of population structure in promoting cooperation, it remains an open question how population structures can be optimized, thereby enhancing cooperation. In this paper, we attempt to apply the evolutionary algorithm (EA) to solve this highly complex problem. However, as it is hard to evaluate the fitness (cooperation level) of population structures, simply employing the canonical evolutionary algorithm (EA) may fail in optimization. Thus, we propose a new EA variant named mlEA-C PD -SFN to promote the cooperation level of scale-free networks (SFNs) in the Prisoner's Dilemma Game (PDG). Meanwhile, to verify the preceding conclusions may not be applied to this problem, we also provide the optimization results of the comparative experiment (EA cluster ), which optimizes the clustering coefficient of structures. Even if preceding research concluded that highly clustered scale-free networks enhance cooperation, we find EA cluster does not perform desirably, while mlEA-C PD -SFN performs efficiently in different optimization environments. We hope that mlEA-C PD -SFN may help promote the structure of species in nature and that more general properties that enhance cooperation can be learned from the output structures.

  20. Integration of a network aware traffic generation device into a computer network emulation platform

    CSIR Research Space (South Africa)

    Von Solms, S

    2014-07-01

    Full Text Available Flexible, open source network emulation tools can provide network researchers with significant benefits regarding network behaviour and performance. The evaluation of these networks can benefit greatly from the integration of realistic, network...

  1. Embedded, everywhere: a research agenda for networked systems of embedded computers

    National Research Council Canada - National Science Library

    Committee on Networked Systems of Embedded Computers; National Research Council Staff; Division on Engineering and Physical Sciences; Computer Science and Telecommunications Board; National Academy of Sciences

    2001-01-01

    .... Embedded, Everywhere explores the potential of networked systems of embedded computers and the research challenges arising from embedding computation and communications technology into a wide variety of applicationsâ...

  2. Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks

    National Research Council Canada - National Science Library

    Bradford, Robert

    2000-01-01

    .... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...

  3. Characterization of physiological networks in sleep apnea patients using artificial neural networks for Granger causality computation

    Science.gov (United States)

    Cárdenas, Jhon; Orjuela-Cañón, Alvaro D.; Cerquera, Alexander; Ravelo, Antonio

    2017-11-01

    Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. In this document, the authors present a way to measure the causality that connect the Central Nervous System (CNS) and the Cardiac System (CS) in people diagnosed with obstructive sleep apnea syndrome (OSA) before and during treatment with continuous positive air pressure (CPAP). For this purpose, artificial neural networks were used to obtain models for GC computation, based on time series of normalized powers calculated from electrocardiography (EKG) and electroencephalography (EEG) signals recorded in polysomnography (PSG) studies.

  4. General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jiří; Orponen, P.

    2003-01-01

    Roč. 15, č. 12 (2003), s. 2727-2778 ISSN 0899-7667 R&D Projects: GA AV ČR IAB2030007; GA ČR GA201/02/1456 Institutional research plan: AV0Z1030915 Keywords : computational power * computational complexity * perceptrons * radial basis functions * spiking neurons * feedforward networks * reccurent networks * probabilistic computation * analog computation Subject RIV: BA - General Mathematics Impact factor: 2.747, year: 2003

  5. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  6. Providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.; Ratterman, Joseph D.

    2018-01-30

    Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.

  7. NASF transposition network: A computing network for unscrambling p-ordered vectors

    Science.gov (United States)

    Lim, R. S.

    1979-01-01

    The viewpoints of design, programming, and application of the transportation network (TN) is presented. The TN is a programmable combinational logic network that connects 521 memory modules to 512 processors. The unscrambling of p-ordered vectors to 1-ordered vectors in one cycle is described. The TN design is based upon the concept of cyclic groups from abstract algebra and primitive roots and indices from number theory. The programming of the TN is very simple, requiring only 20 bits: 10 bits for offset control and 10 bits for barrel switch shift control. This simple control is executed by the control unit (CU), not the processors. Any memory access by a processor must be coordinated with the CU and wait for all other processors to come to a synchronization point. These wait and synchronization events can be a degradation in performance to a computation. The TN application is for multidimensional data manipulation, matrix processing, and data sorting, and can also perform a perfect shuffle. Unlike other more complicated and powerful permutation networks, the TN cannot, if possible at all, unscramble non-p-ordered vectors in one cycle.

  8. Locating hardware faults in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  9. Fluid Centrality: A Social Network Analysis of Social-Technical Relations in Computer-Mediated Communication

    Science.gov (United States)

    Enriquez, Judith Guevarra

    2010-01-01

    In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…

  10. Synchronized Pair Configuration in Virtualization-Based Lab for Learning Computer Networks

    Science.gov (United States)

    Kongcharoen, Chaknarin; Hwang, Wu-Yuin; Ghinea, Gheorghita

    2017-01-01

    More studies are concentrating on using virtualization-based labs to facilitate computer or network learning concepts. Some benefits are lower hardware costs and greater flexibility in reconfiguring computer and network environments. However, few studies have investigated effective mechanisms for using virtualization fully for collaboration.…

  11. The ENSDF radioactivity data base for IBM-PC and computer network access

    International Nuclear Information System (INIS)

    Ekstroem, P.; Spanier, L.

    1989-08-01

    A data base system for radioactivity gamma rays is described. A base with approximately 15000 gamma rays from 2777 decays is available for installation on the hard disk of a PC, and a complete system with approximately 73000 gamma rays is available for on-line access via the NORDic University computer NETwork (NORDUNET) and the Swedish University computer NETwork (SUNET)

  12. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    Science.gov (United States)

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.

    2009-01-01

    An important aspect of IT security governance is the proactive and continuous identification of possible attacks in computer networks. This is complicated due to the complexity and size of networks, and due to the fact that usually network attacks are performed in several steps. This thesis proposes

  14. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  15. The status of computing and means of local and external networking at JINR

    Energy Technology Data Exchange (ETDEWEB)

    Dorokhin, A T; Shirikov, V P

    1996-12-31

    The goal of this report is to represent a view of the current state of computer support at JINR different physical researches. JINR network and its applications are considered. Trends of local networks and the connectivity with global networks are discussed. 3 refs.

  16. Discussion on the Technology and Method of Computer Network Security Management

    Science.gov (United States)

    Zhou, Jianlei

    2017-09-01

    With the rapid development of information technology, the application of computer network technology has penetrated all aspects of society, changed people's way of life work to a certain extent, brought great convenience to people. But computer network technology is not a panacea, it can promote the function of social development, but also can cause damage to the community and the country. Due to computer network’ openness, easiness of sharing and other characteristics, it had a very negative impact on the computer network security, especially the loopholes in the technical aspects can cause damage on the network information. Based on this, this paper will do a brief analysis on the computer network security management problems and security measures.

  17. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  18. A prototype computer network service for occupational therapists.

    Science.gov (United States)

    Hallberg, N; Johansson, M; Timpka, T

    1999-04-01

    Due to recent reforms, the demands on the people working in community-oriented health care service are increasing. The individual providers need professional knowledge and skills to perform their tasks quickly and safely. The individuals are also confronted with new tasks and situations of which they lack experience. At the same time, the resources for education and development are decreasing. The aim of this paper is to describe the implementation of a prototype computer network service to support occupational therapists in their daily work. A customized Quality Function Deployment (QFD) model, including participatory design elements, was used for: (a) identification of the occupational therapists' needs; and (b) for the transformation of these needs to prioritized design attributes. The main purpose of the prototype was to improve the visualization of the design attributes that were found to support the occupational therapists. An additional purpose was to be able to evaluate the design attributes and further improve them. The specific aim of this article is to describe the initial prototype with respect both to the tools and the information content.

  19. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  20. Evolutionary Models for Simple Biosystems

    Science.gov (United States)

    Bagnoli, Franco

    The concept of evolutionary development of structures constituted a real revolution in biology: it was possible to understand how the very complex structures of life can arise in an out-of-equilibrium system. The investigation of such systems has shown that indeed, systems under a flux of energy or matter can self-organize into complex patterns, think for instance to Rayleigh-Bernard convection, Liesegang rings, patterns formed by granular systems under shear. Following this line, one could characterize life as a state of matter, characterized by the slow, continuous process that we call evolution. In this paper we try to identify the organizational level of life, that spans several orders of magnitude from the elementary constituents to whole ecosystems. Although similar structures can be found in other contexts like ideas (memes) in neural systems and self-replicating elements (computer viruses, worms, etc.) in computer systems, we shall concentrate on biological evolutionary structure, and try to put into evidence the role and the emergence of network structure in such systems.