WorldWideScience

Sample records for networks evolutionary computing

  1. Markov Networks in Evolutionary Computation

    CERN Document Server

    Shakya, Siddhartha

    2012-01-01

    Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs).  EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current researc...

  2. Computational intelligence synergies of fuzzy logic, neural networks and evolutionary computing

    CERN Document Server

    Siddique, Nazmul

    2013-01-01

    Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspect

  3. Fundamentals of computational intelligence neural networks, fuzzy systems, and evolutionary computation

    CERN Document Server

    Keller, James M; Fogel, David B

    2016-01-01

    This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basi function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzz...

  4. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment

    Science.gov (United States)

    2014-01-01

    Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel

  5. Evolutionary Game Analysis of Competitive Information Dissemination on Social Networks: An Agent-Based Computational Approach

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2015-01-01

    Full Text Available Social networks are formed by individuals, in which personalities, utility functions, and interaction rules are made as close to reality as possible. Taking the competitive product-related information as a case, we proposed a game-theoretic model for competitive information dissemination in social networks. The model is presented to explain how human factors impact competitive information dissemination which is described as the dynamic of a coordination game and players’ payoff is defined by a utility function. Then we design a computational system that integrates the agent, the evolutionary game, and the social network. The approach can help to visualize the evolution of % of competitive information adoption and diffusion, grasp the dynamic evolution features in information adoption game over time, and explore microlevel interactions among users in different network structure under various scenarios. We discuss several scenarios to analyze the influence of several factors on the dissemination of competitive information, ranging from personality of individuals to structure of networks.

  6. Combined bio-inspired/evolutionary computational methods in cross-layer protocol optimization for wireless ad hoc sensor networks

    Science.gov (United States)

    Hortos, William S.

    2011-06-01

    Published studies have focused on the application of one bio-inspired or evolutionary computational method to the functions of a single protocol layer in a wireless ad hoc sensor network (WSN). For example, swarm intelligence in the form of ant colony optimization (ACO), has been repeatedly considered for the routing of data/information among nodes, a network-layer function, while genetic algorithms (GAs) have been used to select transmission frequencies and power levels, physical-layer functions. Similarly, artificial immune systems (AISs) as well as trust models of quantized data reputation have been invoked for detection of network intrusions that cause anomalies in data and information; these act on the application and presentation layers. Most recently, a self-organizing scheduling scheme inspired by frog-calling behavior for reliable data transmission in wireless sensor networks, termed anti-phase synchronization, has been applied to realize collision-free transmissions between neighboring nodes, a function of the MAC layer. In a novel departure from previous work, the cross-layer approach to WSN protocol design suggests applying more than one evolutionary computational method to the functions of the appropriate layers to improve the QoS performance of the cross-layer design beyond that of one method applied to a single layer's functions. A baseline WSN protocol design, embedding GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layers, respectively, is constructed. Simulation results demonstrate the synergies among the bioinspired/ evolutionary methods of the proposed baseline design improve the overall QoS performance of networks over that of a single computational method.

  7. Computational Models of Financial Price Prediction: A Survey of Neural Networks, Kernel Machines and Evolutionary Computation Approaches

    Directory of Open Access Journals (Sweden)

    Javier Sandoval

    2011-12-01

    Full Text Available A review of the representative models of machine learning research applied to the foreign exchange rate and stock price prediction problem is conducted.  The article is organized as follows: The first section provides a context on the definitions and importance of foreign exchange rate and stock markets.  The second section reviews machine learning models for financial prediction focusing on neural networks, SVM and evolutionary methods. Lastly, the third section draws some conclusions.

  8. Scalable computing for evolutionary genomics.

    Science.gov (United States)

    Prins, Pjotr; Belhachemi, Dominique; Möller, Steffen; Smant, Geert

    2012-01-01

    Genomic data analysis in evolutionary biology is becoming so computationally intensive that analysis of multiple hypotheses and scenarios takes too long on a single desktop computer. In this chapter, we discuss techniques for scaling computations through parallelization of calculations, after giving a quick overview of advanced programming techniques. Unfortunately, parallel programming is difficult and requires special software design. The alternative, especially attractive for legacy software, is to introduce poor man's parallelization by running whole programs in parallel as separate processes, using job schedulers. Such pipelines are often deployed on bioinformatics computer clusters. Recent advances in PC virtualization have made it possible to run a full computer operating system, with all of its installed software, on top of another operating system, inside a "box," or virtual machine (VM). Such a VM can flexibly be deployed on multiple computers, in a local network, e.g., on existing desktop PCs, and even in the Cloud, to create a "virtual" computer cluster. Many bioinformatics applications in evolutionary biology can be run in parallel, running processes in one or more VMs. Here, we show how a ready-made bioinformatics VM image, named BioNode, effectively creates a computing cluster, and pipeline, in a few steps. This allows researchers to scale-up computations from their desktop, using available hardware, anytime it is required. BioNode is based on Debian Linux and can run on networked PCs and in the Cloud. Over 200 bioinformatics and statistical software packages, of interest to evolutionary biology, are included, such as PAML, Muscle, MAFFT, MrBayes, and BLAST. Most of these software packages are maintained through the Debian Med project. In addition, BioNode contains convenient configuration scripts for parallelizing bioinformatics software. Where Debian Med encourages packaging free and open source bioinformatics software through one central project

  9. Connecting game theory and evolutionary network control for the computational control of soccer matches

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2015-03-01

    Full Text Available Game theory, also known as interactive decision theory, is an umbrella term for the logical side of decision science, including both human and non-human events. In this paper a new game theory model is introduced in order to tame complex human events like soccer matches. Soccer-Decoder is a math algorithm recently introduced in order to simulate soccer matches by merging together 3 scientific methods: game theory, differential calculus and stochastic simulations. The philosophy behind Soccer-Decoder is that even very complex real world events, when turned into their irreducible essence, can be understood and predicted. In this work, Soccer-Decoder is combined with Evolutionary Network Control in order to provide a proficient tool to decide the most proper game strategies for determining winning strategies in soccer events. An illustrative example is given. The ratio behind this work is that even very complex real world events can be simulated and then controlled when using appropriate scientific tools.

  10. Topics of Evolutionary Computation 2001

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    This booklet contains the student reports from the course: Topics of Evolutionary Computation, Fall 2001, given by Thiemo Krink, Rene Thomsen and Rasmus K. Ursem......This booklet contains the student reports from the course: Topics of Evolutionary Computation, Fall 2001, given by Thiemo Krink, Rene Thomsen and Rasmus K. Ursem...

  11. Part E: Evolutionary Computation

    DEFF Research Database (Denmark)

    2015-01-01

    evolutionary algorithms, such as memetic algorithms, which have emerged as a very promising tool for solving many real-world problems in a multitude of areas of science and technology. Moreover, parallel evolutionary combinatorial optimization has been presented. Search operators, which are crucial in all...

  12. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  13. computer networks

    Directory of Open Access Journals (Sweden)

    N. U. Ahmed

    2002-01-01

    Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

  14. Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing.

    Science.gov (United States)

    Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio

    2009-01-01

    Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate

  15. Near-Minimal Node Control of Networked Evolutionary Games

    NARCIS (Netherlands)

    Riehl, James Robert; Cao, Ming

    2014-01-01

    We investigate a problem related to the controllability of networked evolutionary games, first presenting an algorithm that computes a near-minimal set of nodes to drive all nodes in a tree network to a desired strategy, and then briefly discussing an algorithm that works for arbitrary networks

  16. Parallel Evolutionary Optimization for Neuromorphic Network Training

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)

    2016-01-01

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.

  17. Evolutionary Computation and Its Applications in Neural and Fuzzy Systems

    Directory of Open Access Journals (Sweden)

    Biaobiao Zhang

    2011-01-01

    Full Text Available Neural networks and fuzzy systems are two soft-computing paradigms for system modelling. Adapting a neural or fuzzy system requires to solve two optimization problems: structural optimization and parametric optimization. Structural optimization is a discrete optimization problem which is very hard to solve using conventional optimization techniques. Parametric optimization can be solved using conventional optimization techniques, but the solution may be easily trapped at a bad local optimum. Evolutionary computation is a general-purpose stochastic global optimization approach under the universally accepted neo-Darwinian paradigm, which is a combination of the classical Darwinian evolutionary theory, the selectionism of Weismann, and the genetics of Mendel. Evolutionary algorithms are a major approach to adaptation and optimization. In this paper, we first introduce evolutionary algorithms with emphasis on genetic algorithms and evolutionary strategies. Other evolutionary algorithms such as genetic programming, evolutionary programming, particle swarm optimization, immune algorithm, and ant colony optimization are also described. Some topics pertaining to evolutionary algorithms are also discussed, and a comparison between evolutionary algorithms and simulated annealing is made. Finally, the application of EAs to the learning of neural networks as well as to the structural and parametric adaptations of fuzzy systems is also detailed.

  18. Evolutionary Based Solutions for Green Computing

    CERN Document Server

    Kołodziej, Joanna; Li, Juan; Zomaya, Albert

    2013-01-01

    Today’s highly parameterized large-scale distributed computing systems may be composed  of a large number of various components (computers, databases, etc) and must provide a wide range of services. The users of such systems, located at different (geographical or managerial) network cluster may have a limited access to the system’s services and resources, and different, often conflicting, expectations and requirements. Moreover, the information and data processed in such dynamic environments may be incomplete, imprecise, fragmentary, and overloading. All of the above mentioned issues require some intelligent scalable methodologies for the management of the whole complex structure, which unfortunately may increase the energy consumption of such systems.   This book in its eight chapters, addresses the fundamental issues related to the energy usage and the optimal low-cost system design in high performance ``green computing’’ systems. The recent evolutionary and general metaheuristic-based solutions ...

  19. Algorithmic Mechanism Design of Evolutionary Computation.

    Science.gov (United States)

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm.

  20. Evolutionary algorithms for mobile ad hoc networks

    CERN Document Server

    Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

    2014-01-01

    Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

  1. Evolutionary dynamics of complex communications networks

    CERN Document Server

    Karyotis, Vasileios; Papavassiliou, Symeon

    2013-01-01

    Until recently, most network design techniques employed a bottom-up approach with lower protocol layer mechanisms affecting the development of higher ones. This approach, however, has not yielded fascinating results in the case of wireless distributed networks. Addressing the emerging aspects of modern network analysis and design, Evolutionary Dynamics of Complex Communications Networks introduces and develops a top-bottom approach where elements of the higher layer can be exploited in modifying the lowest physical topology-closing the network design loop in an evolutionary fashion similar to

  2. Soft computing integrating evolutionary, neural, and fuzzy systems

    CERN Document Server

    Tettamanzi, Andrea

    2001-01-01

    Soft computing encompasses various computational methodologies, which, unlike conventional algorithms, are tolerant of imprecision, uncertainty, and partial truth. Soft computing technologies offer adaptability as a characteristic feature and thus permit the tracking of a problem through a changing environment. Besides some recent developments in areas like rough sets and probabilistic networks, fuzzy logic, evolutionary algorithms, and artificial neural networks are core ingredients of soft computing, which are all bio-inspired and can easily be combined synergetically. This book presents a well-balanced integration of fuzzy logic, evolutionary computing, and neural information processing. The three constituents are introduced to the reader systematically and brought together in differentiated combinations step by step. The text was developed from courses given by the authors and offers numerous illustrations as

  3. International Conference of Intelligence Computation and Evolutionary Computation ICEC 2012

    CERN Document Server

    Intelligence Computation and Evolutionary Computation

    2013-01-01

    2012 International Conference of Intelligence Computation and Evolutionary Computation (ICEC 2012) is held on July 7, 2012 in Wuhan, China. This conference is sponsored by Information Technology & Industrial Engineering Research Center.  ICEC 2012 is a forum for presentation of new research results of intelligent computation and evolutionary computation. Cross-fertilization of intelligent computation, evolutionary computation, evolvable hardware and newly emerging technologies is strongly encouraged. The forum aims to bring together researchers, developers, and users from around the world in both industry and academia for sharing state-of-art results, for exploring new areas of research and development, and to discuss emerging issues facing intelligent computation and evolutionary computation.

  4. Evolutionary games on multilayer networks: A colloquium

    CERN Document Server

    Wang, Zhen; Szolnoki, Attila; Perc, Matjaz

    2015-01-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling th...

  5. A Multi Agent System for Flow-Based Intrusion Detection Using Reputation and Evolutionary Computation

    Science.gov (United States)

    2011-03-01

    xiii I. Introduction ...47 MCDM multiple criteria decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 MOEA Multi Objective Evolutionary Algorithm...COMPUTATION I. Introduction Surveying the modern digital expanse of the computer network for entities nefar- ious and profane is the work of an Intrusion

  6. Computer networks monitoring

    OpenAIRE

    Antončič , Polona

    2012-01-01

    The present thesis entitled Computer Networks Monitoring introduces the basics of computer networks, the aim and the computer data reclamation from networking devices, software for the system follow-up together with the case of monitoring a real network with tens of network devices. The networks represent an important part in the modern information technology and serve for the exchange of data and sources which makes their impeccability of crucial importance. Correct and efficient sys...

  7. Evolutionary games on multilayer networks: a colloquium

    Science.gov (United States)

    Wang, Zhen; Wang, Lin; Szolnoki, Attila; Perc, Matjaž

    2015-05-01

    Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.

  8. Massively parallel evolutionary computation on GPGPUs

    CERN Document Server

    Tsutsui, Shigeyoshi

    2013-01-01

    Evolutionary algorithms (EAs) are metaheuristics that learn from natural collective behavior and are applied to solve optimization problems in domains such as scheduling, engineering, bioinformatics, and finance. Such applications demand acceptable solutions with high-speed execution using finite computational resources. Therefore, there have been many attempts to develop platforms for running parallel EAs using multicore machines, massively parallel cluster machines, or grid computing environments. Recent advances in general-purpose computing on graphics processing units (GPGPU) have opened u

  9. Computation Environments (2) Persistently Evolutionary Semantics

    OpenAIRE

    Ramezanian, Rasoul

    2012-01-01

    In the manuscript titled "Computation environment (1)", we introduced a notion called computation environment as an interactive model for computation and complexity theory. In this model, Turing machines are not autonomous entities and find their meanings through the interaction between a computist and a universal processor, and thus due to evolution of the universal processor, the meanings of Turing machines could change. In this manuscript, we discuss persistently evolutionary intensions. W...

  10. From computers to cultivation: reconceptualizing evolutionary psychology

    Science.gov (United States)

    Barrett, Louise; Pollet, Thomas V.; Stulp, Gert

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on “cognitive integration” or the “extended mind hypothesis” in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human “mind-making” within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach. PMID:25161633

  11. From computers to cultivation: reconceptualizing evolutionary psychology

    Directory of Open Access Journals (Sweden)

    Louise eBarrett

    2014-08-01

    Full Text Available Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behaviour, and the rigour with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific computational mechanisms, or modules (the massive modularity hypothesis. Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive represent a true alternative to standard computational approaches, with an emphasis on cognitive integration or the extended mind hypothesis in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human ‘mind-making’ within an evolutionarily-informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach.

  12. From computers to cultivation: reconceptualizing evolutionary psychology.

    Science.gov (United States)

    Barrett, Louise; Pollet, Thomas V; Stulp, Gert

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on "cognitive integration" or the "extended mind hypothesis" in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human "mind-making" within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach.

  13. Introduction to computer networking

    CERN Document Server

    Robertazzi, Thomas G

    2017-01-01

    This book gives a broad look at both fundamental networking technology and new areas that support it and use it. It is a concise introduction to the most prominent, recent technological topics in computer networking. Topics include network technology such as wired and wireless networks, enabling technologies such as data centers, software defined networking, cloud and grid computing and applications such as networks on chips, space networking and network security. The accessible writing style and non-mathematical treatment makes this a useful book for the student, network and communications engineer, computer scientist and IT professional. • Features a concise, accessible treatment of computer networking, focusing on new technological topics; • Provides non-mathematical introduction to networks in their most common forms today;< • Includes new developments in switching, optical networks, WiFi, Bluetooth, LTE, 5G, and quantum cryptography.

  14. Geometric evolutionary dynamics of protein interaction networks.

    Science.gov (United States)

    Przulj, Natasa; Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne

    2010-01-01

    Understanding the evolution and structure of protein-protein interaction (PPI) networks is a central problem of systems biology. Since most processes in the cell are carried out by groups of proteins acting together, a theoretical model of how PPI networks develop based on duplications and mutations is an essential ingredient for understanding the complex wiring of the cell. Many different network models have been proposed, from those that follow power-law degree distributions and those that model complementarity of protein binding domains, to those that have geometric properties. Here, we introduce a new model for PPI network (and thus gene) evolution that produces well-fitting network models for currently available PPI networks. The model integrates geometric network properties with evolutionary dynamics of PPI network evolution.

  15. Function Follows Performance in Evolutionary Computational Processing

    DEFF Research Database (Denmark)

    Pasold, Anke; Foged, Isak Worre

    2011-01-01

    As the title ‘Function Follows Performance in Evolutionary Computational Processing’ suggests, this paper explores the potentials of employing multiple design and evaluation criteria within one processing model in order to account for a number of performative parameters desired within varied...

  16. Social traits, social networks and evolutionary biology.

    Science.gov (United States)

    Fisher, D N; McAdam, A G

    2017-12-01

    The social environment is both an important agent of selection for most organisms, and an emergent property of their interactions. As an aggregation of interactions among members of a population, the social environment is a product of many sets of relationships and so can be represented as a network or matrix. Social network analysis in animals has focused on why these networks possess the structure they do, and whether individuals' network traits, representing some aspect of their social phenotype, relate to their fitness. Meanwhile, quantitative geneticists have demonstrated that traits expressed in a social context can depend on the phenotypes and genotypes of interacting partners, leading to influences of the social environment on the traits and fitness of individuals and the evolutionary trajectories of populations. Therefore, both fields are investigating similar topics, yet have arrived at these points relatively independently. We review how these approaches are diverged, and yet how they retain clear parallelism and so strong potential for complementarity. This demonstrates that, despite separate bodies of theory, advances in one might inform the other. Techniques in network analysis for quantifying social phenotypes, and for identifying community structure, should be useful for those studying the relationship between individual behaviour and group-level phenotypes. Entering social association matrices into quantitative genetic models may also reduce bias in heritability estimates, and allow the estimation of the influence of social connectedness on trait expression. Current methods for measuring natural selection in a social context explicitly account for the fact that a trait is not necessarily the property of a single individual, something the network approaches have not yet considered when relating network metrics to individual fitness. Harnessing evolutionary models that consider traits affected by genes in other individuals (i.e. indirect genetic

  17. Evolutionary Games and Computer Simulations

    CERN Document Server

    Huberman, B A; Huberman, Bernardo A.; Glance, Natalie S.

    1993-01-01

    Abstract: The prisoner's dilemma has long been considered the paradigm for studying the emergence of cooperation among selfish individuals. Because of its importance, it has been studied through computer experiments as well as in the laboratory and by analytical means. However, there are important differences between the way a system composed of many interacting elements is simulated by a digital machine and the manner in which it behaves when studied in real experiments. In some instances, these disparities can be marked enough so as to cast doubt on the implications of cellular automata type simulations for the study of cooperation in social systems. In particular, if such a simulation imposes space-time granularity, then its ability to describe the real world may be compromised. Indeed, we show that the results of digital simulations regarding territoriality and cooperation differ greatly when time is discrete as opposed to continuous.

  18. Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks

    OpenAIRE

    Yu, Yun; Jermaine, Christopher; Nakhleh, Luay

    2016-01-01

    Abstract Background Phylogenetic networks are leaf-labeled graphs used to model and display complex evolutionary relationships that do not fit a single tree. There are two classes of phylogenetic networks: Data-display networks and evolutionary networks. While data-display networks are very commonly used to explore data, they are not amenable to incorporating probabilistic models of gene and genome evolution. Evolutionary networks, on the other hand, can accommodate such probabilistic models,...

  19. Basics of Computer Networking

    CERN Document Server

    Robertazzi, Thomas

    2012-01-01

    Springer Brief Basics of Computer Networking provides a non-mathematical introduction to the world of networks. This book covers both technology for wired and wireless networks. Coverage includes transmission media, local area networks, wide area networks, and network security. Written in a very accessible style for the interested layman by the author of a widely used textbook with many years of experience explaining concepts to the beginner.

  20. Evolutionary Computing for Intelligent Power System Optimization and Control

    DEFF Research Database (Denmark)

    This new book focuses on how evolutionary computing techniques benefit engineering research and development tasks by converting practical problems of growing complexities into simple formulations, thus largely reducing development efforts. This book begins with an overview of the optimization the...... theory and modern evolutionary computing techniques, and goes on to cover specific applications of evolutionary computing to power system optimization and control problems....

  1. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  2. Towards an evolutionary model of transcription networks.

    Directory of Open Access Journals (Sweden)

    Dan Xie

    2011-06-01

    Full Text Available DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs, we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates.

  3. Evolutionary rewiring of bacterial regulatory networks

    Directory of Open Access Journals (Sweden)

    Tiffany B. Taylor

    2015-07-01

    Full Text Available Bacteria have evolved complex regulatory networks that enable integration of multiple intracellular and extracellular signals to coordinate responses to environmental changes. However, our knowledge of how regulatory systems function and evolve is still relatively limited. There is often extensive homology between components of different networks, due to past cycles of gene duplication, divergence, and horizontal gene transfer, raising the possibility of cross-talk or redundancy. Consequently, evolutionary resilience is built into gene networks – homology between regulators can potentially allow rapid rescue of lost regulatory function across distant regions of the genome. In our recent study [Taylor, et al. Science (2015, 347(6225] we find that mutations that facilitate cross-talk between pathways can contribute to gene network evolution, but that such mutations come with severe pleiotropic costs. Arising from this work are a number of questions surrounding how this phenomenon occurs.

  4. The Evolutionary Vaccination Dilemma in Complex Networks

    CERN Document Server

    Cardillo, Alessio; Naranjo, Fernando; Gómez-Gardeñes, Jesús

    2013-01-01

    In this work we analyze the evolution of voluntary vaccination in networked populations by entangling the spreading dynamics of an influenza-like disease with an evolutionary framework taking place at the end of each influenza season so that individuals take or not the vaccine upon their previous experience. Our framework thus put in competition two well-known dynamical properties of scale-free networks: the fast propagation of diseases and the promotion of cooperative behaviours. Our results show that when vaccine is perfect scale-free networks enhance the vaccination behaviour with respect to random graphs with homogeneous connectivity patterns. However, when imperfection appears we find a cross-over effect so that the number of infected (vaccinated) individuals increases (decreases) with respect to homogeneous networks, thus showing up the competition between the aforementioned properties of scale-free graphs.

  5. Evolutionary computation techniques a comparative perspective

    CERN Document Server

    Cuevas, Erik; Oliva, Diego

    2017-01-01

    This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.

  6. Computer-communication networks

    CERN Document Server

    Meditch, James S

    1983-01-01

    Computer- Communication Networks presents a collection of articles the focus of which is on the field of modeling, analysis, design, and performance optimization. It discusses the problem of modeling the performance of local area networks under file transfer. It addresses the design of multi-hop, mobile-user radio networks. Some of the topics covered in the book are the distributed packet switching queuing network design, some investigations on communication switching techniques in computer networks and the minimum hop flow assignment and routing subject to an average message delay constraint

  7. Hyperswitch Communication Network Computer

    Science.gov (United States)

    Peterson, John C.; Chow, Edward T.; Priel, Moshe; Upchurch, Edwin T.

    1993-01-01

    Hyperswitch Communications Network (HCN) computer is prototype multiple-processor computer being developed. Incorporates improved version of hyperswitch communication network described in "Hyperswitch Network For Hypercube Computer" (NPO-16905). Designed to support high-level software and expansion of itself. HCN computer is message-passing, multiple-instruction/multiple-data computer offering significant advantages over older single-processor and bus-based multiple-processor computers, with respect to price/performance ratio, reliability, availability, and manufacturing. Design of HCN operating-system software provides flexible computing environment accommodating both parallel and distributed processing. Also achieves balance among following competing factors; performance in processing and communications, ease of use, and tolerance of (and recovery from) faults.

  8. Advances of evolutionary computation methods and operators

    CERN Document Server

    Cuevas, Erik; Oliva Navarro, Diego Alberto

    2016-01-01

    The goal of this book is to present advances that discuss alternative Evolutionary Computation (EC) developments and non-conventional operators which have proved to be effective in the solution of several complex problems. The book has been structured so that each chapter can be read independently from the others. The book contains nine chapters with the following themes: 1) Introduction, 2) the Social Spider Optimization (SSO), 3) the States of Matter Search (SMS), 4) the collective animal behavior (CAB) algorithm, 5) the Allostatic Optimization (AO) method, 6) the Locust Search (LS) algorithm, 7) the Adaptive Population with Reduced Evaluations (APRE) method, 8) the multimodal CAB, 9) the constrained SSO method.

  9. Recent advances in swarm intelligence and evolutionary computation

    CERN Document Server

    2015-01-01

    This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference f...

  10. Evolutionary epistemology and dynamical virtual learning networks.

    Science.gov (United States)

    Giani, Umberto

    2004-01-01

    This paper is an attempt to define the main features of a new educational model aimed at satisfying the needs of a rapidly changing society. The evolutionary epistemology paradigm of culture diffusion in human groups could be the conceptual ground for the development of this model. Multidimensionality, multi-disciplinarity, complexity, connectivity, critical thinking, creative thinking, constructivism, flexible learning, contextual learning, are the dimensions that should characterize distance learning models aimed at increasing the epistemological variability of learning communities. Two multimedia educational software, Dynamic Knowledge Networks (DKN) and Dynamic Virtual Learning Networks (DVLN) are described. These two complementary tools instantiate these dimensions, and were tested in almost 150 online courses. Even if the examples are framed in the medical context, the analysis of the shortcomings of the traditional educational systems and the proposed solutions can be applied to the vast majority of the educational contexts.

  11. Exploring phylogenetic hypotheses via Gibbs sampling on evolutionary networks

    Directory of Open Access Journals (Sweden)

    Yun Yu

    2016-11-01

    Full Text Available Abstract Background Phylogenetic networks are leaf-labeled graphs used to model and display complex evolutionary relationships that do not fit a single tree. There are two classes of phylogenetic networks: Data-display networks and evolutionary networks. While data-display networks are very commonly used to explore data, they are not amenable to incorporating probabilistic models of gene and genome evolution. Evolutionary networks, on the other hand, can accommodate such probabilistic models, but they are not commonly used for exploration. Results In this work, we show how to turn evolutionary networks into a tool for statistical exploration of phylogenetic hypotheses via a novel application of Gibbs sampling. We demonstrate the utility of our work on two recently available genomic data sets, one from a group of mosquitos and the other from a group of modern birds. We demonstrate that our method allows the use of evolutionary networks not only for explicit modeling of reticulate evolutionary histories, but also for exploring conflicting treelike hypotheses. We further demonstrate the performance of the method on simulated data sets, where the true evolutionary histories are known. Conclusion We introduce an approach to explore phylogenetic hypotheses over evolutionary phylogenetic networks using Gibbs sampling. The hypotheses could involve reticulate and non-reticulate evolutionary processes simultaneously as we illustrate on mosquito and modern bird genomic data sets.

  12. Evolutionary biosemiotics and multilevel construction networks.

    Science.gov (United States)

    Sharov, Alexei A

    2016-12-01

    In contrast to the traditional relational semiotics, biosemiotics decisively deviates towards dynamical aspects of signs at the evolutionary and developmental time scales. The analysis of sign dynamics requires constructivism (in a broad sense) to explain how new components such as subagents, sensors, effectors, and interpretation networks are produced by developing and evolving organisms. Semiotic networks that include signs, tools, and subagents are multilevel, and this feature supports the plasticity, robustness, and evolvability of organisms. The origin of life is described here as the emergence of simple self-constructing semiotic networks that progressively increased the diversity of their components and relations. Primitive organisms have no capacity to classify and track objects; thus, we need to admit the existence of proto-signs that directly regulate activities of agents without being associated with objects. However, object recognition and handling became possible in eukaryotic species with the development of extensive rewritable epigenetic memory as well as sensorial and effector capacities. Semiotic networks are based on sequential and recursive construction, where each step produces components (i.e., agents, scaffolds, signs, and resources) that are needed for the following steps of construction. Construction is not limited to repair and reproduction of what already exists or is unambiguously encoded, it also includes production of new components and behaviors via learning and evolution. A special case is the emergence of new levels of organization known as metasystem transition . Multilevel semiotic networks reshape the phenotype of organisms by combining a mosaic of features developed via learning and evolution of cooperating and/or conflicting subagents.

  13. Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections

    Directory of Open Access Journals (Sweden)

    Remco Loos

    2009-07-01

    Full Text Available In this paper, we present some results regarding the size complexity of Accepting Networks of Evolutionary Processors with Filtered Connections (ANEPFCs. We show that there are universal ANEPFCs of size 10, by devising a method for simulating 2-Tag Systems. This result significantly improves the known upper bound for the size of universal ANEPFCs which is 18. We also propose a new, computationally and descriptionally efficient simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we describe (informally, due to space limitations how ANEPFCs with 16 nodes can simulate in O(f(n time any nondeterministic Turing machine of time complexity f(n. Thus the known upper bound for the number of nodes in a network simulating an arbitrary Turing machine is decreased from 26 to 16.

  14. Decentralized control of ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-09-01

    Full Text Available Evolutionary Network Control (ENC has been recently introduced to allow the control of any kind of ecological and biological networks, with an arbitrary number of nodes and links, acting from inside and/or outside. To date, ENC has been applied using a centralized approach where an arbitrary number of network nodes and links could be tamed. This approach has shown to be effective in the control of ecological and biological networks. However a decentralized control, where only one node and the correspondent input/output links are controlled, could be more economic from a computational viewpoint, in particular when the network is very large (i.e. big data. In this view, ENC is upgraded here to realize the decentralized control of ecological and biological nets.

  15. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  16. Computer Networks and Globalization

    Directory of Open Access Journals (Sweden)

    J. Magliaro

    2007-07-01

    Full Text Available Communication and information computer networks connect the world in ways that make globalization more natural and inequity more subtle. As educators, we look at these phenomena holistically analyzing them from the realist’s view, thus exploring tensions, (in equity and (injustice, and from the idealist’s view, thus embracing connectivity, convergence and development of a collective consciousness. In an increasingly market- driven world we find examples of openness and human generosity that are based on networks, specifically the Internet. After addressing open movements in publishing, software industry and education, we describe the possibility of a dialectic equilibrium between globalization and indigenousness in view of ecologically designed future smart networks

  17. Computational and evolutionary aspects of language

    Science.gov (United States)

    Nowak, Martin A.; Komarova, Natalia L.; Niyogi, Partha

    2002-06-01

    Language is our legacy. It is the main evolutionary contribution of humans, and perhaps the most interesting trait that has emerged in the past 500 million years. Understanding how darwinian evolution gives rise to human language requires the integration of formal language theory, learning theory and evolutionary dynamics. Formal language theory provides a mathematical description of language and grammar. Learning theory formalizes the task of language acquisition-it can be shown that no procedure can learn an unrestricted set of languages. Universal grammar specifies the restricted set of languages learnable by the human brain. Evolutionary dynamics can be formulated to describe the cultural evolution of language and the biological evolution of universal grammar.

  18. Parallel Evolutionary Peer-to-Peer Networking in Realistic Environments

    Directory of Open Access Journals (Sweden)

    Kei Ohnishi

    2017-01-01

    Full Text Available In the present paper we first conduct simulations of the parallel evolutionary peer-to-peer (P2P networking technique (referred to as P-EP2P that we previously proposed using models of realistic environments to examine if P-EP2P is practical. Environments are here represented by what users have and want in the network, and P-EP2P adapts the P2P network topologies to the present environment in an evolutionary manner. The simulation results show that P-EP2P is hard to adapt the network topologies to some realistic environments. Then, based on the discussions of the results, we propose a strategy for better adaptability of P-EP2P to the realistic environments. The strategy first judges if evolutionary adaptation of the network topologies is likely to occur in the present environment, and if it judges so, it actually tries to achieve evolutionary adaptation of the network topologies. Otherwise, it brings random change to the network topologies. The simulation results indicate that P-EP2P with the proposed strategy can better adapt the network topologies to the realistic environments. The main contribution of the study is to present such a promising way to realize an evolvable network in which the evolution direction is given by users.

  19. Conversion Rate Optimization through Evolutionary Computation

    OpenAIRE

    Miikkulainen, Risto; Iscoe, Neil; Shagrin, Aaron; Cordell, Ron; Nazari, Sam; Schoolland, Cory; Brundage, Myles; Epstein, Jonathan; Dean, Randy; Lamba, Gurmeet

    2017-01-01

    Conversion optimization means designing a web interface so that as many users as possible take a desired action on it, such as register or purchase. Such design is usually done by hand, testing one change at a time through A/B testing, or a limited number of combinations through multivariate testing, making it possible to evaluate only a small fraction of designs in a vast design space. This paper describes Sentient Ascend, an automatic conversion optimization system that uses evolutionary op...

  20. Design of a computation tool for neutron spectrometry and dosimetry through evolutionary neural networks; Diseno de una herramienta de computo para la espectrometria y dosimetria de neutrones por medio de redes neuronales evolutivas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico); Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Av. Ramon Lopez Velarde No. 801, Col. Centro, Zacatecas (Mexico); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, E-28006 Madrid (Spain)], e-mail: morvymmyahoo@com.mx

    2009-10-15

    The neutron dosimetry is one of the most complicated tasks of radiation protection, due to it is a complex technique and highly dependent of neutron energy. One of the first devices used to perform neutron spectrometry is the system known as spectrometric system of Bonner spheres, that continuous being one of spectrometers most commonly used. This system has disadvantages such as: the components weight, the low resolution of spectrum, long and drawn out procedure for the spectra reconstruction, which require an expert user in system management, the need of use a reconstruction code as BUNKIE, SAND, etc., which are based on an iterative reconstruction algorithm and whose greatest inconvenience is that for the spectrum reconstruction, are needed to provide to system and initial spectrum as close as possible to the desired spectrum get. Consequently, researchers have mentioned the need to developed alternative measurement techniques to improve existing monitoring systems for workers. Among these alternative techniques have been reported several reconstruction procedures based on artificial intelligence techniques such as genetic algorithms, artificial neural networks and hybrid systems of evolutionary artificial neural networks using genetic algorithms. However, the use of these techniques in the nuclear science area is not free of problems, so it has been suggested that more research is conducted in such a way as to solve these disadvantages. Because they are emerging technologies, there are no tools for the results analysis, so in this paper we present first the design of a computation tool that allow to analyze the neutron spectra and equivalent doses, obtained through the hybrid technology of neural networks and genetic algorithms. This tool provides an user graphical environment, friendly, intuitive and easy of operate. The speed of program operation is high, executing the analysis in a few seconds, so it may storage and or print the obtained information for

  1. 10th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Lin, Jerry; Wang, Chia-Hung; Jiang, Xin

    2017-01-01

    This book gathers papers presented at the 10th International Conference on Genetic and Evolutionary Computing (ICGEC 2016). The conference was co-sponsored by Springer, Fujian University of Technology in China, the University of Computer Studies in Yangon, University of Miyazaki in Japan, National Kaohsiung University of Applied Sciences in Taiwan, Taiwan Association for Web Intelligence Consortium, and VSB-Technical University of Ostrava, Czech Republic. The ICGEC 2016, which was held from November 7 to 9, 2016 in Fuzhou City, China, was intended as an international forum for researchers and professionals in all areas of genetic and evolutionary computing.

  2. Computing networks from cluster to cloud computing

    CERN Document Server

    Vicat-Blanc, Pascale; Guillier, Romaric; Soudan, Sebastien

    2013-01-01

    "Computing Networks" explores the core of the new distributed computing infrastructures we are using today:  the networking systems of clusters, grids and clouds. It helps network designers and distributed-application developers and users to better understand the technologies, specificities, constraints and benefits of these different infrastructures' communication systems. Cloud Computing will give the possibility for millions of users to process data anytime, anywhere, while being eco-friendly. In order to deliver this emerging traffic in a timely, cost-efficient, energy-efficient, and

  3. Measuring the evolutionary rewiring of biological networks.

    Directory of Open Access Journals (Sweden)

    Chong Shou

    Full Text Available We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies.

  4. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

    Directory of Open Access Journals (Sweden)

    O. G. Monahov

    2014-01-01

    Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

  5. Evolutionary swarm neural network game engine for Capture Go.

    Science.gov (United States)

    Cai, Xindi; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2010-03-01

    Evaluation of the current board position is critical in computer game engines. In sufficiently complex games, such a task is too difficult for a traditional brute force search to accomplish, even when combined with expert knowledge bases. This motivates the investigation of alternatives. This paper investigates the combination of neural networks, particle swarm optimization (PSO), and evolutionary algorithms (EAs) to train a board evaluator from zero knowledge. By enhancing the survivors of an EA with PSO, the hybrid algorithm successfully trains the high-dimensional neural networks to provide an evaluation of the game board through self-play. Experimental results, on the benchmark game of Capture Go, demonstrate that the hybrid algorithm can be more powerful than its individual parts, with the system playing against EA and PSO trained game engines. Also, the winning results of tournaments against a Hill-Climbing trained game engine confirm that the improvement comes from the hybrid algorithm itself. The hybrid game engine is also demonstrated against a hand-coded defensive player and a web player. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Evolutionary Computation Techniques for Predicting Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Amine Marref

    2013-01-01

    Full Text Available Corrosion occurs in many engineering structures such as bridges, pipelines, and refineries and leads to the destruction of materials in a gradual manner and thus shortening their lifespan. It is therefore crucial to assess the structural integrity of engineering structures which are approaching or exceeding their designed lifespan in order to ensure their correct functioning, for example, carrying ability and safety. An understanding of corrosion and an ability to predict corrosion rate of a material in a particular environment plays a vital role in evaluating the residual life of the material. In this paper we investigate the use of genetic programming and genetic algorithms in the derivation of corrosion-rate expressions for steel and zinc. Genetic programming is used to automatically evolve corrosion-rate expressions while a genetic algorithm is used to evolve the parameters of an already engineered corrosion-rate expression. We show that both evolutionary techniques yield corrosion-rate expressions that have good accuracy.

  7. Coevolution of Artificial Agents Using Evolutionary Computation in Bargaining Game

    Directory of Open Access Journals (Sweden)

    Sangwook Lee

    2015-01-01

    Full Text Available Analysis of bargaining game using evolutionary computation is essential issue in the field of game theory. This paper investigates the interaction and coevolutionary process among heterogeneous artificial agents using evolutionary computation (EC in the bargaining game. In particular, the game performance with regard to payoff through the interaction and coevolution of agents is studied. We present three kinds of EC based agents (EC-agent participating in the bargaining game: genetic algorithm (GA, particle swarm optimization (PSO, and differential evolution (DE. The agents’ performance with regard to changing condition is compared. From the simulation results it is found that the PSO-agent is superior to the other agents.

  8. Research on Evolutionary Mechanism of Agile Supply Chain Network via Complex Network Theory

    Directory of Open Access Journals (Sweden)

    Nai-Ru Xu

    2016-01-01

    Full Text Available The paper establishes the evolutionary mechanism model of agile supply chain network by means of complex network theory which can be used to describe the growth process of the agile supply chain network and analyze the complexity of the agile supply chain network. After introducing the process and the suitability of taking complex network theory into supply chain network research, the paper applies complex network theory into the agile supply chain network research, analyzes the complexity of agile supply chain network, presents the evolutionary mechanism of agile supply chain network based on complex network theory, and uses Matlab to simulate degree distribution, average path length, clustering coefficient, and node betweenness. Simulation results show that the evolution result displays the scale-free property. It lays the foundations of further research on agile supply chain network based on complex network theory.

  9. Computing and networking at JINR

    CERN Document Server

    Zaikin, N S; Strizh, T A

    2001-01-01

    This paper describes the computing and networking facilities at the Joint Institute for Nuclear Research. The Joint Institute for Nuclear Research (JINR) is an international intergovernmental organization located in Dubna, a small town on the bank of the Volga river 120 km north from Moscow. At present JINR has 18 Member States. The Institute consists of 7 scientific Laboratories and some subdivisions. JINR has scientific cooperation with such scientific centres as CERN, FNAL, DESY etc. and is equipped with the powerful and fast computation means integrated into the worldwide computer networks. The Laboratory of Information Technologies (LIT) is responsible for Computing and Networking at JINR. (5 refs).

  10. Evolutionary Computation Methods and their applications in Statistics

    Directory of Open Access Journals (Sweden)

    Francesco Battaglia

    2013-05-01

    Full Text Available A brief discussion of the genesis of evolutionary computation methods, their relationship to artificial intelligence, and the contribution of genetics and Darwin’s theory of natural evolution is provided. Then, the main evolutionary computation methods are illustrated: evolution strategies, genetic algorithms, estimation of distribution algorithms, differential evolution, and a brief description of some evolutionary behavior methods such as ant colony and particle swarm optimization. We also discuss the role of the genetic algorithm for multivariate probability distribution random generation, rather than as a function optimizer. Finally, some relevant applications of genetic algorithm to statistical problems are reviewed: selection of variables in regression, time series model building, outlier identification, cluster analysis, design of experiments.

  11. Studying Collective Human Decision Making and Creativity with Evolutionary Computation.

    Science.gov (United States)

    Sayama, Hiroki; Dionne, Shelley D

    2015-01-01

    We report a summary of our interdisciplinary research project "Evolutionary Perspective on Collective Decision Making" that was conducted through close collaboration between computational, organizational, and social scientists at Binghamton University. We redefined collective human decision making and creativity as evolution of ecologies of ideas, where populations of ideas evolve via continual applications of evolutionary operators such as reproduction, recombination, mutation, selection, and migration of ideas, each conducted by participating humans. Based on this evolutionary perspective, we generated hypotheses about collective human decision making, using agent-based computer simulations. The hypotheses were then tested through several experiments with real human subjects. Throughout this project, we utilized evolutionary computation (EC) in non-traditional ways-(1) as a theoretical framework for reinterpreting the dynamics of idea generation and selection, (2) as a computational simulation model of collective human decision-making processes, and (3) as a research tool for collecting high-resolution experimental data on actual collaborative design and decision making from human subjects. We believe our work demonstrates untapped potential of EC for interdisciplinary research involving human and social dynamics.

  12. Interior spatial layout with soft objectives using evolutionary computation

    NARCIS (Netherlands)

    Chatzikonstantinou, I.; Bengisu, E.

    2016-01-01

    This paper presents the design problem of furniture arrangement in a residential interior living space, and addresses it by means of evolutionary computation. Interior arrangement is an important and interesting problem that occurs commonly when designing living spaces. It entails determining the

  13. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    are well-suited for Multiobjective task scheduling on heterogeneous environment. The two Multi-Objective Evolutionary .... A task without any parent is called an entry task and a task without any child is called an exit task. In the Directed Acyclic ..... The Computer Journal 48(3): 300–314. Dongarra J J, Jeannot E, Saule E, Shi ...

  14. Strategy selection in evolutionary game dynamics on group interaction networks.

    Science.gov (United States)

    Tan, Shaolin; Feng, Shasha; Wang, Pei; Chen, Yao

    2014-11-01

    Evolutionary game theory provides an appropriate tool for investigating the competition and diffusion of behavioral traits in biological or social populations. A core challenge in evolutionary game theory is the strategy selection problem: Given two strategies, which one is favored by the population? Recent studies suggest that the answer depends not only on the payoff functions of strategies but also on the interaction structure of the population. Group interactions are one of the fundamental interactive modes within populations. This work aims to investigate the strategy selection problem in evolutionary game dynamics on group interaction networks. In detail, the strategy selection conditions are obtained for some typical networks with group interactions. Furthermore, the obtained conditions are applied to investigate selection between cooperation and defection in populations. The conditions for evolution of cooperation are derived for both the public goods game and volunteer's dilemma game. Numerical experiments validate the above analytical results.

  15. Administration of remote computer networks

    OpenAIRE

    Fjeldbo, Stig Jarle

    2005-01-01

    Master i nettverks- og systemadministrasjon Today's computer networks have gone from typically being a small local area network, to wide area networks, where users and servers are interconnected with each other from all over the world. This development has gradually expanded as bandwidth has become higher and cheaper. But when dealing with the network traffic, bandwidth is only one of the important properties. Delay, jitter and reliability are also important properties for t...

  16. Understanding and designing computer networks

    CERN Document Server

    King, Graham

    1995-01-01

    Understanding and Designing Computer Networks considers the ubiquitous nature of data networks, with particular reference to internetworking and the efficient management of all aspects of networked integrated data systems. In addition it looks at the next phase of networking developments; efficiency and security are covered in the sections dealing with data compression and data encryption; and future examples of network operations, such as network parallelism, are introduced.A comprehensive case study is used throughout the text to apply and illustrate new techniques and concepts as th

  17. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  18. Evolutionary Algorithms For Neural Networks Binary And Real Data Classification

    Directory of Open Access Journals (Sweden)

    Dr. Hanan A.R. Akkar

    2015-08-01

    Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.

  19. Evolutionary optimization of network reconstruction from derivative-variable correlations

    Science.gov (United States)

    Leguia, Marc G.; Andrzejak, Ralph G.; Levnajić, Zoran

    2017-08-01

    Topologies of real-world complex networks are rarely accessible, but can often be reconstructed from experimentally obtained time series via suitable network reconstruction methods. Extending our earlier work on methods based on statistics of derivative-variable correlations, we here present a new method built on integrating an evolutionary optimization algorithm into the derivative-variable correlation method. Results obtained from our modification of the method in general outperform the original results, demonstrating the suitability of evolutionary optimization logic in network reconstruction problems. We show the method’s usefulness in realistic scenarios where the reconstruction precision can be limited by the nature of the time series. We also discuss important limitations coming from various dynamical regimes that time series can belong to.

  20. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  1. Risks in Networked Computer Systems

    OpenAIRE

    Klingsheim, André N.

    2008-01-01

    Networked computer systems yield great value to businesses and governments, but also create risks. The eight papers in this thesis highlight vulnerabilities in computer systems that lead to security and privacy risks. A broad range of systems is discussed in this thesis: Norwegian online banking systems, the Norwegian Automated Teller Machine (ATM) system during the 90's, mobile phones, web applications, and wireless networks. One paper also comments on legal risks to bank cust...

  2. Wireless Computational Networking Architectures

    Science.gov (United States)

    2013-12-01

    2] T. Ho, M. Medard, R. Kotter , D. Karger, M. Effros, J. Shi, and B. Leong, “A Random Linear Network Coding Approach to Multicast,” IEEE...218, January 2008. [10] R. Kotter and F. R. Kschischang, “Coding for Errors and Erasures in Random Network Coding,” IEEE Transactions on...Systems, Johns Hopkins University, Baltimore, Maryland, 2011. 6. B. W. Suter and Z. Yan U.S. Patent Pending 13/949,319 Rank Deficient Decoding

  3. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  4. EVOLUTIONARY MODELING PROBLEMS IN STRUCTURAL SYNTHESIS OF INFORMATION NETWORKS OF AUTOMATED CONTROL SYSTEMS

    Directory of Open Access Journals (Sweden)

    N.R.Yusupbekov

    2014-07-01

    Full Text Available This paper provides a new approach for solving a problem of modeling and structural syntheses of information networks of automated control systems by applying fuzzy sets theory, fuzzy logic and genetic algorithms. The procedure of formalizing structural syntheses of multi-level dispersed information networks of automated control systems is proposed. Also, the paper proposes a conceptual model of evolutionary syntheses based on genetic algorithms, which do not require additional information about the characteristics and features of target function. Modified genetic operators of crossover, mutation and algorithms of evolutionary syntheses of information networks systems are developed. Finally, the results of computational experiments on researching the influence of probability of the use of crossover and mutation operators, method of choosing parental pairs, and the size of initial population on the speed and precision of final results are provided.

  5. Co-evolutionary behaviour selection in adaptive social networks predicts clustered marginalization of minorities

    CERN Document Server

    Schleussner, Carl-Friedrich; Engemann, Denis A; Levermann, Anders

    2015-01-01

    Human behaviour is largely shaped by local social interactions and depends on the structure of connections between individuals in social networks. These two dimensions of behaviour selection are commonly studied in isolation by different disciplines and are often treated as independent processes. To the contrary, empirical findings on spread of behaviour in social networks suggest that local interactions between individuals and network evolution are interdependent. Empirical evidence, however, remains inconclusive as social network studies often suffer from limited sample sizes or are prohibitive on ethical grounds. Here we introduce a co-evolutionary adaptive network model of social behaviour selection that provides insights into generative mechanisms by resolving both these aspects through computer simulations. We considered four complementary models and evaluated them with regard to emulating empirical behaviour dynamics in social networks. For this purpose we modelled the prevalence of smoking and and the...

  6. Study on the evolutionary optimization of the topology of network control systems

    DEFF Research Database (Denmark)

    Zhou, Z.; Chen, B.; Wang, H.

    2010-01-01

    Computer networks have been very popular in enterprise applications. However, optimisation of network designs that allows networks to be used more efficiently in industrial environment and enterprise applications remains an interesting research topic. This article mainly discusses the topology...... optimisation theory and methods of the network control system based on switched Ethernet in an industrial context. Factors that affect the real-time performance of the industrial control network are presented in detail, and optimisation criteria with their internal relations are analysed. After the definition...... control network are considered in the optimisation process. In respect to the evolutionary algorithm design, an improved arena algorithm is proposed for the construction of the non-dominated set of the population. In addition, for the evaluation of individuals, the integrated use of the dominative...

  7. Non-adaptive origins of evolutionary innovations increase network complexity in interacting digital organisms.

    Science.gov (United States)

    Fortuna, Miguel A; Zaman, Luis; Wagner, Andreas; Bascompte, Jordi

    2017-12-05

    The origin of evolutionary innovations is a central problem in evolutionary biology. To what extent such innovations have adaptive or non-adaptive origins is hard to assess in real organisms. This limitation, however, can be overcome using digital organisms, i.e. self-replicating computer programs that mutate, evolve and coevolve within a user-defined computational environment. Here, we quantify the role of the non-adaptive origins of host resistance traits in determining the evolution of ecological interactions among host and parasite digital organisms. We find that host resistance traits arising spontaneously as exaptations increase the complexity of antagonistic host-parasite networks. Specifically, they lead to higher host phenotypic diversification, a larger number of ecological interactions and higher heterogeneity in interaction strengths. Given the potential of network architecture to affect network dynamics, such exaptations may increase the persistence of entire communities. Our in silico approach, therefore, may complement current theoretical advances aimed at disentangling the ecological and evolutionary mechanisms shaping species interaction networks.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'. © 2017 The Author(s).

  8. Network-level architecture and the evolutionary potential of underground metabolism.

    Science.gov (United States)

    Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-08-12

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.

  9. Fast and Deterministic Computation of Fixation Probability in Evolutionary Graphs

    Science.gov (United States)

    2012-11-07

    and Dept. of Electrical Engineering and Computer Science United States Military Academy West Point, NY email: paulo.shakarian@usma.edu Patrick Roos Dept...18) 2006, 188104. [6] M. Broom , C. Hadjichrysanthou, J. Rychtar, B. T. Stadler, Two results on evolutionary processes on general non-directed graphs...Journal of Com- putational and Mathematical Sciences 2 (1). [9] M. Broom , J. Rychtář, An analysis of the fixation probability of a mutant on special

  10. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  11. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  12. An Evolutionary Computation Approach to Examine Functional Brain Plasticity.

    Science.gov (United States)

    Roy, Arnab; Campbell, Colin; Bernier, Rachel A; Hillary, Frank G

    2016-01-01

    One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs) evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair) such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN) and the executive control network (ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in the strength

  13. An evolutionary computation approach to examine functional brain plasticity

    Directory of Open Access Journals (Sweden)

    Arnab eRoy

    2016-04-01

    Full Text Available One common research goal in systems neurosciences is to understand how the functional relationship between a pair of regions of interest (ROIs evolves over time. Examining neural connectivity in this way is well-suited for the study of developmental processes, learning, and even in recovery or treatment designs in response to injury. For most fMRI based studies, the strength of the functional relationship between two ROIs is defined as the correlation between the average signal representing each region. The drawback to this approach is that much information is lost due to averaging heterogeneous voxels, and therefore, the functional relationship between a ROI-pair that evolve at a spatial scale much finer than the ROIs remain undetected. To address this shortcoming, we introduce a novel evolutionary computation (EC based voxel-level procedure to examine functional plasticity between an investigator defined ROI-pair by simultaneously using subject-specific BOLD-fMRI data collected from two sessions seperated by finite duration of time. This data-driven procedure detects a sub-region composed of spatially connected voxels from each ROI (a so-called sub-regional-pair such that the pair shows a significant gain/loss of functional relationship strength across the two time points. The procedure is recursive and iteratively finds all statistically significant sub-regional-pairs within the ROIs. Using this approach, we examine functional plasticity between the default mode network (DMN and the executive control network (ECN during recovery from traumatic brain injury (TBI; the study includes 14 TBI and 12 healthy control subjects. We demonstrate that the EC based procedure is able to detect functional plasticity where a traditional averaging based approach fails. The subject-specific plasticity estimates obtained using the EC-procedure are highly consistent across multiple runs. Group-level analyses using these plasticity estimates showed an increase in

  14. Evolutionary Trends of Developer Coordination: A Network Approach

    OpenAIRE

    Joblin, Mitchell; Apel, Sven; Mauerer, Wolfgang

    2015-01-01

    Software evolution is a fundamental process that transcends the realm of technical artifacts and permeates the entire organizational structure of a software project. By means of a longitudinal empirical study of 18 large open-source projects, we examine and discuss the evolutionary principles that govern the coordination of developers. By applying a network-analytic approach, we found that the implicit and self-organizing structure of developer coordination is ubiquitously described by non-ra...

  15. Large Scale Evolution of Convolutional Neural Networks Using Volunteer Computing

    OpenAIRE

    Desell, Travis

    2017-01-01

    This work presents a new algorithm called evolutionary exploration of augmenting convolutional topologies (EXACT), which is capable of evolving the structure of convolutional neural networks (CNNs). EXACT is in part modeled after the neuroevolution of augmenting topologies (NEAT) algorithm, with notable exceptions to allow it to scale to large scale distributed computing environments and evolve networks with convolutional filters. In addition to multithreaded and MPI versions, EXACT has been ...

  16. A Dynamic Evolutionary Game Model of Modular Production Network

    Directory of Open Access Journals (Sweden)

    Wei He

    2016-01-01

    Full Text Available As a new organization mode of production in the 21st century, modular production network is deemed extensively to be a source of competitiveness for lead firms in manufacturing industries. However, despite the abundant studies on the modular production network, there are very few studies from a dynamic perspective to discuss the conditions on which a modular production network develops. Based on the dynamic evolutionary game theory, this paper constructs a model, which incorporates several main factors influencing the development of modular production network. By calculating the replicator dynamics equations and analyzing the evolutionary stable strategies, this paper discusses the evolution process of cooperation strategies of member enterprises in a modular production network. Furthermore, by using NetLogo software to simulate the model, this paper verifies the effectiveness of the model. From the model, we can find that the final stable equilibrium strategy is related to such factors as the initial cost, the extra payoff, the cooperation willingness of both parties, the cooperation efforts, and the proportion each party can get from the extra payoff. To encourage the cooperation of production integrator and modular supplier, some suggestions are also provided.

  17. Computer Network Security- The Challenges of Securing a Computer Network

    Science.gov (United States)

    Scotti, Vincent, Jr.

    2011-01-01

    This article is intended to give the reader an overall perspective on what it takes to design, implement, enforce and secure a computer network in the federal and corporate world to insure the confidentiality, integrity and availability of information. While we will be giving you an overview of network design and security, this article will concentrate on the technology and human factors of securing a network and the challenges faced by those doing so. It will cover the large number of policies and the limits of technology and physical efforts to enforce such policies.

  18. Comparison of evolutionary computation algorithms for solving bi ...

    Indian Academy of Sciences (India)

    The task scheduling problem in heterogeneous distributed computing systems is a multiobjective optimization problem (MOP). In heterogeneous distributed computing systems (HDCS), there is a possibility of processor and network failures and this affects the applications running on the HDCS. To reduce the impact of ...

  19. Metric clusters in evolutionary games on scale-free networks.

    Science.gov (United States)

    Kleineberg, Kaj-Kolja

    2017-12-01

    The evolution of cooperation in social dilemmas in structured populations has been studied extensively in recent years. Whereas many theoretical studies have found that a heterogeneous network of contacts favors cooperation, the impact of spatial effects in scale-free networks is still not well understood. In addition to being heterogeneous, real contact networks exhibit a high mean local clustering coefficient, which implies the existence of an underlying metric space. Here we show that evolutionary dynamics in scale-free networks self-organize into spatial patterns in the underlying metric space. The resulting metric clusters of cooperators are able to survive in social dilemmas as their spatial organization shields them from surrounding defectors, similar to spatial selection in Euclidean space. We show that under certain conditions these metric clusters are more efficient than the most connected nodes at sustaining cooperation and that heterogeneity does not always favor-but can even hinder-cooperation in social dilemmas.

  20. Evolutionary method for finding communities in bipartite networks

    Science.gov (United States)

    Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2011-06-01

    An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework—detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.

  1. Largest Laplacian eigenvalue predicts the emergence of costly punishment in the evolutionary ultimatum game on networks

    Science.gov (United States)

    Li, Xiang; Cao, Lang

    2009-12-01

    In recent years, there has been a growing interest in studying the role of costly punishment in promoting altruistic behaviors among selfish individuals. Rejections in ultimatum bargaining as a metaphor exemplify costly punishment, where the division of a sum of resources proposed by one side may be rejected by the other side, and both sides get nothing. Under a setting of the network of contacts among players, we find that the largest Laplacian eigenvalue of the network determines the critical division of players’ proposals, below which pure punishers who never accept any offers will emerge as a phase transition in the system. The critical division of offers that predicts the emergence of costly punishment is termed as the selfishness tolerance of a network within evolutionary ultimatum game, and extensive numerical simulations on the data of the science collaboration network, and computer-generated small-world/scale-free networks support the analytical findings.

  2. Statistical physics and computational methods for evolutionary game theory

    CERN Document Server

    Javarone, Marco Alberto

    2018-01-01

    This book presents an introduction to Evolutionary Game Theory (EGT) which is an emerging field in the area of complex systems attracting the attention of researchers from disparate scientific communities. EGT allows one to represent and study several complex phenomena, such as the emergence of cooperation in social systems, the role of conformity in shaping the equilibrium of a population, and the dynamics in biological and ecological systems. Since EGT models belong to the area of complex systems, statistical physics constitutes a fundamental ingredient for investigating their behavior. At the same time, the complexity of some EGT models, such as those realized by means of agent-based methods, often require the implementation of numerical simulations. Therefore, beyond providing an introduction to EGT, this book gives a brief overview of the main statistical physics tools (such as phase transitions and the Ising model) and computational strategies for simulating evolutionary games (such as Monte Carlo algor...

  3. Bioinspired evolutionary algorithm based for improving network coverage in wireless sensor networks.

    Science.gov (United States)

    Abbasi, Mohammadjavad; Bin Abd Latiff, Muhammad Shafie; Chizari, Hassan

    2014-01-01

    Wireless sensor networks (WSNs) include sensor nodes in which each node is able to monitor the physical area and send collected information to the base station for further analysis. The important key of WSNs is detection and coverage of target area which is provided by random deployment. This paper reviews and addresses various area detection and coverage problems in sensor network. This paper organizes many scenarios for applying sensor node movement for improving network coverage based on bioinspired evolutionary algorithm and explains the concern and objective of controlling sensor node coverage. We discuss area coverage and target detection model by evolutionary algorithm.

  4. Multiple von Neumann computers: an evolutionary approach to functional emergence.

    Science.gov (United States)

    Suzuki, H

    1997-01-01

    A novel system composed of multiple von Neumann computers and an appropriate problem environment is proposed and simulated. Each computer has a memory to store the machine instruction program, and when a program is executed, a series of machine codes in the memory is sequentially decoded, leading to register operations in the central processing unit (CPU). By means of these operations, the computer not only can handle its generally used registers but also can read and write the environmental database. Simulation is driven by genetic algorithms (GAs) performed on the population of program memories. Mutation and crossover create program diversity in the memory, and selection facilitates the reproduction of appropriate programs. Through these evolutionary operations, advantageous combinations of machine codes are created and fixed in the population one by one, and the higher function, which enables the computer to calculate an appropriate number from the environment, finally emerges in the program memory. In the latter half of the article, the performance of GAs on this system is studied. Under different sets of parameters, the evolutionary speed, which is determined by the time until the domination of the final program, is examined and the conditions for faster evolution are clarified. At an intermediate mutation rate and at an intermediate population size, crossover helps create novel advantageous sets of machine codes and evidently accelerates optimization by GAs.

  5. Data Logistics in Network Computing

    CERN Multimedia

    CERN. Geneva; Marquina, Miguel Angel

    2005-01-01

    In distributed computing environments, performance is often dominated by the time that it takes to move data over a network. In the case of data-centric applications, or Data Grids, this problem of data movement becomes one of the overriding concerns. This talk describes techniques for improving data movement in Grid environments that we refer to as 'logistics.' We demonstrate that by using storage and cooperative forwarding 'in' the network, we can improve end to end throughput in many cases. Our approach offers clear performance benefits for high-bandwidth, high-latency networks. This talk will introduce the Logistical Session Layer (LSL) and provide experimental results from that system.

  6. Collective network for computer structures

    Energy Technology Data Exchange (ETDEWEB)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  7. 9th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Lin, Jerry; Pan, Jeng-Shyang; Tin, Pyke; Yokota, Mitsuhiro; Genetic and Evolutionary Computing

    2016-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at ICGEC 2015, the 9th International Conference on Genetic and Evolutionary Computing. The conference this year was technically co-sponsored by Ministry of Science and Technology, Myanmar, University of Computer Studies, Yangon, University of Miyazaki in Japan, Kaohsiung University of Applied Science in Taiwan, Fujian University of Technology in China and VSB-Technical University of Ostrava. ICGEC 2015 is held from 26-28, August, 2015 in Yangon, Myanmar. Yangon, the most multiethnic and cosmopolitan city in Myanmar, is the main gateway to the country. Despite being the commercial capital of Myanmar, Yangon is a city engulfed by its rich history and culture, an integration of ancient traditions and spiritual heritage. The stunning SHWEDAGON Pagoda is the center piece of Yangon city, which itself is famous for the best British colonial era architecture. Of particular interest in many shops of Bogyoke Aung San Market,...

  8. Evolutionary analysis and interaction prediction for protein-protein interaction network in geometric space.

    Science.gov (United States)

    Huang, Lei; Liao, Li; Wu, Cathy H

    2017-01-01

    Prediction of protein-protein interaction (PPI) remains a central task in systems biology. With more PPIs identified, forming PPI networks, it has become feasible and also imperative to study PPIs at the network level, such as evolutionary analysis of the networks, for better understanding of PPI networks and for more accurate prediction of pairwise PPIs by leveraging the information gained at the network level. In this work we developed a novel method that enables us to incorporate evolutionary information into geometric space to improve PPI prediction, which in turn can be used to select and evaluate various evolutionary models. The method is tested with cross-validation using human PPI network and yeast PPI network data. The results show that the accuracy of PPI prediction measured by ROC score is increased by up to 14.6%, as compared to a baseline without using evolutionary information. The results also indicate that our modified evolutionary model DANEOsf-combining a gene duplication/neofunctionalization model and scale-free model-has a better fitness and prediction efficacy for these two PPI networks. The improved PPI prediction performance may suggest that our DANEOsf evolutionary model can uncover the underlying evolutionary mechanism for these two PPI networks better than other tested models. Consequently, of particular importance is that our method offers an effective way to select evolutionary models that best capture the underlying evolutionary mechanisms, evaluating the fitness of evolutionary models from the perspective of PPI prediction on real PPI networks.

  9. How altruism works: An evolutionary model of supply networks

    Science.gov (United States)

    Ge, Zehui; Zhang, Zi-Ke; Lü, Linyuan; Zhou, Tao; Xi, Ning

    2012-02-01

    Recently, supply networks have attracted increasing attention from the scientific community. However, it lacks serious consideration of social preference in Supply Chain Management. In this paper, we develop an evolutionary decision-making model to characterize the effects of suppliers' altruism in supply networks, and find that the performances of both suppliers and supply chains are improved by introducing the role of altruism. Furthermore, an interesting and reasonable phenomenon is discovered that the suppliers' and whole network's profits do not change monotonously with suppliers' altruistic preference, η, but reach the best at η=0.6 and η=0.4, respectively. This work may shed some light on the in-depth understanding of the effects of altruism for both research and commercial applications.

  10. 7th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Krömer, Pavel; Snášel, Václav

    2014-01-01

    Genetic and Evolutionary Computing This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at ICGEC 2013, the 7th International Conference on Genetic and Evolutionary Computing. The conference this year was technically co-sponsored by The Waseda University in Japan, Kaohsiung University of Applied Science in Taiwan, and VSB-Technical University of Ostrava. ICGEC 2013 was held in Prague, Czech Republic. Prague is one of the most beautiful cities in the world whose magical atmosphere has been shaped over ten centuries. Places of the greatest tourist interest are on the Royal Route running from the Powder Tower through Celetna Street to Old Town Square, then across Charles Bridge through the Lesser Town up to the Hradcany Castle. One should not miss the Jewish Town, and the National Gallery with its fine collection of Czech Gothic art, collection of old European art, and a beautiful collection of French art. The conference was intended as an international forum for the res...

  11. 8th International Conference on Genetic and Evolutionary Computing

    CERN Document Server

    Yang, Chin-Yu; Lin, Chun-Wei; Pan, Jeng-Shyang; Snasel, Vaclav; Abraham, Ajith

    2015-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at ICGEC 2014, the 8th International Conference on Genetic and Evolutionary Computing. The conference this year was technically co-sponsored by Nanchang Institute of Technology in China, Kaohsiung University of Applied Science in Taiwan, and VSB-Technical University of Ostrava. ICGEC 2014 is held from 18-20 October 2014 in Nanchang, China. Nanchang is one of is the capital of Jiangxi Province in southeastern China, located in the north-central portion of the province. As it is bounded on the west by the Jiuling Mountains, and on the east by Poyang Lake, it is famous for its scenery, rich history and cultural sites. Because of its central location relative to the Yangtze and Pearl River Delta regions, it is a major railroad hub in Southern China. The conference is intended as an international forum for the researchers and professionals in all areas of genetic and evolutionary computing.

  12. Frequency and motivational state: evolutionary simulations suggest an adaptive function for network oscillations

    NARCIS (Netherlands)

    Heerebout, B.T.; Phaf, R.H.; Taatgen, N.A.; van Rijn, H.

    2009-01-01

    Evolutionary simulations of foraging agents, controlled by artificial neural networks, unexpectedly yielded oscillating node activations in the networks. The agents had to navigate a virtual environment to collect food while avoiding predation. Between generations their neural networks were

  13. An Evolutionary Computational Approach to Humanoid Motion Planning

    Directory of Open Access Journals (Sweden)

    Dhammika Suresh Hettiarachchi

    2012-11-01

    Full Text Available The theme of our work is centred on humanoid motion planning and balancing using evolutionary computational techniques. Evolutionary techniques, inspired by the Darwinian evolution of biological systems, make use of the concept of the iterative progress of a population of solutions with the aim of finding an optimally fit solution to a given problem. The problem we address here is that of asymmetric motion generation for humanoids, with the aim of automatically developing a series of motions to resemble certain predefined postures. An acceptable trajectory and stability is of the utmost concern in our work. In developing these motions, we are utilizing genetic algorithms coupled with heuristic knowledge of the problem domain. Unlike other types of robots, humanoids are complex in both construction and operation due to their myriad degrees of freedom and the difficulty of balancing on one or more limbs. The work presented in this paper includes the adopted methodology, experimental setup, results and an analysis of the outcome of a series of evolutionary experiments conducted for generating the said asymmetric motions.

  14. Evolutionary cores of domain co-occurrence networks

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2005-03-01

    Full Text Available Abstract Background The modeling of complex systems, as disparate as the World Wide Web and the cellular metabolism, as networks has recently uncovered a set of generic organizing principles: Most of these systems are scale-free while at the same time modular, resulting in a hierarchical architecture. The structure of the protein domain network, where individual domains correspond to nodes and their co-occurrences in a protein are interpreted as links, also falls into this category, suggesting that domains involved in the maintenance of increasingly developed, multicellular organisms accumulate links. Here, we take the next step by studying link based properties of the protein domain co-occurrence networks of the eukaryotes S. cerevisiae, C. elegans, D. melanogaster, M. musculus and H. sapiens. Results We construct the protein domain co-occurrence networks from the PFAM database and analyze them by applying a k-core decomposition method that isolates the globally central (highly connected domains in the central cores from the locally central (highly connected domains in the peripheral cores protein domains through an iterative peeling process. Furthermore, we compare the subnetworks thus obtained to the physical domain interaction network of S. cerevisiae. We find that the innermost cores of the domain co-occurrence networks gradually grow with increasing degree of evolutionary development in going from single cellular to multicellular eukaryotes. The comparison of the cores across all the organisms under consideration uncovers patterns of domain combinations that are predominately involved in protein functions such as cell-cell contacts and signal transduction. Analyzing a weighted interaction network of PFAM domains of Yeast, we find that domains having only a few partners frequently interact with these, while the converse is true for domains with a multitude of partners. Combining domain co-occurrence and interaction information, we observe

  15. Artificial Intelligence, Evolutionary Computing and Metaheuristics In the Footsteps of Alan Turing

    CERN Document Server

    2013-01-01

    Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation.  Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo sear...

  16. Inference and Evolutionary Analysis of Genome-Scale Regulatory Networks in Large Phylogenies.

    Science.gov (United States)

    Koch, Christopher; Konieczka, Jay; Delorey, Toni; Lyons, Ana; Socha, Amanda; Davis, Kathleen; Knaack, Sara A; Thompson, Dawn; O'Shea, Erin K; Regev, Aviv; Roy, Sushmita

    2017-05-24

    Changes in transcriptional regulatory networks can significantly contribute to species evolution and adaptation. However, identification of genome-scale regulatory networks is an open challenge, especially in non-model organisms. Here, we introduce multi-species regulatory network learning (MRTLE), a computational approach that uses phylogenetic structure, sequence-specific motifs, and transcriptomic data, to infer the regulatory networks in different species. Using simulated data from known networks and transcriptomic data from six divergent yeasts, we demonstrate that MRTLE predicts networks with greater accuracy than existing methods because it incorporates phylogenetic information. We used MRTLE to infer the structure of the transcriptional networks that control the osmotic stress responses of divergent, non-model yeast species and then validated our predictions experimentally. Interrogating these networks reveals that gene duplication promotes network divergence across evolution. Taken together, our approach facilitates study of regulatory network evolutionary dynamics across multiple poorly studied species. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Optimal monitoring of computer networks

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.V.; Flanagan, D.

    1997-08-01

    The authors apply the ideas from optimal design theory to the very specific area of monitoring large computer networks. The behavior of these networks is so complex and uncertain that it is quite natural to use the statistical methods of experimental design which were originated in such areas as biology, behavioral sciences and agriculture, where the random character of phenomena is a crucial component and systems are too complicated to be described by some sophisticated deterministic models. They want to emphasize that only the first steps have been completed, and relatively simple underlying concepts about network functions have been used. Their immediate goal is to initiate studies focused on developing efficient experimental design techniques which can be used by practitioners working with large networks operating and evolving in a random environment.

  18. Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach

    Directory of Open Access Journals (Sweden)

    Ajit Kumar Rout

    2017-10-01

    Full Text Available The paper presents a low complexity recurrent Functional Link Artificial Neural Network for predicting the financial time series data like the stock market indices over a time frame varying from 1 day ahead to 1 month ahead. Although different types of basis functions have been used for low complexity neural networks earlier for stock market prediction, a comparative study is needed to choose the optimal combinations of these for a reasonably accurate forecast. Further several evolutionary learning methods like the Particle Swarm Optimization (PSO and modified version of its new variant (HMRPSO, and the Differential Evolution (DE are adopted here to find the optimal weights for the recurrent computationally efficient functional link neural network (RCEFLANN using a combination of linear and hyperbolic tangent basis functions. The performance of the recurrent computationally efficient FLANN model is compared with that of low complexity neural networks using the Trigonometric, Chebyshev, Laguerre, Legendre, and tangent hyperbolic basis functions in predicting stock prices of Bombay Stock Exchange data and Standard & Poor’s 500 data sets using different evolutionary methods and has been presented in this paper and the results clearly reveal that the recurrent FLANN model trained with the DE outperforms all other FLANN models similarly trained.

  19. Evolutionary Computation for Sensor Planning: The Task Distribution Plan

    Directory of Open Access Journals (Sweden)

    Dunn Enrique

    2003-01-01

    Full Text Available Autonomous sensor planning is a problem of interest to scientists in the fields of computer vision, robotics, and photogrammetry. In automated visual tasks, a sensing planner must make complex and critical decisions involving sensor placement and the sensing task specification. This paper addresses the problem of specifying sensing tasks for a multiple manipulator workcell given an optimal sensor placement configuration. The problem is conceptually divided in two different phases: activity assignment and tour planning. To solve such problems, an optimization methodology based on evolutionary computation is developed. Operational limitations originated from the workcell configuration are considered using specialized heuristics as well as a floating-point representation based on the random keys approach. Experiments and performance results are presented.

  20. Identification of genetic interaction networks via an evolutionary algorithm evolved Bayesian network.

    Science.gov (United States)

    Li, Ruowang; Dudek, Scott M; Kim, Dokyoon; Hall, Molly A; Bradford, Yuki; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; McCarty, Catherine A; Bao, Le; Ritchie, Marylyn D

    2016-01-01

    The future of medicine is moving towards the phase of precision medicine, with the goal to prevent and treat diseases by taking inter-individual variability into account. A large part of the variability lies in our genetic makeup. With the fast paced improvement of high-throughput methods for genome sequencing, a tremendous amount of genetics data have already been generated. The next hurdle for precision medicine is to have sufficient computational tools for analyzing large sets of data. Genome-Wide Association Studies (GWAS) have been the primary method to assess the relationship between single nucleotide polymorphisms (SNPs) and disease traits. While GWAS is sufficient in finding individual SNPs with strong main effects, it does not capture potential interactions among multiple SNPs. In many traits, a large proportion of variation remain unexplained by using main effects alone, leaving the door open for exploring the role of genetic interactions. However, identifying genetic interactions in large-scale genomics data poses a challenge even for modern computing. For this study, we present a new algorithm, Grammatical Evolution Bayesian Network (GEBN) that utilizes Bayesian Networks to identify interactions in the data, and at the same time, uses an evolutionary algorithm to reduce the computational cost associated with network optimization. GEBN excelled in simulation studies where the data contained main effects and interaction effects. We also applied GEBN to a Type 2 diabetes (T2D) dataset obtained from the Marshfield Personalized Medicine Research Project (PMRP). We were able to identify genetic interactions for T2D cases and controls and use information from those interactions to classify T2D samples. We obtained an average testing area under the curve (AUC) of 86.8 %. We also identified several interacting genes such as INADL and LPP that are known to be associated with T2D. Developing the computational tools to explore genetic associations beyond main

  1. Behavior Emergence in Autonomous Robot Control by Means of Evolutionary Neural Networks

    Science.gov (United States)

    Neruda, Roman; Slušný, Stanislav; Vidnerová, Petra

    We study the emergence of intelligent behavior of a simple mobile robot. Robot control system is realized by mechanisms based on neural networks and evolutionary algorithms. The evolutionary algorithm is responsible for the adaptation of a neural network parameters based on the robot's performance in a simulated environment. In experiments, we demonstrate the performance of evolutionary algorithm on selected problems, namely maze exploration and discrimination of walls and cylinders. A comparison of different networks architectures is presented and discussed.

  2. Hybrid evolutionary computing model for mobile agents of wireless Internet multimedia

    Science.gov (United States)

    Hortos, William S.

    2001-03-01

    The ecosystem is used as an evolutionary paradigm of natural laws for the distributed information retrieval via mobile agents to allow the computational load to be added to server nodes of wireless networks, while reducing the traffic on communication links. Based on the Food Web model, a set of computational rules of natural balance form the outer stage to control the evolution of mobile agents providing multimedia services with a wireless Internet protocol WIP. The evolutionary model shows how mobile agents should behave with the WIP, in particular, how mobile agents can cooperate, compete and learn from each other, based on an underlying competition for radio network resources to establish the wireless connections to support the quality of service QoS of user requests. Mobile agents are also allowed to clone themselves, propagate and communicate with other agents. A two-layer model is proposed for agent evolution: the outer layer is based on the law of natural balancing, the inner layer is based on a discrete version of a Kohonen self-organizing feature map SOFM to distribute network resources to meet QoS requirements. The former is embedded in the higher OSI layers of the WIP, while the latter is used in the resource management procedures of Layer 2 and 3 of the protocol. Algorithms for the distributed computation of mobile agent evolutionary behavior are developed by adding a learning state to the agent evolution state diagram. When an agent is in an indeterminate state, it can communicate to other agents. Computing models can be replicated from other agents. Then the agents transitions to the mutating state to wait for a new information-retrieval goal. When a wireless terminal or station lacks a network resource, an agent in the suspending state can change its policy to submit to the environment before it transitions to the searching state. The agents learn the facts of agent state information entered into an external database. In the cloning process, two

  3. Conformity enhances network reciprocity in evolutionary social dilemmas

    CERN Document Server

    Szolnoki, Attila

    2014-01-01

    The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behavior in humans and social animals also compel to conformity on their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favor of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalize...

  4. Comparison of evolutionary algorithms in gene regulatory network model inference.

    LENUS (Irish Health Repository)

    2010-01-01

    ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

  5. Basic emotions and adaptation. A computational and evolutionary model.

    Science.gov (United States)

    Pacella, Daniela; Ponticorvo, Michela; Gigliotta, Onofrio; Miglino, Orazio

    2017-01-01

    The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then switching their behavior

  6. Protein 3D Structure Computed from Evolutionary Sequence Variation

    Science.gov (United States)

    Sheridan, Robert; Hopf, Thomas A.; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing. In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy. We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues., including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7–4.8 Å Cα-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein

  7. Optimization and Assessment of Wavelet Packet Decompositions with Evolutionary Computation

    Directory of Open Access Journals (Sweden)

    Schell Thomas

    2003-01-01

    Full Text Available In image compression, the wavelet transformation is a state-of-the-art component. Recently, wavelet packet decomposition has received quite an interest. A popular approach for wavelet packet decomposition is the near-best-basis algorithm using nonadditive cost functions. In contrast to additive cost functions, the wavelet packet decomposition of the near-best-basis algorithm is only suboptimal. We apply methods from the field of evolutionary computation (EC to test the quality of the near-best-basis results. We observe a phenomenon: the results of the near-best-basis algorithm are inferior in terms of cost-function optimization but are superior in terms of rate/distortion performance compared to EC methods.

  8. Evolutionary Computing Based Area Integration PWM Technique for Multilevel Inverters

    Directory of Open Access Journals (Sweden)

    S. Jeevananthan

    2007-06-01

    Full Text Available The existing multilevel carrier-based pulse width modulation (PWM strategies have no special provisions to offer quality output, besides lower order harmonics are introduced in the spectrum, especially at low switching frequencies. This paper proposes a novel multilevel PWM strategy to corner the advantages of low frequency switching and reduced total harmonic distortion (THD. The basic idea of the proposed area integration PWM (AIPWM method is that the area of the required sinusoidal (fundamental output and the total area of the output pulses are made equal. An attempt is made to incorporate two soft computing techniques namely evolutionary programming (EP and genetic algorithm (GA in the generation and placement of switching pulses. The results of a prototype seven-level cascaded inverter experimented with the novel PWM strategies are presented.

  9. Evolutionary Game-Theoretic Solution for Virtual Routers with Padding Misbehavior in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Xia-an Bi

    2015-01-01

    Full Text Available With the development of cloud computing and virtualization, a physical router can be multiplexed as a large number of virtual routers. TCP-based interactive applications have an incentive to improve their performance by padding “junk packets” into the network among real communication packets. This padding misbehavior will upgrade short TCP flows from “mice” to “elephants” and consequently lead to network congestion and breakdown. This paper presents a detailed solution and analysis for describing the normal behavior and padding misbehavior of virtual routers. In particular, a system model for analyzing behavior of virtual routers is based on evolutionary game model, and, through analyzing the stability of the equilibrium points, the stable point is the solution to the problem. The clear evolutionary path of network applications with the normal behavior and padding misbehavior is analyzed by the corresponding graph. Then this paper gives the behavior control suggestions to effectively restrain the padding misbehavior and maintain stable high-throughputs of the router. The simulation results demonstrate that our solution can effectively restrain the padding misbehavior and maintain stable high-throughputs of the router simultaneously compared with the classical queue management.

  10. A Multilayer Model of Computer Networks

    OpenAIRE

    Shchurov, Andrey A.

    2015-01-01

    The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...

  11. Forecasting of IBOVESPA returns using feedforward evolutionary artificial neural networks

    Directory of Open Access Journals (Sweden)

    Edgar Leite dos Santos Filho

    2011-12-01

    Full Text Available Facing the challenges of anticipating financial market uncertainties and movements, and the necessity of taking buy or sell decisions supported by rational methods, market traders found in statistics and econometrics methods, the base to support their decisions. In several scientific papers about forecasting financial time series, method selection keeps as central concern. This paper compares the performance of evolutionary feedforward artificial neural network (EANN and an AR+GARCH model, for one step ahead forecasting of IBOVESPA returns. The EANN is trained by self-adapting differential evolution algorithm and AR+GARCH model is adjusted to be used as performance reference. The root mean square error (RMSE and U-Theil inequality coefficient were used as performance metrics. Simulation results showed  EANN feedforward achieved better results, fit better and captured the nonlinear behavior of returns.

  12. Personal computer local networks report

    CERN Document Server

    1991-01-01

    Please note this is a Short Discount publication. Since the first microcomputer local networks of the late 1970's and early 80's, personal computer LANs have expanded in popularity, especially since the introduction of IBMs first PC in 1981. The late 1980s has seen a maturing in the industry with only a few vendors maintaining a large share of the market. This report is intended to give the reader a thorough understanding of the technology used to build these systems ... from cable to chips ... to ... protocols to servers. The report also fully defines PC LANs and the marketplace, with in-

  13. Utilizing evolutionary information and gene expression data for estimating gene networks with bayesian network models.

    Science.gov (United States)

    Tamada, Yoshinori; Bannai, Hideo; Imoto, Seiya; Katayama, Toshiaki; Kanehisa, Minoru; Miyano, Satoru

    2005-12-01

    Since microarray gene expression data do not contain sufficient information for estimating accurate gene networks, other biological information has been considered to improve the estimated networks. Recent studies have revealed that highly conserved proteins that exhibit similar expression patterns in different organisms, have almost the same function in each organism. Such conserved proteins are also known to play similar roles in terms of the regulation of genes. Therefore, this evolutionary information can be used to refine regulatory relationships among genes, which are estimated from gene expression data. We propose a statistical method for estimating gene networks from gene expression data by utilizing evolutionarily conserved relationships between genes. Our method simultaneously estimates two gene networks of two distinct organisms, with a Bayesian network model utilizing the evolutionary information so that gene expression data of one organism helps to estimate the gene network of the other. We show the effectiveness of the method through the analysis on Saccharomyces cerevisiae and Homo sapiens cell cycle gene expression data. Our method was successful in estimating gene networks that capture many known relationships as well as several unknown relationships which are likely to be novel. Supplementary information is available at http://bonsai.ims.u-tokyo.ac.jp/~tamada/bayesnet/.

  14. Basic emotions and adaptation. A computational and evolutionary model.

    Directory of Open Access Journals (Sweden)

    Daniela Pacella

    Full Text Available The core principles of the evolutionary theories of emotions declare that affective states represent crucial drives for action selection in the environment and regulated the behavior and adaptation of natural agents in ancestrally recurrent situations. While many different studies used autonomous artificial agents to simulate emotional responses and the way these patterns can affect decision-making, few are the approaches that tried to analyze the evolutionary emergence of affective behaviors directly from the specific adaptive problems posed by the ancestral environment. A model of the evolution of affective behaviors is presented using simulated artificial agents equipped with neural networks and physically inspired on the architecture of the iCub humanoid robot. We use genetic algorithms to train populations of virtual robots across generations, and investigate the spontaneous emergence of basic emotional behaviors in different experimental conditions. In particular, we focus on studying the emotion of fear, therefore the environment explored by the artificial agents can contain stimuli that are safe or dangerous to pick. The simulated task is based on classical conditioning and the agents are asked to learn a strategy to recognize whether the environment is safe or represents a threat to their lives and select the correct action to perform in absence of any visual cues. The simulated agents have special input units in their neural structure whose activation keep track of their actual "sensations" based on the outcome of past behavior. We train five different neural network architectures and then test the best ranked individuals comparing their performances and analyzing the unit activations in each individual's life cycle. We show that the agents, regardless of the presence of recurrent connections, spontaneously evolved the ability to cope with potentially dangerous environment by collecting information about the environment and then

  15. Terminal-oriented computer-communication networks.

    Science.gov (United States)

    Schwartz, M.; Boorstyn, R. R.; Pickholtz, R. L.

    1972-01-01

    Four examples of currently operating computer-communication networks are described in this tutorial paper. They include the TYMNET network, the GE Information Services network, the NASDAQ over-the-counter stock-quotation system, and the Computer Sciences Infonet. These networks all use programmable concentrators for combining a multiplicity of terminals. Included in the discussion for each network is a description of the overall network structure, the handling and transmission of messages, communication requirements, routing and reliability consideration where applicable, operating data and design specifications where available, and unique design features in the area of computer communications.

  16. Conformity enhances network reciprocity in evolutionary social dilemmas.

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2015-02-06

    The pursuit of highest payoffs in evolutionary social dilemmas is risky and sometimes inferior to conformity. Choosing the most common strategy within the interaction range is safer because it ensures that the payoff of an individual will not be much lower than average. Herding instincts and crowd behaviour in humans and social animals also compel to conformity in their own right. Motivated by these facts, we here study the impact of conformity on the evolution of cooperation in social dilemmas. We show that an appropriate fraction of conformists within the population introduces an effective surface tension around cooperative clusters and ensures smooth interfaces between different strategy domains. Payoff-driven players brake the symmetry in favour of cooperation and enable an expansion of clusters past the boundaries imposed by traditional network reciprocity. This mechanism works even under the most testing conditions, and it is robust against variations of the interaction network as long as degree-normalized payoffs are applied. Conformity may thus be beneficial for the resolution of social dilemmas. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Development of X-TOOLSS: Preliminary Design of Space Systems Using Evolutionary Computation

    Science.gov (United States)

    Schnell, Andrew R.; Hull, Patrick V.; Turner, Mike L.; Dozier, Gerry; Alverson, Lauren; Garrett, Aaron; Reneau, Jarred

    2008-01-01

    Evolutionary computational (EC) techniques such as genetic algorithms (GA) have been identified as promising methods to explore the design space of mechanical and electrical systems at the earliest stages of design. In this paper the authors summarize their research in the use of evolutionary computation to develop preliminary designs for various space systems. An evolutionary computational solver developed over the course of the research, X-TOOLSS (Exploration Toolset for the Optimization of Launch and Space Systems) is discussed. With the success of early, low-fidelity example problems, an outline of work involving more computationally complex models is discussed.

  18. Solving multi-objective water management problems using evolutionary computation.

    Science.gov (United States)

    Lewis, A; Randall, M

    2017-12-15

    Water as a resource is becoming increasingly more valuable given the changes in global climate. In an agricultural sense, the role of water is vital to ensuring food security. Therefore the management of it has become a subject of increasing attention and the development of effective tools to support participative decision-making in water management will be a valuable contribution. In this paper, evolutionary computation techniques and Pareto optimisation are incorporated in a model-based system for water management. An illustrative test case modelling optimal crop selection across dry, average and wet years based on data from the Murrumbidgee Irrigation Area in Australia is presented. It is shown that sets of trade-off solutions that provide large net revenues, or minimise environmental flow deficits can be produced rapidly, easily and automatically. The system is capable of providing detailed information on optimal solutions to achieve desired outcomes, responding to a variety of factors including climate conditions and economics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Application of evolutionary computation on ensemble forecast of quantitative precipitation

    Science.gov (United States)

    Dufek, Amanda S.; Augusto, Douglas A.; Dias, Pedro L. S.; Barbosa, Helio J. C.

    2017-09-01

    An evolutionary computation algorithm known as genetic programming (GP) has been explored as an alternative tool for improving the ensemble forecast of 24-h accumulated precipitation. Three GP versions and six ensembles' languages were applied to several real-world datasets over southern, southeastern and central Brazil during the rainy period from October to February of 2008-2013. According to the results, the GP algorithms performed better than two traditional statistical techniques, with errors 27-57% lower than simple ensemble mean and the MASTER super model ensemble system. In addition, the results revealed that GP algorithms outperformed the best individual forecasts, reaching an improvement of 34-42%. On the other hand, the GP algorithms had a similar performance with respect to each other and to the Bayesian model averaging, but the former are far more versatile techniques. Although the results for the six ensembles' languages are almost indistinguishable, our most complex linear language turned out to be the best overall proposal. Moreover, some meteorological attributes, including the weather patterns over Brazil, seem to play an important role in the prediction of daily rainfall amount.

  20. Interlog protein network: an evolutionary benchmark of protein interaction networks for the evaluation of clustering algorithms.

    Science.gov (United States)

    Jafari, Mohieddin; Mirzaie, Mehdi; Sadeghi, Mehdi

    2015-10-05

    In the field of network science, exploring principal and crucial modules or communities is critical in the deduction of relationships and organization of complex networks. This approach expands an arena, and thus allows further study of biological functions in the field of network biology. As the clustering algorithms that are currently employed in finding modules have innate uncertainties, external and internal validations are necessary. Sequence and network structure alignment, has been used to define the Interlog Protein Network (IPN). This network is an evolutionarily conserved network with communal nodes and less false-positive links. In the current study, the IPN is employed as an evolution-based benchmark in the validation of the module finding methods. The clustering results of five algorithms; Markov Clustering (MCL), Restricted Neighborhood Search Clustering (RNSC), Cartographic Representation (CR), Laplacian Dynamics (LD) and Genetic Algorithm; to find communities in Protein-Protein Interaction networks (GAPPI) are assessed by IPN in four distinct Protein-Protein Interaction Networks (PPINs). The MCL shows a more accurate algorithm based on this evolutionary benchmarking approach. Also, the biological relevance of proteins in the IPN modules generated by MCL is compatible with biological standard databases such as Gene Ontology, KEGG and Reactome. In this study, the IPN shows its potential for validation of clustering algorithms due to its biological logic and straightforward implementation.

  1. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  2. Computer Network Defense Through Radial Wave Functions

    OpenAIRE

    Malloy, Ian

    2016-01-01

    The purpose of this research was to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has be...

  3. Computer network and knowledge sharing. Computer network to chishiki kyoyu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, S. (The University of Tokyo, Tokyo (Japan))

    1991-10-20

    The infomation system has changed from the on-line data base as a simple knowledge sharing, used in the times when devices were expensive, to dialogue type approaches as a result of TSS advancement. This paper describes the advantages in and methods of utilizing personal computer communications from the standpoint of a person engaged in chemistry education. The electronic mail has a number of advatages; you can reach a person as immediately as in the telephone but need not to interrupt the receiver primes work, you can get to it more easily than writing a letter. Particularly the electronic signboard has a large living know-how effect that ''someone who happens to know it can answer''. The Japan Chemical Society has opened the ''Square of Chemistry'' in the NIFTY Serve. Although the Society provides information, it is important that the participants make proposals positively and provide topics. Such a network is expanding to a woridwide scale.

  4. Speeding up ecological and evolutionary computations in R; essentials of high performance computing for biologists.

    Science.gov (United States)

    Visser, Marco D; McMahon, Sean M; Merow, Cory; Dixon, Philip M; Record, Sydne; Jongejans, Eelke

    2015-03-01

    Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1-S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research.

  5. Speeding up ecological and evolutionary computations in R; essentials of high performance computing for biologists.

    Directory of Open Access Journals (Sweden)

    Marco D Visser

    2015-03-01

    Full Text Available Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1-S3 Texts that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster. By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research.

  6. An Improved Co-evolutionary Particle Swarm Optimization for Wireless Sensor Networks with Dynamic Deployment

    Directory of Open Access Journals (Sweden)

    Jun-Jie Ma

    2007-03-01

    Full Text Available The effectiveness of wireless sensor networks (WSNs depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO, since this algorithm combines the co-evolutionary particle swarm optimization (CPSO with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.

  7. Mobile Agents in Networking and Distributed Computing

    CERN Document Server

    Cao, Jiannong

    2012-01-01

    The book focuses on mobile agents, which are computer programs that can autonomously migrate between network sites. This text introduces the concepts and principles of mobile agents, provides an overview of mobile agent technology, and focuses on applications in networking and distributed computing.

  8. Automated classification of computer network attacks

    CSIR Research Space (South Africa)

    Van Heerden, R

    2013-11-01

    Full Text Available In this paper we demonstrate how an automated reasoner, HermiT, is used to classify instances of computer network based attacks in conjunction with a network attack ontology. The ontology describes different types of network attacks through classes...

  9. The ecological and evolutionary implications of merging different types of networks

    NARCIS (Netherlands)

    Fontaine, C.; Guimaraes, P.R.; Kefi, S.; Loeuille, N.; Memmott, J.; Van der Putten, W.H.; Van Veen, F.J.F.; Thebault, E.

    2011-01-01

    Interactions among species drive the ecological and evolutionary processes in ecological communities. These interactions are effectively key components of biodiversity. Studies that use a network approach to study the structure and dynamics of communities of interacting species have revealed many

  10. Stochastic noncooperative and cooperative evolutionary game strategies of a population of biological networks under natural selection.

    Science.gov (United States)

    Chen, Bor-Sen; Yeh, Chin-Hsun

    2017-12-01

    We review current static and dynamic evolutionary game strategies of biological networks and discuss the lack of random genetic variations and stochastic environmental disturbances in these models. To include these factors, a population of evolving biological networks is modeled as a nonlinear stochastic biological system with Poisson-driven genetic variations and random environmental fluctuations (stimuli). To gain insight into the evolutionary game theory of stochastic biological networks under natural selection, the phenotypic robustness and network evolvability of noncooperative and cooperative evolutionary game strategies are discussed from a stochastic Nash game perspective. The noncooperative strategy can be transformed into an equivalent multi-objective optimization problem and is shown to display significantly improved network robustness to tolerate genetic variations and buffer environmental disturbances, maintaining phenotypic traits for longer than the cooperative strategy. However, the noncooperative case requires greater effort and more compromises between partly conflicting players. Global linearization is used to simplify the problem of solving nonlinear stochastic evolutionary games. Finally, a simple stochastic evolutionary model of a metabolic pathway is simulated to illustrate the procedure of solving for two evolutionary game strategies and to confirm and compare their respective characteristics in the evolutionary process. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    Directory of Open Access Journals (Sweden)

    Jingjing Ma

    2014-01-01

    Full Text Available Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  12. Function prediction from networks of local evolutionary similarity in protein structure.

    Science.gov (United States)

    Erdin, Serkan; Venner, Eric; Lisewski, Andreas Martin; Lichtarge, Olivier

    2013-01-01

    Annotating protein function with both high accuracy and sensitivity remains a major challenge in structural genomics. One proven computational strategy has been to group a few key functional amino acids into templates and search for these templates in other protein structures, so as to transfer function when a match is found. To this end, we previously developed Evolutionary Trace Annotation (ETA) and showed that diffusing known annotations over a network of template matches on a structural genomic scale improved predictions of function. In order to further increase sensitivity, we now let each protein contribute multiple templates rather than just one, and also let the template size vary. Retrospective benchmarks in 605 Structural Genomics enzymes showed that multiple templates increased sensitivity by up to 14% when combined with single template predictions even as they maintained the accuracy over 91%. Diffusing function globally on networks of single and multiple template matches marginally increased the area under the ROC curve over 0.97, but in a subset of proteins that could not be annotated by ETA, the network approach recovered annotations for the most confident 20-23 of 91 cases with 100% accuracy. We improve the accuracy and sensitivity of predictions by using multiple templates per protein structure when constructing networks of ETA matches and diffusing annotations.

  13. Integrating network awareness in ATLAS distributed computing

    CERN Document Server

    De, K; The ATLAS collaboration; Klimentov, A; Maeno, T; Mckee, S; Nilsson, P; Petrosyan, A; Vukotic, I; Wenaus, T

    2014-01-01

    A crucial contributor to the success of the massively scaled global computing system that delivers the analysis needs of the LHC experiments is the networking infrastructure upon which the system is built. The experiments have been able to exploit excellent high-bandwidth networking in adapting their computing models for the most efficient utilization of resources. New advanced networking technologies now becoming available such as software defined networks hold the potential of further leveraging the network to optimize workflows and dataflows, through proactive control of the network fabric on the part of high level applications such as experiment workload management and data management systems. End to end monitoring of networking and data flow performance further allows applications to adapt based on real time conditions. We will describe efforts underway in ATLAS on integrating network awareness at the application level, particularly in workload management.

  14. Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum.

    Directory of Open Access Journals (Sweden)

    Oliver Ratmann

    2007-11-01

    Full Text Available Gene duplication with subsequent interaction divergence is one of the primary driving forces in the evolution of genetic systems. Yet little is known about the precise mechanisms and the role of duplication divergence in the evolution of protein networks from the prokaryote and eukaryote domains. We developed a novel, model-based approach for Bayesian inference on biological network data that centres on approximate Bayesian computation, or likelihood-free inference. Instead of computing the intractable likelihood of the protein network topology, our method summarizes key features of the network and, based on these, uses a MCMC algorithm to approximate the posterior distribution of the model parameters. This allowed us to reliably fit a flexible mixture model that captures hallmarks of evolution by gene duplication and subfunctionalization to protein interaction network data of Helicobacter pylori and Plasmodium falciparum. The 80% credible intervals for the duplication-divergence component are [0.64, 0.98] for H. pylori and [0.87, 0.99] for P. falciparum. The remaining parameter estimates are not inconsistent with sequence data. An extensive sensitivity analysis showed that incompleteness of PIN data does not largely affect the analysis of models of protein network evolution, and that the degree sequence alone barely captures the evolutionary footprints of protein networks relative to other statistics. Our likelihood-free inference approach enables a fully Bayesian analysis of a complex and highly stochastic system that is otherwise intractable at present. Modelling the evolutionary history of PIN data, it transpires that only the simultaneous analysis of several global aspects of protein networks enables credible and consistent inference to be made from available datasets. Our results indicate that gene duplication has played a larger part in the network evolution of the eukaryote than in the prokaryote, and suggests that single gene

  15. Network Management of the SPLICE Computer Network.

    Science.gov (United States)

    1982-12-01

    and the Lawrence Livermore Nttionl Laboratory Octopus lietwork [Ref. 24]. Additionally, the :oiex Distributed Network Coatrol Systems 200 and 330...Alexander A., litftqiifivl 93 24. University of Calif~cnia Lavr i ce LJ~vermoce Laboratory Letter Wloe Requa): to -aptN -1raq. Ope, maya & Postgraduaate

  16. MAE-FMD: multi-agent evolutionary method for functional module detection in protein-protein interaction networks.

    Science.gov (United States)

    Ji, Jun Zhong; Jiao, Lang; Yang, Cui Cui; Lv, Jia Wei; Zhang, Ai Dong

    2014-09-30

    Studies of functional modules in a Protein-Protein Interaction (PPI) network contribute greatly to the understanding of biological mechanisms. With the development of computing science, computational approaches have played an important role in detecting functional modules. We present a new approach using multi-agent evolution for detection of functional modules in PPI networks. The proposed approach consists of two stages: the solution construction for agents in a population and the evolutionary process of computational agents in a lattice environment, where each agent corresponds to a candidate solution to the detection problem of functional modules in a PPI network. First, the approach utilizes a connection-based encoding scheme to model an agent, and employs a random-walk behavior merged topological characteristics with functional information to construct a solution. Next, it applies several evolutionary operators, i.e., competition, crossover, and mutation, to realize information exchange among agents as well as solution evolution. Systematic experiments have been conducted on three benchmark testing sets of yeast networks. Experimental results show that the approach is more effective compared to several other existing algorithms. The algorithm has the characteristics of outstanding recall, F-measure, sensitivity and accuracy while keeping other competitive performances, so it can be applied to the biological study which requires high accuracy.

  17. Investigation on Evolutionary Computation Techniques of a Nonlinear System

    Directory of Open Access Journals (Sweden)

    Tran Trong Dao

    2011-01-01

    Full Text Available The main aim of this work is to show that such a powerful optimizing tool like evolutionary algorithms (EAs can be in reality used for the simulation and optimization of a nonlinear system. A nonlinear mathematical model is required to describe the dynamic behaviour of batch process; this justifies the use of evolutionary method of the EAs to deal with this process. Four algorithms from the field of artificial intelligent—differential evolution (DE, self-organizing migrating algorithm (SOMA, genetic algorithm (GA, and simulated annealing (SA—are used in this investigation. The results show that EAs are used successfully in the process optimization.

  18. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.

    Science.gov (United States)

    Patra, Tarak K; Meenakshisundaram, Venkatesh; Hung, Jui-Hsiang; Simmons, David S

    2017-02-13

    Machine learning has the potential to dramatically accelerate high-throughput approaches to materials design, as demonstrated by successes in biomolecular design and hard materials design. However, in the search for new soft materials exhibiting properties and performance beyond those previously achieved, machine learning approaches are frequently limited by two shortcomings. First, because they are intrinsically interpolative, they are better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require large pre-existing data sets, which are frequently unavailable and prohibitively expensive to produce. Here we describe a new strategy, the neural-network-biased genetic algorithm (NBGA), for combining genetic algorithms, machine learning, and high-throughput computation or experiment to discover materials with extremal properties in the absence of pre-existing data. Within this strategy, predictions from a progressively constructed artificial neural network are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct simulation or experiment. In effect, this strategy gives the evolutionary algorithm the ability to "learn" and draw inferences from its experience to accelerate the evolutionary process. We test this algorithm against several standard optimization problems and polymer design problems and demonstrate that it matches and typically exceeds the efficiency and reproducibility of standard approaches including a direct-evaluation genetic algorithm and a neural-network-evaluated genetic algorithm. The success of this algorithm in a range of test problems indicates that the NBGA provides a robust strategy for employing informatics-accelerated high-throughput methods to accelerate materials design in the absence of pre-existing data.

  19. Computational network design from functional specifications

    KAUST Repository

    Peng, Chi Han

    2016-07-11

    Connectivity and layout of underlying networks largely determine agent behavior and usage in many environments. For example, transportation networks determine the flow of traffic in a neighborhood, whereas building floorplans determine the flow of people in a workspace. Designing such networks from scratch is challenging as even local network changes can have large global effects. We investigate how to computationally create networks starting from only high-level functional specifications. Such specifications can be in the form of network density, travel time versus network length, traffic type, destination location, etc. We propose an integer programming-based approach that guarantees that the resultant networks are valid by fulfilling all the specified hard constraints and that they score favorably in terms of the objective function. We evaluate our algorithm in two different design settings, street layout and floorplans to demonstrate that diverse networks can emerge purely from high-level functional specifications.

  20. Reliable Interconnection Networks for Parallel Computers

    Science.gov (United States)

    1991-10-01

    AD-A259 498111IIIIIIII il1111 1 111 1 1 1 il i Technical Report 1294 R l a leliable Interconnection Networks for Parallel Computers ELECTE I S .JAN...SUBTITLE S. FUNDING NUMBERS Reliable Interconnection Networks for Parallel Computers N00014-80-C-0622 N00014-85-K-0124 N00014-91-J-1698 6. AUTHOR(S) Larry...are presented. 14. SUBJECT TERMS (key words) IS. NUMBER OF PAGES networks fault tolerance parallel computers 78 reliable routors 16. PRICE CODE

  1. Parallel computing and networking; Heiretsu keisanki to network

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, E.; Tsuru, T. [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T. [Japan Petroleum Exploration Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper describes the trend of parallel computers used in geophysical exploration. Around 1993 was the early days when the parallel computers began to be used for geophysical exploration. Classification of these computers those days was mainly MIMD (multiple instruction stream, multiple data stream), SIMD (single instruction stream, multiple data stream) and the like. Parallel computers were publicized in the 1994 meeting of the Geophysical Exploration Society as a `high precision imaging technology`. Concerning the library of parallel computers, there was a shift to PVM (parallel virtual machine) in 1993 and to MPI (message passing interface) in 1995. In addition, the compiler of FORTRAN90 was released with support implemented for data parallel and vector computers. In 1993, networks used were Ethernet, FDDI, CDDI and HIPPI. In 1995, the OC-3 products under ATM began to propagate. However, ATM remains to be an interoffice high speed network because the ATM service has not spread yet for the public network. 1 ref.

  2. Multiobjective RFID Network Optimization Using Multiobjective Evolutionary and Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2014-01-01

    Full Text Available The development of radio frequency identification (RFID technology generates the most challenging RFID network planning (RNP problem, which needs to be solved in order to operate the large-scale RFID network in an optimal fashion. RNP involves many objectives and constraints and has been proven to be a NP-hard multi-objective problem. The application of evolutionary algorithm (EA and swarm intelligence (SI for solving multiobjective RNP (MORNP has gained significant attention in the literature, but these algorithms always transform multiple objectives into a single objective by weighted coefficient approach. In this paper, we use multiobjective EA and SI algorithms to find all the Pareto optimal solutions and to achieve the optimal planning solutions by simultaneously optimizing four conflicting objectives in MORNP, instead of transforming multiobjective functions into a single objective function. The experiment presents an exhaustive comparison of three successful multiobjective EA and SI, namely, the recently developed multiobjective artificial bee colony algorithm (MOABC, the nondominated sorting genetic algorithm II (NSGA-II, and the multiobjective particle swarm optimization (MOPSO, on MORNP instances of different nature, namely, the two-objective and three-objective MORNP. Simulation results show that MOABC proves to be more superior for planning RFID networks than NSGA-II and MOPSO in terms of optimization accuracy and computation robustness.

  3. Beyond the Hypercube: Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks

    Science.gov (United States)

    Zagorski, Marcin; Burda, Zdzislaw; Waclaw, Bartlomiej

    2016-01-01

    Evolutionary pathways describe trajectories of biological evolution in the space of different variants of organisms (genotypes). The probability of existence and the number of evolutionary pathways that lead from a given genotype to a better-adapted genotype are important measures of accessibility of local fitness optima and the reproducibility of evolution. Both quantities have been studied in simple mathematical models where genotypes are represented as binary sequences of two types of basic units, and the network of permitted mutations between the genotypes is a hypercube graph. However, it is unclear how these results translate to the biologically relevant case in which genotypes are represented by sequences of more than two units, for example four nucleotides (DNA) or 20 amino acids (proteins), and the mutational graph is not the hypercube. Here we investigate accessibility of the best-adapted genotype in the general case of K > 2 units. Using computer generated and experimental fitness landscapes we show that accessibility of the global fitness maximum increases with K and can be much higher than for binary sequences. The increase in accessibility comes from the increase in the number of indirect trajectories exploited by evolution for higher K. As one of the consequences, the fraction of genotypes that are accessible increases by three orders of magnitude when the number of units K increases from 2 to 16 for landscapes of size N ∼ 106 genotypes. This suggests that evolution can follow many different trajectories on such landscapes and the reconstruction of evolutionary pathways from experimental data might be an extremely difficult task. PMID:27935934

  4. Computer networking a top-down approach

    CERN Document Server

    Kurose, James

    2017-01-01

    Unique among computer networking texts, the Seventh Edition of the popular Computer Networking: A Top Down Approach builds on the author’s long tradition of teaching this complex subject through a layered approach in a “top-down manner.” The text works its way from the application layer down toward the physical layer, motivating readers by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for readers interested in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The Seventh Edition has been updated to reflect the most important and exciting recent advances in networking.

  5. Conceptual metaphors in computer networking terminology ...

    African Journals Online (AJOL)

    Lakoff & Johnson, 1980) is used as a basic framework for analysing and explaining the occurrence of metaphor in the terminology used by computer networking professionals in the information technology (IT) industry. An analysis of linguistic ...

  6. Computer Network Equipment for Intrusion Detection Research

    National Research Council Canada - National Science Library

    Ye, Nong

    2000-01-01

    .... To test the process model, the system-level intrusion detection techniques and the working prototype of the intrusion detection system, a set of computer and network equipment has been purchased...

  7. Exploring social influence on evolutionary prisoner’s dilemma games in networks

    Science.gov (United States)

    Zong, Hengshan; Jia, Guozhu; Cheng, Yang

    2015-11-01

    Though numerous studies demonstrate the importance of social influence in deciding individual decision-making process in networks, little has been done to explore its impact on players’ behavioral patterns in evolutionary prisoner’s dilemma games (PDGs). This study investigates how social influenced strategy updating rules may affect the final equilibrium of game dynamics. The results show that weak social influence usually inhibits cooperation, while strong social influence has a mediating effect. The impacts of network structure and the existence of rebels in social influence scenarios are also tested. The paper provides a comprehensive interpretation on social influence effects on evolutionary PDGs in networks.

  8. Computational Complexity of Bosons in Linear Networks

    Science.gov (United States)

    2017-03-01

    AFRL-AFOSR-JP-TR-2017-0020 Computational complexity of bosons in linear networks Andrew White THE UNIVERSITY OF QUEENSLAND Final Report 07/27/2016...DATES COVERED (From - To) 02 Mar 2013 to 01 Mar 2016 4. TITLE AND SUBTITLE Computational complexity of bosons in linear networks 5a.  CONTRACT NUMBER 5b...direct exploration of the effect of partial distinguishability in the complexity class of the resulting sampling distribution. Our demultiplexed source

  9. Evolutionary and Topological Properties of Genes and Community Structures in Human Gene Regulatory Networks.

    Science.gov (United States)

    Szedlak, Anthony; Smith, Nicholas; Liu, Li; Paternostro, Giovanni; Piermarocchi, Carlo

    2016-06-01

    The diverse, specialized genes present in today's lifeforms evolved from a common core of ancient, elementary genes. However, these genes did not evolve individually: gene expression is controlled by a complex network of interactions, and alterations in one gene may drive reciprocal changes in its proteins' binding partners. Like many complex networks, these gene regulatory networks (GRNs) are composed of communities, or clusters of genes with relatively high connectivity. A deep understanding of the relationship between the evolutionary history of single genes and the topological properties of the underlying GRN is integral to evolutionary genetics. Here, we show that the topological properties of an acute myeloid leukemia GRN and a general human GRN are strongly coupled with its genes' evolutionary properties. Slowly evolving ("cold"), old genes tend to interact with each other, as do rapidly evolving ("hot"), young genes. This naturally causes genes to segregate into community structures with relatively homogeneous evolutionary histories. We argue that gene duplication placed old, cold genes and communities at the center of the networks, and young, hot genes and communities at the periphery. We demonstrate this with single-node centrality measures and two new measures of efficiency, the set efficiency and the interset efficiency. We conclude that these methods for studying the relationships between a GRN's community structures and its genes' evolutionary properties provide new perspectives for understanding evolutionary genetics.

  10. Using Evolutionary Computation to Solve the Economic Load Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Samir SAYAH

    2008-06-01

    Full Text Available This paper reports on an evolutionary algorithm based method for solving the economic load dispatch (ELD problem. The objective is to minimize the nonlinear function, which is the total fuel cost of thermal generating units, subject to the usual constraints.The IEEE 30 bus test system was used for testing and validation purposes. The results obtained demonstrate the effectiveness of the proposed method for solving the economic load dispatch problem.

  11. [The history of development of evolutionary methods in St. Petersburg school of computer simulation in biology].

    Science.gov (United States)

    Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F

    2010-01-01

    The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.

  12. Accepting Hybrid Networks of Evolutionary Processors with Special Topologies and Small Communication

    Directory of Open Access Journals (Sweden)

    Jürgen Dassow

    2010-08-01

    Full Text Available Starting from the fact that complete Accepting Hybrid Networks of Evolutionary Processors allow much communication between the nodes and are far from network structures used in practice, we propose in this paper three network topologies that restrict the communication: star networks, ring networks, and grid networks. We show that ring-AHNEPs can simulate 2-tag systems, thus we deduce the existence of a universal ring-AHNEP. For star networks or grid networks, we show a more general result; that is, each recursively enumerable language can be accepted efficiently by a star- or grid-AHNEP. We also present bounds for the size of these star and grid networks. As a consequence we get that each recursively enumerable can be accepted by networks with at most 13 communication channels and by networks where each node communicates with at most three other nodes.

  13. Multi-memetic Mind Evolutionary Computation Algorithm for Loosely Coupled Systems of Desktop Computers

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2015-01-01

    Full Text Available This paper deals with the development and software implementation of the hybrid multi-memetic algorithm for distributed computing systems. The main algorithm is based on the modification of MEC algorithm proposed by the authors. The multi-memetic algorithm utilizes three various local optimization methods. Software implementation was developed using MPI for Python and tested on a grid network made of twenty desktop computers. Performance of the proposed algorithm and its software implementation was investigated using multi-dimensional multi-modal benchmark functions from CEC’14.

  14. Computer Networks and African Studies Centers.

    Science.gov (United States)

    Kuntz, Patricia S.

    The use of electronic communication in the 12 Title VI African Studies Centers is discussed, and the networks available for their use are reviewed. It is argued that the African Studies Centers should be on the cutting edge of contemporary electronic communication and that computer networks should be a fundamental aspect of their programs. An…

  15. A computer network attack taxonomy and ontology

    CSIR Research Space (South Africa)

    Van Heerden, RP

    2012-01-01

    Full Text Available of attacks, means that an attack could be mitigated accordingly. The authors extend a previous, initial taxonomy of computer network attacks which forms the basis of a proposed network attack ontology in this paper. The objective of this ontology...

  16. Virtual Network Computing Testbed for Cybersecurity Research

    Science.gov (United States)

    2015-08-17

    Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 212-346-1012 W911NF-12-1-0393 61504-CS-RIP.2 Final Report a. REPORT 14. ABSTRACT 16...Technology, 2007. [8] Pullen, J. M., 2000. The network workbench : network simulation software for academic investigation of Internet concepts. Comput

  17. EFFICIENCY METRICS COMPUTING IN COMBINED SENSOR NETWORKS

    OpenAIRE

    Luntovskyy, Andriy; Vasyutynskyy, Volodymyr

    2014-01-01

    This paper discusses the computer-aided design of combined networks for offices and building automation systems based on diverse wired and wireless standards. The design requirements for these networks are often contradictive and have to consider performance, energy and cost efficiency together. For usual office communication, quality of service is more important. In the wireless sensor networks, the energy efficiency is a critical requirement to ensure their long life, to reduce maintenance ...

  18. Practical Applications of Evolutionary Computation to Financial Engineering Robust Techniques for Forecasting, Trading and Hedging

    CERN Document Server

    Iba, Hitoshi

    2012-01-01

    “Practical Applications of Evolutionary Computation to Financial Engineering” presents the state of the art techniques in Financial Engineering using recent results in Machine Learning and Evolutionary Computation. This book bridges the gap between academics in computer science and traders and explains the basic ideas of the proposed systems and the financial problems in ways that can be understood by readers without previous knowledge on either of the fields. To cement the ideas discussed in the book, software packages are offered that implement the systems described within. The book is structured so that each chapter can be read independently from the others. Chapters 1 and 2 describe evolutionary computation. The third chapter is an introduction to financial engineering problems for readers who are unfamiliar with this area. The following chapters each deal, in turn, with a different problem in the financial engineering field describing each problem in detail and focusing on solutions based on evolutio...

  19. EVOLVE : a Bridge between Probability, Set Oriented Numerics and Evolutionary Computation

    CERN Document Server

    Tantar, Alexandru-Adrian; Bouvry, Pascal; Moral, Pierre; Legrand, Pierrick; Coello, Carlos; Schütze, Oliver; EVOLVE 2011

    2013-01-01

    The aim of this book is to provide a strong theoretical support for understanding and analyzing the behavior of evolutionary algorithms, as well as for creating a bridge between probability, set-oriented numerics and evolutionary computation. The volume encloses a collection of contributions that were presented at the EVOLVE 2011 international workshop, held in Luxembourg, May 25-27, 2011, coming from invited speakers and also from selected regular submissions. The aim of EVOLVE is to unify the perspectives offered by probability, set oriented numerics and evolutionary computation. EVOLVE focuses on challenging aspects that arise at the passage from theory to new paradigms and practice, elaborating on the foundations of evolutionary algorithms and theory-inspired methods merged with cutting-edge techniques that ensure performance guarantee factors. EVOLVE is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. The chapters enclose challenging theoret...

  20. New advances in spatial network modelling: towards evolutionary algorithms

    NARCIS (Netherlands)

    Reggiani, A; Nijkamp, P.; Sabella, E.

    2001-01-01

    This paper discusses analytical advances in evolutionary methods with a view towards their possible applications in the space-economy. For this purpose, we present a brief overview and illustration of models actually available in the spatial sciences which attempt to map the complex patterns of

  1. Autonomic computing enabled cooperative networked design

    CERN Document Server

    Wodczak, Michal

    2014-01-01

    This book introduces the concept of autonomic computing driven cooperative networked system design from an architectural perspective. As such it leverages and capitalises on the relevant advancements in both the realms of autonomic computing and networking by welding them closely together. In particular, a multi-faceted Autonomic Cooperative System Architectural Model is defined which incorporates the notion of Autonomic Cooperative Behaviour being orchestrated by the Autonomic Cooperative Networking Protocol of a cross-layer nature. The overall proposed solution not only advocates for the inc

  2. Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories.

    Science.gov (United States)

    Guthrie, Violeta Beleva; Allen, Jennifer; Camps, Manel; Karchin, Rachel

    2011-09-01

    Understanding how novel functions evolve (genetic adaptation) is a critical goal of evolutionary biology. Among asexual organisms, genetic adaptation involves multiple mutations that frequently interact in a non-linear fashion (epistasis). Non-linear interactions pose a formidable challenge for the computational prediction of mutation effects. Here we use the recent evolution of β-lactamase under antibiotic selection as a model for genetic adaptation. We build a network of coevolving residues (possible functional interactions), in which nodes are mutant residue positions and links represent two positions found mutated together in the same sequence. Most often these pairs occur in the setting of more complex mutants. Focusing on extended-spectrum resistant sequences, we use network-theoretical tools to identify triple mutant trajectories of likely special significance for adaptation. We extrapolate evolutionary paths (n = 3) that increase resistance and that are longer than the units used to build the network (n = 2). These paths consist of a limited number of residue positions and are enriched for known triple mutant combinations that increase cefotaxime resistance. We find that the pairs of residues used to build the network frequently decrease resistance compared to their corresponding singlets. This is a surprising result, given that their coevolution suggests a selective advantage. Thus, β-lactamase adaptation is highly epistatic. Our method can identify triplets that increase resistance despite the underlying rugged fitness landscape and has the unique ability to make predictions by placing each mutant residue position in its functional context. Our approach requires only sequence information, sufficient genetic diversity, and discrete selective pressures. Thus, it can be used to analyze recent evolutionary events, where coevolution analysis methods that use phylogeny or statistical coupling are not possible. Improving our ability to assess

  3. Spontaneous ad hoc mobile cloud computing network.

    Science.gov (United States)

    Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes

    2014-01-01

    Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  4. Spontaneous Ad Hoc Mobile Cloud Computing Network

    Directory of Open Access Journals (Sweden)

    Raquel Lacuesta

    2014-01-01

    Full Text Available Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.

  5. Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2011-01-01

    Drift analysis is a powerful tool used to bound the optimization time of evolutionary algorithms (EAs). Various previous works apply a drift theorem going back to Hajek in order to show exponential lower bounds on the optimization time of EAs. However, this drift theorem is tedious to read...... involving the complicated theorem can be redone in a much simpler and clearer way. In some cases even improved results may be achieved. Therefore, the simplified theorem is also a didactical contribution to the runtime analysis of EAs....

  6. Toward an alternative evolutionary theory of religion: looking past computational evolutionary psychology to a wider field of possibilities.

    Science.gov (United States)

    Barrett, Nathaniel F

    2010-01-01

    Cognitive science of the last half-century has been dominated by the computational theory of mind and its picture of thought as information processing. Taking this picture for granted, the most prominent evolutionary theories of religion of the last fifteen years have sought to understand human religiosity as the product or by-product of universal information processing mechanisms that were adaptive in our ancestral environment. The rigidity of such explanations is at odds with the highly context-sensitive nature of historical studies of religion, and thus contributes to the apparent tug-of-war between scientific and humanistic perspectives. This essay argues that this antagonism stems in part from a deep flaw of computational theory, namely its notion of information as pre-given and context-free. In contrast, non-computational theories that picture mind as an adaptive, interactive process in which information is jointly constructed by organism and environment offer an alternative approach to an evolutionary understanding of human religiosity, one that is compatible with historical studies and amenable to a wide range of inquiries, including some limited kinds of theological inquiry.

  7. Algorithms and networking for computer games

    CERN Document Server

    Smed, Jouni

    2006-01-01

    Algorithms and Networking for Computer Games is an essential guide to solving the algorithmic and networking problems of modern commercial computer games, written from the perspective of a computer scientist. Combining algorithmic knowledge and game-related problems, the authors discuss all the common difficulties encountered in game programming. The first part of the book tackles algorithmic problems by presenting how they can be solved practically. As well as ""classical"" topics such as random numbers, tournaments and game trees, the authors focus on how to find a path in, create the terrai

  8. Computer methods in electric network analysis

    Energy Technology Data Exchange (ETDEWEB)

    Saver, P.; Hajj, I.; Pai, M.; Trick, T.

    1983-06-01

    The computational algorithms utilized in power system analysis have more than just a minor overlap with those used in electronic circuit computer aided design. This paper describes the computer methods that are common to both areas and highlights the differences in application through brief examples. Recognizing this commonality has stimulated the exchange of useful techniques in both areas and has the potential of fostering new approaches to electric network analysis through the interchange of ideas.

  9. Computer network time synchronization the network time protocol

    CERN Document Server

    Mills, David L

    2006-01-01

    What started with the sundial has, thus far, been refined to a level of precision based on atomic resonance: Time. Our obsession with time is evident in this continued scaling down to nanosecond resolution and beyond. But this obsession is not without warrant. Precision and time synchronization are critical in many applications, such as air traffic control and stock trading, and pose complex and important challenges in modern information networks.Penned by David L. Mills, the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol

  10. Social networks a framework of computational intelligence

    CERN Document Server

    Chen, Shyi-Ming

    2014-01-01

    This volume provides the audience with an updated, in-depth and highly coherent material on the conceptually appealing and practically sound information technology of Computational Intelligence applied to the analysis, synthesis and evaluation of social networks. The volume involves studies devoted to key issues of social networks including community structure detection in networks, online social networks, knowledge growth and evaluation, and diversity of collaboration mechanisms.  The book engages a wealth of methods of Computational Intelligence along with well-known techniques of linear programming, Formal Concept Analysis, machine learning, and agent modeling.  Human-centricity is of paramount relevance and this facet manifests in many ways including personalized semantics, trust metric, and personal knowledge management; just to highlight a few of these aspects. The contributors to this volume report on various essential applications including cyber attacks detection, building enterprise social network...

  11. Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history.

    Science.gov (United States)

    Vacher, Corinne; Piou, Dominique; Desprez-Loustau, Marie-Laure

    2008-03-05

    Compartmentalization and nestedness are common patterns in ecological networks. The aim of this study was to elucidate some of the processes shaping these patterns in a well resolved network of host/pathogen interactions. Based on a long-term (1972-2005) survey of forest health at the regional scale (all French forests; 15 million ha), we uncovered an almost fully connected network of 51 tree taxa and 157 parasitic fungal species. Our analyses revealed that the compartmentalization of the network maps out the ancient evolutionary history of seed plants, but not the ancient evolutionary history of fungal species. The very early divergence of the major fungal phyla may account for this asymmetric influence of past evolutionary history. Unlike compartmentalization, nestedness did not reflect any consistent phylogenetic signal. Instead, it seemed to reflect the ecological features of the current species, such as the relative abundance of tree species and the life-history strategies of fungal pathogens. We discussed how the evolution of host range in fungal species may account for the observed nested patterns. Overall, our analyses emphasized how the current complexity of ecological networks results from the diversification of the species and their interactions over evolutionary times. They confirmed that the current architecture of ecological networks is not only dependent on recent ecological processes.

  12. The evolutionary and ecological consequences of animal social networks: emerging issues.

    Science.gov (United States)

    Kurvers, Ralf H J M; Krause, Jens; Croft, Darren P; Wilson, Alexander D M; Wolf, Max

    2014-06-01

    The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Professional networking using computer-mediated communication.

    Science.gov (United States)

    Washer, Peter

    Traditionally, professionals have networked with others in their field through attending conferences, professional organizations, direct mailing, and via the workplace. Recently, there have been new possibilities to network with other professionals using the internet. This article looks at the possibilities that the internet offers for professional networking, particularly e-mailing lists, newsgroups and membership databases, and compares them against more traditional methods of professional networking. The different types of computer-mediated communication are discussed and their relative merits and disadvantages are examined. The benefits and potential pitfalls of internet professional networking, as it relates to the nursing profession, are examined. Practical advice is offered on how the internet can be used as a means to foster professional networks of academic, clinical or research interests.

  14. Natural computing for vehicular networks

    OpenAIRE

    Toutouh El Alamin, Jamal

    2016-01-01

    La presente tesis aborda el diseño inteligente de soluciones para el despliegue de redes vehiculares ad-hoc (vehicular ad hoc networks, VANETs). Estas son redes de comunicación inalámbrica formada principalmente por vehículos y elementos de infraestructura vial. Las VANETs ofrecen la oportunidad para desarrollar aplicaciones revolucionarias en el ámbito de la seguridad y eficiencia vial. Al ser un dominio tan novedoso, existe una serie de cuestiones abiertas, como el diseño de la infraestruct...

  15. Evolutionary signatures amongst disease genes permit novel methods for gene prioritization and construction of informative gene-based networks.

    Directory of Open Access Journals (Sweden)

    Nolan Priedigkeit

    2015-02-01

    Full Text Available Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC, is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting "disease map" network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks.

  16. Evolutionary and Swarm Computing for the Semantic Web

    NARCIS (Netherlands)

    Guéret, Christophe

    2015-01-01

    The Semantic Web has become a dynamic and enormous network of typed links between data sets stored on different machines. These data sets are machine readable and unambiguously interpretable, thanks to their underlying standard representation languages. The expressiveness and flexibility of the

  17. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  18. Computing chemical organizations in biological networks.

    Science.gov (United States)

    Centler, Florian; Kaleta, Christoph; di Fenizio, Pietro Speroni; Dittrich, Peter

    2008-07-15

    Novel techniques are required to analyze computational models of intracellular processes as they increase steadily in size and complexity. The theory of chemical organizations has recently been introduced as such a technique that links the topology of biochemical reaction network models to their dynamical repertoire. The network is decomposed into algebraically closed and self-maintaining subnetworks called organizations. They form a hierarchy representing all feasible system states including all steady states. We present three algorithms to compute the hierarchy of organizations for network models provided in SBML format. Two of them compute the complete organization hierarchy, while the third one uses heuristics to obtain a subset of all organizations for large models. While the constructive approach computes the hierarchy starting from the smallest organization in a bottom-up fashion, the flux-based approach employs self-maintaining flux distributions to determine organizations. A runtime comparison on 16 different network models of natural systems showed that none of the two exhaustive algorithms is superior in all cases. Studying a 'genome-scale' network model with 762 species and 1193 reactions, we demonstrate how the organization hierarchy helps to uncover the model structure and allows to evaluate the model's quality, for example by detecting components and subsystems of the model whose maintenance is not explained by the model. All data and a Java implementation that plugs into the Systems Biology Workbench is available from http://www.minet.uni-jena.de/csb/prj/ot/tools.

  19. Application of network methods for understanding evolutionary dynamics in discrete habitats.

    Science.gov (United States)

    Greenbaum, Gili; Fefferman, Nina H

    2017-06-01

    In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.

  20. International Symposium on Computing and Network Sustainability

    CERN Document Server

    Akashe, Shyam

    2017-01-01

    The book is compilation of technical papers presented at International Research Symposium on Computing and Network Sustainability (IRSCNS 2016) held in Goa, India on 1st and 2nd July 2016. The areas covered in the book are sustainable computing and security, sustainable systems and technologies, sustainable methodologies and applications, sustainable networks applications and solutions, user-centered services and systems and mobile data management. The novel and recent technologies presented in the book are going to be helpful for researchers and industries in their advanced works.

  1. An evolutionary computational approach for the dynamic Stackelberg competition problems

    Directory of Open Access Journals (Sweden)

    Lorena Arboleda-Castro

    2016-06-01

    Full Text Available Stackelberg competition models are an important family of economical decision problems from game theory, in which the main goal is to find optimal strategies between two competitors taking into account their hierarchy relationship. Although these models have been widely studied in the past, it is important to note that very few works deal with uncertainty scenarios, especially those that vary over time. In this regard, the present research studies this topic and proposes a computational method for solving efficiently dynamic Stackelberg competition models. The computational experiments suggest that the proposed approach is effective for problems of this nature.

  2. Intelligent Financial Portfolio Composition based on Evolutionary Computation Strategies

    CERN Document Server

    Gorgulho, Antonio; Horta, Nuno C G

    2013-01-01

    The management of financial portfolios or funds constitutes a widely known problematic in financial markets which normally requires a rigorous analysis in order to select the most profitable assets. This subject is becoming popular among computer scientists which try to adapt known Intelligent Computation techniques to the market’s domain. This book proposes a potential system based on Genetic Algorithms, which aims to manage a financial portfolio by using technical analysis indicators. The results are promising since the approach clearly outperforms the remaining approaches during the recent market crash.

  3. On computer vision in wireless sensor networks.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Nina M.; Ko, Teresa H.

    2004-09-01

    Wireless sensor networks allow detailed sensing of otherwise unknown and inaccessible environments. While it would be beneficial to include cameras in a wireless sensor network because images are so rich in information, the power cost of transmitting an image across the wireless network can dramatically shorten the lifespan of the sensor nodes. This paper describe a new paradigm for the incorporation of imaging into wireless networks. Rather than focusing on transmitting images across the network, we show how an image can be processed locally for key features using simple detectors. Contrasted with traditional event detection systems that trigger an image capture, this enables a new class of sensors which uses a low power imaging sensor to detect a variety of visual cues. Sharing these features among relevant nodes cues specific actions to better provide information about the environment. We report on various existing techniques developed for traditional computer vision research which can aid in this work.

  4. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Sho Fukuda

    2014-12-01

    Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

  5. Evolutionary Beamforming Optimization for Radio Frequency Charging in Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun

    2017-08-20

    This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority.

  6. Evolutionary Beamforming Optimization for Radio Frequency Charging in Wireless Rechargeable Sensor Networks

    Science.gov (United States)

    Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun

    2017-01-01

    This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ, where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority. PMID:28825648

  7. Computation, cryptography, and network security

    CERN Document Server

    Rassias, Michael

    2015-01-01

    Analysis, assessment, and data management are core competencies for operation research analysts. This volume addresses a number of issues and developed methods for improving those skills. It is an outgrowth of a conference held in April 2013 at the Hellenic Military Academy, and brings together a broad variety of mathematical methods and theories with several applications. It discusses directions and pursuits of scientists that pertain to engineering sciences. It is also presents the theoretical background required for algorithms and techniques applied to a large variety of concrete problems. A number of open questions as well as new future areas are also highlighted.   This book will appeal to operations research analysts, engineers, community decision makers, academics, the military community, practitioners sharing the current “state-of-the-art,” and analysts from coalition partners. Topics covered include Operations Research, Games and Control Theory, Computational Number Theory and Information Securi...

  8. Evolutionary optimization for energy efficient service provisioning in IT and optical network infrastructures.

    Science.gov (United States)

    Anastasopoulos, Markos P; Tzanakaki, Anna; Georgakilas, Konstantinos

    2011-12-12

    This paper focuses on energy efficient service provisioning in integrated IT and optical network infrastructures. A novel evolutionary distributed approach is proposed and compared with ILP based centralized approaches and modeling results quantify similar performance. © 2011 Optical Society of America

  9. Dynamics, morphogenesis and convergence of evolutionary quantum Prisoner's Dilemma games on networks

    Science.gov (United States)

    Yong, Xi

    2016-01-01

    The authors proposed a quantum Prisoner's Dilemma (PD) game as a natural extension of the classic PD game to resolve the dilemma. Here, we establish a new Nash equilibrium principle of the game, propose the notion of convergence and discover the convergence and phase-transition phenomena of the evolutionary games on networks. We investigate the many-body extension of the game or evolutionary games in networks. For homogeneous networks, we show that entanglement guarantees a quick convergence of super cooperation, that there is a phase transition from the convergence of defection to the convergence of super cooperation, and that the threshold for the phase transitions is principally determined by the Nash equilibrium principle of the game, with an accompanying perturbation by the variations of structures of networks. For heterogeneous networks, we show that the equilibrium frequencies of super-cooperators are divergent, that entanglement guarantees emergence of super-cooperation and that there is a phase transition of the emergence with the threshold determined by the Nash equilibrium principle, accompanied by a perturbation by the variations of structures of networks. Our results explore systematically, for the first time, the dynamics, morphogenesis and convergence of evolutionary games in interacting and competing systems. PMID:27118882

  10. Reducing the Computational Cost in Multi-objective Evolutionary Algorithms by Filtering Worthless Individuals

    OpenAIRE

    Pourbahman, Zahra; Hamzeh, Ali

    2014-01-01

    The large number of exact fitness function evaluations makes evolutionary algorithms to have computational cost. In some real-world problems, reducing number of these evaluations is much more valuable even by increasing computational complexity and spending more time. To fulfill this target, we introduce an effective factor, in spite of applied factor in Adaptive Fuzzy Fitness Granulation with Non-dominated Sorting Genetic Algorithm-II, to filter out worthless individuals more precisely. Our ...

  11. Unscented Sampling Techniques For Evolutionary Computation With Applications To Astrodynamic Optimization

    Science.gov (United States)

    2016-09-01

    constrained optimization problems. The second goal is to improve computation times and efficiencies associated with evolutionary algorithms. The last goal is...to both genetic algorithms and evolution strategies to achieve these goals. The results of this research offer a promising new set of modified...computation, parallel processing, un - scented sampling 15. NUMBER OF PAGES 417 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18

  12. Student Motivation in Computer Networking Courses

    Directory of Open Access Journals (Sweden)

    Wen-Jung Hsin

    2007-01-01

    Full Text Available This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  13. Computational Modeling of Complex Protein Activity Networks

    NARCIS (Netherlands)

    Schivo, Stefano; Leijten, Jeroen; Karperien, Marcel; Post, Janine N.; Prignet, Claude

    2017-01-01

    Because of the numerous entities interacting, the complexity of the networks that regulate cell fate makes it impossible to analyze and understand them using the human brain alone. Computational modeling is a powerful method to unravel complex systems. We recently described the development of a

  14. Student Motivation in Computer Networking Courses

    Directory of Open Access Journals (Sweden)

    Wen-Jung Hsin, PhD

    2007-08-01

    Full Text Available This paper introduces several hands-on projects that have been used to motivate students in learning various computer networking concepts. These projects are shown to be very useful and applicable to the learners’ daily tasks and activities such as emailing, Web browsing, and online shopping and banking, and lead to an unexpected byproduct, self-motivation.

  15. Non-harmful insertion of data mimicking computer network attacks

    Energy Technology Data Exchange (ETDEWEB)

    Neil, Joshua Charles; Kent, Alexander; Hash, Jr, Curtis Lee

    2016-06-21

    Non-harmful data mimicking computer network attacks may be inserted in a computer network. Anomalous real network connections may be generated between a plurality of computing systems in the network. Data mimicking an attack may also be generated. The generated data may be transmitted between the plurality of computing systems using the real network connections and measured to determine whether an attack is detected.

  16. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  17. [Renewal of NIHS computer network system].

    Science.gov (United States)

    Segawa, Katsunori; Nakano, Tatsuya; Saito, Yoshiro

    2012-01-01

    Updated version of National Institute of Health Sciences Computer Network System (NIHS-NET) is described. In order to reduce its electric power consumption, the main server system was newly built using the virtual machine technology. The service that each machine provided in the previous network system should be maintained as much as possible. Thus, the individual server was constructed for each service, because a virtual server often show decrement in its performance as compared with a physical server. As a result, though the number of virtual servers was increased and the network communication became complicated among the servers, the conventional service was able to be maintained, and security level was able to be rather improved, along with saving electrical powers. The updated NIHS-NET bears multiple security countermeasures. To maximal use of these measures, awareness for the network security by all users is expected.

  18. Congestion Relief of Contingent Power Network with Evolutionary Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Abhinandan De

    2012-03-01

    Full Text Available This paper presents a differential evolution optimization technique based methodology for congestion management cost optimization of contingent power networks. In Deregulated systems, line congestion apart from causing stability problems can increase the cost of electricity. Restraining line flow to a particular level of congestion is quite imperative from stability as well as economy point of view. Employing Congestion Sensitivity Index proposed in this paper, the algorithm proposed can be adopted for selecting the congested lines in a power networks and then to search for a congestion constrained optimal generation schedule at the cost of a minimum congestion management charge without any load curtailment and installation of FACTS devices. It has been depicted that the methodology on application can provide better operating conditions in terms of improvement of bus voltage and loss profile of the system. The efficiency of the proposed methodology has been tested on an IEEE 30 bus benchmark system and the results look promising.

  19. Exploring the evolutionary path of plant MAPK networks.

    Science.gov (United States)

    Dóczi, Róbert; Okrész, László; Romero, Alfonso E; Paccanaro, Alberto; Bögre, László

    2012-09-01

    The evolutionarily conserved mitogen-activated protein kinase (MAPK) signaling network comprises connected protein kinases arranged in MAPK modules. In this Opinion article, we analyze MAPK signaling components in evolutionarily representative species of the plant lineage and in Naegleria gruberi, a member of an early diverging eukaryotic clade. In Naegleria, there are two closely related MAPK kinases (MKKs) and a single conventional MAPK, whereas in several species of algae, there are two distinct MKKs and multiple MAPKs belonging to different groups. This suggests that the formation of multiple MAPK modules began early during plant evolution. The expansion of MAPK signaling components through gene duplications and the evolution of interaction motifs could have contributed to the highly connected complex MAPK signaling network that we know in Arabidopsis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems

    Science.gov (United States)

    Terrile, Richard J.; Guillaume, Alexandre

    2009-01-01

    Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.

  1. A Study on Standard Competition with Network Effect Based on Evolutionary Game Model

    Science.gov (United States)

    Wang, Ye; Wang, Bingdong; Li, Kangning

    Owing to networks widespread in modern society, standard competition with network effect is now endowed with new connotation. This paper aims to study the impact of network effect on standard competition; it is organized in the mode of "introduction-model setup-equilibrium analysis-conclusion". Starting from a well-structured model of evolutionary game, it is then extended to a dynamic analysis. This article proves both theoretically and empirically that whether or not a standard can lead the market trends depends on the utility it would bring, and the author also discusses some advisable strategies revolving around the two factors of initial position and border break.

  2. Investigating the Multi-memetic Mind Evolutionary Computation Algorithm Efficiency

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov

    2017-01-01

    Full Text Available In solving practically significant problems of global optimization, the objective function is often of high dimensionality and computational complexity and of nontrivial landscape as well. Studies show that often one optimization method is not enough for solving such problems efficiently - hybridization of several optimization methods is necessary.One of the most promising contemporary trends in this field are memetic algorithms (MA, which can be viewed as a combination of the population-based search for a global optimum and the procedures for a local refinement of solutions (memes, provided by a synergy. Since there are relatively few theoretical studies concerning the MA configuration, which is advisable for use to solve the black-box optimization problems, many researchers tend just to adaptive algorithms, which for search select the most efficient methods of local optimization for the certain domains of the search space.The article proposes a multi-memetic modification of a simple SMEC algorithm, using random hyper-heuristics. Presents the software algorithm and memes used (Nelder-Mead method, method of random hyper-sphere surface search, Hooke-Jeeves method. Conducts a comparative study of the efficiency of the proposed algorithm depending on the set and the number of memes. The study has been carried out using Rastrigin, Rosenbrock, and Zakharov multidimensional test functions. Computational experiments have been carried out for all possible combinations of memes and for each meme individually.According to results of study, conducted by the multi-start method, the combinations of memes, comprising the Hooke-Jeeves method, were successful. These results prove a rapid convergence of the method to a local optimum in comparison with other memes, since all methods perform the fixed number of iterations at the most.The analysis of the average number of iterations shows that using the most efficient sets of memes allows us to find the optimal

  3. Evolutionary Analysis of DELLA-Associated Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Miguel A. Blázquez

    2017-04-01

    Full Text Available DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs, whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins, Physcomitrella patens (with GA-independent DELLA proteins and Chlamydomonas reinhardtii (a green alga without DELLA, and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory ‘hubs’ became further consolidated after their recruitment by GA signaling in higher plants.

  4. Evolutionary Events in a Mathematical Sciences Research Collaboration Network

    CERN Document Server

    Brunson, Jason Cory; McInnes, Antonio; Narayan, Monisha; Richardson, Brianna; Franck, Christopher; Ion, Patrick; Laubenbacher, Reinhard

    2012-01-01

    Collaboration is key to scientific research, and increasingly to mathematics. This paper contains a longitudinal investigation of mathematics collaboration and publishing using the proprietary database Mathematical Reviews, maintained by the American Mathematical Society. The database contains publications by several hundred thousand researchers over 25 years. Mathematical scientists became more interconnected, collaborative, and interdisciplinary over this interval, and twice the network experienced dramatic structural shifts. These events are examined and possible external factors are discussed. Smaller subject-specific subnetworks exhibit behavior that provides insight into the aggregate dynamics. The data are available upon request to the Executive Director of the AMS.

  5. Fuzzy logic, neural networks, and soft computing

    Science.gov (United States)

    Zadeh, Lofti A.

    1994-01-01

    The past few years have witnessed a rapid growth of interest in a cluster of modes of modeling and computation which may be described collectively as soft computing. The distinguishing characteristic of soft computing is that its primary aims are to achieve tractability, robustness, low cost, and high MIQ (machine intelligence quotient) through an exploitation of the tolerance for imprecision and uncertainty. Thus, in soft computing what is usually sought is an approximate solution to a precisely formulated problem or, more typically, an approximate solution to an imprecisely formulated problem. A simple case in point is the problem of parking a car. Generally, humans can park a car rather easily because the final position of the car is not specified exactly. If it were specified to within, say, a few millimeters and a fraction of a degree, it would take hours or days of maneuvering and precise measurements of distance and angular position to solve the problem. What this simple example points to is the fact that, in general, high precision carries a high cost. The challenge, then, is to exploit the tolerance for imprecision by devising methods of computation which lead to an acceptable solution at low cost. By its nature, soft computing is much closer to human reasoning than the traditional modes of computation. At this juncture, the major components of soft computing are fuzzy logic (FL), neural network theory (NN), and probabilistic reasoning techniques (PR), including genetic algorithms, chaos theory, and part of learning theory. Increasingly, these techniques are used in combination to achieve significant improvement in performance and adaptability. Among the important application areas for soft computing are control systems, expert systems, data compression techniques, image processing, and decision support systems. It may be argued that it is soft computing, rather than the traditional hard computing, that should be viewed as the foundation for artificial

  6. Spiking network simulation code for petascale computers

    Science.gov (United States)

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  7. Spiking network simulation code for petascale computers.

    Science.gov (United States)

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  8. International Symposium on Complex Computing-Networks

    CERN Document Server

    Sevgi, L; CCN2005; Complex computing networks: Brain-like and wave-oriented electrodynamic algorithms

    2006-01-01

    This book uniquely combines new advances in the electromagnetic and the circuits&systems theory. It integrates both fields regarding computational aspects of common interest. Emphasized subjects are those methods which mimic brain-like and electrodynamic behaviour; among these are cellular neural networks, chaos and chaotic dynamics, attractor-based computation and stream ciphers. The book contains carefully selected contributions from the Symposium CCN2005. Pictures from the bestowal of Honorary Doctorate degrees to Leon O. Chua and Leopold B. Felsen are included.

  9. Fast computation of minimum hybridization networks.

    Science.gov (United States)

    Albrecht, Benjamin; Scornavacca, Celine; Cenci, Alberto; Huson, Daniel H

    2012-01-15

    Hybridization events in evolution may lead to incongruent gene trees. One approach to determining possible interspecific hybridization events is to compute a hybridization network that attempts to reconcile incongruent gene trees using a minimum number of hybridization events. We describe how to compute a representative set of minimum hybridization networks for two given bifurcating input trees, using a parallel algorithm and provide a user-friendly implementation. A simulation study suggests that our program performs significantly better than existing software on biologically relevant data. Finally, we demonstrate the application of such methods in the context of the evolution of the Aegilops/Triticum genera. The algorithm is implemented in the program Dendroscope 3, which is freely available from www.dendroscope.org and runs on all three major operating systems.

  10. Integrating Wireless Sensor Networks with Computational Grids

    Science.gov (United States)

    Preve, Nikolaos

    Wireless sensor networks (WSNs) have been greatly developed and emerged their significance in a wide range of important applications such as ac quisition and process in formation from the physical world. The evolvement of Grid computing has been based on coordination of distributed and shared re sources. A Sensor Grid network can integrate these two leading technologies enabling real-time sensor data collection, the sharing of computational and stor age grid resources for sensor data processing and management. Several issues have occurred from this integration which dispute the modern design of sensor grids. In order to address these issues, in this paper we propose a sensor grid ar chitecture supporting it by a testbed which focuses on the design issues and on the improvement of our sensor grid architecture design.

  11. Human Inspired Self-developmental Model of Neural Network (HIM): Introducing Content/Form Computing

    Science.gov (United States)

    Krajíček, Jiří

    This paper presents cross-disciplinary research between medical/psychological evidence on human abilities and informatics needs to update current models in computer science to support alternative methods for computation and communication. In [10] we have already proposed hypothesis introducing concept of human information model (HIM) as cooperative system. Here we continue on HIM design in detail. In our design, first we introduce Content/Form computing system which is new principle of present methods in evolutionary computing (genetic algorithms, genetic programming). Then we apply this system on HIM (type of artificial neural network) model as basic network self-developmental paradigm. Main inspiration of our natural/human design comes from well known concept of artificial neural networks, medical/psychological evidence and Sheldrake theory of "Nature as Alive" [22].

  12. Evolutionary Neural Gas (ENG): A Model of Self Organizing Network from Input Categorization

    CERN Document Server

    Licata, Ignazio

    2010-01-01

    Despite their claimed biological plausibility, most self organizing networks have strict topological constraints and consequently they cannot take into account a wide range of external stimuli. Furthermore their evolution is conditioned by deterministic laws which often are not correlated with the structural parameters and the global status of the network, as it should happen in a real biological system. In nature the environmental inputs are noise affected and fuzzy. Which thing sets the problem to investigate the possibility of emergent behaviour in a not strictly constrained net and subjected to different inputs. It is here presented a new model of Evolutionary Neural Gas (ENG) with any topological constraints, trained by probabilistic laws depending on the local distortion errors and the network dimension. The network is considered as a population of nodes that coexist in an ecosystem sharing local and global resources. Those particular features allow the network to quickly adapt to the environment, accor...

  13. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  14. The research of computer network security and protection strategy

    Science.gov (United States)

    He, Jian

    2017-05-01

    With the widespread popularity of computer network applications, its security is also received a high degree of attention. Factors affecting the safety of network is complex, for to do a good job of network security is a systematic work, has the high challenge. For safety and reliability problems of computer network system, this paper combined with practical work experience, from the threat of network security, security technology, network some Suggestions and measures for the system design principle, in order to make the masses of users in computer networks to enhance safety awareness and master certain network security technology.

  15. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    Science.gov (United States)

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.

  16. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    Science.gov (United States)

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-11-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

  17. Evolutionary conservation and network structure characterize genes of phenotypic relevance for mitosis in human.

    Directory of Open Access Journals (Sweden)

    Marek Ostaszewski

    Full Text Available The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.

  18. Controller Design of DFIG Based Wind Turbine by Using Evolutionary Soft Computational Techniques

    Directory of Open Access Journals (Sweden)

    O. P. Bharti

    2017-06-01

    Full Text Available This manuscript illustrates the controller design for a doubly fed induction generator based variable speed wind turbine by using a bioinspired scheme. This methodology is based on exploiting two proficient swarm intelligence based evolutionary soft computational procedures. The particle swarm optimization (PSO and bacterial foraging optimization (BFO techniques are employed to design the controller intended for small damping plant of the DFIG. Wind energy overview and DFIG operating principle along with the equivalent circuit model is adequately discussed in this paper. The controller design for DFIG based WECS using PSO and BFO are described comparatively in detail. The responses of the DFIG system regarding terminal voltage, current, active-reactive power, and DC-Link voltage have slightly improved with the evolutionary soft computational procedure. Lastly, the obtained output is equated with a standard technique for performance improvement of DFIG based wind energy conversion system.

  19. Power optimization of wind turbines with data mining and evolutionary computation

    Energy Technology Data Exchange (ETDEWEB)

    Kusiak, Andrew; Zheng, Haiyang; Song, Zhe [Department of Mechanical and Industrial Engineering, The University of Iowa, 3131 Seamans Center, Iowa City, IA 52242-1527 (United States)

    2010-03-15

    A data-driven approach for maximization of the power produced by wind turbines is presented. The power optimization objective is accomplished by computing optimal control settings of wind turbines using data mining and evolutionary strategy algorithms. Data mining algorithms identify a functional mapping between the power output and controllable and non-controllable variables of a wind turbine. An evolutionary strategy algorithm is applied to determine control settings maximizing the power output of a turbine based on the identified model. Computational studies have demonstrated meaningful opportunities to improve the turbine power output by optimizing blade pitch and yaw angle. It is shown that the pitch angle is an important variable in maximizing energy captured from the wind. Power output can be increased by optimization of the pitch angle. The concepts proposed in this paper are illustrated with industrial wind farm data. (author)

  20. Effective seeding strategy in evolutionary prisoner's dilemma games on online social networks

    Science.gov (United States)

    Xu, Bo; Shi, Huibin; Wang, Jianwei; Huang, Yun

    2015-04-01

    This paper explores effective seeding strategies in prisoner's dilemma game (PDG) on online social networks, i.e. the optimal strategy to obtain global cooperation with minimum cost. Three distinct seeding strategies are compared by performing computer simulations on real online social network datasets. Our finding suggests that degree centrality seeding outperforms other strategies regardless of the initial payoff setting or network size. Celebrities of online social networks play key roles in preserving cooperation.

  1. Using satellite communications for a mobile computer network

    Science.gov (United States)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  2. Analysis of Computer Network Information Based on "Big Data"

    Science.gov (United States)

    Li, Tianli

    2017-11-01

    With the development of the current era, computer network and large data gradually become part of the people's life, people use the computer to provide convenience for their own life, but at the same time there are many network information problems has to pay attention. This paper analyzes the information security of computer network based on "big data" analysis, and puts forward some solutions.

  3. Design and implementation of a local computer network

    Energy Technology Data Exchange (ETDEWEB)

    Fortune, P. J.; Lidinsky, W. P.; Zelle, B. R.

    1977-01-01

    An intralaboratory computer communications network was designed and is being implemented at Argonne National Laboratory. Parameters which were considered to be important in the network design are discussed; and the network, including its hardware and software components, is described. A discussion of the relationship between computer networks and distributed processing systems is also presented. The problems which the network is designed to solve and the consequent network structure represent considerations which are of general interest. 5 figures.

  4. International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems

    CERN Document Server

    Bhaskar, M; Panigrahi, Bijaya; Das, Swagatam

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems (ICAIECES -2015) held at Velammal Engineering College (VEC), Chennai, India during 22 – 23 April 2015. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academic and industry present their original work and exchange ideas, information, techniques and applications in the field of Communication, Computing and Power Technologies.

  5. Discovering Unique, Low-Energy Transition States Using Evolutionary Molecular Memetic Computing

    DEFF Research Database (Denmark)

    Ellabaan, Mostafa M Hashim; Ong, Y.S.; Handoko, S.D.

    2013-01-01

    be accurately identified through the transition states. Transition states describe the paths of molecular systems in transiting across stable states. In this article, we present the discovery of unique, low-energy transition states and showcase the efficacy of their identification using the memetic computing...... paradigm under a Molecular Memetic Computing (MMC) framework. In essence, the MMC is equipped with the tree-based representation of non-cyclic molecules and the covalent-bond-driven evolutionary operators, in addition to the typical backbone of memetic algorithms. Herein, we employ genetic algorithm...

  6. Evolutionary computation for the design of a stochastic switch for synthetic genetic circuits.

    Science.gov (United States)

    Hallinan, Jennifer S; Misirli, Goksel; Wipat, Anil

    2010-01-01

    Biological systems are inherently stochastic, a fact which is often ignored when simulating genetic circuits. Synthetic biology aims to design genetic circuits de novo, and cannot therefore afford to ignore the effects of stochastic behavior. Since computational design tools will be essential for large-scale synthetic biology, it is important to develop an understanding of the role of stochasticity in molecular biology, and incorporate this understanding into computational tools for genetic circuit design. We report upon an investigation into the combination of evolutionary algorithms and stochastic simulation for genetic circuit design, to design regulatory systems based on the Bacillus subtilis sin operon.

  7. International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems

    CERN Document Server

    Vijayakumar, K; Panigrahi, Bijaya; Das, Swagatam

    2017-01-01

    The volume is a collection of high-quality peer-reviewed research papers presented in the International Conference on Artificial Intelligence and Evolutionary Computation in Engineering Systems (ICAIECES 2016) held at SRM University, Chennai, Tamilnadu, India. This conference is an international forum for industry professionals and researchers to deliberate and state their research findings, discuss the latest advancements and explore the future directions in the emerging areas of engineering and technology. The book presents original work and novel ideas, information, techniques and applications in the field of communication, computing and power technologies.

  8. Optimizing the configuration of magnetic confinement devices with evolutionary algorithms and grid computing

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Iglesias, A.; Vega-Rodriguez, M. A.; Castejon Mangana, C.; Rubio del Solar, M.; Cardenas Montes, M.

    2007-07-01

    In this paper we present a proposal for enhancing the configuration of a stellarator device in order to improve the performance of these fusion magnetic devices. To achieve this goal, we propose the use of grid computing with genetic and evolutionary algorithms. Grid computing allows performing many experiments in parallel way. Genetic algorithms allow avoiding for exploring the whole solution space because the number of parameters involved in the configuration of these devices and the number of combinations between these values make impossible to explore all the possibilities. (Author)

  9. Comprehensive Weighted Clique Degree Ranking Algorithms and Evolutionary Model of Complex Network

    Directory of Open Access Journals (Sweden)

    Xu Jie

    2016-01-01

    Full Text Available This paper analyses the degree ranking (DR algorithm, and proposes a new comprehensive weighted clique degree ranking (CWCDR algorithms for ranking importance of nodes in complex network. Simulation results show that CWCDR algorithms not only can overcome the limitation of degree ranking algorithm, but also can find important nodes in complex networks more precisely and effectively. To the shortage of small-world model and BA model, this paper proposes an evolutionary model of complex network based on CWCDR algorithms, named CWCDR model. Simulation results show that the CWCDR model accords with power-law distribution. And compare with the BA model, this model has better average shortest path length, and clustering coefficient. Therefore, the CWCDR model is more consistent with the real network.

  10. Evolutionary neural networks: a new alternative for neutron spectrometry; Redes neuronales evolutivas: una nueva alternativa para la espectrometria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J. M. [Departamento de Electrotecnia y Electronica, Escuela Politecnica Superior, Av. Menendez Pidal s/n, 14004 Cordoba (Spain); Martinez B, M. R.; Vega C, H. R. [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Galleo, E. [Departamento de Ingenieria Nuclear, Universidad Politecnica de Madrid, Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], e-mail: morvymm@yahoo.com.mx

    2009-10-15

    A device used to perform neutron spectroscopy is the system known as a system of Bonner spheres spectrometer, this system has some disadvantages, one of these is the need for reconstruction using a code that is based on an iterative reconstruction algorithm, whose greater inconvenience is the need for a initial spectrum, as close as possible to the spectrum that is desired to avoid this inconvenience has been reported several procedures in reconstruction, combined with various types of experimental methods, based on artificial intelligence technology how genetic algorithms, artificial neural networks and hybrid systems evolved artificial neural networks using genetic algorithms. This paper analyzes the intersection of neural networks and evolutionary algorithms applied in the neutron spectroscopy and dosimetry. Due to this is an emerging technology, there are not tools for doing analysis of the obtained results, by what this paper presents a computing tool to analyze the neutron spectra and the equivalent doses obtained through the hybrid technology of neural networks and genetic algorithms. The toolmaker offers a user graphical environment, friendly and easy to operate. (author)

  11. Computational capabilities of graph neural networks.

    Science.gov (United States)

    Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele

    2009-01-01

    In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.

  12. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  13. Computer network security and cyber ethics

    CERN Document Server

    Kizza, Joseph Migga

    2014-01-01

    In its 4th edition, this book remains focused on increasing public awareness of the nature and motives of cyber vandalism and cybercriminals, the weaknesses inherent in cyberspace infrastructure, and the means available to protect ourselves and our society. This new edition aims to integrate security education and awareness with discussions of morality and ethics. The reader will gain an understanding of how the security of information in general and of computer networks in particular, on which our national critical infrastructure and, indeed, our lives depend, is based squarely on the individ

  14. Some queuing network models of computer systems

    Science.gov (United States)

    Herndon, E. S.

    1980-01-01

    Queuing network models of a computer system operating with a single workload type are presented. Program algorithms are adapted for use on the Texas Instruments SR-52 programmable calculator. By slightly altering the algorithm to process the G and H matrices row by row instead of column by column, six devices and an unlimited job/terminal population could be handled on the SR-52. Techniques are also introduced for handling a simple load dependent server and for studying interactive systems with fixed multiprogramming limits.

  15. WEB BASED LEARNING OF COMPUTER NETWORK COURSE

    Directory of Open Access Journals (Sweden)

    Hakan KAPTAN

    2004-04-01

    Full Text Available As a result of developing on Internet and computer fields, web based education becomes one of the area that many improving and research studies are done. In this study, web based education materials have been explained for multimedia animation and simulation aided Computer Networks course in Technical Education Faculties. Course content is formed by use of university course books, web based education materials and technology web pages of companies. Course content is formed by texts, pictures and figures to increase motivation of students and facilities of learning some topics are supported by animations. Furthermore to help working principles of routing algorithms and congestion control algorithms simulators are constructed in order to interactive learning

  16. Genomicus 2018: karyotype evolutionary trees and on-the-fly synteny computing.

    Science.gov (United States)

    Nguyen, Nga Thi Thuy; Vincens, Pierre; Roest Crollius, Hugues; Louis, Alexandra

    2018-01-04

    Since 2010, the Genomicus web server is available online at http://genomicus.biologie.ens.fr/genomicus. This graphical browser provides access to comparative genomic analyses in four different phyla (Vertebrate, Plants, Fungi, and non vertebrate Metazoans). Users can analyse genomic information from extant species, as well as ancestral gene content and gene order for vertebrates and flowering plants, in an integrated evolutionary context. New analyses and visualization tools have recently been implemented in Genomicus Vertebrate. Karyotype structures from several genomes can now be compared along an evolutionary pathway (Multi-KaryotypeView), and synteny blocks can be computed and visualized between any two genomes (PhylDiagView). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Artificial intelligence in peer review: How can evolutionary computation support journal editors?

    Science.gov (United States)

    Mrowinski, Maciej J; Fronczak, Piotr; Fronczak, Agata; Ausloos, Marcel; Nedic, Olgica

    2017-01-01

    With the volume of manuscripts submitted for publication growing every year, the deficiencies of peer review (e.g. long review times) are becoming more apparent. Editorial strategies, sets of guidelines designed to speed up the process and reduce editors' workloads, are treated as trade secrets by publishing houses and are not shared publicly. To improve the effectiveness of their strategies, editors in small publishing groups are faced with undertaking an iterative trial-and-error approach. We show that Cartesian Genetic Programming, a nature-inspired evolutionary algorithm, can dramatically improve editorial strategies. The artificially evolved strategy reduced the duration of the peer review process by 30%, without increasing the pool of reviewers (in comparison to a typical human-developed strategy). Evolutionary computation has typically been used in technological processes or biological ecosystems. Our results demonstrate that genetic programs can improve real-world social systems that are usually much harder to understand and control than physical systems.

  18. Social structure modulates the evolutionary consequences of social plasticity: A social network perspective on interacting phenotypes.

    Science.gov (United States)

    Montiglio, Pierre-Olivier; McGlothlin, Joel W; Farine, Damien R

    2018-02-01

    Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.

  19. Self-organization of nodes in mobile ad hoc networks using evolutionary games and genetic algorithms

    Directory of Open Access Journals (Sweden)

    Janusz Kusyk

    2011-07-01

    Full Text Available In this paper, we present a distributed and scalable evolutionary game played by autonomous mobile ad hoc network (MANET nodes to place themselves uniformly over a dynamically changing environment without a centralized controller. A node spreading evolutionary game, called NSEG, runs at each mobile node, autonomously makes movement decisions based on localized data while the movement probabilities of possible next locations are assigned by a forced-based genetic algorithm (FGA. Because FGA takes only into account the current position of the neighboring nodes, our NSEG, combining FGA with game theory, can find better locations. In NSEG, autonomous node movement decisions are based on the outcome of the locally run FGA and the spatial game set up among it and the nodes in its neighborhood. NSEG is a good candidate for the node spreading class of applications used in both military tasks and commercial applications. We present a formal analysis of our NSEG to prove that an evolutionary stable state is its convergence point. Simulation experiments demonstrate that NSEG performs well with respect to network area coverage, uniform distribution of mobile nodes, and convergence speed.

  20. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks.

    Science.gov (United States)

    Schleuning, Matthias; Ingmann, Lili; Strauss, Rouven; Fritz, Susanne A; Dalsgaard, Bo; Matthias Dehling, D; Plein, Michaela; Saavedra, Francisco; Sandel, Brody; Svenning, Jens-Christian; Böhning-Gaese, Katrin; Dormann, Carsten F

    2014-04-01

    Modularity is a recurrent and important property of bipartite ecological networks. Although well-resolved ecological networks describe interaction frequencies between species pairs, modularity of bipartite networks has been analysed only on the basis of binary presence-absence data. We employ a new algorithm to detect modularity in weighted bipartite networks in a global analysis of avian seed-dispersal networks. We define roles of species, such as connector values, for weighted and binary networks and associate them with avian species traits and phylogeny. The weighted, but not binary, analysis identified a positive relationship between climatic seasonality and modularity, whereas past climate stability and phylogenetic signal were only weakly related to modularity. Connector values were associated with foraging behaviour and were phylogenetically conserved. The weighted modularity analysis demonstrates the dominating impact of ecological factors on the structure of seed-dispersal networks, but also underscores the relevance of evolutionary history in shaping species roles in ecological communities. © 2014 John Wiley & Sons Ltd/CNRS.

  1. Simply Coded Evolutionary Artificial Neural Networks on a Mobile Robot Control Problem

    Science.gov (United States)

    Katada, Yoshiaki; Hidaka, Takuya

    One of the advantages of evolutionary robotics over other approaches in embodied cognitive science would be its parallel population search. Due to the population search, it takes a long time to evaluate all robot in a real environment. Thus, such techniques as to shorten the time are required for real robots to evolve in a real environment. This paper proposes to use simply coded evolutionary artificial neural networks for mobile robot control to make genetic search space as small as possible and investigates the performance of them using simulated and real robots. Two types of genetic algorithm (GA) are employed, one is the standard GA and the other is an extended GA, to achieve higher final fitnesses. The results suggest the benefits of the proposed method.

  2. An evolutionary inspection game with labour unions on small-world networks

    Science.gov (United States)

    Kamal, Salahuddin M.; Al-Hadeethi, Yas; Abolaban, Fouad A.; Al-Marzouki, Fahd M.; Perc, Matjaž

    2015-03-01

    We study an evolutionary inspection game where agents can chose between working and shirking. The evolutionary process is staged on a small-world network, through which agents compare their incomes and, based on the outcome, decide which strategy to adopt. Moreover, we introduce union members that have certain privileges, of which the extent depends on the bargaining power of the union. We determine how the union affects the overall performance of the firm that employs the agents, and what are its influences on the employees. We find that, depending on its bargaining power, the union has significant leverage to deteriorate the productivity of a firm, and consequently also to lower the long-run benefits of the employees.

  3. Choice Of Computer Networking Cables And Their Effect On Data ...

    African Journals Online (AJOL)

    Computer networking is the order of the day in this Information and Communication Technology (ICT) age. Although a network can be through a wireless device most local connections are done using cables. There are three main computer-networking cables namely coaxial cable, unshielded twisted pair cable and the optic ...

  4. Computational Aspects of Sensor Network Protocols (Distributed Sensor Network Simulator

    Directory of Open Access Journals (Sweden)

    Vasanth Iyer

    2009-08-01

    Full Text Available In this work, we model the sensor networks as an unsupervised learning and clustering process. We classify nodes according to its static distribution to form known class densities (CCPD. These densities are chosen from specific cross-layer features which maximizes lifetime of power-aware routing algorithms. To circumvent computational complexities of a power-ware communication STACK we introduce path-loss models at the nodes only for high density deployments. We study the cluster heads and formulate the data handling capacity for an expected deployment and use localized probability models to fuse the data with its side information before transmission. So each cluster head has a unique Pmax but not all cluster heads have the same measured value. In a lossless mode if there are no faults in the sensor network then we can show that the highest probability given by Pmax is ambiguous if its frequency is ≤ n/2 otherwise it can be determined by a local function. We further show that the event detection at the cluster heads can be modelled with a pattern 2m and m, the number of bits can be a correlated pattern of 2 bits and for a tight lower bound we use 3-bit Huffman codes which have entropy < 1. These local algorithms are further studied to optimize on power, fault detection and to maximize on the distributed routing algorithm used at the higher layers. From these bounds in large network, it is observed that the power dissipation is network size invariant. The performance of the routing algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed that if the network size is kept constant and the density of the nodes is kept closer then the local pathloss model effects the performance of the routing algorithms. We also obtain the maximum intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., the lifetime of sensor network.

  5. On Distributed Computation in Noisy Random Planar Networks

    OpenAIRE

    Kanoria, Y.; Manjunath, D.

    2007-01-01

    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.

  6. Mobile Computing and Ubiquitous Networking: Concepts, Technologies and Challenges.

    Science.gov (United States)

    Pierre, Samuel

    2001-01-01

    Analyzes concepts, technologies and challenges related to mobile computing and networking. Defines basic concepts of cellular systems. Describes the evolution of wireless technologies that constitute the foundations of mobile computing and ubiquitous networking. Presents characterization and issues of mobile computing. Analyzes economical and…

  7. Chemical Reaction Networks for Computing Polynomials.

    Science.gov (United States)

    Salehi, Sayed Ahmad; Parhi, Keshab K; Riedel, Marc D

    2017-01-20

    Chemical reaction networks (CRNs) provide a fundamental model in the study of molecular systems. Widely used as formalism for the analysis of chemical and biochemical systems, CRNs have received renewed attention as a model for molecular computation. This paper demonstrates that, with a new encoding, CRNs can compute any set of polynomial functions subject only to the limitation that these functions must map the unit interval to itself. These polynomials can be expressed as linear combinations of Bernstein basis polynomials with positive coefficients less than or equal to 1. In the proposed encoding approach, each variable is represented using two molecular types: a type-0 and a type-1. The value is the ratio of the concentration of type-1 molecules to the sum of the concentrations of type-0 and type-1 molecules. The proposed encoding naturally exploits the expansion of a power-form polynomial into a Bernstein polynomial. Molecular encoders for converting any input in a standard representation to the fractional representation as well as decoders for converting the computed output from the fractional to a standard representation are presented. The method is illustrated first for generic CRNs; then chemical reactions designed for an example are mapped to DNA strand-displacement reactions.

  8. The co-evolutionary dynamics of directed network of spin market agents

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán; Gmitra, Martin

    2006-09-01

    The spin market model [S. Bornholdt, Int. J. Mod. Phys. C 12 (2001) 667] is generalized by employing co-evolutionary principles, where strategies of the interacting and competitive traders are represented by local and global couplings between the nodes of dynamic directed stochastic network. The co-evolutionary principles are applied in the frame of Bak-Sneppen self-organized dynamics [P. Bak, K. Sneppen, Phys. Rev. Lett. 71 (1993) 4083] that includes the processes of selection and extinction actuated by the local (node) fitness. The local fitness is related to orientation of spin agent with respect to the instant magnetization. The stationary regime is formed due to the interplay of self-organization and adaptivity effects. The fat tailed distributions of log-price returns are identified numerically. The non-trivial model consequence is the evidence of the long time market memory indicated by the power-law range of the autocorrelation function of volatility with exponent smaller than one. The simulations yield network topology with broad-scale node degree distribution characterized by the range of exponents 1.3<γin<3 coinciding with social networks.

  9. An Evolutionary Algorithm of the Regional Collaborative Innovation Based on Complex Network

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2016-01-01

    Full Text Available This paper proposed a new perspective to study the evolution of regional collaborative innovation based on complex network theory. The two main conceptions of evolution, “graph with dynamic features” and “network evolution,” have been provided in advance. Afterwards, we illustrate the overall architecture and capability model of the regional collaborative innovation system, which contains several elements and participants. Therefore, we can definitely assume that the regional collaborative innovation system could be regarded as a complex network model. In the proposed evolutionary algorithm, we consider that each node in the network could only connect to less than a certain amount of neighbors, and the extreme value is determined by its importance. Through the derivation, we have created a probability density function as the most important constraint and supporting condition of our simulation experiments. Then, a case study was performed to explore the network topology and validate the effectiveness of our algorithm. All the raw datasets were obtained from the official website of the National Bureau of Statistic of China and some other open sources. Finally, some meaningful recommendations were presented to policy makers, especially based on the experimental results and some common conclusions of complex networks.

  10. Planning and management of cloud computing networks

    Science.gov (United States)

    Larumbe, Federico

    The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a

  11. Can computational efficiency alone drive the evolution of modularity in neural networks?

    Science.gov (United States)

    Tosh, Colin R

    2016-08-30

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means.

  12. 2013 International Conference on Computer Engineering and Network

    CERN Document Server

    Zhu, Tingshao

    2014-01-01

    This book aims to examine innovation in the fields of computer engineering and networking. The book covers important emerging topics in computer engineering and networking, and it will help researchers and engineers improve their knowledge of state-of-art in related areas. The book presents papers from The Proceedings of the 2013 International Conference on Computer Engineering and Network (CENet2013) which was held on July 20-21, in Shanghai, China.

  13. AUTOMATIC CONTROL OF INTELLECTUAL RIGHTS IN THE GLOBAL COMPUTER NETWORKS

    OpenAIRE

    Anatoly P. Yakimaho; Victoriya V. Bessarabova

    2013-01-01

    The problems of use of subjects of intellectual property in the global computer networks are stated. The main attention is focused on the ways of problems solutions arising during the work in computer networks. Legal problems of information society are considered. The analysis of global computer networks as places for the organization of collective management by copyrights in the world scale is carried out. Issues of creation of a system of automatic control of property rights of authors and ...

  14. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  15. The Handicap Principle for Trust in Computer Security, the Semantic Web and Social Networking

    Science.gov (United States)

    Ma, Zhanshan (Sam); Krings, Axel W.; Hung, Chih-Cheng

    Communication is a fundamental function of life, and it exists in almost all living things: from single-cell bacteria to human beings. Communication, together with competition and cooperation,arethree fundamental processes in nature. Computer scientists are familiar with the study of competition or 'struggle for life' through Darwin's evolutionary theory, or even evolutionary computing. They may be equally familiar with the study of cooperation or altruism through the Prisoner's Dilemma (PD) game. However, they are likely to be less familiar with the theory of animal communication. The objective of this article is three-fold: (i) To suggest that the study of animal communication, especially the honesty (reliability) of animal communication, in which some significant advances in behavioral biology have been achieved in the last three decades, should be on the verge to spawn important cross-disciplinary research similar to that generated by the study of cooperation with the PD game. One of the far-reaching advances in the field is marked by the publication of "The Handicap Principle: a Missing Piece of Darwin's Puzzle" by Zahavi (1997). The 'Handicap' principle [34][35], which states that communication signals must be costly in some proper way to be reliable (honest), is best elucidated with evolutionary games, e.g., Sir Philip Sidney (SPS) game [23]. Accordingly, we suggest that the Handicap principle may serve as a fundamental paradigm for trust research in computer science. (ii) To suggest to computer scientists that their expertise in modeling computer networks may help behavioral biologists in their study of the reliability of animal communication networks. This is largely due to the historical reason that, until the last decade, animal communication was studied with the dyadic paradigm (sender-receiver) rather than with the network paradigm. (iii) To pose several open questions, the answers to which may bear some refreshing insights to trust research in

  16. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks.

    Science.gov (United States)

    Fernández Caballero, Juan Carlos; Martínez, Francisco José; Hervás, César; Gutiérrez, Pedro Antonio

    2010-05-01

    This paper proposes a multiclassification algorithm using multilayer perceptron neural network models. It tries to boost two conflicting main objectives of multiclassifiers: a high correct classification rate level and a high classification rate for each class. This last objective is not usually optimized in classification, but is considered here given the need to obtain high precision in each class in real problems. To solve this machine learning problem, we use a Pareto-based multiobjective optimization methodology based on a memetic evolutionary algorithm. We consider a memetic Pareto evolutionary approach based on the NSGA2 evolutionary algorithm (MPENSGA2). Once the Pareto front is built, two strategies or automatic individual selection are used: the best model in accuracy and the best model in sensitivity (extremes in the Pareto front). These methodologies are applied to solve 17 classification benchmark problems obtained from the University of California at Irvine (UCI) repository and one complex real classification problem. The models obtained show high accuracy and a high classification rate for each class.

  17. Network Computer Technology. Phase I: Viability and Promise within NASA's Desktop Computing Environment

    Science.gov (United States)

    Paluzzi, Peter; Miller, Rosalind; Kurihara, West; Eskey, Megan

    1998-01-01

    Over the past several months, major industry vendors have made a business case for the network computer as a win-win solution toward lowering total cost of ownership. This report provides results from Phase I of the Ames Research Center network computer evaluation project. It identifies factors to be considered for determining cost of ownership; further, it examines where, when, and how network computer technology might fit in NASA's desktop computing architecture.

  18. Positive and negative effects of social impact on evolutionary vaccination game in networks

    Science.gov (United States)

    Ichinose, Genki; Kurisaku, Takehiro

    2017-02-01

    Preventing infectious disease like flu from spreading to large communities is one of the most important issues for humans. One effective strategy is voluntary vaccination, however, there is always the temptation for people refusing to be vaccinated because once herd immunity is achieved, infection risk is greatly reduced. In this paper, we study the effect of social impact on the vaccination behavior resulting in preventing infectious disease in networks. The evolutionary simulation results show that the social impact has both positive and negative effects on the vaccination behavior. Especially, in heterogeneous networks, if the vaccination cost is low the behavior is more promoted than the case without social impact. In contrast, if the cost is high, the behavior is reduced compared to the case without social impact. Moreover, the vaccination behavior is effective in heterogeneous networks more than in homogeneous networks. This implies that the social impact puts people at risk in homogeneous networks. We also evaluate the results from the social cost related to the vaccination policy.

  19. MOEPGA: A novel method to detect protein complexes in yeast protein-protein interaction networks based on MultiObjective Evolutionary Programming Genetic Algorithm.

    Science.gov (United States)

    Cao, Buwen; Luo, Jiawei; Liang, Cheng; Wang, Shulin; Song, Dan

    2015-10-01

    The identification of protein complexes in protein-protein interaction (PPI) networks has greatly advanced our understanding of biological organisms. Existing computational methods to detect protein complexes are usually based on specific network topological properties of PPI networks. However, due to the inherent complexity of the network structures, the identification of protein complexes may not be fully addressed by using single network topological property. In this study, we propose a novel MultiObjective Evolutionary Programming Genetic Algorithm (MOEPGA) which integrates multiple network topological features to detect biologically meaningful protein complexes. Our approach first systematically analyzes the multiobjective problem in terms of identifying protein complexes from PPI networks, and then constructs the objective function of the iterative algorithm based on three common topological properties of protein complexes from the benchmark dataset, finally we describe our algorithm, which mainly consists of three steps, population initialization, subgraph mutation and subgraph selection operation. To show the utility of our method, we compared MOEPGA with several state-of-the-art algorithms on two yeast PPI datasets. The experiment results demonstrate that the proposed method can not only find more protein complexes but also achieve higher accuracy in terms of fscore. Moreover, our approach can cover a certain number of proteins in the input PPI network in terms of the normalized clustering score. Taken together, our method can serve as a powerful framework to detect protein complexes in yeast PPI networks, thereby facilitating the identification of the underlying biological functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks

    Directory of Open Access Journals (Sweden)

    Guoqiang Chen

    2013-01-01

    Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.

  1. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    Science.gov (United States)

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  2. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012

    Directory of Open Access Journals (Sweden)

    Dirce M. Santin

    2016-03-01

    Full Text Available This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community.

  3. SUNSEED — An evolutionary path to smart grid comms over converged telco and energy provider networks

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Popovski, Petar; Jorguseski, Ljupco

    2014-01-01

    of energy distribution service operators (DSO) and telecom operators (telco) for the future smart grid operations and services. To achieve this objective, SUNSEED proposes an evolutionary approach to converge existing DSO and telco networks, consisting of six steps: overlap, interconnect, interoperate......, manage, plan and open. Each step involves identification of the related smart grid service requirements and implementation of the appropriate solutions. The promise of SUNSEED approach lies in potentially much lower investments and total cost of ownership of future smart energy grids within dense......SUNSEED, “Sustainable and robust networking for smart electricity distribution”, is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure...

  4. DETECTING NETWORK ATTACKS IN COMPUTER NETWORKS BY USING DATA MINING METHODS

    OpenAIRE

    Platonov, V. V.; Semenov, P. O.

    2016-01-01

    The article describes an approach to the development of an intrusion detection system for computer networks. It is shown that the usage of several data mining methods and tools can improve the efficiency of protection computer networks against network at-tacks due to the combination of the benefits of signature detection and anomalies detection and the opportunity of adaptation the sys-tem for hardware and software structure of the computer network.

  5. Email networks and the spread of computer viruses

    Science.gov (United States)

    Newman, M. E.; Forrest, Stephanie; Balthrop, Justin

    2002-09-01

    Many computer viruses spread via electronic mail, making use of computer users' email address books as a source for email addresses of new victims. These address books form a directed social network of connections between individuals over which the virus spreads. Here we investigate empirically the structure of this network using data drawn from a large computer installation, and discuss the implications of this structure for the understanding and prevention of computer virus epidemics.

  6. An Overview of Computer Network security and Research Technology

    OpenAIRE

    Rathore, Vandana

    2016-01-01

    The rapid development in the field of computer networks and systems brings both convenience and security threats for users. Security threats include network security and data security. Network security refers to the reliability, confidentiality, integrity and availability of the information in the system. The main objective of network security is to maintain the authenticity, integrity, confidentiality, availability of the network. This paper introduces the details of the technologies used in...

  7. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    Science.gov (United States)

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  8. Preferential duplication of intermodular hub genes: an evolutionary signature in eukaryotes genome networks.

    Directory of Open Access Journals (Sweden)

    Ricardo M Ferreira

    Full Text Available Whole genome protein-protein association networks are not random and their topological properties stem from genome evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand, genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING database, we present here experimental evidence that, more than not being scale free, protein degree distributions of organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its clustering coefficient. For the first time a model yields results that simultaneously describe different topological distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. This scenario implies a universal mechanism for genome evolution.

  9. The effect of network structure on innovation initiation process: an evolutionary dynamics approach

    CERN Document Server

    Jafari, Afshin; Zolfagharzadeh, Mohammad Mahdi; Mohammadi, Mehdi

    2016-01-01

    In this paper we have proposed a basic agent-based model based on evolutionary dynamics for investigating innovation initiation process. In our model we suppose each agent will represent a firm which is interacting with other firms through a given network structure. We consider a two-hit process for presenting a potentially successful innovation in this model and therefore at each time step each firm can be in on of three different stages which are respectively, Ordinary, Innovative, and Successful. We design different experiments in order to investigate how different interaction networks may affect the process of presenting a successful innovation to the market. In this experiments, we use five different network structures, i.e. Erd\\H{o}s and R\\'enyi, Ring Lattice, Small World, Scale-Free and Distance-Based networks. According to the results of the simulations, for less frequent innovations like radical innovation, local structures are showing a better performance comparing to Scale-Free and Erd\\H{o}s and R\\...

  10. Cancer systems biology in the genome sequencing era: part 2, evolutionary dynamics of tumor clonal networks and drug resistance.

    Science.gov (United States)

    Wang, Edwin; Zou, Jinfeng; Zaman, Naif; Beitel, Lenore K; Trifiro, Mark; Paliouras, Miltiadis

    2013-08-01

    A tumor often consists of multiple cell subpopulations (clones). Current chemo-treatments often target one clone of a tumor. Although the drug kills that clone, other clones overtake it and the tumor recurs. Genome sequencing and computational analysis allows to computational dissection of clones from tumors, while singe-cell genome sequencing including RNA-Seq allows profiling of these clones. This opens a new window for treating a tumor as a system in which clones are evolving. Future cancer systems biology studies should consider a tumor as an evolving system with multiple clones. Therefore, topics discussed in Part 2 of this review include evolutionary dynamics of clonal networks, early-warning signals (e.g., genome duplication events) for formation of fast-growing clones, dissecting tumor heterogeneity, and modeling of clone-clone-stroma interactions for drug resistance. The ultimate goal of the future systems biology analysis is to obtain a 'whole-system' understanding of a tumor and therefore provides a more efficient and personalized management strategies for cancer patients. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Throughput capacity computation model for hybrid wireless networks

    African Journals Online (AJOL)

    wireless networks. We present in this paper, a computational model for obtaining throughput capacity for hybrid wireless networks. For a hybrid network with n nodes and m base stations, we observe through simulation that the throughput capacity increases linearly with the base station infrastructure connected by the wired ...

  12. Novel Ethernet Based Optical Local Area Networks for Computer Interconnection

    NARCIS (Netherlands)

    Radovanovic, Igor; van Etten, Wim; Taniman, R.O.; Kleinkiskamp, Ronny

    2003-01-01

    In this paper we present new optical local area networks for fiber-to-the-desk application. Presented networks are expected to bring a solution for having optical fibers all the way to computers. To bring the overall implementation costs down we have based our networks on short-wavelength optical

  13. 4th International Conference on Computer Engineering and Networks

    CERN Document Server

    2015-01-01

    This book aims to examine innovation in the fields of computer engineering and networking. The book covers important emerging topics in computer engineering and networking, and it will help researchers and engineers improve their knowledge of state-of-art in related areas. The book presents papers from the 4th International Conference on Computer Engineering and Networks (CENet2014) held July 19-20, 2014 in Shanghai, China.  ·       Covers emerging topics for computer engineering and networking ·       Discusses how to improve productivity by using the latest advanced technologies ·       Examines innovation in the fields of computer engineering and networking  

  14. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Fairhall, Adrienne L; Denéve, Sophie; Shea-Brown, Eric T

    2015-07-15

    While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach. Recently, however, Denéve and colleagues have suggested that the spiking behavior of neurons may be fundamental to how neuronal networks compute, with precise spike timing determined by each neuron's contribution to producing the desired output (Boerlin and Denéve, 2011; Boerlin et al., 2013). By postulating that each neuron fires to reduce the error in the network's output, it was demonstrated that linear computations can be performed by networks of integrate-and-fire neurons that communicate through instantaneous synapses. This left open, however, the possibility that realistic networks, with conductance-based neurons with subthreshold nonlinearity and the slower timescales of biophysical synapses, may not fit into this framework. Here, we show how the spike-based approach can be extended to biophysically plausible networks. We then show that our network reproduces a number of key features of cortical networks including irregular and Poisson-like spike times and a tight balance between excitation and inhibition. Lastly, we discuss how the behavior of our model scales with network size or with the number of neurons "recorded" from a larger computing network. These results significantly increase the biological plausibility of the spike-based approach to network computation. We derive a network of neurons with standard spike-generating currents and synapses with realistic timescales that computes based upon the principle that the precise timing of each spike is important for the computation. We then show that our network reproduces a number of key features of cortical networks

  15. Second International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Konar, Amit; Chakraborty, Aruna

    2014-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two-volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 148 scholarly papers, which have been accepted for presentation from over 640 submissions in the second International Conference on Advanced Computing, Networking and Informatics, 2014, held in Kolkata, India during June 24-26, 2014. The first volume includes innovative computing techniques and relevant research results in informatics with selective applications in pattern recognition, signal/image process...

  16. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    Science.gov (United States)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-09-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function.

  17. Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks.

    Science.gov (United States)

    Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R

    2015-07-01

    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant-herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen

  18. Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset

    Directory of Open Access Journals (Sweden)

    Gidrol Xavier

    2008-02-01

    Full Text Available Abstract Background Inferring gene regulatory networks from data requires the development of algorithms devoted to structure extraction. When only static data are available, gene interactions may be modelled by a Bayesian Network (BN that represents the presence of direct interactions from regulators to regulees by conditional probability distributions. We used enhanced evolutionary algorithms to stochastically evolve a set of candidate BN structures and found the model that best fits data without prior knowledge. Results We proposed various evolutionary strategies suitable for the task and tested our choices using simulated data drawn from a given bio-realistic network of 35 nodes, the so-called insulin network, which has been used in the literature for benchmarking. We assessed the inferred models against this reference to obtain statistical performance results. We then compared performances of evolutionary algorithms using two kinds of recombination operators that operate at different scales in the graphs. We introduced a niching strategy that reinforces diversity through the population and avoided trapping of the algorithm in one local minimum in the early steps of learning. We show the limited effect of the mutation operator when niching is applied. Finally, we compared our best evolutionary approach with various well known learning algorithms (MCMC, K2, greedy search, TPDA, MMHC devoted to BN structure learning. Conclusion We studied the behaviour of an evolutionary approach enhanced by niching for the learning of gene regulatory networks with BN. We show that this approach outperforms classical structure learning methods in elucidating the original model. These results were obtained for the learning of a bio-realistic network and, more importantly, on various small datasets. This is a suitable approach for learning transcriptional regulatory networks from real datasets without prior knowledge.

  19. EVOLVE : a Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II

    CERN Document Server

    Coello, Carlos; Tantar, Alexandru-Adrian; Tantar, Emilia; Bouvry, Pascal; Moral, Pierre; Legrand, Pierrick; EVOLVE 2012

    2013-01-01

    This book comprises a selection of papers from the EVOLVE 2012 held in Mexico City, Mexico. The aim of the EVOLVE is to build a bridge between probability, set oriented numerics and evolutionary computing, as to identify new common and challenging research aspects. The conference is also intended to foster a growing interest for robust and efficient methods with a sound theoretical background. EVOLVE is intended to unify theory-inspired methods and cutting-edge techniques ensuring performance guarantee factors. By gathering researchers with different backgrounds, a unified view and vocabulary can emerge where the theoretical advancements may echo in different domains. Summarizing, the EVOLVE focuses on challenging aspects arising at the passage from theory to new paradigms and aims to provide a unified view while raising questions related to reliability,  performance guarantees and modeling. The papers of the EVOLVE 2012 make a contribution to this goal. 

  20. An evolutionary examination of telemedicine: a health and computer-mediated communication perspective.

    Science.gov (United States)

    Breen, Gerald-Mark; Matusitz, Jonathan

    2010-01-01

    Telemedicine, the use of advanced communication technologies in the healthcare context, has a rich history and a clear evolutionary course. In this paper, the authors identify telemedicine as operationally defined, the services and technologies it comprises, the direction telemedicine has taken, along with its increased acceptance in the healthcare communities. The authors also describe some of the key pitfalls warred with by researchers and activists to advance telemedicine to its full potential and lead to an unobstructed team of technicians to identify telemedicine's diverse utilities. A discussion and future directions section is included to provide fresh ideas to health communication and computer-mediated scholars wishing to delve into this area and make a difference to enhance public understanding of this field.

  1. Network selection, Information filtering and Scalable computation

    Science.gov (United States)

    Ye, Changqing

    This dissertation explores two application scenarios of sparsity pursuit method on large scale data sets. The first scenario is classification and regression in analyzing high dimensional structured data, where predictors corresponds to nodes of a given directed graph. This arises in, for instance, identification of disease genes for the Parkinson's diseases from a network of candidate genes. In such a situation, directed graph describes dependencies among the genes, where direction of edges represent certain causal effects. Key to high-dimensional structured classification and regression is how to utilize dependencies among predictors as specified by directions of the graph. In this dissertation, we develop a novel method that fully takes into account such dependencies formulated through certain nonlinear constraints. We apply the proposed method to two applications, feature selection in large margin binary classification and in linear regression. We implement the proposed method through difference convex programming for the cost function and constraints. Finally, theoretical and numerical analyses suggest that the proposed method achieves the desired objectives. An application to disease gene identification is presented. The second application scenario is personalized information filtering which extracts the information specifically relevant to a user, predicting his/her preference over a large number of items, based on the opinions of users who think alike or its content. This problem is cast into the framework of regression and classification, where we introduce novel partial latent models to integrate additional user-specific and content-specific predictors, for higher predictive accuracy. In particular, we factorize a user-over-item preference matrix into a product of two matrices, each representing a user's preference and an item preference by users. Then we propose a likelihood method to seek a sparsest latent factorization, from a class of over

  2. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    change dynamically. In this paper, the authors put forward an Evolutionary Mobility aware multi-objective hybrid Routing Protocol for heterogeneous wireless sensor networks (EMRP). EMRP uses two-level hierarchical clustering. EMRP selects the optimal path from source to sink using multiple metrics...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...... Algorithm (DyMORA) using metrics such as Average Residual Energy (ARE), Delay and Normalized Routing Load. EMRP improves AES by a factor of 4.93% as compared to SHRP and 5.15% as compared to DyMORA. EMRP has a 6% lesser delay as compared with DyMORA....

  3. Can evolutionary design of social networks make it easier to be 'green'?

    Science.gov (United States)

    Dickinson, Janis L; Crain, Rhiannon L; Reeve, H Kern; Schuldt, Jonathon P

    2013-09-01

    The social Web is swiftly becoming a living laboratory for understanding human cooperation on massive scales. It has changed how we organize, socialize, and tackle problems that benefit from the efforts of a large crowd. A new, applied, behavioral ecology has begun to build on theoretical and empirical studies of cooperation, integrating research in the fields of evolutionary biology, social psychology, social networking, and citizen science. Here, we review the ways in which these disciplines inform the design of Internet environments to support collective pro-environmental behavior, tapping into proximate prosocial mechanisms and models of social evolution, as well as generating opportunities for 'field studies' to discover how we can support massive collective action and shift environmental social norms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization.

    Science.gov (United States)

    Kiranyaz, Serkan; Ince, Turker; Yildirim, Alper; Gabbouj, Moncef

    2009-12-01

    In this paper, we propose a novel technique for the automatic design of Artificial Neural Networks (ANNs) by evolving to the optimal network configuration(s) within an architecture space. It is entirely based on a multi-dimensional Particle Swarm Optimization (MD PSO) technique, which re-forms the native structure of swarm particles in such a way that they can make inter-dimensional passes with a dedicated dimensional PSO process. Therefore, in a multidimensional search space where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. With the proper encoding of the network configurations and parameters into particles, MD PSO can then seek the positional optimum in the error space and the dimensional optimum in the architecture space. The optimum dimension converged at the end of a MD PSO process corresponds to a unique ANN configuration where the network parameters (connections, weights and biases) can then be resolved from the positional optimum reached on that dimension. In addition to this, the proposed technique generates a ranked list of network configurations, from the best to the worst. This is indeed a crucial piece of information, indicating what potential configurations can be alternatives to the best one, and which configurations should not be used at all for a particular problem. In this study, the architecture space is defined over feed-forward, fully-connected ANNs so as to use the conventional techniques such as back-propagation and some other evolutionary methods in this field. The proposed technique is applied over the most challenging synthetic problems to test its optimality on evolving networks and over the benchmark problems to test its generalization capability as well as to make comparative evaluations with the several competing techniques. The experimental

  5. Computing the Quartet Distance Between Evolutionary Trees in Time O(n log n)

    DEFF Research Database (Denmark)

    Brodal, Gerth Sølfting; Fagerberg, Rolf; Pedersen, Christian Nørgaard Storm

    2003-01-01

    Evolutionary trees describing the relationship for a set of species are central in evolutionary biology, and quantifying differences between evolutionary trees is therefore an important task. The quartet distance is a distance measure between trees previously proposed by Estabrook, McMorris, and ...... unrooted evolutionary trees of n species, where all internal nodes have degree three, in time O(n log n. The previous best algorithm for the problem uses time O(n 2)....

  6. 3rd International Conference on Advanced Computing, Networking and Informatics

    CERN Document Server

    Mohapatra, Durga; Chaki, Nabendu

    2016-01-01

    Advanced Computing, Networking and Informatics are three distinct and mutually exclusive disciplines of knowledge with no apparent sharing/overlap among them. However, their convergence is observed in many real world applications, including cyber-security, internet banking, healthcare, sensor networks, cognitive radio, pervasive computing amidst many others. This two volume proceedings explore the combined use of Advanced Computing and Informatics in the next generation wireless networks and security, signal and image processing, ontology and human-computer interfaces (HCI). The two volumes together include 132 scholarly articles, which have been accepted for presentation from over 550 submissions in the Third International Conference on Advanced Computing, Networking and Informatics, 2015, held in Bhubaneswar, India during June 23–25, 2015.

  7. HeNCE: A Heterogeneous Network Computing Environment

    Directory of Open Access Journals (Sweden)

    Adam Beguelin

    1994-01-01

    Full Text Available Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM. The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.

  8. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks.

    Science.gov (United States)

    Cruz-Ramírez, Manuel; Hervás-Martínez, César; Fernández, Juan Carlos; Briceño, Javier; de la Mata, Manuel

    2013-05-01

    The optimal allocation of organs in liver transplantation is a problem that can be resolved using machine-learning techniques. Classical methods of allocation included the assignment of an organ to the first patient on the waiting list without taking into account the characteristics of the donor and/or recipient. In this study, characteristics of the donor, recipient and transplant organ were used to determine graft survival. We utilised a dataset of liver transplants collected by eleven Spanish hospitals that provides data on the survival of patients three months after their operations. To address the problem of organ allocation, the memetic Pareto evolutionary non-dominated sorting genetic algorithm 2 (MPENSGA2 algorithm), a multi-objective evolutionary algorithm, was used to train radial basis function neural networks, where accuracy was the measure used to evaluate model performance, along with the minimum sensitivity measurement. The neural network models obtained from the Pareto fronts were used to develop a rule-based system. This system will help medical experts allocate organs. The models obtained with the MPENSGA2 algorithm generally yielded competitive results for all performance metrics considered in this work, namely the correct classification rate (C), minimum sensitivity (MS), area under the receiver operating characteristic curve (AUC), root mean squared error (RMSE) and Cohen's kappa (Kappa). In general, the multi-objective evolutionary algorithm demonstrated a better performance than the mono-objective algorithm, especially with regard to the MS extreme of the Pareto front, which yielded the best values of MS (48.98) and AUC (0.5659). The rule-based system efficiently complements the current allocation system (model for end-stage liver disease, MELD) based on the principles of efficiency and equity. This complementary effect occurred in 55% of the cases used in the simulation. The proposed rule-based system minimises the prediction probability

  9. Dynamics of Bottlebrush Networks: A Computational Study

    Science.gov (United States)

    Dobrynin, Andrey; Cao, Zhen; Sheiko, Sergei

    We study dynamics of deformation of bottlebrush networks using molecular dynamics simulations and theoretical calculations. Analysis of our simulation results show that the dynamics of bottlebrush network deformation can be described by a Rouse model for polydisperse networks with effective Rouse time of the bottlebrush network strand, τR =τ0Ns2 (Nsc + 1) where, Ns is the number-average degree of polymerization of the bottlebrush backbone strands between crosslinks, Nsc is the degree of polymerization of the side chains and τ0is a characteristic monomeric relaxation time. At time scales t smaller than the Rouse time, t crosslinks, the network response is pure elastic with shear modulus G (t) =G0 , where G0 is the equilibrium shear modulus at small deformation. The stress evolution in the bottlebrush networks can be described by a universal function of t /τR . NSF DMR-1409710.

  10. Risk, Privacy, and Security in Computer Networks

    OpenAIRE

    Årnes, Andre

    2006-01-01

    With an increasingly digitally connected society comes complexity, uncertainty, and risk. Network monitoring, incident management, and digital forensics is of increasing importance with the escalation of cybercrime and other network supported serious crimes. New laws and regulations governing electronic communications, cybercrime, and data retention are being proposed, continuously requiring new methods and tools. This thesis introduces a novel approach to real-time network risk assessmen...

  11. An evolutionary computational theory of prefrontal executive function in decision-making.

    Science.gov (United States)

    Koechlin, Etienne

    2014-11-05

    The prefrontal cortex subserves executive control and decision-making, that is, the coordination and selection of thoughts and actions in the service of adaptive behaviour. We present here a computational theory describing the evolution of the prefrontal cortex from rodents to humans as gradually adding new inferential Bayesian capabilities for dealing with a computationally intractable decision problem: exploring and learning new behavioural strategies versus exploiting and adjusting previously learned ones through reinforcement learning (RL). We provide a principled account identifying three inferential steps optimizing this arbitration through the emergence of (i) factual reactive inferences in paralimbic prefrontal regions in rodents; (ii) factual proactive inferences in lateral prefrontal regions in primates and (iii) counterfactual reactive and proactive inferences in human frontopolar regions. The theory clarifies the integration of model-free and model-based RL through the notion of strategy creation. The theory also shows that counterfactual inferences in humans yield to the notion of hypothesis testing, a critical reasoning ability for approximating optimal adaptive processes and presumably endowing humans with a qualitative evolutionary advantage in adaptive behaviour.

  12. REAL TIME PULVERISED COAL FLOW SOFT SENSOR FOR THERMAL POWER PLANTS USING EVOLUTIONARY COMPUTATION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    B. Raja Singh

    2015-01-01

    Full Text Available Pulverised coal preparation system (Coal mills is the heart of coal-fired power plants. The complex nature of a milling process, together with the complex interactions between coal quality and mill conditions, would lead to immense difficulties for obtaining an effective mathematical model of the milling process. In this paper, vertical spindle coal mills (bowl mill that are widely used in coal-fired power plants, is considered for the model development and its pulverised fuel flow rate is computed using the model. For the steady state coal mill model development, plant measurements such as air-flow rate, differential pressure across mill etc., are considered as inputs/outputs. The mathematical model is derived from analysis of energy, heat and mass balances. An Evolutionary computation technique is adopted to identify the unknown model parameters using on-line plant data. Validation results indicate that this model is accurate enough to represent the whole process of steady state coal mill dynamics. This coal mill model is being implemented on-line in a 210 MW thermal power plant and the results obtained are compared with plant data. The model is found accurate and robust that will work better in power plants for system monitoring. Therefore, the model can be used for online monitoring, fault detection, and control to improve the efficiency of combustion.

  13. Computing properties of stable configurations of thermodynamic binding networks

    OpenAIRE

    Breik, Keenan; Prakash, Lakshmi; Thachuk, Chris; Heule, Marijn; Soloveichik, David

    2017-01-01

    Models of molecular computing generally embed computation in kinetics--the specific time evolution of a chemical system. However, if the desired output is not thermodynamically stable, basic physical chemistry dictates that thermodynamic forces will drive the system toward error throughout the computation. The Thermodynamic Binding Network (TBN) model was introduced to formally study how the thermodynamic equilibrium can be made consistent with the desired computation, and it idealizes bindin...

  14. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    Science.gov (United States)

    1994-08-10

    23 Haddock, J. and O’Keefe, R., "Using Artificial Intelligence to Facilitate Manufacturing Systems Simulation," Computers & Industrial Engineering , Vol...Feedforward Neural Networks," Computers & Industrial Engineering , Vol. 21, No. 1- 4, (1991), pp. 247-251. 87 Proceedings of the 1992 Summer Computer...Using Simulation Experiments," Computers & Industrial Engineering , Vol. 22, No. 2 (1992), pp. 195-209. 119 Kuei, C. and Madu, C., "Polynomial

  15. Wireless Networks: New Meaning to Ubiquitous Computing.

    Science.gov (United States)

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  16. CFD Optimization on Network-Based Parallel Computer System

    Science.gov (United States)

    Cheung, Samson H.; VanDalsem, William (Technical Monitor)

    1994-01-01

    Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advance computational fluid dynamics codes, which is computationally expensive in mainframe supercomputer. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computer on a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package has been applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.

  17. Phoebus: Network Middleware for Next-Generation Network Computing

    Energy Technology Data Exchange (ETDEWEB)

    Martin Swany

    2012-06-16

    The Phoebus project investigated algorithms, protocols, and middleware infrastructure to improve end-to-end performance in high speed, dynamic networks. The Phoebus system essentially serves as an adaptation point for networks with disparate capabilities or provisioning. This adaptation can take a variety of forms including acting as a provisioning agent across multiple signaling domains, providing transport protocol adaptation points, and mapping between distributed resource reservation paradigms and the optical network control plane. We have successfully developed the system and demonstrated benefits. The Phoebus system was deployed in Internet2 and in ESnet, as well as in GEANT2, RNP in Brazil and over international links to Korea and Japan. Phoebus is a system that implements a new protocol and associated forwarding infrastructure for improving throughput in high-speed dynamic networks. It was developed to serve the needs of large DOE applications on high-performance networks. The idea underlying the Phoebus model is to embed Phoebus Gateways (PGs) in the network as on-ramps to dynamic circuit networks. The gateways act as protocol translators that allow legacy applications to use dedicated paths with high performance.

  18. An evolutionary game for the diffusion of rumor in complex networks

    Science.gov (United States)

    Li, Dandan; Ma, Jing; Tian, Zihao; Zhu, Hengmin

    2015-09-01

    In this paper, we investigate the rumor diffusion process according to the evolutionary game framework. By using three real social network datasets, we find that increasing the judgment ability of individuals could curb the diffusion of rumor effectively. Under the same level of punishment cost, there are more spreaders in the network that has larger average degree. Moreover, the punishment fraction has more significant impact than the risk coefficient on the controlling of rumor diffusion. There exist some optimal risk coefficients and punishment fractions that could help more people refusing to spread rumor. In addition, the effect of the tie strength on the final fraction of spreaders is investigated. The results indicate that the rumor can be suppressed soon if the individuals preferentially select the neighbor either weaker or stronger ties persistently to update their strategy. However, choosing neighbor blindly may promote the spread of rumor. Finally, by comparing three kinds of punishment mechanisms, we show that taking the lead in punishing the higher degree nodes is the most effective measure to reduce the coverage of rumor.

  19. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    Science.gov (United States)

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  20. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    Directory of Open Access Journals (Sweden)

    Chien-Ho Ko

    2013-01-01

    Full Text Available Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs, Fuzzy Logic (FL, and Neural Networks (NNs. FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  1. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  2. Evolving ATLAS Computing For Today’s Networks

    CERN Document Server

    Campana, S; The ATLAS collaboration; Jezequel, S; Negri, G; Serfon, C; Ueda, I

    2012-01-01

    The ATLAS computing infrastructure was designed many years ago based on the assumption of rather limited network connectivity between computing centres. ATLAS sites have been organized in a hierarchical model, where only a static subset of all possible network links can be exploited and a static subset of well connected sites (CERN and the T1s) can cover important functional roles such as hosting master copies of the data. The pragmatic adoption of such simplified approach, in respect of a more relaxed scenario interconnecting all sites, was very beneficial during the commissioning of the ATLAS distributed computing system and essential in reducing the operational cost during the first two years of LHC data taking. In the mean time, networks evolved far beyond this initial scenario: while a few countries are still poorly connected with the rest of the WLCG infrastructure, most of the ATLAS computing centres are now efficiently interlinked. Our operational experience in running the computing infrastructure in ...

  3. Networks and Project Work: Alternative Pedagogies for Writing with Computers.

    Science.gov (United States)

    Susser, Bernard

    1993-01-01

    Describes three main uses of computers for writing as a social activity: networking, telecommunications, and project work. Examines advantages and disadvantages of teaching writing on a network. Argues that reports in the literature and the example of an English as a foreign language writing class show that project work shares most of the…

  4. Computer Networking Strategies for Building Collaboration among Science Educators.

    Science.gov (United States)

    Aust, Ronald

    The development and dissemination of science materials can be associated with technical delivery systems such as the Unified Network for Informatics in Teacher Education (UNITE). The UNITE project was designed to investigate ways for using computer networking to improve communications and collaboration among university schools of education and…

  5. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks.

    Science.gov (United States)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013)]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012)]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  6. A Multiobjective Evolutionary Algorithm Based on Structural and Attribute Similarities for Community Detection in Attributed Networks.

    Science.gov (United States)

    Li, Zhangtao; Liu, Jing; Wu, Kai

    2017-08-16

    Most of the existing community detection algorithms are based on vertex connectivity. While in many real networks, each vertex usually has one or more attributes describing its properties which are often homogeneous in a cluster. Such networks can be modeled as attributed graphs, whose attributes sometimes are equally important to topological structure in graph clustering. One important challenge is to detect communities considering both topological structure and vertex properties simultaneously. To this propose, a multiobjective evolutionary algorithm based on structural and attribute similarities (MOEA-SA) is first proposed to solve the attributed graph clustering problems in this paper. In MOEA-SA, a new objective named as attribute similarity SA is proposed and another objective employed is the modularity Q. A hybrid representation is used and a neighborhood correction strategy is designed to repair the wrongly assigned genes through making balance between structural and attribute information. Moreover, an effective multi-individual-based mutation operator is designed to guide the evolution toward the good direction. The performance of MOEA-SA is validated on several real Facebook attributed graphs and several ego-networks with multiattribute. Two measurements, namely density T and entropy E, are used to evaluate the quality of communities obtained. Experimental results demonstrate the effectiveness of MOEA-SA and the systematic comparisons with existing methods show that MOEA-SA can get better values of T and E in each graph and find more relevant communities with practical meanings. Knee points corresponding to the best compromise solutions are calculated to guide decision makers to make convenient choices.

  7. Impact of heterogeneous activity and community structure on the evolutionary success of cooperators in social networks

    Science.gov (United States)

    Wu, Zhi-Xi; Rong, Zhihai; Yang, Han-Xin

    2015-01-01

    Recent empirical studies suggest that heavy-tailed distributions of human activities are universal in real social dynamics [L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr., S. Havlin, and H. A. Makse, Sci. Rep. 3, 1783 (2013), 10.1038/srep01783]. On the other hand, community structure is ubiquitous in biological and social networks [M. E. J. Newman, Nat. Phys. 8, 25 (2012), 10.1038/nphys2162]. Motivated by these facts, we here consider the evolutionary prisoner's dilemma game taking place on top of a real social network to investigate how the community structure and the heterogeneity in activity of individuals affect the evolution of cooperation. In particular, we account for a variation of the birth-death process (which can also be regarded as a proportional imitation rule from a social point of view) for the strategy updating under both weak and strong selection (meaning the payoffs harvested from games contribute either slightly or heavily to the individuals' performance). By implementing comparative studies, where the players are selected either randomly or in terms of their actual activities to play games with their immediate neighbors, we figure out that heterogeneous activity benefits the emergence of collective cooperation in a harsh environment (the action for cooperation is costly) under strong selection, whereas it impairs the formation of altruism under weak selection. Moreover, we find that the abundance of communities in the social network can evidently foster the formation of cooperation under strong selection, in contrast to the games evolving on randomized counterparts. Our results are therefore helpful for us to better understand the evolution of cooperation in real social systems.

  8. Neuromorphic computing applications for network intrusion detection systems

    Science.gov (United States)

    Garcia, Raymond C.; Pino, Robinson E.

    2014-05-01

    What is presented here is a sequence of evolving concepts for network intrusion detection. These concepts start with neuromorphic structures for XOR-based signature matching and conclude with computationally based network intrusion detection system with an autonomous structuring algorithm. There is evidence that neuromorphic computation for network intrusion detection is fractal in nature under certain conditions. Specifically, the neural structure can take fractal form when simple neural structuring is autonomous. A neural structure is fractal by definition when its fractal dimension exceeds the synaptic matrix dimension. The authors introduce the use of fractal dimension of the neuromorphic structure as a factor in the autonomous restructuring feedback loop.

  9. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    2013-01-01

    that are shown empirically to be scalable. Given a road network, a set of existing facilities, and a collection of customer route traversals, an optimal segment query returns the optimal road network segment(s) for a new facility. We propose a practical framework for computing this query, where each route...... that adopt different approaches to computing the query. Algorithm AUG uses graph augmentation, and ITE uses iterative road-network partitioning. Empirical studies with real data sets demonstrate that the algorithms are capable of offering high performance in realistic settings....

  10. Computational study of evolutionary selection pressure on rainbow trout estrogen receptors.

    Directory of Open Access Journals (Sweden)

    Conrad Shyu

    2010-03-01

    Full Text Available Molecular dynamics simulations were used to determine the binding affinities between the hormone 17-estradiol (E2 and different estrogen receptor (ER isoforms in the rainbow trout, Oncorhynchus mykiss. Previous phylogenetic analysis indicates that a whole genome duplication prior to the divergence of ray-finned fish led to two distinct ER isoforms, ER and ER, and the recent whole genome duplication in the ancestral salmonid created two ER isoforms, ER and ER. The objective of our computational studies is to provide insight into the underlying evolutionary pressures on these isoforms. For the ER subtype our results show that E2 binds preferentially to ER over ER. Tests of lineage specific N/S ratios indicate that the ligand binding domain of the ER gene is evolving under relaxed selection relative to all other ER genes. Comparison with the highly conserved DNA binding domain suggests that ER may be undergoing neofunctionalization possibly by binding to another ligand. By contrast, both ER and ER bind similarly to E2 and the best fitting model of selection indicates that the ligand binding domain of all ER genes are evolving under the same level of purifying selection, comparable to ER.

  11. Computational study of evolutionary selection pressure on rainbow trout estrogen receptors.

    Science.gov (United States)

    Shyu, Conrad; Brown, Celeste J; Ytreberg, F Marty

    2010-03-09

    Molecular dynamics simulations were used to determine the binding affinities between the hormone 17-estradiol (E2) and different estrogen receptor (ER) isoforms in the rainbow trout, Oncorhynchus mykiss. Previous phylogenetic analysis indicates that a whole genome duplication prior to the divergence of ray-finned fish led to two distinct ER isoforms, ER and ER, and the recent whole genome duplication in the ancestral salmonid created two ER isoforms, ER and ER. The objective of our computational studies is to provide insight into the underlying evolutionary pressures on these isoforms. For the ER subtype our results show that E2 binds preferentially to ER over ER. Tests of lineage specific N/S ratios indicate that the ligand binding domain of the ER gene is evolving under relaxed selection relative to all other ER genes. Comparison with the highly conserved DNA binding domain suggests that ER may be undergoing neofunctionalization possibly by binding to another ligand. By contrast, both ER and ER bind similarly to E2 and the best fitting model of selection indicates that the ligand binding domain of all ER genes are evolving under the same level of purifying selection, comparable to ER.

  12. Using evolutionary computation to optimize an SVM used in detecting buried objects in FLIR imagery

    Science.gov (United States)

    Paino, Alex; Popescu, Mihail; Keller, James M.; Stone, Kevin

    2013-06-01

    In this paper we describe an approach for optimizing the parameters of a Support Vector Machine (SVM) as part of an algorithm used to detect buried objects in forward looking infrared (FLIR) imagery captured by a camera installed on a moving vehicle. The overall algorithm consists of a spot-finding procedure (to look for potential targets) followed by the extraction of several features from the neighborhood of each spot. The features include local binary pattern (LBP) and histogram of oriented gradients (HOG) as these are good at detecting texture classes. Finally, we project and sum each hit into UTM space along with its confidence value (obtained from the SVM), producing a confidence map for ROC analysis. In this work, we use an Evolutionary Computation Algorithm (ECA) to optimize various parameters involved in the system, such as the combination of features used, parameters on the Canny edge detector, the SVM kernel, and various HOG and LBP parameters. To validate our approach, we compare results obtained from an SVM using parameters obtained through our ECA technique with those previously selected by hand through several iterations of "guess and check".

  13. Exploiting genomic knowledge in optimising molecular breeding programmes: algorithms from evolutionary computing.

    Directory of Open Access Journals (Sweden)

    Steve O'Hagan

    Full Text Available Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock, nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC, but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic search space (G-algorithms with some (albeit well-tuned ones that do not (F-algorithms. For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any 'prior knowledge' of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information.

  14. Understanding Networks of Computing Chemical Droplet Neurons Based on Information Flow.

    Science.gov (United States)

    Gruenert, Gerd; Gizynski, Konrad; Escuela, Gabi; Ibrahim, Bashar; Gorecki, Jerzy; Dittrich, Peter

    2015-11-01

    In this paper, we present general methods that can be used to explore the information processing potential of a medium composed of oscillating (self-exciting) droplets. Networks of Belousov-Zhabotinsky (BZ) droplets seem especially interesting as chemical reaction-diffusion computers because their time evolution is qualitatively similar to neural network activity. Moreover, such networks can be self-generated in microfluidic reactors. However, it is hard to track and to understand the function performed by a medium composed of droplets due to its complex dynamics. Corresponding to recurrent neural networks, the flow of excitations in a network of droplets is not limited to a single direction and spreads throughout the whole medium. In this work, we analyze the operation performed by droplet systems by monitoring the information flow. This is achieved by measuring mutual information and time delayed mutual information of the discretized time evolution of individual droplets. To link the model with reality, we use experimental results to estimate the parameters of droplet interactions. We exemplarily investigate an evolutionary generated droplet structure that operates as a NOR gate. The presented methods can be applied to networks composed of at least hundreds of droplets.

  15. Classification and Analysis of Computer Network Traffic

    DEFF Research Database (Denmark)

    Bujlow, Tomasz

    2014-01-01

    for traffic classification, which can be used for nearly real-time processing of big amounts of data using affordable CPU and memory resources. Other questions are related to methods for real-time estimation of the application Quality of Service (QoS) level based on the results obtained by the traffic......Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models...... classifier. This thesis is focused on topics connected with traffic classification and analysis, while the work on methods for QoS assessment is limited to defining the connections with the traffic classification and proposing a general algorithm. We introduced the already known methods for traffic...

  16. Optical interconnection networks for high-performance computing systems.

    Science.gov (United States)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  17. Active system area networks for data intensive computations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-04-01

    The goal of the Active System Area Networks (ASAN) project is to develop hardware and software technologies for the implementation of active system area networks (ASANs). The use of the term ''active'' refers to the ability of the network interfaces to perform application-specific as well as system level computations in addition to their traditional role of data transfer. This project adopts the view that the network infrastructure should be an active computational entity capable of supporting certain classes of computations that would otherwise be performed on the host CPUs. The result is a unique network-wide programming model where computations are dynamically placed within the host CPUs or the NIs depending upon the quality of service demands and network/CPU resource availability. The projects seeks to demonstrate that such an approach is a better match for data intensive network-based applications and that the advent of low-cost powerful embedded processors and configurable hardware makes such an approach economically viable and desirable.

  18. Console Networks for Major Computer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ophir, D; Shepherd, B; Spinrad, R J; Stonehill, D

    1966-07-22

    A concept for interactive time-sharing of a major computer system is developed in which satellite computers mediate between the central computing complex and the various individual user terminals. These techniques allow the development of a satellite system substantially independent of the details of the central computer and its operating system. Although the user terminals' roles may be rich and varied, the demands on the central facility are merely those of a tape drive or similar batched information transfer device. The particular system under development provides service for eleven visual display and communication consoles, sixteen general purpose, low rate data sources, and up to thirty-one typewriters. Each visual display provides a flicker-free image of up to 4000 alphanumeric characters or tens of thousands of points by employing a swept raster picture generating technique directly compatible with that of commercial television. Users communicate either by typewriter or a manually positioned light pointer.

  19. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  20. Realistic computer network simulation for network intrusion detection dataset generation

    Science.gov (United States)

    Payer, Garrett

    2015-05-01

    The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.

  1. 1st International Conference on Signal, Networks, Computing, and Systems

    CERN Document Server

    Mohapatra, Durga; Nagar, Atulya; Sahoo, Manmath

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on Signal, Networks, Computing, and Systems (ICSNCS 2016) held at Jawaharlal Nehru University, New Delhi, India during February 25–27, 2016. The book is organized in to two volumes and primarily focuses on theory and applications in the broad areas of communication technology, computer science and information security. The book aims to bring together the latest scientific research works of academic scientists, professors, research scholars and students in the areas of signal, networks, computing and systems detailing the practical challenges encountered and the solutions adopted.

  2. Dynamical Systems Theory for Transparent Symbolic Computation in Neuronal Networks

    OpenAIRE

    Carmantini, Giovanni Sirio

    2017-01-01

    In this thesis, we explore the interface between symbolic and dynamical system computation, with particular regard to dynamical system models of neuronal networks. In doing so, we adhere to a definition of computation as the physical realization of a formal system, where we say that a dynamical system performs a computation if a correspondence can be found between its dynamics on a vectorial space and the formal system’s dynamics on a symbolic space. Guided by this definition, we characterize...

  3. CX: A Scalable, Robust Network for Parallel Computing

    Directory of Open Access Journals (Sweden)

    Peter Cappello

    2002-01-01

    Full Text Available CX, a network-based computational exchange, is presented. The system's design integrates variations of ideas from other researchers, such as work stealing, non-blocking tasks, eager scheduling, and space-based coordination. The object-oriented API is simple, compact, and cleanly separates application logic from the logic that supports interprocess communication and fault tolerance. Computations, of course, run to completion in the presence of computational hosts that join and leave the ongoing computation. Such hosts, or producers, use task caching and prefetching to overlap computation with interprocessor communication. To break a potential task server bottleneck, a network of task servers is presented. Even though task servers are envisioned as reliable, the self-organizing, scalable network of n- servers, described as a sibling-connected height-balanced fat tree, tolerates a sequence of n-1 server failures. Tasks are distributed throughout the server network via a simple "diffusion" process. CX is intended as a test bed for research on automated silent auctions, reputation services, authentication services, and bonding services. CX also provides a test bed for algorithm research into network-based parallel computation.

  4. Signaling networks: information flow, computation, and decision making.

    Science.gov (United States)

    Azeloglu, Evren U; Iyengar, Ravi

    2015-04-01

    Signaling pathways come together to form networks that connect receptors to many different cellular machines. Such networks not only receive and transmit signals but also process information. The complexity of these networks requires the use of computational models to understand how information is processed and how input-output relationships are determined. Two major computational approaches used to study signaling networks are graph theory and dynamical modeling. Both approaches are useful; network analysis (application of graph theory) helps us understand how the signaling network is organized and what its information-processing capabilities are, whereas dynamical modeling helps us determine how the system changes in time and space upon receiving stimuli. Computational models have helped us identify a number of emergent properties that signaling networks possess. Such properties include ultrasensitivity, bistability, robustness, and noise-filtering capabilities. These properties endow cell-signaling networks with the ability to ignore small or transient signals and/or amplify signals to drive cellular machines that spawn numerous physiological functions associated with different cell states. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Integrating Network Management for Cloud Computing Services

    Science.gov (United States)

    2015-06-01

    DeviceConfigIsControl- lable is calculated based on whether the device is powered up, whether the device can be reachable via SSH /Telnet from the management network...lines of C# and C++ code, plus a number of internal libraries . At its core, it is a highly-available RESTful web service with persistent storage. Below

  6. Propagation models for computing biochemical reaction networks

    OpenAIRE

    Henzinger, Thomas A; Mateescu, Maria

    2011-01-01

    We introduce propagation models, a formalism designed to support general and efficient data structures for the transient analysis of biochemical reaction networks. We give two use cases for propagation abstract data types: the uniformization method and numerical integration. We also sketch an implementation of a propagation abstract data type, which uses abstraction to approximate states.

  7. Predictive Control of Networked Multiagent Systems via Cloud Computing.

    Science.gov (United States)

    Liu, Guo-Ping

    2017-01-18

    This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.

  8. Optimized smart grid energy procurement for LTE networks using evolutionary algorithms

    KAUST Repository

    Ghazzai, Hakim

    2014-11-01

    Energy efficiency aspects in cellular networks can contribute significantly to reducing worldwide greenhouse gas emissions. The base station (BS) sleeping strategy has become a well-known technique to achieve energy savings by switching off redundant BSs mainly for lightly loaded networks. Moreover, introducing renewable energy as an alternative power source has become a real challenge among network operators. In this paper, we formulate an optimization problem that aims to maximize the profit of Long-Term Evolution (LTE) cellular operators and to simultaneously minimize the CO2 emissions in green wireless cellular networks without affecting the desired quality of service (QoS). The BS sleeping strategy lends itself to an interesting implementation using several heuristic approaches, such as the genetic (GA) and particle swarm optimization (PSO) algorithms. In this paper, we propose GA-based and PSO-based methods that reduce the energy consumption of BSs by not only shutting down underutilized BSs but by optimizing the amounts of energy procured from different retailers (renewable energy and electricity retailers), as well. A comparison with another previously proposed algorithm is also carried out to evaluate the performance and the computational complexity of the employed methods.

  9. The Human Frontal Lobes and Frontal Network Systems: An Evolutionary, Clinical, and Treatment Perspective

    Science.gov (United States)

    Hoffmann, Michael

    2013-01-01

    Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy. PMID:23577266

  10. Evolutionary programming technique for reducing complexity of artifical neural networks for breast cancer diagnosis

    Science.gov (United States)

    Lo, Joseph Y.; Land, Walker H., Jr.; Morrison, Clayton T.

    2000-06-01

    An evolutionary programming (EP) technique was investigated to reduce the complexity of artificial neural network (ANN) models that predict the outcome of mammography-induced breast biopsy. By combining input variables consisting of mammography lesion descriptors and patient history data, the ANN predicted whether the lesion was benign or malignant, which may aide in reducing the number of unnecessary benign biopsies and thus the cost of mammography screening of breast cancer. The EP has the ability to optimize the ANN both structurally and parametrically. An EP was partially optimized using a data set of 882 biopsy-proven cases from Duke University Medical Center. Although many different architectures were evolved, the best were often perceptrons with no hidden nodes. A rank ordering of the inputs was performed using twenty independent EP runs. This confirmed the predictive value of the mass margin and patient age variables, and revealed the unexpected usefulness of the history of previous breast cancer. Further work is required to improve the performance of the EP over all cases in general and calcification cases in particular.

  11. An evolutionary vaccination game in the modified activity driven network by considering the closeness

    Science.gov (United States)

    Han, Dun; Sun, Mei

    2016-02-01

    In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ / μ. However, when vaccination is allowed the final density of recovered individual first increases and then decreases with the value of λ / μ. Two variables are designed to identify the relation between the individuals' activities and their states. The results draw that both recovered and vaccinated frequency increase with the increase of the individuals' activities. Meanwhile, the immune fee has less impact on the individuals' vaccination than the closeness. While the λ / μ is in a certain range, with the increase of the value of λ / μ, the recovered frequency of the whole crowds reduces. Our results, therefore, reveal the fact that the best of intentions may lead to backfire.

  12. The architecture of river networks can drive the evolutionary dynamics of aquatic populations.

    Science.gov (United States)

    Thomaz, Andréa T; Christie, Mark R; Knowles, L Lacey

    2016-03-01

    It is widely recognized that physical landscapes can shape genetic variation within and between populations. However, it is not well understood how riverscapes, with their complex architectures, affect patterns of neutral genetic diversity. Using a spatially explicit agent-based modeling (ABM) approach, we evaluate the genetic consequences of dendritic river shapes on local population structure. We disentangle the relative contribution of specific river properties to observed patterns of genetic variation by evaluating how different branching architectures and downstream flow regimes affect the genetic structure of populations situated within river networks. Irrespective of the river length, our results illustrate that the extent of river branching, confluence position, and levels of asymmetric downstream migration dictate patterns of genetic variation in riverine populations. Comparisons between simple and highly branched rivers show a 20-fold increase in the overall genetic diversity and a sevenfold increase in the genetic differentiation between local populations. Given that most rivers have complex architectures, these results highlight the importance of incorporating riverscape information into evolutionary models of aquatic species and could help explain why riverine fishes represent a disproportionately large amount of global vertebrate diversity per unit of habitable area. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  13. Low Computational Complexity Network Coding For Mobile Networks

    DEFF Research Database (Denmark)

    Heide, Janus

    2012-01-01

    -flow coding technique. One of the key challenges of this technique is its inherent computational complexity which can lead to high computational load and energy consumption in particular on the mobile platforms that are the target platform in this work. To increase the coding throughput several...... library and will be available for researchers and students in the future. Chapter 1 introduces motivating examples and the state of art when this work commenced. In Chapter 2 selected publications are presented and how their content is related. Chapter 3 presents the main outcome of the work and briefly...

  14. Development of Computer Science Disciplines - A Social Network Analysis Approach

    CERN Document Server

    Pham, Manh Cuong; Jarke, Matthias

    2011-01-01

    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and workshop proceedings. That results in an imprecise and incomplete analysis of the computer science knowledge. This paper presents an analysis on the computer science knowledge network constructed from all types of publications, aiming at providing a complete view of computer science research. Based on the combination of two important digital libraries (DBLP and CiteSeerX), we study the knowledge network created at journal/conference level using citation linkage, to identify the development of sub-disciplines. We investiga...

  15. FY 1999 Blue Book: Computing, Information, and Communications: Networked Computing for the 21st Century

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — U.S.research and development R and D in computing, communications, and information technologies has enabled unprecedented scientific and engineering advances,...

  16. Brain-Computer Evolutionary Multi-Objective Optimization (BC-EMO): a genetic algorithm adapting to the decision maker

    OpenAIRE

    Battiti, Roberto; Passerini, Andrea

    2009-01-01

    The centrality of the decision maker (DM) is widely recognized in the Multiple Criteria Decision Making community. This translates into emphasis on seamless human-computer interaction, and adaptation of the solution technique to the knowledge which is progressively acquired from the DM. This paper adopts the methodology of Reactive Optimization(RO) for evolutionary interactive multi-objective optimization. RO follows to the paradigm of "learning while optimizing", through the use of online ma...

  17. Dynamic Defensive Posture for Computer Network Defence

    Science.gov (United States)

    2006-12-01

    des algorithmes pour le classement de la sévérité des attaques sur le réseau et des mécanismes permettant d’attribuer une valeur aux éléments...power outages and social engineering attacks. Because it has such a large knowledge base on which to draw, it can reason very thoroughly about network...service attacks, eavesdropping and sniffing attacks on data in transit, or data tampering; more complex still would be models of social engineering

  18. Characterization and Planning for Computer Network Operations

    Science.gov (United States)

    2010-07-01

    Cell phones, personal computers, laptops, and personal digital assistants represent a small number of the technology-based devices used around the...C. Simpson, editors. Assistive Technol- ogy and Artificial Intelligence, Applications in Robotics, User Interfaces and Natural Language Processing...retrieval agents: Experiments with automated web browsing. pages 13–18, 1995. [206] V. A. Siris and F. Papagalou. Application of anomaly detection

  19. Wirelessly powered sensor networks and computational RFID

    CERN Document Server

    2013-01-01

    The Wireless Identification and Sensing Platform (WISP) is the first of a new class of RF-powered sensing and computing systems.  Rather than being powered by batteries, these sensor systems are powered by radio waves that are either deliberately broadcast or ambient.  Enabled by ongoing exponential improvements in the energy efficiency of microelectronics, RF-powered sensing and computing is rapidly moving along a trajectory from impossible (in the recent past), to feasible (today), toward practical and commonplace (in the near future). This book is a collection of key papers on RF-powered sensing and computing systems including the WISP.  Several of the papers grew out of the WISP Challenge, a program in which Intel Corporation donated WISPs to academic applicants who proposed compelling WISP-based projects.  The book also includes papers presented at the first WISP Summit, a workshop held in Berkeley, CA in association with the ACM Sensys conference, as well as other relevant papers. The book provides ...

  20. Six Networks on a Universal Neuromorphic Computing Substrate

    Science.gov (United States)

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A.; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality. PMID:23423583

  1. Computing Path Tables for Quickest Multipaths In Computer Networks

    Energy Technology Data Exchange (ETDEWEB)

    Grimmell, W.C.

    2004-12-21

    We consider the transmission of a message from a source node to a terminal node in a network with n nodes and m links where the message is divided into parts and each part is transmitted over a different path in a set of paths from the source node to the terminal node. Here each link is characterized by a bandwidth and delay. The set of paths together with their transmission rates used for the message is referred to as a multipath. We present two algorithms that produce a minimum-end-to-end message delay multipath path table that, for every message length, specifies a multipath that will achieve the minimum end-to-end delay. The algorithms also generate a function that maps the minimum end-to-end message delay to the message length. The time complexities of the algorithms are O(n{sup 2}((n{sup 2}/logn) + m)min(D{sub max}, C{sub max})) and O(nm(C{sub max} + nmin(D{sub max}, C{sub max}))) when the link delays and bandwidths are non-negative integers. Here D{sub max} and C{sub max} are respectively the maximum link delay and maximum link bandwidth and C{sub max} and D{sub max} are greater than zero.

  2. The Poor Man's Guide to Computer Networks and their Applications

    DEFF Research Database (Denmark)

    Sharp, Robin

    2003-01-01

    These notes for DTU course 02220, Concurrent Programming, give an introduction to computer networks, with focus on the modern Internet. Basic Internet protocols such as IP, TCP and UDP are presented, and two Internet application protocols, SMTP and HTTP, are described in some detail. Techniques f...... for network programming are described, with concrete examples in Java. Techniques considered include simple socket programming, RMI, Corba, and Web services with SOAP....

  3. Computational design of genomic transcriptional networks with adaptation to varying environments

    Science.gov (United States)

    Carrera, Javier; Elena, Santiago F.; Jaramillo, Alfonso

    2012-01-01

    Transcriptional profiling has been widely used as a tool for unveiling the coregulations of genes in response to genetic and environmental perturbations. These coregulations have been used, in a few instances, to infer global transcriptional regulatory models. Here, using the large amount of transcriptomic information available for the bacterium Escherichia coli, we seek to understand the design principles determining the regulation of its transcriptome. Combining transcriptomic and signaling data, we develop an evolutionary computational procedure that allows obtaining alternative genomic transcriptional regulatory network (GTRN) that still maintains its adaptability to dynamic environments. We apply our methodology to an E. coli GTRN and show that it could be rewired to simpler transcriptional regulatory structures. These rewired GTRNs still maintain the global physiological response to fluctuating environments. Rewired GTRNs contain 73% fewer regulated operons. Genes with similar functions and coordinated patterns of expression across environments are clustered into longer regulated operons. These synthetic GTRNs are more sensitive and show a more robust response to challenging environments. This result illustrates that the natural configuration of E. coli GTRN does not necessarily result from selection for robustness to environmental perturbations, but that evolutionary contingencies may have been important as well. We also discuss the limitations of our methodology in the context of the demand theory. Our procedure will be useful as a novel way to analyze global transcription regulation networks and in synthetic biology for the de novo design of genomes. PMID:22927389

  4. Efficient Capacity Computation and Power Optimization for Relay Networks

    CERN Document Server

    Parvaresh, Farzad

    2011-01-01

    The capacity or approximations to capacity of various single-source single-destination relay network models has been characterized in terms of the cut-set upper bound. In principle, a direct computation of this bound requires evaluating the cut capacity over exponentially many cuts. We show that the minimum cut capacity of a relay network under some special assumptions can be cast as a minimization of a submodular function, and as a result, can be computed efficiently. We use this result to show that the capacity, or an approximation to the capacity within a constant gap for the Gaussian, wireless erasure, and Avestimehr-Diggavi-Tse deterministic relay network models can be computed in polynomial time. We present some empirical results showing that computing constant-gap approximations to the capacity of Gaussian relay networks with around 300 nodes can be done in order of minutes. For Gaussian networks, cut-set capacities are also functions of the powers assigned to the nodes. We consider a family of power o...

  5. Building Social Networks with Computer Networks: A New Deal for Teaching and Learning.

    Science.gov (United States)

    Thurston, Thomas

    2001-01-01

    Discusses the role of computer technology and Web sites in expanding social networks. Focuses on the New Deal Network using two examples: (1) uniting a Julia C. Lathrop Housing (Chicago, Illinois) resident with a university professor; and (2) saving the Hugo Gellert art murals at the Seward Park Coop Apartments (New York). (CMK)

  6. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  7. Virus world as an evolutionary network of viruses and capsidless selfish elements.

    Science.gov (United States)

    Koonin, Eugene V; Dolja, Valerian V

    2014-06-01

    Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus "self" that defines the identity of deep, ancient viral lineages. However, several other widespread viral "hallmark genes" encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements

    Science.gov (United States)

    Dolja, Valerian V.

    2014-01-01

    SUMMARY Viruses were defined as one of the two principal types of organisms in the biosphere, namely, as capsid-encoding organisms in contrast to ribosome-encoding organisms, i.e., all cellular life forms. Structurally similar, apparently homologous capsids are present in a huge variety of icosahedral viruses that infect bacteria, archaea, and eukaryotes. These findings prompted the concept of the capsid as the virus “self” that defines the identity of deep, ancient viral lineages. However, several other widespread viral “hallmark genes” encode key components of the viral replication apparatus (such as polymerases and helicases) and combine with different capsid proteins, given the inherently modular character of viral evolution. Furthermore, diverse, widespread, capsidless selfish genetic elements, such as plasmids and various types of transposons, share hallmark genes with viruses. Viruses appear to have evolved from capsidless selfish elements, and vice versa, on multiple occasions during evolution. At the earliest, precellular stage of life's evolution, capsidless genetic parasites most likely emerged first and subsequently gave rise to different classes of viruses. In this review, we develop the concept of a greater virus world which forms an evolutionary network that is held together by shared conserved genes and includes both bona fide capsid-encoding viruses and different classes of capsidless replicons. Theoretical studies indicate that selfish replicons (genetic parasites) inevitably emerge in any sufficiently complex evolving ensemble of replicators. Therefore, the key signature of the greater virus world is not the presence of a capsid but rather genetic, informational parasitism itself, i.e., various degrees of reliance on the information processing systems of the host. PMID:24847023

  9. Service-oriented Software Defined Optical Networks for Cloud Computing

    Science.gov (United States)

    Liu, Yuze; Li, Hui; Ji, Yuefeng

    2017-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.

  10. A local area computer network expert system framework

    Science.gov (United States)

    Dominy, Robert

    1987-01-01

    Over the past years an expert system called LANES designed to detect and isolate faults in the Goddard-wide Hybrid Local Area Computer Network (LACN) was developed. As a result, the need for developing a more generic LACN fault isolation expert system has become apparent. An object oriented approach was explored to create a set of generic classes, objects, rules, and methods that would be necessary to meet this need. The object classes provide a convenient mechanism for separating high level information from low level network specific information. This approach yeilds a framework which can be applied to different network configurations and be easily expanded to meet new needs.

  11. Test experience on an ultrareliable computer communication network

    Science.gov (United States)

    Abbott, L. W.

    1984-01-01

    The dispersed sensor processing mesh (DSPM) is an experimental, ultra-reliable, fault-tolerant computer communications network that exhibits an organic-like ability to regenerate itself after suffering damage. The regeneration is accomplished by two routines - grow and repair. This paper discusses the DSPM concept for achieving fault tolerance and provides a brief description of the mechanization of both the experiment and the six-node experimental network. The main topic of this paper is the system performance of the growth algorithm contained in the grow routine. The characteristics imbued to DSPM by the growth algorithm are also discussed. Data from an experimental DSPM network and software simulation of larger DSPM-type networks are used to examine the inherent limitation on growth time by the growth algorithm and the relationship of growth time to network size and topology.

  12. Analytical Computation of the Epidemic Threshold on Temporal Networks

    Directory of Open Access Journals (Sweden)

    Eugenio Valdano

    2015-04-01

    Full Text Available The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.

  13. Propagation of computer virus both across the Internet and external computers: A complex-network approach

    Science.gov (United States)

    Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi; Jin, Jian; He, Li

    2014-08-01

    Based on the assumption that external computers (particularly, infected external computers) are connected to the Internet, and by considering the influence of the Internet topology on computer virus spreading, this paper establishes a novel computer virus propagation model with a complex-network approach. This model possesses a unique (viral) equilibrium which is globally attractive. Some numerical simulations are also given to illustrate this result. Further study shows that the computers with higher node degrees are more susceptible to infection than those with lower node degrees. In this regard, some appropriate protective measures are suggested.

  14. Identifying failure in a tree network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Pinnow, Kurt W.; Wallenfelt, Brian P.

    2010-08-24

    Methods, parallel computers, and products are provided for identifying failure in a tree network of a parallel computer. The parallel computer includes one or more processing sets including an I/O node and a plurality of compute nodes. For each processing set embodiments include selecting a set of test compute nodes, the test compute nodes being a subset of the compute nodes of the processing set; measuring the performance of the I/O node of the processing set; measuring the performance of the selected set of test compute nodes; calculating a current test value in dependence upon the measured performance of the I/O node of the processing set, the measured performance of the set of test compute nodes, and a predetermined value for I/O node performance; and comparing the current test value with a predetermined tree performance threshold. If the current test value is below the predetermined tree performance threshold, embodiments include selecting another set of test compute nodes. If the current test value is not below the predetermined tree performance threshold, embodiments include selecting from the test compute nodes one or more potential problem nodes and testing individually potential problem nodes and links to potential problem nodes.

  15. Regional Computation of TEC Using a Neural Network Model

    Science.gov (United States)

    Leandro, R. F.; Santos, M. C.

    2004-05-01

    One of the main sources of errors of GPS measurements is the ionosphere refraction. As a dispersive medium, the ionosphere allow its influence to be computed by using dual frequency receivers. In the case of single frequency receivers it is necessary to use models that tell us how big the ionospheric refraction is. The GPS broadcast message carries parameters of this model, namely Klobuchar model. Dual frequency receivers allow to estimate the influence of ionosphere in the GPS signal by the computation of TEC (Total Electron Content) values, that have a direct relationship with the magnitude of the delay caused by the ionosphere. One alternative is to create a regional model based on a network of dual frequency receivers. In this case, the regional behaviour of ionosphere is modelled in a way that it is possible to estimate the TEC values into or near this region. This regional model can be based on polynomials, for example. In this work we will present a Neural Network-based model to the regional computation of TEC. The advantage of using a Neural Network is that it is not necessary to have a great knowledge on the behaviour of the modelled surface due to the adaptation capability of neural networks training process, that is an iterative adjust of the synaptic weights in function of residuals, using the training parameters. Therefore, the previous knowledge of the modelled phenomena is important to define what kind of and how many parameters are needed to train the neural network so that reasonable results are obtained from the estimations. We have used data from the GPS tracking network in Brazil, and we have tested the accuracy of the new model to all locations where there is a station, accessing the efficiency of the model everywhere. TEC values were computed for each station of the network. After that the training parameters data set for the test station was formed, with the TEC values of all others (all stations, except the test one). The Neural Network was

  16. Design, Implementation and Optimization of Innovative Internet Access Networks, based on Fog Computing and Software Defined Networking

    OpenAIRE

    Iotti, Nicola

    2017-01-01

    1. DESIGN In this dissertation we introduce a new approach to Internet access networks in public spaces, such as Wi-Fi network commonly known as Hotspot, based on Fog Computing (or Edge Computing), Software Defined Networking (SDN) and the deployment of Virtual Machines (VM) and Linux containers, on the edge of the network. In this vision we deploy specialized network elements, called Fog Nodes, on the edge of the network, able to virtualize the physical infrastructure and expose APIs to e...

  17. Small-world networks in neuronal populations: a computational perspective.

    Science.gov (United States)

    Zippo, Antonio G; Gelsomino, Giuliana; Van Duin, Pieter; Nencini, Sara; Caramenti, Gian Carlo; Valente, Maurizio; Biella, Gabriele E M

    2013-08-01

    The analysis of the brain in terms of integrated neural networks may offer insights on the reciprocal relation between structure and information processing. Even with inherent technical limits, many studies acknowledge neuron spatial arrangements and communication modes as key factors. In this perspective, we investigated the functional organization of neuronal networks by explicitly assuming a specific functional topology, the small-world network. We developed two different computational approaches. Firstly, we asked whether neuronal populations actually express small-world properties during a definite task, such as a learning task. For this purpose we developed the Inductive Conceptual Network (ICN), which is a hierarchical bio-inspired spiking network, capable of learning invariant patterns by using variable-order Markov models implemented in its nodes. As a result, we actually observed small-world topologies during learning in the ICN. Speculating that the expression of small-world networks is not solely related to learning tasks, we then built a de facto network assuming that the information processing in the brain may occur through functional small-world topologies. In this de facto network, synchronous spikes reflected functional small-world network dependencies. In order to verify the consistency of the assumption, we tested the null-hypothesis by replacing the small-world networks with random networks. As a result, only small world networks exhibited functional biomimetic characteristics such as timing and rate codes, conventional coding strategies and neuronal avalanches, which are cascades of bursting activities with a power-law distribution. Our results suggest that small-world functional configurations are liable to underpin brain information processing at neuronal level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Using evolutionary conserved modules in gene networks as a strategy to leverage high throughput gene expression queries.

    Directory of Open Access Journals (Sweden)

    Jeanne M Serb

    Full Text Available BACKGROUND: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seed-network of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. METHODOLOGY/PRINCIPAL FINDINGS: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. CONCLUSIONS/SIGNIFICANCE: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will

  19. Merging molecular mechanism and evolution: theory and computation at the interface of biophysics and evolutionary population genetics.

    Science.gov (United States)

    Serohijos, Adrian W R; Shakhnovich, Eugene I

    2014-06-01

    The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy-molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the crucial need to integrate these two disciplines. We first articulate the elements of these approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. A computational study of routing algorithms for realistic transportation networks

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, R.; Marathe, M.V.; Nagel, K.

    1998-12-01

    The authors carry out an experimental analysis of a number of shortest path (routing) algorithms investigated in the context of the TRANSIMS (Transportation Analysis and Simulation System) project. The main focus of the paper is to study how various heuristic and exact solutions, associated data structures affected the computational performance of the software developed especially for realistic transportation networks. For this purpose the authors have used Dallas Fort-Worth road network with very high degree of resolution. The following general results are obtained: (1) they discuss and experimentally analyze various one-one shortest path algorithms, which include classical exact algorithms studied in the literature as well as heuristic solutions that are designed to take into account the geometric structure of the input instances; (2) they describe a number of extensions to the basic shortest path algorithm. These extensions were primarily motivated by practical problems arising in TRANSIMS and ITS (Intelligent Transportation Systems) related technologies. Extensions discussed include--(i) time dependent networks, (ii) multi-modal networks, (iii) networks with public transportation and associated schedules. Computational results are provided to empirically compare the efficiency of various algorithms. The studies indicate that a modified Dijkstra`s algorithm is computationally fast and an excellent candidate for use in various transportation planning applications as well as ITS related technologies.

  1. Improving a Computer Networks Course Using the Partov Simulation Engine

    Science.gov (United States)

    Momeni, B.; Kharrazi, M.

    2012-01-01

    Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…

  2. Biological networks 101: computational modeling for molecular biologists

    NARCIS (Netherlands)

    Scholma, Jetse; Schivo, Stefano; Urquidi Camacho, Ricardo A.; van de Pol, Jan Cornelis; Karperien, Hermanus Bernardus Johannes; Post, Janine Nicole

    2014-01-01

    Computational modeling of biological networks permits the comprehensive analysis of cells and tissues to define molecular phenotypes and novel hypotheses. Although a large number of software tools have been developed, the versatility of these tools is limited by mathematical complexities that

  3. System/360 Computer Assisted Network Scheduling (CANS) System

    Science.gov (United States)

    Brewer, A. C.

    1972-01-01

    Computer assisted scheduling techniques that produce conflict-free and efficient schedules have been developed and implemented to meet needs of the Manned Space Flight Network. CANS system provides effective management of resources in complex scheduling environment. System is automated resource scheduling, controlling, planning, information storage and retrieval tool.

  4. Fish species recognition using computer vision and a neural network

    NARCIS (Netherlands)

    Storbeck, F.; Daan, B.

    2001-01-01

    A system is described to recognize fish species by computer vision and a neural network program. The vision system measures a number of features of fish as seen by a camera perpendicular to a conveyor belt. The features used here are the widths and heights at various locations along the fish. First

  5. Computing Nash Equilibrium in Wireless Ad Hoc Networks

    DEFF Research Database (Denmark)

    Bulychev, Peter E.; David, Alexandre; Larsen, Kim G.

    2012-01-01

    This paper studies the problem of computing Nash equilibrium in wireless networks modeled by Weighted Timed Automata. Such formalism comes together with a logic that can be used to describe complex features such as timed energy constraints. Our contribution is a method for solving this problem...

  6. High Performance Computing and Networking for Science--Background Paper.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    The Office of Technology Assessment is conducting an assessment of the effects of new information technologies--including high performance computing, data networking, and mass data archiving--on research and development. This paper offers a view of the issues and their implications for current discussions about Federal supercomputer initiatives…

  7. An Analysis of Attitudes toward Computer Networks and Internet Addiction.

    Science.gov (United States)

    Tsai, Chin-Chung; Lin, Sunny S. J.

    The purpose of this study was to explore the interplay between young people's attitudes toward computer networks and Internet addiction. After analyzing questionnaire responses of an initial sample of 615 Taiwanese high school students, 78 subjects, viewed as possible Internet addicts, were selected for further explorations. It was found that…

  8. Amino acid positions subject to multiple co-evolutionary constraints can be robustly identified by their eigenvector network centrality scores

    Science.gov (United States)

    Parente, Daniel J.; Ray, J. Christian J.; Swint-Kruse, Liskin

    2015-01-01

    As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for co-evolution between pairs of positions. Co-evolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of co-evolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded co-evolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; “central” positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise co-evolution scores: Instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints – detectable by divergent algorithms – that occur at key protein locations. Finally, we discuss the fact that multiple patterns co-exist in evolutionary data that, together, give rise to emergent protein functions. PMID:26503808

  9. A Three-Dimensional Computational Model of Collagen Network Mechanics

    Science.gov (United States)

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  10. Computer-Supported Modelling of Multi modal Transportation Networks Rationalization

    Directory of Open Access Journals (Sweden)

    Ratko Zelenika

    2007-09-01

    Full Text Available This paper deals with issues of shaping and functioning ofcomputer programs in the modelling and solving of multimoda Itransportation network problems. A methodology of an integrateduse of a programming language for mathematical modellingis defined, as well as spreadsheets for the solving of complexmultimodal transportation network problems. The papercontains a comparison of the partial and integral methods ofsolving multimodal transportation networks. The basic hypothesisset forth in this paper is that the integral method results inbetter multimodal transportation network rationalization effects,whereas a multimodal transportation network modelbased on the integral method, once built, can be used as the basisfor all kinds of transportation problems within multimodaltransport. As opposed to linear transport problems, multimodaltransport network can assume very complex shapes. This papercontains a comparison of the partial and integral approach totransp01tation network solving. In the partial approach, astraightforward model of a transp01tation network, which canbe solved through the use of the Solver computer tool within theExcel spreadsheet inteiface, is quite sufficient. In the solving ofa multimodal transportation problem through the integralmethod, it is necessmy to apply sophisticated mathematicalmodelling programming languages which supp01t the use ofcomplex matrix functions and the processing of a vast amountof variables and limitations. The LINGO programming languageis more abstract than the Excel spreadsheet, and it requiresa certain programming knowledge. The definition andpresentation of a problem logic within Excel, in a manner whichis acceptable to computer software, is an ideal basis for modellingin the LINGO programming language, as well as a fasterand more effective implementation of the mathematical model.This paper provides proof for the fact that it is more rational tosolve the problem of multimodal transportation networks by

  11. Computer network time synchronization the network time protocol on earth and in space

    CERN Document Server

    Mills, David L

    2010-01-01

    Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib

  12. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem.

    Science.gov (United States)

    Dorado-Moreno, Manuel; Pérez-Ortiz, María; Gutiérrez, Pedro A; Ciria, Rubén; Briceño, Javier; Hervás-Martínez, César

    2017-03-01

    Create an efficient decision-support model to assist medical experts in the process of organ allocation in liver transplantation. The mathematical model proposed here uses different sources of information to predict the probability of organ survival at different thresholds for each donor-recipient pair considered. Currently, this decision is mainly based on the Model for End-stage Liver Disease, which depends only on the severity of the recipient and obviates donor-recipient compatibility. We therefore propose to use information concerning the donor, the recipient and the surgery, with the objective of allocating the organ correctly. The database consists of information concerning transplants conducted in 7 different Spanish hospitals and the King's College Hospital (United Kingdom). The state of the patients is followed up for 12 months. We propose to treat the problem as an ordinal classification one, where we predict the organ survival at different thresholds: less than 15 days, between 15 and 90 days, between 90 and 365 days and more than 365 days. This discretization is intended to produce finer-grain survival information (compared with the common binary approach). However, it results in a highly imbalanced dataset in which more than 85% of cases belong to the last class. To solve this, we combine two approaches, a cost-sensitive evolutionary ordinal artificial neural network (ANN) (in which we propose to incorporate dynamic weights to make more emphasis on the worst classified classes) and an ordinal over-sampling technique (which adds virtual patterns to the minority classes and thus alleviates the imbalanced nature of the dataset). The results obtained by our proposal are promising and satisfactory, considering the overall accuracy, the ordering of the classes and the sensitivity of minority classes. In this sense, both the dynamic costs and the over-sampling technique improve the base results of the considered ANN-based method. Comparing our model with

  13. Computation emerges from adaptive synchronization of networking neurons.

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    Full Text Available The activity of networking neurons is largely characterized by the alternation of synchronous and asynchronous spiking sequences. One of the most relevant challenges that scientists are facing today is, then, relating that evidence with the fundamental mechanisms through which the brain computes and processes information, as well as with the arousal (or progress of a number of neurological illnesses. In other words, the problem is how to associate an organized dynamics of interacting neural assemblies to a computational task. Here we show that computation can be seen as a feature emerging from the collective dynamics of an ensemble of networking neurons, which interact by means of adaptive dynamical connections. Namely, by associating logical states to synchronous neuron's dynamics, we show how the usual Boolean logics can be fully recovered, and a universal Turing machine can be constructed. Furthermore, we show that, besides the static binary gates, a wider class of logical operations can be efficiently constructed as the fundamental computational elements interact within an adaptive network, each operation being represented by a specific motif. Our approach qualitatively differs from the past attempts to encode information and compute with complex systems, where computation was instead the consequence of the application of control loops enforcing a desired state into the specific system's dynamics. Being the result of an emergent process, the computation mechanism here described is not limited to a binary Boolean logic, but it can involve a much larger number of states. As such, our results can enlighten new concepts for the understanding of the real computing processes taking place in the brain.

  14. Synchronization-based computation through networks of coupled oscillators

    Directory of Open Access Journals (Sweden)

    Daniel eMalagarriga

    2015-08-01

    Full Text Available The mesoscopic activity of the brain is strongly dynamical, while at the sametime exhibiting remarkable computational capabilities. In order to examinehow these two features coexist, here we show that the patterns of synchronizedoscillations displayed by networks of neural mass models, representing cortical columns, can be usedas substrates for Boolean computation. Our results reveal that different logicaloperations can be implemented by the same neural mass network at different timesfollowing the dynamics of the input. The results are reproduced experimentallywith electronic circuits of coupled Chua oscillators, showing the robustness of this kind of computation to the intrinsic noise and parameter mismatch of the oscillators responsible for the functioning of the gates. We also show that theinformation-processing capabilities of coupled oscillations go beyond thesimple juxtaposition of logic gates.

  15. Comparing genomes to computer operating systems in terms of the topology and evolution of their regulatory control networks.

    Science.gov (United States)

    Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark

    2010-05-18

    The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.

  16. Advances in neural networks computational and theoretical issues

    CERN Document Server

    Esposito, Anna; Morabito, Francesco

    2015-01-01

    This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and  bio-inspired memristor-based networks.  Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive, and context-aware Information Communication Technologies.

  17. Connect the dot: Computing feed-links for network extension

    Directory of Open Access Journals (Sweden)

    Boris Aronov

    2011-12-01

    Full Text Available Road network analysis can require distance from points that are not on the network themselves. We study the algorithmic problem of connecting a point inside a face (region of the road network to its boundary while minimizing the detour factor of that point to any point on the boundary of the face. We show that the optimal single connection (feed-link can be computed in O(lambda_7(n log n time, where n is the number of vertices that bounds the face and lambda_7(n is the slightly superlinear maximum length of a Davenport-Schinzel sequence of order 7 on n symbols. We also present approximation results for placing more feed-links, deal with the case that there are obstacles in the face of the road network that contains the point to be connected, and present various related results.

  18. Computational modeling of signal transduction networks: a pedagogical exposition.

    Science.gov (United States)

    Prasad, Ashok

    2012-01-01

    We give a pedagogical introduction to computational modeling of signal transduction networks, starting from explaining the representations of chemical reactions by differential equations via the law of mass action. We discuss elementary biochemical reactions such as Michaelis-Menten enzyme kinetics and cooperative binding, and show how these allow the representation of large networks as systems of differential equations. We discuss the importance of looking for simpler or reduced models, such as network motifs or dynamical motifs within the larger network, and describe methods to obtain qualitative behavior by bifurcation analysis, using freely available continuation software. We then discuss stochastic kinetics and show how to implement easy-to-use methods of rule-based modeling for stochastic simulations. We finally suggest some methods for comprehensive parameter sensitivity analysis, and discuss the insights that it could yield. Examples, including code to try out, are provided based on a paper that modeled Ras kinetics in thymocytes.

  19. High Efficiency Computation of the Variances of Structural Evolutionary Random Responses

    Directory of Open Access Journals (Sweden)

    J.H. Lin

    2000-01-01

    Full Text Available For structures subjected to stationary or evolutionary white/colored random noise, their various response variances satisfy algebraic or differential Lyapunov equations. The solution of these Lyapunov equations used to be very difficult. A precise integration method is proposed in the present paper, which solves such Lyapunov equations accurately and very efficiently.

  20. Equilibrium selection in alternating-offers bargaining models: the evolutionary computing approach

    NARCIS (Netherlands)

    D.D.B. van Bragt; E.H. Gerding (Enrico); J.A. La Poutré (Han)

    2000-01-01

    textabstractA systematic validation of evolutionary techniques in the field of bargaining is presented. For this purpose, the dynamic and equilibrium-selecting behavior of a multi-agent system consisting of adaptive bargaining agents is investigated. The agents' bargaining strategies are updated by

  1. EvoluZion: A Computer Simulator for Teaching Genetic and Evolutionary Concepts

    Science.gov (United States)

    Zurita, Adolfo R.

    2017-01-01

    EvoluZion is a forward-in-time genetic simulator developed in Java and designed to perform real time simulations on the evolutionary history of virtual organisms. These model organisms harbour a set of 13 genes that codify an equal number of phenotypic features. These genes change randomly during replication, and mutant genes can have null,…

  2. A computational method based on CVSS for quantifying the vulnerabilities in computer network

    Directory of Open Access Journals (Sweden)

    Shahriyar Mohammadi

    2014-10-01

    Full Text Available Network vulnerability taxonomy has become increasingly important in the area of information and data exchange not only for its potential use in identification of vulnerabilities but also in their assessment and prioritization. Computer networks play an important role in information and communication infrastructure. However, they are constantly exposed to a variety of vulnerability risks. In their attempts to create secure information exchange systems, scientists have concentrated on understanding the nature and typology of these vulnerabilities. Their efforts aimed at establishing secure networks have led to the development of a variety of methods and techniques for quantifying vulnerability. The objective of the present paper is developing a method based on the second edition of common vulnerability scoring system (CVSS for the quantification of Computer Network vulnerabilities. It is expected that the proposed model will help in the identification and effective management of vulnerabilities by their quantification.

  3. Applying DNA computation to intractable problems in social network analysis.

    Science.gov (United States)

    Chen, Rick C S; Yang, Stephen J H

    2010-09-01

    From ancient times to the present day, social networks have played an important role in the formation of various organizations for a range of social behaviors. As such, social networks inherently describe the complicated relationships between elements around the world. Based on mathematical graph theory, social network analysis (SNA) has been developed in and applied to various fields such as Web 2.0 for Web applications and product developments in industries, etc. However, some definitions of SNA, such as finding a clique, N-clique, N-clan, N-club and K-plex, are NP-complete problems, which are not easily solved via traditional computer architecture. These challenges have restricted the uses of SNA. This paper provides DNA-computing-based approaches with inherently high information density and massive parallelism. Using these approaches, we aim to solve the three primary problems of social networks: N-clique, N-clan, and N-club. Their accuracy and feasible time complexities discussed in the paper will demonstrate that DNA computing can be used to facilitate the development of SNA. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  4. A modular architecture for transparent computation in recurrent neural networks.

    Science.gov (United States)

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Review On Applications Of Neural Network To Computer Vision

    Science.gov (United States)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  6. Analysis of Intrusion Detection and Attack Proliferation in Computer Networks

    Science.gov (United States)

    Rangan, Prahalad; Knuth, Kevin H.

    2007-11-01

    One of the popular models to describe computer worm propagation is the Susceptible-Infected (SI) model [1]. This model of worm propagation has been implemented on the simulation toolkit Network Simulator v2 (ns-2) [2]. The ns-2 toolkit has the capability to simulate networks of different topologies. The topology studied in this work, however, is that of a simple star-topology. This work introduces our initial efforts to learn the relevant quantities describing an infection given synthetic data obtained from running the ns-2 worm model. We aim to use Bayesian methods to gain a predictive understanding of how computer infections spread in real world network topologies. This understanding would greatly reinforce dissemination of targeted immunization strategies, which may prevent real-world epidemics. The data consist of reports of infection from a subset of nodes in a large network during an attack. The infection equation obtained from [1] enables us to derive a likelihood function for the infection reports. This prior information can be used in the Bayesian framework to obtain the posterior probabilities for network properties of interest, such as the rate at which nodes contact one another (also referred to as contact rate or scan rate). Our preliminary analyses indicate an effective spread rate of only 1/5th the actual scan rate used for a star-type of topology. This implies that as the population becomes saturated with infected nodes the actual spread rate will become much less than the scan rate used in the simulation.

  7. Hybrid Evolutionary Metaheuristics for Concurrent Multi-Objective Design of Urban Road and Public Transit Networks

    NARCIS (Netherlands)

    Miandoabchi, Elnaz; Farahani, Reza Zanjirani; Dullaert, Wout; Szeto, W. Y.

    This paper addresses a bi-modal multi-objective discrete urban road network design problem with automobile and bus flow interaction. The problem considers the concurrent urban road and bus network design in which the authorities play a major role in designing bus network topology. The road network

  8. Co-Evolutionary Mechanisms of Emotional Bursts in Online Social Dynamics and Networks

    Directory of Open Access Journals (Sweden)

    Bosiljka Tadić

    2013-11-01

    Full Text Available Collective emotional behavior of users is frequently observed on various Web portals; however, its complexity and the role of emotions in the acting mechanisms are still not thoroughly understood. In this work, using the empirical data and agent-based modeling, a parallel analysis is performed of two archetypal systems—Blogs and Internet-Relayed-Chats—both of which maintain self-organized dynamics but not the same communication rules and time scales. The emphasis is on quantifying the collective emotions by means of fractal analysis of the underlying processes as well as topology of social networks, which arise and co-evolve in these stochastic processes. The results reveal that two distinct mechanisms, which are based on different use of emotions (an emotion is characterized by two components, arousal and valence, are intrinsically associated with two classes of emergent social graphs. Their hallmarks are the evolution of communities in accordance with the excess of the negative emotions on popular Blogs, on one side, and smooth spreading of the Bot’s emotional impact over the entire hierarchical network of chats, on the other. Another emphasis of this work is on the understanding of nonextensivity of the emotion dynamics; it was found that, in its own way, each mechanism leads to a reduced phase space of the emotion components when the collective dynamics takes place. That a non-additive entropy describes emotion dynamics, is further confirmed by computing the q-generalized Kolmogorov-Sinai entropy rate in the empirical data of chats as well as in the simulations of interacting emotional agents and Bots.

  9. Computers and networks in the age of globalization

    DEFF Research Database (Denmark)

    Bloch Rasmussen, Leif; Beardon, Colin; Munari, Silvio

    In modernity, an individual identity was constituted from civil society, while in a globalized network society, human identity, if it develops at all, must grow from communal resistance. A communal resistance to an abstract conceptualized world, where there is no possibility for perception...... in a network society; the individual and knowledge-based organizations; human responsibility and technology; and exclusion and regeneration. This volume contains the edited proceedings of the Fifth World Conference on Human Choice and Computers (HCC-5), which was sponsored by the International Federation...

  10. Spatial Analysis Along Networks Statistical and Computational Methods

    CERN Document Server

    Okabe, Atsuyuki

    2012-01-01

    In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process

  11. Smart photonic networks and computer security for image data

    Science.gov (United States)

    Campello, Jorge; Gill, John T.; Morf, Martin; Flynn, Michael J.

    1998-02-01

    Work reported here is part of a larger project on 'Smart Photonic Networks and Computer Security for Image Data', studying the interactions of coding and security, switching architecture simulations, and basic technologies. Coding and security: coding methods that are appropriate for data security in data fusion networks were investigated. These networks have several characteristics that distinguish them form other currently employed networks, such as Ethernet LANs or the Internet. The most significant characteristics are very high maximum data rates; predominance of image data; narrowcasting - transmission of data form one source to a designated set of receivers; data fusion - combining related data from several sources; simple sensor nodes with limited buffering. These characteristics affect both the lower level network design and the higher level coding methods.Data security encompasses privacy, integrity, reliability, and availability. Privacy, integrity, and reliability can be provided through encryption and coding for error detection and correction. Availability is primarily a network issue; network nodes must be protected against failure or routed around in the case of failure. One of the more promising techniques is the use of 'secret sharing'. We consider this method as a special case of our new space-time code diversity based algorithms for secure communication. These algorithms enable us to exploit parallelism and scalable multiplexing schemes to build photonic network architectures. A number of very high-speed switching and routing architectures and their relationships with very high performance processor architectures were studied. Indications are that routers for very high speed photonic networks can be designed using the very robust and distributed TCP/IP protocol, if suitable processor architecture support is available.

  12. Computers and networks in the age of globalization

    DEFF Research Database (Denmark)

    Bloch Rasmussen, Leif; Beardon, Colin; Munari, Silvio

    in a network society; the individual and knowledge-based organizations; human responsibility and technology; and exclusion and regeneration. This volume contains the edited proceedings of the Fifth World Conference on Human Choice and Computers (HCC-5), which was sponsored by the International Federation...... for Information Processing (IFIP) and held in Geneva, Switzerland in August 1998. Since the first HCC conference in 1974, IFIP's Technical Committee 9 has endeavoured to set the agenda for human choices and human actions vis-a-vis computers....

  13. Computer, Network, Software, and Hardware Engineering with Applications

    CERN Document Server

    Schneidewind, Norman F

    2012-01-01

    There are many books on computers, networks, and software engineering but none that integrate the three with applications. Integration is important because, increasingly, software dominates the performance, reliability, maintainability, and availability of complex computer and systems. Books on software engineering typically portray software as if it exists in a vacuum with no relationship to the wider system. This is wrong because a system is more than software. It is comprised of people, organizations, processes, hardware, and software. All of these components must be considered in an integr

  14. Multi-objective optimization in computer networks using metaheuristics

    CERN Document Server

    Donoso, Yezid

    2007-01-01

    Metaheuristics are widely used to solve important practical combinatorial optimization problems. Many new multicast applications emerging from the Internet-such as TV over the Internet, radio over the Internet, and multipoint video streaming-require reduced bandwidth consumption, end-to-end delay, and packet loss ratio. It is necessary to design and to provide for these kinds of applications as well as for those resources necessary for functionality. Multi-Objective Optimization in Computer Networks Using Metaheuristics provides a solution to the multi-objective problem in routing computer networks. It analyzes layer 3 (IP), layer 2 (MPLS), and layer 1 (GMPLS and wireless functions). In particular, it assesses basic optimization concepts, as well as several techniques and algorithms for the search of minimals; examines the basic multi-objective optimization concepts and the way to solve them through traditional techniques and through several metaheuristics; and demonstrates how to analytically model the compu...

  15. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  16. Computers and networks in the age of globalization

    DEFF Research Database (Denmark)

    Bloch Rasmussen, Leif; Beardon, Colin; Munari, Silvio

    their lives in a diversity of social and cultural contexts. In so doing, the book tries to imagine in what kind of networks humans may choose and act based on the knowledge and empirical evidence presented in the papers. The topics covered in the book include: people and their changing values; citizens...... in a network society; the individual and knowledge-based organizations; human responsibility and technology; and exclusion and regeneration. This volume contains the edited proceedings of the Fifth World Conference on Human Choice and Computers (HCC-5), which was sponsored by the International Federation...... for Information Processing (IFIP) and held in Geneva, Switzerland in August 1998. Since the first HCC conference in 1974, IFIP's Technical Committee 9 has endeavoured to set the agenda for human choices and human actions vis-a-vis computers....

  17. CONCEPTUAL GENERALIZATION OF STRUCTURAL ORGANIZATION OF COMPUTER NETWORKS MEDICAL SCHOOL

    Directory of Open Access Journals (Sweden)

    O. P. Mintser

    2014-01-01

    Full Text Available The basic principles of the structural organization of computer networks in schools are presented. The questions of universities integration’s in the modern infrastructure of the information society are justified. Details the structural organizations of computer networks are presented. The effectiveness of implementing automated library information systems is shown. The big dynamical growths of technical and personal readiness of students to use virtual educational space are presented. In this regard, universities are required to provide advance information on filling the educational environment of modern virtual university, including multimedia resources for industry professional education programs. Based on information and educational environments virtual representations of universities should be formed distributed resource centers that will avoid duplication of effort on the development of innovative educational technologies, will provide a mutual exchange of results and further development of an open continuous professional education, providing accessibility, modularity and mobility training and retraining specialists.

  18. Biological networks 101: computational modeling for molecular biologists.

    Science.gov (United States)

    Scholma, Jetse; Schivo, Stefano; Urquidi Camacho, Ricardo A; van de Pol, Jaco; Karperien, Marcel; Post, Janine N

    2014-01-01

    Computational modeling of biological networks permits the comprehensive analysis of cells and tissues to define molecular phenotypes and novel hypotheses. Although a large number of software tools have been developed, the versatility of these tools is limited by mathematical complexities that prevent their broad adoption and effective use by molecular biologists. This study clarifies the basic aspects of molecular modeling, how to convert data into useful input, as well as the number of time points and molecular parameters that should be considered for molecular regulatory models with both explanatory and predictive potential. We illustrate the necessary experimental preconditions for converting data into a computational model of network dynamics. This model requires neither a thorough background in mathematics nor precise data on intracellular concentrations, binding affinities or reaction kinetics. Finally, we show how an interactive model of crosstalk between signal transduction pathways in primary human articular chondrocytes allows insight into processes that regulate gene expression. © 2013 Elsevier B.V. All rights reserved.

  19. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  20. Enhancing the Understanding of Computer Networking Courses through Software Tools

    OpenAIRE

    Dafalla, Z. I.; Balaji, R. D.

    2015-01-01

    Computer networking is an important specialization in Information and Communication Technologies. However imparting the right knowledge to students can be a challenging task due to the fact that there is not enough time to deliver lengthy labs during normal lecture hours. Augmenting the use of physical machines with software tools help the students to learn beyond the limited lab sessions within the environment of higher Institutions of learning throughout the world. The Institutions focus mo...

  1. Computational tools for large-scale biological network analysis

    OpenAIRE

    Pinto, José Pedro Basto Gouveia Pereira

    2012-01-01

    Tese de doutoramento em Informática The surge of the field of Bioinformatics, among other contributions, provided biological researchers with powerful computational methods for processing and analysing the large amount of data coming from recent biological experimental techniques such as genome sequencing and other omics. Naturally, this led to the opening of new avenues of biological research among which is included the analysis of large-scale biological networks. The an...

  2. Computers and networks in the age of globalization

    DEFF Research Database (Denmark)

    Bloch Rasmussen, Leif; Beardon, Colin; Munari, Silvio

    In modernity, an individual identity was constituted from civil society, while in a globalized network society, human identity, if it develops at all, must grow from communal resistance. A communal resistance to an abstract conceptualized world, where there is no possibility for perception...... their lives in a diversity of social and cultural contexts. In so doing, the book tries to imagine in what kind of networks humans may choose and act based on the knowledge and empirical evidence presented in the papers. The topics covered in the book include: people and their changing values; citizens...... in a network society; the individual and knowledge-based organizations; human responsibility and technology; and exclusion and regeneration. This volume contains the edited proceedings of the Fifth World Conference on Human Choice and Computers (HCC-5), which was sponsored by the International Federation...

  3. Computer simulation of randomly cross-linked polymer networks

    CERN Document Server

    Williams, T P

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneiti...

  4. Network-level architecture and the evolutionary potential of underground metabolism

    NARCIS (Netherlands)

    Notebaart, R.A.; Szappanos, B.; Kintses, B.; Pal, F; Gyorkei, A.; Bogos, B.; Lazar, V.; Spohn, R.; Csorgo, B.; Wagner, A.; Ruppin, E.; Pal, C.; Papp, B.

    2014-01-01

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has

  5. Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks.

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Armbruster, Dieter

    2011-09-01

    We study catastrophic behaviors in large networked systems in the paradigm of evolutionary games by incorporating a realistic "death" or "bankruptcy" mechanism. We find that a cascading bankruptcy process can arise when defection strategies exist and individuals are vulnerable to deficit. Strikingly, we observe that, after the catastrophic cascading process terminates, cooperators are the sole survivors, regardless of the game types and of the connection patterns among individuals as determined by the topology of the underlying network. It is necessary that individuals cooperate with each other to survive the catastrophic failures. Cooperation thus becomes the optimal strategy and absolutely outperforms defection in the game evolution with respect to the "death" mechanism. Our results can be useful for understanding large-scale catastrophe in real-world systems and in particular, they may yield insights into significant social and economical phenomena such as large-scale failures of financial institutions and corporations during an economic recession.

  6. An Optimal Path Computation Architecture for the Cloud-Network on Software-Defined Networking

    Directory of Open Access Journals (Sweden)

    Hyunhun Cho

    2015-05-01

    Full Text Available Legacy networks do not open the precise information of the network domain because of scalability, management and commercial reasons, and it is very hard to compute an optimal path to the destination. According to today’s ICT environment change, in order to meet the new network requirements, the concept of software-defined networking (SDN has been developed as a technological alternative to overcome the limitations of the legacy network structure and to introduce innovative concepts. The purpose of this paper is to propose the application that calculates the optimal paths for general data transmission and real-time audio/video transmission, which consist of the major services of the National Research & Education Network (NREN in the SDN environment. The proposed SDN routing computation (SRC application is designed and applied in a multi-domain network for the efficient use of resources, selection of the optimal path between the multi-domains and optimal establishment of end-to-end connections.

  7. Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces

    Science.gov (United States)

    Ellman, Alvin; Carlton, Magdi

    1993-01-01

    The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.

  8. A Study of the Impact of Virtualization on the Computer Networks

    OpenAIRE

    Timalsena, Pratik

    2013-01-01

    Virtualization is an imminent sector of the Information and Technology in the peresent world. It is advancing and being popuraly implemented world wide. Computer network is not isolated from the global impact of the virtualization. The virtualization is being deployed on the computer networks in a great extent. In general, virtualization is an inevitable tool for computer networks. This report presents a surfacial idea about the impact of the virtualization on the computer network. The report...

  9. Exploiting Linkage Information and Problem-Specific Knowledge in Evolutionary Distribution Network Expansion Planning

    NARCIS (Netherlands)

    N.H. Luong (Ngoc Hoang); J.A. La Poutré (Han); P.A.N. Bosman (Peter)

    2015-01-01

    htmlabstractThis paper tackles the Distribution Network Expansion Planning (DNEP) problem that has to be solved by distribution network operators to decide which, where, and/or when enhancements to electricity networks should be introduced to satisfy the future power demands. We compare two

  10. Exploiting linkage information and problem-specific knowledge in evolutionary distribution network expansion planning

    NARCIS (Netherlands)

    N.H. Luong (Ngoc Hoang); J.A. La Poutré (Han); P.A.N. Bosman (Peter)

    2017-01-01

    textabstractThis article tackles the Distribution Network Expansion Planning (DNEP) problem that has to be solved by distribution network operators to decide which, where, and/or when enhancements to electricity networks should be introd uced to satisfy the future power demands. Because of many

  11. Application of artificial neural networks in computer-aided diagnosis.

    Science.gov (United States)

    Liu, Bei

    2015-01-01

    Computer-aided diagnosis is a diagnostic procedure in which a radiologist uses the outputs of computer analysis of medical images as a second opinion in the interpretation of medical images, either to help with lesion detection or to help determine if the lesion is benign or malignant. Artificial neural networks (ANNs) are usually employed to formulate the statistical models for computer analysis. Receiver operating characteristic curves are used to evaluate the performance of the ANN alone, as well as the diagnostic performance of radiologists who take into account the ANN output as a second opinion. In this chapter, we use mammograms to illustrate how an ANN model is trained, tested, and evaluated, and how a radiologist should use the ANN output as a second opinion in CAD.

  12. The evolutionary origination and diversification of a dimorphic gene regulatory network through parallel innovations in cis and trans.

    Directory of Open Access Journals (Sweden)

    Eric M Camino

    2015-04-01

    Full Text Available The origination and diversification of morphological characteristics represents a key problem in understanding the evolution of development. Morphological traits result from gene regulatory networks (GRNs that form a web of transcription factors, which regulate multiple cis-regulatory element (CRE sequences to control the coordinated expression of differentiation genes. The formation and modification of GRNs must ultimately be understood at the level of individual regulatory linkages (i.e., transcription factor binding sites within CREs that constitute the network. Here, we investigate how elements within a network originated and diversified to generate a broad range of abdominal pigmentation phenotypes among Sophophora fruit flies. Our data indicates that the coordinated expression of two melanin synthesis enzymes, Yellow and Tan, recently evolved through novel CRE activities that respond to the spatial patterning inputs of Hox proteins and the sex-specific input of Bric-à-brac transcription factors. Once established, it seems that these newly evolved activities were repeatedly modified by evolutionary changes in the network's trans-regulators to generate large-scale changes in pigment pattern. By elucidating how yellow and tan are connected to the web of abdominal trans-regulators, we discovered that the yellow and tan abdominal CREs are composed of distinct regulatory inputs that exhibit contrasting responses to the same Hox proteins and Hox cofactors. These results provide an example in which CRE origination underlies a recently evolved novel trait, and highlights how coordinated expression patterns can evolve in parallel through the generation of unique regulatory linkages.

  13. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  14. Open Problems in Network-aware Data Management in Exa-scale Computing and Terabit Networking Era

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Byna, Surendra

    2011-12-06

    Accessing and managing large amounts of data is a great challenge in collaborative computing environments where resources and users are geographically distributed. Recent advances in network technology led to next-generation high-performance networks, allowing high-bandwidth connectivity. Efficient use of the network infrastructure is necessary in order to address the increasing data and compute requirements of large-scale applications. We discuss several open problems, evaluate emerging trends, and articulate our perspectives in network-aware data management.

  15. Line-plane broadcasting in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.

    2010-06-08

    Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.

  16. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks

    DEFF Research Database (Denmark)

    Schleuning, Matthias; Ingmann, Lili; Strauss, Rouven

    2014-01-01

    Modularity is a recurrent and important property of bipartite ecological networks. Although well-resolved ecological networks describe interaction frequencies between species pairs, modularity of bipartite networks has been analysed only on the basis of binary presence-absence data. We employ a new...... algorithm to detect modularity in weighted bipartite networks in a global analysis of avian seed-dispersal networks. We define roles of species, such as connector values, for weighted and binary networks and associate them with avian species traits and phylogeny. The weighted, but not binary, analysis...... identified a positive relationship between climatic seasonality and modularity, whereas past climate stability and phylogenetic signal were only weakly related to modularity. Connector values were associated with foraging behaviour and were phylogenetically conserved. The weighted modularity analysis...

  17. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  18. Evolutionary Information Theory

    Directory of Open Access Journals (Sweden)

    Mark Burgin

    2013-04-01

    Full Text Available Evolutionary information theory is a constructive approach that studies information in the context of evolutionary processes, which are ubiquitous in nature and society. In this paper, we develop foundations of evolutionary information theory, building several measures of evolutionary information and obtaining their properties. These measures are based on mathematical models of evolutionary computations, machines and automata. To measure evolutionary information in an invariant form, we construct and study universal evolutionary machines and automata, which form the base for evolutionary information theory. The first class of measures introduced and studied in this paper is evolutionary information size of symbolic objects relative to classes of automata or machines. In particular, it is proved that there is an invariant and optimal evolutionary information size relative to different classes of evolutionary machines. As a rule, different classes of algorithms or automata determine different information size for the same object. The more powerful classes of algorithms or automata decrease the information size of an object in comparison with the information size of an object relative to weaker4 classes of algorithms or machines. The second class of measures for evolutionary information in symbolic objects is studied by introduction of the quantity of evolutionary information about symbolic objects relative to a class of automata or machines. To give an example of applications, we briefly describe a possibility of modeling physical evolution with evolutionary machines to demonstrate applicability of evolutionary information theory to all material processes. At the end of the paper, directions for future research are suggested.

  19. Multi-objective Evolutionary Algorithms for Influence Maximization in Social Networks

    NARCIS (Netherlands)

    Bucur, Doina; Iacca, Giovanni; Marcelli, Andrea; Squillero, Giovanni; Tonda, Alberto; Squillero, Giovanni; Sim, Kevin

    As the pervasiveness of social networks increases, new NP-hard related problems become interesting for the optimization community. The objective of influence maximization is to contact the largest possible number of nodes in a network, starting from a small set of seed nodes, and assuming a model

  20. [Forensic evidence-based medicine in computer communication networks].

    Science.gov (United States)

    Qiu, Yun-Liang; Peng, Ming-Qi

    2013-12-01

    As an important component of judicial expertise, forensic science is broad and highly specialized. With development of network technology, increasement of information resources, and improvement of people's legal consciousness, forensic scientists encounter many new problems, and have been required to meet higher evidentiary standards in litigation. In view of this, evidence-based concept should be established in forensic medicine. We should find the most suitable method in forensic science field and other related area to solve specific problems in the evidence-based mode. Evidence-based practice can solve the problems in legal medical field, and it will play a great role in promoting the progress and development of forensic science. This article reviews the basic theory of evidence-based medicine and its effect, way, method, and evaluation in the forensic medicine in order to discuss the application value of forensic evidence-based medicine in computer communication networks.

  1. Computational analysis of protein interaction networks for infectious diseases.

    Science.gov (United States)

    Pan, Archana; Lahiri, Chandrajit; Rajendiran, Anjana; Shanmugham, Buvaneswari

    2016-05-01

    Infectious diseases caused by pathogens, including viruses, bacteria and parasites, pose a serious threat to human health worldwide. Frequent changes in the pattern of infection mechanisms and the emergence of multidrug-resistant strains among pathogens have weakened the current treatment regimen. This necessitates the development of new therapeutic interventions to prevent and control such diseases. To cater to the need, analysis of protein interaction networks (PINs) has gained importance as one of the promising strategies. The present review aims to discuss various computational approaches to analyse the PINs in context to infectious diseases. Topology and modularity analysis of the network with their biological relevance, and the scenario till date about host-pathogen and intra-pathogenic protein interaction studies were delineated. This would provide useful insights to the research community, thereby enabling them to design novel biomedicine against such infectious diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Reducing Computational Overhead of Network Coding with Intrinsic Information Conveying

    DEFF Research Database (Denmark)

    Heide, Janus; Zhang, Qi; Pedersen, Morten V.

    This paper investigated the possibility of intrinsic information conveying in network coding systems. The information is embedded into the coding vector by constructing the vector based on a set of predefined rules. This information can subsequently be retrieved by any receiver. The starting point...... is RLNC (Random Linear Network Coding) and the goal is to reduce the amount of coding operations both at the coding and decoding node, and at the same time remove the need for dedicated signaling messages. In a traditional RLNC system, coding operation takes up significant computational resources and adds...... to the overall energy consumption, which is particular problematic for mobile battery-driven devices. In RLNC coding is performed over a FF (Finite Field). We propose to divide this field into sub fields, and let each sub field signify some information or state. In order to embed the information correctly...

  3. Do natural proteins differ from random sequences polypeptides? Natural vs. random proteins classification using an evolutionary neural network.

    Directory of Open Access Journals (Sweden)

    Davide De Lucrezia

    Full Text Available Are extant proteins the exquisite result of natural selection or are they random sequences slightly edited by evolution? This question has puzzled biochemists for long time and several groups have addressed this issue comparing natural protein sequences to completely random ones coming to contradicting conclusions. Previous works in literature focused on the analysis of primary structure in an attempt to identify possible signature of evolutionary editing. Conversely, in this work we compare a set of 762 natural proteins with an average length of 70 amino acids and an equal number of completely random ones of comparable length on the basis of their structural features. We use an ad hoc Evolutionary Neural Network Algorithm (ENNA in order to assess whether and to what extent natural proteins are edited from random polypeptides employing 11 different structure-related variables (i.e. net charge, volume, surface area, coil, alpha helix, beta sheet, percentage of coil, percentage of alpha helix, percentage of beta sheet, percentage of secondary structure and surface hydrophobicity. The ENNA algorithm is capable to correctly distinguish natural proteins from random ones with an accuracy of 94.36%. Furthermore, we study the structural features of 32 random polypeptides misclassified as natural ones to unveil any structural similarity to natural proteins. Results show that random proteins misclassified by the ENNA algorithm exhibit a significant fold similarity to portions or subdomains of extant proteins at atomic resolution. Altogether, our results suggest that natural proteins are significantly edited from random polypeptides and evolutionary editing can be readily detected analyzing structural features. Furthermore, we also show that the ENNA, employing simple structural descriptors, can predict whether a protein chain is natural or random.

  4. Symbolic dynamics and computation in model gene networks.

    Science.gov (United States)

    Edwards, R.; Siegelmann, H. T.; Aziza, K.; Glass, L.

    2001-03-01

    We analyze a class of ordinary differential equations representing a simplified model of a genetic network. In this network, the model genes control the production rates of other genes by a logical function. The dynamics in these equations are represented by a directed graph on an n-dimensional hypercube (n-cube) in which each edge is directed in a unique orientation. The vertices of the n-cube correspond to orthants of state space, and the edges correspond to boundaries between adjacent orthants. The dynamics in these equations can be represented symbolically. Starting from a point on the boundary between neighboring orthants, the equation is integrated until the boundary is crossed for a second time. Each different cycle, corresponding to a different sequence of orthants that are traversed during the integration of the equation always starting on a boundary and ending the first time that same boundary is reached, generates a different letter of the alphabet. A word consists of a sequence of letters corresponding to a possible sequence of orthants that arise from integration of the equation starting and ending on the same boundary. The union of the words defines the language. Letters and words correspond to analytically computable Poincare maps of the equation. This formalism allows us to define bifurcations of chaotic dynamics of the differential equation that correspond to changes in the associated language. Qualitative knowledge about the dynamics found by integrating the equation can be used to help solve the inverse problem of determining the underlying network generating the dynamics. This work places the study of dynamics in genetic networks in a context comprising both nonlinear dynamics and the theory of computation. (c) 2001 American Institute of Physics.

  5. Trajectory Based Optimal Segment Computation in Road Network Databases

    DEFF Research Database (Denmark)

    Li, Xiaohui; Ceikute, Vaida; Jensen, Christian S.

    Finding a location for a new facility such that the facility attracts the maximal number of customers is a challenging problem. Existing studies either model customers as static sites and thus do not consider customer movement, or they focus on theoretical aspects and do not provide solutions tha...... that adopt different approaches to computing the query. Algorithm AUG uses graph augmentation, and ITE uses iterative road-network partitioning. Empirical studies with real data sets demonstrate that the algorithms are capable of offering high performance in realistic settings....

  6. NML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks

    Directory of Open Access Journals (Sweden)

    Kontkanen Petri

    2007-01-01

    Full Text Available Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on the normalized maximum likelihood (NML distribution, which has several desirable theoretical properties. In the case of discrete data, straightforward computation of the NML distribution requires exponential time with respect to the sample size, since the definition involves a sum over all the possible data samples of a fixed size. In this paper, we first review some existing algorithms for efficient NML computation in the case of multinomial and naive Bayes model families. Then we proceed by extending these algorithms to more complex, tree-structured Bayesian networks.

  7. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information.

    Science.gov (United States)

    An, Ji-Yong; Zhang, Lei; Zhou, Yong; Zhao, Yu-Jun; Wang, Da-Fu

    2017-08-18

    Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection based on evolutionary information contained protein sequence. In the work, we presented a novel computational approach named WELM-LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analysis (PCA) approach is used to reduce the impact of noise. The WELM-LAG method gave very high average accuracies of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Comparative results indicated that our approach is very promising and may provide a cost-effective alternative for predicting SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server is available at http://219.219.62.123:8888/WELMLAG/ .

  8. Energy Efficient Clustering in Multi-hop Wireless Sensor Networks Using Differential Evolutionary MOPSO

    Directory of Open Access Journals (Sweden)

    D. Rajendra Prasad

    Full Text Available ABSTRACT The primary challenge in organizing sensor networks is energy efficacy. This requisite for energy efficacy is because sensor nodes capacities are limited and replacing them is not viable. This restriction further decreases network lifetime. Node lifetime varies depending on the requisites expected of its battery. Hence, primary element in constructing sensor networks is resilience to deal with decreasing lifetime of all sensor nodes. Various network infrastructures as well as their routing protocols for reduction of power utilization as well as to prolong network lifetime are studied. After analysis, it is observed that network constructions that depend on clustering are the most effective methods in terms of power utilization. Clustering divides networks into inter-related clusters such that every cluster has several sensor nodes with a Cluster Head (CH at its head. Sensor gathered information is transmitted to data processing centers through CH hierarchy in clustered environments. The current study utilizes Multi-Objective Particle Swarm Optimization (MOPSO-Differential Evolution (DE (MOPSO-DE technique for optimizing clustering.

  9. Optimizing the Structure of Distribution Smart Grids with Renewable Generation against Abnormal Conditions: A Complex Networks Approach with Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Lucas Cuadra

    2017-07-01

    Full Text Available In this work, we describe an approach that allows for optimizing the structure of a smart grid (SG with renewable energy (RE generation against abnormal conditions (imbalances between generation and consumption, overloads or failures arising from the inherent SG complexity by combining the complex network (CN and evolutionary algorithm (EA concepts. We propose a novel objective function (to be minimized that combines cost elements, related to the number of electric cables, and several metrics that quantify properties that are beneficial for SGs (energy exchange at the local scale and high robustness and resilience. The optimized SG structure is obtained by applying an EA in which the chromosome that encodes each potential network (or individual is the upper triangular matrix of its adjacency matrix. This allows for fully tailoring the crossover and mutation operators. We also propose a domain-specific initial population that includes both small-world and random networks, helping the EA converge quickly. The experimental work points out that the proposed method works well and generates the optimum, synthetic, small-world structure that leads to beneficial properties such as improving both the local energy exchange and the robustness. The optimum structure fulfills a balance between moderate cost and robustness against abnormal conditions. Our approach should be considered as an analysis, planning and decision-making tool to gain insight into smart grid structures so that the low level detailed design is carried out by using electrical engineering techniques.

  10. Combining MLP and Using Decision Tree in Order to Detect the Intrusion into Computer Networks

    OpenAIRE

    Saba Sedigh Rad; Alireza Zebarjad

    2013-01-01

    The security of computer networks has an important role in computer systems. The increasing use of computer networks results in penetration and destruction of systems by system operations. So, in order to keep the systems away from these hazards, it is essential to use the intrusion detection system (IDS). This intrusion detection is done in order to detect the illicit use and misuse and to avoid damages to the systems and computer networks by both the external and internal intruders. Intrusi...

  11. Evolutionary and developmental changes in the lateral frontoparietal network: a little goes a long way for higher-level cognition.

    Science.gov (United States)

    Vendetti, Michael S; Bunge, Silvia A

    2014-12-03

    Relational thinking, or the ability to represent the relations between items, is widespread in the animal kingdom. However, humans are unparalleled in their ability to engage in the higher-order relational thinking required for reasoning and other forms of abstract thought. Here we propose that the versatile reasoning skills observed in humans can be traced back to developmental and evolutionary changes in the lateral frontoparietal network (LFPN). We first identify the regions within the LFPN that are most strongly linked to relational thinking, and show that stronger communication between these regions over the course of development supports improvements in relational reasoning. We then explore differences in the LFPN between humans and other primate species that could explain species differences in the capacity for relational reasoning. We conclude that fairly small neuroanatomical changes in specific regions of the LFPN and their connections have led to big ontogenetic and phylogenetic changes in cognition. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Artificial Neural Networks, and Evolutionary Algorithms as a systems biology approach to a data-base on fetal growth restriction.

    Science.gov (United States)

    Street, Maria E; Buscema, Massimo; Smerieri, Arianna; Montanini, Luisa; Grossi, Enzo

    2013-12-01

    One of the specific aims of systems biology is to model and discover properties of cells, tissues and organisms functioning. A systems biology approach was undertaken to investigate possibly the entire system of intra-uterine growth we had available, to assess the variables of interest, discriminate those which were effectively related with appropriate or restricted intrauterine growth, and achieve an understanding of the systems in these two conditions. The Artificial Adaptive Systems, which include Artificial Neural Networks and Evolutionary Algorithms lead us to the first analyses. These analyses identified the importance of the biochemical variables IL-6, IGF-II and IGFBP-2 protein concentrations in placental lysates, and offered a new insight into placental markers of fetal growth within the IGF and cytokine systems, confirmed they had relationships and offered a critical assessment of studies previously performed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology.

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view.

  14. Adaptive Selection of Cryptographic Protocols in Wireless Sensor Networks using Evolutionary Game Theory

    National Research Council Canada - National Science Library

    Arora, Srishti; Singh, Prabhjot; Gupta, Ashok Ji

    2016-01-01

    ... with contrary motives contend with each other. Various solutions basedon Game theory have been recently proposed which dealt with security aspects of wireless sensor networks(WSNs). However, th...

  15. Effect of network topology on the evolutionary ultimatum game based on the net-profit decision

    Science.gov (United States)

    Ye, Shun-Qiang; Wang, Lu; Jones, Michael C.; Ye, Ye; Wang, Meng; Xie, Neng-Gang

    2016-04-01

    The ubiquity of altruist behavior amongst humans has long been a significant puzzle in the social sciences. Ultimatum game has proved to be a useful tool for explaining altruistic behavior among selfish individuals. In an ultimatum game where alternating roles exist, we suppose that players make their decisions based on the net profit of their own. In this paper, we specify a player's strategy with two parameters: offer level α ∈ [ 0,1) and net profit acceptance level β ∈ [ - 1,1). By Monte Carlo simulation, we analyze separately the effect of the size of the neighborhood, the small-world property and the heterogeneity of the degree distributions of the networks. Results show that compared with results observed for homogeneous networks, heterogeneous networks lead to more rational outcomes. Moreover, network structure has no effect on the evolution of kindness level, so moderate kindness is adaptable to any social groups and organizations.

  16. Modeling Temporal Variation in Social Network: An Evolutionary Web Graph Approach

    Science.gov (United States)

    Mitra, Susanta; Bagchi, Aditya

    A social network is a social structure between actors (individuals, organization or other social entities) and indicates the ways in which they are connected through various social relationships like friendships, kinships, professional, academic etc. Usually, a social network represents a social community, like a club and its members or a city and its citizens etc. or a research group communicating over Internet. In seventies Leinhardt [1] first proposed the idea of representing a social community by a digraph. Later, this idea became popular among other research workers like, network designers, web-service application developers and e-learning modelers. It gave rise to a rapid proliferation of research work in the area of social network analysis. Some of the notable structural properties of a social network are connectedness between actors, reachability between a source and a target actor, reciprocity or pair-wise connection between actors with bi-directional links, centrality of actors or the important actors having high degree or more connections and finally the division of actors into sub-structures or cliques or strongly-connected components. The cycles present in a social network may even be nested [2, 3]. The formal definition of these structural properties will be provided in Sect. 8.2.1. The division of actors into cliques or sub-groups can be a very important factor for understanding a social structure, particularly the degree of cohesiveness in a community. The number, size, and connections among the sub-groups in a network are useful in understanding how the network, as a whole, is likely to behave.

  17. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  18. Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks

    Directory of Open Access Journals (Sweden)

    Huan Chen

    2017-04-01

    Full Text Available Heating oil is an extremely important heating fuel to consumers in northeastern United States. This paper studies the fluctuations law and dynamic behavior of heating oil spot and futures prices by setting up their complex network models based on the data of America in recent 30 years. Firstly, modes are defined by the method of coarse graining, the spot price fluctuation network of heating oil (HSPFN and its futures price fluctuation network (HFPFN in different periods are established to analyze the transformation characteristics between the modes. Secondly, several indicators are investigated: average path length, node strength and strength distribution, betweeness, etc. In addition, a function is established to measure and analyze the network similarity. The results show the cumulative time of new nodes appearing in either spot or futures price network is not random but exhibits a growth trend of straight line. Meanwhile, the power law distributions of spot and futures price fluctuations in different periods present regularity and complexity. Moreover, these prices are strongly correlated in stable fluctuation period but weak in the phase of sharp fluctuation. Finally, the time distribution characteristics of important modes in the networks and the evolution results of the topological properties mentioned above are obtained.

  19. Cloud glaciation temperature estimation from passive remote sensing data with evolutionary computing

    Science.gov (United States)

    Carro-Calvo, L.; Hoose, C.; Stengel, M.; Salcedo-Sanz, S.

    2016-11-01

    The phase partitioning between supercooled liquid water and ice in clouds in the temperature range between 0 and -37°C influences their optical properties and the efficiency of precipitation formation. Passive remote sensing observations provide long-term records of the cloud top phase at a high spatial resolution. Based on the assumption of a cumulative Gaussian distribution of the ice cloud fraction as a function of temperature, we quantify the cloud glaciation temperature (CGT) as the 50th percentile of the fitted distribution function and its variance for different cloud top pressure intervals, obtained by applying an evolutionary algorithm (EA). EAs are metaheuristics approaches for optimization, used in difficult problems where standard approaches are either not applicable or show poor performance. In this case, the proposed EA is applied to 4 years of Pathfinder Atmospheres-Extended (PATMOS-x) data, aggregated into boxes of 1° × 1° and vertical layers of 5.5 hPa. The resulting vertical profile of CGT shows a characteristic sickle shape, indicating low CGTs close to homogeneous freezing in the upper troposphere and significantly higher values in the midtroposphere. In winter, a pronounced land-sea contrast is found at midlatitudes, with lower CGTs over land. Among this and previous studies, there is disagreement on the sign of the land-sea difference in CGT, suggesting that it is strongly sensitive to the detected and analyzed cloud types, the time of the day, and the phase retrieval method.

  20. Implications of computer networking and the Internet for nurse education.

    Science.gov (United States)

    Ward, R

    1997-06-01

    This paper sets out the history of computer networking and its use in nursing and health care education, and places this in its wider historical and social context. The increasing availability and use of computer networks and the internet are producing a changing climate in education as well as in health care. Moves away from traditional face-to-face teaching with a campus institution to widely distributed interactive multimedia learning will affect the roles of students and teachers. The use of electronic mail, mailing lists and the World Wide Web are specifically considered, along with changes to library and information management skills, research methods, journal publication and the like. Issues about the quality, as well as quantity, of information available, are considered. As more and more organizations and institutions begin to use electronic communication methods, it becomes an increasingly important part of the curriculum at all levels, and may lead to fundamental changes in geographical and professional boundaries. A glossary of terms is provided for those not familiar with the technology, along with the contact details for mailing lists and World Wide Web pages mentioned.

  1. Optimization of stochastic discrete systems and control on complex networks computational networks

    CERN Document Server

    Lozovanu, Dmitrii

    2014-01-01

    This book presents the latest findings on stochastic dynamic programming models and on solving optimal control problems in networks. It includes the authors' new findings on determining the optimal solution of discrete optimal control problems in networks and on solving game variants of Markov decision problems in the context of computational networks. First, the book studies the finite state space of Markov processes and reviews the existing methods and algorithms for determining the main characteristics in Markov chains, before proposing new approaches based on dynamic programming and combinatorial methods. Chapter two is dedicated to infinite horizon stochastic discrete optimal control models and Markov decision problems with average and expected total discounted optimization criteria, while Chapter three develops a special game-theoretical approach to Markov decision processes and stochastic discrete optimal control problems. In closing, the book's final chapter is devoted to finite horizon stochastic con...

  2. Applied and computational harmonic analysis on graphs and networks

    Science.gov (United States)

    Irion, Jeff; Saito, Naoki

    2015-09-01

    In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.

  3. Eye tracking using artificial neural networks for human computer interaction.

    Science.gov (United States)

    Demjén, E; Aboši, V; Tomori, Z

    2011-01-01

    This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).

  4. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    Science.gov (United States)

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  5. High-performance computing and networking as tools for accurate emission computed tomography reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, A. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Formiconi, A.R. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); De Cristofaro, M.T.E.R. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Pupi, A. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Meldolesi, U. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy)

    1997-04-01

    It is well known that the quantitative potential of emission computed tomography (ECT) relies on the ability to compensate for resolution, attenuation and scatter effects. Reconstruction algorithms which are able to take these effects into account are highly demanding in terms of computing resources. The reported work aimed to investigate the use of a parallel high-performance computing platform for ECT reconstruction taking into account an accurate model of the acquisition of single-photon emission tomographic (SPET) data. An iterative algorithm with an accurate model of the variable system response was ported on the MIMD (Multiple Instruction Multiple Data) parallel architecture of a 64-node Cray T3D massively parallel computer. The system was organized to make it easily accessible even from low-cost PC-based workstations through standard TCP/IP networking. A complete brain study of 30 (64 x 64) slices could be reconstructed from a set of 90 (64 x 64) projections with ten iterations of the conjugate gradients algorithm in 9 s, corresponding to an actual speed-up factor of 135. This work demonstrated the possibility of exploiting remote high-performance computing and networking resources from hospital sites by means of low-cost workstations using standard communication protocols without particular problems for routine use. The achievable speed-up factors allow the assessment of the clinical benefit of advanced reconstruction techniques which require a heavy computational burden for the compensation effects such as variable spatial resolution, scatter and attenuation. The possibility of using the same software on the same hardware platform with data acquired in different laboratories with various kinds of SPET instrumentation is appealing for software quality control and for the evaluation of the clinical impact of the reconstruction methods. (orig.). With 4 figs., 1 tab.

  6. Genetic characterization and evolutionary inference of TNF-α through computational analysis

    Directory of Open Access Journals (Sweden)

    Gauri Awasthi

    Full Text Available TNF-α is an important human cytokine that imparts dualism in malaria pathogenicity. At high dosages, TNF-α is believed to provoke pathogenicity in cerebral malaria; while at lower dosages TNF-α is protective against severe human malaria. In order to understand the human TNF-α gene and to ascertain evolutionary aspects of its dualistic nature for malaria pathogenicity, we characterized this gene in detail in six different mammalian taxa. The avian taxon, Gallus gallus was included in our study, as TNF-α is not present in birds; therefore, a tandemly placed duplicate of TNF-α (LT-α or TNF-β was included. A comparative study was made of nucleotide length variations, intron and exon sizes and number variations, differential compositions of coding to non-coding bases, etc., to look for similarities/dissimilarities in the TNF-α gene across all seven taxa. A phylogenetic analysis revealed the pattern found in other genes, as humans, chimpanzees and rhesus monkeys were placed in a single clade, and rats and mice in another; the chicken was in a clearly separate branch. We further focused on these three taxa and aligned the amino acid sequences; there were small differences between humans and chimpanzees; both were more different from the rhesus monkey. Further, comparison of coding and non-coding nucleotide length variations and coding to non-coding nucleotide ratio between TNF-α and TNF-β among these three mammalian taxa provided a first-hand indication of the role of the TNF-α gene, but not of TNF-β in the dualistic nature of TNF-α in malaria pathogenicity.

  7. Computationally efficient measure of topological redundancy of biological and social networks

    Science.gov (United States)

    Albert, Réka; Dasgupta, Bhaskar; Hegde, Rashmi; Sivanathan, Gowri Sangeetha; Gitter, Anthony; Gürsoy, Gamze; Paul, Pradyut; Sontag, Eduardo

    2011-09-01

    It is well known that biological and social interaction networks have a varying degree of redundancy, though a consensus of the precise cause of this is so far lacking. In this paper, we introduce a topological redundancy measure for labeled directed networks that is formal, computationally efficient, and applicable to a variety of directed networks such as cellular signaling, and metabolic and social interaction networks. We demonstrate the computational efficiency of our measure by computing its value and statistical significance on a number of biological and social networks with up to several thousands of nodes and edges. Our results suggest a number of interesting observations: (1) Social networks are more redundant that their biological counterparts, (2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of signaling networks is highly (negatively) correlated with the monotonicity of their dynamics.

  8. Electricity market price forecasting by grid computing optimizing artificial neural networks

    OpenAIRE

    Niimura, T.; Ozawa, K.; Sakamoto, N.

    2007-01-01

    This paper presents a grid computing approach to parallel-process a neural network time-series model for forecasting electricity market prices. A grid computing environment introduced in a university computing laboratory provides access to otherwise underused computing resources. The grid computing of the neural network model not only processes several times faster than a single iterative process, but also provides chances of improving forecasting accuracy. Results of numerical tests using re...

  9. Network coding and evolutionary theory for performance enhancement in wireless cooperative clusters

    DEFF Research Database (Denmark)

    Militano, Leonardo; Fitzek, Frank; Iera, Antonio

    2010-01-01

    , portions of a file to be successively exchanged among all cluster members over wireless local area network (WLAN) links. Besides showing the beneficial effects of cooperation, this paper also focuses on the performance enhancement that can be achieved when using the network coding paradigm, whose...... are investigated and an ad hoc conceived Genetic Algorithm (GA) designed. Either the service time (the time needed for all nodes to receive the complete file) or the energy consumption for the nodes is used as objective function, showing in both cases the fast convergence for the algorithm that makes it preferable...

  10. 10 CFR 73.54 - Protection of digital computer and communication systems and networks.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Protection of digital computer and communication systems... computer and communication systems and networks. By November 23, 2009 each licensee currently licensed to... provide high assurance that digital computer and communication systems and networks are adequately...

  11. An Evolutionary Computing Enriched RS Attack Resilient Medical Image Steganography Model for Telemedicine Applications

    OpenAIRE

    Mansour, Romany F.; Abdelrahim, Elsaid MD.

    2017-01-01

    The recent advancement in computing technologies and resulting vision based applications have gives rise to a novel practice called telemedicine that requires patient diagnosis images or allied information to recommend or even perform diagnosis practices being located remotely. However, to ensure accurate and optimal telemedicine there is the requirement of seamless or flawless biomedical information about patient. On the contrary, medical data transmitted over insecure channel often remains ...

  12. Estimation of the elastic parameters of human liver biomechanical models by means of medical images and evolutionary computation.

    Science.gov (United States)

    Martínez-Martínez, F; Rupérez, M J; Martín-Guerrero, J D; Monserrat, C; Lago, M A; Pareja, E; Brugger, S; López-Andújar, R

    2013-09-01

    This paper presents a method to computationally estimate the elastic parameters of two biomechanical models proposed for the human liver. The method is aimed at avoiding the invasive measurement of its mechanical response. The chosen models are a second order Mooney-Rivlin model and an Ogden model. A novel error function, the geometric similarity function (GSF), is formulated using similarity coefficients widely applied in the field of medical imaging (Jaccard coefficient and Hausdorff coefficient). This function is used to compare two 3D images. One of them corresponds to a reference deformation carried out over a finite element (FE) mesh of a human liver from a computer tomography image, whilst the other one corresponds to the FE simulation of that deformation in which variations in the values of the model parameters are introduced. Several search strategies, based on GSF as cost function, are developed to accurately find the elastics parameters of the models, namely: two evolutionary algorithms (scatter search and genetic algorithm) and an iterative local optimization. The results show that GSF is a very appropriate function to estimate the elastic parameters of the biomechanical models since the mean of the relative mean absolute errors committed by the three algorithms is lower than 4%. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Computational model for analyzing the evolutionary patterns of the neuraminidase gene of influenza A/H1N1.

    Science.gov (United States)

    Ahn, Insung; Son, Hyeon Seok

    2012-02-01

    In this study, we performed computer simulations to evaluate the changes of selection potentials of codons in influenza A/H1N1 from 1999 to 2009. We artificially generated the sequences by using the transition matrices of positively selected codons over time, and their similarities against the database of influenzavirus A genus were determined by BLAST search. This is the first approach to predict the evolutionary direction of influenza A virus (H1N1) by simulating the codon substitutions over time. We observed that the BLAST results showed the high similarities with pandemic influenza A/H1N1 in 2009, suggesting that the classical human-origin influenza A/H1N1 isolated before 2009 might contain some selection potentials of swine-origin viruses. Computer simulations using the time series codon substitution patterns resulted dramatic changes of BLAST results in influenza A/H1N1, providing a possibility of developing a method for predicting the viral evolution in silico. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. SUNSEED - An evolutionary path to smart grid comms over converged telco and energy provider networks

    NARCIS (Netherlands)

    Stefanovic, C.; Popovski, P.; Jorguseski, L.; Sernec, R.

    2014-01-01

    SUNSEED, 'Sustainable and robust networking for smart electricity distribution', is a 3-year project started in 2014 and partially funded under call FP7-ICT-2013-11. The project objective is to research, design and implement methods for exploitation of existing communication infrastructure of energy

  15. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  16. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  17. Hybrid evolutionary techniques in feed forward neural network with distributed error for classification of handwritten Hindi `SWARS'

    Science.gov (United States)

    Kumar, Somesh; Pratap Singh, Manu; Goel, Rajkumar; Lavania, Rajesh

    2013-12-01

    In this work, the performance of feedforward neural network with a descent gradient of distributed error and the genetic algorithm (GA) is evaluated for the recognition of handwritten 'SWARS' of Hindi curve script. The performance index for the feedforward multilayer neural networks is considered here with distributed instantaneous unknown error i.e. different error for different layers. The objective of the GA is to make the search process more efficient to determine the optimal weight vectors from the population. The GA is applied with the distributed error. The fitness function of the GA is considered as the mean of square distributed error that is different for each layer. Hence the convergence is obtained only when the minimum of different errors is determined. It has been analysed that the proposed method of a descent gradient of distributed error with the GA known as hybrid distributed evolutionary technique for the multilayer feed forward neural performs better in terms of accuracy, epochs and the number of optimal solutions for the given training and test pattern sets of the pattern recognition problem.

  18. DIMACS Workshop on Interconnection Networks and Mapping, and Scheduling Parallel Computations

    CERN Document Server

    Rosenberg, Arnold L; Sotteau, Dominique; NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science; Interconnection networks and mapping and scheduling parallel computations

    1995-01-01

    The interconnection network is one of the most basic components of a massively parallel computer system. Such systems consist of hundreds or thousands of processors interconnected to work cooperatively on computations. One of the central problems in parallel computing is the task of mapping a collection of processes onto the processors and routing network of a parallel machine. Once this mapping is done, it is critical to schedule computations within and communication among processor from universities and laboratories, as well as practitioners involved in the design, implementation, and application of massively parallel systems. Focusing on interconnection networks of parallel architectures of today and of the near future , the book includes topics such as network topologies,network properties, message routing, network embeddings, network emulation, mappings, and efficient scheduling. inputs for a process are available where and when the process is scheduled to be computed. This book contains the refereed pro...

  19. An exploration of computer-simulated evolution and small group discussion on pre-service science teachers' perceptions of evolutionary concepts

    Science.gov (United States)

    MacDonald, Ronald Douglas

    The primary goal of this study was to explore how the use of a computer simulation of basic evolutionary processes, in combination with small-group discussions, affected Intermediate/Senior pre-service science teachers' perspectives of basic evolutionary concepts. Qualitative and quantitative methods were used in a case study approach with 19 pre-service Intermediate/Senior science teachers at an Ontario university. Several sub-goals were explored. The first sub-goal was to assess Intermediate/Senior pre-service science teachers' current conceptions of evolution. The results indicated that approximately two-thirds of the participants had a poor understanding of basic evolutionary concepts, with only 2 of the 19 participants demonstrating a strong comprehension. These results were found to be very similar to comparable samples of subjects from other research. The second sub-goal was to explore the relationships among Intermediate/Senior pre-service science teachers' understanding of contemporary evolutionary concepts, their perspectives of the nature of science, and their intentions to teach evolutionary concepts in the classroom. Participants' knowledge of evolutionary concepts was found to be associated strongly with their intentions to teach evolution by natural selection (r = .42). However, knowledge of evolutionary concepts was not found to be associated with any particular science epistemology perspective. The third sub-goal was to analyze and to interpret the small-group discussions as members interacted with the simulation. The simulation was found to be highly engaging and a very effective method of encouraging participants to speculate, question, discuss and learn about important evolutionary concepts. Analyses of the discussions revealed that the simulation evoked a wide array of correct conceptions as well as misconceptions. The fourth sub-goal was to assess the extent to which creating a lesson plan on the topic of natural selection could affect

  20. The Evolutionary Origins of Hierarchy.

    Directory of Open Access Journals (Sweden)

    Henok Mengistu

    2016-06-01

    Full Text Available Hierarchical organization-the recursive composition of sub-modules-is ubiquitous in biological networks, including neural, metabolic, ecological, and genetic regulatory networks, and in human-made systems, such as large organizations and the Internet. To date, most research on hierarchy in networks has been limited to quantifying this property. However, an open, important question in evolutionary biology is why hierarchical organization evolves in the first place. It has recently been shown that modularity evolves because of the presence of a cost for network connections. Here we investigate whether such connection costs also tend to cause a hierarchical organization of such modules. In computational simulations, we find that networks without a connection cost do not evolve to be hierarchical, even when the task has a hierarchical structure. However, with a connection cost, networks evolve to be both modular and hierarchical, and these networks exhibit higher overall performance and evolvability (i.e. faster adaptation to new environments. Additional analyses confirm that hierarchy independently improves adaptability after controlling for modularity. Overall, our results suggest that the same force-the cost of connections-promotes the evolution of both hierarchy and modularity, and that these properties are important drivers of network performance and adaptability. In addition to shedding light on the emergence of hierarchy across the many domains in which it appears, these findings will also accelerate future research into evolving more complex, intelligent computational brains in the fields of artificial intelligence and robotics.

  1. Computer optimization techniques for NASA Langley's CSI evolutionary model's real-time control system

    Science.gov (United States)

    Elliott, Kenny B.; Ugoletti, Roberto; Sulla, Jeff

    1992-01-01

    The evolution and optimization of a real-time digital control system is presented. The control system is part of a testbed used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with the flexible-body dynamics of the platform and platform appendages. The control system consists of Computer Automated Measurement and Control (CAMAC) standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the control system's performance to support controls research using controllers with up to 50 states and frame rates above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet effective software improvements, Input/Output (I/O) latencies and contention problems are reduced or eliminated in the control system. The final configuration can support a 16-state controller operating at 475 Hz. Effectively the control system's performance was increased by a factor of 3.

  2. Dynamic Security Assessment Of Computer Networks In Siem-Systems

    Directory of Open Access Journals (Sweden)

    Elena Vladimirovna Doynikova

    2015-10-01

    Full Text Available The paper suggests an approach to the security assessment of computer networks. The approach is based on attack graphs and intended for Security Information and Events Management systems (SIEM-systems. Key feature of the approach consists in the application of the multilevel security metrics taxonomy. The taxonomy allows definition of the system profile according to the input data used for the metrics calculation and techniques of security metrics calculation. This allows specification of the security assessment in near real time, identification of previous and future attacker steps, identification of attackers goals and characteristics. A security assessment system prototype is implemented for the suggested approach. Analysis of its operation is conducted for several attack scenarios.

  3. Computers and networks in the age of globalization

    DEFF Research Database (Denmark)

    Bloch Rasmussen, Leif; Beardon, Colin; Munari, Silvio

    In modernity, an individual identity was constituted from civil society, while in a globalized network society, human identity, if it develops at all, must grow from communal resistance. A communal resistance to an abstract conceptualized world, where there is no possibility for perception...... and experience of power and therefore no possibility for human choice and action, is of utmost importance for the constituting of human choosers and actors. This book therefore sets focus on those human choosers and actors wishing to read and enjoy the papers as they are actually perceiving and experiencing...... for Information Processing (IFIP) and held in Geneva, Switzerland in August 1998. Since the first HCC conference in 1974, IFIP's Technical Committee 9 has endeavoured to set the agenda for human choices and human actions vis-a-vis computers....

  4. AN EVOLUTIONARY ALGORITHM FOR CHANNEL ASSIGNMENT PROBLEM IN WIRELESS MOBILE NETWORKS

    Directory of Open Access Journals (Sweden)

    Yee Shin Chia

    2012-12-01

    Full Text Available The channel assignment problem in wireless mobile network is the assignment of appropriate frequency spectrum to incoming calls while maintaining a satisfactory level of electromagnetic compatibility (EMC constraints. An effective channel assignment strategy is important due to the limited capacity of frequency spectrum in wireless mobile network. Most of the existing channel assignment strategies are based on deterministic methods. In this paper, an adaptive genetic algorithm (GA based channel assignment strategy is introduced for resource management and to reduce the effect of EMC interferences. The most significant advantage of the proposed optimization method is its capability to handle both the reassignment of channels for existing calls as well as the allocation of channel to a new incoming call in an adaptive process to maximize the utility of the limited resources. It is capable to adapt the population size to the number of eligible channels for a particular cell upon new call arrivals to achieve reasonable convergence speed. The MATLAB simulation on a 49-cells network model for both uniform and nonuniform call traffic distributions showed that the proposed channel optimization method can always achieve a lower average new incoming call blocking probability compared to the deterministic based channel assignment strategy.

  5. WaveJava: Wavelet-based network computing

    Science.gov (United States)

    Ma, Kun; Jiao, Licheng; Shi, Zhuoer

    1997-04-01

    Wavelet is a powerful theory, but its successful application still needs suitable programming tools. Java is a simple, object-oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance, multi- threaded, dynamic language. This paper addresses the design and development of a cross-platform software environment for experimenting and applying wavelet theory. WaveJava, a wavelet class library designed by the object-orient programming, is developed to take advantage of the wavelets features, such as multi-resolution analysis and parallel processing in the networking computing. A new application architecture is designed for the net-wide distributed client-server environment. The data are transmitted with multi-resolution packets. At the distributed sites around the net, these data packets are done the matching or recognition processing in parallel. The results are fed back to determine the next operation. So, the more robust results can be arrived quickly. The WaveJava is easy to use and expand for special application. This paper gives a solution for the distributed fingerprint information processing system. It also fits for some other net-base multimedia information processing, such as network library, remote teaching and filmless picture archiving and communications.

  6. Cat Swarm Optimization Based Functional Link Artificial Neural Network Filter for Gaussian Noise Removal from Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2016-01-01

    Full Text Available Gaussian noise is one of the dominant noises, which degrades the quality of acquired Computed Tomography (CT image data. It creates difficulties in pathological identification or diagnosis of any disease. Gaussian noise elimination is desirable to improve the clarity of a CT image for clinical, diagnostic, and postprocessing applications. This paper proposes an evolutionary nonlinear adaptive filter approach, using Cat Swarm Functional Link Artificial Neural Network (CS-FLANN to remove the unwanted noise. The structure of the proposed filter is based on the Functional Link Artificial Neural Network (FLANN and the Cat Swarm Optimization (CSO is utilized for the selection of optimum weight of the neural network filter. The applied filter has been compared with the existing linear filters, like the mean filter and the adaptive Wiener filter. The performance indices, such as peak signal to noise ratio (PSNR, have been computed for the quantitative analysis of the proposed filter. The experimental evaluation established the superiority of the proposed filtering technique over existing methods.

  7. Integration of a network aware traffic generation device into a computer network emulation platform

    CSIR Research Space (South Africa)

    Von Solms, S

    2014-07-01

    Full Text Available Flexible, open source network emulation tools can provide network researchers with significant benefits regarding network behaviour and performance. The evaluation of these networks can benefit greatly from the integration of realistic, network...

  8. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts

    DEFF Research Database (Denmark)

    Pedersen, Søren Damkiær; Yang, Lei; Molin, Søren

    2013-01-01

    The genetic basis of bacterial adaptation to a natural environment has been investigated in a highly successful Pseudomonas aeruginosa lineage (DK2) that evolved within the airways of patients with cystic fibrosis (CF) for more than 35 y. During evolution in the CF airways, the DK2 lineage...... phenotypes. Our results suggest that adaptation to a highly selective environment, such as the CF airways, is a highly dynamic and complex process, which involves continuous optimization of existing regulatory networks to match the fluctuations in the environment....

  9. Drawing rooted phylogenetic networks.

    Science.gov (United States)

    Huson, Daniel H

    2009-01-01

    The evolutionary history of a collection of species is usually represented by a phylogenetic tree. Sometimes, phylogenetic networks are used as a means of representing reticulate evolution or of showing uncertainty and incompatibilities in evolutionary datasets. This is often done using unrooted phylogenetic networks such as split networks, due in part, to the availability of software (SplitsTree) for their computation and visualization. In this paper we discuss the problem of drawing rooted phylogenetic networks as cladograms or phylograms in a number of different views that are commonly used for rooted trees. Implementations of the algorithms are available in new releases of the Dendroscope and SplitsTree programs.

  10. Characterization of physiological networks in sleep apnea patients using artificial neural networks for Granger causality computation

    Science.gov (United States)

    Cárdenas, Jhon; Orjuela-Cañón, Alvaro D.; Cerquera, Alexander; Ravelo, Antonio

    2017-11-01

    Different studies have used Transfer Entropy (TE) and Granger Causality (GC) computation to quantify interconnection between physiological systems. These methods have disadvantages in parametrization and availability in analytic formulas to evaluate the significance of the results. Other inconvenience is related with the assumptions in the distribution of the models generated from the data. In this document, the authors present a way to measure the causality that connect the Central Nervous System (CNS) and the Cardiac System (CS) in people diagnosed with obstructive sleep apnea syndrome (OSA) before and during treatment with continuous positive air pressure (CPAP). For this purpose, artificial neural networks were used to obtain models for GC computation, based on time series of normalized powers calculated from electrocardiography (EKG) and electroencephalography (EEG) signals recorded in polysomnography (PSG) studies.

  11. An AmI-Based Software Architecture Enabling Evolutionary Computation in Blended Commerce: The Shopping Plan Application

    Directory of Open Access Journals (Sweden)

    Giuseppe D’Aniello

    2015-01-01

    Full Text Available This work describes an approach to synergistically exploit ambient intelligence technologies, mobile devices, and evolutionary computation in order to support blended commerce or ubiquitous commerce scenarios. The work proposes a software architecture consisting of three main components: linked data for e-commerce, cloud-based services, and mobile apps. The three components implement a scenario where a shopping mall is presented as an intelligent environment in which customers use NFC capabilities of their smartphones in order to handle e-coupons produced, suggested, and consumed by the abovesaid environment. The main function of the intelligent environment is to help customers define shopping plans, which minimize the overall shopping cost by looking for best prices, discounts, and coupons. The paper proposes a genetic algorithm to find suboptimal solutions for the shopping plan problem in a highly dynamic context, where the final cost of a product for an individual customer is dependent on his previous purchases. In particular, the work provides details on the Shopping Plan software prototype and some experimentation results showing the overall performance of the genetic algorithm.

  12. Hybrid pattern recognition method using evolutionary computing techniques applied to the exploitation of hyperspectral imagery and medical spectral data

    Science.gov (United States)

    Burman, Jerry A.

    1999-12-01

    Hyperspectral image sets are three dimensional data volumes that are difficult to exploit by manual means because they are comprised of multiple bands of image data that are not easily visualized or assessed. GTE Government Systems Corporation has developed a system that utilizes Evolutionary Computing techniques to automatically identify materials in terrain hyperspectral imagery. The system employs sophisticated signature preprocessing and a unique combination of non- parametric search algorithms guided by a model based cost function to achieve rapid convergence and pattern recognition. The system is scaleable and is capable of discriminating and identifying pertinent materials that comprise a specific object of interest in the terrain and estimating the percentage of materials present within a pixel of interest (spectral unmixing). The method has been applied and evaluated against real hyperspectral imagery data from the AVIRIS sensor. In addition, the process has been applied to remotely sensed infrared spectra collected at the microscopic level to assess the amounts of DNA, RNA and protein present in human tissue samples as an aid to the early detection of cancer.

  13. An evolutionary computation based algorithm for calculating solar differential rotation by automatic tracking of coronal bright points

    Science.gov (United States)

    Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.

    2016-03-01

    Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.

  14. Providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer

    Energy Technology Data Exchange (ETDEWEB)

    Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.; Ratterman, Joseph D.

    2018-01-30

    Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.

  15. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network

    Science.gov (United States)

    Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun

    2016-05-01

    Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 ;complex networks; articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.

  16. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    Energy Technology Data Exchange (ETDEWEB)

    Potok, Thomas E [ORNL; Schuman, Catherine D [ORNL; Young, Steven R [ORNL; Patton, Robert M [ORNL; Spedalieri, Federico [University of Southern California, Information Sciences Institute; Liu, Jeremy [University of Southern California, Information Sciences Institute; Yao, Ke-Thia [University of Southern California, Information Sciences Institute; Rose, Garrett [University of Tennessee (UT); Chakma, Gangotree [University of Tennessee (UT)

    2016-01-01

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.

  17. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    Science.gov (United States)

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  18. Wind Power Forecasting Using Multi-Objective Evolutionary Algorithms for Wavelet Neural Network-Optimized Prediction Intervals

    Directory of Open Access Journals (Sweden)

    Yanxia Shen

    2018-01-01

    Full Text Available The intermittency of renewable energy will increase the uncertainty of the power system, so it is necessary to predict the short-term wind power, after which the electrical power system can operate reliably and safely. Unlike the traditional point forecasting, the purpose of this study is to quantify the potential uncertainties of wind power and to construct prediction intervals (PIs and prediction models using wavelet neural network (WNN. Lower upper bound estimation (LUBE of the PIs is achieved by minimizing a multi-objective function covering both interval width and coverage probabilities. Considering the influence of the points out of the PIs to shorten the width of PIs without compromising coverage probability, a new, improved, multi-objective artificial bee colony (MOABC algorithm combining multi-objective evolutionary knowledge, called EKMOABC, is proposed for the optimization of the forecasting model. In this paper, some comparative simulations are carried out and the results show that the proposed model and algorithm can achieve higher quality PIs for wind power forecasting. Taking into account the intermittency of renewable energy, such a type of wind power forecast can actually provide a more reliable reference for dispatching of the power system.

  19. Evolutionary synthetic biology.

    Science.gov (United States)

    Peisajovich, Sergio G

    2012-06-15

    Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.

  20. Locating hardware faults in a data communications network of a parallel computer

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.