WorldWideScience

Sample records for networks driving non-linear

  1. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  2. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  3. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  4. Non-linear growth of the line-driving instability

    Science.gov (United States)

    Feldmeier, Achim; Thomas, Timon

    2017-08-01

    Winds from hot massive stars are driven by scattering of continuum radiation in bound-bound transitions. This radiative driving is subject to a strong instability, leading to shocks and X-ray emission. Time-dependent simulations of the instability encounter problems both for absorption and scattering lines, and it is necessary to introduce an artificially low opacity cut-off κm. The non-linear growth of the instability in the inner steeply accelerating wind is, so far, badly resolved. We present simulations with time-dependent Euler and Lagrange codes for pure line absorption at maximum growth rates of the instability in winds with a linear velocity law. This allows us to study the onset of non-linear growth in detail, and to follow unstable growth over orders of magnitude in velocity perturbations and length-scales. We find that distance-stretching in the accelerating wind causes unstable growth to proceed beyond the limit of a few thermal speeds that applies for short-scale perturbations. We increase the opacity cut-off to realistic values and find that the rarefied intershell gas is more strongly accelerated at larger κm, as is expected.

  5. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  6. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  7. Non-linear feedback neural networks VLSI implementations and applications

    CERN Document Server

    Ansari, Mohd Samar

    2014-01-01

    This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.

  8. Non Linear Smoothed Transductive Network Embeddingwith Text Information

    Science.gov (United States)

    2016-11-22

    networks, the nodes often have rich text attributes (namely words). For example, users in online social network such as Twitter and Facebook publish a...rich text attributes in real networks. For instance, the users in Twitter and Facebook social network are associated with plenty user generated...anonymous reviewers for their insightful comments . References Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for em

  9. Digital Non-Linear Equalization for Flexible Capacity Ultradense WDM Channels for Metro Core Networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking.......We experimentally demonstrate that digital non-linear equalization allows for using independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking....

  10. Non-Linear State Estimation Using Pre-Trained Neural Networks

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole

    2010-01-01

    effecting the transformation. This function is approximated by a neural network using offline training. The training is based on monte carlo sampling. A way to obtain parametric distributions of flexible shape to be used easily with these networks is also presented. The method can also be used to improve...... other parametric methods around regions with strong non-linearities by including them inside the network....

  11. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  12. Digital non-linear equalization for flexible capacity ultradense WDM channels for metro core networking

    DEFF Research Database (Denmark)

    Arlunno, Valeria; Zhang, Xu; Larsen, Knud J.

    2011-01-01

    An experimental demonstration of Ultradense WDM with advanced digital signal processing is presented. The scheme proposed allows the use of independent tunable DFB lasers spaced at 12.5 GHz for ultradense WDM PM-QPSK flexible capacity channels for metro core networking. To allocate extremely closed...... carriers, we demonstrate that a digital non-linear equalization allow to mitigate inter-channel interference and improve overall system performance in terms of OSNR. Evaluation of the algorithm and comparison with an ultradense WDM system with coherent carriers generated from a single laser are also...

  13. Speed-Sensorless DTC-SVM for Matrix Converter Drives With Simple Non-Linearity Compensation

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede; Yoon, Tae-Woong

    2005-01-01

    This paper presents a new method to improve sensorless performance of matrix converter drives using a parameter estimation scheme. To improve low-speed sensorless performance, the non-Iinearities of a matrix converter drive such as commutation delays, turn-on and turn-off times of switching devices...... method is applied for high performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Experimental results are shown to illustrate the feasibility of the proposed strategy....

  14. Non-linear backstepping control of five-phase IM drive at low speed conditions-experimental implementation.

    Science.gov (United States)

    Echeikh, Hamdi; Trabelsi, Ramzi; Iqbal, Atif; Bianchi, Nicola; Mimouni, Mohamed Fouizi

    2016-11-01

    In this paper non-linear backstepping control (BSC) is employed for high performance five-phase induction motor drive for low speed operation. The traditional control approaches such as direct torque control and indirect rotor field oriented control introduces stability problem at low speed. The proposed BSC is shown to offer stable operation in the sense of Lyapunov and high dynamics at low speed. Experimental results are provided to present the proprieties of the proposed approach at low speed in terms of stability, torque ripple, desired control performance, achievable dynamics and complexity of implementation etc. Copyright © 2016. Published by Elsevier Ltd.

  15. Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank.

    Directory of Open Access Journals (Sweden)

    Marco Bardoscia

    Full Text Available We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.

  16. Non-Linearities of Complicated Lever Mechanisms of Electric and Hydraulic Drives

    Directory of Open Access Journals (Sweden)

    A. G. Strizhnev

    2014-01-01

    Full Text Available The paper determines conversion coefficients for mechanical transmissions of electric and hydraulic drives which are used in special equipment. Nonlinearities of conversion coefficients  for mechanical transmissions have been revealed in the paper. Standardized conversion coefficient has been proposed for compensation of mechanical transmission influence on operation of electric and hydraulic drives. The paper contains recommendations on the application of the obtained results.

  17. A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    2012-09-01

    Full Text Available Signals acquired by sensors in the real world are non-linear combinations, requiring non-linear mixture models to describe the resultant mixture spectra for the endmember’s (pure pixel’s distribution. This communication discusses inferring class fraction through a novel hybrid mixture model (HMM. HMM is a three-step process, where the endmembers are first derived from the images themselves using the N-FINDR algorithm. These endmembers are used by the linear mixture model (LMM in the second step that provides an abundance estimation in a linear fashion. Finally, the abundance values along with the training samples representing the actual ground proportions are fed into neural network based multi-layer perceptron (MLP architecture as input to train the neurons. The neural output further refines the abundance estimates to account for the non-linear nature of the mixing classes of interest. HMM is first implemented and validated on simulated hyper spectral data of 200 bands and subsequently on real time MODIS data with a spatial resolution of 250 m. The results on computer simulated data show that the method gives acceptable results for unmixing pixels with an overall RMSE of 0.0089 ± 0.0022 with LMM and 0.0030 ± 0.0001 with the HMM when compared to actual class proportions. The unmixed MODIS images showed overall RMSE with HMM as 0.0191 ± 0.022 as compared to the LMM output considered alone that had an overall RMSE of 0.2005 ± 0.41, indicating that individual class abundances obtained from HMM are very close to the real observations.

  18. Robust MPC for a non-linear system - a neural network approach

    Science.gov (United States)

    Luzar, Marcel; Witczak, Marcin

    2014-12-01

    The aim of the paper is to design a robust actuator fault-tolerant control for a non-linear discrete-time system. Considered system is described by the Linear Parameter-Varying (LPV) model obtained with recurrent neural network. The proposed solution starts with a discretetime quasi-LPV system identification using artificial neural network. Subsequently, the robust controller is proposed, which does not take into account actuator saturation level and deals with the previously estimated faults. To check if the compensation problem is feasible, the robust invariant set is employed, which takes into account actuator saturation level. When the current state does not belong to the set, then a predictive control is performed in order to make such set larger. This makes it possible to increase the domain of attraction, which makes the proposed methodology an efficient solution for the fault-tolerant control. The last part of the paper presents an experimental results regarding wind turbines.

  19. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks

    Directory of Open Access Journals (Sweden)

    Alberto eCapurro

    2012-04-01

    Full Text Available Neural responses to odor blends often interact at different stages of the olfactory pathway. The first olfactory processing center in insects, the antennal lobe (AL, exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth M. sexta with those generated using a population-based computational model constructed from the morphologically-based connectivity pattern of projection neurons (PNs and local interneurons (LNs with randomized connection probabilities, from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons (OSNs and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.

  20. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  1. Non-linear elasticity of stiff filament networks: Strain stiffening, negative normal stress, and filament alignment in fibrin gels

    Science.gov (United States)

    Kang, Hyeran; Wen, Qi; Janmey, Paul A; Tang, Jay X.; Conti, Enrico; MacKintosh, Fred C.

    2011-01-01

    Many biomaterials formed by crosslinked semiflexible or rigid filaments exhibit non-linear rheology in the form of strain-stiffening and negative normal stress when samples are deformed in simple shear geometry. Two different classes of theoretical models have been developed to explain this non-linear elastic response, which is neither predicted by rubber elasticity theory nor observed in elastomers or gels formed by flexible polymers. One model considers the response of isotropic networks of semiflexible polymers that have non-linear force-elongation relations arising from their thermal fluctuations. The other considers networks of rigid filaments with linear force-elongation relations in which non-linearity arises from non-affine deformation and a shift from filament bending to stretching at increasing strains. Fibrin gels are a good experimental system to test these theories because the fibrin monomer assembles under different conditions to form either thermally fluctuating protofibrils with persistence length on the order of the network mesh size, or thicker rigid fibers. Comparison of rheologic and optical measurements shows that strain stiffening and negative normal stress appear at smaller strains than those at which filament orientation is evident from birefringence. Comparisons of shear to normal stresses and the strain-dependence of shear moduli and birefringence suggest methods to evaluate the applicability of different theories of rod-like polymer networks. The strain-dependence of the ratio of normal stress to shear stress is one parameter that distinguishes semi-flexible and rigid filament models, and comparisons with experiments reveal conditions under which specific theories may be applicable. PMID:19243107

  2. Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise

    Science.gov (United States)

    Ray, Christian; Cooper, Tim; Balazsi, Gabor

    2012-02-01

    In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.

  3. Neural network-based robust actuator fault diagnosis for a non-linear multi-tank system.

    Science.gov (United States)

    Mrugalski, Marcin; Luzar, Marcel; Pazera, Marcin; Witczak, Marcin; Aubrun, Christophe

    2016-03-01

    The paper is devoted to the problem of the robust actuator fault diagnosis of the dynamic non-linear systems. In the proposed method, it is assumed that the diagnosed system can be modelled by the recurrent neural network, which can be transformed into the linear parameter varying form. Such a system description allows developing the designing scheme of the robust unknown input observer within H∞ framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error, while guaranteeing the convergence of the observer. The application of the robust unknown input observer enables actuator fault estimation, which allows applying the developed approach to the fault tolerant control tasks. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A universal, fault-tolerant, non-linear analytic network for modeling and fault detection

    Energy Technology Data Exchange (ETDEWEB)

    Mott, J.E. [Advanced Modeling Techniques Corp., Idaho Falls, ID (United States); King, R.W.; Monson, L.R.; Olson, D.L.; Staffon, J.D. [Argonne National Lab., Idaho Falls, ID (United States)

    1992-03-06

    The similarities and differences of a universal network to normal neural networks are outlined. The description and application of a universal network is discussed by showing how a simple linear system is modeled by normal techniques and by universal network techniques. A full implementation of the universal network as universal process modeling software on a dedicated computer system at EBR-II is described and example results are presented. It is concluded that the universal network provides different feature recognition capabilities than a neural network and that the universal network can provide extremely fast, accurate, and fault-tolerant estimation, validation, and replacement of signals in a real system.

  5. Analysis of the reactive power consumption and the harmonics in the network by the non-linear electrical loads

    Energy Technology Data Exchange (ETDEWEB)

    Cogo, Joao Roberto [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    The non linear electrical loads can give rise to a number of disturbances in electrical power networks. Among them, the high consumption of relative power is to be noted and so is the several harmonic components which may be injected in the industry system and very often in the utility system. So, by using appropriate technical considerations, as well as measurements in typical special electrical loads, such negative effects are analyzed and ways of minimizing them are suggested. (author) 3 refs., 11 figs., 6 tabs.

  6. Identification of the non-linear systems using internal recurrent neural networks

    Directory of Open Access Journals (Sweden)

    Bogdan CODRES

    2006-12-01

    Full Text Available In the past years utilization of neural networks took a distinct ampleness because of the following properties: distributed representation of information, capacity of generalization in case of uncontained situation in training data set, tolerance to noise, resistance to partial destruction, parallel processing. Another major advantage of neural networks is that they allow us to obtain the model of the investigated system, systems that is not necessarily to be linear. In fact, the true value of neural networks is seen in the case of identification and control of nonlinear systems. In this paper there are presented some identification techniques using neural networks.

  7. Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.

    Science.gov (United States)

    Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van

    2017-06-01

    In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.

  8. Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes.

    Science.gov (United States)

    Galtier, Mathieu N; Marini, Camille; Wainrib, Gilles; Jaeger, Herbert

    2014-08-01

    A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Niño phenomenon studied in climate research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Microfluidic generation of droplet interface bilayer networks incorporating real-time size sorting in linear and non-linear configurations

    Science.gov (United States)

    Carreras, P.; Law, R. V.; Brooks, N.; Seddon, J. M.; Ces, O.

    2014-01-01

    In this study, a novel droplet based microfluidic method for the generation of different sized droplet interface bilayers is reported. A microfluidic platform was designed, which allows the generation and packing of picoliter lipid coated water droplets. Droplets were generated by hydrodynamic focusing coupled with selective transport along grooves according to their size. A trapping structure at the end of the groove and a fine control of the flow pressures allowed for the droplets to be successfully trapped and aligned on demand. This technology facilitates the fine control of droplet size production as well as the generation of extended networks from a variety of lipids including 1,2-diphytanoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine in linear and non-linear configurations, which is vital to the application of Droplet Interface Bilayers to biological network construction on-chip. PMID:25538807

  10. Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science.

    Science.gov (United States)

    Pillai, Goonaseelan Colin; Mentré, France; Steimer, Jean-Louis

    2005-04-01

    Few scientific contributions have made significant impact unless there was a champion who had the vision to see the potential for its use in seemingly disparate areas-and who then drove active implementation. In this paper, we present a historical summary of the development of non-linear mixed effects (NLME) modeling up to the more recent extensions of this statistical methodology. The paper places strong emphasis on the pivotal role played by Lewis B. Sheiner (1940-2004), who used this statistical methodology to elucidate solutions to real problems identified in clinical practice and in medical research and on how he drove implementation of the proposed solutions. A succinct overview of the evolution of the NLME modeling methodology is presented as well as ideas on how its expansion helped to provide guidance for a more scientific view of (model-based) drug development that reduces empiricism in favor of critical quantitative thinking and decision making.

  11. Toward Model-Based Control of Non-linear Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Jensen, Tom Nørgaard; Kallesøe, Carsten

    2013-01-01

    . Following an analogy to electric circuits, first the mathematical expression for pressure drop over each component of the pipe network (WSS) such as pipes, pumps, valves and water towers is presented. Then the network model is derived based on the circuit theory and subsequently used for pressure management......Water leakage is an important component of water loss. Many methods have emerged from urban water supply systems (WSSs) for leakage control, but it still remains a challenge in many countries. Pressure management is an effective way to reduce the leakage in a system. It can also reduce the power...... consumption. To have a better understanding of leakage in WSSs, to control pressure and leakage effectively, and for optimal design of WSSs, suitable modeling is an important prerequisite. In this paper a model with the main objective of pressure control and consequently leakage reduction is presented...

  12. Model reduction and parameter estimation of non-linear dynamical biochemical reaction networks.

    Science.gov (United States)

    Sun, Xiaodian; Medvedovic, Mario

    2016-02-01

    Parameter estimation for high dimension complex dynamic system is a hot topic. However, the current statistical model and inference approach is known as a large p small n problem. How to reduce the dimension of the dynamic model and improve the accuracy of estimation is more important. To address this question, the authors take some known parameters and structure of system as priori knowledge and incorporate it into dynamic model. At the same time, they decompose the whole dynamic model into subset network modules, based on different modules, and then they apply different estimation approaches. This technique is called Rao-Blackwellised particle filters decomposition methods. To evaluate the performance of this method, the authors apply it to synthetic data generated from repressilator model and experimental data of the JAK-STAT pathway, but this method can be easily extended to large-scale cases.

  13. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.

    Science.gov (United States)

    Oparaji, Uchenna; Sheu, Rong-Jiun; Bankhead, Mark; Austin, Jonathan; Patelli, Edoardo

    2017-12-01

    Artificial Neural Networks (ANNs) are commonly used in place of expensive models to reduce the computational burden required for uncertainty quantification, reliability and sensitivity analyses. ANN with selected architecture is trained with the back-propagation algorithm from few data representatives of the input/output relationship of the underlying model of interest. However, different performing ANNs might be obtained with the same training data as a result of the random initialization of the weight parameters in each of the network, leading to an uncertainty in selecting the best performing ANN. On the other hand, using cross-validation to select the best performing ANN based on the ANN with the highest R2 value can lead to biassing in the prediction. This is as a result of the fact that the use of R2 cannot determine if the prediction made by ANN is biased. Additionally, R2 does not indicate if a model is adequate, as it is possible to have a low R2 for a good model and a high R2 for a bad model. Hence, in this paper, we propose an approach to improve the robustness of a prediction made by ANN. The approach is based on a systematic combination of identical trained ANNs, by coupling the Bayesian framework and model averaging. Additionally, the uncertainties of the robust prediction derived from the approach are quantified in terms of confidence intervals. To demonstrate the applicability of the proposed approach, two synthetic numerical examples are presented. Finally, the proposed approach is used to perform a reliability and sensitivity analyses on a process simulation model of a UK nuclear effluent treatment plant developed by National Nuclear Laboratory (NNL) and treated in this study as a black-box employing a set of training data as a test case. This model has been extensively validated against plant and experimental data and used to support the UK effluent discharge strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Non-linear Bio-geophysical and Remote Sensing Relations Revealed in Neural Network Training for Fractional Snow Cover Estimation

    Science.gov (United States)

    Czyzowska-Wisniewski, E. H.; Van Leeuwen, W. J. D.; Marsh, S. E.; Hirschboeck, K. K.; Wisniewski, W. T.

    2014-12-01

    Accurate estimation of Fractional Snow Cover (FSC) in complex alpine-forested terrain is now possible with appropriate remote sensing data and analysis techniques. This research examines what minimum combination of input variables are required to obtain state-of-the-art FSC estimates for heterogeneous alpine-forested terrains. Currently, one of the most accurate FSC estimators for alpine regions is based on training an Artificial Neural Network (ANN) that can deconvolve the relationships between numerous compounded and possibly non-linear bio-geophysical relations encountered in rugged terrain. Under the assumption that the ANN optimally extracts available information from its input data, we can exploit the ANN as a tool to assess the contributions toward FSC estimation of each of the data sources, and combinations thereof. By assessing the quality of the modeled FSC estimates versus ground equivalent data, suitable combinations of input variables can be identified. High spatial resolution imagery from IKONOS are used to estimate snow cover for ANN training and validation, and also for error assessment of the ANN FSC results. Input variables are initially chosen representing information already incorporated into leading snow cover estimators. Additional variables such as topographic slope, aspect, and shadow distribution are evaluated to observe the ANN as it accounts for illumination incidence and directional reflectance of surfaces affecting the viewed radiance in complex terrain. Snow usually covers vegetation and underlying geology partially, therefore the ANN also has to resolve spectral mixtures of unobscured surfaces surrounded by snow. Multispectral imagery if therefore acquired in the fall prior to the first snow of the season and are included in the ANN analyses for assessing the baseline reflectance values of the environment that later become modified by the snow. The best ANN FSC model performance was achieved when all 15 pre-selected inputs were used

  15. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression

    Directory of Open Access Journals (Sweden)

    Neela Deshpande

    2014-12-01

    Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.

  16. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    Science.gov (United States)

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  17. Non-linear commands of DC to DC converters based on neural networks; Commandes non-lineaires des convertisseurs continu-continus a base de reseaux de neurones

    Energy Technology Data Exchange (ETDEWEB)

    Jammes, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France). Laboratoire d`Analyse et d`Architecture des Systemes; Dragos, A. [Bucharest Univ. Politechnica (Romania)

    1998-11-01

    In this paper, artificial neural networks are used to elaborate non-linear control of the average output voltage of Buck and Boost converters. The training of the regulator is based on the adjustment technique used by indirect adaptative command structures. These techniques require a system model and performances of inputs/outputs and state models are compared. It is shown that this approach allows to generate non-linear regulators for the converters under study, but it is preferable to introduce some modifications in order to facilitate the training of the regulator. (J.S.) 4 refs.

  18. Comparison of a linear and a non-linear model for using sensory-motor, cognitive, personality, and demographic data to predict driving ability in healthy older adults.

    Science.gov (United States)

    Hoggarth, Petra A; Innes, Carrie R H; Dalrymple-Alford, John C; Severinsen, Julie E; Jones, Richard D

    2010-11-01

    This study compared the ability of binary logistic regression (BLR) and non-linear causal resource analysis (NCRA) to utilize a range of cognitive, sensory-motor, personality and demographic measures to predict driving ability in a sample of cognitively healthy older drivers. Participants were sixty drivers aged 70 and above (mean=76.7 years, 50% men) with no diagnosed neurological disorder. Test data was used to build classification models for a Pass or Fail score on an on-road driving assessment. The generalizability of the models was estimated using leave-one-out cross-validation. Sixteen participants (27%) received an on-road Fail score. Area under the ROC curve values were .76 for BLR and .88 for NCRA (no significant difference, z=1.488, p=.137). The ROC curve was used to select three different cut-points for each model and to compare classification. At the cut-point corresponding to the maximum average of sensitivity and specificity, the BLR model had a sensitivity of 68.8% and specificity of 75.0% while NCRA had a sensitivity of 75.0% and specificity of 95.5%. However, leave-one-out cross-validation reduced sensitivity in both models and particularly reduced specificity for NCRA. Neither model is accurate enough to be relied on solely for determination of driving ability. The lowered accuracy of the models following leave-one-out cross-validation highlights the importance of investigating models beyond classification alone in order to determine a model's ability to generalize to new cases. 2010 Elsevier Ltd. All rights reserved.

  19. Non-linear oscillations

    CERN Document Server

    Hagedorn, Peter

    1982-01-01

    Thoroughly revised and updated, the second edition of this concise text provides an engineer's view of non-linear oscillations, explaining the most important phenomena and solution methods. Non-linear descriptions are important because under certain conditions there occur large deviations from the behaviors predicted by linear differential equations. In some cases, completely new phenomena arise that are not possible in purely linear systems. The theory of non-linear oscillations thus has important applications in classical mechanics, electronics, communications, biology, and many other branches of science. In addition to many other changes, this edition has a new section on bifurcation theory, including Hopf's theorem.

  20. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  1. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Science.gov (United States)

    Ramaswamy, Rajesh; Sbalzarini, Ivo F; González-Segredo, Nélido

    2011-01-28

    Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF) of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM) or fluorescence-correlation spectroscopy (FCS) to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  2. Noise-induced modulation of the relaxation kinetics around a non-equilibrium steady state of non-linear chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Rajesh Ramaswamy

    2011-01-01

    Full Text Available Stochastic effects from correlated noise non-trivially modulate the kinetics of non-linear chemical reaction networks. This is especially important in systems where reactions are confined to small volumes and reactants are delivered in bursts. We characterise how the two noise sources confinement and burst modulate the relaxation kinetics of a non-linear reaction network around a non-equilibrium steady state. We find that the lifetimes of species change with burst input and confinement. Confinement increases the lifetimes of all species that are involved in any non-linear reaction as a reactant. Burst monotonically increases or decreases lifetimes. Competition between burst-induced and confinement-induced modulation may hence lead to a non-monotonic modulation. We quantify lifetime as the integral of the time autocorrelation function (ACF of concentration fluctuations around a non-equilibrium steady state of the reaction network. Furthermore, we look at the first and second derivatives of the ACF, each of which is affected in opposite ways by burst and confinement. This allows discriminating between these two noise sources. We analytically derive the ACF from the linear Fokker-Planck approximation of the chemical master equation in order to establish a baseline for the burst-induced modulation at low confinement. Effects of higher confinement are then studied using a partial-propensity stochastic simulation algorithm. The results presented here may help understand the mechanisms that deviate stochastic kinetics from its deterministic counterpart. In addition, they may be instrumental when using fluorescence-lifetime imaging microscopy (FLIM or fluorescence-correlation spectroscopy (FCS to measure confinement and burst in systems with known reaction rates, or, alternatively, to correct for the effects of confinement and burst when experimentally measuring reaction rates.

  3. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Science.gov (United States)

    Minati, Ludovico; Chiesa, Pietro; Tabarelli, Davide; D'Incerti, Ludovico; Jovicich, Jorge

    2015-03-01

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D2), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  4. Synchronization, non-linear dynamics and low-frequency fluctuations: Analogy between spontaneous brain activity and networked single-transistor chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy); Center for Mind/Brain Sciences, University of Trento, Trento (Italy); Chiesa, Pietro; Tabarelli, Davide; Jovicich, Jorge [Center for Mind/Brain Sciences, University of Trento, Trento (Italy); D' Incerti, Ludovico [Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-03-15

    In this paper, the topographical relationship between functional connectivity (intended as inter-regional synchronization), spectral and non-linear dynamical properties across cortical areas of the healthy human brain is considered. Based upon functional MRI acquisitions of spontaneous activity during wakeful idleness, node degree maps are determined by thresholding the temporal correlation coefficient among all voxel pairs. In addition, for individual voxel time-series, the relative amplitude of low-frequency fluctuations and the correlation dimension (D{sub 2}), determined with respect to Fourier amplitude and value distribution matched surrogate data, are measured. Across cortical areas, high node degree is associated with a shift towards lower frequency activity and, compared to surrogate data, clearer saturation to a lower correlation dimension, suggesting presence of non-linear structure. An attempt to recapitulate this relationship in a network of single-transistor oscillators is made, based on a diffusive ring (n = 90) with added long-distance links defining four extended hub regions. Similarly to the brain data, it is found that oscillators in the hub regions generate signals with larger low-frequency cycle amplitude fluctuations and clearer saturation to a lower correlation dimension compared to surrogates. The effect emerges more markedly close to criticality. The homology observed between the two systems despite profound differences in scale, coupling mechanism and dynamics appears noteworthy. These experimental results motivate further investigation into the heterogeneity of cortical non-linear dynamics in relation to connectivity and underline the ability for small networks of single-transistor oscillators to recreate collective phenomena arising in much more complex biological systems, potentially representing a future platform for modelling disease-related changes.

  5. Non-Linear Mechanics

    CERN Document Server

    Graffi, Dario

    2011-01-01

    L. Cesari: Non-linear analysis.- J.K. Hale: Oscillations in neutral functional differential equations.- M. Jean: Elements de la theorie des equations differentielles avec commandes.- J. Mawhin: Un apercu des recherches belges en theorie des equations differentielles ordinaires dans le champ reel entre 1967 et 1972.- Yu A. Mitropol'skii: Certains aspects des progres de la methode de centrage.- Th. Vogel: Quelques problemes non lineaires en physique mathematique.

  6. Non-linear osmosis

    Science.gov (United States)

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  7. All-optical and digital non-linear compensation algorithms in flex-coherent grouped and un-grouped contiguous spectrum based networks

    DEFF Research Database (Denmark)

    Asif, Rameez

    2016-01-01

    We have evaluated that in-line non-linear compensation schemes decrease the complexity of digital backward propagation and enhance the transmission performance of 40/112/224 Gbit/s mixed line rate network. Multiple bit rates, i.e. 40/112/224 Gbit/s and modulation formats (i.e. DP-QPSK and DP-16QAM......) are transmitted over 1280 km of Large $$\\hbox {A}_{eff}$$ A e f f Pure-Silica core fiber. Both grouped and un-grouped spectral allocation schemes are investigated. Optical add-drop multiplexers are used to drop the required wavelength for signal processing in the transmission link. Moreover, hybrid mid-link...... spectral inversion and in-line non-linear compensation methods are also analyzed. This gives us enhanced system performance and DBP step-size of 400 km in WDM 224 Gbit/s DP-16QAM system, significantly reducing the complexity of digital backward propagation....

  8. Non-Linearity Explanation in Artificial Neural Network Application with a Case Study of Fog Forecast Over Delhi Region

    Science.gov (United States)

    Saurabh, K.; Dimri, A. P.

    2016-05-01

    Fog affects human life in a number of ways by reducing the visibility, hence affecting critical infrastructure, transportation, tourism or by the formation of frost, thus harming the standing crops. Smog is becoming a regular phenomenon in urban areas which is highly toxic to humans. Delhi was chosen as the area of study as it encounters all these hazards of fog stated apart from other political and economic reasons. The complex relationship behind the parameters and processes behind the formation of fog makes it extremely difficult to model and forecast it accurately. It is attempted to forecast the fog and understand its dynamics through a statistical downscaling technique of artificial neural network which is deemed accurate for short-term forecasting and usually outperform time-series models. The backpropagation neural network, which is a gradient descent algorithm where the network weights are moved along the negative of the gradient of the performance function, has been used for our analysis. Indian Meteorological Department (IMD) supported National Oceanic and Atmospheric Administration (NOAA) data had been used for carrying out the simulations. The model was found to have high accuracy but lacking in skill. An attempt has been made to present the data in a binary form by determining a threshold by the contingency table approach followed by its critical analysis. It is found that the calculation of an optimum threshold was also difficult to fix as the parameters of fog formation on which the model has been has been trained had shown some changes in their trend over a period of time.

  9. A linear and non-linear polynomial neural network modeling of dissolved oxygen content in surface water: Inter- and extrapolation performance with inputs' significance analysis.

    Science.gov (United States)

    Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor

    2018-01-01

    Accurate prediction of water quality parameters (WQPs) is an important task in the management of water resources. Artificial neural networks (ANNs) are frequently applied for dissolved oxygen (DO) prediction, but often only their interpolation performance is checked. The aims of this research, beside interpolation, were the determination of extrapolation performance of ANN model, which was developed for the prediction of DO content in the Danube River, and the assessment of relationship between the significance of inputs and prediction error in the presence of values which were of out of the range of training. The applied ANN is a polynomial neural network (PNN) which performs embedded selection of most important inputs during learning, and provides a model in the form of linear and non-linear polynomial functions, which can then be used for a detailed analysis of the significance of inputs. Available dataset that contained 1912 monitoring records for 17 water quality parameters was split into a "regular" subset that contains normally distributed and low variability data, and an "extreme" subset that contains monitoring records with outlier values. The results revealed that the non-linear PNN model has good interpolation performance (R 2 =0.82), but it was not robust in extrapolation (R 2 =0.63). The analysis of extrapolation results has shown that the prediction errors are correlated with the significance of inputs. Namely, the out-of-training range values of the inputs with low importance do not affect significantly the PNN model performance, but their influence can be biased by the presence of multi-outlier monitoring records. Subsequently, linear PNN models were successfully applied to study the effect of water quality parameters on DO content. It was observed that DO level is mostly affected by temperature, pH, biological oxygen demand (BOD) and phosphorus concentration, while in extreme conditions the importance of alkalinity and bicarbonates rises over p

  10. Using active power filter to compensate the current component of asymmetrical non-linear load in the four wire network

    Directory of Open Access Journals (Sweden)

    Руслан Володимирович Власенко

    2016-07-01

    Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage

  11. Robust Non-Linear Direct Torque and Flux Control of Adjustable Speed Sensorless PMSM Drive Based on SVM Using a PI Predictive Controller

    Directory of Open Access Journals (Sweden)

    F. Naceri

    2010-01-01

    Full Text Available This paper presents a new sensorless direct torque control method for voltage inverter – fed PMSM. The control methodis used a modified Direct Torque Control scheme with constant inverter switching frequency using Space Vector Modulation(DTC-SVM. The variation of stator and rotor resistance due to changes in temperature or frequency deteriorates theperformance of DTC-SVM controller by introducing errors in the estimated flux linkage and the electromagnetic torque.As a result, this approach will not be suitable for high power drives such as those used in tractions, as they require goodtorque control performance at considerably lower frequency. A novel stator resistance estimator is proposed. The estimationmethod is implemented using the Extended Kalman Filter. Finally extensive simulation results are presented to validate theproposed technique. The system is tested at different speeds and a very satisfactory performance has been achieved.

  12. Non-linear Post Processing Image Enhancement

    Science.gov (United States)

    Hunt, Shawn; Lopez, Alex; Torres, Angel

    1997-01-01

    A non-linear filter for image post processing based on the feedforward Neural Network topology is presented. This study was undertaken to investigate the usefulness of "smart" filters in image post processing. The filter has shown to be useful in recovering high frequencies, such as those lost during the JPEG compression-decompression process. The filtered images have a higher signal to noise ratio, and a higher perceived image quality. Simulation studies comparing the proposed filter with the optimum mean square non-linear filter, showing examples of the high frequency recovery, and the statistical properties of the filter are given,

  13. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  14. The Parkinsonian Basal Ganglia Network: Measures of Power, Linear and Non-Linear Synchronization and their Relationship to L-DOPA Treatment and OFF State Motor Severity

    Directory of Open Access Journals (Sweden)

    Timothy West

    2016-10-01

    Full Text Available In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN during Parkinson’s disease (PD. We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was no evidence for modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.

  15. Driving Innovation in Optical Networking

    Science.gov (United States)

    Colizzi, Ernesto

    Over the past 30 years, network applications have changed with the advent of innovative services spanning from high-speed broadband access to mobile data communications and to video signal distribution. To support this service evolution, optical transport infrastructures have changed their role. Innovations in optical networking have not only allowed the pure "bandwidth per fiber" increase, but also the realization of highly dependable and easy-to-manage networks. This article analyzes the innovations that have characterized the optical networking solutions from different perspectives, with a specific focus on the advancements introduced by Alcatel-Lucent's research and development laboratories located in Italy. The advancements of optical networking will be explored and discussed through Alcatel-Lucent's optical products to contextualize each innovation with the market evolution.

  16. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  17. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... property of the suspension is studied and it demonstrated that significant part of the variation can be predicted from the dissipated power....

  18. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  19. High-frequency non-linear motions induced by non-tidal ocean loading and their effect on estimating the geocenter motion from a geodetic network

    Science.gov (United States)

    Memin, A.; Watson, C. S.; Tregoning, P.

    2013-12-01

    We investigate the influence of high-frequency non-tidal ocean loading on the displacement induced at a global set of geodetic stations and on estimating the geocenter motion from a geodetic network. Ground displacements of each geodetic site induced by atmospheric and ocean loading are computed by convolving surface mass or pressure variations with Green functions for the vertical and horizontal displacement. The displacements resulting from atmospheric loading are computed using the surface pressure variations provided by the European Center for Medium-range Weather Forecasts model (1.5° space and 3h time sampling). The ocean response is taken into account assuming an inverted barometer and a non-inverted barometer response of the ocean to changes in the atmosphere. The first one is derived from the atmospheric model. The latter is computed using the sea height variations from the global barotropic ocean model named Toulouse Unstructured Grid Ocean model (0.25° grid and 3h time sampling). To examine the spatial and temporal effects of the high-frequency non-tidal atmospheric and ocean deformations spanning the network, made of 157 stations, from 2002 to 2011, we remove a seasonal component from the loading and geodetic time series. We find that high-frequency non-tidal ocean loading induces a larger long term variability (mean increase of 25% and up to 80%) in the vertical displacement than the non-tidal atmospheric loading at 131 stations. A similar conclusion holds for the induced sub-daily scatter at 127 stations (mean increase of 37% and up to 90%). Using the dynamic ocean's response, when correcting the geodetic time series for non-tidal ocean loading, reduces the weighted variance of the geodetic time series at 118 sites, the largest reductions (> 11%) are obtained along the Baltic sea. We compute the deformation in a center of mass and center of figure reference frame and estimate the time series of the translation of the geocenter. Comparing the

  20. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  1. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  2. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  3. Non-Linear Interactive Stories in Computer Games

    DEFF Research Database (Denmark)

    Bangsø, Olav; Jensen, Ole Guttorm; Kocka, Tomas

    2003-01-01

    The paper introduces non-linear interactive stories (NOLIST) as a means to generate varied and interesting stories for computer games automatically. We give a compact representation of a NOLIST based on the specification of atomic stories, and show how to build an object-oriented Bayesian network...

  4. Complex patterns of synchrony in networks undergoing exogenous drive

    Science.gov (United States)

    Waddell, Jack; Zochowski, Michal

    2007-03-01

    It has been established that various exogenous oscillatory drives modulate neural activity (and potentially information processing) in the brain. We explore the effect of an exogenous drive on the spatio-temporal pattern formation of a network of coupled non-identical R"ossler oscillators. We investigate the formation and properties of the phase locked states, dependent on the network properties as well as those of the external drive. We have found that such drive has a complex effect on the pattern formation in the network, depending on the coupling strength between the oscillators, drive strength as well as its frequency relative to the oscillators.

  5. Driving demand for broadband networks and services

    CERN Document Server

    Katz, Raul L

    2014-01-01

    This book examines the reasons why various groups around the world choose not to adopt broadband services and evaluates strategies to stimulate the demand that will lead to increased broadband use. It introduces readers to the benefits of higher adoption rates while examining the progress that developed and emerging countries have made in stimulating broadband demand. By relying on concepts such as a supply and demand gap, broadband price elasticity, and demand promotion, this book explains differences between the fixed and mobile broadband demand gap, introducing the notions of substitution and complementarity between both platforms. Building on these concepts, ‘Driving Demand for Broadband Networks and Services’ offers a set of best practices and recommendations aimed at promoting broadband demand.  The broadband demand gap is defined as individuals and households that could buy a broadband subscription because they live in areas served by telecommunications carriers but do not do so because of either ...

  6. Power converters and AC electrical drives with linear neural networks

    CERN Document Server

    Cirrincione, Maurizio

    2012-01-01

    The first book of its kind, Power Converters and AC Electrical Drives with Linear Neural Networks systematically explores the application of neural networks in the field of power electronics, with particular emphasis on the sensorless control of AC drives. It presents the classical theory based on space-vectors in identification, discusses control of electrical drives and power converters, and examines improvements that can be attained when using linear neural networks. The book integrates power electronics and electrical drives with artificial neural networks (ANN). Organized into four parts,

  7. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  8. Non-linear modelling of breast tissue.

    Science.gov (United States)

    Whiteley, Jonathan P; Gavaghan, David J; Chapman, S Jonathan; Brady, J Michael

    2007-09-01

    Previous approaches to modelling the large deformation of breast tissue, as occurs, e.g. in imaging using magnetic resonance imaging or mammography, include using linear elasticity and pseudo-non-linear elasticity, in which case the non-linear deformation is approximated by a series of small linear isotropic deformations, with the (constant) Young's modulus of each linear deformation an exponential function of the total non-linear strain. In this paper, these two approaches are compared to the solution of the full non-linear elastic problem for tissue with an exponential relationship between stress and strain. Having formulated each model and related the coefficients between the models, numerical simulations are performed on a block of incompressible material. These demonstrate that the simpler models may not be appropriate even in the case of modelling deformations of the human breast under gravity.

  9. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  10. Controller Reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.K.; Verhaegen, M.H.G.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting

  11. Pharmaceutical applications of non-linear imaging

    NARCIS (Netherlands)

    Strachan, Clare J.; Windbergs, Maike; Offerhaus, Herman L.

    2011-01-01

    Non-linear optics encompasses a range of optical phenomena, including two- and three-photon fluorescence, second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and

  12. Phenology drives mutualistic network structure and diversity

    NARCIS (Netherlands)

    Encinas Viso, Francisco; Revilla, Tomas A; Etienne, Rampal S.

    Several network properties have been identified as determinants of the stability and complexity of mutualistic networks. However, it is unclear which mechanisms give rise to these network properties. Phenology seems important, because it shapes the topology of mutualistic networks, but its effects

  13. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  14. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  15. Intelligent Servo Drives Control Based on a Single Fieldbus Network

    Directory of Open Access Journals (Sweden)

    D. Puiu

    2010-11-01

    Full Text Available Due to the quick evolution of manufacturing processes, the demand for more flexible automation systems is on the rise. To answer these requirements, distributed motion control architecture based on intelligent drives tends more and more to replace the traditional solutions. This paper presents the control of an articulated arm robot with two local intelligent servo drives connected on a CAN network to a motion controller which receives the trajectory of the robot from a computer. The control structure is based on a single CAN network where local intelligent servo drives, a motion controller and a computer are connected.

  16. Non-linear evanescent-field imaging

    Energy Technology Data Exchange (ETDEWEB)

    Oheim, Martin [Laboratory of Neurophysiology and New Microscopies, CNRS FRE 2500, INSERM U 603, Ecole Superieure de Physique et Chimie Industrielles (ESPCI), 10 rue Vauquelin, F-75005 Paris (France); Schapper, Florian [Freie Universitaet Berlin, Institut fuer Experimentalphysik, Arbeitsgruppe Wolf, Arnimallee 14, D-14195 Berlin (Germany)

    2005-05-21

    Total internal reflection fluorescence (TIRF), a general term that embraces any spectroscopic or microscopic technique based on the evanescent field created by TIR of light, is further establishing itself as an important tool for studying near-surface phenomena. Impingement of a femtosecond-pulsed infrared beam on a reflecting interface creates the conditions for 'macroscopic' evanescent-field two-photon fluorescence excitation. The two-photon fluorescence excitation volume is confined by both the non-linearity of the multi-photon process and the spatial inhomogeneity of the evanescent field. The absence of scattered excitation resulting in a low background and the possibility of simultaneous multi-colour fluorescence excitation should make non-linear evanescent-field excitation particularly attractive for quantitative single-molecule observation and ultra-sensitive screening assays. In this topical review, we survey the requirements, present the current results and explore the potential of this novel non-linear microscopy. (topical review)

  17. Mechatronic Hydraulic Drive with Regulator, Based on Artificial Neural Network

    Science.gov (United States)

    Burennikov, Y.; Kozlov, L.; Pyliavets, V.; Piontkevych, O.

    2017-06-01

    Mechatronic hydraulic drives, based on variable pump, proportional hydraulics and controllers find wide application in technological machines and testing equipment. Mechatronic hydraulic drives provide necessary parameters of actuating elements motion with the possibility of their correction in case of external loads change. This enables to improve the quality of working operations, increase the capacity of machines. The scheme of mechatronic hydraulic drive, based on the pump, hydraulic cylinder, proportional valve with electrohydraulic control and programmable controller is suggested. Algorithm for the control of mechatronic hydraulic drive to provide necessary pressure change law in hydraulic cylinder is developed. For the realization of control algorithm in the controller artificial neural networks are used. Mathematical model of mechatronic hydraulic drive, enabling to create the training base for adjustment of artificial neural networks of the regulator is developed.

  18. Vibrations decrease in machines with continuous impact action by introduction of non-linear resilient elements

    OpenAIRE

    Kolyada, A.; Sokol, T.; Prokopenko, D.; Ishkova, L.; Bezhenova, V.

    2012-01-01

    The influence of non-linearity in resilient characteristics on oscillation processes in machines drives working in continuous shock action for the purpose to improve its reliability and service life was considered. The condition of vibrations diminishing in a drive is shown.

  19. Spin waves cause non-linear friction

    Science.gov (United States)

    Magiera, M. P.; Brendel, L.; Wolf, D. E.; Nowak, U.

    2011-07-01

    Energy dissipation is studied for a hard magnetic tip that scans a soft magnetic substrate. The dynamics of the atomic moments are simulated by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. The local energy currents are analysed for the case of a Heisenberg spin chain taken as substrate. This leads to an explanation for the velocity dependence of the friction force: The non-linear contribution for high velocities can be attributed to a spin wave front pushed by the tip along the substrate.

  20. Non-linear Models for Longitudinal Data

    Science.gov (United States)

    Serroyen, Jan; Molenberghs, Geert; Verbeke, Geert; Davidian, Marie

    2009-01-01

    While marginal models, random-effects models, and conditional models are routinely considered to be the three main modeling families for continuous and discrete repeated measures with linear and generalized linear mean structures, respectively, it is less common to consider non-linear models, let alone frame them within the above taxonomy. In the latter situation, indeed, when considered at all, the focus is often exclusively on random-effects models. In this paper, we consider all three families, exemplify their great flexibility and relative ease of use, and apply them to a simple but illustrative set of data on tree circumference growth of orange trees. PMID:20160890

  1. Neural network based PWM AC chopper fed induction motor drive

    Directory of Open Access Journals (Sweden)

    Venkatesan Jamuna

    2009-01-01

    Full Text Available In this paper, a new Simulink model for a neural network controlled PWM AC chopper fed single phase induction motor is proposed. Closed loop speed control is achieved using a neural network controller. To maintain a constant fluid flow with a variation in pressure head, drives like fan and pump are operated with closed loop speed control. The need to improve the quality and reliability of the drive circuit has increased because of the growing demand for improving the performance of motor drives. With the increased availability of MOSFET's and IGBT's, PWM converters can be used efficiently in low and medium power applications. From the simulation studies, it is seen that the PWM AC chopper has a better harmonic spectrum and lesser copper loss than the Phase controlled AC chopper. It is observed that the drive system with the proposed model produces better dynamic performance, reduced overshoot and fast transient response. .

  2. Non linear effects in piezoelectric materials

    Directory of Open Access Journals (Sweden)

    Gonnard, P.

    2002-02-01

    Full Text Available The static and dynamic non-linear behaviours of a soft and a hard zirconate titanate composition are investigated in this paper as a function of electrical and mechanical fields. The calculated Rayleigh coefficients show that they are similar for the permittivity ε T33 and the piezoelectric constant and nul for the voltage constant d33 and the compliance at zero D (D = dielectric displacement. A non-linear electromechanical equivalent circuit is built up with components proportional to D. Finally an extended model to non-Rayleigh type behaviours is proposed.

    Los comportamientos no lineales estáticos y dinámicos de composiciones blandas y duras de titanato circonato de plomo se investigan en este trabajo en función de campos eléctricos y mecánicos. Los coeficientes de Rayleigh calculados son similares para la permitividad εT33 y la constantes piezoléctrica d33 y nulos para la constante g33 y la complianza a D cero (D=desplazamiento dieléctrico. Se construye un circuito electromecánico no lineal equivalente con componentes proporcionales a D. Finalmente se propone un modelo extendido a comportamientos de tipo no-Rayleigh.

  3. Pharmaceutical applications of non-linear imaging.

    Science.gov (United States)

    Strachan, Clare J; Windbergs, Maike; Offerhaus, Herman L

    2011-09-30

    Non-linear optics encompasses a range of optical phenomena, including two- and three-photon fluorescence, second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS). The combined advantages of using these phenomena for imaging complex pharmaceutical systems include chemical and structural specificities, high optical spatial and temporal resolutions, no requirement for labels, and the ability to image in an aqueous environment. These features make such imaging well suited for a wide range of pharmaceutical and biopharmaceutical investigations, including material and dosage form characterisation, dosage form digestion and drug release, and drug and nanoparticle distribution in tissues and within live cells. In this review, non-linear optical phenomena used in imaging will be introduced, together with their advantages and disadvantages in the pharmaceutical context. Research on pharmaceutical and biopharmaceutical applications is discussed, and potential future applications of the technology are considered. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.

    Linear and non-linear Rheology on dilute blends of polystyrene ring polymers in linear matrix is combined with Small Angle Neutron Scattering (SANS) investigations. In this way 2 different entanglement interactions become clear. After stretching the samples to different hencky strains up to 2...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...

  5. Non-linear Plasma Wake Growth of Electron Holes

    CERN Document Server

    Hutchinson, I H; Zhou, C

    2015-01-01

    An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

  6. Non-linear Abelian gauge model

    Science.gov (United States)

    Chauca, J.; Doria, R.; Soares, W.

    2012-10-01

    Based on the principle that nature acts together one proposes the presence of N-potential fields rotating under a same group. It introduces a new performance for the gauge approach. It yields a set of N-fields where each one is associated to a proper polynomial gauge transformation. As consequence, a non-linear abelian gauge model is obtained. It derives an abelian Lagrangian that beyond the usual case contains a longitudinal kinetic sector plus massive and interactive terms. This work establishes their gauge invariant conditions and writes the so-called Global Maxwell's equations and associated Global Lorentz force. Beyond Faraday lines, it yields physical lines of force in terms of potential fields.

  7. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    In the recent past, Rosenau and Hyman [2] introduced a family of non-linear partial differential equations with non-linear dispersive terms. For brevity, we refer to these equations as fully non-linear evolution (FNE) equa- tions. It was hoped that these might be useful to study formation of patterns in liquids. The solitary wave ...

  8. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  9. Modified Alternating Step Generators with Non-Linear Scrambler

    Directory of Open Access Journals (Sweden)

    Wicik Robert

    2014-03-01

    Full Text Available Pseudorandom generators, which produce keystreams for stream ciphers by the exclusiveor sum of outputs of alternately clocked linear feedback shift registers, are vulnerable to cryptanalysis. In order to increase their resistance to attacks, we introduce a non-linear scrambler at the output of these generators. Non-linear feedback shift register plays the role of the scrambler. In addition, we propose Modified Alternating Step Generator with a non-linear scrambler (MASG1S built with non-linear feedback shift register and regularly or irregularly clocked linear feedback shift registers with non-linear filtering functions

  10. Some examples of non-linear systems and characteristics of their solutions

    CSIR Research Space (South Africa)

    Greben, JM

    2006-07-01

    Full Text Available -linear structure of the equations, a structure which is dictated by the symmetries of physics. A central theme in these non-linear solutions is that the magnitude of the driving term (or the initial cause in more mundane language), is of little influence...

  11. Complexity, chaos and human physiology: the justification for non-linear neural computational analysis.

    Science.gov (United States)

    Baxt, W G

    1994-03-15

    Background is presented to suggest that a great many biologic processes are chaotic. It is well known that chaotic processes can be accurately characterized by non-linear technologies. Evidence is presented that an artificial neural network, which is a known method for the application of non-linear statistics, is able to perform more accurately in identifying patients with and without myocardial infarction than either physicians or other computer paradigms. It is suggested that the improved performance may be due to the network's better ability to characterize what is a chaotic process imbedded in the problem of the clinical diagnosis of this entity.

  12. Non-linear corrections to inflationary power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, 2333 CA Leiden (Netherlands); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Hwang, Jai-chan, E-mail: jinn-ouk.gong@cern.ch, E-mail: hr@kasi.re.kr, E-mail: jchan@knu.ac.kr [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2011-04-01

    We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum dominates and leading non-linear corrections remain negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour of the non-linear corrections.

  13. Non-linear behavior of fiber composite laminates

    Science.gov (United States)

    Hashin, Z.; Bagchi, D.; Rosen, B. W.

    1974-01-01

    The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

  14. Reputation drives cooperative behaviour and network formation in human groups.

    Science.gov (United States)

    Cuesta, Jose A; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel

    2015-01-19

    Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce.

  15. Reputation drives cooperative behaviour and network formation in human groups

    Science.gov (United States)

    Cuesta, Jose A.; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel

    2015-01-01

    Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce. PMID:25598347

  16. Pulse Propagation in a Non-Linear Medium

    Science.gov (United States)

    Edah, Gaston; Adanhounmè, Villévo; Kanfon, Antonin; Guédjé, François; Hounkonnou, Mahouton Norbert

    2015-02-01

    This paper considers a novel approach to solving the general propagation equation of optical pulses in an arbitrary non-linear medium. Using a suitable change of variable and applying the Adomian decomposition method to the non-linear Schrödinger equation, an analytical solution can be obtained which takes into accountparameters such as attenuation factor, the second order dispersive parameter, the third order dispersive parameter and the non-linear Kerr effect coefficient. By analysing the solution, this paper establishes that this method is suitable for the study of light pulse propagation in a non-linear optical medium.

  17. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  18. Non-linear classical dynamics in a superconducting circuit containing a cavity and a Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Meister, Selina; Kubala, Bjoern; Gramich, Vera; Mecklenburg, Michael; Stockburger, Juergen T.; Ankerhold, Joachim [Institute for Complex Quantum Systems, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm (Germany)

    2015-07-01

    Motivated by recent experiments a superconducting hybrid circuit consisting of a voltage biased Josephson junction in series with a resonator is studied. For strong driving the dynamics of the system can be very complex, even in the classical regime. Studying the dissipative dynamics within a Langevin-type description, we obtain well-defined dynamical steady states. In contrast to the well-known case of anharmonic potentials, like the Duffing or parametric oscillator, in our case the non-linearity stems from the peculiar way the external drive couples to the system [2]. We investigate the resonance behaviour of this non-linear hybrid system, in particular when driving at higher- or subharmonics. The resulting down- and up-conversions can be observed both, as resonances in the I-V curve, and in the emitted microwave radiation, which yields additional spectral information.

  19. Non linear processes modulated by low doses of radiation exposure

    Science.gov (United States)

    Mariotti, Luca; Ottolenghi, Andrea; Alloni, Daniele; Babini, Gabriele; Morini, Jacopo; Baiocco, Giorgio

    The perturbation induced by radiation impinging on biological targets can stimulate the activation of several different pathways, spanning from the DNA damage processing to intra/extra -cellular signalling. In the mechanistic investigation of radiobiological damage this complex “system” response (e.g. omics, signalling networks, micro-environmental modifications, etc.) has to be taken into account, shifting from a focus on the DNA molecule solely to a systemic/collective view. An additional complication comes from the finding that the individual response of each of the involved processes is often not linear as a function of the dose. In this context, a systems biology approach to investigate the effects of low dose irradiations on intra/extra-cellular signalling will be presented, where low doses of radiation act as a mild perturbation of a robustly interconnected network. Results obtained through a multi-level investigation of both DNA damage repair processes (e.g. gamma-H2AX response) and of the activation kinetics for intra/extra cellular signalling pathways (e.g. NFkB activation) show that the overall cell response is dominated by non-linear processes - such as negative feedbacks - leading to possible non equilibrium steady states and to a poor signal-to-noise ratio. Together with experimental data of radiation perturbed pathways, different modelling approaches will be also discussed.

  20. On the design of approximate non-linear parametric controllers

    NARCIS (Netherlands)

    Savaresi, Sergio M.; Nijmeijer, Henk; Guardabassi, Guido O.

    2000-01-01

    This paper focuses on the design of non-linear parametric controllers, around a nominal input/output trajectory of a discrete-time non-linear system. The main result provided herein is a relationship between the tracking performance of the closed-loop control system in the neighbourhood of a nominal

  1. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  2. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report ...

  3. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  4. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  5. Non linear behaviour of cell tensegrity models

    Science.gov (United States)

    Alippi, A.; Bettucci, A.; Biagioni, A.; Conclusio, D.; D'Orazio, A.; Germano, M.; Passeri, D.

    2012-05-01

    Tensegrity models for the cytoskeleton structure of living cells is largely used nowadays for interpreting the biochemical response of living tissues to mechanical stresses. Microtubules, microfilaments and filaments are the microscopic cell counterparts of struts (microtubules) and cables (microfilaments and filaments) in the macroscopic world: the formers oppose to compression, the latters to tension, thus yielding an overall structure, light and highly deformable. Specific cell surface receptors, such as integrins, act as the coupling elements that transmit the outside mechanical stress state into the cell body. Reversible finite deformations of tensegrity structures have been widely demonstrated experimentally and in a number of living cell simulations. In the present paper, the bistability behaviour of two general models, the linear bar oscillator and the icosahedron, is studied, as they are both obtained from mathematical simulation, the former, and from larger scale experiments, the latter. The discontinuity in the frequency response of the oscillation amplitude and the lateral bending of the resonance curves are put in evidence, as it grows larger as the driving amplitude increases, respectively.

  6. Non-linear corrections to inflationary power spectrum

    CERN Document Server

    Gong, Jinn-Ouk; Hwang, Jai-chan

    2011-01-01

    We study non-linear contributions to the power spectrum of the curvature perturbation on super-horizon scales, produced during slow-roll inflation driven by a canonical single scalar field. We find that on large scales the linear power spectrum completely dominates and leading non-linear corrections remain totally negligible, indicating that we can safely rely on linear perturbation theory to study inflationary power spectrum. We also briefly comment on the infrared and ultraviolet behaviour of the non-linear corrections.

  7. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  8. Computer modeling of batteries from non-linear circuit elements

    Science.gov (United States)

    Waaben, S.; Federico, J.; Moskowitz, I.

    1983-08-01

    A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.

  9. Non-linear electron photoemission from metals with ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ferrini, Gabriele; Banfi, Francesco; Giannetti, Claudio [Dipartimento di Matematica e Fisica, Universita Cattolica del Sacro Cuore, I-25121 Brescia (Italy); Parmigiani, Fulvio [Dipartimento di Fisica, Universita di Trieste and Sincrotrone Trieste, Strada Statale 14, I-34012 Basovizza, Trieste (Italy)], E-mail: fulvio.parmigiani@elettra.trieste.it

    2009-03-21

    In this review we describe the development of ultrafast non-linear photoemission spectroscopy on metals from the first historic observations in the sixties to state-of-the-art experiments. We present an account that is focused on electron spectroscopy experiments that use short laser pulses to investigate the non-equilibrium response of electrons in metals. Several examples of the application of non-linear spectroscopy to the investigation of many-body effects and highly non-equilibrium processes will be illustrated. Furthermore, we give a brief overview of the wide spectrum of experimental methods based on non-linear photoemission spectroscopy.

  10. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    a sequence of estimation problems for linearized models is solved. In the testing we apply four estimators to ten non-linear data fitting problems. The test problems are also solved by the Generalized Levenberg-Marquardt method and standard optimization BFGS method. It turns out that the new method......In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  11. Non-linear image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Gregor, Ingo; Ros, Robert; Enderlein, Jörg

    2017-02-01

    Nowadays, multiphoton microscopy can be considered as a routine method for the observation of living cells, organs, up to whole organisms. Second-harmonics generation (SHG) imaging has evolved to a powerful qualitative and label-free method for studying fibrillar structures, like collagen networks. However, examples of super-resolution non-linear microscopy are rare. So far, such approaches require complex setups and advanced synchronization of scanning elements limiting the image acquisition rates. We describe theory and realization of a super-resolution image scanning microscope [1, 2] using two-photon excited fluorescence as well as second-harmonic generation. It requires only minor modifications compared to a classical two-photon laser-scanning microscope and allows image acquisition at the high frame rates of a resonant galvo-scanner. We achieve excellent sensitivity and high frame-rate in combination with two-times improved lateral resolution. We applied this method to fixed cells, collagen hydrogels, as well as living fly embryos. Further, we proofed the excellent image quality of our setup for deep tissue imaging. 1. Müller C.B. and Enderlein J. (2010) Image scanning microscopy. Phys. Rev. Lett. 104(19), 198101. 2. Sheppard C.J.R. (1988) Super-resolution in confocal imaging. Optik (Stuttg) 80 53-54.

  12. MATHEMATICAL MODELING IN NON-LINEAR AEROELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. I. Morozov

    2014-01-01

    Full Text Available The modern aircraft aeroelasticity problems solving are considered. Mathematical models of aeroelasticity joined by non-linear vortex methods of numerical aerodynamics are described for different objects.

  13. The Effect of Non-Linear Structure on Cosmological Observables

    Science.gov (United States)

    Kaiser, Nick

    2018-01-01

    I shall review the various ways in which the emergence of non-linear structure in the universe may affect cosmological observables. I consider the distance-redshift relation, which has implications for the CMB and for cosmic flows, and attempt to clarify the meaning of some of the effects that have been found in non-linear perturbation theory. I will also critically examine some recent proposals for dynamical backreaction from structure affecting the expansion rate.

  14. Probing the non-linear transient response of a carbon nanotube mechanical oscillator

    Science.gov (United States)

    Willick, Kyle; Tang, Xiaowu Shirley; Baugh, Jonathan

    2017-11-01

    Carbon nanotube (CNT) electromechanical resonators have demonstrated unprecedented sensitivities for detecting small masses and forces. The detection speed in a cryogenic setup is usually limited by the CNT contact resistance and parasitic capacitance of cabling. We report the use of a cold heterojunction bipolar transistor amplifying circuit near the device to measure the mechanical amplitude at microsecond timescales. A Coulomb rectification scheme, in which the probe signal is at much lower frequency than the mechanical drive signal, allows investigation of the strongly non-linear regime. The behaviour of transients in both the linear and non-linear regimes is observed and modeled by including Duffing and non-linear damping terms in a harmonic oscillator equation. We show that the non-linear regime can result in faster mechanical response times, on the order of 10 μs for the device and circuit presented, potentially enabling the magnetic moments of single molecules to be measured within their spin relaxation and dephasing timescales.

  15. Reservoir computing and extreme learning machines for non-linear time-series data analysis.

    Science.gov (United States)

    Butcher, J B; Verstraeten, D; Schrauwen, B; Day, C R; Haycock, P W

    2013-02-01

    Random projection architectures such as Echo state networks (ESNs) and Extreme Learning Machines (ELMs) use a network containing a randomly connected hidden layer and train only the output weights, overcoming the problems associated with the complex and computationally demanding training algorithms traditionally used to train neural networks, particularly recurrent neural networks. In this study an ESN is shown to contain an antagonistic trade-off between the amount of non-linear mapping and short-term memory it can exhibit when applied to time-series data which are highly non-linear. To overcome this trade-off a new architecture, Reservoir with Random Static Projections (R(2)SP) is investigated, that is shown to offer a significant improvement in performance. A similar approach using an ELM whose input is presented through a time delay (TD-ELM) is shown to further enhance performance where it significantly outperformed the ESN and R(2)SP as well other architectures when applied to a novel task which allows the short-term memory and non-linearity to be varied. The hard-limiting memory of the TD-ELM appears to be best suited for the data investigated in this study, although ESN-based approaches may offer improved performance when processing data which require a longer fading memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  17. Non linear field correction effects on the dynamic aperture of the FCC-hh

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361058; Seryi, Andrei; Maclean, Ewen Hamish; Martin, Roman; Tomas Garcia, Rogelio

    2017-01-01

    The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.

  18. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  19. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  20. Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function

    DEFF Research Database (Denmark)

    Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny

    1997-01-01

    The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back-propagatio......The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back......-propagation algorithms in the framework of recurrent back-propagation and present some numerical simulations of feed-forward networks on the NetTalk problem. A discussion of implementation in analog VLSI electronics concludes the paper....

  1. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded......We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...

  2. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  3. Realization of non-linear coherent states by photonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  4. Non Linear Analysis on Multi Lobe Journal Bearings

    Science.gov (United States)

    Udaya Bhaskar, S.; Manzoor Hussian, M.; Yousuf Ali, Md.

    2017-08-01

    Multi lobe journal bearings are used in machines which operate at high speeds and high loads. In this paper the multi lobe bearing are analyzed to determine the effect of surface roughness during non linear loading. A non-linear time transient analysis is performed using the fourth order Runge Kutta method. The finite difference method is used to predict the pressure distribution over the bearing surface. The effect of eccentric ratio is studied and the variation of attitude angle is discussed. The journal center trajectories were calculated and plotted.

  5. Completely integrable models of non-linear optics

    OpenAIRE

    Maimistov, Andrei

    2000-01-01

    The models of the non-linear optics in which solitons were appeared are considered. These models are of paramount importance in studies of non-linear wave phenomena. The classical examples of phenomena of this kind are the self-focusing, self-induced transparency, and parametric interaction of three waves. At the present time there are a number of the theories based on completely integrable systems of equations, which are both generations of the original known models and new ones. The modifie...

  6. Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2016-06-01

    Full Text Available A permanent magnet (PM synchronous generator system driven by wind turbine (WT, connected with smart grid via AC-DC converter and DC-AC converter, are controlled by the novel recurrent Chebyshev neural network (NN and amended particle swarm optimization (PSO to regulate output power and output voltage in two power converters in this study. Because a PM synchronous generator system driven by WT is an unknown non-linear and time-varying dynamic system, the on-line training novel recurrent Chebyshev NN control system is developed to regulate DC voltage of the AC-DC converter and AC voltage of the DC-AC converter connected with smart grid. Furthermore, the variable learning rate of the novel recurrent Chebyshev NN is regulated according to discrete-type Lyapunov function for improving the control performance and enhancing convergent speed. Finally, some experimental results are shown to verify the effectiveness of the proposed control method for a WT driving a PM synchronous generator system in smart grid.

  7. Design Wave Load Prediction by Non-Linear Strip Theories

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    1998-01-01

    Some methods for predicting global stochastic wave load responses in ships are presented. The methods take into account the elastic behaviour of the ship and at least some of the non-linearities in the wave-induced loadings.Numerical rsults obtained for actual ships are reviewed with special...

  8. Efficient algorithms for non-linear four-wave interactions

    NARCIS (Netherlands)

    Van Vledder, G.P.

    2012-01-01

    This paper addresses the on-going activities in the development of efficient methods for computing the non-linear four-wave interactions in operational discrete third-generation wind-wave models. It is generally assumed that these interactions play an important role in the evolution of wind

  9. Determination of Non-Linear Dynamic Aerodynamic Coefficients for Aircraft

    Science.gov (United States)

    1997-01-01

    Representation - a Time Domain Perspective", AGARD CP-497, Nov. 1991. (10) Jenkins, J. E. and Haniff , E. S., "Non-Linear and Unsteady Aerodynamic Responses of a...8217 Delta Wing Oscillating in Roll", AIAA 94-3507. (12) Haniff , E., "Dynamic Nonlinear Airloads-Representation and Measurement", AGARD CP-386, May, 1985 (13

  10. Applications of non-linear methods in astronomy

    NARCIS (Netherlands)

    Martens, P.C.H.

    1984-01-01

    In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such

  11. Effect of Integral Non-Linearity on Energy Calibration of ...

    African Journals Online (AJOL)

    The integral non-linearity (INL) of four spectroscopy systems, two integrated (A1 and A2) and two classical (B1 and B2) systems was determined using pulses from a random pulse generator. The effect of INL on the system's energy calibration was also determined. The effect is minimal in the classical system at high ...

  12. Non-Linear Vibration of Euler-Bernoulli Beams

    DEFF Research Database (Denmark)

    Barari, Amin; Kaliji, H. D.; Domairry, G.

    2011-01-01

    In this paper, variational iteration (VIM) and parametrized perturbation (PPM)methods have been used to investigate non-linear vibration of Euler-Bernoulli beams subjected to the axial loads. The proposed methods do not require small parameter in the equation which is difficult to be found...

  13. A non-linear viscoelastic model for the tympanic membrane.

    Science.gov (United States)

    Motallebzadeh, Hamid; Charlebois, Mathieu; Funnell, W Robert J

    2013-12-01

    The mechanical behavior of the tympanic membrane displays both non-linearity and viscoelasticity. Previous finite-element models of the tympanic membrane, however, have been either non-linear or viscoelastic but not both. In this study, these two features are combined in a non-linear viscoelastic model. The constitutive equation of this model is a convolution integral composed of a non-linear elastic part, represented by an Ogden hyperelastic model, and an exponential time-dependent part, represented by a Prony series. The model output is compared with the relaxation curves and hysteresis loops observed in previous measurements performed on strips of tympanic membrane. In addition, a frequency-domain analysis is performed based on the obtained material parameters, and the effect of strain rate is explored. The model presented here is suitable for modeling large deformations of the tympanic membrane for frequencies less than approximately 3 rad/s or about 0.6 Hz. These conditions correspond to the pressurization involved in tympanometry.

  14. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure load...

  15. A cubic interpolation algorithm for solving non-linear equations ...

    African Journals Online (AJOL)

    A new Algorithm - based on cubic interpolation have been developed for solving non-linear algebraic equations. The Algorithm is derived from LaGrange's interpolation polynomial. The method discussed here is faster than the \\"Regular Falsi\\" which is based on linear interpolation. Since this new method does not involve ...

  16. Quantum-dot-based integrated non-linear sources

    DEFF Research Database (Denmark)

    Bernard, Alice; Mariani, Silvia; Andronico, Alessio

    2015-01-01

    The authors report on the design and the preliminary characterisation of two active non-linear sources in the terahertz and near-infrared range. The former is associated to difference-frequency generation between whispering gallery modes of an AlGaAs microring resonator, whereas the latter...

  17. Semiclassical approximations in non-linear. sigma. omega. models

    Energy Technology Data Exchange (ETDEWEB)

    Centelles, M.; Vinas, X.; Barranco, M. (Dept. ECM, Univ. Barcelona (Spain)); Marcos, S. (Dept. de Fisica Moderna, Univ. de Cantabria, Santander (Spain)); Lombard, R.J. (Div. de Physique Theorique, Inst. de Physique Nucleaire, 91 - Orsay (France))

    1992-02-24

    Extended Thomas-Fermi calculations up to second order in {Dirac h} have been performed for relativistic non-linear {sigma}{omega} models and compared with the corresponding Hartree calculations. In several respects, the relativistic phenomenology quite resembles the one previously found in the non-relativistic context using Skyrme forces. (orig.).

  18. Numerical simulation of non-linear phenomena in geotechnical engineering

    DEFF Research Database (Denmark)

    Sørensen, Emil Smed

    Geotechnical problems are often characterized by the non-linear behavior of soils and rock which are strongly linked to the inherent properties of the porous structure of the material as well as the presence and possible flow of any surrounding fluids. Dynamic problems involving such soil-fluid i...

  19. Non-linear optics for transducers: Principles and materials

    NARCIS (Netherlands)

    Hoekstra, Hugo; Krijnen, Gijsbertus J.M.; Driessen, A.; Lambeck, Paul; Popma, T.J.A.

    This paper concentrates on intensity-dependent refractive-index changes due to the third-order optical non-linearity. Materials exhibiting such effects are good candidates for applications in all-optical devices. The discussion will be on these materials, and characterization techniques and an

  20. Parameter Scaling in Non-Linear Microwave Tomography

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar

    2012-01-01

    Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag...

  1. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    2015-02-19

    Feb 19, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 84; Issue 3. Non-linear dynamics in ... Mechanical Engineering Department, Jadavpur University, Kolkata 700 032, India ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  2. A Non-Linear Control Method to Compensate for Muscle Fatigue during Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Nitin Sharma

    2017-12-01

    Full Text Available Neuromuscular electrical stimulation (NMES is a promising technique to artificially activate muscles as a means to potentially restore the capability to perform functional tasks in persons with neurological disorders. A pervasive problem with NMES is that overstimulation of the muscle (among other factors leads to rapid muscle fatigue, which limits the use of clinical and commercial NMES systems. The objective of this article is to develop an NMES controller that incorporates the effects of muscle fatigue during NMES-induced non-isometric contraction of the human quadriceps femoris muscle. Our previous work that used the RISE class of non-linear controllers cannot accommodate fatigue and muscle activation dynamics. A totally new control design approach and associated stability proof is required to derive a new class of NMES control design that accounts for muscle fatigue dynamics and a first-order activation dynamics, in addition to the second-order musculoskeletal dynamics. Motivated from a control method for robotic systems in a strict-feedback form, a backstepping based-non-linear NMES controller was designed to accommodate for the additional muscle activation dynamics. Further, experimentally identified estimates of the fatigue and activation dynamics were incorporated in the control design. The developed controller uses a neural network-based estimate of the musculoskeletal dynamics and error due to fatigue estimation. A globally uniformly ultimately bounded stability is proven the new controller that accounts for an uncertain non-linear muscle model and bounded non-linear disturbances (e.g., spasticity and changing load dynamics. The developed controller was validated through experiments on the left and right legs of 3 able-bodied subjects and was compared with a proportional-derivative (PD controller and a PD augmented with a neural network. The statistical analysis showed improved control performance compared with the PD controller.

  3. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  4. Non-linear Static Analysis of Offshore Steep Wave Riser

    Directory of Open Access Journals (Sweden)

    Qiao Hongdong

    2016-01-01

    Full Text Available A new solution combining finite difference method and shooting method is developed to analyze the behavior of steep wave riser suffering from current loading. Based on the large deformation beam theory and mechanics equilibrium principle, a set of non-linear ordinary differential equations describing the motion of the steep wave riser are obtained. Then, finite difference method and shooting method are adopted and combined to solve the ordinary differential equations with zero moment boundary conditions at both the seabed end and surface end of the steep wave riser. The resulting non-linear finite difference formulations can be solved effectively by Newton-Raphson method. To improve iterative efficiency, shooting method is also employed to obtain the initial value for Newton-Raphson method. Results are compared with that of FEM by OrcaFlex, to verify the accuracy and reliability of the numerical method.

  5. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  6. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  7. On non-linear very large sea wave groups

    Energy Technology Data Exchange (ETDEWEB)

    Arena, F. [University ' Mediterranea' of Reggio Calabria (Italy). Department of Mechanics and Materials

    2005-08-01

    The paper deals with the non-linear effects for sea wave groups. Boccotti's quasi-determinism theory, which is exact to the first-order in a Stokes expansion, gives the mechanics of sea wave groups when either a very high crest (first formulation of the theory - 'New Wave'), or a large crest-to-trough wave height (second formulation of the theory) occurs. In this paper, quasi-determinism theory, in both formulations, is extended to the second-order, by obtaining the expressions of free surface displacement and velocity potential, as a function of wave spectrum. Finally it is shown that analytical predictions are in good agreement with both field data and data of Monte Carlo simulations of non-linear random waves. (author)

  8. Chaos and non-linear phenomena in renal vascular control

    DEFF Research Database (Denmark)

    Yip, K P; Holstein-Rathlou, N H

    1996-01-01

    condition for the interaction is that the nephrons derive their blood supply from the same cortical radial artery. Development of hypertension is associated with a shift from periodic oscillations of tubular pressure to random-like fluctuations. Numerical analyses indicate that these fluctuations...... a variety of non-linear phenomena. In halothane-anesthetized, normotensive rats the TGF system oscillates regularly at 2-3 cycles/min because of the non-linearities and the time delays within the feedback system. Oscillations are present in single nephron blood flow, tubular pressure and flow......, and in the tubular solute concentrations. Nephrons deriving their afferent arteriole from the same cortical radial artery are entrained, and consequently oscillate at the same frequency. Experimental studies have shown that the synchronization is due to an interaction of the TGF between nephrons. A necessary...

  9. Isotopic effects on non-linearity, molecular radius and intermolecular ...

    Indian Academy of Sciences (India)

    Non-linearity parameter; molecular radius; free length; intermolecular inter- ... parameter (B/A) [3,4], molecular radius (rm) [5] and intermolecular free length (Lf) ... X. 2βT. ) and K = 1. 2. (. 1 +. S∗(1 + αT). αT. ) , where S∗ =1+ 4. 3. αT. Computation of molecular radius has been carried out by employing the relation r = A.

  10. Applications of non-linear algebra to biology

    OpenAIRE

    Cartwright, Dustin Alexander

    2010-01-01

    We present two applications of non-linear algebra to biology. Our first application is to the analysis of gene expression data from Arabidoposis roots. In Chapter 2, we present a method forcomputing non-negative roots to certain systems of polynomials. This algorithm is based on a generalization of the Expectation-Maximization and Iterative Proportional Fitting from statistics. In Chapter 3, this method is applied to a model for gene expression coming from roots of the Arabidopsis plant. Vari...

  11. Focusing SAR data acquired from non-linear sensor trajectories

    OpenAIRE

    Frey, O.; Magnard, C; RÜEGG, M.; Meier, E.

    2008-01-01

    Standard focusing of SAR data assumes a straight recording track of the sensor platform. Small non-linearities of airborne platform tracks are corrected for during a motion compensation step while keeping the assumption of a linear flight path. In the following, the processing of SAR data from nonlinear tracks is discussed as may originate from small aircraft or drones flying at low altitude. They fly not a straight track but one dependent on topography, influences of weather and wind, or ...

  12. Non-linear WKB analysis of the string equation

    Energy Technology Data Exchange (ETDEWEB)

    Fucito, F. (Dipartimento di Fisica, Univ. di Roma II Tor Vergata and INFN, Sezione di Roma Tor Vergata, Via Carnevale, 00173 Roma (Italy)); Gamba, A. (Milan Univ. (Italy). Ist. di Matematica); Martellini, M. (INFN, Sezione Di Roma I, Piazzale Aldo Moro 5, Roma (Italy)); Ragnisco, O. (Dipartimento di Fisica, Univ. di Roma I La Sapienza and INFN, Sezione di Roma I, Piazzale Aldo Moro 5, Roma (Italy))

    1992-07-10

    The authors apply non-linear WKB analysis to the study of the string equation. Even though the solutions obtained with this method are not exact, they approximate extremely well the true solutions, as we explicitly show using numerical simulations. Physical solutions are seen to be separatrices corresponding to degenerate Riemann surfaces. We obtain an analytic approximation in excellent agreement with the numerical solution found by Parisi et al. for the k = 3 case.

  13. Non-linear graphene optics for terahertz applications

    OpenAIRE

    Mikhailov, S. A.

    2008-01-01

    The linear electrodynamic properties of graphene -- the frequency-dependent conductivity, the transmission spectra and collective excitations -- are briefly outlined. The non-linear frequency multiplication effects in graphene are studied, taking into account the influence of the self-consistent-field effects and of the magnetic field. The predicted phenomena can be used for creation of new devices for microwave and terahertz optics and electronics.

  14. Non-Linear Dynamics and Emergence in Laboratory Fusion Plasmas

    Science.gov (United States)

    Hnat, B.

    2011-09-01

    Turbulent behaviour of laboratory fusion plasma system is modelled using extended Hasegawa-Wakatani equations. The model is solved numerically using finite difference techniques. We discuss non-linear effects in such a system in the presence of the micro-instabilities, specifically a drift wave instability. We explore particle dynamics in different range of parameters and show that the transport changes from diffusive to non-diffusive when large directional flows are developed.

  15. Isotopic effects on non-linearity, molecular radius and intermolecular ...

    Indian Academy of Sciences (India)

    Computation of non-linearity parameter (/), molecular radius (rm) and intermolecular free length (f) for H2O, C6H6, C6H12, CH3OH, C2H5OH and their deuterium-substituted compounds have been carried out at four different temperatures, viz., 293.15, 303.15, 313.15 and 323.15 K. The aim of the investigation is an ...

  16. Extraction of battery parameters using a multi-objective genetic algorithm with a non-linear circuit model

    Science.gov (United States)

    Malik, Aimun; Zhang, Zheming; Agarwal, Ramesh K.

    2014-08-01

    There is need for a battery model that can accurately describe the battery performance for an electrical system, such as the electric drive train of electric vehicles. In this paper, both linear and non-linear equivalent circuit models (ECM) are employed as a means of extracting the battery parameters that can be used to model the performance of a battery. The linear and non-linear equivalent circuit models differ in the numbers of capacitance and resistance; the non-linear model has an added circuit; however their numerical characteristics are equivalent. A multi-objective genetic algorithm is employed to accurately extract the values of the battery model parameters. The battery model parameters are obtained for several existing industrial batteries as well as for two recently proposed high performance batteries. Once the model parameters are optimally determined, the results demonstrate that both linear and non-linear equivalent circuit models can predict with acceptable accuracy the performance of various batteries of different sizes, characteristics, capacities, and materials. However, the comparisons of results with catalog and experimental data shows that the predictions of results using the non-linear equivalent circuit model are slightly better than those predicted by the linear model, calculating voltages that are closer to the manufacturers' values.

  17. Non-linear Q-clouds around Kerr black holes

    Directory of Open Access Journals (Sweden)

    Carlos Herdeiro

    2014-12-01

    Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.

  18. Non-linear Q-clouds around Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi, E-mail: helgi.runarsson@gmail.com

    2014-12-12

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.

  19. Non-Linear Forced Vibrations of AN Inhomogeneous Layer

    Science.gov (United States)

    COSKUN, I.; ENGIN, H.; ERGÜVEN, M. E.

    1999-11-01

    The non-linear vibrations of an inhomogeneous soil layer which is subjected to a harmonic motion along its bottom are investigated in this study. The Ramberg-Osgood model is transformed to a suitable form to obtain an analytical solution and it is assumed that the shear modulus of the layer varies with depth. The governing equation is a non-linear partial differential equation. Because of weak non-linearity, the displacement and forcing frequency are expanded into perturbation series by using the Lindstedt-Poincaré technique, and it is assumed that the response has the same periodicity as the forcing. Then, the zeroeth and the first order linear equations of motion and boundary conditions are obtained. Different types of solutions are obtained for the zeroeth order equation depending on the inhomogeneity parameter α. The orthogonality condition of Millman-Keller [1] is used to extract secular terms which are important in the resonance region. Then, the variation of the amplitude at the top versus the forcing frequency Ω is investigated for some values of inhomogeneity and perturbation parameters.

  20. Non-linear continuous time random walk models★

    Science.gov (United States)

    Stage, Helena; Fedotov, Sergei

    2017-11-01

    A standard assumption of continuous time random walk (CTRW) processes is that there are no interactions between the random walkers, such that we obtain the celebrated linear fractional equation either for the probability density function of the walker at a certain position and time, or the mean number of walkers. The question arises how one can extend this equation to the non-linear case, where the random walkers interact. The aim of this work is to take into account this interaction under a mean-field approximation where the statistical properties of the random walker depend on the mean number of walkers. The implementation of these non-linear effects within the CTRW integral equations or fractional equations poses difficulties, leading to the alternative methodology we present in this work. We are concerned with non-linear effects which may either inhibit anomalous effects or induce them where they otherwise would not arise. Inhibition of these effects corresponds to a decrease in the waiting times of the random walkers, be this due to overcrowding, competition between walkers or an inherent carrying capacity of the system. Conversely, induced anomalous effects present longer waiting times and are consistent with symbiotic, collaborative or social walkers, or indirect pinpointing of favourable regions by their attractiveness. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  1. Fabrication and characterization of non-linear parabolic microporous membranes.

    Science.gov (United States)

    Rajasekaran, Pradeep Ramiah; Sharifi, Payam; Wolff, Justin; Kohli, Punit

    2015-01-01

    Large scale fabrication of non-linear microporous membranes is of technological importance in many applications ranging from separation to microfluidics. However, their fabrication using traditional techniques is limited in scope. We report on fabrication and characterization of non-linear parabolic micropores (PMS) in polymer membranes by utilizing flow properties of fluids. The shape of the fabricated PMS corroborated well with simplified Navier-Stokes equation describing parabolic relationship of the form L - t(1/2). Here, L is a measure of the diameter of the fabricated micropores during flow time (t). The surface of PMS is smooth due to fluid surface tension at fluid-air interface. We demonstrate fabrication of PMS using curable polydimethylsiloxane (PDMS). The parabolic shape of micropores was a result of interplay between horizontal and vertical fluid movements due to capillary, viscoelastic, and gravitational forces. We also demonstrate fabrication of asymmetric "off-centered PMS" and an array of PMS membranes using this simple fabrication technique. PMS containing membranes with nanoscale dimensions are also possible by controlling the experimental conditions. The present method provides a simple, easy to adopt, and energy efficient way for fabricating non-linear parabolic shape pores at microscale. The prepared parabolic membranes may find applications in many areas including separation, parabolic optics, micro-nozzles / -valves / -pumps, and microfluidic and microelectronic delivery systems.

  2. Non-linear dynamic complexity of the human EEG during meditation.

    Science.gov (United States)

    Aftanas, L I; Golocheikine, S A

    2002-09-20

    We used non-linear analysis to investigate the dynamical properties underlying the EEG in the model of Sahaja Yoga meditation. Non-linear dimensional complexity (DCx) estimates, indicating complexity of neuronal computations, were analyzed in 20 experienced meditators during rest and meditation using 62-channel EEG. When compared to rest, the meditation was accompanied by a focused decrease of DCx estimates over midline frontal and central regions. By contrast, additionally computed linear measures exhibited the opposite direction of changes: power in the theta-1 (4-6 Hz), theta-2 (6-8 Hz) and alpha-1 (8-10 Hz) frequency bands was increased over these regions. The DCx estimates negatively correlated with theta-2 and alpha-1 and positively with beta-3 (22-30 Hz) band power. It is suggested that meditative experience, characterized by less complex dynamics of the EEG, involves 'switching off' irrelevant networks for the maintenance of focused internalized attention and inhibition of inappropriate information. Overall, the results point to the idea that dynamically changing inner experience during meditation is better indexed by a combination of non-linear and linear EEG variables.

  3. Long-term cavity closure in non-linear rocks

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter

    2017-08-01

    The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( {1 + {\\overline {M_s}}^{-1/2})R\\overline D_{II}, where \\overline M_s = (1 +{\\overline{D_{II}}^2} \\big nD_{II}^*^2} ) \\big ( 1 + {\\overline {D_{II}}^2} \\big D{_{II}^*}^2 ) and \\overline D_{II} is the second invariant of the far

  4. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  5. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  6. The Reorganization of Human Brain Networks Modulated by Driving Mental Fatigue.

    Science.gov (United States)

    Chunlin Zhao; Min Zhao; Yong Yang; Junfeng Gao; Nini Rao; Pan Lin

    2017-05-01

    The organization of the brain functional network is associated with mental fatigue, but little is known about the brain network topology that is modulated by the mental fatigue. In this study, we used the graph theory approach to investigate reconfiguration changes in functional networks of different electroen-cephalography (EEG) bands from 16 subjects performing a simulated driving task. Behavior and brain functional networks were compared between the normal and driving mental fatigue states. The scores of subjective self-reports indicated that 90 min of simulated driving-induced mental fatigue. We observed that coherence was significantly increased in the frontal, central, and temporal brain regions. Furthermore, in the brain network topology metric, significant increases were observed in the clustering coefficient (Cp) for beta, alpha, and delta bands and the character path length (Lp) for all EEG bands. The normalized measures γ showed significant increases in beta, alpha, and delta bands, and λ showed similar patterns in beta and theta bands. These results indicate that functional network topology can shift the network topology structure toward a more economic but less efficient configuration, which suggests low wiring costs in functional networks and disruption of the effective interactions between and across cortical regions during mental fatigue states. Graph theory analysis might be a useful tool for further understanding the neural mechanisms of driving mental fatigue.

  7. Definition of a linear equivalent model for a non-linear system with impacts

    OpenAIRE

    Thenint, Thibaud; BALMES, Etienne; Corus, Mathieu

    2012-01-01

    International audience; Modal characteristics of non-linear system are typically studied through response to harmonic excitation and using various definitions of non-linear modes. However, few results are available for systems under broadband excitation. The end objective sought here is to generate a linear system, in some sense equivalent to the non-linear system, whose modal characteristics evolve with a level of non-linearity. The considered application is the contact non-linearity found b...

  8. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  9. Non-linear reduced order models for steady aerodynamics

    DEFF Research Database (Denmark)

    Zimmermann, Ralf; Goertz, Stefan

    2010-01-01

    transformation for obtaining problem-adapted global basis modes is introduced. Model order reduction is achieved by parameter space sampling, reduced solution space representation via global POD and restriction of a CFD flow solver to the reduced POD subspace. Solving the governing equations of fluid dynamics...... is replaced by solving a non-linear least-squares optimization problem. Methods for obtaining feasible starting solutions for the optimization procedure are discussed. The method is demonstrated by computing reduced-order solutions to the compressible Euler equations for the NACA 0012 airfoil based on two...

  10. Non-Linear Langmuir Wave Modulation in Collisionless Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans

    1977-01-01

    A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...... in the expressions concerning the modulation instability of a plane Langmuir wave. When the Vlasov equation for the ions is applied, a Langmuir wave is modulationally unstable for arbitrary perturbations independent of the unperturbed wave amplitude, in contrast to what is found for fluid ions. A simple analogy...

  11. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  12. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  13. S-AMP for non-linear observation models

    DEFF Research Database (Denmark)

    Cakmak, Burak; Winther, Ole; Fleury, Bernard H.

    2015-01-01

    matrix has zero-mean iid Gaussian entries. Our derivation is based upon 1) deriving expectation-propagation-(EP)-like equations from the stationary-points equations of the Gibbs free energy under first- and second-moment constraints and 2) applying additive free convolution in free probability theory......Recently we presented the S-AMP approach, an extension of approximate message passing (AMP), to be able to handle general invariant matrix ensembles. In this contribution we extend S-AMP to non-linear observation models. We obtain generalized AMP (GAMP) as the special case when the measurement...

  14. Non-linear DSGE Models and The Optimized Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper improves the accuracy and speed of particle filtering for non-linear DSGE models with potentially non-normal shocks. This is done by introducing a new proposal distribution which i) incorporates information from new observables and ii) has a small optimization step that minimizes...... the distance to the optimal proposal distribution. A particle filter with this proposal distribution is shown to deliver a high level of accuracy even with relatively few particles, and this filter is therefore much more efficient than the standard particle filter....

  15. D-brane models with non-linear supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Benakli, K. E-mail: karim.benakli@cern.ch; Laugier, A

    2002-06-03

    We study a class of type I string models with supersymmetry broken on the world-volume of some D-branes and vanishing tree-level potential. Despite the non-supersymmetric spectrum, supersymmetry is non-linearly realized on these D-branes, while it is spontaneously broken in the bulk by Scherk-Schwarz boundary conditions. These models can easily accommodate 3-branes with interesting gauge groups and chiral fermions. We also study the effective field theory and in particular we compute the four-fermion couplings of the localized goldstino with the matter fermions on the brane.

  16. Studies for an alternative LHC non-linear collimation system

    CERN Document Server

    Lari, L; Boccone, V; Cerutti, F; Versaci, R; Vlachoudis, V; Mereghetti, A; Faus-Golfe, A; Resta-Lopez, J

    2012-01-01

    A LHC non-linear betatron cleaning collimation system would allow larger gap for the mechanical jaws, reducing as a consequence the collimator-induced impedance, which may limit the LHC beam intensity. In this paper, the performance of the proposed system is analyzed in terms of beam losses distribution around the LHC ring and cleaning efficiency in stable physics condition at 7TeV for Beam1. Moreover, the energy deposition distribution on the machine elements is compared to the present LHC Betatron cleaning collimation system in the Point 7 Insertion Region (IR).

  17. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion proce...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  18. Non-linear Bayesian update of PCE coefficients

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    Given: a physical system modeled by a PDE or ODE with uncertain coefficient q(?), a measurement operator Y (u(q), q), where u(q, ?) uncertain solution. Aim: to identify q(?). The mapping from parameters to observations is usually not invertible, hence this inverse identification problem is generally ill-posed. To identify q(!) we derived non-linear Bayesian update from the variational problem associated with conditional expectation. To reduce cost of the Bayesian update we offer a unctional approximation, e.g. polynomial chaos expansion (PCE). New: We apply Bayesian update to the PCE coefficients of the random coefficient q(?) (not to the probability density function of q).

  19. Utilization of non-linear converters for audio amplification

    DEFF Research Database (Denmark)

    Iversen, Niels Elkjær; Birch, Thomas; Knott, Arnold

    2012-01-01

    Class D amplifiers fits the automotive demands quite well. The traditional buck-based amplifier has reduced both the cost and size of amplifiers. However the buck topology is not without its limitations. The maximum peak AC output voltage produced by the power stage is only equal the supply voltage....... The introduction of non-linear converters for audio amplification defeats this limitation. A Cuk converter, designed to deliver an AC peak output voltage twice the supply voltage, is presented in this paper. A 3V prototype has been developed to prove the concept. The prototype shows that it is possible to achieve...

  20. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

    Directory of Open Access Journals (Sweden)

    Jairo Marlon Corrêa

    2016-03-01

    Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

  1. Pulsed actin-myosin network contractions drive apical constriction

    OpenAIRE

    Martin, Adam C.; Kaschube, Matthias; Eric F Wieschaus

    2008-01-01

    Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis1, 2. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and Non-Muscle Myosin-II (myosin) belt underlying adherens junctions3–7. However, it is unclear whether other force-generating mechanisms can drive this process. Here, we use real-time imaging and quantitative image analysis of Drosophila gastrulation to show tha...

  2. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  3. Primordial black holes in linear and non-linear regimes

    CERN Document Server

    Allahyari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...

  4. PV Degradation Curves: Non-Linearities and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill; Kurtz, Sarah R.

    2016-09-03

    Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually, in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.

  5. Non-linear leak currents affect mammalian neuron physiology

    Directory of Open Access Journals (Sweden)

    Shiwei eHuang

    2015-11-01

    Full Text Available In their seminal works on squid giant axons, Hodgkin and Huxley approximated the membrane leak current as Ohmic, i.e. linear, since in their preparation, sub-threshold current rectification due to the influence of ionic concentration is negligible. Most studies on mammalian neurons have made the same, largely untested, assumption. Here we show that the membrane time constant and input resistance of mammalian neurons (when other major voltage-sensitive and ligand-gated ionic currents are discounted varies non-linearly with membrane voltage, following the prediction of a Goldman-Hodgkin-Katz-based passive membrane model. The model predicts that under such conditions, the time constant/input resistance-voltage relationship will linearize if the concentration differences across the cell membrane are reduced. These properties were observed in patch-clamp recordings of cerebellar Purkinje neurons (in the presence of pharmacological blockers of other background ionic currents and were more prominent in the sub-threshold region of the membrane potential. Model simulations showed that the non-linear leak affects voltage-clamp recordings and reduces temporal summation of excitatory synaptic input. Together, our results demonstrate the importance of trans-membrane ionic concentration in defining the functional properties of the passive membrane in mammalian neurons as well as other excitable cells.

  6. Adaptive ensemble Kalman filtering of non-linear systems

    Directory of Open Access Journals (Sweden)

    Tyrus Berry

    2013-07-01

    Full Text Available A necessary ingredient of an ensemble Kalman filter (EnKF is covariance inflation, used to control filter divergence and compensate for model error. There is an on-going search for inflation tunings that can be learned adaptively. Early in the development of Kalman filtering, Mehra (1970, 1972 enabled adaptivity in the context of linear dynamics with white noise model errors by showing how to estimate the model error and observation covariances. We propose an adaptive scheme, based on lifting Mehra's idea to the non-linear case, that recovers the model error and observation noise covariances in simple cases, and in more complicated cases, results in a natural additive inflation that improves state estimation. It can be incorporated into non-linear filters such as the extended Kalman filter (EKF, the EnKF and their localised versions. We test the adaptive EnKF on a 40-dimensional Lorenz96 model and show the significant improvements in state estimation that are possible. We also discuss the extent to which such an adaptive filter can compensate for model error, and demonstrate the use of localisation to reduce ensemble sizes for large problems.

  7. Triadic closure dynamics drives scaling laws in social multiplex networks

    Science.gov (United States)

    Klimek, Peter; Thurner, Stefan

    2013-06-01

    Social networks exhibit scaling laws for several structural characteristics, such as degree distribution, scaling of the attachment kernel and clustering coefficients as a function of node degree. A detailed understanding if and how these scaling laws are inter-related is missing so far, let alone whether they can be understood through a common, dynamical principle. We propose a simple model for stationary network formation and show that the three mentioned scaling relations follow as natural consequences of triadic closure. The validity of the model is tested on multiplex data from a well-studied massive multiplayer online game. We find that the three scaling exponents observed in the multiplex data for the friendship, communication and trading networks can simultaneously be explained by the model. These results suggest that triadic closure could be identified as one of the fundamental dynamical principles in social multiplex network formation.

  8. Instantaneous non-linear processing by pulse-coupled threshold units.

    Directory of Open Access Journals (Sweden)

    Moritz Helias

    Full Text Available Contemporary theory of spiking neuronal networks is based on the linear response of the integrate-and-fire neuron model derived in the diffusion limit. We find that for non-zero synaptic weights, the response to transient inputs differs qualitatively from this approximation. The response is instantaneous rather than exhibiting low-pass characteristics, non-linearly dependent on the input amplitude, asymmetric for excitation and inhibition, and is promoted by a characteristic level of synaptic background noise. We show that at threshold the probability density of the potential drops to zero within the range of one synaptic weight and explain how this shapes the response. The novel mechanism is exhibited on the network level and is a generic property of pulse-coupled networks of threshold units.

  9. Drive to miniaturization: integrated optical networks on mobile platforms

    Science.gov (United States)

    Salour, Michael M.; Batayneh, Marwan; Figueroa, Luis

    2011-11-01

    With rapid growth of the Internet, bandwidth demand for data traffic is continuing to explode. In addition, emerging and future applications are becoming more and more network centric. With the proliferation of data communication platforms and data-intensive applications (e.g. cloud computing), high-bandwidth materials such as video clips dominating the Internet, and social networking tools, a networking technology is very desirable which can scale the Internet's capability (particularly its bandwidth) by two to three orders of magnitude. As the limits of Moore's law are approached, optical mesh networks based on wavelength-division multiplexing (WDM) have the ability to satisfy the large- and scalable-bandwidth requirements of our future backbone telecommunication networks. In addition, this trend is also affecting other special-purpose systems in applications such as mobile platforms, automobiles, aircraft, ships, tanks, and micro unmanned air vehicles (UAVs) which are becoming independent systems roaming the sky while sensing data, processing, making decisions, and even communicating and networking with other heterogeneous systems. Recently, WDM optical technologies have seen advances in its transmission speeds, switching technologies, routing protocols, and control systems. Such advances have made WDM optical technology an appealing choice for the design of future Internet architectures. Along these lines, scientists across the entire spectrum of the network architectures from physical layer to applications have been working on developing devices and communication protocols which can take full advantage of the rapid advances in WDM technology. Nevertheless, the focus has always been on large-scale telecommunication networks that span hundreds and even thousands of miles. Given these advances, we investigate the vision and applicability of integrating the traditionally large-scale WDM optical networks into miniaturized mobile platforms such as UAVs. We explain

  10. Integration of electric drive vehicles in the Danish electricity network with high wind power penetration

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob; Larsen, Esben

    2010-01-01

    /conventional) which are likely to fuel these cars. The study was carried out considering the Danish electricity network state around 2025, when the EDV penetration levels would be significant enough to have an impact on the power system. Some of the interesting findings of this study are - EDV have the potential......This paper presents the results of a study carried out to examine the feasibility of integrating electric drive vehicles (EDV) in the Danish electricity network which is characterised by high wind power penetration. One of the main aims of this study was to examine the effect of electric drive...... vehicles on the Danish electricity network, wind power penetration and electricity market. In particular the study examined the effect of electric drive vehicles on the generation capacity constraints, load curve, cross border transmission capacity and the type of generating sources (renewable...

  11. Non-linear electric analogs of the current distribution in porous electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Euler, K.J. (Arbeitsgurppe Technische Physik der Gesamthochschule, Kassel, Germany); Seim, B.

    1978-01-01

    Porous battery electrodes can, with respect to their volumetric current distribution, be regarded as electrical networks: linear, time-independent networks again can be treated by analytical methods. In some practical cases, however, deviations have to be considered: non-linear overvoltage functions, changing conductivities. Current distribution in such non-linear and time-dependent systems can be evaluated either by numerical computer calculations, or by the application of corresponding electrical analogs. The latter way is fairly simple and is discussed here. The observed overvoltage functions can be generated by semiconducting diodes. Changing conductivities are generated by adjustable resistors. Application of special automatic devices, e.g. diaphragms with closing pores, seems possible but has not been effected so far. Voltage and current scales have to be adapted to the characteristics of the electronic components. In general, in some practical electrodes the real overvoltage functions may change the current distribution markedly. Particular shoulders in the distribution curves are observed, which ameliorate the electrode utilization. Introduction of measured ionic conductivity changes certainly influences the current distribution, but results in deteriorations of the predicted electrode characteristics. 8 figures, 4 tables.

  12. Cooperative driving in mixed traffic networks - Optimizing for performance

    NARCIS (Netherlands)

    Calvert, S.C.; Broek, T.H.A. van den; Noort, M. van

    2012-01-01

    This paper discusses a cooperative adaptive cruise control application and its effects on the traffic system. In previous work this application has been tested on the road, and traffic simulation has been used to scale up the results of the field test to larger networks and more vehicles. The

  13. Non-linear optical crystal vibration sensing device

    Energy Technology Data Exchange (ETDEWEB)

    Kalibjian, R.

    1992-12-31

    The report describes a non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam . The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal.

  14. Predictability of extremes in non-linear hierarchically organized systems

    Science.gov (United States)

    Kossobokov, V. G.; Soloviev, A.

    2011-12-01

    Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare

  15. Non-linear optical crystal vibration sensing device

    Science.gov (United States)

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  16. Discriminative Non-Linear Stationary Subspace Analysis for Video Classification.

    Science.gov (United States)

    Baktashmotlagh, Mahsa; Harandi, Mehrtash; Lovell, Brian C; Salzmann, Mathieu

    2014-12-01

    Low-dimensional representations are key to the success of many video classification algorithms. However, the commonly-used dimensionality reduction techniques fail to account for the fact that only part of the signal is shared across all the videos in one class. As a consequence, the resulting representations contain instance-specific information, which introduces noise in the classification process. In this paper, we introduce non-linear stationary subspace analysis: a method that overcomes this issue by explicitly separating the stationary parts of the video signal (i.e., the parts shared across all videos in one class), from its non-stationary parts (i.e., the parts specific to individual videos). Our method also encourages the new representation to be discriminative, thus accounting for the underlying classification problem. We demonstrate the effectiveness of our approach on dynamic texture recognition, scene classification and action recognition.

  17. Image enhancement by non-linear extrapolation in frequency space

    Science.gov (United States)

    Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)

    1998-01-01

    An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.

  18. Non-linear Dynamics of Speech in Schizophrenia

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Simonsen, Arndis; Weed, Ethan

    -effects inference. SANS and SAPS scores were predicted using a 10-fold cross-validated multiple linear regression. Both analyses were iterated 1000 to test for stability of results. Results: Voice dynamics allowed discrimination of patients with schizophrenia from healthy controls with a balanced accuracy of 85...... speech patterns of people with schizophrenia contrasting them with matched controls and in relation to positive and negative symptoms. We employ both traditional measures (pitch mean and range, pause number and duration, speech rate, etc.) and 2) non-linear techniques measuring the temporal structure...... (regularity and complexity) of speech. Our aims are (1) to achieve a more fine-grained understanding of the speech patterns in schizophrenia than has previously been achieved using traditional, linear measures of prosody and fluency, and (2) to employ the results in a supervised machine-learning process...

  19. Non-linear PIC simulation in a penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G. L. (Gian L.); Lapenta, G. M. (Giovanni M.); Finn, J. M. (John M.)

    2001-01-01

    We study the non-linear dynamics of a Penning trap plasma, including the effect of the finite length and end curvature of the plasma column. A new cylindrical PIC code, called KANDINSKY, has been implemented by using a new interpolation scheme. The principal idea is to calculate the volume of each cell from a particle volume, in the same manner as it is done for the cell charge. With this new method, the density is conserved along streamlines and artificial sources of compressibility are avoided. The code has been validated with a reference Eulerian fluid code. We compare the dynamics of three different models: a model with compression effects, the standard Euler model and a geophysical fluid dynamics model. The results of our investigation prove that Penning traps can really be used to simulate geophysical fluids.

  20. Non-linear dispersive interaction in superconducting circuit QED

    Science.gov (United States)

    Yin, Yi; Wang, Haohua; Mariantoni, Matteo; Bialczak, Radoslaw C.; Lenander, Mike; Lucero, Eric; Neeley, Matthew; O'Connell, Aaron; Sank, Daniel; Wenner, Jim; Yamamoto, Tsuyoshi; Cleland, Andrew; Martinis, John

    2011-03-01

    In circuit quantum electrodynamics, the strong coupling between superconducting qubits and a coplanar waveguide resonator (CPW) has been utilized to study the light-atom interaction. When the qubit is detuned far away from the resonator in frequency, linear dispersive interaction has been used for the readout of qubit states by measuring the pulling frequency of the resonator. Alternatively, we investigate dispersive interaction in a broader regime by measuring the accumulated dynamic phase with Wigner tomography. In the quasi-adiabatic process of tuning the qubit frequency, the dynamic phase measurement can be pushed to the case of zero detuning with up to the five-photon Fock state in the CPW resonator. The exotic non-linear behaviors of the qubit on resonator cat state and coherent state have been revealed, strongly depending on the strength of dispersive interaction. Our experimental data are consistent with the numerical calculation using the Jaynes-Cumming model.

  1. Robust C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems. The intention is that the routines should use the currently best algorithms available. All routines have standardized calls, and the user does not have...... by changing 1 to 0. The present report is a new and updated version of a previous report NI-91-03 with the same title, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated from Fortran to C. The reason for writing the present report is that some...... of the C subroutines have been replaced by more effective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modi ed to some extent. For a description of the original Fortran subroutines see the report [17]. The software...

  2. Non-linearities in Theory-of-Mind Development

    Science.gov (United States)

    Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.

    2017-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065

  3. STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Pagliari Carmen

    2013-07-01

    Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to

  4. Plankton networks driving carbon export in the oligotrophic ocean.

    Science.gov (United States)

    Guidi, Lionel; Chaffron, Samuel; Bittner, Lucie; Eveillard, Damien; Larhlimi, Abdelhalim; Roux, Simon; Darzi, Youssef; Audic, Stephane; Berline, Léo; Brum, Jennifer; Coelho, Luis Pedro; Espinoza, Julio Cesar Ignacio; Malviya, Shruti; Sunagawa, Shinichi; Dimier, Céline; Kandels-Lewis, Stefanie; Picheral, Marc; Poulain, Julie; Searson, Sarah; Stemmann, Lars; Not, Fabrice; Hingamp, Pascal; Speich, Sabrina; Follows, Mick; Karp-Boss, Lee; Boss, Emmanuel; Ogata, Hiroyuki; Pesant, Stephane; Weissenbach, Jean; Wincker, Patrick; Acinas, Silvia G; Bork, Peer; de Vargas, Colomban; Iudicone, Daniele; Sullivan, Matthew B; Raes, Jeroen; Karsenti, Eric; Bowler, Chris; Gorsky, Gabriel

    2016-04-28

    The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.

  5. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  6. Can computational efficiency alone drive the evolution of modularity in neural networks?

    Science.gov (United States)

    Tosh, Colin R

    2016-08-30

    Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means.

  7. Identification of Induction Motor Parameters in Industrial Drives with Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Baburaj Karanayil

    2009-01-01

    Full Text Available This paper presents a new method of online estimation of the stator and rotor resistance of the induction motor in the indirect vector-controlled drive, with artificial neural networks. The back propagation algorithm is used for training of the neural networks. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. For the stator resistance estimation, the error between the measured stator current and the estimated stator current using neural network is back propagated to adjust the weights of the neural network. The performance of the stator and rotor resistance estimators and torque and flux responses of the drive, together with these estimators, is investigated with the help of simulations for variations in the stator and rotor resistance from their nominal values. Both types of resistance are estimated experimentally, using the proposed neural network in a vector-controlled induction motor drive. Data on tracking performances of these estimators are presented. With this approach, the rotor resistance estimation was found to be insensitive to the stator resistance variations both in simulation and experiment.

  8. Utilisation of non-linear modelling methods in flue-gas oxygen-content control

    Energy Technology Data Exchange (ETDEWEB)

    Leppaekoski, K.

    2006-07-01

    Non-linear methods have been utilised in modelling the processes on a flue-gas oxygen-content control system of a power plant. The ultimate objective is to reduce NO{sub x} and CO emissions by enhancing the control system. By investigating the flue-gas emission control strategy, the major factors affecting the flue-gas emissions have been determined. A simulator has been constructed, and it emulates a real process automation system and its physical processes. The process models of the simulator are: a flue-gas oxygen-content model, a secondary air flow model, a primary air flow model and a fuel feeding screw model (a fuel flow). The effort has been focused on two plant models: the flue-gas oxygen-content model and the secondary air flow model. Combustion is a non-linear, timevariant, multi-variable process with a variable delay. The secondary air model is a non-linear, timeinvariant (in principle), multi-variable system. Both phenomenological modelling (mass and energy calculations) and black-box modelling (neural networks) have been utilised in the Wiener/Hammerstein structures. It is possible to use a priori knowledge in model modifying, and therefore the model of flue-gas oxygen-content can be tuned on site. The simulator with precalculated parameters was tested in a full-scale power plant and a pilot-scale circulating fluidised bed boiler. The results in the power plant were remarkable since NO{sub x} emissions decreased significantly without increasing CO emissions. (orig.)

  9. Retarded Electromagnetic Interaction and the Origin of Non-linear Phenomena in Optics

    OpenAIRE

    Xiaochun, Mei

    2002-01-01

    The non-linear relation between electric polarization and electric field strength is achieved through introducing the retarded electromagnetic interactions between classical charge particles. The result agrees with the phenomenological theory in current non-linear optics, means that the non-linear phenomena in optics come from the retarded electromagnetic interaction between charged particles. The result slao shows that that most of non-linear phenomenon in optics violate symmetry of time rev...

  10. Cortico-cerebellar Networks Drive Sensorimotor Learning in Speech.

    Science.gov (United States)

    Lametti, Daniel R; Smith, Harriet J; Freidin, Phoebe; Watkins, Kate E

    2017-12-06

    The motor cortex and cerebellum are thought to be critical for learning and maintaining motor behaviors. Here we use transcranial direct current stimulation (tDCS) to test the role of the motor cortex and cerebellum in sensorimotor learning in speech. During productions of "head," "bed," and "dead," the first formant of the vowel sound was altered in real time toward the first formant of the vowel sound in "had," "bad," and "dad." Compensatory changes in first and second formant production were used as a measure of motor adaptation. tDCS to either the motor cortex or the cerebellum improved sensorimotor learning in speech compared with sham stimulation. However, in the case of cerebellar tDCS, production changes were restricted to the source of the acoustical error (i.e., the first formant). Motor cortex tDCS drove production changes that offset errors in the first formant, but unlike cerebellar tDCS, adaptive changes in the second formant also occurred. The results suggest that motor cortex and cerebellar tDCS have both shared and dissociable effects on motor adaptation. The study provides initial causal evidence in speech production that the motor cortex and the cerebellum support different aspects of sensorimotor learning. We propose that motor cortex tDCS drives sensorimotor learning toward previously learned patterns of movement, whereas cerebellar tDCS focuses sensorimotor learning on error correction.

  11. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    Science.gov (United States)

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  12. Positive non-symmetric solutions of a non-linear boundary value problem

    Directory of Open Access Journals (Sweden)

    Samuel Peres

    2013-11-01

    Full Text Available This paper deals with a non-linear second order ordinary differential equation with symmetric non-linear boundary conditions, where both of the non-linearities are of power type. It provides results concerning the existence and multiplicity of positive non-symmetric solutions for values of parameters not considered before. The main tool is the shooting method.

  13. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  14. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  15. Non-linear evolution of the cosmic neutrino background

    Energy Technology Data Exchange (ETDEWEB)

    Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  16. Linear and non linear chemometric models to quantify the adulteration of extra virgin olive oil.

    Science.gov (United States)

    Torrecilla, José S; Rojo, Ester; Domínguez, Juan C; Rodríguez, Francisco

    2010-12-15

    Two mathematical methods to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO), refined olive-pomace oil (ROPO), sunflower (SO) or corn (CO) oils have been described here. These methods are linear and non linear models based on chaotic parameters (CPs, Lyapunov exponent, autocorrelation coefficients and two fractal dimensions) which were calculated from UV-vis scans (190-900 nm wavelength) of 817 adulterated EVOO samples. By an external validation process, linear and non linear integrated CPs/UV-vis models estimate concentrations of adulterant agents with a mean correlation coefficient (estimated versus real concentration of cheaper oil) greater than 0.80 and 0.97 and a mean square error less than 1% and 0.007%, respectively. In the light of the results shown in this paper, the adulteration of EVOO with ROO, ROPO, SO and CO can be suitably detected by only one chaotic parameter integrated on a radial basis network model. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. 3D computation of non-linear eddy currents: Variational method and superconducting cubic bulk

    Science.gov (United States)

    Pardo, Enric; Kapolka, Milan

    2017-09-01

    Computing the electric eddy currents in non-linear materials, such as superconductors, is not straightforward. The design of superconducting magnets and power applications needs electromagnetic computer modeling, being in many cases a three-dimensional (3D) problem. Since 3D problems require high computing times, novel time-efficient modeling tools are highly desirable. This article presents a novel computing modeling method based on a variational principle. The self-programmed implementation uses an original minimization method, which divides the sample into sectors. This speeds-up the computations with no loss of accuracy, while enabling efficient parallelization. This method could also be applied to model transients in linear materials or networks of non-linear electrical elements. As example, we analyze the magnetization currents of a cubic superconductor. This 3D situation remains unknown, in spite of the fact that it is often met in material characterization and bulk applications. We found that below the penetration field and in part of the sample, current flux lines are not rectangular and significantly bend in the direction parallel to the applied field. In conclusion, the presented numerical method is able to time-efficiently solve fully 3D situations without loss of accuracy.

  18. Non-linear methods for inferring lidar metrics using SPOT-5 textural data

    Directory of Open Access Journals (Sweden)

    A. Shamsoddini

    2013-10-01

    Full Text Available Although many studies have demonstrated the utility of airborne lidar for forest inventory, the acquisition and processing of the data can be cost prohibitive for small areas. In such cases, it may be possible to emulate lidar metrics using more affordable optical data. This study explored processing methods for predicting lidar metrics using SPOT-5 textural data. Multiple-linear regression (MLR was compared with non-linear machine learning techniques including multi-layer perceptron (MLP artificial neural networks (ANN, rational basis function (RBF ANN and regression tree (RT. For this purpose, 11 grey level co-occurrence matrix (GLCM indices were calculated for bands, band ratios and principal components (PCs of SPOT-5 multispectral image. SPOT-5 metrics were correlated with 25 lidar metrics collected over a Pinus radiata plantation. After dimensionality reduction, random forest feature selection was applied to select the most relevant SPOT-5 textural attributes for inferring each lidar metric. The results showed that the non-linear methods including MLP and RBF methods are more promising for modelling lidar metrics using SPOT-5 data than MLR and RT.

  19. A novel methodology for non-linear system identification of battery cells used in non-road hybrid electric vehicles

    Science.gov (United States)

    Unger, Johannes; Hametner, Christoph; Jakubek, Stefan; Quasthoff, Marcus

    2014-12-01

    An accurate state of charge (SoC) estimation of a traction battery in hybrid electric non-road vehicles, which possess higher dynamics and power densities than on-road vehicles, requires a precise battery cell terminal voltage model. This paper presents a novel methodology for non-linear system identification of battery cells to obtain precise battery models. The methodology comprises the architecture of local model networks (LMN) and optimal model based design of experiments (DoE). Three main novelties are proposed: 1) Optimal model based DoE, which aims to high dynamically excite the battery cells at load ranges frequently used in operation. 2) The integration of corresponding inputs in the LMN to regard the non-linearities SoC, relaxation, hysteresis as well as temperature effects. 3) Enhancements to the local linear model tree (LOLIMOT) construction algorithm, to achieve a physical appropriate interpretation of the LMN. The framework is applicable for different battery cell chemistries and different temperatures, and is real time capable, which is shown on an industrial PC. The accuracy of the obtained non-linear battery model is demonstrated on cells with different chemistries and temperatures. The results show significant improvement due to optimal experiment design and integration of the battery non-linearities within the LMN structure.

  20. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  1. Non-linear signal processing in digital hearing aids.

    Science.gov (United States)

    Lunner, T; Hellgren, J; Arlinger, S; Elberling, C

    1998-01-01

    Three different non-linear digital signal processing algorithms were developed; LinEar, DynEar and RangeEar. All three provided individual frequency shaping via a seven-band low-power filterbank and compression in two channels. RangeEar and DynEar used wide dynamic range syllabic compression in the low-frequency (LF) channel, while LinEar used compression limiting. In the high-frequency (HF) channel, RangeEar used a slow-acting automatic volume control, while DynEar and LinEar used compression limiting. Wearable digital signal processing-based experimental instruments were used to evaluate the fitting algorithms under real world conditions with experienced hearing aid users. Evaluation included laboratory testing of speech recognition in noise and questionnaires on sound quality ratings. Results did not indicate one general good-for-all algorithm, but different algorithms resulting in preference and performance depending on the hearing loss configuration. Preference for any of the new algorithms could be predicted based on auditory dynamic range measurements. It was hypothesized that the different preferences were affected by different susceptibility to masking of HF sounds by amplified LF sounds.

  2. A Design of a Hybrid Non-Linear Control Algorithm

    Directory of Open Access Journals (Sweden)

    Farinaz Behrooz

    2017-11-01

    Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.

  3. Passive non-linear microrheology for determining extensional viscosity

    Science.gov (United States)

    Hsiao, Kai-Wen; Dinic, Jelena; Ren, Yi; Sharma, Vivek; Schroeder, Charles M.

    2017-12-01

    Extensional viscosity is a key property of complex fluids that greatly influences the non-equilibrium behavior and processing of polymer solutions, melts, and colloidal suspensions. In this work, we use microfluidics to determine steady extensional viscosity for polymer solutions by directly observing particle migration in planar extensional flow. Tracer particles are suspended in semi-dilute solutions of DNA and polyethylene oxide, and a Stokes trap is used to confine single particles in extensional flows of polymer solutions in a cross-slot device. Particles are observed to migrate in the direction transverse to flow due to normal stresses, and particle migration is tracked and quantified using a piezo-nanopositioning stage during the microfluidic flow experiment. Particle migration trajectories are then analyzed using a second-order fluid model that accurately predicts that migration arises due to normal stress differences. Using this analytical framework, extensional viscosities can be determined from particle migration experiments, and the results are in reasonable agreement with bulk rheological measurements of extensional viscosity based on a dripping-onto-substrate method. Overall, this work demonstrates that non-equilibrium properties of complex fluids can be determined by passive yet non-linear microrheology.

  4. Non-Linear Cosmological Redshift According to General Relativity

    Science.gov (United States)

    Rabounski, Dmitri

    2012-03-01

    A new method of calculation of the frequency of a photon is applied. It means solving the scalar geodesic equation (equation of energy) of the photon. In the space of Schwarzschild's mass-point metric, the well-known gravitational redshift has been obtained. No frequency shift has been found in the space of Gödel's metric, and in the space of Einstein's metric (a homogeneous distribution of ideal liquid and physical vacuum). The other obtained solutions manifest a cosmological effect: its magnitude increases with distance travelled by the photon. This is the parabolic cosmological blueshift found in the space of Schwarzschild's metric of a sphere of incompressible liquid, and in the space of a sphere filled with physical vacuum (de Sitter's metric). The exponential cosmological redshift has been found in the expanding space of Friedmann's metric (empty or filled with ideal liquid and physical vacuum). The redshift is non-linear when approaching the event horizon, where it reaches the ultimate hugh value z = e^π ,,= 22.14. This explains the observed accelerate expansion of the Universe. These results were obtained in the purely geometric way, without the use of the Doppler effect. The paper has been submitted to The Abraham Zelmanov Journal.

  5. Searching for Non-linearities in Natural Language

    Science.gov (United States)

    Ribarov, Kiril; Smrz, Otakar

    2003-08-01

    Inspired by wide range of applicability of what is commonly referred to as chaos theories, we explore the nature of energy series of a signal of human speech in the light of nonlinear dynamics. Using the TISEAN software package, analyses on various recordings of the language energy series were carried out (single speaker — different speeches; single speech - different speakers; dialogues; talkshows). Also correlated to other tenths of experiments conveyed on different linguistic inputs as written and morphologically analyzed texts, the presented experiment outputs (up to our knowledge, similar experiments have not been performed yet) reveal the complex and tricky nature of the language and are in favor of certain linguistic hypotheses. However, without further research, they do not encourage us to make explicit claims about the language signal such as dimension estimations (although probably possible) or attractor reconstruction. Our main considerations include: (a) a look into the stochastic nature of the language aiming towards reduction of the currently very large number of parameters present in language models based on Hidden Markov Models on language n-grams; (b) visualization of the behavior of the language and revelation of what could possibly be behind the `noisy' stream of sounds/letters/word-classes observed in our experiments; and last but not least (c) presentation of a new type of signal to the community exploring natural non-linear phenomena.

  6. Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters

    Science.gov (United States)

    Yang, Li-xin; Jiang, Jun

    2014-05-01

    This paper investigates the adaptive synchronization in the drive-response fractional-order dynamical networks with uncertain parameters. By means of both the stability theory of fractional-order differential system and the adaptive control technique, a novel adaptive synchronization controller is developed with a more general and simpler analytical expression, which does not contain the parameters of the complex network, and effective adaptive laws of parameters. Furthermore, the very strong and conservative uniformly Lipschitz condition on the node dynamics of complex network is released. To demonstrate the validity of the proposed method, the examples for the synchronization of systems with the chaotic and hyper-chaotic node dynamics are presented.

  7. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  8. Vertical Transmission of Social Roles Drives Resilience to Poaching in Elephant Networks.

    Science.gov (United States)

    Goldenberg, Shifra Z; Douglas-Hamilton, Iain; Wittemyer, George

    2016-01-11

    Network resilience to perturbation is fundamental to functionality in systems ranging from synthetic communication networks to evolved social organization [1]. While theoretical work offers insight into causes of network robustness, examination of natural networks can identify evolved mechanisms of resilience and how they are related to the selective pressures driving structure. Female African elephants (Loxodonta africana) exhibit complex social networks with node heterogeneity in which older individuals serve as connectivity hubs [2, 3]. Recent ivory poaching targeting older elephants in a well-studied population has mirrored the targeted removal of highly connected nodes in the theoretical literature that leads to structural collapse [4, 5]. Here we tested the response of this natural network to selective knockouts. We find that the hierarchical network topology characteristic of elephant societies was highly conserved across the 16-year study despite ∼70% turnover in individual composition of the population. At a population level, the oldest available individuals persisted to fill socially central positions in the network. For analyses using known mother-daughter pairs, social positions of daughters during the disrupted period were predicted by those of their mothers in years prior, were unrelated to individual histories of family mortality, and were actively built. As such, daughters replicated the social network roles of their mothers, driving the observed network resilience. Our study provides a rare bridge between network theory and an evolved system, demonstrating social redundancy to be the mechanism by which resilience to perturbation occurred in this socially advanced species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  10. Linear and non-linear bias: predictions versus measurements

    Science.gov (United States)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  11. Performance improvement for optimization of the non-linear geometric fitting problem in manufacturing metrology

    Science.gov (United States)

    Moroni, Giovanni; Syam, Wahyudin P.; Petrò, Stefano

    2014-08-01

    Product quality is a main concern today in manufacturing; it drives competition between companies. To ensure high quality, a dimensional inspection to verify the geometric properties of a product must be carried out. High-speed non-contact scanners help with this task, by both speeding up acquisition speed and increasing accuracy through a more complete description of the surface. The algorithms for the management of the measurement data play a critical role in ensuring both the measurement accuracy and speed of the device. One of the most fundamental parts of the algorithm is the procedure for fitting the substitute geometry to a cloud of points. This article addresses this challenge. Three relevant geometries are selected as case studies: a non-linear least-squares fitting of a circle, sphere and cylinder. These geometries are chosen in consideration of their common use in practice; for example the sphere is often adopted as a reference artifact for performance verification of a coordinate measuring machine (CMM) and a cylinder is the most relevant geometry for a pin-hole relation as an assembly feature to construct a complete functioning product. In this article, an improvement of the initial point guess for the Levenberg-Marquardt (LM) algorithm by employing a chaos optimization (CO) method is proposed. This causes a performance improvement in the optimization of a non-linear function fitting the three geometries. The results show that, with this combination, a higher quality of fitting results a smaller norm of the residuals can be obtained while preserving the computational cost. Fitting an ‘incomplete-point-cloud’, which is a situation where the point cloud does not cover a complete feature e.g. from half of the total part surface, is also investigated. Finally, a case study of fitting a hemisphere is presented.

  12. Non-linear mapping for exploratory data analysis in functional genomics

    Directory of Open Access Journals (Sweden)

    Chesneau Alban

    2005-01-01

    Full Text Available Abstract Background Several supervised and unsupervised learning tools are available to classify functional genomics data. However, relatively less attention has been given to exploratory, visualisation-driven approaches. Such approaches should satisfy the following factors: Support for intuitive cluster visualisation, user-friendly and robust application, computational efficiency and generation of biologically meaningful outcomes. This research assesses a relaxation method for non-linear mapping that addresses these concerns. Its applications to gene expression and protein-protein interaction data analyses are investigated Results Publicly available expression data originating from leukaemia, round blue-cell tumours and Parkinson disease studies were analysed. The method distinguished relevant clusters and critical analysis areas. The system does not require assumptions about the inherent class structure of the data, its mapping process is controlled by only one parameter and the resulting transformations offer intuitive, meaningful visual displays. Comparisons with traditional mapping models are presented. As a way of promoting potential, alternative applications of the methodology presented, an example of exploratory data analysis of interactome networks is illustrated. Data from the C. elegans interactome were analysed. Results suggest that this method might represent an effective solution for detecting key network hubs and for clustering biologically meaningful groups of proteins. Conclusion A relaxation method for non-linear mapping provided the basis for visualisation-driven analyses using different types of data. This study indicates that such a system may represent a user-friendly and robust approach to exploratory data analysis. It may allow users to gain better insights into the underlying data structure, detect potential outliers and assess assumptions about the cluster composition of the data.

  13. Bosch automotive electrics and automotive electronics systems and components, networking and hybrid drive

    CERN Document Server

    2014-01-01

    The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the "Automotive Electric, Automotive Electronics" technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle. Content Electrical and electronical systems – Basic principles of networking - Examples of networked vehicles – Bus systems – Architecture of electronic systems – Mechatronics – Elektronics – Electronic control Units – Software – Sensors – Actuators – Hybrid drives – Vehicle electrical system – Start...

  14. Reduced Order Extended Luenberger Observer Based Sensorless Vector Control Fed by Matrix Converter with Non-linearity Modeling

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2004-01-01

    This paper presents a new sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching device is corrected by a new...... matrix converter model. Regulated Order Extended Luenberger Observer (ROELO) is employed to bring better response in the whole speed operation range and a method to select the observer gain is presented. Experimental results are shown to illustrate the performance of the proposed system...

  15. Validation of Mobility Simulations via Measurement Drive Tests in an Operational Network

    DEFF Research Database (Denmark)

    Gimenez, Lucas Chavarria; Barbera, Simone; Polignano, Michele

    2015-01-01

    Simulations play a key role in validating new concepts in cellular networks, since most of the features proposed and introduced into the standards are typically first studied by means of simulations. In order to increase the trustworthiness of the simulation results, proper models and settings must...... to reality. The presented study is based on drive tests measurements and explicit simulations of an operator network in the city of Aalborg (Denmark) – modelling a real 3D environment and using a commonly accepted dynamic system level simulation methodology. In short, the presented results show...

  16. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  17. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  18. Influence of Non-Linearity on Selected Cryptographic Criteria of 8x8 S-Boxes

    Directory of Open Access Journals (Sweden)

    Petr Tesař

    2017-12-01

    Full Text Available The article defines standard criteria used to characterize the cryptographic quality of the S box: regularity, non linearity, autocorrelation, avalanche and immunity against differential cryptanalysis. The values of autocorrelation, avalanche and immunity against differential cryptanalysis for regular 8x8 S-boxes with non-linearity 98 and regular 8x8 S-boxes with non linearity 104 are compared. It is statistically verified that higher non-linearity improves the values of these criteria in a cryptographically advantageous sense.

  19. COLLINARUS: collection of image-derived non-linear attributes for registration using splines

    Science.gov (United States)

    Chappelow, Jonathan; Bloch, B. Nicolas; Rofsky, Neil; Genega, Elizabeth; Lenkinski, Robert; DeWolf, William; Viswanath, Satish; Madabhushi, Anant

    2009-02-01

    We present a new method for fully automatic non-rigid registration of multimodal imagery, including structural and functional data, that utilizes multiple texutral feature images to drive an automated spline based non-linear image registration procedure. Multimodal image registration is significantly more complicated than registration of images from the same modality or protocol on account of difficulty in quantifying similarity between different structural and functional information, and also due to possible physical deformations resulting from the data acquisition process. The COFEMI technique for feature ensemble selection and combination has been previously demonstrated to improve rigid registration performance over intensity-based MI for images of dissimilar modalities with visible intensity artifacts. Hence, we present here the natural extension of feature ensembles for driving automated non-rigid image registration in our new technique termed Collection of Image-derived Non-linear Attributes for Registration Using Splines (COLLINARUS). Qualitative and quantitative evaluation of the COLLINARUS scheme is performed on several sets of real multimodal prostate images and synthetic multiprotocol brain images. Multimodal (histology and MRI) prostate image registration is performed for 6 clinical data sets comprising a total of 21 groups of in vivo structural (T2-w) MRI, functional dynamic contrast enhanced (DCE) MRI, and ex vivo WMH images with cancer present. Our method determines a non-linear transformation to align WMH with the high resolution in vivo T2-w MRI, followed by mapping of the histopathologic cancer extent onto the T2-w MRI. The cancer extent is then mapped from T2-w MRI onto DCE-MRI using the combined non-rigid and affine transformations determined by the registration. Evaluation of prostate registration is performed by comparison with the 3 time point (3TP) representation of functional DCE data, which provides an independent estimate of cancer

  20. Robust fuzzy neural network sliding mode control scheme for IPMSM drives

    Science.gov (United States)

    Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.

    2014-07-01

    This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.

  1. Drive latencies in hypoglossal motoneurons indicate developmental change in the brainstem respiratory network

    Science.gov (United States)

    Fietkiewicz, Christopher; Loparo, Kenneth A.; Wilson, Christopher G.

    2011-10-01

    The respiratory rhythm originates and diverges from the brainstem to drive thousands of motoneurons that are responsible for control of the diaphragm, intercostals and upper airway. These motoneurons are known to have a wide range of phase relationships, even within a single motoneuron pool. The proposed source of this rhythm, the preBötzinger complex (preBötC), responds to an array of developmental changes in the first days post-birth, specifically at postnatal day 3 (P3). We hypothesize that such developmental changes in the preBötC have a direct effect on motoneuron phase relationships and should be detectable around age P3. To test our hypothesis, we obtained single- and dual-voltage-clamp recordings of hypoglossal motoneurons in an in vitro slice preparation. We introduce a novel approach to analyzing the phase relationships between motoneurons by using cross-correlation analysis to determine the drive latencies. This analysis reveals that the distribution of drive latencies undergoes a significant change at or before age P3. We use a computational model of the in vitro slice to demonstrate the observed phase differences and hypothesize that network heterogeneity alone may not be sufficient to explain them. Through simulations, we show the effects on the preBötC of different network characteristics such as clustering and common inputs.

  2. Measurements of non-linear noise re-distribution in an SOA

    DEFF Research Database (Denmark)

    Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper

    2004-01-01

    Measurements of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution with a strong power and bandwidth dependence.......Measurements of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution with a strong power and bandwidth dependence....

  3. A Learning Progression Should Address Regression: Insights from Developing Non-Linear Reasoning in Ecology

    Science.gov (United States)

    Hovardas, Tasos

    2016-01-01

    Although ecological systems at varying scales involve non-linear interactions, learners insist thinking in a linear fashion when they deal with ecological phenomena. The overall objective of the present contribution was to propose a hypothetical learning progression for developing non-linear reasoning in prey-predator systems and to provide…

  4. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics

    NARCIS (Netherlands)

    Bosgra, S.; Vlaming, M.L.H.; Vaes, W.H.J.

    2015-01-01

    Non-linearities occur no more frequently between microdose and therapeutic dose studies than in therapeutic range ascending-dose studies. Most non-linearities are due to known saturable processes, and can be foreseen by integrating commonly available preclinical data. The guidance presented here may

  5. Large number of small non-linear power consumers causing power quality problems

    NARCIS (Netherlands)

    Timens, R.B.; Buesink, Frederik Johannes Karel; Cuk, V.; Cobben, J.F.G.; Kling, W.L.; Leferink, Frank Bernardus Johannes

    2011-01-01

    In modern buildings virtually all electric loads are non-linear. The applicable standards for consumption of electrical energy do not take into account the replacement of linear loads by non-linear loads. The exemptions made in those standards for low power devices, and the widespread use of such

  6. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  7. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  8. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  9. Single-photon non-linear optics with a quantum dot in a waveguide.

    Science.gov (United States)

    Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P

    2015-10-23

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  10. Short- and long-term variations in non-linear dynamics of heart rate variability

    DEFF Research Database (Denmark)

    Kanters, J K; Højgaard, M V; Agner, E

    1996-01-01

    variability. METHODS: Twelve healthy subjects were investigated by 3-h ambulatory ECG recordings repeated on 3 separate days. Correlation dimension, non-linear predictability, mean heart rate, and heart rate variability in the time and frequency domains were measured and compared with the results from......OBJECTIVES: The purpose of the study was to investigate the short- and long-term variations in the non-linear dynamics of heart rate variability, and to determine the relationships between conventional time and frequency domain methods and the newer non-linear methods of characterizing heart rate...... corresponding surrogate time series. RESULTS: A small significant amount of non-linear dynamics exists in heart rate variability. Correlation dimensions and non-linear predictability are relatively specific parameters for each individual examined. The correlation dimension is inversely correlated to the heart...

  11. The preparation and optical characterisation of novel organic crystals with applications in non linear devices

    CERN Document Server

    Wilkie, S

    2000-01-01

    In recent years, novel non-linear organic materials have generated great interest in the development of all-optical non-linear devices. Such materials have been optically characterised, mainly for the purposes of second harmonic generation and electro-optic modulation, within the Chemistry department of Strathclyde University since the mid-1980's. This thesis documents the continued development and enhancement of this core research speciality in the growth, preparation and optical characterisation of two such novel organic non-linear materials, namely NMU and MBANP. A literature search that reviewed the linear and non-linear optical properties of a select number of novel organic non-linear materials was conducted. All too often sample crystal quality was not detailed and hence the quality of crystals upon which the material characterisation was based remained unknown. Surprisingly, the availability of reliable, accurate data was found to be scarce. The optical investigation of NMU represented the first ever e...

  12. On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks

    Science.gov (United States)

    Rubaai, Ahmed

    1996-01-01

    A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.

  13. Advanced femtosecond lasers enable new developments in non-linear imaging and functional studies in neuroscience, biology and medical applications (Conference Presentation)

    Science.gov (United States)

    Arrigoni, Marco; McCoy, Darryl

    2016-03-01

    In the last few years Multiphoton Excitation Microscopy witnessed a mutation from tool for imaging cellular structures in living animals deeper than other high-resolution techniques, into an instrument for monitoring functionality and even stimulating or inhibiting inter-cellular signalling. This paradigm shift has been enabled primarily by the development of genetically encoded probes like Ca indicators (GECI) and Opsins for optogenetics inhibition and stimulation. These developments will hopefully enable the understanding of how local network of hundreds or thousands of neurons operate in response to actual tasks or induced stimuli. Imaging, monitoring signals and activating neurons, all on a millisecond time scale, requires new laser tools providing a combination of wavelengths, higher powers and operating regimes different from the ones traditionally used for classic multiphoton imaging. The other key development in multiphoton techniques relates to potential diagnostic and clinical applications where non-linear imaging could provide all optical marker-free replacement of H and E techniques and even intra-operative guidance for procedures like cancer surgery. These developments will eventually drive the development of specialized laser sources where compact size, ease of use, beam delivery and cost are primary concerns. In this talk we will discuss recent laser product developments targeting the various applications of multiphoton imaging, as fiber lasers and other new type of lasers gradually gain popularity and their own space, side-by-side or as an alternative to conventional titanium sapphire femtosecond lasers.

  14. Intelligent Intrusion Detection of Grey Hole and Rushing Attacks in Self-Driving Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Khattab M. Ali Alheeti

    2016-07-01

    Full Text Available Vehicular ad hoc networks (VANETs play a vital role in the success of self-driving and semi self-driving vehicles, where they improve safety and comfort. Such vehicles depend heavily on external communication with the surrounding environment via data control and Cooperative Awareness Messages (CAMs exchanges. VANETs are potentially exposed to a number of attacks, such as grey hole, black hole, wormhole and rushing attacks. This work presents an intelligent Intrusion Detection System (IDS that relies on anomaly detection to protect the external communication system from grey hole and rushing attacks. These attacks aim to disrupt the transmission between vehicles and roadside units. The IDS uses features obtained from a trace file generated in a network simulator and consists of a feed-forward neural network and a support vector machine. Additionally, the paper studies the use of a novel systematic response, employed to protect the vehicle when it encounters malicious behaviour. Our simulations of the proposed detection system show that the proposed schemes possess outstanding detection rates with a reduction in false alarms. This safe mode response system has been evaluated using four performance metrics, namely, received packets, packet delivery ratio, dropped packets and the average end to end delay, under both normal and abnormal conditions.

  15. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    -linear models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...... by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non...

  16. Driving the brain towards creativity and intelligence: A network control theory analysis.

    Science.gov (United States)

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Distributed synchronization of networked drive-response systems: A nonlinear fixed-time protocol.

    Science.gov (United States)

    Zhao, Wen; Liu, Gang; Ma, Xi; He, Bing; Dong, Yunfeng

    2017-11-01

    The distributed synchronization of networked drive-response systems is investigated in this paper. A novel nonlinear protocol is proposed to ensure that the tracking errors converge to zeros in a fixed-time. By comparison with previous synchronization methods, the present method considers more practical conditions and the synchronization time is not dependent of arbitrary initial conditions but can be offline pre-assign according to the task assignment. Finally, the feasibility and validity of the presented protocol have been illustrated by a numerical simulation. Copyright © 2017. Published by Elsevier Ltd.

  18. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  19. Control methods to improve non-linear HVAC system operations

    Science.gov (United States)

    Phalak, Kaustubh Pradeep

    The change of weather conditions and occupancy schedules makes heating ventilating and air-conditioning (HVAC) systems heavily dynamic. The mass and thermal inertia, nonlinear characteristics and interactions in HVAC systems make the control more complicated. As a result, some conventional control methods often cannot provide desired control performance under variable operating conditions. The purpose of this study is to develop control methods to improve the control performance of HVAC systems. This study focuses on optimizing the airflow-pressure control method of air side economizers, identifying robust building pressurization controls, developing a control method to control outdoor air and building pressure in absence of flow and pressure sensors, stabilizing the cooling coil valve operation and, return fan speed control. The improvements can be achieved by identifying and selecting a method with relatively linear performance characteristics out of the available options, applying fans rather than dampers to control building pressure, and improving the controller's stability range using cascade control method. A steady state nonlinear network model, for an air handling unit (AHU), air distribution system and conditioned space, is applied to analyze the system control performance of air-side economizers and building pressurization. The study shows that traditional controls with completely interlinked outdoor air, recirculated air, relief air dampers have the best control performance. The decoupled relief damper control may result in negative building static pressure at lower outdoor airflow ratio and excessively positive building static pressure at higher outdoor airflow ratio. On the other hand, return fan speed control has a better controllability on building pressurization. In absence of flow and pressure sensors fixed interlinked damper and linear return fan speed tracking control can maintain constant outside air ratio and positive building pressure. The

  20. Some experiences in the estimation of parameters in non-linear differential equations.

    Science.gov (United States)

    Barnes, J G.P.

    1969-03-01

    The author describes a procedure developed by himself and his colleagues for obtaining estimates of the parameters of rate equations, together with information about confidence regions for the estimates. The program has been used successfully for processing results from the chemical engineering industry, with highly non-linear model systems, particularly since temperature was a variable, and the "rate constants" were non-linear combinations of other constants. In biochemical situations, in which investigations are almost always at constant temperature, the non-linearity should not be so extreme, and the procedure may well be capable of dealing with more than 5 to 7 parameters for which it is recommended.

  1. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers

    Directory of Open Access Journals (Sweden)

    Andreas W. Schell

    2016-12-01

    Full Text Available Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work, we realize two-photon excitation of a quantum emitter embedded in a two-dimensional (2D material. We examine defects in hexagonal boron nitride (hBN and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.

  2. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  3. Application of the full reduction technique for solution of equations with vector form non-linearity

    Science.gov (United States)

    Saliuk, D. A.

    2013-12-01

    We consider making use of the full reduction algorithm for solving the equations with a vector non-linearity. The solutions of such the equations describe the planetary scale non-linear vortex structures of the Earth atmosphere, ionosphere and magnetosphere. We present the modification of full reduction technique for Charney-Obukhov equation with periodic boundary conditions. This technique allows to reduce significantly calculation time and to apply much more detailed spatial grid for studying non-linear processes in the near-Earth space.

  4. A multiphase non-linear mixed effects model: An application to spirometry after lung transplantation.

    Science.gov (United States)

    Rajeswaran, Jeevanantham; Blackstone, Eugene H

    2017-02-01

    In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.

  5. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it, E-mail: lminati@istituto-besta.it [Center for Mind/Brain Science, University of Trento, 38123 Mattarello TN, Italy and Scientific Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan (Italy)

    2015-12-15

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  6. Remote synchronization of amplitudes across an experimental ring of non-linear oscillators.

    Science.gov (United States)

    Minati, Ludovico

    2015-12-01

    In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

  7. The Non-linear Health Consequences of Living in Larger Cities.

    Science.gov (United States)

    Rocha, Luis E C; Thorson, Anna E; Lambiotte, Renaud

    2015-10-01

    Urbanization promotes economy, mobility, access, and availability of resources, but on the other hand, generates higher levels of pollution, violence, crime, and mental distress. The health consequences of the agglomeration of people living close together are not fully understood. Particularly, it remains unclear how variations in the population size across cities impact the health of the population. We analyze the deviations from linearity of the scaling of several health-related quantities, such as the incidence and mortality of diseases, external causes of death, wellbeing, and health care availability, in respect to the population size of cities in Brazil, Sweden, and the USA. We find that deaths by non-communicable diseases tend to be relatively less common in larger cities, whereas the per capita incidence of infectious diseases is relatively larger for increasing population size. Healthier lifestyle and availability of medical support are disproportionally higher in larger cities. The results are connected with the optimization of human and physical resources and with the non-linear effects of social networks in larger populations. An urban advantage in terms of health is not evident, and using rates as indicators to compare cities with different population sizes may be insufficient.

  8. Non Linear Programming (NLP) formulation for quantitative modeling of protein signal transduction pathways.

    Science.gov (United States)

    Mitsos, Alexander; Melas, Ioannis N; Morris, Melody K; Saez-Rodriguez, Julio; Lauffenburger, Douglas A; Alexopoulos, Leonidas G

    2012-01-01

    Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i) excessive CPU time requirements and ii) loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP) formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  9. Non Linear Programming (NLP formulation for quantitative modeling of protein signal transduction pathways.

    Directory of Open Access Journals (Sweden)

    Alexander Mitsos

    Full Text Available Modeling of signal transduction pathways plays a major role in understanding cells' function and predicting cellular response. Mathematical formalisms based on a logic formalism are relatively simple but can describe how signals propagate from one protein to the next and have led to the construction of models that simulate the cells response to environmental or other perturbations. Constrained fuzzy logic was recently introduced to train models to cell specific data to result in quantitative pathway models of the specific cellular behavior. There are two major issues in this pathway optimization: i excessive CPU time requirements and ii loosely constrained optimization problem due to lack of data with respect to large signaling pathways. Herein, we address both issues: the former by reformulating the pathway optimization as a regular nonlinear optimization problem; and the latter by enhanced algorithms to pre/post-process the signaling network to remove parts that cannot be identified given the experimental conditions. As a case study, we tackle the construction of cell type specific pathways in normal and transformed hepatocytes using medium and large-scale functional phosphoproteomic datasets. The proposed Non Linear Programming (NLP formulation allows for fast optimization of signaling topologies by combining the versatile nature of logic modeling with state of the art optimization algorithms.

  10. Molecular networks linked by Moesin drive remodeling of the cell cortex during mitosis

    Science.gov (United States)

    Roubinet, Chantal; Decelle, Barbara; Chicanne, Gaëtan; Dorn, Jonas F.; Payrastre, Bernard; Payre, François; Carreno, Sébastien

    2011-01-01

    The cortical mechanisms that drive the series of mitotic cell shape transformations remain elusive. In this paper, we identify two novel networks that collectively control the dynamic reorganization of the mitotic cortex. We demonstrate that Moesin, an actin/membrane linker, integrates these two networks to synergize the cortical forces that drive mitotic cell shape transformations. We find that the Pp1-87B phosphatase restricts high Moesin activity to early mitosis and down-regulates Moesin at the polar cortex, after anaphase onset. Overactivation of Moesin at the polar cortex impairs cell elongation and thus cytokinesis, whereas a transient recruitment of Moesin is required to retract polar blebs that allow cortical relaxation and dissipation of intracellular pressure. This fine balance of Moesin activity is further adjusted by Skittles and Pten, two enzymes that locally produce phosphoinositol 4,5-bisphosphate and thereby, regulate Moesin cortical association. These complementary pathways provide a spatiotemporal framework to explain how the cell cortex is remodeled throughout cell division. PMID:21969469

  11. Could LC-NE-Dependent Adjustment of Neural Gain Drive Functional Brain Network Reorganization?

    Directory of Open Access Journals (Sweden)

    Carole Guedj

    2017-01-01

    Full Text Available The locus coeruleus-norepinephrine (LC-NE system is thought to act at synaptic, cellular, microcircuit, and network levels to facilitate cognitive functions through at least two different processes, not mutually exclusive. Accordingly, as a reset signal, the LC-NE system could trigger brain network reorganizations in response to salient information in the environment and/or adjust the neural gain within its target regions to optimize behavioral responses. Here, we provide evidence of the co-occurrence of these two mechanisms at the whole-brain level, in resting-state conditions following a pharmacological stimulation of the LC-NE system. We propose that these two mechanisms are interdependent such that the LC-NE-dependent adjustment of the neural gain inferred from the clustering coefficient could drive functional brain network reorganizations through coherence in the gamma rhythm. Via the temporal dynamic of gamma-range band-limited power, the release of NE could adjust the neural gain, promoting interactions only within the neuronal populations whose amplitude envelopes are correlated, thus making it possible to reorganize neuronal ensembles, functional networks, and ultimately, behavioral responses. Thus, our proposal offers a unified framework integrating the putative influence of the LC-NE system on both local- and long-range adjustments of brain dynamics underlying behavioral flexibility.

  12. Broadband Energy Harvester Using Non-linear Polymer Spring and Electromagnetic/Triboelectric Hybrid Mechanism

    National Research Council Canada - National Science Library

    Rahul Kumar Gupta; Qiongfeng Shi; Lokesh Dhakar; Tao Wang; Chun Huat Heng; Chengkuo Lee

    2017-01-01

    .... In this work, we investigate a broadband energy harvester based on combination of non-linear stiffening effect and multimodal energy harvesting to obtain high bandwidth over wide range of accelerations (0.1 g-2.0 g...

  13. Estimations of non-linearities in structural vibrations of string musical instruments

    CERN Document Server

    Ege, Kerem; Boutillon, Xavier

    2012-01-01

    Under the excitation of strings, the wooden structure of string instruments is generally assumed to undergo linear vibrations. As an alternative to the direct measurement of the distortion rate at several vibration levels and frequencies, we characterise weak non-linearities by a signal-model approach based on cascade of Hammerstein models. In this approach, in a chain of two non-linear systems, two measurements are sufficient to estimate the non-linear contribution of the second (sub-)system which cannot be directly linearly driven, as a function of the exciting frequency. The experiment consists in exciting the instrument acoustically. The linear and non-linear contributions to the response of (a) the loudspeaker coupled to the room, (b) the instrument can be separated. Some methodological issues will be discussed. Findings pertaining to several instruments - one piano, two guitars, one violin - will be presented.

  14. Hybrid finite-volume-ROM approach to non-linear aerospace fluid-structure interaction modelling

    CSIR Research Space (South Africa)

    Mowat, AGB

    2011-06-01

    Full Text Available A fully-coupled partitioned fluid-structure interaction (FSI) scheme is developed for sub- and transonic aeroelastic structures undergoing non-linear displacements. The Euler equations, written in an Arbitrary Lagrangian Eulerian (ALE) coordinate...

  15. Parametric Stability of Non-Linearly Elastic Composite Plates by Lyapunov Exponents

    Science.gov (United States)

    GILAT, R.; ABOUDI, J.

    2000-08-01

    The dynamic stability of non-linearly elastic composite plates subjected to periodic in-plane loading is investigated. Infinitely wide plates made of resin matrix composite are considered. The non-linearly elastic behavior of the resin matrix is modelled by the generalized Ramberg-Osgood representation. The effect of the matrix non-linearity on the overall response of the composite is predicted by the micromechanical method of cells. The dynamic stability analysis is performed by evaluating the largest Lyapunov exponent, the sign of which indicates whether the system is stable or not. It is shown that this approach forms a convenient tool for predicting parametric stability of non-linear composite structures.

  16. A new approach of binary addition and subtraction by non-linear ...

    Indian Academy of Sciences (India)

    optical domain by exploitation of proper non-linear material-based switching technique. In this communication, the authors extend this technique for both adder and subtractor accommodating the spatial input encoding system.

  17. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    . Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid ...

  18. Non-linear Synthesis of Complex Laser Waveforms at Remote Distances

    CERN Document Server

    Berti, Nicolas; Hermelin, Sylvain; Kasparian, Jérôme; Wolf, Jean-Pierre

    2015-01-01

    Strong deformation of ultrashort laser pulse shapes is unavoidable when delivering high intensities at remote distances due to non-linear effects taking place while propagating. Relying on the reversibility of laser filamentation, we propose to explicitly design laser pulse shapes so that propagation serves as a non-linear field synthesizer at a remote target location. Such an approach allows, for instance, coherent control of molecules at a remote distance, in the context of standoff detection of pathogens or explosives.

  19. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  20. Analysis of the Non-Linearity of El Niño Southern Oscillation Teleconnections

    Science.gov (United States)

    Frauen, Claudia; Dommenget, Dietmar; Rezny, Michael; Wales, Scott

    2014-05-01

    The El Niño Southern Oscillation (ENSO) has significant variations and non-linearities in its pattern and strength. ENSO events are shifted along the equator, with some located in the central Pacific (CP) and others in the east Pacific (EP). To study how these variations are reflected in global ENSO teleconnections we analyze observations and idealized atmospheric general circulation model (AGCM) simulations. Clear non-linearities exist in observed teleconnections of sea level pressure (SLP) and precipitation. However, it is difficult to distinguish if these are caused by the different signs, strengths or spatial patterns of events (strong El Niño events mostly being EP events and strong La Niña events mostly being CP events) or by combinations of these. Therefore, sensitivity experiments are performed with an AGCM forced with idealized EP and CP ENSO sea surface temperature (SST) patterns with varying signs and strengths. It can be shown that in general the response is stronger for warm events than for cold events and the teleconnections shift following the SST anomaly patterns. EP events show stronger non-linearities than CP events. The non-linear responses to ENSO events can be explained as a combination of non-linear responses to a linear ENSO (fixed pattern but varying signs and strengths) and a linear response to a non-linear ENSO (varying patterns). Any observed event is a combination of these aspects. While in most tropical regions these add up leading to stronger non-linear responses than expected from the single components, in some regions they cancel each other resulting in little overall non-linearity. This leads to strong regional differences in ENSO teleconnections.

  1. Measurements and simulations of non-linear noise re-distribution in an SOA

    DEFF Research Database (Denmark)

    Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper

    2004-01-01

    Measurements and statistical simulations demonstrate that a semiconductor optical amplifier (SOA) induces non-linear noise re-distribution with a strong power and bandwidth dependence. © 2004 Optical Society of America......Measurements and statistical simulations demonstrate that a semiconductor optical amplifier (SOA) induces non-linear noise re-distribution with a strong power and bandwidth dependence. © 2004 Optical Society of America...

  2. Bifurcation Analysis of a Non-linear On-Board Rotor-Bearing System

    OpenAIRE

    Dakel, M. Zaki; Baguet, Sébastien; Dufour, Régis

    2014-01-01

    International audience; The non-linear dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings and subject to rigid base excitations is investigated in this work. The proposed finite element rotor model takes into account the geometric asymmetry of shaft and/or rigid disk and considers six types of base deterministic motions (rotations and translations) and non-linear fluid film forces obtained from the Reynoldsequation. The equations of motion contain time-varying para...

  3. Longitudinal response functions for quasielastic electron scattering in relativistic non-linear models

    CERN Document Server

    Caillon, J C

    2002-01-01

    The longitudinal response functions for quasielastic electron scattering on sup 1 sup 2 C, sup 4 sup 0 Ca and sup 5 sup 6 Fe have been calculated in relativistic non-linear models taking into account RPA correlations. For these calculations, a covariant, consistent, calculation of the nuclear matter linear response has been performed. The effect of the non-linear terms on the longitudinal response has been discussed.

  4. Aeroelastic characteristics of slender wing/bodies with freeplay non-linearities

    OpenAIRE

    Garcia-Fogeda Nuñez, Pablo; Arevalo Lozano, Felix

    2011-01-01

    This article presents a time domain approach to the flutter analysis of a missile-type wing/body configuration with concentrated structural non-linearities. The missile wing is considered fully movable and its rotation angle contains the structural freeplay-type non-linearity. Although a general formulation for flexible configurations is developed, only two rigid degrees of freedom are taken into account for the results: pitching of the whole wing/body configuration and wing rotation angle ar...

  5. Non-Linear Signal Analysis Applied to Surface Wear Condition Monitoring in Reciprocating Sliding Testing Machines

    Directory of Open Access Journals (Sweden)

    Francisco Paulo Lépore Neto

    2006-01-01

    Full Text Available When the surfaces of two elastic bodies present relative motions under certain amount of contact pressure the mechanical system can be unstable. Experiments conducted on elastic bodies in contact shown that the dynamic system is self-excited by the non-linear behavior of the friction forces. The main objective of this paper is to estimate the friction force using the vibrations signals, measured on a reciprocating wear testing machine, by the proposed non-linear signal analysis formulation. In the proposed formulation the system global output is the sum of two outputs produced by a linear path associated in parallel with a non-linear path. This last path is a non-linear model that represents the friction force. Since the linear path can be identified by traditional signal analysis, the non-linear function can be evaluated by the global input/output relationships. Validation tests are conducted in a tribological system composed by a sphere in contact with and a prismatic body, which has an imposed harmonic motion. The global output force is simultaneously measured by a piezoelectric and by a piezoresistive load cells. The sphere and prismatic body vibrations are measured by a laser Doppler vibrometer and by an accelerometer respectively. All signals are digitalized at the same time base and the data is transferred to a microcomputer. The non-linear signal analysis technique uses this data to identify the friction force.

  6. Correction of non-linear thickness effects in HAADF STEM electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Van den Broek, W., E-mail: wouter.vandenbroek@uni-ulm.de [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Rosenauer, A. [Institut fuer Festkoerperphysik (IFP), Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; Van Dyck, D. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-05-15

    In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction. -- Highlights: Black-Right-Pointing-Pointer In HAADF STEM, a thickness dependent, non-linear damping of the projected intensities occurs. Black-Right-Pointing-Pointer In tomography, this leads to underestimated intensities in the interior of homogeneous particles, the cupping artifact. Black-Right-Pointing-Pointer The non-linear damping is demonstrated in experimental images and reproduced with numerical simulations. Black-Right-Pointing-Pointer The non-linear damping can be undone if the imaging is done quantitatively. Black-Right-Pointing-Pointer Experimental proof is provided showing that cupping can be prevented.

  7. Evaluation of axial pile bearing capacity based on pile driving analyzer (PDA) test using Neural Network

    Science.gov (United States)

    Maizir, H.; Suryanita, R.

    2018-01-01

    A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.

  8. Influence of non-linear flow on the pumping tests in karstified and fractured aquifers

    Science.gov (United States)

    Farkas-Karay, Gyöngyi; Birk, Steffen; Vasvári, Vilmos; Hajnal, Géza; Mayaud, Cyril

    2017-04-01

    When evaluating pumping test data in karstified or fractured aquifers remarkable deviations from the theoretically estimated curves can be observed. The assumptions of the commonly used evaluation methods (Theis, Cooper-Jacob, Papadopulus-Cooper) usually do not fit to properties in hard rock aquifers, where often non-linear, heterogeneous and non-isotropic conditions can appear. The analysis of the effect of these conditions helps to better evaluate the pumping test data and to avoid the mistakes caused by the use of traditional methods. In this study the influence of non-linear flow was analysed based on field data and computer-generated time series. Using Non-Linear Flow Process for MODFLOW (Mayaud, C., Walker, P., Hergarten, S. and Birk, S., 2015, Nonlinear Flow Process: A New Package to Compute Nonlinear Flow in MODFLOW. Groundwater, 53: 645-650) allowed the simulation of non-linear flow in aquifers based on the Forchheimer equation. The analysis showed that the detection of non-linear flow can be subserved by separate evaluation of drawdown and recovery time series or by using additional observation wells. Recovery data and data from observation wells far enough from the pumped well are not disturbed by nonlinearity; the comparison with drawdown data of observation wells and the pumped well therefore can show whether or not non-linear flow appears. In particular, proper results of aquifer parameters can be obtained from recovery data. If only drawdown data from the pumped well are available it is helpful to replace the losses caused by non-linear flow by non-linear well losses (see also Mathias, S. A., and L. C. Todman, 2010, Step-drawdown tests and the Forchheimer equation, Water Resour. Res., 46, W07514). The applicability of the Jacob's step-drawdown-test evaluation in Forchheimer-flow cases is demonstrated by comparison with the numerical non-linear flow model. Inaccurate parameter estimates resulting from neglecting non-linear flow demonstrate the

  9. Non-linear regime shifts in Holocene Asian monsoon variability: potential impacts on cultural change and migratory patterns

    Science.gov (United States)

    Donges, J. F.; Donner, R. V.; Marwan, N.; Breitenbach, S. F. M.; Rehfeld, K.; Kurths, J.

    2015-05-01

    The Asian monsoon system is an important tipping element in Earth's climate with a large impact on human societies in the past and present. In light of the potentially severe impacts of present and future anthropogenic climate change on Asian hydrology, it is vital to understand the forcing mechanisms of past climatic regime shifts in the Asian monsoon domain. Here we use novel recurrence network analysis techniques for detecting episodes with pronounced non-linear changes in Holocene Asian monsoon dynamics recorded in speleothems from caves distributed throughout the major branches of the Asian monsoon system. A newly developed multi-proxy methodology explicitly considers dating uncertainties with the COPRA (COnstructing Proxy Records from Age models) approach and allows for detection of continental-scale regime shifts in the complexity of monsoon dynamics. Several epochs are characterised by non-linear regime shifts in Asian monsoon variability, including the periods around 8.5-7.9, 5.7-5.0, 4.1-3.7, and 3.0-2.4 ka BP. The timing of these regime shifts is consistent with known episodes of Holocene rapid climate change (RCC) and high-latitude Bond events. Additionally, we observe a previously rarely reported non-linear regime shift around 7.3 ka BP, a timing that matches the typical 1.0-1.5 ky return intervals of Bond events. A detailed review of previously suggested links between Holocene climatic changes in the Asian monsoon domain and the archaeological record indicates that, in addition to previously considered longer-term changes in mean monsoon intensity and other climatic parameters, regime shifts in monsoon complexity might have played an important role as drivers of migration, pronounced cultural changes, and the collapse of ancient human societies.

  10. An Improved PMSM Drive Architecture Based on BFO and Neural Network

    Directory of Open Access Journals (Sweden)

    Flah Aymen

    2013-04-01

    Full Text Available In this paper, an improved robust vector control strategy is designed to drive the Permanent magnet synchronous motor in a wide speed range mode. The designed control method guarantees the precision and robustness of speed regulation performance by using recurrent neural network architecture. The stator current controller parameter tuning problems, which characterize this control strategy, are resolved using a bacterial foraging optimization algorithm to find the optimal parameters of the current controllers used. A field weakening control algorithm generates an adaptive magnetizing current command to achieve the desired high speed mode. The robustness and effectiveness of the global control scheme are verified through computer simulations established under a Matlab-Simulink environment.

  11. Coherence of biochemical oscillations is bounded by driving force and network topology

    Science.gov (United States)

    Barato, Andre C.; Seifert, Udo

    2017-06-01

    Biochemical oscillations are prevalent in living organisms. Systems with a small number of constituents cannot sustain coherent oscillations for an indefinite time because of fluctuations in the period of oscillation. We show that the number of coherent oscillations that quantifies the precision of the oscillator is universally bounded by the thermodynamic force that drives the system out of equilibrium and by the topology of the underlying biochemical network of states. Our results are valid for arbitrary Markov processes, which are commonly used to model biochemical reactions. We apply our results to a model for a single KaiC protein and to an activator-inhibitor model that consists of several molecules. From a mathematical perspective, based on strong numerical evidence, we conjecture a universal constraint relating the imaginary and real parts of the first nontrivial eigenvalue of a stochastic matrix.

  12. New evidence and impact of electron transport non-linearities based on new perturbative inter-modulation analysis

    Science.gov (United States)

    van Berkel, M.; Kobayashi, T.; Igami, H.; Vandersteen, G.; Hogeweij, G. M. D.; Tanaka, K.; Tamura, N.; Zwart, H. J.; Kubo, S.; Ito, S.; Tsuchiya, H.; de Baar, M. R.; The LHD Experiment Group

    2017-12-01

    A new methodology to analyze non-linear components in perturbative transport experiments is introduced. The methodology has been experimentally validated in the Large Helical Device for the electron heat transport channel. Electron cyclotron resonance heating with different modulation frequencies by two gyrotrons has been used to directly quantify the amplitude of the non-linear component at the inter-modulation frequencies. The measurements show significant quadratic non-linear contributions and also the absence of cubic and higher order components. The non-linear component is analyzed using the Volterra series, which is the non-linear generalization of transfer functions. This allows us to study the radial distribution of the non-linearity of the plasma and to reconstruct linear profiles where the measurements were not distorted by non-linearities. The reconstructed linear profiles are significantly different from the measured profiles, demonstrating the significant impact that non-linearity can have.

  13. Tackling non-linearities with the effective field theory of dark energy and modified gravity

    Science.gov (United States)

    Frusciante, Noemi; Papadomanolakis, Georgios

    2017-12-01

    We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.

  14. Simultaneous 160 Gb/s Add-Drop Multiplexing in a Non-Linear Optical Loop Mirror

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Oxenløwe, Leif Katsuo; Galili, Michael

    2006-01-01

    We report on a demonstration of error-free simultaneous add-drop multiplexing of 160 Gb/s data in a non-linear optical loop mirror composed of 100 m highly non-linear fibre......We report on a demonstration of error-free simultaneous add-drop multiplexing of 160 Gb/s data in a non-linear optical loop mirror composed of 100 m highly non-linear fibre...

  15. A displacement-based approach for determining non-linear effects on pre-tensioned-cable cross-braced structures

    Science.gov (United States)

    Giaccu, Gian Felice; Caracoglia, Luca

    2017-04-01

    Pre-tensioned-cable bracing systems are widely employed in structural engineering to limit lateral deflections and stabilize structures. A suitable configuration of the pre-tensioned-cable bracing systems in a structure is an important issue since the internal force distribution, emerging from the interaction with the existing structure, significantly affects the structural dynamic behavior. The design, however, is often based on the intuition and the previous experience of the engineer. In recent years, the authors have been investigating the non-linear dynamic response of cable systems, installed on cable-stayed bridges, and in particular the so-called ;cable-cross-tie systems; forming a cable network. The bracing cables (cross-ties) can exhibit slackening or snapping. Therefore, a non-linear unilateral model, combined with the taut-cable theory, is required to simulate the incipient slackening conditions in the stays. Capitalizing from this work on non-linear cable dynamics, this paper proposes a new approach to analyze, in laterally- braced truss structures, the unilateral effects and dynamic response accounting for the loss in the pre-tensioning force imparted to the bracing cables. This effect leads to non-linear vibration of the structure. In this preliminary study, the free vibrations of the structure are investigated by using the ;Equivalent Linearization Method;. A performance coefficient, a real positive number between 0.5 and 1.0, is defined and employed to monitor the relative reduction in the apparent stiffness of the braces during structural vibration, ;mode by mode;. It is shown that the system can exhibit alternate unilateral behavior of the cross-braces. A reduction of the performance coefficient close to fifty percent is observed in the braces when the initial pre-tensioning force is small. On the other hand the performance coefficient tends to one in the case of a high level of pre-stress. It is concluded that the performance coefficient may

  16. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals.

    Science.gov (United States)

    Acharya, U Rajendra; Sree, S Vinitha; Alvin, Ang Peng Chuan; Yanti, Ratna; Suri, Jasjit S

    2012-04-01

    Epilepsy, a neurological disorder, is characterized by the recurrence of seizures. Electroencephalogram (EEG) signals, which are used to detect the presence of seizures, are non-linear and dynamic in nature. Visual inspection of the EEG signals for detection of normal, interictal, and ictal activities is a strenuous and time-consuming task due to the huge volumes of EEG segments that have to be studied. Therefore, non-linear methods are being widely used to study EEG signals for the automatic monitoring of epileptic activities. The aim of our work is to develop a Computer Aided Diagnostic (CAD) technique with minimal pre-processing steps that can classify all the three classes of EEG segments, namely normal, interictal, and ictal, using a small number of highly discriminating non-linear features in simple classifiers. To evaluate the technique, segments of normal, interictal, and ictal EEG segments (100 segments in each class) were used. Non-linear features based on the Higher Order Spectra (HOS), two entropies, namely the Approximation Entropy (ApEn) and the Sample Entropy (SampEn), and Fractal Dimension and Hurst Exponent were extracted from the segments. Significant features were selected using the ANOVA test. After evaluating the performance of six classifiers (Decision Tree, Fuzzy Sugeno Classifier, Gaussian Mixture Model, K-Nearest Neighbor, Support Vector Machine, and Radial Basis Probabilistic Neural Network) using a combination of the selected features, we found that using a set of all the selected six features in the Fuzzy classifier resulted in 99.7% classification accuracy. We have demonstrated that our technique is capable of achieving high accuracy using a small number of features that accurately capture the subtle differences in the three different types of EEG (normal, interictal, and ictal) segments. The technique can be easily written as a software application and used by medical professionals without any extensive training and cost. Such software

  17. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits.

    Science.gov (United States)

    Sedlic, Filip; Kovac, Zdenko

    2017-10-01

    Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term "mirror J-shaped curves" for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits

    Directory of Open Access Journals (Sweden)

    Filip Sedlic

    2017-10-01

    Full Text Available Finite disarrangements of important (vital physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise. Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.

  19. Non-Linearly Interacting Ghost Dark Energy in Brans-Dicke Cosmology

    CERN Document Server

    Ebrahimi, E

    2016-01-01

    In this paper we extend the form of interaction term into the non-linear regime in the ghost dark energy model. A general form of non-linear interaction term is presented and cosmic dynamic equations are obtained. Next, the model is detailed for two special choice of the non-linear interaction term. According to this the universe transits at suitable time ($z\\sim 0.8$) from deceleration to acceleration phase which alleviate the coincidence problem. Squared sound speed analysis revealed that for one class of non-linear interaction term $v_s^2$ can gets positive. This point is an impact of the non-linear interaction term and we never find such behavior in non interacting and linearly interacting ghost dark energy models. Also statefinder parameters are introduced for this model and we found that for one class the model meets the $\\Lambda CDM$ while in the second choice although the model approaches the $\\Lambda CDM$ but never touch that.

  20. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  1. Analysis of non-linear response of the human body to vertical whole-body vibration.

    Science.gov (United States)

    Tarabini, Marco; Solbiati, Stefano; Moschioni, Giovanni; Saggin, Bortolino; Scaccabarozzi, Diego

    2014-01-01

    The human response to vibration is typically studied using linear estimators of the frequency response function, although different literature works evidenced the presence of non-linear effects in whole-body vibration response. This paper analyses the apparent mass of standing subjects using the conditioned response techniques in order to understand the causes of the non-linear behaviour. The conditioned apparent masses were derived considering models of increasing complexity. The multiple coherence function was used as a figure of merit for the comparison between the linear and the non-linear models. The apparent mass of eight male subjects was studied in six configurations (combinations of three vibration magnitudes and two postures). The contribution of the non-linear terms was negligible and was endorsed to the change of modal parameters during the test. Since the effect of the inter-subject variability was larger than that due to the increase in vibration magnitude, the biodynamic response should be more meaningfully modelled using a linear estimator with uncertainty rather than looking for a non-linear modelling.

  2. The effect of non-linear human visual system components on linear model observers

    Science.gov (United States)

    Zhang, Yani; Pham, Binh T.; Eckstein, Miguel P.

    2004-05-01

    Linear model observers have been used successfully to predict human performance in clinically relevant visual tasks for a variety of backgrounds. On the other hand, there has been another family of models used to predict human visual detection of signals superimposed on one of two identical backgrounds (masks). These masking models usually include a number of non-linear components in the channels that reflect properties of the firing of cells in the primary visual cortex (V1). The relationship between these two traditions of models has not been extensively investigated in the context of detection in noise. In this paper, we evaluated the effect of including some of these non-linear components into a linear channelized Hotelling observer (CHO), and the associated practical implications for medical image quality evaluation. In particular, we evaluate whether the rank order evaluation of two compression algorithms (JPEG vs. JPEG 2000) is changed by inclusion of the non-linear components. The results show: a) First that the simpler linear CHO model observer outperforms CHO model with the nonlinear components investigated. b) The rank order of model observer performance for the compression algorithms did not vary when the non-linear components were included. For the present task, the results suggest that the addition of the physiologically based channel non-linearities to a channelized Hotelling might add complexity to the model observers without great impact on medical image quality evaluation.

  3. Pulsed contractions of an actin-myosin network drive apical constriction.

    Science.gov (United States)

    Martin, Adam C; Kaschube, Matthias; Wieschaus, Eric F

    2009-01-22

    Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and non-muscle myosin-II (myosin) belt underlying adherens junctions. However, it is unclear whether other force-generating mechanisms can drive this process. Here we show, with the use of real-time imaging and quantitative image analysis of Drosophila gastrulation, that the apical constriction of ventral furrow cells is pulsed. Repeated constrictions, which are asynchronous between neighbouring cells, are interrupted by pauses in which the constricted state of the cell apex is maintained. In contrast to the purse-string model, constriction pulses are powered by actin-myosin network contractions that occur at the medial apical cortex and pull discrete adherens junction sites inwards. The transcription factors Twist and Snail differentially regulate pulsed constriction. Expression of snail initiates actin-myosin network contractions, whereas expression of twist stabilizes the constricted state of the cell apex. Our results suggest a new model for apical constriction in which a cortical actin-myosin cytoskeleton functions as a developmentally controlled subcellular ratchet to reduce apical area incrementally.

  4. A Non-linear Model for Predicting Tip Position of a Pliable Robot Arm Segment Using Bending Sensor Data

    Directory of Open Access Journals (Sweden)

    Elizabeth I. SKLAR

    2016-04-01

    Full Text Available Using pliable materials for the construction of robot bodies presents new and interesting challenges for the robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulator for surgical Operations (STIFF-FLOP, a bendable, segmented robot arm has been developed. The exterior of the arm is composed of a soft material (silicone, encasing an internal structure that contains air-chamber actuators and a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physical characteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensor data. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neural network with a structured series of pressures values applied to the arm's actuators. The model is developed across a set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures, traditional methods for position estimation (based on visual information or electromagnetic tracking will not be possible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bending sensor and accompanying model is a valuable contribution. Results are presented which demonstrate the utility of our non-linear modelling approach across a range of data collection procedures.

  5. Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming

    Science.gov (United States)

    Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.

    2016-05-01

    In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.

  6. Non-linearity of geocenter motion and its impact on the origin of the terrestrial reference frame

    Science.gov (United States)

    Dong, D.; Weijing, Q.; Fang, P.; Peng, D.

    2013-12-01

    Terrestrial reference frame is a cornerstone for modern geodesy and its applications for a wide range of Earth sciences. The underlying assumption is that the motion of the solid Earth's figure center (CF) relative to the mass center (CM) of the Earth system on a multi-decadal time scale is linear. However, past international terrestrial reference frames (ITRFs) showed unexpected trend change in their translation parameters. We investigate the surface mass loading impact on the geocenter variations from atmosphere, ocean, snow, soil moisture, glacier and sea level from 1983 to 2008. The resultant geocenter time series reveal noticeable trend acceleration from 1998 onward, in particular in the z-component. Such a non-linear trend change is statistically significant at the 99% confidence level by the Mann-Kendall (MK) test, and is highly correlated with the Satellite Laser Ranging (SLR) determined translation series. Our study, based on independent geophysical and hydrological models, demonstrates that the observed non-linearity of the Earth-system behavior in the inter-annual time scale has a physical cause, in addition to systematic error from network distribution and analysis procedures, and is able to explain 40% of the disparity between the origins of ITRF2000 and ITRF2005 as well as the good consistency between the origins of ITRF2005 and ITRF2008.

  7. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  8. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method......Detecting inhomogeneities in the electrical conductivity is a special case of the inverse problem in electrical impedance tomography, that leads to fast direct reconstruction methods. One such method can, under reasonable assumptions, exactly characterize the inhomogeneities based on monotonicity...... properties of either the Neumann-to-Dirichlet map (non-linear) or its Fréchet derivative (linear). We give a comparison of the non-linear and linear approach in the presence of measurement noise, and show numerically that the two methods give essentially the same reconstruction in the unit disk domain...

  9. DSP-based Mitigation of RF Front-end Non-linearity in Cognitive Wideband Receivers

    Science.gov (United States)

    Grimm, Michael; Sharma, Rajesh K.; Hein, Matthias A.; Thomä, Reiner S.

    2012-09-01

    Software defined radios are increasingly used in modern communication systems, especially in cognitive radio. Since this technology has been commercially available, more and more practical deployments are emerging and its challenges and realistic limitations are being revealed. One of the main problems is the RF performance of the front-end over a wide bandwidth. This paper presents an analysis and mitigation of RF impairments in wideband front-ends for software defined radios, focussing on non-linear distortions in the receiver. We discuss the effects of non-linear distortions upon spectrum sensing in cognitive radio and analyse the performance of a typical wideband software-defined receiver. Digital signal processing techniques are used to alleviate non-linear distortions in the baseband signal. A feed-forward mitigation algorithm with an adaptive filter is implemented and applied to real measurement data. The results obtained show that distortions can be suppressed significantly and thus increasing the reliability of spectrum sensing.

  10. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  11. Non-linear simulations of ELMs in ASDEX Upgrade including diamagnetic drift effects

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Krebs, Isabel; Franck, Emmanuel; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Orain, Francois; Morales, Jorge; Becoulet, Marina [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Huysmans, Guido [ITER Organization, 13067 Saint-Paul-Lez-Durance (France)

    2015-05-01

    Large edge localized modes (ELMs) are a severe concern for ITER due to high transient heat loads on divertor targets and wall structures. Using the non-linear MHD code JOREK, we have performed ELM simulations for ASDEX Upgrade (AUG) including diamagnetic drift effects. The influence of diamagnetic terms onto the evolution of the toroidal mode spectrum for different AUG equilibria and the non-linear interaction of the toroidal harmonics are investigated. In particular, we confirm the diamagnetic stabilization of high mode numbers and present new features of a previously introduced quadratic mode coupling model for the early non-linear evolution of the mode structure. Preliminary comparisons of full ELM crashes with experimental observations are shown aiming at code validation and the understanding of different ELM types. Work is ongoing to include toroidal and neoclassical poloidal rotation in our simulations.

  12. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...... with a center frequency of 5 MHz. The speed is increased approximately by a factor of 140 and the calculation time is 12 min with a standard PC, when simulating the second harmonic pulse at the focal point. For the second harmonic point spread function the full width error is 1.5% at 6 dB and 6.4% at 12 d...

  13. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... as the reference. A linear array transducer with 64 active elements is simulated by both Field II and Abersim. The excitation is a 2-cycle sine wave with a frequency of 5 MHz. The second harmonic field in the time domain is simulated using ASA. Pulse inversion is used in the Abersim simulation to remove...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  14. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    , for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical......Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...

  15. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  16. Single Image Super-Resolution by Non-Linear Sparse Representation and Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Yungang Zhang

    2017-02-01

    Full Text Available Sparse representations are widely used tools in image super-resolution (SR tasks. In the sparsity-based SR methods, linear sparse representations are often used for image description. However, the non-linear data distributions in images might not be well represented by linear sparse models. Moreover, many sparsity-based SR methods require the image patch self-similarity assumption; however, the assumption may not always hold. In this paper, we propose a novel method for single image super-resolution (SISR. Unlike most prior sparsity-based SR methods, the proposed method uses non-linear sparse representation to enhance the description of the non-linear information in images, and the proposed framework does not need to assume the self-similarity of image patches. Based on the minimum reconstruction errors, support vector regression (SVR is applied for predicting the SR image. The proposed method was evaluated on various benchmark images, and promising results were obtained.

  17. Classical non-Gaussianity from non-linear evolution of curvature perturbations

    CERN Document Server

    Gong, Jinn-Ouk; Noh, Hyerim

    2011-01-01

    We study the non-linear evolution of the curvature perturbations during matter dominated era. We show that regardless of the origin of the primordial perturbation, the Bardeen potential receives sizable contributions from the classical non-linear evolution effects, and quantify them exactly. We divide these effects into two groups, being dominant on super- and sub-horizon scales. The former gives rise to squeezed peak of the bispectrum and contributes, in terms of the local non-linear parameter, -3/2 < f_{NL} < -2/5, depending on the configuration of momenta. The latter is highly scale dependent with equilateral shape, and can serve as a potential probe of general relativity.

  18. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  19. A New Method for Generating High Non-linearity S-Boxes

    Directory of Open Access Journals (Sweden)

    P. Tesar

    2010-04-01

    Full Text Available Substitution boxes are important parts in many block and stream ciphers. The emergence of a range of crypto-attacks has led to the development of criteria for repelling such attacks. The non-linearity criterion provides some protection against well- known attacks, such as linear cryptanalysis and differential cryptanalysis. The open problem is constructed by generating methods which will be rapid and will generate S-boxes with the highest possible non-linearity. This paper deals with a new rapid method for generating regular 8x8 S-boxes with non-linearity up to a value of 104. The new method combines the special genetic algorithm with total tree searching.

  20. Aeroelastic Analysis of a Flexible Airfoil with a Freeplay Non-Linearity

    Science.gov (United States)

    Kim, S.-H.; Lee, I.

    1996-06-01

    A two-dimensional flexible airfoil with a freeplay non-linearity in pitch has been analyzed in the subsonic flow range. Structurally, the airfoil is modelled as finite beam elements and two spring elements in pitch and plunge. A doublet lattice method is used for the two-dimensional unsteady aerodynamics to include the camber deflection effect. The fictitious mass modal approach is adopted in order to use the consistent modal co-ordinates for the structures with non-linearity. Non-linear aeroelastic analyses for both the frequency domain and time domain are performed for rigid and flexible airfoil models to investigate the flexibility effect. Results are shown for models of different pitch-to-plunge frequency ratio. Responses involving limit cycle oscillation and chaotic motion are observed and they are highly influenced by the pitch-to-plunge frequency ratio.

  1. On-road magnetic emissions prediction of electric cars in terms of driving dynamics using neural networks

    NARCIS (Netherlands)

    Wefky, Ahmed M.; Espinosa, Felipe; Leferink, Frank Bernardus Johannes; Gardel, Alfredo; Vogt-Ardatjew, R.A.

    2013-01-01

    This paper presents a novel artificial neural network (ANN) model estimating vehicle-level radiated magnetic emissions of an electric car as a function of the corresponding driving pattern. Real world electromagnetic interference (EMI) experiments have been realized in a semi-anechoic chamber using

  2. The non-linear power spectrum of the Lyman alpha forest

    Energy Technology Data Exchange (ETDEWEB)

    Arinyo-i-Prats, Andreu [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Barcelona 08028, Catalonia (Spain); Miralda-Escudé, Jordi [Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia (Spain); Viel, Matteo [INAF, Astronomical Observatory of Trieste, 34131 Trieste (Italy); Cen, Renyue, E-mail: andreuaprats@gmail.com, E-mail: miralda@icc.ub.edu, E-mail: viel@oats.inaf.it, E-mail: cen@astro.princeton.edu [Princeton University Observatory, Princeton, NJ 08544 (United States)

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.

  3. Non-linear classification of heart rate parameters as a biomarker for epileptogenesis.

    Science.gov (United States)

    Kheiri, Farshad; Bragin, Anatol; Engel, Jerome; Almajano, Joel; Winden, Eamon

    2012-06-01

    To characterize a biomarker for epileptogenesis based on cardiac interbeat interval characteristics. Electrocardiograph (ECG) and electroencephalogram (EEG) signals were recorded from freely moving rats (n = 23) before status epilepticus (SE) induced by i.p. pilocarpine (PILO) injection as baseline, and on days 1, 3 and 7 after SE. We assessed several features from cardiac interbeat intervals, including linear, non-linear and frequency parameters of interbeat intervals, and power spectra of interpolated intervals during epileptogenesis. After thresholding, the altered values were applied to a non-linear classifier. The non-linear classifier divided animals into two groups; with and without epilepsy, based on all collected data. We found that none of the single altered parameters in cardiac activity emerged as a sole biomarker for epileptogenesis. However, the non-linear classifier distinguished animals that later developed from those and did not develop epilepsy. The non-linear classification was performed on preliminary findings from 23 animals; six did not develop epilepsy and the rest did. The average positive predictive value (precision rate) was 78%. This was calculated based on the average sensitivity and specificity, which were 80.6% and 35.2% respectively, for the 100 classification passes. We also showed that these numbers would have increased as the number of subjects increased. Changes to the brain caused by status epilepticus that lead to epileptogenesis have systemic effects, and alter cardiac activity. A non-linear classifier performed on several extracted features of cardiac interbeat intervals may be useful as a biomarker to identify animals with low and high probability of developing epilepsy after status epilepticus. Published by Elsevier B.V.

  4. Calcium intake and bone mineral density as an example of non-linearity and threshold analysis.

    Science.gov (United States)

    Breitling, L P

    2015-04-01

    Non-linearity is a likely phenomenon in bone metabolism, but is often ignored in pertinent epidemiological studies. Using NHANES III data on calcium intake and bone mineral density, the most important non-linear methods are introduced and discussed. The results should motivate researchers to consider non-linearity in this field more frequently. Many relationships in bone metabolism and homeostasis are likely to follow non-linear patterns. Detailed dose-response analyses allowing for non-linear associations nonetheless remain scarce in this field. A detailed analysis of NHANES III data on dietary calcium intake and bone mineral density was used to demonstrate the application and some of the challenges of the most important dose-response methods, including LOESS, categorical analysis, fractional polynomials, restricted cubic splines, and segmented regression. The spline estimate suggested increasing bone mineral density up to a calcium intake of about 1 g/day and a plateau thereafter. In segmented regression, the break-point marking the beginning of the plateau was placed at an intake of 0.58 (95 % confidence interval, 0.33 to 0.82) g/day. Sensitivity analyses suggested a less curved dose-response in women. Knowing about the possibilities and limitations of non-linear dose-response approaches should encourage researchers to consider these methods more frequently in studies on bone health and disease. The example analysis suggested bone mineral density to reach a plateau slightly below current calcium intake recommendations, with fairly pronounced differences of the dose-response shape by sex and menopausal status.

  5. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  6. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  7. Estimation of non-linear site response in a deep Alpine valley

    Science.gov (United States)

    Roten, D.; Fäh, D.; Bonilla, L. F.; Alvarez-Rubio, S.; Weber, T. M.; Laue, J.

    2009-09-01

    We simulate non-linear behaviour of soils during strong ground motion in the Rhône valley in southern Switzerland. Previous studies of the site response using weak ground motion, ambient noise and linear 3-D FD simulations suggest that the 2-D structure of the basin will lead to amplification factors of up to 12 in the frequency band between 0.5 and 10 Hz. To estimate the importance of non-linear soil behaviour during strong ground motion in the Rhône valley we simulate the response of a superficial soft layer with a fully non-linear 1-D finite difference code. The non-linear wave propagator is based on an effective stress constitutive soil model capable of predicting pore pressure evolution due to shear. We determine the required dilatancy parameters from laboratory analysis of soil samples using cyclic triaxial tests. In order to include the effect of the strong 2-D structure in our non-linear analysis synthetic seismograms are convolved with the transfer function of the basin and then propagated through a 1-D non-linear layer. We find that reduced amplification due to soil non-linearity can be expected at rock accelerations above 0.5 ms-2, and that de-amplification occurs at ground motion levels of approximately 2 ms-2. Nevertheless, the spectral accelerations simulated for the valley centre are still exceeding the design spectra at about 0.5 Hz for magnitudes above 6.0, which reflects the strong amplification of ground motion by the deep 2-D resonance of the basin. For frequencies above 1 Hz the design spectra are generally in agreement with the strongest simulated accelerations. We evaluate the occurrence of soil failure using the 5 per cent strain criterion as a function of hypocentral distance and magnitude. Results confirm observations of liquefaction reported after the 1855 Mw 6.4 earthquake of Visp, and they suggest that soil liquefaction may occur at distances beyond those predicted by empirical relations in the valley. Near the basin edge, however

  8. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representation. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation....... Based on this time-domain strip theory, an efficient non-linear hydroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented as a Timoshenko beam. Numerical calculations are presented for the S175 Containership...

  9. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representaton. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation....... Based on this time-domain strip theory, an efficient non-linear hyroelastic method of wave- and slamming-induced vertical motions and structural responses of ships is developed, where the structure is represented by the Timoshenko beam theory. Numerical calculations are presented for the S175...

  10. Non-linear cancer classification using a modified radial basis function classification algorithm.

    Science.gov (United States)

    Wang, Hong-Qiang; Huang, De-Shuang

    2005-10-01

    This paper proposes a modified radial basis function classification algorithm for non-linear cancer classification. In the algorithm, a modified simulated annealing method is developed and combined with the linear least square and gradient paradigms to optimize the structure of the radial basis function (RBF) classifier. The proposed algorithm can be adopted to perform non-linear cancer classification based on gene expression profiles and applied to two microarray data sets involving various human tumor classes: (1) Normal versus colon tumor; (2) acute myeloid leukemia (AML) versus acute lymphoblastic leukemia (ALL). Finally, accuracy and stability for the proposed algorithm are further demonstrated by comparing with the other cancer classification algorithms.

  11. Non-linear molecular pattern classification using molecular beacons with multiple targets.

    Science.gov (United States)

    Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak

    2013-12-01

    In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Solitons on nanotubes and fullerenes as solutions of a modified non-linear Schroedinger equation

    OpenAIRE

    Brihaye, Yves; Hartmann, Betti

    2004-01-01

    Fullerenes and nanotubes consist of a large number of carbon atoms sitting on the sites of a regular lattice. For pratical reasons it is often useful to approximate the equations on this lattice in terms of the continuous equation. At the moment, the best candidate for such an equation is the modified non-linear Schroedinger equation. In this paper, we study the modified non-linear Schroedinger equation, which arises as continuous equation in a system describing an excitation on a hexagonal l...

  13. Non-Linearities, Large Forecasters And Evidential Reasoning Under Rational Expectations

    OpenAIRE

    Ali al-Nowaihi; Sanjit Dhami

    2005-01-01

    Rational expectations is typically taken to mean that, conditional on the information set and the relevant economic theory, the expectation formed by an economic agent should be equal to its mathematical expectation. This is correct only when actual inflation is “linear” in the aggregate inflationary expectation or if it is non-linear then forecasters are “small” and use “causal reasoning”. We show that if actual in- flation is non-linear in expected inflation and (1) there are “large” foreca...

  14. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...... by the capturing process. Semiconductor quantum dots (QDs) are promising for realizing few-photon non-linearities in solid-state implementations, although coupling to phonon modes in the surrounding lattice have significant influence on the dynamics. By accounting for the commonly neglected asymmetry between...

  15. Non-linear performance of a three-bearing rotor incorporating a squeeze-film damper

    Science.gov (United States)

    Holmes, R.; Dede, M.

    1987-01-01

    This paper is concerned with the non-linear vibration performance of a rigid rotor supported on three bearings, one being surrounded by a squeeze-film damper. This damper relies on the pressure built up in the squeeze film to help counter-act external forces arising from unbalance and other effects. As a result a vibration orbit of a certain magnetude results. Such vibration orbits illustrate features found in other non-linear systems, in particular sub-harmonic resonances and jump phenomena. Comparisons between theoretical prediction and experimental observations of these phenomena are made.

  16. Free Convective Nonaligned Non-Newtonian Flow with Non-linear Thermal Radiation

    Science.gov (United States)

    Rana, S.; Mehmood, R.; Narayana, PV S.; Akbar, N. S.

    2016-12-01

    The present study explores the free convective oblique Casson fluid over a stretching surface with non-linear thermal radiation effects. The governing physical problem is modelled and transformed into a set of coupled non-linear ordinary differential equations by suitable similarity transformation, which are solved numerically with the help of shooting method keeping the convergence control of 10-5 in computations. Influence of pertinent physical parameters on normal, tangential velocity profiles and temperature are expressed through graphs. Physical quantities of interest such as skin friction coefficients and local heat flux are investigated numerically.

  17. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically-numerical tec......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  18. Linking point scale process non-linearity, catchment organization and linear system dynamics in a thermodynamic state space

    Science.gov (United States)

    Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert

    2017-04-01

    It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to

  19. A Cognitive Model for Non-Linear Learning in Hypermedia Programmes.

    Science.gov (United States)

    Chen, Sherry

    2002-01-01

    Discusses the effects of individual differences and cognitive styles on student learning in hypermedia programs and presents a cognitive model to illustrate how students with different cognitive styles react to non-linear learning in hypermedia by analyzing the findings of previous studies. Suggests implications for the design of hypermedia…

  20. Identification of non-linear models of neural activity in bold fmri

    DEFF Research Database (Denmark)

    Jacobsen, Daniel Jakup; Madsen, Kristoffer Hougaard; Hansen, Lars Kai

    2006-01-01

    Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional of the temporal sequence of local neural activity. Several models have been proposed for this neural activity. We identify one such parametric model by estimating the distribution of its parameters. These ...

  1. Material model for non-linear finite element analyses of large concrete structures

    NARCIS (Netherlands)

    Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.

    2016-01-01

    A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including

  2. Influence of copper ions on structural and non-linear optical properties in manganese ferrite nanomaterials

    Science.gov (United States)

    Yuvaraj, S.; Manikandan, N.; Vinitha, G.

    2017-11-01

    A series of Mn1-xCuxFe2O4 (x = 0, 0.15, 0.30, 0.45, 0.60 and 1) particles were prepared using chemical co-precipitation method with metal nitrates as precursor materials. Samples were synthesized under various annealing temperatures and 800 °C was found to be the optimal temperature for phase formation. Powder XRD analyses confirm the formation of spinel manganese ferrites along with the α-Fe2O3 phase which got reduced with increase in copper concentration. Samples were characterized using spectroscopic and microscopic techniques. UV-Diffuse reflectance spectroscopy was employed to calculate the band gap which varied between 1.51 eV and 1.83 eV. HR-SEM images reveal the spherical nature of the particles. Ferromagnetic nature of these materials was confirmed from vibrating sample magnetometer (VSM) measurements. Z-scan technique was employed to measure the non-linear optical properties. The non-linear refraction, non-linear absorption and non-linear susceptibility are found to be of the order of 10-8 cm2/W, 10-4 cm/W and 10-6 esu respectively. The samples showed a defocusing effect which was utilized to explain the optical limiting behavior at the same wavelength using the continuous-wave laser beam. The results show that these materials have potential for exploitation towards device applications like optical limiting and switching.

  3. A New Non-Linearity Correction Method for the JWST Near-Infrared Camera

    Science.gov (United States)

    Canipe, Alicia Michelle; Robberto, Massimo; Hilbert, Bryan

    2017-06-01

    JWST infrared detectors have an intrinsic non-linearity due to the change in PN junction capacitance as charge accumulates in the individual pixel capacitors. Correction of this non-linearity is a fundamental step in the JWST Science Calibration Pipeline. I evaluate a proposed method to calculate a more accurate non-linearity correction for the Near-Infrared Camera (NIRCam) using a function of the ideal linear signal count rate. This algorithm allows the reconstruction of the true linear signal to within 0.2% over ~97% of the full dynamic range, a substantial improvement over the current correction strategy adopted, for example, for the Wide Field Camera 3 infrared channel on Hubble. Using this method, I demonstrate that the coefficients derived to correct a regular ramp (i.e., a sequence of non-destructive samples) are also adequate to reconstruct the true signal in the case of grouped (averaged) samples, characteristic of JWST observations. The robustness of the method is tested using both real data and simulated ramps with different count rates. The new algorithm consistently provides highly accurate non-linearity corrections and can successfully be applied to all 10 NIRCam detectors.

  4. A non-linear least squares enhanced POD-4DVar algorithm for data assimilation

    Directory of Open Access Journals (Sweden)

    Xiangjun Tian

    2015-01-01

    Full Text Available This paper presents a novel non-linear least squares enhanced proper orthogonal decomposition (POD-based 4DVar algorithm (referred as NLS-4DVar for the non-linear ensemble-based 4DVar. In the algorithm, the Gauss–Newton iterative method is employed to handle the non-quadratic non-linearity of the 4DVar cost function while the overall structure of the algorithm still resembles the original POD-4DVar algorithm. It is proved that the original POD-4DVar algorithm is a special case of the proposed NLS-4DVar algorithm under the assumption of the linear relationship between the model perturbations (MPs and the simulated observation perturbations (OPs. Under the assumption it is also shown that the solution of POD-4DVar algorithm coincides with the solution of the proposed NLS-4DVar algorithm. On the contrary, if the linear relationship assumption is dropped, the solution of the POD-4DVar algorithm is only the first iteration of the proposed NLS-4DVar algorithm. As a result, our analysis provides an explanation for the degraded and inaccurate performance of the POD-4DVar algorithm when the underlying forecast model or (and the observation operator is strongly non-linear. The potential merits and advantages of the proposed NLS-4DVar are demonstrated by a group of Observing System Simulation Experiments with Advanced Research WRF (ARW using accumulated rainfall-observations.

  5. THE USE OF DIFFERENTIAL TRANSFORMATIONS FOR SOLVING NON-LINEAR BOUNDARY VALUE PROBLEMS

    Directory of Open Access Journals (Sweden)

    Viacheslav Gusynin

    2016-12-01

    Full Text Available Purpose: The aim of our study is comparison of method applications based on differential transformations for solving boundary value problems which are described by non-linear ordinary differential equations. Methods: This article reviews two approaches based on differential transformations for solving non-linear boundary value problems: the modified differential transform method and the system-analogue simulation method. Results: In this paper, we present results of the numerical solution of non-linear boundary value problem by methods based on differential transformations for demonstration the effectiveness and applicability of techniques. The relative error for given solutions, obtained with using first 6 discretes of differential spectra is presented. Discussion: Comparison of numerical solutions obtained by modified differential transform method and system-analogue simulation method with exact solution shows that both methods have good agreement with exact solution of non-linear boundary value problem for small intervals. However, application of system-analogue simulation method is preferential for big intervals, on which the boundary value problem is solved.

  6. Comparing hybrid data assimilation methods on the Lorenz 1963 model with increasing non-linearity

    Directory of Open Access Journals (Sweden)

    Michael Goodliff

    2015-05-01

    Full Text Available We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVAR with respect to two traditional methods (4DVAR and ETKF and an ensemble transform Kalman smoother (ETKS on the Lorenz 1963 model. We specifically investigated this performance with increasing non-linearity and using a quasi-static variational assimilation algorithm as a comparison. Using the analysis root mean square error (RMSE as a metric, these methods have been compared considering (1 assimilation window length and observation interval size and (2 ensemble size to investigate the influence of hybrid background error covariance matrices and non-linearity on the performance of the methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods show an improvement in RMSE compared to the traditional methods. For long assimilation window lengths in which non-linear dynamics are substantial, the variational framework can have difficulties finding the global minimum of the cost function, so we explore a quasi-static variational assimilation (QSVA framework. Of the hybrid methods, it is seen that under certain parameters, hybrid methods which do not use a climatological background error covariance do not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a climatological background error covariance matrix with QSVA outperform all other methods due to the full flow dependency of the background error covariance matrix which also allows for the most non-linearity.

  7. Individualized Learning Through Non-Linear use of Learning Objects: With Examples From Math and Stat

    DEFF Research Database (Denmark)

    Rootzén, Helle

    2015-01-01

    Our aim is to ensure individualized learning that is fun, inspiring and innovative. We believe that when you enjoy, your brain will open up and learning will be easier and more effective. The methods use a non-linear learning environment based on self-contained learning objects which are pieced t...

  8. Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator

    NARCIS (Netherlands)

    Labadze, G.; Dukalski, M.S.; Blanter, Y.M.

    2016-01-01

    We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classically, the behavior of the non-driven mode is reminiscent of that of a parametrically driven

  9. Measurements and simulations of non-linear noise re-distribution in an SOA

    DEFF Research Database (Denmark)

    Öhman, Filip; Tromborg, Bjarne; Mørk, Jesper

    2005-01-01

    Measurements and numerical simulations of the noise statistics after a semiconductor optical amplifier (SOA) demonstrate non-linear noise re-distribution. The re-distribution, which depends on self-modulation due to gain saturation and carrier dynamics, show a strong power and bandwidth dependence...

  10. Non-linear propagation of laser beam and focusing due to self ...

    Indian Academy of Sciences (India)

    Considering self-action due to sat- urating and non-saturating non-linearity in the refractive index, a general theory has been developed ... power filter, fiber amplifiers etc. [20]. An intense laser beam with ... power for self-focusing [19]. Realising that paraxial approximation may also be quantitatively in error in the saturation.

  11. Institutions and non-linear change in governance. Reforming the governance of medical performance in Europe.

    Science.gov (United States)

    Burau, Viola; Vrangbaek, Karsten

    2008-01-01

    The paper aims to account for the substance of non-linear governance change by analysing the importance of sector-specific institutions and the pathways of governing they create. The analysis uses recent reforms of the governance of medical performance in four European countries as a case, adopting an inductively oriented approach to comparison. The governance of medical performance is a good case as it is both, closely related to redistributive policies, where the influence of institutions tends to be pertinent, and is subject to considerable policy pressures. The overall thrust of reforms is similar across countries, while there are important differences in relation to how individual forms of governance and the balance between different forms of governance are changing. More specifically, sector-specific institutions can account for the specific ways in which reforms redefine hierarchy and professional self-regulation and for the extent to which reforms strengthen hierarchy and affect the balance with other forms of governance. The recent literature on governance mainly focuses on mapping out the substance of non-linear change, whereas the development of explanations of the substance of governance change is less systematic. In the present paper, therefore, it is suggested coupling the notion of non-linear change with an analysis of sector specific institutions inspired by the historical institutionalist tradition to better account for the substance of non-linear governance change. Further, the analysis offers interesting insights into the complexity of redrawing boundaries between the public and the private in health care.

  12. Passivity Analysis for Non-Linear, Non-Stationary Entry Capsules : Rotational Motion

    NARCIS (Netherlands)

    Mooij, E.

    2011-01-01

    To analyze the passivity of non-linear, time-varying systems we study an entry capsule that enters the atmosphere in a lift-down configuration (i.e., a bank angle larger than 90º) to avoid skipping flight, and which is controlled by a Reaction Control System only. Deriving the passivity conditions

  13. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2014-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  14. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...

  15. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  16. Linear and non-linear optical properties of amorphous Se and ...

    Indian Academy of Sciences (India)

    . Although the low non-linear refrac- tive index of silica requires a high switching ..... of the band tail can be explained by increasing the disorder of the system leading to a decrease in the bandgap (Eg) val- ues when Se atoms was replaced by ...

  17. A new approach of binary addition and subtraction by non-linear ...

    Indian Academy of Sciences (India)

    accommodating the spatial input encoding system. Keywords. Non-linear material; optical computing; binary arithmetic; optical logic op- erations. PACS Nos 42.65.-k; 42.70.-a; 42.79.Ta; 42.82.Gw. 1. Introduction. All-optical parallel computation uses the parallelism of optics with all its possibili- ties to overcome the limitations ...

  18. A Bohmian approach to the perturbations of non-linear Klein ...

    Indian Academy of Sciences (India)

    2016-07-13

    Jul 13, 2016 ... over, the quantum force exerted on the particle can be determined. This method can be used for other non-linear ... ves that maintain their shape in collisions, are called solitons. The usual method used for studying ... i.e., like the case of classical mechanics, the motion of a particle at the instance t causes its ...

  19. Peri-implantitis: a complex condition with non-linear characteristics

    NARCIS (Netherlands)

    Papantonopoulos, G.H.; Gogos, C.; Housos, E.; Bountis, T.; Loos, B.G.

    2015-01-01

    Aim To cluster peri-implantitis patients and explore non-linear patterns in peri-implant bone levels. Materials and Methods Clinical and radiographic variables were retrieved from 94 implant-treated patients (340 implants, mean 7.1 ± 4.1 years in function). Kernel probability density estimations on

  20. Non-linear development of secular gravitational instability in protoplanetary disks

    Science.gov (United States)

    Tominaga, Ryosuke T.; Inutsuka, Shu-ichiro; Takahashi, Sanemichi Z.

    2018-01-01

    We perform non-linear simulation of secular gravitational instability (GI) in protoplanetary disks, which has been proposed as a mechanism of planetesimal and multiple ring formation. Since the timescale of the growth of the secular GI is much longer than the Keplerian rotation period, we develop a new numerical scheme for a long-term calculation utilizing the concept of symplectic integration. With our new scheme, we first investigate the non-linear development of the secular GI in a disk without a pressure gradient in the initial state. We find that the surface density of dust increases by more than a factor of 100 while that of gas does not increase even by a factor of 2, which results in the formation of dust-dominated rings. A line mass of the dust ring tends to be very close to the critical line mass of a self-gravitating isothermal filament. Our results indicate that the non-linear growth of the secular GI provides a powerful mechanism to concentrate the dust. We also find that the dust ring formed via the non-linear growth of the secular GI migrates inward with a low velocity, which is driven by the self-gravity of the ring. We give a semi-analytical expression for the inward migration speed of the dusty ring.

  1. Slope Safety Factor Calculations With Non-Linear Yield Criterion Using Finite Elements

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2006-01-01

    The factor of safety for a slope is calculated with the finite element method using a non-linear yield criterion of the Hoek-Brown type. The parameters of the Hoek-Brown criterion are found from triaxial test data. Parameters of the linear Mohr-Coulomb criterion are calibrated to the same triaxial...

  2. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    Science.gov (United States)

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  3. Dynamic Analysis of a non-linear vibrating circular cylindrical shell ...

    African Journals Online (AJOL)

    We investigated in this paper the effect of non-linear vibration of a circular cylindrical shell subject to axially symmetric loading. We consider the approximation of the equation using the regular perturbation technique and thereby solving the resulting linear equation analytically. The result indicates an exponential decay ...

  4. Acetylenic dithiafulvene derived donor-pi-acceptor dyads: synthesis, electrochemistry and non-linear optical properties

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brønsted; Petersen, Jan Conrad; Thorup, Niels

    2005-01-01

    A selection of donor-acceptor chromophores containing the redox-active dithiafulvene unit about acetylenic and aryl scaffolds has been synthesized. The molecules were studied for their optical, redox and structural properties. Moreover, third-order non-linear optical properties were investigated ...... as a function of molecular structure....

  5. Painlevйe analysis and integrability of two-coupled non-linear ...

    Indian Academy of Sciences (India)

    For non-linear systems integrating the equations of motion completely, obtaining analytical solutions and finding acceptable constants of motions seem to be rare. From a qualitative point of view, integrability can be considered as a mathemat- ical property that can be successfully used to obtain more predictive power and.

  6. Non-linearity parameter of binary liquid mixtures at elevated pressures

    Indian Academy of Sciences (India)

    Furthermore, a comparative study of B/A values obtained from the two methods has also been carried out, and merits and demerits of both the methods are discussed in the light of molecular structure and intermolecular interactions. 2. Theory. Since sound propagation is an adiabatic process, the non-linearity parameter is ...

  7. Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second...

  8. Non-linear DSGE Models and The Central Difference Kalman Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...

  9. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  10. Non-linear membrane properties of sacral sphincter motoneurones in the decerebrate cat

    Science.gov (United States)

    Paroschy, K L; Shefchyk, S J

    2000-01-01

    Responses to pudendal afferent stimulation and depolarizing intracellular current injection were examined in sacral sphincter motoneurones in decerebrate cats. In 16 animals examined, 2–10 s trains of electrical stimulation of pudendal afferents evoked sustained sphincter motoneurone activity lasting from 5 to >50 s after stimulation. The sustained response was observed in: 11 animals in the absence of any drugs; two animals after the intravenous administration of 5-hydroxytryptophan (5-HTP; ≤ 20 mg kg−1); one animal in which methoxamine was perfused onto the ventral surface of the exposed spinal cord; and two animals following the administration of intravenous noradrenergic agonists. Extracellular and intracellular recordings from sphincter motoneurones revealed that the persistent firing evoked by afferent stimulation could be terminated by motoneurone membrane hyperpolarization during micturition or by intracellular current injection. Intracellular recordings revealed that 22/40 sphincter motoneurones examined displayed a non-linear, steep increase in the membrane potential in response to depolarizing ramp current injection. The mean voltage threshold for this non-linear membrane response was -43 ± 3 mV. Five of the 22 cells displaying the non-linear membrane response were recorded prior to the administration of 5-HTP; 17 after the intravenous administration of 5-HTP (≤ 20 mg kg−1). It is concluded that sphincter motoneurones have a voltage-sensitive, non-linear membrane response to depolarization that could contribute to sustained sphincter motoneurone firing during continence. PMID:10718752

  11. Mathematical modeling suggests that periodontitis behaves as a non-linear chaotic dynamical process

    NARCIS (Netherlands)

    Papantonopoulos, G.H.; Takahashi, K.; Bountis, T.; Loos, B.G.

    2013-01-01

    Background: This study aims to expand on a previously presented cellular automata model and further explore the non-linear dynamics of periodontitis. Additionally the authors investigated whether their mathematical model could predict the two known types of periodontitis, aggressive (AgP) and

  12. Linear stability analysis and homoclinic orbit for a generalized non-linear heat transfer

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2012-01-01

    Full Text Available This paper studies the linear stability and dynamic structure for a generalized non-linear heat equation, and obtains novel analytic solutions such as homoclinc orbit and breather solitary solutions for the first time based on Hirota method.

  13. Transmission dynamics of HIV/AIDS with screening and non-linear ...

    African Journals Online (AJOL)

    This paper examines the transmission dynamics of HIV/AIDS with screening using non-linear incidence. A nonlinear mathematical model for the problem is proposed and analysed qualitatively using the stability theory of the differential equations. The results show that the disease free equilibrium is locally stable at ...

  14. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be solved at each time level. To linearize the resulting system of difference equations, Newton ...

  15. Real-time non-linear image processing using an active optical scanning technique

    Science.gov (United States)

    Duncan, B. D.; Poon, T.-C.; Pieper, R. J.

    1991-02-01

    Real-time non-linear image processing has been achieved using an active optical scanning technique. This paper reports experimental results in edge extraction for both binary and grey-scale transmissive objects. Binary edge extractionis achieved using morphological transformations, while grey-scale edge extraction is achieved using a threshold decomposition technique. Advantages and limitation of both techniques are identified.

  16. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...

  17. Re-Mediating Classroom Activity with a Non-Linear, Multi-Display Presentation Tool

    Science.gov (United States)

    Bligh, Brett; Coyle, Do

    2013-01-01

    This paper uses an Activity Theory framework to evaluate the use of a novel, multi-screen, non-linear presentation tool. The Thunder tool allows presenters to manipulate and annotate multiple digital slides and to concurrently display a selection of juxtaposed resources across a wall-sized projection area. Conventional, single screen presentation…

  18. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  19. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  20. The effect of non-linear wave in front of vertical wall using bi ...

    African Journals Online (AJOL)

    From the subsequent calculation carried out, it was found that on deep water the parameter 2 tends to zero and 1 tends to , which is twice as much as the value of for the progressive waves on deep water. Moreover, for a fixed kd, this theory suggests that the non-linear effects increase while approaching the bottom, which is ...

  1. Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...

  2. A Quantitative and Combinatorial Approach to Non-Linear Meanings of Multiplication

    Science.gov (United States)

    Tillema, Erik; Gatza, Andrew

    2016-01-01

    We provide a conceptual analysis of how combinatorics problems have the potential to support students to establish non-linear meanings of multiplication (NLMM). The problems we analyze we have used in a series of studies with 6th, 8th, and 10th grade students. We situate the analysis in prior work on students' quantitative and multiplicative…

  3. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  4. Non-linear propagation of laser beam and focusing due to self ...

    Indian Academy of Sciences (India)

    A somewhat more general analysis for solving spatial propagation characteristics of intense Gaussian beam is presented and applied to the laser beam propagation in step-index profile as well as parabolic profile dielectric fibers with Kerr non-linearity. Considering self-action due to saturating and non-saturating ...

  5. On the statistical properties of the non-linear water waves ...

    African Journals Online (AJOL)

    The study of the statistical properties of the non-linear random wave had been earlier investigated. In this work we introduce a bi-parametric distribution of nonlinear stochastic processes, in studying the properties of second-order random processes with a narrow-band spectrum. This incidentally concerns the mechanics of ...

  6. Diode array pumped, non-linear mirror Q-switched and mode-locked ...

    Indian Academy of Sciences (India)

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  7. Non-linear controls influence functions in an aircraft dynamics simulator

    Science.gov (United States)

    Guerreiro, Nelson M.; Hubbard, James E., Jr.; Motter, Mark A.

    2006-03-01

    In the development and testing of novel structural and controls concepts, such as morphing aircraft wings, appropriate models are needed for proper system characterization. In most instances, available system models do not provide the required additional degrees of freedom for morphing structures but may be modified to some extent to achieve a compatible system. The objective of this study is to apply wind tunnel data collected for an Unmanned Air Vehicle (UAV), that implements trailing edge morphing, to create a non-linear dynamics simulator, using well defined rigid body equations of motion, where the aircraft stability derivatives change with control deflection. An analysis of this wind tunnel data, using data extraction algorithms, was performed to determine the reference aerodynamic force and moment coefficients for the aircraft. Further, non-linear influence functions were obtained for each of the aircraft's control surfaces, including the sixteen trailing edge flap segments. These non-linear controls influence functions are applied to the aircraft dynamics to produce deflection-dependent aircraft stability derivatives in a non-linear dynamics simulator. Time domain analysis of the aircraft motion, trajectory, and state histories can be performed using these nonlinear dynamics and may be visualized using a 3-dimensional aircraft model. Linear system models can be extracted to facilitate frequency domain analysis of the system and for control law development. The results of this study are useful in similar projects where trailing edge morphing is employed and will be instrumental in the University of Maryland's continuing study of active wing load control.

  8. Metal-organic frameworks as competitive materials for non-linear optics.

    Science.gov (United States)

    Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V

    2016-09-26

    The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials

  9. Non-linear modal analysis of structural components subjected to unilateral constraints

    Science.gov (United States)

    Attar, M.; Karrech, A.; Regenauer-Lieb, K.

    2017-02-01

    In this paper, we present a detailed numerical study of the non-linear dynamics in structural components under unilateral contact constraints. Here, the unilateral term characterises the constitutive law of the restoring force in the constraints as they only sustain elastic reactions in one direction, either compressive or tensile. Thus, the non-differentiability of the contact law at the discontinuity point is the only source of non-linearity. In our approach, the discrete lattice method (DLM) is used to treat the continuous system as a piecewise linear model. Thus, the trajectory of each node in the discrete model would be a sequence of smooth solutions with the switching times between them. The application of the one-step integration scheme allows us to detect the occurrence of contact (i.e. the instants that the lattice nodes cross the discontinuity boundary) and consequently update the active constraints. We also consider embedding the bisection algorithm into the time integration procedure to localise the instants at which the nodes cross the boundary and minimise the accumulative error. Subsequently, the resulting unconditionally stable integration scheme is utilised as the modelling tool in combination with the shooting technique to perform a novel non-smooth modal analysis. In analogy with the smooth non-linear systems, the evolution of non-smooth periodic motions is presented in the frequency-stiffness plots. We apply our method to obtain non-linear normal modes (NNMs) for a number of representative problems, including a bar-obstacle system, a beam-substrate system and a granular chain with tensionless interactions. These numerical examples demonstrate the efficiency of the solution procedure to trace the family of energy-independent non-linear modes across the range of contact stiffnesses. Moreover, the stability analysis of the modes on the plot backbone reveal that they may become unstable due to the interaction with the higher modes or bifurcation of

  10. Effects of dual-energy CT with non-linear blending on abdominal CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sulan; Wang, Chaoqin; Jiang, Xiao Chen; Xu, Ge [Dept. of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou (China)

    2014-08-15

    To determine whether non-linear blending technique for arterial-phase dual-energy abdominal CT angiography (CTA) could improve image quality compared to the linear blending technique and conventional 120 kVp imaging. This study included 118 patients who had accepted dual-energy abdominal CTA in the arterial phase. They were assigned to Sn140/80 kVp protocol (protocol A, n = 40) if body mass index (BMI) < 25 or Sn140/100 kVp protocol (protocol B, n = 41) if BMI ≥ 25. Non-linear blending images and linear blending images with a weighting factor of 0.5 in each protocol were generated and compared with the conventional 120 kVp images (protocol C, n = 37). The abdominal vascular enhancements, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and radiation dose were assessed. Statistical analysis was performed using one-way analysis of variance test, independent t test, Mann-Whitney U test, and Kruskal-Wallis test. Mean vascular attenuation, CNR, SNR and subjective image quality score for the non-linear blending images in each protocol were all higher compared to the corresponding linear blending images and 120 kVp images (p values ranging from < 0.001 to 0.007) except for when compared to non-linear blending images for protocol B and 120 kVp images in CNR and SNR. No significant differences were found in image noise among the three kinds of images and the same kind of images in different protocols, but the lowest radiation dose was shown in protocol A. Non-linear blending technique of dual-energy CT can improve the image quality of arterial-phase abdominal CTA, especially with the Sn140/80 kVp scanning.

  11. Experimental verification of the linear and non-linear versions of a panel code

    Science.gov (United States)

    Grigoropoulos, G. J.; Katsikis, C.; Chalkias, D. S.

    2011-03-01

    In the proposed paper numerical calculations are carried out using two versions of a three-dimensional, timedomain panel method developed by the group of Prof. P. Sclavounos at MIT, i.e. the linear code SWAN2, enabling optionally the use of the instantaneous non-linear Froude-Krylov and hydrostatic forces and the fully non-linear SWAN4. The analytical results are compared with experimental results for three hull forms with increasing geometrical complexity, the Series 60, a reefer vessel with stern bulb and a modern fast ROPAX hull form with hollow bottom in the stern region. The details of the geometrical modeling of the hull forms are discussed. In addition, since SWAN4 does not support transom sterns, only the two versions of SWAN2 were evaluated over experimental results for the parent hull form of the NTUA double-chine, wide-transom, high-speed monohull series. The effect of speed on the numerical predictions was investigated. It is concluded that both versions of SWAN2 the linear and the one with the non-linear Froude-Krylov and hydrostatic forces provide a more robust tool for prediction of the dynamic response of the vessels than the non-linear SWAN4 code. In general, their results are close to what was expected on the basis of experience. Furthermore, the use of the option of non-linear Froude-Krylov and hydrostatic forces is beneficial for the accuracy of the predictions. The content of the paper is based on the Diploma thesis of the second author, supervised by the first one and further refined by the third one.

  12. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  13. Experimental verification of the linear and non-linear versions of a panel code

    Directory of Open Access Journals (Sweden)

    G.J. Grigoropoulos

    2011-03-01

    Full Text Available In the proposed paper numerical calculations are carried out using two versions of a three-dimensional, time-domain panel method developed by the group of Prof. P. Sclavounos at MIT, i.e. the linear code SWAN2, enabling optionally the use of the instantaneous non-linear Froude-Krylov and hydrostatic forces and the fully non-linear SWAN4. The analytical results are compared with experimental results for three hull forms with increasing geometrical complexity, the Series 60, a reefer vessel with stern bulb and a modern fast ROPAX hull form with hollow bottom in the stern region. The details of the geometrical modeling of the hull forms are discussed. In addition, since SWAN4 does not support transom sterns, only the two versions of SWAN2 were evaluated over experimental results for the parent hull form of the NTUA double-chine, wide-transom, high-speed monohull series. The effect of speed on the numerical predictions was investigated. It is concluded that both versions of SWAN2 the linear and the one with the non-linear Froude-Krylov and hydrostatic forces provide a more robust tool for prediction of the dynamic response of the vessels than the non-linear SWAN4 code. In general, their results are close to what was expected on the basis of experience. Furthermore, the use of the option of non-linear Froude-Krylov and hydrostatic forces is beneficial for the accuracy of the predictions. The content of the paper is based on the Diploma thesis of the second author, supervised by the first one and further refined by the third one.

  14. Pre-Trained Neural Networks used for Non-Linear State Estimation

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Andersen, Nils Axel; Ravn, Ole

    2011-01-01

    The paper focuses on nonlinear state estimation assuming non-Gaussian distributions of the states and the disturbances. The posterior distribution and the aposteriori distribution is described by a chosen family of paramtric distributions. The state transformation then results in a transformation...

  15. Leveraging Structural Characteristics of Interdependent Networks to Model Non-linear Cascading Characteristics

    Science.gov (United States)

    2015-06-29

    of the image to identify the objects and its descriptions like size, color or orientation. The OpenCV (Open source Computer Vision Library) ( OpenCV ...objects in the image. For this purpose, OpenCV (Open source Computer Vision Library) ( OpenCV ) java libraries is used in this work. OpenCV is an open...Imgproc’ ( OpenCV Java) package of OpenCV supports the methods cvtColor() and Canny() to convert a colored image to binary image and highlight the

  16. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  17. Estimation of non-linear continuous time models for the heat exchange dynamics of building integrated photovoltaic modules

    DEFF Research Database (Denmark)

    Jimenez, M.J.; Madsen, Henrik; Bloem, J.J.

    2008-01-01

    heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photovoltaic integrated facades or roofs and those using these effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered...... that a description of the non-linear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component....

  18. Angular Velocity's Neural Network Observer of the Electric Drive of TVR - IM Type Implemented in Software Environment LabVIEW

    Science.gov (United States)

    Kozlova, L.; Bolovin, E.; Payuk, L.

    2016-06-01

    One of the common ways to manage a smooth starting and stopping of asynchronous motors are soft-start system. For this provision is necessary to use a closed speed asynchronous electric drive of tiristor voltage regulator - induction motor (TVR-IM) type. Using real sensors significantly increases the cost of installation and also introduces a number of inconveniences in the operation of the actuator. Observer has clear advantages that are created on artificial neural network. Creating a neural network observer in program graphic programming LabVIEW will allow to evaluate the speed of rotation of the asynchronous electric.

  19. Angular Velocity's Neural Network Observer of the Electric Drive of TVR - IM Type Implemented in Software Environment LabVIEW

    OpenAIRE

    Kozlova, Liudmila Evgenevna; Bolovin, Evgeny Vladimirovich; Payuk, Lyubov Anatoljevna

    2016-01-01

    One of the common ways to manage a smooth starting and stopping of asynchronous motors are soft-start system. For this provision is necessary to use a closed speed asynchronous electric drive of tiristor voltage regulator - induction motor (TVR-IM) type. Using real sensors significantly increases the cost of installation and also introduces a number of inconveniences in the operation of the actuator. Observer has clear advantages that are created on artificial neural network. Creating a neura...

  20. Non-linear growth: The road ahead for Indian IT outsourcing companies

    Directory of Open Access Journals (Sweden)

    Y.L.R. Moorthi

    2011-06-01

    Full Text Available Indian IT outsourcing companies (major among them being the SWITCH companies -- Satyam, Wipro, Infosys, TCS, Cognizant and HCL grew rapidly for more than a decade on low cost business process and IT outsourcing. With the bigger companies already reaching a high of 100,000 employees, they are now turning their attention to non-linear revenue (i.e. revenue less dependent on numbers or greater revenue earned per employee. For this they need to pursue ‘disruptive’ strategies which are distinctly different from the ‘incremental’ initiatives they adopted in the past to maintain linear revenue. This paper first outlines the disruptive and the incremental initiatives of the SWITCH companies and the road ahead for them. This is followed by an interview with S Gopalakrishnan, CEO and MD, Infosys Technologies who discusses the non-linear initiatives of the company and the challenges it faces in the field.

  1. A non-linear discrete transform for pattern recognition of discrete chaotic systems

    CERN Document Server

    Karanikas, C

    2003-01-01

    It is shown, by an invertible non-linear discrete transform that any finite sequence or any collection of strings of any length can be presented as a random walk on trees. These transforms create the mathematical background for coding any information, for exploring its local variability and diversity. With the underlying computational algorithms, with several examples and applications we propose that these transforms can be used for pattern recognition of immune type. In other words we propose a mathematical platform for detecting self and non-self strings of any alphabet, based on a negative selection algorithms, for scouting data's periodicity and self-similarity and for measuring the diversity of chaotic strings with fractal dimension methods. In particular we estimate successfully the entropy and the ratio of chaotic data with self similarity. Moreover we give some applications of a non-linear denoising filter.

  2. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...... parameters are estimated using a maximum likelihood technique. Based on the maximum likelihood value, the different models are statistically compared to each other using Wilk's likelihood ratio test. The model showing the best performance is finally verified in both the time domain and the frequency domain...... using the auto-correlation function and cumulated periodogram. The proposed model which includes air-infiltration shows a significant improvement compared to previously proposed linear models. The model has subsequently been used in applications for provision of power system services, e.g. by providing...

  3. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus

    2012-11-01

    We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.

  4. Global search of non-linear systems periodic solutions: A rotordynamics application

    Science.gov (United States)

    Sarrouy, E.; Thouverez, F.

    2010-08-01

    Introducing non-linearities into models contributes towards a better reality description but leads to systems having multiple solutions. It is then legitimate to look for all the solutions of such systems, that is to have a global analysis approach. However no effective method can be found in literature for systems described by more than two or three degrees of freedom. We propose in this paper a way to find all T-periodic solutions—where T is known—of a non-linear dynamical system. This method is compared to three other approaches and is shown to be the most efficient on a Duffing oscillator. As a more complex example, a rotor model including a squeeze-film damper is studied and a second branch of solutions is exhibited.

  5. Imitation learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes

    DEFF Research Database (Denmark)

    Krüger, Volker; Tikhanoff, Vadim; Natale, Lorenzo

    2012-01-01

    In this paper we discuss the use of the infinite Gaussian mixture model and Dirichlet processes for learning robot movements from demonstrations. Starting point of this work is an earlier paper where the authors learn a non-linear dynamic robot movement model from a small number of observations....... The model in that work is learned using a classical finite Gaussian mixture model (FGMM) where the Gaussian mixtures are appropriately constrained. The problem with this approach is that one needs to make a good guess for how many mixtures the FGMM should use. In this work, we generalize this approach...... to use an infinite Gaussian mixture model (IGMM) which does not have this limitation. Instead, the IGMM automatically finds the number of mixtures that are necessary to reflect the data complexity. For use in the context of a non-linear dynamic model, we develop a Constrained IGMM (CIGMM). We validate...

  6. Effect of non-linear permeability in a spherically symmetric model of hydrocephalus.

    Science.gov (United States)

    Sobey, Ian; Wirth, Benedikt

    2006-12-01

    We examine a spherically symmetric model of the brain and apply non-linear permeability in a small strain poroelastic framework. Numerical solutions to the model show that non-linear effects tend to improve predictions of ventricle wall displacement and pressure increase in acute hydrocephalus in comparison with a constant permeability model. Our model is used to study different mechanisms for hydrocephalus: complete blockage of the aqueduct and normal pressure hydrocephalus (NPH), as well as offering observations on mechanical effects in idiopathic intracranial hypertension. In each situation it is possible to apply different parameter conditions to quantify mechanical effects that correspond to some observed symptoms. The results support and quantify ideas from Levine (2000, Ventricle size in pseudotumor cerebri and the theory of impaired CSF absorption. J. Neurol. Sci., 177, 85-94) on a poroelastic mechanism for some features of NPH and idiopathic intracranial hypertension.

  7. A Detailed Analytical Study of Non-Linear Semiconductor Device Modelling

    Directory of Open Access Journals (Sweden)

    Umesh Kumar

    1995-01-01

    junction diode have been developed. The results of computer simulated examples have been presented in each case. The non-linear lumped model for Gunn is a unified model as it describes the diffusion effects as the-domain traves from cathode to anode. An additional feature of this model is that it describes the domain extinction and nucleation phenomena in Gunn dioder with the help of a simple timing circuit. The non-linear lumped model for SCR is general and is valid under any mode of operation in any circuit environment. The memristive circuit model for p-n junction diodes is capable of simulating realistically the diode’s dynamic behavior under reverse, forward and sinusiodal operating modes. The model uses memristor, the charge-controlled resistor to mimic various second-order effects due to conductivity modulation. It is found that both storage time and fall time of the diode can be accurately predicted.

  8. Non-linear hybrid control oriented modelling of a digital displacement machine

    DEFF Research Database (Denmark)

    Pedersen, Niels Henrik; Johansen, Per; Andersen, Torben O.

    2017-01-01

    Proper feedback control of digital fluid power machines (Pressure, flow, torque or speed control) requires a control oriented model, from where the system dynamics can be analyzed, stability can be proven and design criteria can be specified. The development of control oriented models for hydraul...... Transmission (DFPT) comprising two variable speed DDM’s with asynchronous control sampling schemes. A validation with respect to a non-linear dynamical model representing the physical system, shows the usefulness of the hybrid model with respect to feedback control development........ In this paper, a control oriented hybrid model is established, which combines the continuous non-linear pressure chamber dynamics and the discrete shaft position dependent activation of the pressure chambers. The hybrid machine model is further extended to describe the dynamics of a Digital Fluid Power...

  9. Non-linear behaviour of a Superconducting Quantum Interference Device coupled to a radio frequency oscillator

    CERN Document Server

    Murrell, J K J

    2001-01-01

    previously unexplored regions of parameter space. We show that these calculations predict a range of previously unreported dynamical I-V characterises for SQUID rings in the strongly hysteretic regime. Finally, we present the successful realisation of a novel experimental technique that permits the weak link of a SQUID to be probed independently of the associated ring structure by mechanically opening and closing the ring. We demonstrate that this process can be completed during the same experimental run without the need for warming and re-cooling of the sample. This thesis is concerned with the investigation of the non-linear behaviour of a Superconducting Quantum Interference Device (SQUID) coupled to a RF tank circuit. We consider two regimes, one where the underlying SQUID behaviour is non-hysteretic with respect to an externally applied magnetic flux, and the other where hysteretic (dissipative) behaviour is observed. We show that, by following non-linearities induced in the tank circuit response, the un...

  10. MD1831: Single Bunch Instabilities with Q" and Non-Linear Corrections

    CERN Document Server

    Carver, Lee Robert; De Maria, Riccardo; Li, Kevin Shing Bruce; Amorim, David; Biancacci, Nicolo; Buffat, Xavier; Maclean, Ewen Hamish; Metral, Elias; Lasocha, Kacper; Lefevre, Thibaut; Levens, Tom; Salvant, Benoit; CERN. Geneva. ATS Department

    2017-01-01

    During MD1751, it was observed that both a full single beam and 964 non-colliding bunches in Beam 1 (B1) and Beam 2 (B2) were both stable at the End of Squeeze (EOS) for 0A in the Landau Octupoles. At ß* = 40cm there is also a significant Q" arising from the lattice, as well as uncorrected non-linearities in the Insertion Regions (IRs). Each of these effects could be capable of fully stabilising the beam. This MD made first use of a Q" knob through variation of the Main Sextupoles (MS) by stabilising a single bunch at Flat Top, before showing at EOS that the non-linearities were the main contributors to the beam stability.

  11. Uniqueness of non-linear ground states for fractional Laplacians in R

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Lenzmann, Enno

    2013-01-01

    We prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation (−Δ)sQ+Q−Qα+1=0inR,where 0 fractional Laplacian in one dimension. In particular, we answer affirmatively an open question...... recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for s=12 and α = 1 in [5] for the Benjamin–Ono equation. As a technical key result in this paper, we show that the associated linearized operator L...... + = (−Δ) s +1−(α+1)Q α is non-degenerate; i.e., its kernel satisfies ker L + = span{Q′}. This result about L + proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized...

  12. A Non-linear Eulerian Approach for Assessment of Health-cost Externalities of Air Pollution

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Frohn, Lise Marie; Nielsen, Jytte Seested

    Integrated assessment models which are used in Europe to account for the external costs of air pollution as a support for policy-making and cost-benefit analysis have in order to cope with complexity resorted to simplifications of the non-linear dynamics of atmospheric sciences. In this paper we...... explore the possible significance of such simplifications by reviewing the improvements that result from applying a state-of-the-art atmospheric model for regional transport and non-linear chemical transformations of air pollutants to the impact-pathway approach of the ExternE-method. The more rigorous...... approach results in lower damage costs per unit of NOx and allows for an improved assessment of ozone formation....

  13. Adaptive Kronrod-Patterson integration of non-linear finite-element matrices

    DEFF Research Database (Denmark)

    Janssen, Hans

    2010-01-01

    . While developed for finite element unsaturated moisture transfer simulation, adaptive integration is similarly applicable for other non-linear problems and other discretization methods, and whereas perhaps outperformed by mesh-adaptive techniques, adaptive integration requires much less implementation......Efficient simulation of unsaturated moisture flow in porous media is of great importance in many engineering fields. The highly non-linear character of unsaturated flow typically gives sharp moving moisture fronts during wetting and drying of materials with strong local moisture permeability...... and capacity variations as result. It is shown that these strong variations conflict with the common preference for low-order numerical integration in finite element simulations of unsaturated moisture flow: inaccurate numerical integration leads to errors that are often far more important than errors from...

  14. Non-linear approach to the entrainment matrix of superfluid nucleon mixture at zero temperature

    Science.gov (United States)

    Leinson, Lev B.

    2017-09-01

    The superfluid drag effect, in hydrodynamics of pulsating neutron stars, is conventionally described with the aid of the entrainment matrix relating the mass currents with the velocities of superfluid flows in the system. Equations for the entrainment matrix of a superfluid mixture of neutrons and protons are derived with allowance for the strong dependence of the energy gaps on the velocities of superfluid flows. The calculations are carried out in the frame of the Fermi-liquid theory. The equations obtained are highly non-linear. Numerical solutions to the equations for some typical cases demonstrate that the components of the entrainment matrix possess a highly non-linear dependence on the velocities of the two superflows simultaneously. This effect, previously ignored, can greatly influence the dynamics of neutron stars.

  15. Synthesis, characterization and calculated non-linear optical properties of two new chalcones

    Science.gov (United States)

    Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav

    2012-06-01

    Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).

  16. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    Science.gov (United States)

    Rizov, V.

    2016-03-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  17. Non-linear dynamics in biological microtubules: solitons and dissipation-free energy transfer

    Science.gov (United States)

    Mavromatos, Nick E.

    2017-08-01

    I review some recent developments concerning soliton solutions in biological microtubules and their significance in transferring energy without dissipation. I discuss various types of soliton solutions, as well as ‘spikes’, of the associated non-linear Lagrange equations describing the dynamics of a ‘pseudo-spin non-linear σ-model’ that models the dynamics of a microtubule system with dipole-dipole interactions. These results will hopefully contribute to a better understanding of the functional properties of microtubules, including the motor protein dynamics and the information transfer processes. With regards to the latter we also speculate on the use of microtubules as ‘logical’ gates. Our considerations are classical, but the soliton solutions may have a microscopic quantum origin, which we briefly touch upon.

  18. Taylor meshless method for solving non-linear partial differential equations

    Science.gov (United States)

    Yang, Jie; Hu, Heng; Koutsawa, Yao; Potier-Ferry, Michel

    2017-11-01

    A true meshless integration-free method based on Taylor series named Taylor Meshless Method (TMM) has been proposed recently to solve Partial Differential Equations (PDEs), where the shape functions are high degree polynomials and the discretization concerns only the boundary. With high computational efficiency and exponential convergence, the TMM has been confirmed to be very robust in linear problems, including large-scale cases. In this paper, the TMM and the Automatic Differentiation (AD) are combined with the Newton method to solve non-linear elliptic PDEs, where the AD is used to compute shape functions in a fast manner. The numerical results illustrate that the proposed algorithm is very accurate and efficient in solving non-linear elliptic problems.

  19. Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function.

    Science.gov (United States)

    Vuori, Kaarina; Strandén, Ismo; Sevón-Aimonen, Marja-Liisa; Mäntysaari, Esa A

    2006-01-01

    A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.

  20. Linear and non-linear control of wind farms. Contribution to the grid stability

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica, Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000, Comodoro Rivadavia (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, CICpBA, La Plata (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina)

    2010-06-15

    This paper deals with linear and non-linear control of wind farms equipped with doubly-fed induction generators (DFIG). Both, active and reactive wind farm powers are employed in two independent control laws in order to increase the damping of the oscillation modes of a power system. In this way, it presented a general strategy where two correction terms are added, one by each independent control, to the normal operating condition of a wind farm. The proposed control laws are derived from the Lyapunov approach. Meanwhile for the reactive power a non-linear correction is presented, for the wind farm active power it is demonstrated that the classical proportional and inertial laws can be considered via the Lyapunov approach if wind farms are considered as real power plants, i.e. equivalent to conventional synchronous generation. Finally, some simulations are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  1. Soil non-linearity and its effect on the dynamic behaviour of offshore platform foundations

    Energy Technology Data Exchange (ETDEWEB)

    Madshus, Christian

    1997-07-01

    This thesis focuses on non-linear soil response to the type of cyclic loading experienced under offshore gravity base platform foundations. These loads are dominated by a cyclic component around the main wave frequency, which may well mobilize soil non-linearity under severe sea-states. Superimposed on this main component are lower level higher frequency loads caused by resonant oscillations of the platform. The thesis presents results of specially designed triaxial tests to simulate this loading condition. The tests simultaneously applied two cyclic load components at different frequencies and amplitudes. The measured soil response to each component has been isolated through a frequency domain separation. It was found that the soil responds to the superimposed high frequency low level component as if the soil had a cyclically time-varying stiffness. If the superimposed component does not lead to load reversals, this stiffness variation is controlled by the frequency and amplitude of the main load component and by the hysteretic non-linearity of the soil. If the superimposed component causes reversals, the influence of the hysteretic non-linearity on the stiffness variation is reduced. The higher the degree of reversal, the more this influence it taken over by the variation in the instantaneous unloading-reloading stiffness of the soil. It was also found that this type of two-frequency cyclic soil testing is generally superior over conventional single-frequency testing in the way it enforces the soil to reveal several of its inherent properties not deducible from ordinary tests. Benefits of analyzing non-linear response in the frequency domain is demonstrated throughout this thesis. The ability of various theoretical soil models to simulate the observed soil behaviour under two-frequency cyclic loading has, been investigated through numerical analyses. It was found that only those models that are based on kinematic hardening are able to reproduce what was observed

  2. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  3. Non-linear growth analysis of Sumatera thin tail sheep and its cross breds

    Directory of Open Access Journals (Sweden)

    Agus Suparyanto

    2001-12-01

    Full Text Available Growth curve is a figure of individual ability to express its genetic potential to maximum size under the existingenvironmental condition. Three non-linear growth curves, von Bertalanffy, Logistic and Gompertz, were used to analyze the weight-age relationship for five genotypes of sheep. The data were collected from IP2TP Sei Putih, North Sumatera. Num ber of animals which were collected consisted of five genotypes i.e, indigenous Sumatera (n=275, St. Croix (n=571, St. Croix Cross (n=899, Barbados Blackbelly Cross (n=471 and composite (n=740. The three non-linear growth curves were compared to obtain the most suitable curve for describing the shape of growth curves among sheep genotypes. The growth curves of von Bertalanffy fitted better than the others. The results showed that regression parameters of B or M (integral constante were significantly different (P0.05. The data show that there was correlation between A and k.

  4. An efficient optimization method for structures with local non-linearity

    Directory of Open Access Journals (Sweden)

    Zheng Zhao-Li

    2016-01-01

    Full Text Available During the operation of turbines, one of the common accidents is due to the structure failure of blades. The contact model with strong non-linearity and time variation makes it difficult to be analyzed. In this paper, firstly, the contact model is described by using fractal theory. Secondly, the new method for the optimization of turbine blade is proposed, which is a kind of structure with local nonlinearity and multi degree of freedom. The method reduces the number of degrees of freedom by forming a new super element, which makes the linear part of turbine blade without repeated calculation in the non-linear iteration process. Therefore, it can shorten the calculation time and reduce the demand for computing resources. Finally, an optimization of the turbine blade is carried out, and the maximum equivalent stress reduces by 13.19%, which proves the effectiveness of the new optimization method.

  5. A single-degree-of-freedom model for non-linear soil amplification

    Science.gov (United States)

    Erdik, Mustafa Ozder

    1979-01-01

    For proper understanding of soil behavior during earthquakes and assessment of a realistic surface motion, studies of the large-strain dynamic response of non-linear hysteretic soil systems are indispensable. Most of the presently available studies are based on the assumption that the response of a soil deposit is mainly due to the upward propagation of horizontally polarized shear waves from the underlying bedrock. Equivalent-linear procedures, currently in common use in non-linear soil response analysis, provide a simple approach and have been favorably compared with the actual recorded motions in some particular cases. Strain compatibility in these equivalent-linear approaches is maintained by selecting values of shear moduli and damping ratios in accordance with the average soil strains, in an iterative manner. Truly non-linear constitutive models with complete strain compatibility have also been employed. The equivalent-linear approaches often raise some doubt as to the reliability of their results concerning the system response in high frequency regions. In these frequency regions the equivalent-linear methods may underestimate the surface motion by as much as a factor of two or more. Although studies are complete in their methods of analysis, they inevitably provide applications pertaining only to a few specific soil systems, and do not lead to general conclusions about soil behavior. This report attempts to provide a general picture of the soil response through the use of a single-degree-of-freedom non-linear-hysteretic model. Although the investigation is based on a specific type of nonlinearity and a set of dynamic soil properties, the method described does not limit itself to these assumptions and is equally applicable to other types of nonlinearity and soil parameters.

  6. OPTIMAL AIRCRAFT CONTROL SYNTHESIS BASED ON THE EQUATIONS OF NON-LINEAR DYNAMICS

    Directory of Open Access Journals (Sweden)

    Viktor F. Dil

    2017-01-01

    Full Text Available The article considers the technique of the synthesis of non-linear aircraft control systems by flight optimization us- ing inverse dynamics problems. To synthesize control algorithms a non-linear model of aircraft flight and trajectory movement is used. The authors define method stages of flying level synthesis which include: selection of aircraft reference movements in accordance with three degrees of freedom, structuring the control algorithms and their parameters, defining the proximity of current and reference movements by means of a quadratic functional and further extremum-minimum movement organization by the gradient method. Through the optimized parameters of flying level the direct dynamics problem of trajectory level control of the aircraft spatial movement is solved. The basis for calculating the aircraft trajecto- ry parameters is a non-linear model of the trajectory movement for which flying level output parameters serve as input data. The trajectory level output parameters are defined by numerical integration of input signals considering aircraft dynamic blow coefficients. The structure diagram of aircraft spatial movement control organization is developed. The flight contour functioning is examined using numerical modeling in MathCad and Paskal programs. Reference parameters were deter- mined by Paskal simulation modeling according to the reaction of a non-linear aircraft model to the “bounces” of aerody- namical flight controls. It is shown that the spatial control problem is optimal in terms of input control realization. Besides, in comparison with [9] it is possible to state that due to energy reversibility of rotational and progressive movements only the content of direct and inversed problems of dynamics changes.

  7. Distribution pharmacokinetics of warfarin in the rat, a non-linear multicompartment model.

    Science.gov (United States)

    Kekki, M; Julkunen, R J; Wahlström, B

    1977-03-01

    Preliminary analysis and linear two-compartment solutions of warfarin plasma concentrations recorded in the rat after intravenous bolus injections of 1, 2, 8 and 40 mg/kg of sodium warfarin revealed marked non-linearities. The half-life of total warfarin concentration in the plasma from 1-12h remained unchanged with all the doses used, but that of free warfarin was shorter with 40 mg/kg, possibly as the result of an increase in the binding of the drug to plasma proteins as the high total warfarin concentration decreased. The apparent volume of distribution generally increased with increasing dose, and differed according to the method used for its calculation. Liver warfarin data could be solved with Langmuir type saturation kinetics, but the saturation phenomena were slight in the concentration range studied. A non-linear multicompartment model was constructed, the physiological spaces of which were plasma, interstitial fluid and tissue. The binding of free warfarin to plasma proteins, interstitial fluid proteins and tissue structures was assumed to occur instantaneously, with saturable binding to plasma and interstitial fluid proteins, and a constant binding to tissues. The fluxes between the free warfarin pools of plasma and interstitial fluid as well as elimination were assumed to be linear. Following parameters were simulated simultaneously, using an analog hybrid computer: two for the above-mentioned fluxes, four for zero time drug mass distribution between plasma and interstitial fluid, and one for tissue binding. According to the best fits, warfarin is preferentially distributed into plasma, interstitial fluid and highly perfused tissues. The solution suggests that non-linearities in the pharmacokinetics of warfarin, a highly plasma protein-bound drug, first occur in plasma and interstitial fluid. Therefore, it is believed that the quantitative non-linear multicompartment approach presented in this paper might be useful in studying the kinetic behaviour of

  8. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    Science.gov (United States)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  9. Dynamic stability of a vertically excited non-linear continuous system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    2015-01-01

    Roč. 155, July (2015), s. 106-114 ISSN 0045-7949 R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : non-linear systems * auto-parametric systems * semi-trivial solution * dynamic stability * system recovery * post-critical response Subject RIV: JM - Building Engineering Impact factor: 2.425, year: 2015 http://www.sciencedirect.com/science/article/pii/S0045794915000024

  10. Non Linear Error Analysis from Orbit Measurements in SPS and RHIC

    CERN Document Server

    Cardona, Javier F

    2005-01-01

    Recently, an "action and phase" analysis of SPS orbits measurements proved to be sensitive to sextupole components intentionally activated at specific locations in the ring. In this paper we attempt to determine the strenght of such sextupoles from the measured orbits and compare them with the set values. Action and phase analysis of orbit trayectories generated by RHIC models with non linearities will also be presented and compare with RHIC experiments.

  11. On the internal stability of non-linear dynamic inversion: application to flight control

    Czech Academy of Sciences Publication Activity Database

    Alam, M.; Čelikovský, Sergej

    2017-01-01

    Roč. 11, č. 12 (2017), s. 1849-1861 ISSN 1751-8644 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : flight control * non-linear dynamic inversion * stability Subject RIV: BC - Control Systems Theory Impact factor: 2.536, year: 2016 http:// library .utia.cas.cz/separaty/2017/TR/celikovsky-0476150.pdf

  12. Optimization of non-linear mass damper parameters for transient response

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Lazarov, Boyan Stefanov

    2008-01-01

    We optimize the parameters of multiple non-linear mass dampers based on numerical simulation of transient wave propagation through a linear mass-spring carrier structure. Topology optimization is used to obtain optimized distributions of damper mass ratio, natural frequency, damping ratio...... and nonlinear stiffness coefficient. Large improvements in performance is obtained with optimized parameters and it is shown that nonlinearmass dampers can bemore effective for wave attenuation than linear mass dampers....

  13. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  14. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    Science.gov (United States)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  15. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be used...... Method (DDM), here adapted to work with a generally formulated plasticity based constitutive model. The approach is exemplified with a steel plate with a hole in bending subjected to a displacement based limit state function....

  16. Sparse non-linear denoising: Generalization performance and pattern reproducibility in functional MRI

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2011-01-01

    is typically not bijective, pre-image estimation is inherently illposed. In many applications, including functional magnetic resonance imaging (fMRI) data which is the application used for illustration in the present work, it is of interest to denoise a sparse signal. To meet this objective we investigate......-linearity of the kernel embedding. The latter result provides evidence of signal manifold non-linearity in the specific fMRI case study....

  17. Control of Non-Linear Systems Using Parallel Structure of Fuzzy PI+PD Controller

    OpenAIRE

    B.AMARENDRA REDDY,; K. RAM CHARAN; KRANTI KIRAN. ANKAM,; K.RAMALINGESWARA PRASAD

    2010-01-01

    This paper presents the comparison of tracking control performance of, parallel combination of fuzzy PI & PD controllers and three input fuzzy PID controller. The analytical expressions of Parallel structure of Fuzzy PI & PD Controller is derived via triangular membership functions by using Mamdani’s minimum inference method withZadeh fuzzy logic AND, Lukasiewicz fuzzy logic OR and center of gravity defuzzification method. (In Simulation the tracking Control performance of Non-linear Systems ...

  18. Organizational Demography and Turnover: An Examination of Multiform and Non-Linear Heterogeneity

    OpenAIRE

    Alexander,Jeffrey; Nuchols, Beverly; Bloom, Joan; Lee, Shoou-Yih D

    1993-01-01

    This paper advances the study of organizational demography and its relationship to organizational turnover by examining two of Blau's concepts of social structure: non-linear and multiform heterogeneity. In a sample of 383 community hospitals, nursing turnover was examined in relation to four dimensions of demographic heterogeneity among nursing staff in those hospitals. The form of the relationships between turnover and heterogeneity was specified to test whether heterogeneity relates to hig...

  19. On the Third Order Optical Non-linearities of Small Organic Molecules: Investigation, Analysis and Optimization

    Science.gov (United States)

    La Porta, Philip Robert

    Organic materials, with highly delocalized electron systems, fast response times, compact size and relative ease of customization have ushered in a new generation of molecular designs for high optical non-linearities. Our aim in this work was to investigate the third-order optical polarizabilities of several families of small organic molecules, providing insights into molecular design for third-order optical non-linearities. To begin, two distinct families of molecules were examined. Experiments on one group of molecules supported claims that end groups of molecules have no effect on the strength of third-order non-linearities. Experimental results from the other, helped demonstrate the effect of pi-conjugation as well as provide a new design pathway for third-order non-linear optics. Next, two related families of organic molecules were examined. Both have systematically increasing conjugation length, but one has carbon-carbon (C-C) double bond spacers (Donor-Acceptor Substituted Oligoenes), and the other has C-C triple bond ( Donor-Acceptor Substituted Oligo ynes) spacers. We showed that the DASOe's follow trends established both in previous experiments and theoretical calculations while the DASOy's, due to molecular instabilities, fail to perform as expected beyond a spacer length of three. We also investigated a new molecular design that supports the claim that triple-bond spaced chromophores (like the DASOy series) can be extended beyond a length of three spacers and still yield strong third-order polarizabilities. This new molecular design was shown to be stable up to a spacer length of five bonds and has the highest value of third-order polarizability [40+/-10x10-48m5/V2 ] found in this work. Also, several of these molecules have third-order polarizability values very close to the fundamental limit and high nonlinearities per unit mass.

  20. GDTM-Padé technique for the non-linear differential-difference equation

    Directory of Open Access Journals (Sweden)

    Lu Jun-Feng

    2013-01-01

    Full Text Available This paper focuses on applying the GDTM-Padé technique to solve the non-linear differential-difference equation. The bell-shaped solitary wave solution of Belov-Chaltikian lattice equation is considered. Comparison between the approximate solutions and the exact ones shows that this technique is an efficient and attractive method for solving the differential-difference equations.

  1. Linear and non-linear optical properties of amorphous Se and ...

    Indian Academy of Sciences (India)

    This shift increases gradually in the case of Ga 5 Se 95 and Zn 5 Se 9 5 films. So, the optical bandgap ofM5Se95 films was decreased, but the index of refraction was increased. The first and third order of electric susceptibility ( χ ( 1 ) and χ ( 3 ) ) and non-linear index of refraction ( n 2 ) were increased by adding Ge, Ga and ...

  2. Cryptanalysis of Block Ciphers with Probabilistic Non-Linear Relations of Low Degree

    DEFF Research Database (Denmark)

    Jakobsen, Thomas

    1998-01-01

    Using recent results from coding theory, it is shown how to break block ciphers operating on $\\GF(q)$ where the ciphertext is expressible as evaluations of an unknown univariate polynomial of low degree $m$ over the plaintext with a typically low but non-negligible probability $\\mu$. The method e...... by Nyberg and Knudsen provablysecure against differential and linear cryptanalysis.Key words: Cryptanalysis, block cipher, interpolation attack, non-linear relations, Reed-Solomon codes, Sudan's algorithm....

  3. The non-linear relationship between nerve conduction velocity and skin temperature.

    OpenAIRE

    Todnem, K; Knudsen, G; Riise, T.; Nyland, H; Aarli, J A

    1989-01-01

    Median motor and sensory nerves were examined in 20 healthy subjects. Superficial stimulating and recording electrodes were used, and the nerves were examined at natural skin temperature, after cooling and after heating of the arm. The conduction velocity for the fastest and slow conducting sensory fibres (temperature range 17-37 degrees C), and for the fastest conducting motor fibres (temperature range 19-38 degrees C) increased non-linearly with increase in skin temperature. Similarly, dist...

  4. Localization of Non-Linearly Modeled Autonomous Mobile Robots Using Out-of-Sequence Measurements

    Directory of Open Access Journals (Sweden)

    Jesus M. de la Cruz

    2012-02-01

    Full Text Available This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  5. Are non-linearity effects of absorption important for MAX-DOAS observations?

    Science.gov (United States)

    Pukite, Janis; Wang, Yang; Wagner, Thomas

    2017-04-01

    For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).

  6. Size effects in non-linear heat conduction with flux-limited behaviors

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  7. A non-linear homogeneous model for bone-like materials under compressive load.

    Science.gov (United States)

    Mengoni, M; Voide, R; de Bien, C; Freichels, H; Jérôme, C; Léonard, A; Toye, D; Müller, R; van Lenthe, G H; Ponthot, J P

    2012-02-01

    Finite element (FE) models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. In order to simulate non-linear behavior, which currently is only feasible at the expense of extremely high computational costs, coarser models can be used if the local morphology has been linked to the apparent mechanical behavior. The aim of this paper is to implement and validate such a constitutive law. This law is able to capture the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using an elastoplastic material model incorporating hardening. These features are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strain framework. This material model was implemented into metafor (LTAS-MNNL, University of Liège, Belgium), a non-linear FE software. The implementation was validated against experimental data of cylindrical samples subjected to compression. Three materials with bone-like microstructure were tested: aluminum foams of variable density (ERG, Oakland, CA, USA), polylactic acid foam (CERM, University of Liège, Liège, Belgium), and cancellous bone tissue of a deer antler (Faculty of Veterinary Medicine, University of Liège, Liège, Belgium). Copyright © 2011 John Wiley & Sons, Ltd.

  8. Utilising non-linear elasticity to increase mechanical contrast in quantitative optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Allen, Wes M.; Wijesinghe, Philip; Chin, Lixin; Hamzah, Juliana; Ganss, Ruth; Sampson, David D.; Kennedy, Brendan F.

    2017-02-01

    Compression optical coherence elastography (OCE) enables rapid acquisition with high resolution over fields of view relevant to many clinical applications. Compression OCE typically provides a relative measure of mechanical properties; however, we have recently demonstrated a technique which quantifies stiffness via a compliant layer, termed quantitative OCE. In quantitative OCE, stiffness is reported as a tangent modulus, which is a surrogate for Young's modulus at a given preload in non-linear elastic material. In biological tissues, which are typically non-linear elastic, values of stiffness reported through quantitative OCE could be over- or under-estimated, and are heavily biased by the arbitrary bulk preload applied to that region. We present a method to measure tissue nonlinearity locally, by preforming compression OCE at multiple preloads ranging from 2% to 40%. We show, through presentation of 2D quantitative elastograms, that compression OCE has the potential to measure the non-linear stiffness in tissue mimicking phantoms and biological tissue. Further, intrinsic mechanical contrast in tissue is dependent upon its preload. By tailoring tissue preload, we demonstrate improved contrast between benign and tumor tissue in a murine liver carcinoma model.

  9. A review on non-linear aeroelasticity of high aspect-ratio wings

    Science.gov (United States)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  10. A task-specific validation of homogeneous non-linear optimisation approaches.

    Science.gov (United States)

    Jinha, A; Ait-Haddou, R; Kaya, M; Herzog, W

    2009-08-21

    In biomechanics, musculoskeletal models are typically redundant. This situation is referred to as the distribution problem. Often, static, non-linear optimisation methods of the form "min: phi(f) subject to mechanical and muscular constraints" have been used to extract a unique set of muscle forces. Here, we present a method for validating this class of non-linear optimisation approaches where the homogeneous cost function, phi(f), is used to solve the distribution problem. We show that the predicted muscle forces for different loading conditions are scaled versions of each other if the joint loading conditions are just scaled versions. Therefore, we can calculate the theoretical muscle forces for different experimental conditions based on the measured muscle forces and joint loadings taken from one experimental condition and assuming that all input into the optimisation (e.g., moment arms, muscle attachment sites, size, fibre type distribution) and the optimisation approach are perfectly correct. Thus predictions of muscle force for other experimental conditions are accurate if the optimisation approach is appropriate, independent of the musculoskeletal geometry and other input required for the optimisation procedure. By comparing the muscle forces predicted in this way to the actual muscle forces obtained experimentally, we conclude that convex homogeneous non-linear optimisation approaches cannot predict individual muscle forces properly, as force-sharing among synergistic muscles obtained experimentally are not just scaled versions of joint loading, not even in a first approximation.

  11. Non-Linear and Linear Model Based Controller Design for Variable-Speed Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M. (National Renewable Energy Laboratory); Balas, M. J. (Department of Aerospace Engineering Sciences, University of Colorado)

    1999-04-07

    Variable-speed, horizontal axis wind turbines use blade-pitch control to meet specified objectives for three regions of operation. This paper focuses on controller design for the constant power production regime. A simple, rigid, non-linear turbine model was used to systematically perform trade-off studies between two performance metrics. Minimization of both the deviation of the rotor speed from the desired speed and the motion of the actuator is obtained through systematic selection of proportional-integral-derivative controller gain values. The gain design is performed using a non-linear turbine model and two linear models. The linear models differ only in selection of linearization point. The gain combinations resulting from design based upon each of the three models are similar. Performance under each of the three gain combinations is acceptable according to the metrics selected. The importance of operating point selection for linear models is illustrated. Because the simulation runs efficiently, the non-linear model provides the best gain design, but careful selection of the linearization point can produce acceptable gain designs from linear models.

  12. Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation.

    Science.gov (United States)

    Noury, Nima; Hipp, Joerg F; Siegel, Markus

    2016-10-15

    Transcranial electric stimulation (tES) is a promising tool to non-invasively manipulate neuronal activity in the human brain. Several studies have shown behavioral effects of tES, but stimulation artifacts complicate the simultaneous investigation of neural activity with EEG or MEG. Here, we first show for EEG and MEG, that contrary to previous assumptions, artifacts do not simply reflect stimulation currents, but that heartbeat and respiration non-linearly modulate stimulation artifacts. These modulations occur irrespective of the stimulation frequency, i.e. during both transcranial alternating and direct current stimulations (tACS and tDCS). Second, we show that, although at first sight previously employed artifact rejection methods may seem to remove artifacts, data are still contaminated by non-linear stimulation artifacts. Because of their complex nature and dependence on the subjects' physiological state, these artifacts are prone to be mistaken as neural entrainment. In sum, our results uncover non-linear tES artifacts, show that current techniques fail to fully remove them, and pave the way for new artifact rejection methods. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Localization of non-linearly modeled autonomous mobile robots using out-of-sequence measurements.

    Science.gov (United States)

    Besada-Portas, Eva; Lopez-Orozco, Jose A; Lanillos, Pablo; de la Cruz, Jesus M

    2012-01-01

    This paper presents a state of the art of the estimation algorithms dealing with Out-of-Sequence (OOS) measurements for non-linearly modeled systems. The state of the art includes a critical analysis of the algorithm properties that takes into account the applicability of these techniques to autonomous mobile robot navigation based on the fusion of the measurements provided, delayed and OOS, by multiple sensors. Besides, it shows a representative example of the use of one of the most computationally efficient approaches in the localization module of the control software of a real robot (which has non-linear dynamics, and linear and non-linear sensors) and compares its performance against other approaches. The simulated results obtained with the selected OOS algorithm shows the computational requirements that each sensor of the robot imposes to it. The real experiments show how the inclusion of the selected OOS algorithm in the control software lets the robot successfully navigate in spite of receiving many OOS measurements. Finally, the comparison highlights that not only is the selected OOS algorithm among the best performing ones of the comparison, but it also has the lowest computational and memory cost.

  14. Non-linear direct effects of acid rain on leaf photosynthetic rate of terrestrial plants.

    Science.gov (United States)

    Dong, Dan; Du, Enzai; Sun, Zhengzhong; Zeng, Xuetong; de Vries, Wim

    2017-12-01

    Anthropogenic emissions of acid precursors have enhanced global occurrence of acid rain, especially in East Asia. Acid rain directly suppresses leaf function by eroding surface waxes and cuticle and leaching base cations from mesophyll cells, while the simultaneous foliar uptake of nitrates in rainwater may directly benefit leaf photosynthesis and plant growth, suggesting a non-linear direct effect of acid rain. By synthesizing data from literature on acid rain exposure experiments, we assessed the direct effects of acid rain on leaf photosynthesis across 49 terrestrial plants in China. Our results show a non-linear direct effect of acid rain on leaf photosynthetic rate, including a neutral to positive effect above pH 5.0 and a negative effect below that pH level. The acid rain sensitivity of leaf photosynthesis showed no significant difference between herbs and woody species below pH 5.0, but the impacts above that pH level were strongly different, resulting in a significant increase in leaf photosynthetic rate of woody species and an insignificant effect on herbs. Our analysis also indicates a positive effect of the molar ratio of nitric versus sulfuric acid in the acid solution on leaf photosynthetic rate. These findings imply that rainwater acidity and the composition of acids both affect the response of leaf photosynthesis and therefore result in a non-linear direct effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Quantitative Assessment of Arrhythmia Using Non-linear Approach: A Non-invasive Prognostic Tool

    Science.gov (United States)

    Chakraborty, Monisha; Ghosh, Dipak

    2017-12-01

    Accurate prognostic tool to identify severity of Arrhythmia is yet to be investigated, owing to the complexity of the ECG signal. In this paper, we have shown that quantitative assessment of Arrhythmia is possible using non-linear technique based on "Hurst Rescaled Range Analysis". Although the concept of applying "non-linearity" for studying various cardiac dysfunctions is not entirely new, the novel objective of this paper is to identify the severity of the disease, monitoring of different medicine and their dose, and also to assess the efficiency of different medicine. The approach presented in this work is simple which in turn will help doctors in efficient disease management. In this work, Arrhythmia ECG time series are collected from MIT-BIH database. Normal ECG time series are acquired using POLYPARA system. Both time series are analyzed in thelight of non-linear approach following the method "Rescaled Range Analysis". The quantitative parameter, "Fractal Dimension" (D) is obtained from both types of time series. The major finding is that Arrhythmia ECG poses lower values of D as compared to normal. Further, this information can be used to access the severity of Arrhythmia quantitatively, which is a new direction of prognosis as well as adequate software may be developed for the use of medical practice.

  16. The Non-Linear Relationship Between Fiscal Deficits And Inflation: Evidence From Africa

    Directory of Open Access Journals (Sweden)

    Abu Nurudeen

    2015-12-01

    Full Text Available Although, there is abundant research on the fiscal deficit-inflation relationship, little has been done to investigate the non-linear association between them, particularly in Africa. This study employs fixed-effects and GMM estimators to examine the non-linear relationship between deficits and inflation from 1999 to 2011 in 51 African economies, which are further grouped into high-inflation/low-income countries and moderate-inflation/middle-income countries. The results indicate that the deficit-inflation relationship is non-linear for the whole sample and sub-groups. For the whole sample, a percentage point increase in deficit results in a 0.25 percentage point increase in inflation rate, while the relationship becomes quantitatively greater once deficits reach 23% of GDP. The subsamples report different relationships. Although our results cannot be used as the base for generalization, we identify importance of grouping African countries according to their levels of inflation and/or income, rather than treating them as a homogeneous entity.

  17. Understanding climate impacts on vegetation using a spatiotemporal non-linear Granger causality framework

    Science.gov (United States)

    Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem

    2017-04-01

    Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger

  18. Co-Design Based Lateral Motion Control of All-Wheel-Independent-Drive Electric Vehicles with Network Congestion

    Directory of Open Access Journals (Sweden)

    Wanke Cao

    2017-10-01

    Full Text Available All-wheel-independent-drive electric vehicles (AWID-EVs have considerable advantages in terms of energy optimization, drivability and driving safety due to the remarkable actuation flexibility of electric motors. However, in their current implementations, various real-time data in the vehicle control system are exchanged via a controller area network (CAN, which causes network congestion and network-induced delays. These problems could lead to systemic instability and make the system integration difficult. The goal of this paper is to provide a design methodology that can cope with all these challenges for the lateral motion control of AWID-EVs. Firstly, a continuous-time model of an AWID-EV is derived. Then an expression for determining upper and lower bounds on the delays caused by CAN is presented and with which a discrete-time model of the closed-loop CAN system is derived. An expression on the bandwidth utilization is introduced as well. Thirdly, a co-design based scheme combining a period-dependent linear quadratic regulator (LQR and a dynamic period scheduler is designed for the resulting model and the stability criterion is also derived. The results of simulations and hard-in-loop (HIL experiments show that the proposed methodology can effectively guarantee the stability of the vehicle lateral motion control while obviously declining the network congestion.

  19. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    Science.gov (United States)

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed

  20. Social Networking Site Use While Driving: ADHD and the Mediating Roles of Stress, Self-Esteem and Craving.

    Science.gov (United States)

    Turel, Ofir; Bechara, Antoine

    2016-01-01

    Adults who present ADHD symptoms have an increased risk for vehicle accidents. One conceivable overlooked account for this association is the possibility that people with ADHD symptoms use rewarding technologies such as social networking sites (SNS) while driving, more than others. The objective of this study was to understand if and how ADHD symptoms can promote SNS use while driving and specifically to conceptualize and examine mechanisms which may underlie this association. To do so, ADHD is viewed in this study as an underlying syndrome that promotes SNS use while driving in a manner similar to how addictive syndromes promote compulsive seeking of drug rewards. Time-lagged survey data regarding ADHD, stress, self-esteem, SNS craving experience, SNS use while driving, and control variables were collected from a sample of 457 participants who use a popular SNS (Facebook) and drive, after face-validity examination with a panel of five users and pretest with a sample of 47. These data were subjected to structural equation modeling (SEM) analyses using the frequency of ADHD symptoms measured with ASRS v1.1 Part A as a continuous variable, as well as multivariate analysis of variance using ADHD classification based on ASRS v1.1 scoring guidelines. ADHD symptoms promoted increased stress and reduced self-esteem, which in turn, together with ADHD symptoms, increased one's cravings to use the SNS. These cravings ultimately translated into increased SNS use while driving. Using the ASRS v1.1 classification, people having symptoms highly consistent with ADHD presented elevated levels of stress, cravings to use the SNS, and SNS use while driving, as well as decreased levels of self-esteem. Cravings to use the SNS among men were more potent than among women. SNS use while driving may be more prevalent than previously assumed and may be indirectly associated with ADHD symptoms. It is a new form of impulsive and risky behavior which is more common among people with symptoms

  1. Social Networking Site use while driving: ADHD and the mediating roles of stress, self-esteem and craving

    Directory of Open Access Journals (Sweden)

    Ofir eTurel

    2016-03-01

    Full Text Available Background: Adults who present ADHD symptoms have an increased risk for vehicle accidents. One conceivable overlooked account for this association is the possibility that people with ADHD symptoms use rewarding technologies such as social networking sites (SNS while driving, more than others. The objective of this study was to understand if and how ADHD symptoms can promote SNS use while driving and specifically to conceptualize and examine mechanisms which may underlie this association. To do so, ADHD is viewed in this study as an underlying syndrome that promotes SNS use while driving in a manner similar to how addictive syndromes promote compulsive seeking of drug rewards.Methods: Time-lagged survey data regarding ADHD, stress, self-esteem, SNS craving experience, SNS use while driving and control variables were collected from a sample of 457 participants who use a popular SNS (Facebook and drive, after face-validity examination with a panel of five users and pretest with a sample of 47. These data were subjected to structural equation modeling (SEM analyses using the frequency of ADHD symptoms measured with ASRS v1.1 Part A as a continuous variable, as well as multivariate analysis of variance using ADHD classification based on ASRS v1.1 scoring guidelines.Results: ADHD symptoms promoted increased stress and reduced self-esteem, which in turn, together with ADHD symptoms, increased one's cravings to use the SNS. These cravings ultimately translated into increased SNS use while driving. Using the ASRS v1.1 classification, people having symptoms highly consistent with ADHD presented elevated levels of stress, cravings to use the SNS, and SNS use while driving, as well as decreased levels of self-esteem. Cravings to use the SNS among men were more potent than among women.Conclusion: SNS use while driving may be more prevalent than previously assumed and may be indirectly associated with ADHD symptoms. It is a new form of impulsive and risky

  2. Rheological discrimination and characterization of carrageenans and starches by Fourier transform-rheology in the non-linear regime.

    NARCIS (Netherlands)

    Klein, C.O.; Venema, P.; Sagis, L.M.C.; Linden, van der E.

    2008-01-01

    Classical rheological methods are often insufficient to characterize and to differentiate the non-linear rheological behavior of polysaccharide systems such as carrageenan or starch. In this article the non-linear rheological method of characteristic functions is used to discriminate between the

  3. Asymptotic stability of an Euler-Bernoulli beam coupled to non-linear spring-damper systems

    NARCIS (Netherlands)

    Gorrec, Yann Le; Zwart, Hans; Ramirez, Hector

    2017-01-01

    The stability of an undamped Euler Bernoulli beam connected to non-linear mass spring damper systems is addressed. It is shown that under mild assumptions on the local behaviour of the non-linear springs and dampers the solutions exist and the system is globally asymptotically stable.

  4. 640 Gb/s OTDM Transmission and Demultiplexing using a NOLM with Commercially Available Highly Non-linear Fiber

    DEFF Research Database (Denmark)

    Siahlo, Andrei; Clausen, Anders; Oxenløwe, Leif Katsuo

    2005-01-01

    Demultiplexing of a 640 Gb/s single-polarization optical time-division multiplexed (OTDM) signal and a 640 Gb/s signal with two alternating polarizations transmitted through 77 km of non-zero dispersion shifted fiber (NZDSF) are realized using a non-linear optical loop mirrors (NOLM) based on 500 m...... of highly non-linear fiber (HNLF)....

  5. On the consequences of non linear constitutive modelling of brain tissue for injury prediction with numerical head models

    NARCIS (Netherlands)

    Hrapko, M.; Dommelen, J.A.W. van; Peters, G.W.M.; Wismans, J.S.H.M.

    2009-01-01

    The objective of this work was to investigate the influences of constitutive non linearities of brain tissue in numerical head model simulations by comparing the performance of a recently developed non linear constitutive model [10, 11] with a simplified version, based on neo-Hookean elastic

  6. Production networks in Asia: A case study from the hard disk drive industry

    OpenAIRE

    Hiratsuka, Daisuke

    2011-01-01

    Production networks have been extensively developed in East Asia. Previous studies on production networks used international trade data or input–output tables, but such aggregate data cannot explain how the networks actually operate. With the aim of understanding the features and characteristics of East Asian production networks, this paper examines the procurement system of a HDD assembler operating in Thailand. This micro-level case study found that this particular production networ...

  7. Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification

    Directory of Open Access Journals (Sweden)

    Dewei Tang

    2017-03-01

    Full Text Available The main task of the third Chinese lunar exploration project is to obtain soil samples that are greater than two meters in length and to acquire bedding information from the surface of the moon. The driving component is the power output unit of the drilling system in the lander; it provides drilling power for core drilling tools. High temperatures can cause the sensors, permanent magnet, gears, and bearings to suffer irreversible damage. In this paper, a thermal analysis model for this driving component, based on the thermal network method (TNM was established and the model was solved using the quasi-Newton method. A vacuum test platform was built and an experimental verification method (EVM was applied to measure the surface temperature of the driving component. Then, the TNM was optimized, based on the principle of heat distribution. Through comparative analyses, the reasonableness of the TNM is validated. Finally, the static temperature field of the driving component was predicted and the “safe working times” of every mode are given.

  8. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  9. Linear and Non-Linear Piezoresistance Coefficients in Cubic Semiconductors. I. Theoretical Formulations

    Science.gov (United States)

    Durand, S.; Tellier, C. R.

    1996-02-01

    This paper constitutes the first part of a work devoted to applications of piezoresistance effects in germanium and silicon semiconductors. In this part, emphasis is placed on a formal explanation of non-linear effects. We propose a brief phenomenological description based on the multi-valleys model of semiconductors before to adopt a macroscopic tensorial model from which general analytical expressions for primed non-linear piezoresistance coefficients are derived. Graphical representations of linear and non-linear piezoresistance coefficients allows us to characterize the influence of the two angles of cut and of directions of alignment. The second part will primarily deal with specific applications for piezoresistive sensors. Cette publication constitue la première partie d'un travail consacré aux applications des effets piézorésistifs dans les semiconducteurs germanium et silicium. Cette partie traite essentiellement de la modélisation des effets non-linéaires. Après une description phénoménologique à partir du modèle de bande des semiconducteurs nous développons un modèle tensoriel macroscopique et nous proposons des équations générales analytiques exprimant les coefficients piézorésistifs non-linéaires dans des repères tournés. Des représentations graphiques des variations des coefficients piézorésistifs linéaires et non-linéaires permettent une pré-caractérisation de l'influence des angles de coupes et des directions d'alignement avant l'étude d'applications spécifiques qui feront l'objet de la deuxième partie.

  10. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  11. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality

    Science.gov (United States)

    Bae, Sanghyuk; Lim, Youn-Hee; Kashima, Saori; Yorifuji, Takashi; Honda, Yasushi; Kim, Ho; Hong, Yun-Chul

    2015-01-01

    Background Ambient ozone (O3) concentration has been reported to be significantly associated with mortality. However, linearity of the relationships and the presence of a threshold has been controversial. Objectives The aim of the present study was to examine the concentration-response relationship and threshold of the association between ambient O3 concentration and non-accidental mortality in 13 Japanese and Korean cities from 2000 to 2009. Methods We selected Japanese and Korean cities which have population of over 1 million. We constructed Poisson regression models adjusting daily mean temperature, daily mean PM10, humidity, time trend, season, year, day of the week, holidays and yearly population. The association between O3 concentration and mortality was examined using linear, spline and linear-threshold models. The thresholds were estimated for each city, by constructing linear-threshold models. We also examined the city-combined association using a generalized additive mixed model. Results The mean O3 concentration did not differ greatly between Korea and Japan, which were 26.2 ppb and 24.2 ppb, respectively. Seven out of 13 cities showed better fits for the spline model compared with the linear model, supporting a non-linear relationships between O3 concentration and mortality. All of the 7 cities showed J or U shaped associations suggesting the existence of thresholds. The range of city-specific thresholds was from 11 to 34 ppb. The city-combined analysis also showed a non-linear association with a threshold around 30-40 ppb. Conclusion We have observed non-linear concentration-response relationship with thresholds between daily mean ambient O3 concentration and daily number of non-accidental death in Japanese and Korean cities. PMID:26076447

  12. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality.

    Directory of Open Access Journals (Sweden)

    Sanghyuk Bae

    Full Text Available Ambient ozone (O3 concentration has been reported to be significantly associated with mortality. However, linearity of the relationships and the presence of a threshold has been controversial.The aim of the present study was to examine the concentration-response relationship and threshold of the association between ambient O3 concentration and non-accidental mortality in 13 Japanese and Korean cities from 2000 to 2009.We selected Japanese and Korean cities which have population of over 1 million. We constructed Poisson regression models adjusting daily mean temperature, daily mean PM10, humidity, time trend, season, year, day of the week, holidays and yearly population. The association between O3 concentration and mortality was examined using linear, spline and linear-threshold models. The thresholds were estimated for each city, by constructing linear-threshold models. We also examined the city-combined association using a generalized additive mixed model.The mean O3 concentration did not differ greatly between Korea and Japan, which were 26.2 ppb and 24.2 ppb, respectively. Seven out of 13 cities showed better fits for the spline model compared with the linear model, supporting a non-linear relationships between O3 concentration and mortality. All of the 7 cities showed J or U shaped associations suggesting the existence of thresholds. The range of city-specific thresholds was from 11 to 34 ppb. The city-combined analysis also showed a non-linear association with a threshold around 30-40 ppb.We have observed non-linear concentration-response relationship with thresholds between daily mean ambient O3 concentration and daily number of non-accidental death in Japanese and Korean cities.

  13. Towards a non-linear theory for fluid pressure and osmosis in shales

    Science.gov (United States)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  14. Rate of non-linearity in DMS aerosol-cloud-climate interactions

    Directory of Open Access Journals (Sweden)

    M. A. Thomas

    2011-11-01

    Full Text Available The degree of non-linearity in DMS-cloud-climate interactions is assessed using the ECHAM5-HAMMOZ model by taking into account end-to-end aerosol chemistry-cloud microphysics link. The evaluation is made over the Southern oceans in austral summer, a region of minimal anthropogenic influence. In this study, we compare the DMS-derived changes in the aerosol and cloud microphysical properties between a baseline simulation with the ocean DMS emissions from a prescribed climatology, and a scenario where the DMS emissions are doubled. Our results show that doubling the DMS emissions in the current climate results in a non-linear response in atmospheric DMS burden and subsequently, in SO2 and H2SO4 burdens due to inadequate OH oxidation. The aerosol optical depth increases by only ~20 % in the 30° S–75° S belt in the SH summer months. This increases the vertically integrated cloud droplet number concentrations (CDNC by 25 %. Since the vertically integrated liquid water vapor is constant in our model simulations, an increase in CDNC leads to a reduction in cloud droplet radius of 3.4 % over the Southern oceans in summer. The equivalent increase in cloud liquid water path is 10.7 %. The above changes in cloud microphysical properties result in a change in global annual mean radiative forcing at the TOA of −1.4 W m−2. The results suggest that the DMS-cloud microphysics link is highly non-linear. This has implications for future studies investigating the DMS-cloud climate feedbacks in a warming world and for studies evaluating geoengineering options to counteract warming by modulating low level marine clouds.

  15. A parametric FE modeling of brake for non-linear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed,Ibrahim; Fatouh, Yasser [Automotive and Tractors Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt); Aly, Wael [Refrigeration and Air-Conditioning Technology Department, Faculty of Industrial Education, Helwan University, Cairo (Egypt)

    2013-07-01

    A parametric modeling of a drum brake based on 3-D Finite Element Methods (FEM) for non-contact analysis is presented. Many parameters are examined during this study such as the effect of drum-lining interface stiffness, coefficient of friction, and line pressure on the interface contact. Firstly, the modal analysis of the drum brake is also studied to get the natural frequency and instability of the drum to facilitate transforming the modal elements to non-contact elements. It is shown that the Unsymmetric solver of the modal analysis is efficient enough to solve this linear problem after transforming the non-linear behavior of the contact between the drum and the lining to a linear behavior. A SOLID45 which is a linear element is used in the modal analysis and then transferred to non-linear elements which are Targe170 and Conta173 that represent the drum and lining for contact analysis study. The contact analysis problems are highly non-linear and require significant computer resources to solve it, however, the contact problem give two significant difficulties. Firstly, the region of contact is not known based on the boundary conditions such as line pressure, and drum and friction material specs. Secondly, these contact problems need to take the friction into consideration. Finally, it showed a good distribution of the nodal reaction forces on the slotted lining contact surface and existing of the slot in the middle of the lining can help in wear removal due to the friction between the lining and the drum. Accurate contact stiffness can give a good representation for the pressure distribution between the lining and the drum. However, a full contact of the front part of the slotted lining could occur in case of 20, 40, 60 and 80 bar of piston pressure and a partially contact between the drum and lining can occur in the rear part of the slotted lining.

  16. Inference of targeted interactions of networks with data of driving and driven nodes only by applying fast-varying noise signals

    Science.gov (United States)

    Zhang, Chaoyang; Chen, Yang; Hu, Gang

    2017-08-01

    Most complex social, biological and technological systems can be described by dynamic networks. Reconstructing network structures from measurable data is a fundamental problem in almost all interdisciplinary fields. Network nodes interact to each other, therefore, the accurate reconstruction of any interaction to a node requires data measurements of all its neighboring nodes. When networks are large, these data are often unavailable and thus network inference turns to be difficult. Here, we propose a method to use fast-varying noise driving (FVND) to enhance targeted interactions. With applications of noise driving we can infer any interaction from a driving node to a driven node with known data of these two nodes only while all other nodes are hidden, though the driven node may be actually driven by a large number of hidden nodes. Analytical derivation of the FVND method is conducted and numerical simulations perfectly justify the theoretical derivation.

  17. Non-linear Analysis of Scalp EEG by Using Bispectra: The Effect of the Reference Choice

    Directory of Open Access Journals (Sweden)

    Federico Chella

    2017-05-01

    Full Text Available Bispectral analysis is a signal processing technique that makes it possible to capture the non-linear and non-Gaussian properties of the EEG signals. It has found various applications in EEG research and clinical practice, including the assessment of anesthetic depth, the identification of epileptic seizures, and more recently, the evaluation of non-linear cross-frequency brain functional connectivity. However, the validity and reliability of the indices drawn from bispectral analysis of EEG signals are potentially biased by the use of a non-neutral EEG reference. The present study aims at investigating the effects of the reference choice on the analysis of the non-linear features of EEG signals through bicoherence, as well as on the estimation of cross-frequency EEG connectivity through two different non-linear measures, i.e., the cross-bicoherence and the antisymmetric cross-bicoherence. To this end, four commonly used reference schemes were considered: the vertex electrode (Cz, the digitally linked mastoids, the average reference, and the Reference Electrode Standardization Technique (REST. The reference effects were assessed both in simulations and in a real EEG experiment. The simulations allowed to investigated: (i the effects of the electrode density on the performance of the above references in the estimation of bispectral measures; and (ii the effects of the head model accuracy in the performance of the REST. For real data, the EEG signals recorded from 10 subjects during eyes open resting state were examined, and the distortions induced by the reference choice in the patterns of alpha-beta bicoherence, cross-bicoherence, and antisymmetric cross-bicoherence were assessed. The results showed significant differences in the findings depending on the chosen reference, with the REST providing superior performance than all the other references in approximating the ideal neutral reference. In conclusion, this study highlights the importance of

  18. Slope Safety Calculation With A Non-Linear Mohr Criterion Using Finite Element Method

    DEFF Research Database (Denmark)

    Clausen, Johan; Damkilde, Lars

    2005-01-01

    Safety factors for soil slopes are calculated using a non-linear Mohr envelope. The often used linear Mohr-Coulomb envelope tends to overestimate the safety as the material parameters are usually determined at much higher stress levels, than those present at slope failure. Experimental data...... indicates that this leads to overestimation of the soil strength at low stress levels. The calculations are performed with the finite element method, and the plastic integration is carried out in principal stress space which simplifies the computations considerably....

  19. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  20. Non-linear Springing Excitation Due to a Bidirectional Wave Field

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2005-01-01

    Significant springing vibrations in ships have recently been measured in a large ocean-going bulk carrier. So far calculations using various linear and non-linear hydrodynamic procedures have not been able to predict the measured responses. In the present paper it is shown that the springing...... response depends strongly on second order (sum frequency) terms involving cross-coupling terms from the combined wind- and swell-driven wave system. The calculations are based on the second order strip theory formulation and thus no three-dimensional effects are accounted for. The agreement with measured...

  1. A Reduced Basis Framework: Application to large scale non-linear multi-physics problems

    Directory of Open Access Journals (Sweden)

    Daversin C.

    2013-12-01

    Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.

  2. Identification of biomarkers for genotyping Aspergilli using non-linear methods for clustering and classification

    DEFF Research Database (Denmark)

    Kouskoumvekaki, Irene; Yang, Zhiyong; Jonsdottir, Svava Osk

    2008-01-01

    metabolites were detected and subsequently used in the analysis. Our approach consists of two analytical steps of the metabolic profiling data, an initial non-linear unsupervised analysis with Self-Organizing Maps (SOM) to identify similarities and differences among the metabolic profiles of the studied...... model based on the seven biomarkers, capable of distinguishing correctly 14 out of the 16 samples of the different A. nidulans strains. Conclusion: Our study demonstrates that it is possible to use metabolite profiling for the classification of filamentous fungi as well as for the identification...

  3. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis Paul

    2013-12-06

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  4. Characterization of mechanical-technological steel properties by Non Linear Harmonics Analysis within the production line

    Science.gov (United States)

    Stegemann, D.; Reimche, W.; Heutling, B.; Krys, A.; Feiste, K. L.; Kroos, J.; Stolzenberg, M.; Westkämper, G.; Angerer, R.

    1999-12-01

    Mechanical-technological quantities are used to characterize steel and its quality. Here in particular tensile strength, yield strength and anisotropy values are considered. To measure these quantities the magnetoinductive Non Linear Harmonics Analysis (NLHA) has been developed. Its working principle is discussed together with the procedure for measuring, evaluation and calibration. Due to its electromagnetic character the method is fast and less than two seconds are needed per measuring point. Results for non destructive determination of tensile and yield strength as well as anisotropy values within the production line of a steel company are given.

  5. Mixing by Non-linear Gravity Wave Breaking on a White Dwarf Surface

    Science.gov (United States)

    Calder, A. C.; Alexakis, A.; Dursi, L. J.; Rosner, R.; Truran, J. W.; Fryxell, B.; Ricker, P.; Zingale, M.; Olson, K.; Timmes, F. X.; MacNeice, P.

    2002-11-01

    We present the results of a simulation of a wind-driven non-linear gravity wave breaking on the surface of a white dwarf. The ``wind'' consists of H/He from an accreted envelope, and the simulation demonstrates that this breaking wave mechanism can produce a well-mixed layer of H/He with C/O from the white dwarf above the surface. Material from this mixed layer may then be transported throughout the accreted envelope by convection, which would enrich the C/O abundance of the envelope as is expected from observations of novae.

  6. Non-linear ultimate strength and stability limit state analysis of a wind turbine blade

    DEFF Research Database (Denmark)

    Rosemeier, Malo; Berring, Peter; Branner, Kim

    2016-01-01

    flap-wise loading has been compared with a linear response to determine the blade's resistance in the ultimate strength and stability limit states. The linear analysis revealed an unrealistic failure mechanism and failure mode. Further, it did not capture the highly non-linear response of the blade......% of the design load at a full-scale test to failure and the blade has operated successfully in the field, GL's safety factors combined with the imperfection size may be too conservative. Copyright © 2015 John Wiley & Sons, Ltd....

  7. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation......This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...

  8. Dendrimers Containing Ferrocene and Porphyrin Moieties: Synthesis and Cubic Non-Linear Optical Behavior

    Directory of Open Access Journals (Sweden)

    Eric G. Morales-Espinoza

    2010-04-01

    Full Text Available Dendrons with ferrocenyl ended groups joined by styryl moieties were attached to a porphyrin core. All the dendrons used for dendrimer synthesis showed trans configuration. The chemical structure of the first generation dendron was confirmed by X-ray crystallographic studies. The structure of the synthesized dendrimers was confirmed by 1H- and 13C-NMR, electrospray mass spectrometry and elemental analysis. Cubic non-linear optical behavior of the ferrocene and porphyrin-containing dendrimers was studied in solid thin films by THG Maker-Fringe technique at 1,260 nm.

  9. Characterization and modeling of performance of Polymer Composites Reinforced with Highly Non-Linear Cellulosic Fibers

    Science.gov (United States)

    Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.

    2012-02-01

    The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.

  10. Non-linear response of a liquid bridge to a sinusoidal acceleration under microgravity

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, I.; Perales, J.M.; Meseguer, J. [Universidad Politecnica de Madrid, IDR/UPM, E.T.S.I. Aeronauticos, Madrid (Spain)

    2004-12-01

    An experiment was performed aboard a sounding rocket on a long cylindrical liquid bridge, aiming at discerning the real transfer function of this liquid configuration to small acceleration loads, quantified by the liquid free-surface deformation divided by the axially imposed acceleration. The results were, however, in great discrepancy with theoretical predictions, showing asymmetric jumps of high amplitude in the evolution of the radial deformation of the liquid bridge, instead of a symmetric sinusoidal radial deformation (axisymmetry was preserved). It has been found now that a non-linear dynamic model perfectly explains this unexpected behaviour. (orig.)

  11. Non-linear logit models for high-frequency data analysis

    Science.gov (United States)

    Sazuka, Naoya

    2005-09-01

    We analyze tick-by-tick data, the most high frequency data available, of yen-dollar exchange rates with focus on the direction of up or down price movement. We propose a non-linear logit model to describe a non-trivial probability structure, apparently invisible from the price change itself, shown in binarized data extracting up or down price movement. The model selected by AIC agrees well with empirical results. Additionally, the similar bias is obtained from binarized tick-by-tick data on NYSE, for example GE. Our model could be useful for a wide range of binary time series extracting their non-trivial probability structures.

  12. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    OpenAIRE

    Rizov V.

    2016-01-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the materia...

  13. Marine natural products from the deep Pacific as potential non-linear optical chromophores.

    Science.gov (United States)

    Milne, Bruce F; Norman, Patrick; Nogueira, Fernando; Cardoso, Cláudia

    2013-09-21

    Theoretical analysis using quadratic response theory within the time-dependent density functional theory (TDDFT) formalism shows that the dermacozines, a group of phenazine-based compounds isolated from cultures of Dermacoccus abyssi found in the Mariana Trench, possess large first hyperpolarisability (β) values at common incident laser wavelengths that are highly sensitive to the degree and type of substitution of the core structure. The phenazine moiety is a versatile and tunable chromophore for non-linear optics and this work serves to highlight the potential that (marine) natural products, even those found in the darkest places on the planet, may have for aiding developments in optical materials design.

  14. Semiclassical Limit of the Non-linear Schroedinger-Poisson Equation With Subcritical Initial Data

    Science.gov (United States)

    2002-12-01

    lim ∇xargψ. As noted earlier, this argument is self - consistent as long as the solution of the Euler- Poisson system (1.5)-(1.6) remains classical...00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Semiclassical Limit of the Non-linear Schrodinger - Poisson Equation with Subcritical Initial Data 5a...classical limit of a self - consistent quantum-Vlasov equation in 3-D, Math. Models Methods Appl. Sci., 3 (1993), pp. 109–124. [SMM] C. Sparber, P. Markowich

  15. NON-LINEAR MECHANICAL, ELECTRICAL AND THERMAL PHENOMENA IN PIEZOELECTRIC CRYSTALS

    Directory of Open Access Journals (Sweden)

    F.Warkusz

    2003-01-01

    Full Text Available Mechanical, electrical and thermal phenomena occurring in piezoelectric crystals were examined by non-linear approximation. For this purpose, use was made of the thermodynamic function of state, which describes an anisotropic body. Considered was the Gibbs function. The calculations included strain tensor εij=f(σkl,En,T, induction vector Dm=f(σkl,En,T and entropy S=f(σkl,En,T as function of stress σkl, field strength En and temperature difference T. The equations obtained apply to anisotropic piezoelectric bodies provided that the "forces" σkl, En, T acting on the crystal are known.

  16. Interpolation between multi-dimensional histograms using a new non-linear moment morphing method

    CERN Document Server

    Baak, Max; Harrington, Robert; Verkerke, Wouter

    2015-01-01

    A prescription is presented for the interpolation between multi-dimensional distribution templates based on one or multiple model parameters. The technique uses a linear combination of templates, each created using fixed values of the model's parameters and transformed according to a specific procedure, to model a non-linear dependency on model parameters and the dependency between them. By construction the technique scales well with the number of input templates used, which is a useful feature in modern day particle physics, where a large number of templates is often required to model the impact of systematic uncertainties.

  17. On the Analogy between Mathematical Problems of Non-Linear Filtering and Quantum Physics.

    Science.gov (United States)

    1980-06-01

    LIDS-P-1006 LEVEL ON THE ANALOGY BETWEEN MATHEMATICAL PROBLEMS OF NON-LINEAR FILTERING AND QUANTUM PHYSICS (1) by Sanjoy K. Mitter Department of...in filtering theory and in quantum physics we are required to deal with an operator on L2 () (say), -8- 1H = -A + V(x)2 where A is the Laplacian and...a compact operator on L 1x1- 2.3. Schrodinger and Dirohle’ )perators. Let -H denote the infinitesimal generator of T . In quantum physics we 1 often

  18. Some Pathways in non-Linear Supersymmetry: Special Geometry Born-Infeld's, Cosmology and dualities

    CERN Document Server

    Ferrara, S.

    2015-01-01

    This review is devoted to some aspects of non-linear Supersymmetry in four dimensions that can be efficiently described via nilpotent superfields, in both rigid and curved Superspace. Our focus is mainly on the partial breaking of rigid $N=2$ Supersymmetry and on a class of generalized Born-Infeld systems that originate from Special Geometry and on some prototype cosmological models, starting from the Supergravity embedding of Starobinsky inflation. However, as an aside we also review briefly some interesting two-field extensions of the Born-Infeld Lagrangian whose field equations enjoy extended duality symmetries.

  19. Hybrid Model Representation of a TLP Including Flexible Topsides in Non-Linear Regular Waves

    DEFF Research Database (Denmark)

    Wehmeyer, Christof; Ferri, Francesco; Andersen, Morten Thøtt

    2014-01-01

    technologies able to solve this challenge is the floating wind turbine foundation. For the ultimate limit state, where higher order wave loads have a significant influence, a design tool that couples non-linear excitations with structural dynamics is required. To properly describe the behavior...... of such a structure, a numerical model is proposed and validated by physical test results. The model is applied to a case study of a tension leg platform with a flexible topside mimicking the tower and a lumped mass mimicking the rotor-nacelle assembly. The model is additionally compared to current commercial...

  20. Non-Linear Aeroelastic Analysis Using the Point Transformation Method, Part 1: Freeplay Model

    Science.gov (United States)

    LIU, L.; WONG, Y. S.; LEE, B. H. K.

    2002-05-01

    A point transformation technique is developed to investigate the non-linear behavior of a two-dimensional aeroelastic system with freeplay models. Two formulations of the point transformation method are presented, which can be applied to accurately predict the frequency and amplitude of limit cycle oscillations. Moreover, it is demonstrated that the developed formulations are capable of detecting complex aeroelastic responses such as periodic motions with harmonics, period doubling, chaotic motions and the coexistence of stable limit cycles. Applications of the point transformation method to several test examples are presented. It is concluded that the formulations developed in this paper are efficient and effective.