WorldWideScience

Sample records for networks degradation rates

  1. Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks

    International Nuclear Information System (INIS)

    Fatemi, M.H.

    2006-01-01

    Ozone tropospheric degradation of organic compound is very important in environmental chemistry. The lifetime of organic chemicals in the atmosphere can be calculated from the knowledge of the rate constant of their reaction with free radicals such as OH and NO 3 or O 3 . In the present work, the rate constant for the tropospheric degradation of 137 organic compounds by reaction with ozone, the least widely and successfully modeled degradation process, are predicted by quantitative structure activity relationships modeling based on a variety of theoretical descriptors, which screened and selected by genetic algorithm variable subset selection procedure. These descriptors which can be used as inputs for generated artificial neural networks are; HOMO-LUMO gap, number of double bonds, number of single bonds, maximum net charge on C atom, minimum (>0.1) bond order of C atom and Minimum e-e repulsion of H atom. After generation, optimization and training of artificial neural network, network was used for the prediction of log KO 3 for the validation set. The root mean square error for the neural network calculated log KO 3 for training, prediction and validation set are 0.357, 0.460 and 0.481, respectively, which are smaller than those obtained by multiple linear regressions model (1.217, 0.870 and 0.968, respectively). Results obtained reveal the reliability and good predictivity of neural network model for the prediction of ozone tropospheric degradations rate constant of organic compounds

  2. Photovoltaic Degradation Rates -- An Analytical Review

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  3. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    Science.gov (United States)

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  4. PEG-based degradable networks for drug delivery applications

    Science.gov (United States)

    Ostroha, Jamie L.

    The controlled delivery of therapeutic agents by biodegradable hydrogels has become a popular mechanism for drug administration in recent years. Hydrogels are three-dimensional networks of polymer chains held together by crosslinks. Although the changes which the hydrogel undergoes in solution are important to a wide range of experimental studies, they have not been investigated systematically and the factors which influence the degree of swelling have not been adequately described. Hydrogels made of poly(ethylene glycol) (PEG) will generally resist degradation in aqueous conditions, while a hydrogel made from a copolymer of poly(lactic acid) (PLA) and PEG will degrade via hydrolysis of the lactic acid group. This ability to degrade makes these hydrogels promising candidates for controlled release drug delivery systems. The goal of this research was to characterize the swelling and degradation of both degradable and non-degradable gels and to evaluate the release of different drugs from these hydrogels, where the key variable is the molecular weight of the PEG segment. These hydrogels were formed by the addition and subsequent chemically crosslinking of methacrylate end groups. During crosslinking, both PEG and LA-PEG-LA hydrogels of varied PEG molecular weight were loaded with Vitamin B12, Insulin, Haloperidol, and Dextran. It was shown that increasing PEG molecular weight produces a hydrogel with larger pores, thus increasing water uptake and degradation rate. While many environmental factors do not affect the swelling behavior, they do significantly impact the degradation of the hydrogel, and thus the release of incorporated therapeutic agents.

  5. Shapley ratings in brain networks

    Directory of Open Access Journals (Sweden)

    Rolf Kötter

    2007-11-01

    Full Text Available Recent applications of network theory to brain networks as well as the expanding empirical databases of brain architecture spawn an interest in novel techniques for analyzing connectivity patterns in the brain. Treating individual brain structures as nodes in a directed graph model permits the application of graph theoretical concepts to the analysis of these structures within their large-scale connectivity networks. In this paper, we explore the application of concepts from graph and game theory toward this end. Specifically, we utilize the Shapley value principle, which assigns a rank to players in a coalition based upon their individual contributions to the collective profit of that coalition, to assess the contributions of individual brain structures to the graph derived from the global connectivity network. We report Shapley values for variations of a prefrontal network, as well as for a visual cortical network, which had both been extensively investigated previously. This analysis highlights particular nodes as strong or weak contributors to global connectivity. To understand the nature of their contribution, we compare the Shapley values obtained from these networks and appropriate controls to other previously described nodal measures of structural connectivity. We find a strong correlation between Shapley values and both betweenness centrality and connection density. Moreover, a stepwise multiple linear regression analysis indicates that approximately 79% of the variance in Shapley values obtained from random networks can be explained by betweenness centrality alone. Finally, we investigate the effects of local lesions on the Shapley ratings, showing that the present networks have an immense structural resistance to degradation. We discuss our results highlighting the use of such measures for characterizing the organization and functional role of brain networks.

  6. Polymer degradation rate control of hybrid rocket combustion

    Science.gov (United States)

    Stickler, D. B.; Ramohalli, K. N. R.

    1970-01-01

    Polymer degradation to small fragments is treated as a rate controlling step in hybrid rocket combustion. Both numerical and approximate analytical solutions of the complete energy and polymer chain bond conservation equations for the condensed phase are obtained. Comparison with inert atmosphere data is very good. It is found that the intersect of curves of pyrolysis rate versus interface temperature for hybrid combustors, with the thermal degradation theory, falls at a pyrolysis rate very close to that for which a pressure dependence begins to be observable. Since simple thermal degradation cannot give sufficient depolymerization at higher pyrolysis rates, it is suggested that oxidative catalysis of the process occurs at the surface, giving a first order dependence on reactive species concentration at the wall. Estimates of the ratio of this activation energy and interface temperature are in agreement with best fit procedures for hybrid combustion data. Requisite active species concentrations and flux are shown to be compatible with turbulent transport. Pressure dependence of hybrid rocket fuel regression rate is thus shown to be describable in a consistent manner in terms of reactive species catalysis of polymer degradation.

  7. Magnesium degradation as determined by artificial neural networks.

    Science.gov (United States)

    Willumeit, Regine; Feyerabend, Frank; Huber, Norbert

    2013-11-01

    Magnesium degradation under physiological conditions is a highly complex process in which temperature, the use of cell culture growth medium and the presence of CO2, O2 and proteins can influence the corrosion rate and the composition of the resulting corrosion layer. Due to the complexity of this process it is almost impossible to predict the parameters that are most important and whether some parameters have a synergistic effect on the corrosion rate. Artificial neural networks are a mathematical tool that can be used to approximate and analyse non-linear problems with multiple inputs. In this work we present the first analysis of corrosion data obtained using this method, which reveals that CO2 and the composition of the buffer system play a crucial role in the corrosion of magnesium, whereas O2, proteins and temperature play a less prominent role. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Determination of LEDs degradation with entropy generation rate

    Science.gov (United States)

    Cuadras, Angel; Yao, Jiaqiang; Quilez, Marcos

    2017-10-01

    We propose a method to assess the degradation and aging of light emitting diodes (LEDs) based on irreversible entropy generation rate. We degraded several LEDs and monitored their entropy generation rate ( S ˙ ) in accelerated tests. We compared the thermoelectrical results with the optical light emission evolution during degradation. We find a good relationship between aging and S ˙ (t), because S ˙ is both related to device parameters and optical performance. We propose a threshold of S ˙ (t) as a reliable damage indicator of LED end-of-life that can avoid the need to perform optical measurements to assess optical aging. The method lays beyond the typical statistical laws for lifetime prediction provided by manufacturers. We tested different LED colors and electrical stresses to validate the electrical LED model and we analyzed the degradation mechanisms of the devices.

  9. On the Determination of Magnesium Degradation Rates under Physiological Conditions.

    Science.gov (United States)

    Nidadavolu, Eshwara Phani Shubhakar; Feyerabend, Frank; Ebel, Thomas; Willumeit-Römer, Regine; Dahms, Michael

    2016-07-28

    The current physiological in vitro tests of Mg degradation follow the procedure stated according to the ASTM standard. This standard, although useful in predicting the initial degradation behavior of an alloy, has its limitations in interpreting the same for longer periods of immersion in cell culture media. This is an important consequence as the alloy's degradation is time dependent. Even if two different alloys show similar corrosion rates in a short term experiment, their degradation characteristics might differ with increased immersion times. Furthermore, studies concerning Mg corrosion extrapolate the corrosion rate from a single time point measurement to the order of a year (mm/y), which might not be appropriate because of time dependent degradation behavior. In this work, the above issues are addressed and a new methodology of performing long-term immersion tests in determining the degradation rates of Mg alloys was put forth. For this purpose, cast and extruded Mg-2Ag and powder pressed and sintered Mg-0.3Ca alloy systems were chosen. DMEM Glutamax +10% FBS (Fetal Bovine Serum) +1% Penicillin streptomycin was used as cell culture medium. The advantages of such a method in predicting the degradation rates in vivo deduced from in vitro experiments are discussed.

  10. Modeling Day-to-day Flow Dynamics on Degradable Transport Network

    Science.gov (United States)

    Gao, Bo; Zhang, Ronghui; Lou, Xiaoming

    2016-01-01

    Stochastic link capacity degradations are common phenomena in transport network which can cause travel time variations and further can affect travelers’ daily route choice behaviors. This paper formulates a deterministic dynamic model, to capture the day-to-day (DTD) flow evolution process in the presence of degraded link capacity degradations. The aggregated network flow dynamics are driven by travelers’ study of uncertain travel time and their choice of risky routes. This paper applies the exponential-smoothing filter to describe travelers’ study of travel time variations, and meanwhile formulates risk attitude parameter updating equation to reflect travelers’ endogenous risk attitude evolution schema. In addition, this paper conducts theoretical analyses to investigate several significant mathematical characteristics implied in the proposed DTD model, including fixed point existence, uniqueness, stability and irreversibility. Numerical experiments are used to demonstrate the effectiveness of the DTD model and verify some important dynamic system properties. PMID:27959903

  11. Degradation Prediction Model Based on a Neural Network with Dynamic Windows

    Science.gov (United States)

    Zhang, Xinghui; Xiao, Lei; Kang, Jianshe

    2015-01-01

    Tracking degradation of mechanical components is very critical for effective maintenance decision making. Remaining useful life (RUL) estimation is a widely used form of degradation prediction. RUL prediction methods when enough run-to-failure condition monitoring data can be used have been fully researched, but for some high reliability components, it is very difficult to collect run-to-failure condition monitoring data, i.e., from normal to failure. Only a certain number of condition indicators in certain period can be used to estimate RUL. In addition, some existing prediction methods have problems which block RUL estimation due to poor extrapolability. The predicted value converges to a certain constant or fluctuates in certain range. Moreover, the fluctuant condition features also have bad effects on prediction. In order to solve these dilemmas, this paper proposes a RUL prediction model based on neural network with dynamic windows. This model mainly consists of three steps: window size determination by increasing rate, change point detection and rolling prediction. The proposed method has two dominant strengths. One is that the proposed approach does not need to assume the degradation trajectory is subject to a certain distribution. The other is it can adapt to variation of degradation indicators which greatly benefits RUL prediction. Finally, the performance of the proposed RUL prediction model is validated by real field data and simulation data. PMID:25806873

  12. Increased degradation rate of nitrososureas in media containing carbonate.

    Science.gov (United States)

    Seidegård, Janeric; Grönquist, Lena; Tuvesson, Helen; Gunnarsson, Per-Olov

    2009-01-01

    The stability of two nitrosoureas, tauromustine and lomustine, has been investigated in different media and buffers. All media tested, except Leibovitz's L-15 medium, significantly increased the degradation rate of the investigated nitrosoureas at pH 7.4. Sodium bicarbonate seems to be the cause of the observed increase of the degradation rate, since it provides the main buffering capacity of all the media except for Leibovitz's L-15 medium, which is based on phosphate buffer. Other ingredients in the media, such as amino acids, vitamins, and inorganic salts, or the ionic strength of a buffer, did not have any major effect on the degradation rate of the nitrosoureas. These results suggest that media containing carbonated buffer should be avoided when the anti-tumor effect of nitrosoureas is to be investigated in different cell cultures.

  13. Lifetime Evaluation of PV Inverters considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2017-01-01

    The PV inverter lifetime is affected by the installed sites related to different solar irradiance and ambient temperature profiles. In fact, the installation site also affects the PV panel degradation rate, and thus the long-term power production. Prior-art lifetime analysis in PV inverters has...... not yet investigated the impact of panel degradation. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and installation sites. Evaluations have been carried out on PV systems installed in Denmark and Arizona. The results reveal that the PV panel degradation rate...... has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime estimation can be deviated by 54%, if the impact of PV panel degradation is not taken into account....

  14. Semi-Degradable Poly(β-amino ester) Networks with Temporally-Controlled Enhancement of Mechanical Properties

    Science.gov (United States)

    Safranski, David L.; Weiss, Daiana; Clark, J. Brian; Taylor, W.R.; Gall, Ken

    2014-01-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss in mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. PMID:24769113

  15. Semi-degradable poly(β-amino ester) networks with temporally controlled enhancement of mechanical properties.

    Science.gov (United States)

    Safranski, David L; Weiss, Daiana; Clark, J Brian; Taylor, W Robert; Gall, Ken

    2014-08-01

    Biodegradable polymers are clinically used in numerous biomedical applications, and classically show a loss of mechanical properties within weeks of implantation. This work demonstrates a new class of semi-degradable polymers that show an increase in mechanical properties through degradation via a controlled shift in a thermal transition. Semi-degradable polymer networks, poly(β-amino ester)-co-methyl methacrylate, were formed from a low glass transition temperature crosslinker, poly(β-amino ester), and high glass transition temperature monomer, methyl methacrylate, which degraded in a manner dependent upon the crosslinker chemical structure. In vitro and in vivo degradation revealed changes in mechanical behavior due to the degradation of the crosslinker from the polymer network. This novel polymer system demonstrates a strategy to temporally control the mechanical behavior of polymers and to enhance the initial performance of smart biomedical devices. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02.

    Science.gov (United States)

    Fu, Gui-Ming; Chen, Yan; Li, Ru-Yi; Yuan, Xiao-Qiang; Liu, Cheng-Mei; Li, Bin; Wan, Yin

    2017-09-14

    Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.

  17. On-line validation of feedwater flow rate in nuclear power plants using neural networks

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1994-01-01

    On-line calibration of feedwater flow rate measurement in nuclear power plants provides a continuous realistic value of feedwater flow rate. It also reduces the manpower required for periodic calibration needed due to the fouling and defouling of the venturi meter surface condition. This paper presents a method for on-line validation of feedwater flow rate in nuclear power plants. The method is an improvement of the previously developed method which is based on the use of a set of process variables dynamically related to the feedwater flow rate. The online measurements of this set of variables are used as inputs to a neural network to obtain an estimate of the feedwater flow rate reading. The difference between the on-line feedwater flow rate reading, and the neural network estimate establishes whether there is a need to apply a correction factor to the feedwater flow rate measurement for calculation of the actual reactor power. The method was applied to the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant. The venturi meters used for flow measurements are susceptible to frequent fouling that degrades their measurement accuracy. The fouling effects can cause an inaccuracy of up to 3% relative error in feedwater flow rate reading. A neural network, whose inputs were the readings of a set of reference instruments, was designed to predict both feedwater flow rates simultaneously. A multi-layer feedforward neural network employing the backpropagation algorithm was used. A number of neural network training tests were performed to obtain an optimum filtering technique of the input/output data of the neural networks. The result of the selection of the filtering technique was confirmed by numerous Fast Fourier Transform (FFT) tests. Training and testing were done on data from TMI-1 nuclear power plant. The results show that the neural network can predict the correct flow rates with an absolute relative error of less than 2%

  18. Modeling rates of DOC degradation using DOM composition and hydroclimatic variables

    Science.gov (United States)

    Moody, C. S.; Worrall, F.

    2017-05-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The in-stream processes acting on the DOC, such as photodegradation and biodegradation, can lead to DOC loss and thus contribute CO2 to the atmosphere. The aim of this study was to understand what controls the rates of DOC degradation. Water samples from a headwater, peat-covered catchment, were collected over a 23 month period and analyzed for the DOC degradation rate and dissolved organic matter (DOM) composition in the context of hydroclimatic monitoring. Measures of DOM composition included 13C solid-state nuclear magnetic resonance spectroscopy, bomb calorimetry, and elemental analysis. Regression analysis showed that there was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The highest rates of DOC degradation occurred when aldehyde functionality was at its greatest and this occurred on the recession limb of storm hydrographs. Including this knowledge into models of fluvial carbon fate for an 818 km2 catchment gave an annual average DOC removal rate of 67% and 50% for total organic carbon, slightly lower than previously predicted. The compositional controls suggest that DOM is primarily being used as a ready energy source to the aquatic ecosystem rather than as a nutrient source.

  19. Degradation rates of alachlor, atrazine and bentazone in the profiles of Polish Luvisols

    Science.gov (United States)

    Paszko, Tadeusz; Muszyński, Paweł

    2017-07-01

    The degradation rates of three herbicides (alachlor, atrazine, and bentazone) were examined according to OECD Guideline 307 in three profiles of grey-brown podzolic soil (Luvisol) in a laboratory experiment. The aim of the experiment was to determine herbicide degradation parameters and their relationships with soil properties. Degradation processes were effectively described by a first-order model. However, in some cases, the best results were produced by bi-phasic kinetics (hockey-stick and bi-exponential model). The degradation rates of the tested herbicides at 25°C and 40% maximum water holding capacity, established based on half-life values in the Ap horizon, increased in the following order: atrazine (32.6-42.8 days) herbicide degradation rates and the organic matter content of soils. The depth-dependent degradation factors obtained for topsoil and two subsoil horizons (1: 0.42: 0.11 - based on average values, and 1: 0.31: 0.12 - based on median values) reflect the degradation abilities of Polish Luvisols. The values noted are soil-specific; therefore, they can also be applied to other pesticides in Polish Luvisols.

  20. Degradation rate of acetylcholine receptors inserted into denervated vertebrate neuromuscular junctions

    International Nuclear Information System (INIS)

    Shyng, S.L.; Salpeter, M.M.

    1989-01-01

    Many studies exist on the effect of denervation on the degradation of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (nmj). These studies have described the behavior of either the total population of junctional receptors at different times after denervation, or of the receptors present at the time of denervation. No experimental studies yet exist on the degradation rate of the receptors newly inserted into denervated junctions. In the previous studies, the original receptors of mouse sternomastoid muscles were found to retain the slow degradation (t 1/2) of approximately 8-10 d of innervated junctional receptors for up to 10 d after denervation before accelerating to a t 1/2 of approximately 3 d. The total junctional receptors, on the other hand, showed a progressive increase in degradation rate from a t 1/2 of 8-10 d to a t 1/2 of 1 d. To reconcile these earlier observations, the present study examines the degradation of new receptors inserted into the nmj after denervation. To avoid possible contamination of the data with postdenervation extrajunctional receptors, we used transmission electron microscope autoradiography to study only receptors located at the postjunctional fold of the nmj. We established that the new receptors inserted into denervated junctions have a t 1/2 of approximately 1 d, considerably faster than that of the original receptors and equivalent to that of postdenervation extrajunctional receptors. Both original and new receptors are interspersed at the top of the junctional folds. Thus, until all the original receptors are degraded, the postjunctional membrane contains two populations of AChRs that maintain a total steady-state site density but degrade at different rates

  1. Assessment of chloroethene degradation rates based on ratios of daughter/parent compounds in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick

    2014-05-01

    Chlorinated solvent spills at industrial and urban sites create groundwater plumes where tetrachloro- and trichloroethene may degrade to their daughter compounds, dichloroethenes, vinyl chloride and ethane. The assessment of degradation and natural attenuation at such sites may be based on the analysis and inverse modelling of concentration data, on the calculation of mass fluxes in transsects, and/or on the analysis of stable isotope ratios in the ethenes. Relatively few work has investigated the possibility of using ratio of concentrations for gaining information on degradation rates. The use of ratios bears the advantage that dilution of a single sample with contaminant-free water does not matter. It will be shown that molar ratios of daughter to parent compounds measured along a plume streamline are a rapid and robust mean of determining whether degradation rates increase or decrease along the degradation chain, and allow furthermore a quantitation of the relative magnitude of degradation rates compared to the rate of the parent compound. Furthermore, ratios of concentration will become constant in zones where degradation is absent, and this allows to sketching the extension of actively degrading zones. The assessment is possible for pure sources and also for mixed sources. A quantification method is proposed in order to estimate first-order degradation rates in zones of constant degradation activity. This quantification method includes corrections that are needed due to longitudinal and transversal dispersivity. The method was tested on a number of real field sites from literature. At the majority of these sites, the first-order degradation rates were decreasing along the degradation chain from tetrachloroethene to vinyl chloride, meaning that the latter was often reaching important concentrations. This is bad news for site owners due to the increased toxicity of vinyl chloride compared to its parent compounds.

  2. Foreign currency rate forecasting using neural networks

    Science.gov (United States)

    Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad

    2000-03-01

    Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.

  3. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    DEFF Research Database (Denmark)

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production...... and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degradation rates and mission profiles. Evaluations have been carried out on PV systems installed in Denmark...... and Arizona. The results reveal that the PV panel degradation rate has a considerable impact on the PV inverter lifetime, especially in the hot climate (e.g., Arizona), where the panel degrades at a faster rate. In that case, the PV inverter lifetime prediction can be deviated by 54%, if the impact of PV...

  4. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    Science.gov (United States)

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks

    International Nuclear Information System (INIS)

    Mo, Hua-Dong; Li, Yan-Fu; Zio, Enrico

    2016-01-01

    Highlights: • A system-of-systems framework is proposed for reliability analysis of DG system. • The impact of degraded communication networks is included and quantified. • Various uncertainties and contingencies in the DG system are considered. • A Monte Carlo simulation-optimal power flow computational framework is developed. • The results of the application study show the power of the proposed framework. - Abstract: Distributed generation (DG) systems install communication networks for managing real-time energy imbalance. Different from previous research, which typically assumes perfect communication networks, this work aims to quantitatively account for the impact of degraded communication networks on DG systems performance. The degraded behavior of communication networks is modeled by stochastic continuous time transmission delays and packet dropouts. On the DG systems side, we consider the inherent uncertainties of renewable energy sources, loads and energy prices. We develop a Monte Carlo simulation-optimal power flow (MCS-OPF) computational framework that is capable of generating consecutive time-dependent operating scenarios of the integrated system. Quantitative analysis is carried out to measure the impact of communication networks degradation onto the DG systems. For illustration, the framework is applied to a modified IEEE 13 nodes test feeder. The results demonstrate that the degraded communication networks can significantly deteriorate the performance of the integrated system. A grey differential model-based prediction method for reconstructing missing data is effective in mitigating the influence of the degraded communication networks.

  6. 9975 Shipping package component long-term degradation rates

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-28

    Special nuclear materials are being stored in the K-Area Complex using 3013 containers that are held within Model 9975 shipping packages. The service life for these packages in storage was recently increased from 15 to 20 years, since some of these packages have been stored for nearly 15 years. A strategy is also being developed whereby such storage might be extended beyond 20 years. This strategy is based on recent calculations that support acceptable 9975 package performance for 20 years with internal heat loads up to 19 watts, and identifies a lower heat load limit for which the package components should degrade at half the bounding rate or less, thus doubling the effective storage life for these lower wattage packages. The components of the 9975 package that are sensitive to aging under storage conditions are the fiberboard overpack and the O-ring seals, although some degradation of the lead shield and outer drum are also possible. This report summarizes degradation rates applicable to lower heat load storage conditions. In particular, the O-ring seals should provide leak-tight performance for more than 40 years in packages for which their maximum temperature is ≤135 °F. Similarly, the fiberboard should remain acceptable in performance of its required safety functions for up to 40 years in packages with a maximum fiberboard temperature ≤125 °F.

  7. Bearing performance degradation assessment based on time-frequency code features and SOM network

    International Nuclear Information System (INIS)

    Zhang, Yan; Tang, Baoping; Han, Yan; Deng, Lei

    2017-01-01

    Bearing performance degradation assessment and prognostics are extremely important in supporting maintenance decision and guaranteeing the system’s reliability. To achieve this goal, this paper proposes a novel feature extraction method for the degradation assessment and prognostics of bearings. Features of time-frequency codes (TFCs) are extracted from the time-frequency distribution using a hybrid procedure based on short-time Fourier transform (STFT) and non-negative matrix factorization (NMF) theory. An alternative way to design the health indicator is investigated by quantifying the similarity between feature vectors using a self-organizing map (SOM) network. On the basis of this idea, a new health indicator called time-frequency code quantification error (TFCQE) is proposed to assess the performance degradation of the bearing. This indicator is constructed based on the bearing real-time behavior and the SOM model that is previously trained with only the TFC vectors under the normal condition. Vibration signals collected from the bearing run-to-failure tests are used to validate the developed method. The comparison results demonstrate the superiority of the proposed TFCQE indicator over many other traditional features in terms of feature quality metrics, incipient degradation identification and achieving accurate prediction. Highlights • Time-frequency codes are extracted to reflect the signals’ characteristics. • SOM network served as a tool to quantify the similarity between feature vectors. • A new health indicator is proposed to demonstrate the whole stage of degradation development. • The method is useful for extracting the degradation features and detecting the incipient degradation. • The superiority of the proposed method is verified using experimental data. (paper)

  8. Error rate degradation due to switch crosstalk in large modular switched optical networks

    DEFF Research Database (Denmark)

    Saxtoft, Christian; Chidgey, P.

    1993-01-01

    A theoretical model of an optical network incorporating wavelength selective elements, amplifiers, couplers and switches is presented. The model is used to evaluate a large modular switch optical network that provides the capability of adapting easily to changes in network traffic requirements. T....... The network dimensions are shown to be limited by the optical crosstalk in the switch matrices and by the polarization dependent loss in the optical components...

  9. Use of Pyranometers to Estimate PV Module Degradation Rates in the Field: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Vignola, Frank; Peterson, Josh; Kessler, Rich; Mavromatakis, Fotis; Dooraghi, Mike; Sengupta, Manajit

    2016-08-01

    This paper describes a methodology that uses relative measurements to estimate the degradation rates of PV modules in the field. The importance of calibration and cleaning is illustrated. The number of years of field measurements needed to measure degradation rates with data from the field is cut in half using relative comparisons.

  10. Degradation of isobutanal at high loading rates in a compost biofilter.

    Science.gov (United States)

    Sercu, Bram; Demeestere, Kristof; Baillieul, Hans; Van Langenhove, Herman; Verstraete, Willy

    2005-08-01

    Biofiltration has been increasingly used for cleaning waste gases, mostly containing low concentrations of odorous compounds. To expand the application area of this technology, the biofiltration of higher pollutant loading rates has to be investigated. This article focuses on the biodegradation of isobutanal (IBAL) in a compost biofilter (BF) at mass loading rates between 211 and 4123 g/m3/day (30-590 ppm(v)). At mass loading rates up to 785 g/m3/day, near 100% removal efficiencies could be obtained. However, after increasing the loading rate to 1500-1900 g/m3/ day, the degradation efficiency decreased to 62-98%. In addition, a pH decrease and production of isobutanol (IBOL) and isobutyric acid (IBAC) were observed. This is the first report showing that an aldehyde can act as electron donor as well as acceptor in a BF. To study the effects of pH, compost moisture content, and electron acceptor availability on the biofiltration of IBAL, IBOL, and IBAC, additional batch and continuous experiments were performed. A pH of 5.2 reduced the IBAL degradation rate and inhibited the IBOL degradation, although adaptation of the microorganisms to low pH was observed in the BFs. IBAC was not degraded in the batch experiments. High moisture content (51%) initially had no effect on the IBOL production, although it negatively affected the IBAL elimination increasingly during a 21-day time-course experiment. In batch experiments, the reduction of IBAL to IBOL did not decrease when the amount of available electron acceptors (oxygen or nitrate) was increased. The IBAL removal efficiency at higher loading rates was limited by a combination of nutrient limitation, pH decrease, and dehydration, and the importance of each limiting factor depended on the influent concentration.

  11. Single molecule approaches for quantifying transcription and degradation rates in intact mammalian tissues.

    Science.gov (United States)

    Bahar Halpern, Keren; Itzkovitz, Shalev

    2016-04-01

    A key challenge in mammalian biology is to understand how rates of transcription and mRNA degradation jointly shape cellular gene expression. Powerful techniques have been developed for measuring these rates either genome-wide or at the single-molecule level, however these techniques are not applicable to assessment of cells within their native tissue microenvironment. Here we describe a technique based on single molecule Fluorescence in-situ Hybridization (smFISH) to measure transcription and degradation rates in intact mammalian tissues. The technique is based on dual-color libraries targeting the introns and exons of the genes of interest, enabling visualization and quantification of both nascent and mature mRNA. We present a software, TransQuant, that facilitates quantifying these rates from smFISH images. Our approach enables assessment of both transcription and degradation rates of any gene of interest while controlling for the inherent heterogeneity of intact tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Biologically Safe Poly(l-lactic acid) Blends with Tunable Degradation Rate: Microstructure, Degradation Mechanism, and Mechanical Properties.

    Science.gov (United States)

    Oyama, Hideko T; Tanishima, Daisuke; Ogawa, Ryohei

    2017-04-10

    Although poly(l-lactic acid) (PLLA) is reputed to be biodegradable in the human body, its hydrophobic nature lets it persist for ca. 5.5 years. This study demonstrates that biologically safe lactide copolymers, poly(aspartic acid-co-l-lactide) (PAL) and poly(malic acid-co-l-lactide) (PML), dispersed in the PLLA function as detonators (triggers) for its hydrolytic degradation under physiological conditions. The copolymers significantly enhance hydrolysis, and consequently, the degradation rate of PLLA becomes easily tunable by controlling the amounts of PAL and PML. The present study elucidates the effects of uniaxial drawing on the structural development, mechanical properties, and hydrolytic degradation under physiological conditions of PLLA blend films. At initial degradation stages, the mass loss was not affected by uniaxial drawing; however, at late degradation stages, less developed crystals as well as amorphous chains were degradable at low draw ratio (DR), whereas not only highly developed crystals but also the oriented amorphous chains became insensitive to hydrolysis at high DR. Our work provides important molecular level results that demonstrate that biodegradable materials can have superb mechanical properties and also disappear in a required time under physiological conditions.

  13. Influence of the dose rate in the PVDF degradation processes

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Adriana S.M.; Pereira, Claubia, E-mail: adriananuclear@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Gual, Maritza R., E-mail: maritzargual@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InsTEC), Departamento de Ingenieria Nuclear, La Habana (Cuba); Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm{sup -1} which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm{sup -1} which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm{sup -1} which were associated with NH stretch of NH{sub 2} and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  14. Influence of the dose rate in the PVDF degradation processes

    International Nuclear Information System (INIS)

    Batista, Adriana S.M.; Pereira, Claubia; Gual, Maritza R.; Faria, Luiz O.

    2015-01-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from gamma radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation by products such as peroxide degradation. Radiation cross-linking technologies include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, polymer recycling, hydrogels etc. The degradation of PVDF polymer exposed to gamma irradiation in oxygen atmosphere in high dose rate has been studied and compared to obtained under smaller dose rates. The samples were irradiated with a Co-60 source at constant dose rate (12 kGy/h and 2,592 kGy/h), with doses ranging from 100 kGy to 3,000 kGy. Different dose rate determine the prevalence of the processes being evaluated in this work by thermal measurements and infrared spectroscopy. It is shown that the degradation processes involve chain scissions and crosslink formation. The formation of oxidation products was shown at the surface of the irradiated film. The FTIR data revealed absorption bands at 1730 and 1853 cm -1 which were attributed to the stretch of C=O bonds, at 1715 and 1754 cm -1 which were attributed to the C=C stretching and at 3518, 3585 and 3673 cm -1 which were associated with NH stretch of NH 2 and OH. Thermogravimetric studies reveal that the irradiation induced the increasing residues and decrease of the temperature of the decomposition start. (author)

  15. Degradation rates of phorbol esters in Jatropha curcas L. oil and pressed seeds under different storage conditions.

    Science.gov (United States)

    Phasukarratchai, Naphatsarnan; Damrongsiri, Seelawut; Tongcumpou, Chantra

    2017-03-01

    Phorbol esters (PEs), found in Jatropha curcas crude oil (JCO) and J. curcas pressed seeds (JPS), are known as bioactive compounds in agricultural and pharmaceutical applications. The degradation rates of PEs in JCO and JPS under various conditions is important for the utilisation of PEs. Thus the objective of this study was to determine the PE degradation rates in JCO and JPS under different storage conditions. PE degradation rates were found to be first-order reactions. The slowest degradation rate was at 0.9 × 10 -3 d -1 for both JCO and JPS unexposed to light at 4 °C. Light intensity (1097 lx and 4690 lx, representing diffused sunlight and fluorescent lighting, respectively) and temperature (25 to 35 °C) were the significant degradation factors. Light exposure led to 280% to 380% higher degradation rates in JCO than in JPS due to light penetration through the transparent oil. Dried and sterilised JPS showed an 80% to 90% lower PE degradation rate than untreated JPS under all storage conditions since biodegradation was assembly limited. The PEs were unstable under the studied conditions, especially when exposed to light and room temperature. To protect against PE degradation, a material should be stored in a light-protected container and below 4 °C. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Entropy Rate of Time-Varying Wireless Networks

    DEFF Research Database (Denmark)

    Cika, Arta; Badiu, Mihai Alin; Coon, Justin P.

    2018-01-01

    In this paper, we present a detailed framework to analyze the evolution of the random topology of a time-varying wireless network via the information theoretic notion of entropy rate. We consider a propagation channel varying over time with random node positions in a closed space and Rayleigh...... fading affecting the connections between nodes. The existence of an edge between two nodes at given locations is modeled by a Markov chain, enabling memory effects in network dynamics. We then derive a lower and an upper bound on the entropy rate of the spatiotemporal network. The entropy rate measures...

  17. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  18. Calculating in situ degradation rates of hydrocarbon compounds in deep waters of the Gulf of Mexico.

    Science.gov (United States)

    Thessen, Anne E; North, Elizabeth W

    2017-09-15

    Biodegradation is an important process for hydrocarbon weathering that influences its fate and transport, yet little is known about in situ biodegradation rates of specific hydrocarbon compounds in the deep ocean. Using data collected in the Gulf of Mexico below 700m during and after the Deepwater Horizon oil spill, we calculated first-order degradation rate constants for 49 hydrocarbons and inferred degradation rate constants for an additional 5 data-deficient hydrocarbons. Resulting calculated (not inferred) half-lives of the hydrocarbons ranged from 0.4 to 36.5days. The fastest degrading hydrocarbons were toluene (k=-1.716), methylcyclohexane (k=-1.538), benzene (k=-1.333), and C1-naphthalene (k=-1.305). The slowest degrading hydrocarbons were the large straight-chain alkanes, C-26 through C-33 (k=-0.0494 through k=-0.007). Ratios of C-18 to phytane supported the hypothesis that the primary means of degradation in the subsurface was microbial biodegradation. These degradation rate constants can be used to improve models describing the fate and transport of hydrocarbons in the event of an accidental deep ocean oil spill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Zircaloy-oxidation and hydrogen-generation rates in degraded-core accident situations

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1983-02-01

    Oxidation of Zircaloy cladding is the primary source of hydrogen generated during a degraded-core accident. In this paper, reported Zircaloy oxidation rates, either measured at 1500 to 1850 0 C or extrapolated from the low-temperature data obtained at 0 C, are critically reviewed with respect to their applicability to a degraded-core accident situation in which the high-temperature fuel cladding is likely to be exposed to and oxidized in mixtures of hydrogen and depleted steam, rather than in an unlimited flux of pure steam. New results of Zircaloy oxidation measurements in various mixtures of hydrogen and steam are reported for >1500 0 C. The results show significantly smaller oxidation and, hence, hydrogen-generation rates in the mixture, compared with those obtained in pure steam. It is also shown that a significant fraction of hydrogen, generated as a result of Zircaloy oxidation, is dissolved in the cladding material itself, which prevents that portion of hydrogen from reaching the containment building space. Implications of these findings are discussed in relation to a more realistic method of quantifying the hydrogen source term for a degraded-core accident analysis

  20. Network Degradation Effects on Different Codec Types and Characteristics of Video Streaming

    Directory of Open Access Journals (Sweden)

    Jaroslav Frnda

    2014-01-01

    Full Text Available Nowadays, there is a quickly growing demand for the transmission of voice, video and data over an IP based network. Multimedia, whether we are talking about broadcast, audio and video transmission and others, from a global perspective is growing exponentially with time. With incoming requests from users, new technologies for data transfer are continually developing. Data must be delivered reliably and with the fewest losses at such high speed. Video quality as part of multimedia technology has a very important role nowadays. It is influenced by several factors, where each of them can have many forms and processing. Network performance is the major degradation effect that influences the quality of resulting image. Poor network performance (lack of link capacity, high network load… causes data packet losses or different delivery time for each packet. This work focuses exactly on these network phenomena. It examines the impact of different delays and packet losses on the quality parameters of triple play services, to evaluate the results using objective methods. The aim of this work is to bring a detailed view on the performance of video streaming over IP-based networks.

  1. Energy-aware architecture for multi-rate ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmed Yahya

    2010-06-01

    Full Text Available The backbone of ad hoc network design is energy performance and bandwidth resources limitations. Multi-rate adaptation architectures have been proposed to reduce the control overhead and to increase bandwidth utilization efficiency. In this paper, we propose a multi-rate protocol to provide the highest network performance under very low control overhead. The efficiency of the proposed auto multi-rate protocol is validated extensive simulations using QualNet network simulator. The simulation results demonstrate that our solution significantly improves the overall network performance.

  2. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    Science.gov (United States)

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  3. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  4. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  5. Rate and extent of ruminal degradation of crude protein from ...

    African Journals Online (AJOL)

    Predicted crude protein degradation was calculated at rate constants for outflow of 0.04 and 0.06/h respect- ively. ... as buffers, an ionophore and an antibiotic according to general .... the non-bird resistant ('sweet') varieties. Ruminal .... have been affected by both the particle type and the math- ematical model we used.

  6. In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer

    DEFF Research Database (Denmark)

    Nielsen, P.H.; Bjerg, P.L.; Nielsen, P.

    1996-01-01

    In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of benzene, toluene, o-xylene, nitrobenzene, naphthalene, biphenyl, o- and p-dichlorobenzene, 1,1,1 -trichloroethane, tetrachlorometane, trichloroethene......, tetrachloroethene, phenol, o-cresol, 2,4- and 2,6-dichlorophenol, 4,6-o-dichlorocresol, and o- and p-nitrophenol in an aerobic aquifer, All aromatic hydrocarbons were degraded in ISM and LBM experiments. The phenolic hydrocarbons were ail degraded in ISM experiments, but some failed to degrade in LBM experiments....... Chlorinated aliphatic hydrocarbons were degraded neither in ISM nor LBM experiments. Degradation rate constants were determined by a model accounting for kinetic sorption (bicontinuum model), lag phases, and first-order degradation. With a few exceptions, lag phases were less than 2 weeks in both ISM and LBM...

  7. Degradation rate of vitamin B6 on red chili pepper drying by blanching-brine-calcium pretreatment

    Directory of Open Access Journals (Sweden)

    Uma Fadzilia Arifin

    2017-12-01

    Full Text Available Drying is one of the alternatives to prevent spoilage in red chili pepper by removing moisture content. Red chili pepper (Capsicum frutescens has complex nutrition components such as vitamins and bioactive compound. However, vitamin B6 content in chili can degrade significantly in drying process by heat. This research studied degradation rate of vitamin B6 in chili drying process under various pretreatments and temperatures. In this study, post-harvest chili before dried was pretreated by blanching, osmotic dehydration with brine, immersing in calcium chloride solution and the combination of all them. They were dried in tray dyer at various temperatures 40°C, 50°C, 60°C and 70°C. Degradation of vitamin B6 content was analyzed every 2 hours by High-Performance Liquid Chromatography for 8 hours. Results showed that blanching-brine-calcium pretreatment was expected to reduce drying time and retain high content of vitamin B6 in red chili pepper. The degradation rate of vitamin B6 in chili followed second-order reaction. The degradation rate was influenced by temperature change referring to Arrhenius equation with activation energy was about 31.97 kJ/ mol K and constant rate (k0 was 3.769. Therefore, the vitamin B6 retention can be estimated at various pretreatments, times and temperatures. Furthermore, the favorable drying conditions can be evaluated.

  8. Networking Technologies and the Rate of Technological Change

    Directory of Open Access Journals (Sweden)

    Charles Mitchell

    2005-12-01

    Full Text Available Network technology is changing rapidly and those adept at ICT analysis need resolve rate of change issues. Developments in networking now are in the direction of heuristic intelligence. Since about 1980, networking techniques have encouraged combining bits of information with imagination cognitively to improve ideas about reality. ICT enterprise projects utilize networking to sustain requisite imagination. Assumptions and misassuptions of project builders are rationally comprehended as networking sustains creative processes. The monopolization of valuable network techniques influences in the direction of esoteric networking. Data presents that substantial knowledge and networking is now occurring globally. As a netaphor, networking

  9. Degradation rate of praziquantel and fenbendazole in rainbow trout following oral administration.

    Science.gov (United States)

    Soukupova-Markova, Zdenka; Doubkova, Veronika; Marsalek, Petr; Svobodova, Zdenka; Papezikova, Ivana; Lang, Stepan; Navratil, Stanislav; Palikova, Miroslava

    2015-01-01

    The aim of this study was to evaluate and compare the rate of degradation and elimination of praziquantel and fenbendazole antiparasitics following oral administration to salmonids. In addition, we determine whether the length of the legal withdrawal period is sufficient for complete elimination of antiparasitic residue from the body. The use of these drugs in fish is currently considered off-label and data on degradation are not available for rainbow trout. The model species for this experiment was the rainbow trout (Oncorhynchus mykiss) and praziquantel and fenbendazole were chosen for experimental therapy. Both drugs were administered into the gastrointestinal tract using a stomach tube. Concentrations of fenbendazole and praziquantel were established through high performance liquid chromatography-tandem mass spectrometry. Our results show that concentrations of praziquantel and fenbendazole reach their maximum in the body within 24 hours of administration, with concentrations dropping sharply over the following 24 hours. With one exception, when trace amounts of both substances were found in blood plasma, the drugs were completely degraded and eliminated from the body by the end of the experiment (corresponding to 497.6 degree days). Praziquantel and fenbendazole both show a high rate of degradation and elimination from fish. As both substances were eliminated from the body within the required withdrawal period (i.e. within 500 degree days) they can be safely used based on current knowledge of their therapeutic effect for treating helminth infections.

  10. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Ho [Korea Univ., Seoul (Korea, Republic of); Chudnovsky, Alexander [The University of Illinois, Chicago (United States)

    2008-07-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented.

  11. Evaluation of mechano-chemical degradation induced stresses of polyolefin pipes

    International Nuclear Information System (INIS)

    Choi, Byoung Ho; Chudnovsky, Alexander

    2008-01-01

    The fracture phenomena in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. In this paper, the evaluation of mechano-chemical degradation induced stress is attempted, and the application of the evaluated stress to the fracture initiation of polymer pipes is presented

  12. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical-optical......-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  13. Effect of Moisture Content of Chitin-Calcium Silicate on Rate of Degradation of Cefotaxime Sodium.

    Science.gov (United States)

    Al-Nimry, Suhair S; Alkhamis, Khouloud A

    2018-04-01

    Assessment of incompatibilities between active pharmaceutical ingredient and pharmaceutical excipients is an important part of preformulation studies. The objective of the work was to assess the effect of moisture content of chitin calcium silicate of two size ranges (two specific surface areas) on the rate of degradation of cefotaxime sodium. The surface area of the excipient was determined using adsorption method. The effect of moisture content of a given size range on the stability of the drug was determined at 40°C in the solid state. The moisture content was determined at the beginning and the end of the kinetic study using TGA. The degradation in solution was studied for comparison. Increasing the moisture content of the excipient of size range 63-180 μm (surface area 7.2 m 2 /g) from 3.88 to 8.06% increased the rate of degradation of the drug more than two times (from 0.0317 to 0.0718 h -1 ). While an opposite trend was observed for the excipient of size range moisture content moisture content of 8.54%, and the degradation in solid state at both moisture contents was higher than that in solution (0.0871 h -1 ). In conclusion, the rate of degradation in solid should be studied taking into consideration the specific surface area and moisture content of the excipient at the storage condition and it may be higher than that in solution.

  14. Measurement bias dependence of enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Mayer, D.C.; Fleetwood, D.M.

    1998-03-01

    Oxide trapped charge, field effects from emitter metallization, and high level injection phenomena moderate enhanced gain degradation of lateral pnp transistors at low dose rates. Hardness assurance tests at elevated irradiation temperatures require larger design margins for low power measurement biases

  15. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Wei, A.; DeLaus, M.; Combs, W.E.; Pease, R.L.

    1994-01-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of ∼25 C, the net trapped-positive-charge density (N ox ) inferred from midgap C-V shifts is ∼25--40% greater for low-dose-rate ( 2 )/s) than for high-dose-rate (> 100 rad(SiO 2 )/s) exposure. Device modeling shows that such a difference in screen-oxide N ox is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the ∼ exp(N ox 2 ) dependence of the excess base current. At the higher rates, TSC measurements reveal a ∼10% decrease in trapped-hole density over low rates. Also, at high rates, up to ∼2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in Eδ' centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO 2 )/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications

  16. Rate of atrazine mineralisation in New Zealand topsoils and subsoils depends on numbers of specialist atrazine-degrading microorganisms

    International Nuclear Information System (INIS)

    Sparling, G.; Fraser, R.; Aislabie, J.; Dragten, R.

    1998-01-01

    Full text: The herbicide atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-s-triazine) is widely used in horticulture and arable farming in New Zealand and there is a trend towards increasing concentrations in aquifers and ground waters. Microbial degradation is considered a major route whereby atrazine is decomposed in soil. Microbial activity declines rapidly with depth of soil, so to predict the risks of atrazine reaching aquifers, we need to know the rates of mineralisation at different depths in the soil profile. We measured the rates of mineralisation of [U] 14 C-ring-labelled atrazine in topsoils and subsoils of two sandy loam soils and an allophanic soil under a range of temperature and moisture conditions. The numbers of atrazine-degrading organisms were measured using a most-probable number method based on the mineralisation of [U] 14 C-ring-labelled atrazine to 14 CO 2 . Numbers of atrazine-degraders and rates of mineralisation were generally very low in subsoils. However, one subsoil had unusually high numbers of atrazine-degrading microbes and showed equivalent rates of mineralisation rates to those in the surface soil. The rate of atrazine mineralisation could be predicted from the number of atrazine-degrading microbes and the cation exchange capacity of the soil (R 2 = 0.86). A large amount (54-77%) of 14 C remained in the soil as non-extractable residues after 263 days but only trace amounts of atrazine were detectable

  17. Effect of indoor climate on the rate and degradation mechanism of plasticized poly (vinyl chloride)

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2003-01-01

    Many PVC materials deteriorate only 5 years after manufacture. The extent, rate and mechanisms of deterioration of model and naturally aged PVC containing di (2-ethylhexyl) phthalate (DEHP), have been examined during thermal ageing in various environments. Weight loss was used to quantify loss...... inhibited degradation of the PVC polymer, therefore when it was lost, discolouration, tackiness and embrittlement resulted. Less plasticized materials degraded more rapidly than those more highly plasticized. Degradation was inhibited in both model sheets and naturally aged materials by enclosing them...

  18. High throughput route selection in multi-rate wireless mesh networks

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-fei; GUO Xiang-li; SONG Mei; SONG Jun-de

    2008-01-01

    Most existing Ad-hoc routing protocols use the shortest path algorithm with a hop count metric to select paths. It is appropriate in single-rate wireless networks, but has a tendency to select paths containing long-distance links that have low data rates and reduced reliability in multi-rate networks. This article introduces a high throughput routing algorithm utilizing the multi-rate capability and some mesh characteristics in wireless fidelity (WiFi) mesh networks. It uses the medium access control (MAC) transmission time as the routing metric, which is estimated by the information passed up from the physical layer. When the proposed algorithm is adopted, the Ad-hoc on-demand distance vector (AODV) routing can be improved as high throughput AODV (HT-AODV). Simulation results show that HT-AODV is capable of establishing a route that has high data-rate, short end-to-end delay and great network throughput.

  19. Bifunctional composite from spent "Cyprus coffee" for tetracycline removal and phenol degradation: Solar-Fenton process and artificial neural network.

    Science.gov (United States)

    Oladipo, Akeem Adeyemi; Abureesh, Mosab Ali; Gazi, Mustafa

    2016-09-01

    Removals of tetracycline and photocatalytic degradation of phenol by Fe3O4/coffee residue (MCC) were investigated. Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM) and Boehm titration were employed to characterize MCC. Artificial neural network (ANN) model was developed to predict the tetracycline (TC) concentration in the column effluent. Maximum tetracycline adsorption capacity of 285.6mg/g was observed in a batch system. High removal efficiency (87%) was obtained at 3.3mL/min flow rate, 8.0cm bed height and 50mg/L influent TC concentration in a column system. Complete degradation of phenol by solar-Fenton was attained at 60min irradiation time. Total organic carbon (TOC) removal increased to 63.3% in the presence of 1.0g/L MCC, 1.2g/L H2O2 and solar irradiation. MCC showed remarkable potential to remove antibiotics from wastewater even in the presence of heavy metal (Ni(2+)) via magnetic separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks.

    Directory of Open Access Journals (Sweden)

    Saket Navlakha

    2015-07-01

    Full Text Available Robust, efficient, and low-cost networks are advantageous in both biological and engineered systems. During neural network development in the brain, synapses are massively over-produced and then pruned-back over time. This strategy is not commonly used when designing engineered networks, since adding connections that will soon be removed is considered wasteful. Here, we show that for large distributed routing networks, network function is markedly enhanced by hyper-connectivity followed by aggressive pruning and that the global rate of pruning, a developmental parameter not previously studied by experimentalists, plays a critical role in optimizing network structure. We first used high-throughput image analysis techniques to quantify the rate of pruning in the mammalian neocortex across a broad developmental time window and found that the rate is decreasing over time. Based on these results, we analyzed a model of computational routing networks and show using both theoretical analysis and simulations that decreasing rates lead to more robust and efficient networks compared to other rates. We also present an application of this strategy to improve the distributed design of airline networks. Thus, inspiration from neural network formation suggests effective ways to design distributed networks across several domains.

  1. Tunable Degradation Rate and Favorable Bioactivity of Porous Calcium Sulfate Scaffolds by Introducing Nano-Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Jianhua Zhou

    2016-12-01

    Full Text Available The bone scaffolds should possess suitable physicochemical properties and osteogenic activities. In this study, porous calcium sulfate (CaSO4 scaffolds were fabricated successfully via selected laser sintering (SLS. Nano-hydroxyapatite (nHAp, a bioactive material with a low degradation rate, was introduced into CaSO4 scaffolds to overcome the overquick absorption. The results demonstrated that nHAp could not only control the degradation rate of scaffolds by adjusting their content, but also improve the pH environment by alleviating the acidification progress during the degradation of CaSO4 scaffolds. Moreover, the improved scaffolds were covered completely with the apatite spherulites in simulated body fluid (SBF, showing their favorable bioactivity. In addition, the compression strength and fracture toughness were distinctly enhanced, which could be ascribed to large specific area of nHAp and the corresponding stress transfer.

  2. Explanation of enhanced mechanical degradation rate for radiation- aged polyolefins as the aging temperature is decreased

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.; Wise, J.; Malone, M.G.

    1994-01-01

    Degradation rates are normally increased by increasing the responsible environmental stresses. We describe results for a semi-crystalline, crosslinked polyolefin material that contradicts this assumption. In particular, under combined radiation plus thermal environments, this material mechanically degrades much faster at room temperature than it does at elevated temperatures. The probable explanation for this phenomenon relates to the importance on mechanical properties of the tie molecules connecting crystalline and amorphous regions. Partial melting and reforming/ reorganization of crystallites occurs throughout the crystalline melting region (at least room temperature up to 126 C), with the rate of such processes increasing with an increase in temperature. At low temperatures, this process is sufficiently slow such that a large percentage of the radiation-damaged tie molecules will still connect the amorphous and crystalline regions at the end of aging, leading to rapid reductions in tensile properties. At higher temperatures, the enhanced annealing rate will lead, during the aging, to the establishment of new, undamaged tie molecules connecting crystalline and amorphous regions. This healing process will reduce the degradation rate. Evidence in support of this model is presented

  3. Video interpretability rating scale under network impairments

    Science.gov (United States)

    Kreitmair, Thomas; Coman, Cristian

    2014-01-01

    This paper presents the results of a study of the impact of network transmission channel parameters on the quality of streaming video data. A common practice for estimating the interpretability of video information is to use the Motion Imagery Quality Equation (MIQE). MIQE combines a few technical features of video images (such as: ground sampling distance, relative edge response, modulation transfer function, gain and signal-to-noise ratio) to estimate the interpretability level. One observation of this study is that the MIQE does not fully account for video-specific parameters such as spatial and temporal encoding, which are relevant to appreciating degradations caused by the streaming process. In streaming applications the main artifacts impacting the interpretability level are related to distortions in the image caused by lossy decompression of video data (due to loss of information and in some cases lossy re-encoding by the streaming server). One parameter in MIQE that is influenced by network transmission errors is the Relative Edge Response (RER). The automated calculation of RER includes the selection of the best edge in the frame, which in case of network errors may be incorrectly associated with a blocked region (e.g. low resolution areas caused by loss of information). A solution is discussed in this document to address this inconsistency by removing corrupted regions from the image analysis process. Furthermore, a recommendation is made on how to account for network impairments in the MIQE, such that a more realistic interpretability level is estimated in case of streaming applications.

  4. Algorithm for queueing networks with multi-rate traffic

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; Ko, King-Tim

    2011-01-01

    the nodes behave as independent nodes. For closed queueing networks with multiple servers in every node and multi-rate services we may apply multidimensional convolution algorithm to aggregate the nodes so that we end up with two nodes, the aggregated node and a single node, for which we can calculate......In this paper we present a new algorithm for evaluating queueing networks with multi-rate traffic. The detailed state space of a node is evaluated by explicit formulæ. We consider reversible nodes with multi-rate traffic and find the state probabilities by taking advantage of local balance. Theory...... of queueing networks in general, presumes that we have product form between the nodes. Otherwise, we have the state space explosion. Even so, the detailed state space of each node may become very large because there is no product form between chains inside a node. A prerequisite for product form...

  5. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    Science.gov (United States)

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. © 2016 American Academy of Forensic Sciences.

  6. Algorithm for queueing networks with multi-rate traffic

    DEFF Research Database (Denmark)

    Iversen, Villy Bæk; King-Tim, Ko

    2011-01-01

    the nodes behave as independent nodes. For closed queueing networks with multiple servers in every node and multi-rate services we may apply multidimensional convolutions to aggregate the nodes so that we end up with two nodes, the aggregated node and a single node, for which we can calculate the detailed......In this paper we present a new algorithm for evaluating queueing networks with multi-rate traffic. The detailed state space of a node is evaluated by explicit formulæ. We consider reversible nodes with multi-rate traffic and find the state probabilities by taking advantage of local balance. Theory...... of queueing networks in general presumes that we have product form between the nodes. Other ways we have the state space explosion. Even so the detailed state space of each node may easily become very large because there is no product form between chains inside a node. A prerequisite for product form...

  7. Lifetime Evaluation of Grid-Connected PV Inverters Considering Panel Degradation Rates and Installation Sites

    OpenAIRE

    Sangwongwanich, Ariya; Yang, Yongheng; Sera, Dezso; Blaabjerg, Frede

    2018-01-01

    Lifetime of PV inverters is affected by the installation sites related to different solar irradiance and ambient temperature profiles (also referred to as mission profiles). In fact, the installation site also affects the degradation rate of the PV panels, and thus long-term energy production and reliability. Prior-art lifetime analysis in PV inverters has not yet investigated the impact of PV panel degradations. This paper thus evaluates the lifetime of PV inverters considering panel degrada...

  8. Fractional rate of degradation (kd) of starch in the rumen and its ...

    African Journals Online (AJOL)

    Fractional rate of degradation (kd) of fermentable nutrients in the rumen is an important parameter in modern feed evaluation systems based on mechanistic models. Estimates of kd for starch was obtained on 19 starch sources originating from barley, wheat, oat, maize and peas and treated in different ways both chemically ...

  9. Information mining in weighted complex networks with nonlinear rating projection

    Science.gov (United States)

    Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong

    2017-10-01

    Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.

  10. Scaling of Polymer Degradation Rate within a High-Reynolds-Number Turbulent Boundary Layer

    Science.gov (United States)

    Elbing, Brian; Solomon, Michael; Perlin, Marc; Dowling, David; Ceccio, Steven

    2009-11-01

    An experiment conducted at the U.S. Navy's Large Cavitation Channel on a 12.9 m long flat-plate test model produced the first quantitative measurements of polymer molecular weight within a turbulent boundary layer. Testing was conducted at speeds to 20 m/s and downstream distance based Reynolds numbers to 220 million. These results showed that the rate of polymer degradation by scission of the polymer chains increases with increased speed, downstream distance and surface roughness. With the surface fully rough at 20 m/s there was no measureable level of drag reduction at the first measurement location (0.56 m downstream of injection). These results are scaled with the assumption that the rate of degradation is dependent on the polymer residence time in the flow and the local shear rate. A successful collapse of the data within the measurement uncertainty was achieved over a range of flow speed (6.6 to 20 m/s), surface roughness (smooth and fully rough) and downstream distance from injection (0.56 to 9.28 m).

  11. Effect of dairy manure rate and the stabilization time of amended soils on atrazine degradation.

    Science.gov (United States)

    Aguilera, Paula; Briceño, Gabriela; Candia, Maribel; Mora, Maria de la Luz; Demanet, Rolando; Palma, Graciela

    2009-10-01

    The application rate of liquid cow manure (LCM) in the field and the stabilization time of amended soils before application of pre-plant herbicides are factors that determine their efficiency. This study includes evaluation of residual atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in soil and amended soils with equivalent rate of 100,000; 200,000; and 300,000 L ha(-1) of LCM and the effect of pre-incubation time of amended soils on atrazine degradation. The study was carried out under controlled conditions using an Andisol with previous historical application of atrazine. The respiratory activity and fluorescein diacetate (FDA) studies indicated that the time necessary for stabilization of amended soils is over 20-30 d. During the measurement of respiratory and FDA activity, no significant differences were observed when atrazine was applied. The half-life of atrazine ranged from 5 to 8d and the relative distribution of degradation products seem to be affected by the application of LCM. The pre-incubation time of amended soil and LCM dose would not affect atrazine degradation rate, when the soil has a history of herbicide application. However, repeated applications of LCM in a long period of time could change the soil pH and increase the content of dissolved organic carbon (DOC) which could further contribute to a faster degradation of atrazine. Both effects would reduce the effectiveness of atrazine in weed control.

  12. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    Science.gov (United States)

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid acid acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  13. Degradation rates in thermophilic sludge processing - the liquid and the solid way

    Energy Technology Data Exchange (ETDEWEB)

    Mihaltz, P.; Kovacs, R.; Csikor, Zs.; Dahab, M.F.

    2003-07-01

    Two promising and well known techniques for sludge stabilization and pathogen destruction, the composting and autothermal thermophilic aerobic digestion (ATAD, often referred to as ''liquid composting'') have not yet undergone a comparative parallel study. This comparison is presented in this paper to identify - sometimes unusually (e.g. up to 30 mg O{sub 2} /gVS h) high - degradation rates, their main influencing parameters. For the ATAD we developed a well fitting modified two-substrate kinetic model quantitatively describing this process feature too - the clear signs of two substrate degradation also appears in most own and literature composting records. However compost process modelling needs as a prerequisite the clarification of the controlling transport mechanisms. Experimental conclusions suggest the dual role of local VS limitation closely connected with, but being behind the strong observed oxygen limitation, what is proposed for the explanation of composting process rates - essentially based on specific surface area controlled transport phenomena, justifying efforts to conduct the process at lower (<20 to 25%) moisture content and higher (>1000 1/m) specific surface area levels. (author)

  14. A new approach to estimate the in situ fractional degradation rate of organic matter and nitrogen in wheat yeast concentrates

    NARCIS (Netherlands)

    De Jonge, L. H.; Van Laar, H.; Hendriks, W. H.; Dijkstra, J.

    2015-01-01

    In the classic in situ method, small particles are removed during rinsing and hence their fractional degradation rate cannot be determined. A new approach was developed to estimate the fractional degradation rate of nutrients in small particles. This approach was based on an alternative rinsing

  15. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li

    2013-06-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  17. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2013-01-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  18. Physician social networks and variation in rates of complications after radical prostatectomy.

    Science.gov (United States)

    Evan Pollack, Craig; Wang, Hao; Bekelman, Justin E; Weissman, Gary; Epstein, Andrew J; Liao, Kaijun; Dugoff, Eva H; Armstrong, Katrina

    2014-07-01

    Variation in care within and across geographic areas remains poorly understood. The goal of this article was to examine whether physician social networks-as defined by shared patients-are associated with rates of complications after radical prostatectomy. In five cities, we constructed networks of physicians on the basis of their shared patients in 2004-2005 Surveillance, Epidemiology and End Results-Medicare data. From these networks, we identified subgroups of urologists who most frequently shared patients with one another. Among men with localized prostate cancer who underwent radical prostatectomy, we used multilevel analysis with generalized linear mixed-effect models to examine whether physician network structure-along with specific characteristics of the network subgroups-was associated with rates of 30-day and late urinary complications, and long-term incontinence after accounting for patient-level sociodemographic, clinical factors, and urologist patient volume. Networks included 2677 men in five cities who underwent radical prostatectomy. The unadjusted rate of 30-day surgical complications varied across network subgroups from an 18.8 percentage-point difference in the rate of complications across network subgroups in city 1 to a 26.9 percentage-point difference in city 5. Large differences in unadjusted rates of late urinary complications and long-term incontinence across subgroups were similarly found. Network subgroup characteristics-average urologist centrality and patient racial composition-were significantly associated with rates of surgical complications. Analysis of physician networks using Surveillance, Epidemiology and End Results-Medicare data provides insight into observed variation in rates of complications for localized prostate cancer. If validated, such approaches may be used to target future quality improvement interventions. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier

  19. Finding Solvable Units of Variables in Nonlinear ODEs of ECM Degradation Pathway Network

    Directory of Open Access Journals (Sweden)

    Shuji Kawasaki

    2017-01-01

    Full Text Available We consider ordinary differential equation (ODE model for a pathway network that arises in extracellular matrix (ECM degradation. For solving the ODEs, we propose applying the mass conservation law (MCL, together with a stoichiometry called doubling rule, to them. Then it leads to extracting new units of variables in the ODEs that can be solved explicitly, at least in principle. The simulation results for the ODE solutions show that the numerical solutions are indeed in good accord with theoretical solutions and satisfy the MALs.

  20. Finding Solvable Units of Variables in Nonlinear ODEs of ECM Degradation Pathway Network.

    Science.gov (United States)

    Kawasaki, Shuji; Minerva, Dhisa; Itano, Keiko; Suzuki, Takashi

    2017-01-01

    We consider ordinary differential equation (ODE) model for a pathway network that arises in extracellular matrix (ECM) degradation. For solving the ODEs, we propose applying the mass conservation law (MCL), together with a stoichiometry called doubling rule , to them. Then it leads to extracting new units of variables in the ODEs that can be solved explicitly, at least in principle. The simulation results for the ODE solutions show that the numerical solutions are indeed in good accord with theoretical solutions and satisfy the MALs.

  1. Neural Networks Modelling of Municipal Real Estate Market Rent Rates

    Directory of Open Access Journals (Sweden)

    Muczyński Andrzej

    2016-12-01

    Full Text Available This paper presents the results of research on the application of neural networks modelling of municipal real estate market rent rates. The test procedure was based on selected networks trained on the local real estate market data and transformation of the detected dependencies – through established models – to estimate the potential market rent rates of municipal premises. On this basis, the assessment of the adequacy of the actual market rent rates of municipal properties was made. Empirical research was conducted on the local real estate market of the city of Olsztyn in Poland. In order to describe the phenomenon of market rent rates formation an unidirectional three-layer network and a network of radial base was selected. Analyses showed a relatively low degree of convergence of the actual municipal rent rents with potential market rent rates. This degree was strongly varied depending on the type of business ran on the property and its’ social and economic impact. The applied research methodology and the obtained results can be used in order to rationalize municipal property management, including the activation of rental policy.

  2. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Directory of Open Access Journals (Sweden)

    Shuai Zeng

    2013-01-01

    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  3. Pressurized Hot Water Extraction of anthocyanins from red onion: A study on extraction and degradation rates

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Erik V.; Liu Jiayin; Sjoeberg, Per J.R.; Danielsson, Rolf [Uppsala University, Department of Physical and Analytical Chemistry, P.O. Box 599, SE-751 24, Uppsala (Sweden); Turner, Charlotta, E-mail: Charlotta.Turner@kemi.uu.se [Uppsala University, Department of Physical and Analytical Chemistry, P.O. Box 599, SE-751 24, Uppsala (Sweden)

    2010-03-17

    Pressurized Hot Water Extraction (PHWE) is a quick, efficient and environmentally friendly technique for extractions. However, when using PHWE to extract thermally unstable analytes, extraction and degradation effects occur at the same time, and thereby compete. At first, the extraction effect dominates, but degradation effects soon take over. In this paper, extraction and degradation rates of anthocyanins from red onion were studied with experiments in a static batch reactor at 110 deg. C. A total extraction curve was calculated with data from the actual extraction and degradation curves, showing that more anthocyanins, 21-36% depending on the species, could be extracted if no degradation occurred, but then longer extraction times would be required than those needed to reach the peak level in the apparent extraction curves. The results give information about the different kinetic processes competing during an extraction procedure.

  4. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    Science.gov (United States)

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Elimination of intermediate species in multiscale stochastic reaction networks

    DEFF Research Database (Denmark)

    Cappelletti, Daniele; Wiuf, Carsten

    2016-01-01

    such as the substrate-enzyme complex in the Michaelis-Menten mechanism. Such species are virtually in all real-world networks, they are typically short-lived, degraded at a fast rate and hard to observe experimentally. We provide conditions under which the Markov process of a multiscale reaction network...

  6. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles.

    Science.gov (United States)

    Dhiman, Nitesh; Markandeya; Singh, Amrita; Verma, Neeraj K; Ajaria, Nidhi; Patnaik, Satyakam

    2017-05-01

    ZnO NPs were synthesized by a prudent green chemistry approach in presence of polyacrylamide grafted guar gum polymer (pAAm-g-GG) to ensure uniform morphology, and functionality and appraised for their ability to degrade photocatalytically Acridine Orange (AO) dye. These ZnO@pAAm-g-GG NPs were thoroughly characterized by various spectroscopic, XRD and electron microscopic techniques. The relative quantity of ZnO NPs in polymeric matrix has been estimated by spectro-analytical procedure; AAS and TGA analysis. The impact of process parameters viz. NP's dose, contact time and AO dye concentration on percentage photocatalytic degradation of AO dyes were evaluated using multivariate optimizing tools, Response Surface Methodology (RSM) involving Box-Behnken Design (BBD) and Artificial Neural Network (ANN). Congruity of the BBD statistical model was implied by R 2 value 0.9786 and F-value 35.48. At RSM predicted optimal condition viz. ZnO@pAAm-g-GG NP's dose of 0.2g/L, contact time of 210min and AO dye concentration 10mg/L, a maximum of 98% dye degradation was obtained. ANOVA indicated appropriateness of the model for dye degradation owing to "Prob.>F" less than 0.05 for variable parameters. We further, employed three layers feed forward ANN model for validating the BBD process parameters and suitability of our chosen model. The evaluation of Levenberg-Marquardt algorithm (ANN1) and Gradient Descent with adaptive learning rate (ANN2) model employed to scrutinize the best method and found experimental values of AO dye degradation were in close to those with predicated value of ANN 2 modeling with minimum error. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates.

    Science.gov (United States)

    Wang, Congzheng; Hu, Song; Gao, Chunming; Feng, Chang

    2018-02-08

    In this work, we irradiated a high-definition (HD) industrial camera based on a commercial-off-the-shelf (COTS) CMOS image sensor (CIS) with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR) versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB). The work is valuable and can provide suggestion for camera users in the radiation field.

  8. Study Heart Rate by Tools from Complex Networks

    International Nuclear Information System (INIS)

    Makowiec, D.; Wdowczyk-Szulc, J.; Zarczynska-Buchowiecka, M.; Gruchala, M.; Rynkiewicz, A.

    2011-01-01

    Heart rate measured as beat-to-beat time intervals varies in time. It is believed that time intervals between subsequent normal heart contractions carry information about the regulatory system of the heart. How to quantify such signals is not clear and because of that heart rate variability is still apart from the clinic routine. In the following, we propose a method for representing a heart rate signal as a directed network. Then we study the signal properties by complex network tools. The signals to study were collected from patients recovering after the heart transplantation. The aim is to classify the progress of adapting of the new heart - graft. Moreover, it is expected that the method allows for visual classification. Our investigations are preliminary, however the obtained results are promising. (authors)

  9. Inference of financial networks using the normalised mutual information rate

    Science.gov (United States)

    2018-01-01

    In this paper, we study data from financial markets, using the normalised Mutual Information Rate. We show how to use it to infer the underlying network structure of interrelations in the foreign currency exchange rates and stock indices of 15 currency areas. We first present the mathematical method and discuss its computational aspects, and apply it to artificial data from chaotic dynamics and to correlated normal-variates data. We then apply the method to infer the structure of the financial system from the time-series of currency exchange rates and stock indices. In particular, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks, of which we also study their structural properties. Our results show that both inferred networks are small-world networks, sharing similar properties and having differences in terms of assortativity. Importantly, our work shows that global economies tend to connect with other economies world-wide, rather than creating small groups of local economies. Finally, the consistent interrelations depicted among the 15 currency areas are further supported by a discussion from the viewpoint of economics. PMID:29420644

  10. Inference of financial networks using the normalised mutual information rate.

    Science.gov (United States)

    Goh, Yong Kheng; Hasim, Haslifah M; Antonopoulos, Chris G

    2018-01-01

    In this paper, we study data from financial markets, using the normalised Mutual Information Rate. We show how to use it to infer the underlying network structure of interrelations in the foreign currency exchange rates and stock indices of 15 currency areas. We first present the mathematical method and discuss its computational aspects, and apply it to artificial data from chaotic dynamics and to correlated normal-variates data. We then apply the method to infer the structure of the financial system from the time-series of currency exchange rates and stock indices. In particular, we study and reveal the interrelations among the various foreign currency exchange rates and stock indices in two separate networks, of which we also study their structural properties. Our results show that both inferred networks are small-world networks, sharing similar properties and having differences in terms of assortativity. Importantly, our work shows that global economies tend to connect with other economies world-wide, rather than creating small groups of local economies. Finally, the consistent interrelations depicted among the 15 currency areas are further supported by a discussion from the viewpoint of economics.

  11. Investigating the effect of artists’ paint formulation on degradation rates of TiO2‑based oil paints

    NARCIS (Netherlands)

    van Driel, B.A.; van den Berg, K. J.; Smout, M.; Dekker, N; Kooyman, P.J.; Dik, J.

    2018-01-01

    This study reports on the effect of artists’ paint formulation on degradation rates of TiO2-based oil paints. Titanium white oil paint exists in a multitude of different recipes, and the effect of the formulation on photocatalytic binder
    degradation kinetics is unknown. These formulations

  12. Nuclear Radiation Degradation Study on HD Camera Based on CMOS Image Sensor at Different Dose Rates

    Directory of Open Access Journals (Sweden)

    Congzheng Wang

    2018-02-01

    Full Text Available In this work, we irradiated a high-definition (HD industrial camera based on a commercial-off-the-shelf (COTS CMOS image sensor (CIS with Cobalt-60 gamma-rays. All components of the camera under test were fabricated without radiation hardening, except for the lens. The irradiation experiments of the HD camera under biased conditions were carried out at 1.0, 10.0, 20.0, 50.0 and 100.0 Gy/h. During the experiment, we found that the tested camera showed a remarkable degradation after irradiation and differed in the dose rates. With the increase of dose rate, the same target images become brighter. Under the same dose rate, the radiation effect in bright area is lower than that in dark area. Under different dose rates, the higher the dose rate is, the worse the radiation effect will be in both bright and dark areas. And the standard deviations of bright and dark areas become greater. Furthermore, through the progressive degradation analysis of the captured image, experimental results demonstrate that the attenuation of signal to noise ratio (SNR versus radiation time is not obvious at the same dose rate, and the degradation is more and more serious with increasing dose rate. Additionally, the decrease rate of SNR at 20.0, 50.0 and 100.0 Gy/h is far greater than that at 1.0 and 10.0 Gy/h. Even so, we confirm that the HD industrial camera is still working at 10.0 Gy/h during the 8 h of measurements, with a moderate decrease of the SNR (5 dB. The work is valuable and can provide suggestion for camera users in the radiation field.

  13. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect

    Science.gov (United States)

    Sidi, Ahmedou; Colombani, Juliette; Larché, Jean-François; Rivaton, Agnès

    2018-01-01

    This study is focused on the radiooxidative degradation of polymeric insulation of electric cables used in Nuclear Power Plants (NPPs). In order to investigate the degradation mechanisms of the insulation, model composites with ATH (Aluminium TriHydrate) filler and blends (without filler) based on a cross-linked mixture of EVA (Ethylene Vinyl Acetate) and EPDM (Ethylene Propylene Diene Monomer) were submitted to gamma-rays. In normal operating conditions of a NPP, the dose rate which electric cables are exposed to is around 0.1 Gy h-1. In this work, artificial accelerated ageing test process has been applied at a relatively low dose rate of 7 Gy h-1. Gamma-irradiations at higher dose rates typically used to accelerate the ageing, in the range 0.2-1 kGy h-1, were also carried out. The first part of the study is focused on irradiations performed at relatively low dose rate and is devoted to the highlighting of the radiooxidative degradation mechanisms of EVA/EPDM blend with and without ATH filler. Correlations between the evolutions of the chemical, morphological and mechanical/electrical properties of the materials occurring after the ageing process are presented. It is shown that the degradation process is governed by radical oxidation mechanism involving chain scissions leading to the formation of carboxylic acids as end-groups. One of the main effects of the ATH filler is the progressive loss of the mechanical properties of the composite upon radiooxidation whereas they are maintained in the case of the unfilled sample. Despite the oxidation of the polymer, no change in the electrical properties of the blend and of the composite could be observed. The second part of the study focuses on the dose rate effect. It is shown that one of the main consequences of an increase of the dose rate from 7 Gy h-1 to 0.2-1 kGy h-1 is a reduction of the chain scission process yield by a factor of about 20. Therefore, an important and consistent finding is that there are some

  14. Flow rate of transport network controls uniform metabolite supply to tissue.

    Science.gov (United States)

    Meigel, Felix J; Alim, Karen

    2018-05-01

    Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate. © 2018 The Authors.

  15. Structure and Degradation Behaviour of Calcium Phosphate Glasses

    International Nuclear Information System (INIS)

    Silva, A M B; Correia, R N; Fernandes, M H V; Oliveira, J M M

    2011-01-01

    Some studies have shown a relationship between glass structure and in vitro mineralization, generally associated with the rate of glass degradation, nature of released ions and subsequent Ca-P precipitation on glass surfaces when immersed in a Simulated Body Fluid (SBF). The knowledge of the ionic species distribution in glasses and of the involved bond strengths can be used to assess the in vitro behaviour of a glass. The role of ions such as silicon or titanium is of major importance for the development of new compositions and also for the control of glass degradation behaviour. A comparative study with two calcium phosphate glasses series was performed: Both glasses series - one with Si and another with Ti - include P 2 O 5 and alkaline earth ions in their compositions. Surface reactivity of glasses from the SiO 2 -containing system have been studied in SBF showing the precipitation of a Ca-P surface layer that increases with increasing MgO/CaO ratio. In glasses from the TiO 2 -containing series it is shown that the increase of TiO 2 contributes for the stabilization of the glass network thus allowing the control of their degradation rate when immersed in SBF. The relationship between structural features of these calcium-phosphate glasses and their degradation behaviour in SBF is discussed in terms of the structural role of Si and Ti ions. It is concluded that glasses with less interconnected species favour the Ca-P surface precipitation. The understanding of this relationship in synthetic physiological fluids is expected to allow the tailoring of glass degradation rates in complex biological systems.

  16. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system.

    Science.gov (United States)

    Wei, Yan; Wang, Shuying; Ma, Bin; Li, Xiyao; Yuan, Zhiguo; He, Yuelan; Peng, Yongzhen

    2014-10-01

    Poly-β-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

    Science.gov (United States)

    Woodard, Lindsay N; Page, Vanessa M; Kmetz, Kevin T; Grunlan, Melissa A

    2016-12-01

    Thermoresponsive shape memory polymers (SMPs) based on poly(ε-caprolactone) (PCL) whose shape may be actuated by a transition temperature (T trans ) have shown utility for a variety of biomedical applications. Important to their utility is the ability to modulate mechanical and degradation properties. Thus, in this work, SMPs are formed as semi-interpenetrating networks (semi-IPNs) comprised of a cross-linked PCL diacrylate (PCL-DA) network and thermoplastic poly(l-lactic acid) (PLLA). The semi-IPN uniquely allows for requisite crystallization of both PCL and PLLA. The influence of PLLA (PCL:PLLA wt% ratio) and PCL-DA molecular weight (n) on film properties are investigated. PCL-PLLA semi-IPNs are able to achieve enhanced mechanical properties and accelerated rates of degradation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes

    International Nuclear Information System (INIS)

    Mercurio, Philip; Burns, Kathryn A.; Negri, Andrew

    2004-01-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms. - Vegetable-derived lubricants were more degradable than mineral oil lubricants

  19. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Philip; Burns, Kathryn A.; Negri, Andrew

    2004-05-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms. - Vegetable-derived lubricants were more degradable than mineral oil lubricants.

  20. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes.

    Science.gov (United States)

    Mercurio, Philip; Burns, Kathryn A; Negri, Andrew

    2004-05-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms.

  1. The rate of incorporation and degradation of phenylalanine-14C by tissue slices of roosters fed a phenylalanine-free diet

    International Nuclear Information System (INIS)

    Ishibashi, Teru; Kametaka, Masao

    1975-01-01

    To investigate the reason why adult roosters maintain nitrogen equilibrium on a phenylalanine-free diet for long periods, the rates of incorporation and of degradation of phenylalanine, tyrosine- and isoleucine- 14 C by tissue slices of roosters on the control, phenylalanine-free or isoleucine-free diets were measured. The degradation rate of isoleucine by liver and muscle slices decreased significantly for the isoleucine-free diet. However, the degradation rate of phenylalanine- 14 C by liver slices for the phenylalanine-free diet was not significantly lower than that for the control diet in contrast to the previous observation in vivo. The incorporation rates of 14 C into liver and muscle proteins were not affected by the dietary conditions in this experiment except in the case of phenylalanine- 14 C by muscle slices for the phenylalanine-free diet. (auth.)

  2. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    Science.gov (United States)

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.; Salem, Ahmed H.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power

  4. Potential energy landscape and robustness of a gene regulatory network: toggle switch.

    Directory of Open Access Journals (Sweden)

    Keun-Young Kim

    2007-03-01

    Full Text Available Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks.

  5. Forecasting the mortality rates of Indonesian population by using neural network

    Science.gov (United States)

    Safitri, Lutfiani; Mardiyati, Sri; Rahim, Hendrisman

    2018-03-01

    A model that can represent a problem is required in conducting a forecasting. One of the models that has been acknowledged by the actuary community in forecasting mortality rate is the Lee-Certer model. Lee Carter model supported by Neural Network will be used to calculate mortality forecasting in Indonesia. The type of Neural Network used is feedforward neural network aligned with backpropagation algorithm in python programming language. And the final result of this study is mortality rate in forecasting Indonesia for the next few years

  6. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    International Nuclear Information System (INIS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-01-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  7. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    Science.gov (United States)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  8. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  9. The effect of zealots on the rate of consensus achievement in complex networks

    Science.gov (United States)

    Kashisaz, Hadi; Hosseini, S. Samira; Darooneh, Amir H.

    2014-05-01

    In this study, we investigate the role of zealots on the result of voting process on both scale-free and Watts-Strogatz networks. We observe that inflexible individuals are very effective in consensus achievement and also in the rate of ordering process in complex networks. Zealots make the magnetization of the system to vary exponentially with time. We obtain that on SF networks, increasing the zealots' population, Z, exponentially increases the rate of consensus achievement. The time needed for the system to reach a desired magnetization, shows a power-law dependence on Z. As well, we obtain that the decay time of the order parameter shows a power-law dependence on Z. We also investigate the role of zealots' degree on the rate of ordering process and finally, we analyze the effect of network's randomness on the efficiency of zealots. Moving from a regular to a random network, the re-wiring probability P increases. We show that with increasing P, the efficiency of zealots for reducing the consensus achievement time increases. The rate of consensus is compared with the rate of ordering for different re-wiring probabilities of WS networks.

  10. Topic-oriented community detection of rating-based social networks

    Directory of Open Access Journals (Sweden)

    Ali Reihanian

    2016-07-01

    Full Text Available Nowadays, real world social networks contain a vast range of information including shared objects, comments, following information, etc. Finding meaningful communities in this kind of networks is an interesting research area and has attracted the attention of many researchers. The community structure of complex networks reveals both their organization and hidden relations among their constituents. Most of the researches in the field of community detection mainly focus on the topological structure of the network without performing any content analysis. In recent years, a number of researches have proposed approaches which consider both the contents that are interchanged in networks, and the topological structures of the networks in order to find more meaningful communities. In this research, the effect of topic analysis in finding more meaningful communities in social networking sites in which the users express their feelings toward different objects (like movies by means of rating is demonstrated by performing extensive experiments.

  11. Preclusion of switch behavior in reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, C.

    2012-01-01

    We study networks taken with mass-action kinetics and provide a Jacobian criterion that applies to an arbitrary network to preclude the existence of multiple positive steady states within any stoichiometric class for any choice of rate constants. We are concerned with the characterization...... precludes the existence of degenerate steady states. Further, we relate injectivity of a network to that of the network obtained by adding outflow, or degradation, reactions for all species....

  12. Robust PV Degradation Methodology and Application

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deline, Christopher A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kimball, Greg [SunPower; Anderson, Mike [SunPower

    2017-11-15

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case of sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.

  13. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model.

    Science.gov (United States)

    Zhou, Jingwen; Xu, Zhenghong; Chen, Shouwen

    2013-04-01

    The thuringiensin abiotic degradation processes in aqueous solution under different conditions, with a pH range of 5.0-9.0 and a temperature range of 10-40°C, were systematically investigated by an exponential decay model and a radius basis function (RBF) neural network model, respectively. The half-lives of thuringiensin calculated by the exponential decay model ranged from 2.72 d to 16.19 d under the different conditions mentioned above. Furthermore, an RBF model with accuracy of 0.1 and SPREAD value 5 was employed to model the degradation processes. The results showed that the model could simulate and predict the degradation processes well. Both the half-lives and the prediction data showed that thuringiensin was an easily degradable antibiotic, which could be an important factor in the evaluation of its safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  15. Fixed-Point Approximations of Bandwidth-Sharing Networks with Rate Constraints

    NARCIS (Netherlands)

    M. Frolkova (Masha); J. Reed (Josh); A.P. Zwart (Bert)

    2011-01-01

    htmlabstractBandwidth-sharing networks are important flow level models of communication networks. We focus on the fact that it takes a signicant number of users to saturate a link, necessitating the inclusion of individual rate constraints. In particular we extend work of Reed & Zwart on fluid

  16. Pushing the network harder `Dynamic Ratings`

    Energy Technology Data Exchange (ETDEWEB)

    Liondas, V.; Howatt, C.; Norrie, P. [Prospect Electricity, Blacktown, NSW (Australia)

    1995-12-31

    The demand for electricity in the area serviced by Prospect Electricity, is increasing, necessitating an increase in power transfer through the distribution system. Satisfying this demand generally requires more electrical infrastructure, but this is becoming less feasible due to economic constraints and environmental considerations. This paper discusses an approach to the dynamic (or real time) rating of different network elements. Dynamic rating is taken to mean that rating which is determined essentially in real time using known temperature constraints for the relevant elements, together with the prevailing ambient or environmental conditions. The purpose of dynamic rating is to achieve greater system utilization, thus allowing significant economic benefits, particularly from deferment of capital expenditure and greater operational flexibility. A number of technologies are being developed to do this for overhead lines, underground cables and transformers. The dynamic rating of cables has proved to be the most intractable part of the dynamic rating project. Work done to date, however, using finite element techniques together with the proposals to further develop point and distributed temperature sensing using fibre optic methods gives some confidence to the future success of this development. (author). 2 tabs., 4 figs., 4 refs.

  17. Triangulation positioning system network

    Directory of Open Access Journals (Sweden)

    Sfendourakis Marios

    2017-01-01

    Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.

  18. Influence of the formation- and passivation rate of boron-oxygen defects for mitigating carrier-induced degradation in silicon within a hydrogen-based model

    International Nuclear Information System (INIS)

    Hallam, Brett; Abbott, Malcolm; Nampalli, Nitin; Hamer, Phill; Wenham, Stuart

    2016-01-01

    A three-state model is used to explore the influence of defect formation- and passivation rates of carrier-induced degradation related to boron-oxygen complexes in boron-doped p-type silicon solar cells within a hydrogen-based model. The model highlights that the inability to effectively mitigate carrier-induced degradation at elevated temperatures in previous studies is due to the limited availability of defects for hydrogen passivation, rather than being limited by the defect passivation rate. An acceleration of the defect formation rate is also observed to increase both the effectiveness and speed of carrier-induced degradation mitigation, whereas increases in the passivation rate do not lead to a substantial acceleration of the hydrogen passivation process. For high-throughput mitigation of such carrier-induced degradation on finished solar cell devices, two key factors were found to be required, high-injection conditions (such as by using high intensity illumination) to enable an acceleration of defect formation whilst simultaneously enabling a rapid passivation of the formed defects, and a high temperature to accelerate both defect formation and defect passivation whilst still ensuring an effective mitigation of carrier-induced degradation

  19. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    Science.gov (United States)

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  20. The association between social networks and self-rated risk of HIV ...

    African Journals Online (AJOL)

    Elizabeth J. Lyimo

    2014-03-18

    Mar 18, 2014 ... Bonding networks were defined as social groupings of students participating in activities ... bridging social networks and self-rated HIV risk behavior. ...... book for Theory and Research for the Sociology of Education, 241–258.

  1. Impact of window decrement rate on TCP performance in an adhoc network

    Science.gov (United States)

    Suherman; Hutasuhut, Arief T. W.; Badra, Khaldun; Al-Akaidi, Marwan

    2017-09-01

    Transmission control protocol (TCP) is a reliable transport protocol handling end to end connection in TCP/IP stack. It works well in copper or optical fibre link, but experiences increasing delay in wireless network. Further, TCP experiences multiple retransmissions due to higher collision probability within wireless network. The situation may get worsen in an ad hoc network. This paper examines the impact half window or window reduction rate to the overall TCP performances. The evaluation using NS-2 simulator shows that the smaller the window decrement rate results the smaller end to end delay. Delay is reduced to 17.05% in average when window decrement rate decreases. Average jitter also decreases 4.15%, while packet loss is not affected.

  2. Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review

    Science.gov (United States)

    Zhong, D.; Ma, W. C.; Jiang, X. Q.; Yuan, Y. X.; Yuan, Y.; Wang, Z. Q.; Fang, T. T.; Huang, W. Y.

    2017-08-01

    Chlorinated hydrocarbons are widely used as organic solvent and chemical raw materials. After treatment, water polluted with trichloroethylene (TCE)/tetrachloroethylene (PCE) can reach the water quality requirements, while water with trace amounts of TCE/PCE is still harmful to humans, which will cause cancers. Water distribution network is an extremely complicated system, in which adsorption, desorption, flocculation, movement, transformation and reduction will occur, leading to changes of TCE/PCE concentrations and products. Therefore, it is important to investigate the transformation rules of TCE/PCE in water distribution network. What’s more, growth-ring, including drinking water pipes deposits, can act as catalysts in Fenton-like reagent (H2O2). This review summarizes the status of transformation rules of CAHs in water distribution network. It also evaluates the effectiveness and fruit of CAHs degradation by Fenton-like reagent based on growth-ring. This review is important in solving the potential safety problems caused by TCE/PCE in water distribution network.

  3. Applications and extensions of degradation modeling

    International Nuclear Information System (INIS)

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs

  4. Applications and extensions of degradation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.; Subudhi, M.; Samanta, P.K. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International Corp., Columbus, OH (United States)

    1991-12-31

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  5. Applications and extensions of degradation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, F.; Subudhi, M.; Samanta, P.K. (Brookhaven National Lab., Upton, NY (United States)); Vesely, W.E. (Science Applications International Corp., Columbus, OH (United States))

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  6. Rate Aware Instantly Decodable Network Codes

    KAUST Repository

    Douik, Ahmed

    2016-02-26

    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. Further, the paper provides a multi-layer solution to improve the completion time approximation. Simulation results suggest that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme. © 2015 IEEE.

  7. Rate Aware Instantly Decodable Network Codes

    KAUST Repository

    Douik, Ahmed; Sorour, Sameh; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2016-01-01

    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. Further, the paper provides a multi-layer solution to improve the completion time approximation. Simulation results suggest that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme. © 2015 IEEE.

  8. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    Science.gov (United States)

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation.

    Science.gov (United States)

    Wu, Zhengjie; Su, Xin; Xu, Yuanyuan; Kong, Bin; Sun, Wei; Mi, Shengli

    2016-04-19

    Alginate hydrogel is a popular biologically inert material that is widely used in 3D bioprinting, especially in extrusion-based printing. However, the printed cells in this hydrogel could not degrade the surrounding alginate gel matrix, causing them to remain in a poorly proliferating and non-differentiating state. Here, we report a novel study of the 3D printing of human corneal epithelial cells (HCECs)/collagen/gelatin/alginate hydrogel incubated with a medium containing sodium citrate to obtain degradation-controllable cell-laden tissue constructs. The 3D-printed hydrogel network with interconnected channels and a macroporous structure was stable and achieved high cell viability (over 90%). By altering the mole ratio of sodium citrate/sodium alginate, the degradation time of the bioprinting constructs can be controlled. Cell proliferation and specific marker protein expression results also revealed that with the help of sodium citrate degradation, the printed HCECs showed a higher proliferation rate and greater cytokeratin 3(CK3) expression, indicating that this newly developed method may help to improve the alginate bioink system for the application of 3D bioprinting in tissue engineering.

  10. Fine-Grained Rate Shaping for Video Streaming over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Chen Tsuhan

    2004-01-01

    Full Text Available Video streaming over wireless networks faces challenges of time-varying packet loss rate and fluctuating bandwidth. In this paper, we focus on streaming precoded video that is both source and channel coded. Dynamic rate shaping has been proposed to “shape” the precompressed video to adapt to the fluctuating bandwidth. In our earlier work, rate shaping was extended to shape the channel coded precompressed video, and to take into account the time-varying packet loss rate as well as the fluctuating bandwidth of the wireless networks. However, prior work on rate shaping can only adjust the rate oarsely. In this paper, we propose “fine-grained rate shaping (FGRS” to allow for bandwidth adaptation over a wide range of bandwidth and packet loss rate in fine granularities. The video is precoded with fine granularity scalability (FGS followed by channel coding. Utilizing the fine granularity property of FGS and channel coding, FGRS selectively drops part of the precoded video and still yields decodable bit-stream at the decoder. Moreover, FGRS optimizes video streaming rather than achieves heuristic objectives as conventional methods. A two-stage rate-distortion (RD optimization algorithm is proposed for FGRS. Promising results of FGRS are shown.

  11. Adaptive threshold control for auto-rate fallback algorithm in IEEE 802.11 multi-rate WLANs

    Science.gov (United States)

    Wu, Qilin; Lu, Yang; Zhu, Xiaolin; Ge, Fangzhen

    2012-03-01

    The IEEE 802.11 standard supports multiple rates for data transmission in the physical layer. Nowadays, to improve network performance, a rate adaptation scheme called auto-rate fallback (ARF) is widely adopted in practice. However, ARF scheme suffers performance degradation in multiple contending nodes environments. In this article, we propose a novel rate adaptation scheme called ARF with adaptive threshold control. In multiple contending nodes environment, the proposed scheme can effectively mitigate the frame collision effect on rate adaptation decision by adaptively adjusting rate-up and rate-down threshold according to the current collision level. Simulation results show that the proposed scheme can achieve significantly higher throughput than the other existing rate adaptation schemes. Furthermore, the simulation results also demonstrate that the proposed scheme can effectively respond to the varying channel condition.

  12. Exchange rate prediction with multilayer perceptron neural network using gold price as external factor

    Directory of Open Access Journals (Sweden)

    Mohammad Fathian

    2012-04-01

    Full Text Available In this paper, the problem of predicting the exchange rate time series in the foreign exchange rate market is going to be solved using a time-delayed multilayer perceptron neural network with gold price as external factor. The input for the learning phase of the artificial neural network are the exchange rate data of the last five days plus the gold price in two different currencies of the exchange rate as the external factor for helping the artificial neural network improving its forecast accuracy. The five-day delay has been chosen because of the weekly cyclic behavior of the exchange rate time series with the consideration of two holidays in a week. The result of forecasts are then compared with using the multilayer peceptron neural network without gold price external factor by two most important evaluation techniques in the literature of exchange rate prediction. For the experimental analysis phase, the data of three important exchange rates of EUR/USD, GBP/USD, and USD/JPY are used.

  13. Assessment of the degradation efficiency of full-scale biogas plants: A comparative study of degradation indicators.

    Science.gov (United States)

    Li, Chao; Nges, Ivo Achu; Lu, Wenjing; Wang, Haoyu

    2017-11-01

    Increasing popularity and applications of the anaerobic digestion (AD) process has necessitated the development and identification of tools for obtaining reliable indicators of organic matter degradation rate and hence evaluate the process efficiency especially in full-scale, commercial biogas plants. In this study, four biogas plants (A1, A2, B and C) based on different feedstock, process configuration, scale and operational performance were selected and investigated. Results showed that the biochemical methane potential (BMP) based degradation rate could be use in incisively gauging process efficiency in lieu of the traditional degradation rate indicators. The BMP degradation rates ranged from 70 to 90% wherein plants A2 and C showed the highest throughput. This study, therefore, corroborates the feasibility of using the BMP degradation rate as a practical tool for evaluating process performance in full-scale biogas processes and spots light on the microbial diversity in full-scale biogas processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fracture initiation associated with chemical degradation: observation and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Byoungho Choi; Zhenwen Zhou; Chudnovsky, Alexander [Illinois Univ., Dept. of Civil and Materials Engineering (M/C 246), Chicago, IL (United States); Stivala, Salvatore S. [Stevens Inst. of Technology, Dept. of Chemistry and Chemical Biology, Hoboken, NJ (United States); Sehanobish, Kalyan; Bosnyak, Clive P. [Dow Chemical Co., Freeport, TX (United States)

    2005-01-01

    The fracture initiation in engineering thermoplastics resulting from chemical degradation is usually observed in the form of a microcrack network within a surface layer of degraded polymer exposed to a combined action of mechanical stresses and chemically aggressive environment. Degradation of polymers is usually manifested in a reduction of molecular weight, increase of crystallinity in semi crystalline polymers, increase of material density, a subtle increase in yield strength, and a dramatic reduction in toughness. An increase in material density, i.e., shrinkage of the degraded layer is constrained by adjacent unchanged material results in a buildup of tensile stress within the degraded layer and compressive stress in the adjacent unchanged material due to increasing incompatibility between the two. These stresses are an addition to preexisting manufacturing and service stresses. At a certain level of degradation, a combination of toughness reduction and increase of tensile stress result in fracture initiation. A quantitative model of the described above processes is presented in these work. For specificity, the internally pressurized plastic pipes that transport a fluid containing a chemically aggressive (oxidizing) agent is used as the model of fracture initiation. Experimental observations of material density and toughness dependence on degradation reported elsewhere are employed in the model. An equation for determination of a critical level of degradation corresponding to the offset of fracture is constructed. The critical level of degradation for fracture initiation depends on the rates of toughness deterioration and build-up of the degradation related stresses as well as on the manufacturing and service stresses. A method for evaluation of the time interval prior to fracture initiation is also formulated. (Author)

  15. Estimating Ads’ Click through Rate with Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    Chen Qiao-Hong

    2016-01-01

    Full Text Available With the development of the Internet, online advertising spreads across every corner of the world, the ads' click through rate (CTR estimation is an important method to improve the online advertising revenue. Compared with the linear model, the nonlinear models can study much more complex relationships between a large number of nonlinear characteristics, so as to improve the accuracy of the estimation of the ads’ CTR. The recurrent neural network (RNN based on Long-Short Term Memory (LSTM is an improved model of the feedback neural network with ring structure. The model overcomes the problem of the gradient of the general RNN. Experiments show that the RNN based on LSTM exceeds the linear models, and it can effectively improve the estimation effect of the ads’ click through rate.

  16. Thermodynamically based constraints for rate coefficients of large biochemical networks.

    Science.gov (United States)

    Vlad, Marcel O; Ross, John

    2009-01-01

    Wegscheider cyclicity conditions are relationships among the rate coefficients of a complex reaction network, which ensure the compatibility of kinetic equations with the conditions for thermodynamic equilibrium. The detailed balance at equilibrium, that is the equilibration of forward and backward rates for each elementary reaction, leads to compatibility between the conditions of kinetic and thermodynamic equilibrium. Therefore, Wegscheider cyclicity conditions can be derived by eliminating the equilibrium concentrations from the conditions of detailed balance. We develop matrix algebra tools needed to carry out this elimination, reexamine an old derivation of the general form of Wegscheider cyclicity condition, and develop new derivations which lead to more compact and easier-to-use formulas. We derive scaling laws for the nonequilibrium rates of a complex reaction network, which include Wegscheider conditions as a particular case. The scaling laws for the rates are used for clarifying the kinetic and thermodynamic meaning of Wegscheider cyclicity conditions. Finally, we discuss different ways of using Wegscheider cyclicity conditions for kinetic computations in systems biology.

  17. Max-Min Optimality of Service Rate Control in Closed Queueing Networks

    KAUST Repository

    Xia, Li

    2013-04-01

    In this technical note, we discuss the optimality properties of service rate control in closed Jackson networks. We prove that when the cost function is linear to a particular service rate, the system performance is monotonic w.r.t. (with respect to) that service rate and the optimal value of that service rate can be either maximum or minimum (we call it Max-Min optimality); When the second-order derivative of the cost function w.r.t. a particular service rate is always positive (negative), which makes the cost function strictly convex (concave), the optimal value of such service rate for the performance maximization (minimization) problem can be either maximum or minimum. To the best of our knowledge, this is the most general result for the optimality of service rates in closed Jackson networks and all the previous works only involve the first conclusion. Moreover, our result is also valid for both the state-dependent and load-dependent service rates, under both the time-average and customer-average performance criteria.

  18. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  19. Evaluation of Network Failure induced IPTV degradation in Metro Networks

    DEFF Research Database (Denmark)

    Wessing, Henrik; Berger, Michael Stübert; Yu, Hao

    2009-01-01

    In this paper, we evaluate future network services and classify them according to their network requirements. IPTV is used as candidate service to evaluate the performance of Carrier Ethernet OAM update mechanisms and requirements. The latter is done through quality measurements using MDI...

  20. Rate-based congestion control in networks with smart links, revision. B.S. Thesis - May 1988

    Science.gov (United States)

    Heybey, Andrew Tyrrell

    1990-01-01

    The author uses a network simulator to explore rate-based congestion control in networks with smart links that can feed back information to tell senders to adjust their transmission rates. This method differs in a very important way from congestion control in which a congested network component just drops packets - the most commonly used method. It is clearly advantageous for the links in the network to communicate with the end users about the network capacity, rather than the users unilaterally picking a transmission rate. The components in the middle of the network, not the end users, have information about the capacity and traffic in the network. The author experiments with three different algorithms for calculating the control rate to feed back to the users. All of the algorithms exhibit problems in the form of large queues when simulated with a configuration modeling the dynamics of a packet-voice system. However, the problems are not with the algorithms themselves, but with the fact that feedback takes time. If the network steady-state utilization is low enough that it can absorb transients in the traffic through it, then the large queues disappear. If the users are modified to start sending slowly, to allow the network to adapt to a new flow without causing congestion, a greater portion of the network's bandwidth can be used.

  1. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  2. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    Science.gov (United States)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  3. Hopfield neural network and optical fiber sensor as intelligent heart rate monitor

    Science.gov (United States)

    Mutter, Kussay Nugamesh

    2018-01-01

    This paper presents a design and fabrication of an intelligent fiber-optic sensor used for examining and monitoring heart rate activity. It is found in the literature that the use of fiber sensors as heart rate sensor is widely studied. However, the use of smart sensors based on Hopfield neural networks is very low. In this work, the sensor is a three fibers without cladding of about 1 cm, fed by laser light of 1550 nm of wavelength. The sensing portions are mounted with a micro sensitive diaphragm to transfer the pulse pressure on the left radial wrist. The influenced light intensity will be detected by a three photodetectors as inputs into the Hopfield neural network algorithm. The latter is a singlelayer auto-associative memory structure with a same input and output layers. The prior training weights are stored in the net memory for the standard recorded normal heart rate signals. The sensors' heads work on the reflection intensity basis. The novelty here is that the sensor uses a pulse pressure and Hopfield neural network in an integrity approach. The results showed a significant output measurements of heart rate and counting with a plausible error rate.

  4. Max-Min Optimality of Service Rate Control in Closed Queueing Networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2013-01-01

    of service rates in closed Jackson networks and all the previous works only involve the first conclusion. Moreover, our result is also valid for both the state-dependent and load-dependent service rates, under both the time-average and customer

  5. Mechanism for propagation of rate signals through a 10-layer feedforward neuronal network

    International Nuclear Information System (INIS)

    Jie, Li; Wan-Qing, Yu; Ding, Xu; Feng, Liu; Wei, Wang

    2009-01-01

    Using numerical simulations, we explore the mechanism for propagation of rate signals through a 10-layer feedforward network composed of Hodgkin–Huxley (HH) neurons with sparse connectivity. When white noise is afferent to the input layer, neuronal firing becomes progressively more synchronous in successive layers and synchrony is well developed in deeper layers owing to the feedforward connections between neighboring layers. The synchrony ensures the successful propagation of rate signals through the network when the synaptic conductance is weak. As the synaptic time constant τ syn varies, coherence resonance is observed in the network activity due to the intrinsic property of HH neurons. This makes the output firing rate single-peaked as a function of τ syn , suggesting that the signal propagation can be modulated by the synaptic time constant. These results are consistent with experimental results and advance our understanding of how information is processed in feedforward networks. (cross-disciplinary physics and related areas of science and technology)

  6. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.

    Science.gov (United States)

    Bentil, Sarah A; Dupaix, Rebecca B

    2014-02-01

    The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.

  7. Effect of synchronizing the rate of degradation of dietary energy and nitrogen release on growth performance in Brahman cattle

    Directory of Open Access Journals (Sweden)

    Virote Pattarajinda

    2006-01-01

    Full Text Available The objective of this research was to determine the effect of synchronizing the rate of degradation of dietary energy and nitrogen release on growth performance in Brahman beef cattle. Fifteen Brahman cattle, 1.5 years old, with an average initial body weight of 184.8±11.1 kg were assigned to one of three treatments according to a randomized complete block design. Dietary treatments contained 3 levels of synchrony index (0.39, 0.56 and 0.74 that were derived from laboratory chemical composition analysis and degradation kinetics using nylon bag technique. Diets were fed at the rate of 2.5% BW by separate concentrate and roughage. Average daily gain increased linearly (P<0.05 with increase levels of synchrony index in the diets. The digestibility of dry matter, organic matter and neutral detergent fiber increased linearly (P<0.01. The digestibility of acid detergent fiber increased linearly (P<0.05. Ruminal total volatile fatty acids concentration increased linearly (P<0.05 at 6 h post feeding. Higher concentration and fluctuation of ruminal ammonia nitrogen and blood urea nitrogen were observed in animals that received lower synchrony index in their diets. Rumen microbial population tended to increase with diets having higher levels of synchrony index. The results indicated that synchronized rate of dietary energy and nitrogen degradation improved ruminal fermentation and digestibility, thus this increased the growth rate in Brahman cattle fed with ricestraw- based diets.

  8. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.

    Science.gov (United States)

    Groenewold, Gary S; Williams, John M; Appelhans, Anthony D; Gresham, Garold L; Olson, John E; Jeffery, Mark T; Rowland, Brad

    2002-11-15

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min(-1) at 25 degrees C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 degrees C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol(-1). This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  9. Rate of degradation of lambda-cyhalothrin and methomyl in grapes (Vitis vinifera L.).

    Science.gov (United States)

    Banerjee, Kaushik; Upadhyay, Ajay Kumar; Adsule, Pandurang G; Patil, Sangram H; Oulkar, Dasharath P; Jadhav, Deepak R

    2006-10-01

    Rates of degradation of lambda-cyhalothrin and methomyl residues in grape are reported. The dissipation behavior of both insecticides followed first-order rate kinetics with similar patterns at standard and double-dose applications. Residues of lambda-cyhalothrin were lost with pre-harvest intervals (PHI) of 12.0-12.5 and 15.0-15.5 days, corresponding to the applications at 25 and 50 g a.i. ha-1, respectively. In the case of methomyl, residues were lost with PHI of 55.0 and 61.0 days, following applications at 1 and 2 kg a.i. ha-1, respectively. The PHI, recommended on the basis of the experimental results, was shown to be effective in minimizing residue load of these insecticides below their maximum residue limits (MRLs) in vineyard samples.

  10. Extensions and applications of degradation modeling

    International Nuclear Information System (INIS)

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, the authors discuss some of the extensions and applications of degradation modeling. The extensions and applications of the degradation modeling approaches discussed are: (a) theoretical developments to study reliability effects of different maintenance strategies and policies, (b) relating aging-failure rate to degradation rate, and (c) application to a continuously operating component

  11. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure.

    Science.gov (United States)

    Zhao, Jing; Westerholm, Maria; Qiao, Wei; Yin, Dongmin; Bi, Shaojie; Jiang, Mengmeng; Dong, Renjie

    2018-05-01

    The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Predicting degradability of organic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Finizio, A; Vighi, M [Milan Univ. (Italy). Ist. di Entomologia Agraria

    1992-05-01

    Degradability, particularly biodegradability, is one of the most important factors governing the persistence of pollutants in the environment and consequently influencing their behavior and toxicity in aquatic and terrestrial ecosystems. The need for reliable persistence data in order to assess the environmental fate and hazard of chemicals by means of predictive approaches, is evident. Biodegradability tests are requested by the EEC directive on new chemicals. Neverthless, degradation tests are not easy to carry out and data on existing chemicals are very scarce. Therefore, assessing the fate of chemicals in the environment from the simple study of their structure would be a useful tool. Rates of degradation are a function of the rates of a series of processes. Correlation between degradation rates and structural parameters are will be facilitated if one of the processes is rate determining. This review is a survey of studies dealing with relationships between structure and biodegradation of organic chemicals, to identify the value and limitations of this approach.

  13. Detection and Location of Structural Degradation in Mechanical Systems

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Damiano, B.; Phillips, L.D.

    1999-01-01

    The investigation of a diagnostic method for detecting and locating the source of structural degradation in a mechanical system is described in this paper. The diagnostic method uses a mathematical model of the mechanical system to determine relationships between system parameters and measurable spectral features. These relationships are incorporated into a neural network, which associates measured spectral features with system parameters. Condition diagnosis is performed by presenting the neural network with measured spectral features and comparing the system parameters estimated by the neural network to previously estimated values. Changes in the estimated system parameters indicate the location and severity of degradation in the mechanical system

  14. Handoff Rate and Coverage Analysis in Multi-tier Heterogeneous Networks

    OpenAIRE

    Sadr, Sanam; Adve, Raviraj S.

    2015-01-01

    This paper analyzes the impact of user mobility in multi-tier heterogeneous networks. We begin by obtaining the handoff rate for a mobile user in an irregular cellular network with the access point locations modeled as a homogeneous Poisson point process. The received signal-to-interference-ratio (SIR) distribution along with a chosen SIR threshold is then used to obtain the probability of coverage. To capture potential connection failures due to mobility, we assume that a fraction of handoff...

  15. Accelerated reliability testing of highly aligned single-walled carbon nanotube networks subjected to DC electrical stressing.

    Science.gov (United States)

    Strus, Mark C; Chiaramonti, Ann N; Kim, Young Lae; Jung, Yung Joon; Keller, Robert R

    2011-07-01

    We investigate the electrical reliability of nanoscale lines of highly aligned, networked, metallic/semiconducting single-walled carbon nanotubes (SWCNTs) fabricated through a template-based fluidic assembly process. We find that these SWCNT networks can withstand DC current densities larger than 10 MA cm(-2) for several hours and, in some cases, several days. We develop test methods that show that the degradation rate, failure predictability and total device lifetime can be linked to the initial resistance. Scanning electron and transmission electron microscopy suggest that fabrication variability plays a critical role in the rate of degradation, and we offer an empirical method of quickly determining the long-term performance of a network. We find that well-fabricated lines subject to constant electrical stress show a linear accumulation of damage reminiscent of electromigration in metallic interconnects, and we explore the underlying physical mechanisms that could cause such behavior.

  16. The performance analysis of linux networking - packet receiving

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenji; Crawford, Matt; Bowden, Mark; /Fermilab

    2006-11-01

    The computing models for High-Energy Physics experiments are becoming ever more globally distributed and grid-based, both for technical reasons (e.g., to place computational and data resources near each other and the demand) and for strategic reasons (e.g., to leverage equipment investments). To support such computing models, the network and end systems, computing and storage, face unprecedented challenges. One of the biggest challenges is to transfer scientific data sets--now in the multi-petabyte (10{sup 15} bytes) range and expected to grow to exabytes within a decade--reliably and efficiently among facilities and computation centers scattered around the world. Both the network and end systems should be able to provide the capabilities to support high bandwidth, sustained, end-to-end data transmission. Recent trends in technology are showing that although the raw transmission speeds used in networks are increasing rapidly, the rate of advancement of microprocessor technology has slowed down. Therefore, network protocol-processing overheads have risen sharply in comparison with the time spent in packet transmission, resulting in degraded throughput for networked applications. More and more, it is the network end system, instead of the network, that is responsible for degraded performance of network applications. In this paper, the Linux system's packet receive process is studied from NIC to application. We develop a mathematical model to characterize the Linux packet receiving process. Key factors that affect Linux systems network performance are analyzed.

  17. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    Science.gov (United States)

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.

    Directory of Open Access Journals (Sweden)

    Guido Gigante

    2015-11-01

    Full Text Available Cortical networks, in-vitro as well as in-vivo, can spontaneously generate a variety of collective dynamical events such as network spikes, UP and DOWN states, global oscillations, and avalanches. Though each of them has been variously recognized in previous works as expression of the excitability of the cortical tissue and the associated nonlinear dynamics, a unified picture of the determinant factors (dynamical and architectural is desirable and not yet available. Progress has also been partially hindered by the use of a variety of statistical measures to define the network events of interest. We propose here a common probabilistic definition of network events that, applied to the firing activity of cultured neural networks, highlights the co-occurrence of network spikes, power-law distributed avalanches, and exponentially distributed 'quasi-orbits', which offer a third type of collective behavior. A rate model, including synaptic excitation and inhibition with no imposed topology, synaptic short-term depression, and finite-size noise, accounts for all these different, coexisting phenomena. We find that their emergence is largely regulated by the proximity to an oscillatory instability of the dynamics, where the non-linear excitable behavior leads to a self-amplification of activity fluctuations over a wide range of scales in space and time. In this sense, the cultured network dynamics is compatible with an excitation-inhibition balance corresponding to a slightly sub-critical regime. Finally, we propose and test a method to infer the characteristic time of the fatigue process, from the observed time course of the network's firing rate. Unlike the model, possessing a single fatigue mechanism, the cultured network appears to show multiple time scales, signalling the possible coexistence of different fatigue mechanisms.

  19. Rate Adaptation Based on Collision Probability for IEEE 802.11 WLANs

    Science.gov (United States)

    Kim, Taejoon; Lim, Jong-Tae

    Nowadays IEEE 802.11 wireless local area networks (WLANs) support multiple transmission rates. To achieve the best performance, transmitting stations adopt the various forms of automatic rate fallback (ARF). However, ARF suffers from severe performance degradation as the number of transmitting stations increases. In this paper, we propose a new rate adaptation scheme which adjusts the ARF's up/down threshold according to the channel contention level. Simulation result shows that the proposed scheme achieves fairly good performance compared with the existing schemes.

  20. Degradation Capability of n-hexadecane Degrading Bacteria from Petroleum Contaminated Soils

    Directory of Open Access Journals (Sweden)

    PENG Huai-li

    2017-05-01

    Full Text Available Samplings were performed in the petroleum contaminated soils of Dongying, Shandong Province of China. Degrading bacteria was isolated through enrichment in a Bushnel-Hass medium, with n-hexadecane as the sole source of carbon and energy. Then the isolated strains were identified by amplification of 16S rDNA gene and sequencing. The strain TZSX2 was selected as the powerful bacteria with stronger degradation ability, which was then identified as Rhodococcus hoagii genera based on the constructing results of the phylogenetic tree. The optimum temperature that allowed both high growth and efficient degradation ratio was in the scope of 28~36 ℃, and gas chromatography results showed that approximately more than 30% of n-hexadecane could be degraded in one week of incubation within the temperature range. Moreover, the strain TZSX2 was able to grow in high concentrations of n-hexadecane. The degradation rate reached 79% when the initial n-hexadecane concentration was 2 mL·L-1,while it still achieved 12% with n-hexadecane concentration of 20 mL·L-1. The optimal pH was 9 that allowed the highest growth and the greatest degradation rate of 91%. Above all, the screened strain TZSX2 showed high capabilities of alkali tolerance with excellent degradation efficiency for even high concentration of n-hexadecane, and thus it would be quite suitable for the remediation of petroleum contaminated soils especially in the extreme environment.

  1. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  2. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  3. Open-source hardware and software and web application for gamma dose rate network operation

    International Nuclear Information System (INIS)

    Luff, R.; Zaehringer, M.; Harms, W.; Bleher, M.; Prommer, B.; Stoehlker, U.

    2014-01-01

    The German Federal Office for Radiation Protection operates a network of about 1800 gamma dose rate stations as a part of the national emergency preparedness plan. Each of the six network centres is capable of operating the network alone. Most of the used hardware and software have been developed in-house under open-source license. Short development cycles and close cooperation between developers and users ensure robustness, transparency and fast maintenance procedures, thus avoiding unnecessary complex solutions. This also reduces the overall costs of the network operation. An easy-to-expand web interface has been developed to make the complete system available to other interested network operators in order to increase cooperation between different countries. The interface is also regularly in use for education during scholarships of trainees supported, e.g. by the 'international Atomic Energy Agency' to operate a local area dose rate monitoring test network. (authors)

  4. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  5. Study on Thermal Degradation Characteristics and Regression Rate Measurement of Paraffin-Based Fuel

    Directory of Open Access Journals (Sweden)

    Songqi Hu

    2015-09-01

    Full Text Available Paraffin fuel has been found to have a regression rate that is higher than conventional HTPB (hydroxyl-terminated polybutadiene fuel and, thus, presents itself as an ideal energy source for a hybrid rocket engine. The energy characteristics of paraffin-based fuel and HTPB fuel have been calculated by the method of minimum free energy. The thermal degradation characteristics were measured for paraffin, pretreated paraffin, HTPB and paraffin-based fuel in different working conditions by the using differential scanning calorimetry (DSC and a thermogravimetric analyzer (TGA. The regression rates of paraffin-based fuel and HTPB fuel were tested by a rectangular solid-gas hybrid engine. The research findings showed that: the specific impulse of paraffin-based fuel is almost the same as that of HTPB fuel; the decomposition temperature of pretreated paraffin is higher than that of the unprocessed paraffin, but lower than that of HTPB; with the increase of paraffin, the initial reaction exothermic peak of paraffin-based fuel is reached in advance, and the initial reaction heat release also increases; the regression rate of paraffin-based fuel is higher than the common HTPB fuel under the same conditions; with the increase of oxidizer mass flow rate, the regression rate of solid fuel increases accordingly for the same fuel formulation.

  6. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires rate laws for all chemical reactions. The mathematical expressions depend on the underlying enzymatic mechanism; they can become quite involved and may contain a large number of parameters. Rate laws and enzyme parameters are still unknown for most enzymes. Results We introduce a simple and general rate law called "convenience kinetics". It can be derived from a simple random-order enzyme mechanism. Thermodynamic laws can impose dependencies on the kinetic parameters. Hence, to facilitate model fitting and parameter optimisation for large networks, we introduce thermodynamically independent system parameters: their values can be varied independently, without violating thermodynamical constraints. We achieve this by expressing the equilibrium constants either by Gibbs free energies of formation or by a set of independent equilibrium constants. The remaining system parameters are mean turnover rates, generalised Michaelis-Menten constants, and constants for inhibition and activation. All parameters correspond to molecular energies, for instance, binding energies between reactants and enzyme. Conclusion Convenience kinetics can be used to translate a biochemical network – manually or automatically - into a dynamical model with plausible biological properties. It implements enzyme saturation and regulation by activators and inhibitors, covers all possible reaction stoichiometries, and can be specified by a small number of parameters. Its mathematical form makes it especially suitable for parameter estimation and optimisation. Parameter estimates can be easily computed from a least-squares fit to Michaelis-Menten values, turnover rates, equilibrium constants, and other quantities that are routinely measured in enzyme assays and stored in kinetic databases.

  7. DASH-based network performance-aware solution for personalised video delivery systems

    OpenAIRE

    Rovcanin, Lejla

    2016-01-01

    Video content is an increasingly prevalent contributor of Internet traffic. The proliferation of available video content has been fuelled by both Internet expansion and the growing power and affordability of viewing devices. Such content can be consumed anywhere and anytime, using a variety of technologies. The high data rates required for streaming video content and the large volume of requests for such content degrade network performance when devices compete for finite network bandwidth. Th...

  8. Resource management for multimedia services in high data rate wireless networks

    CERN Document Server

    Zhang, Ruonan; Pan, Jianping

    2017-01-01

    This brief offers a valuable resource on principles of quality-of-service (QoS) provisioning and the related link-layer resource management techniques for high data-rate wireless networks. The primary emphasis is on protocol modeling and analysis. It introduces media access control (MAC) protocols, standards of wireless local area networks (WLANs), wireless personal area networks (WPANs), and wireless body area networks (WBANs), discussing their key technologies, applications, and deployment scenarios. The main analytical approaches and models for performance analysis of the fundamental resource scheduling mechanisms, including the contention-based, reservation-based, and hybrid MAC, are presented. To help readers understand and evaluate system performance, the brief contains a range of simulation results. In addition, a thorough bibliography provides an additional tool. This brief is an essential resource for engineers, researchers, students, and users of wireless networks.

  9. Dynamical Properties of Discrete-Time Background Neural Networks with Uniform Firing Rate

    Directory of Open Access Journals (Sweden)

    Min Wan

    2013-01-01

    Full Text Available The dynamics of a discrete-time background network with uniform firing rate and background input is investigated. The conditions for stability are firstly derived. An invariant set is then obtained so that the nondivergence of the network can be guaranteed. In the invariant set, it is proved that all trajectories of the network starting from any nonnegative value will converge to a fixed point under some conditions. In addition, bifurcation and chaos are discussed. It is shown that the network can engender bifurcation and chaos with the increase of background input. The computations of Lyapunov exponents confirm the chaotic behaviors.

  10. The efficacy of centralized flow rate control in 802.11-based wireless mesh networks

    KAUST Repository

    Jamshaid, K.

    2013-06-13

    Commodity WiFi-based wireless mesh networks (WMNs) can be used to provide last mile Internet access. These networks exhibit extreme unfairness with backlogged traffic sources. Current solutions propose distributed source-rate control algorithms requiring link-layer or transport-layer changes on all mesh nodes. This is often infeasible in large practical deployments. In wireline networks, router-assisted rate control techniques have been proposed for use alongside end-to-end mechanisms. We wish to evaluate the feasibility of establishing similar centralized control via gateways in WMNs. In this paper, we focus on the efficacy of this control rather than the specifics of the controller design mechanism. We answer the question: Given sources that react predictably to congestion notification, can we enforce a desired rate allocation through a single centralized controller? The answer is not obvious because flows experience varying contention levels, and transmissions are scheduled by a node using imperfect local knowledge. We find that common router-assisted flow control schemes used in wired networks fail in WMNs because they assume that (1) links are independent, and (2) router queue buildups are sufficient for detecting congestion. We show that non-work-conserving, rate-based centralized scheduling can effectively enforce rate allocation. It can achieve results comparable to source rate limiting, without requiring any modifications to mesh routers or client devices. 2013 Jamshaid et al.; licensee Springer.

  11. Dynamic neural networking as a basis for plasticity in the control of heart rate.

    Science.gov (United States)

    Kember, G; Armour, J A; Zamir, M

    2013-01-21

    A model is proposed in which the relationship between individual neurons within a neural network is dynamically changing to the effect of providing a measure of "plasticity" in the control of heart rate. The neural network on which the model is based consists of three populations of neurons residing in the central nervous system, the intrathoracic extracardiac nervous system, and the intrinsic cardiac nervous system. This hierarchy of neural centers is used to challenge the classical view that the control of heart rate, a key clinical index, resides entirely in central neuronal command (spinal cord, medulla oblongata, and higher centers). Our results indicate that dynamic networking allows for the possibility of an interplay among the three populations of neurons to the effect of altering the order of control of heart rate among them. This interplay among the three levels of control allows for different neural pathways for the control of heart rate to emerge under different blood flow demands or disease conditions and, as such, it has significant clinical implications because current understanding and treatment of heart rate anomalies are based largely on a single level of control and on neurons acting in unison as a single entity rather than individually within a (plastically) interconnected network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Low-complexity full-rate transmission scheme with full diversity for two-path relay networks

    KAUST Repository

    Fareed, Muhammad Mehboob; Yang, Hongchuan; Alouini, Mohamed-Slim

    2015-01-01

    Existing full-rate transmission schemes for two-path relay networks typically cannot achieve full diversity while demanding high decoding complexity. In this paper, we present a novel low-complexity full-rate transmission scheme for two-path relay networks to harvest maximum achievable diversity. The proposed scheme adopts block transmission with small block size of four symbols, which greatly reduces the decoding complexity at the receiver. Through the performance analysis of the resulting two-path relay network in terms of the symbol error rate (SER) and diversity order, we show the proposed scheme can achieve full diversity order of four and mimic a 2 \\times 2 multiple-input multiple-output system. Simulations results are provided to validate the mathematical formulation. © 1967-2012 IEEE.

  13. Low-complexity full-rate transmission scheme with full diversity for two-path relay networks

    KAUST Repository

    Fareed, Muhammad Mehboob

    2015-04-01

    Existing full-rate transmission schemes for two-path relay networks typically cannot achieve full diversity while demanding high decoding complexity. In this paper, we present a novel low-complexity full-rate transmission scheme for two-path relay networks to harvest maximum achievable diversity. The proposed scheme adopts block transmission with small block size of four symbols, which greatly reduces the decoding complexity at the receiver. Through the performance analysis of the resulting two-path relay network in terms of the symbol error rate (SER) and diversity order, we show the proposed scheme can achieve full diversity order of four and mimic a 2 \\\\times 2 multiple-input multiple-output system. Simulations results are provided to validate the mathematical formulation. © 1967-2012 IEEE.

  14. Degradation of alachlor in aqueous solution by using hydrodynamic cavitation.

    Science.gov (United States)

    Wang, Xikui; Zhang, Yong

    2009-01-15

    The degradation of alachlor aqueous solution by using hydrodynamic cavitation was systematically investigated. It was found that alachlor in aqueous solution can be deomposed with swirling jet-induced cavitation. The degradation can be described by a pseudo-first-order kinetics and the degradation rate was found to be 4.90x10(-2)min(-1). The effects of operating parameters such as fluid pressure, solution temperature, initial concentration of alachlor and medium pH on the degradation rates of alachlor were also discussed. The results showed that the degradation rates of alachlor increased with increasing pressure and decreased with increasing initial concentration. An optimum temperature of 40 degrees C existed for the degradation rate of alachlor and the degradation rate was also found to be slightly depend on medium pH. Many degradation products formed during the process, and some of them were qualitatively identified by GC-MS.

  15. Thermal degradation of deoxynivalenol during maize bread baking.

    Science.gov (United States)

    Numanoglu, E; Gökmen, V; Uygun, U; Koksel, H

    2012-01-01

    The thermal degradation of deoxynivalenol (DON) was determined at isothermal baking conditions within the temperature range of 100-250°C, using a crust-like model, which was prepared with naturally contaminated maize flour. No degradation was observed at 100°C. For the temperatures of 150, 200 and 250°C, thermal degradation rate constants (k) were calculated and temperature dependence of DON degradation was observed by using Arrhenius equation. The degradation of DON obeyed Arrhenius law with a regression coefficient of 0.95. A classical bread baking operation was also performed at 250°C for 70 min and the rate of DON degradation in the bread was estimated by using the kinetic data derived from the model study. The crust and crumb temperatures recorded during bread baking were used to calculate the thermal degradation rate constants (k) and partial DON degradations at certain time intervals. Using these data, total degradation at the end of the entire baking process was predicted for both crust and crumb. This DON degradation was consistent with the experimental degradation data, confirming the accuracy of kinetic constants determined by means of the crust-like model.

  16. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2014-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  17. A Multilayer Perceptron-Based Impulsive Noise Detector with Application to Power-Line-Based Sensor Networks

    KAUST Repository

    Chien, Ying-Ren; Chen, Jie-Wei; Xu, Sendren Sheng-Dong

    2018-01-01

    For power-line-based sensor networks, impulsive noise (IN) will dramatically degrade the data transmission rate in the power line. In this paper, we present a multilayer perceptron (MLP)-based approach to detect IN in orthogonal frequency

  18. A complex-valued firing-rate model that approximates the dynamics of spiking networks.

    Directory of Open Access Journals (Sweden)

    Evan S Schaffer

    2013-10-01

    Full Text Available Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.

  19. A complex-valued firing-rate model that approximates the dynamics of spiking networks.

    Science.gov (United States)

    Schaffer, Evan S; Ostojic, Srdjan; Abbott, L F

    2013-10-01

    Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons.

  20. Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents

    Energy Technology Data Exchange (ETDEWEB)

    Moravej, Maryam [Laboratory for Biomaterials and Bioengineering, Department of Mining, Metallurgy and Materials Engineering and University Hospital Research Center, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); Department of Mining, Metallurgy and Materials Engineering, Pavillon Adrien-Pouliot, 1065 avenue de la Medecine, Local 1745-E, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); Amira, Sofiene [Aluminium Technology Centre, Industrial Materials Institute, National Research Council Canada, 501, boul. de l' Universite Est, Saguenay, Que. G7H 8C3 (Canada); Prima, Frederic [Laboratory for Physical Metallurgy, Ecole Nationale Superieure de Chimie de Paris, Universite Pierre et Marie Curie, Paris 6 (France); Rahem, Ahmed [Aluminium Technology Centre, Industrial Materials Institute, National Research Council Canada, 501, boul. de l' Universite Est, Saguenay, Que. G7H 8C3 (Canada); Fiset, Michel [Department of Mining, Metallurgy and Materials Engineering, Pavillon Adrien-Pouliot, 1065 avenue de la Medecine, Local 1745-E, Universite Laval, Quebec City, Que. G1V 0A6 (Canada); and others

    2011-12-15

    Pure iron has become one of the most interesting candidate materials for degradable metallic stents due to its high mechanical properties and moderate degradation. In this work we studied the effect of electrodeposition current density on microstructure and degradation of pure iron films electrodeposited on Ti alloy substrate for degradable metallic stent application. Iron sheets were produced by electrodeposition using four different current densities 1, 2, 5 and 10 A dm{sup -2}. The films were then studied by SEM (scanning electron microscope) and EBSD (electron backscatter diffraction) to observe the surface morphology, grain size and orientation. Potentiodynamic polarization and static immersion tests were used to determine the corrosion rate and to study the degradation behavior of iron films, respectively. The current density was found to significantly influence the texture, the grain size and the grain shape of the electrodeposited iron. At current densities of 1, 5 and 10 A dm{sup -2}, weak textures corresponding to Left-Pointing-Angle-Bracket 1 0 1 Right-Pointing-Angle-Bracket , Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket and Left-Pointing-Angle-Bracket 1 1 2 Right-Pointing-Angle-Bracket in the normal (electrodeposition) direction were obtained, respectively. At these current densities, average grain sizes smaller than 3 {mu}m were also obtained. However, at 2 A dm{sup -2}, a strong Left-Pointing-Angle-Bracket 1 1 1 Right-Pointing-Angle-Bracket //ND texture with density of 7.4 MUD was obtained with larger average grain size of 4.4 {mu}m. The microstructure of iron samples changed after annealing at 550 Degree-Sign C because of the induced recrystallization. Different corrosion rates were obtained from potentiodynamic polarization curves of iron films deposited at different current densities because of their microstructures. Fe-2 showed the lowest corrosion rate due to its larger grains size and its texture. The corrosion rates of all

  1. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  2. Input data preprocessing method for exchange rate forecasting via neural network

    Directory of Open Access Journals (Sweden)

    Antić Dragan S.

    2014-01-01

    Full Text Available The aim of this paper is to present a method for neural network input parameters selection and preprocessing. The purpose of this network is to forecast foreign exchange rates using artificial intelligence. Two data sets are formed for two different economic systems. Each system is represented by six categories with 70 economic parameters which are used in the analysis. Reduction of these parameters within each category was performed by using the principal component analysis method. Component interdependencies are established and relations between them are formed. Newly formed relations were used to create input vectors of a neural network. The multilayer feed forward neural network is formed and trained using batch training. Finally, simulation results are presented and it is concluded that input data preparation method is an effective way for preprocessing neural network data. [Projekat Ministarstva nauke Republike Srbije, br.TR 35005, br. III 43007 i br. III 44006

  3. Neural networks based identification and compensation of rate-dependent hysteresis in piezoelectric actuators

    International Nuclear Information System (INIS)

    Zhang, Xinliang; Tan, Yonghong; Su, Miyong; Xie, Yangqiu

    2010-01-01

    This paper presents a method of the identification for the rate-dependent hysteresis in the piezoelectric actuator (PEA) by use of neural networks. In this method, a special hysteretic operator is constructed from the Prandtl-Ishlinskii (PI) model to extract the changing tendency of the static hysteresis. Then, an expanded input space is constructed by introducing the proposed hysteretic operator to transform the multi-valued mapping of the hysteresis into a one-to-one mapping. Thus, a feedforward neural network is applied to the approximation of the rate-independent hysteresis on the constructed expanded input space. Moreover, in order to describe the rate-dependent performance of the hysteresis, a special hybrid model, which is constructed by a linear auto-regressive exogenous input (ARX) sub-model preceded with the previously obtained neural network based rate-independent hysteresis sub-model, is proposed. For the compensation of the effect of the hysteresis in PEA, the PID feedback controller with a feedforward hysteresis compensator is developed for the tracking control of the PEA. Thus, a corresponding inverse model based on the proposed modeling method is developed for the feedforward hysteresis compensator. Finally, both simulations and experimental results on piezoelectric actuator are presented to verify the effectiveness of the proposed approach for the rate-dependent hysteresis.

  4. Complex degradation processes lead to non-exponential decay patterns and age-dependent decay rates of messenger RNA.

    Directory of Open Access Journals (Sweden)

    Carlus Deneke

    Full Text Available Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data.

  5. 76 FR 79169 - Power Network New Mexico, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER12-605-000] Power Network New Mexico, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Power Network New Mexico, LLC's application for market-based rate authority, with an accompanying rate...

  6. Exploiting Rating Abstention Intervals for Addressing Concept Drift in Social Network Recommender Systems

    Directory of Open Access Journals (Sweden)

    Dionisis Margaris

    2018-04-01

    Full Text Available One of the major problems that social networks face is the continuous production of successful, user-targeted information in the form of recommendations, which are produced exploiting technology from the field of recommender systems. Recommender systems are based on information about users’ past behavior to formulate recommendations about their future actions. However, as time goes by, social network users may change preferences and likings: they may like different types of clothes, listen to different singers or even different genres of music and so on. This phenomenon has been termed as concept drift. In this paper: (1 we establish that when a social network user abstains from rating submission for a long time, it is a strong indication that concept drift has occurred and (2 we present a technique that exploits the abstention interval concept, to drop from the database ratings that do not reflect the current social network user’s interests, thus improving prediction quality.

  7. Analysis of Blocking Rate and Bandwidth Usage of Mobile IPTV Services in Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Mingfu Li

    2014-01-01

    Full Text Available Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes.

  8. Analysis of blocking rate and bandwidth usage of mobile IPTV services in wireless cellular networks.

    Science.gov (United States)

    Li, Mingfu

    2014-01-01

    Mobile IPTV services over wireless cellular networks become more and more popular, owing to the significant growth in access bandwidth of wireless cellular networks such as 3G/4G and WiMAX. However, the spectrum resources of wireless cellular networks is rare. How to enhance the spectral efficiency of mobile networks becomes an important issue. Unicast, broadcast, and multicast are the most important transport schemes for offering mobile IPTV services over wireless cellular networks. Therefore, bandwidth usages and blocking rates of unicast, broadcast, and multicast IPTV services were analyzed and compared in this paper. Simulations were also conducted to validate the analytical results. Numerical results demonstrate that the presented analysis is correct, and multicast scheme achieves the best bandwidth usage and blocking rate performance, relative to the other two schemes.

  9. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model.

    Science.gov (United States)

    Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P

    2017-08-01

    Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017. © 2016 Wiley Periodicals, Inc.

  10. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  11. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks

    Science.gov (United States)

    Jia, Chen; Qian, Hong; Chen, Min; Zhang, Michael Q.

    2018-03-01

    The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, characterized by the spectral gap of the Markov model, and the feedback sign of the underlying gene circuit. When a network has no feedback, the relaxation rate is exactly the decaying rate of the protein. We further show that positive feedback always slows down the relaxation kinetics while negative feedback always speeds it up. Numerical simulations demonstrate that this relation provides a possible method to infer the feedback topology of autoregulatory gene networks by using time-series data of gene expression.

  12. Packetized Predictive Control for Rate-Limited Networks via Sparse Representation

    DEFF Research Database (Denmark)

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    controller and the plant input. To achieve robustness with respect to dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. In our formulation, we design sparse packets for rate-limited networks, by adopting an an ℓ0 optimization...

  13. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  14. Constitutive and ligand-induced TCR degradation

    DEFF Research Database (Denmark)

    von Essen, Marina; Bonefeld, Charlotte Menné; Siersma, Volkert

    2004-01-01

    Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several di...... to the lysosomes. Similar results were obtained in studies of primary human Vbeta8+ T cells stimulated with superantigen. Based on these results, the simplest model for TCR internalization, sorting, and degradation is proposed.......Modulation of TCR expression levels is a central event during T cell development and activation, and it probably plays an important role in adjusting T cell responsiveness. Conflicting data have been published on down-regulation and degradation rates of the individual TCR subunits, and several...... divergent models for TCR down-regulation and degradation have been suggested. The aims of this study were to determine the rate constants for constitutive and ligand-induced TCR degradation and to determine whether the TCR subunits segregate or are processed as an intact unit during TCR down...

  15. Designing container shipping network under changing demand and freight rates

    Directory of Open Access Journals (Sweden)

    C. Chen

    2010-03-01

    Full Text Available This paper focuses on the optimization of container shipping network and its operations under changing cargo demand and freight rates. The problem is formulated as a mixed integer non-linear programming problem (MINP with an objective of maximizing the average unit ship-slot profit at three stages using analytical methodology. The issues such as empty container repositioning, ship-slot allocating, ship sizing, and container configuration are simultaneously considered based on a series of the matrices of demand for a year. To solve the model, a bi-level genetic algorithm based method is proposed. Finally, numerical experiments are provided to illustrate the validity of the proposed model and algorithms. The obtained results show that the suggested model can provide a more realistic solution to the issues on the basis of changing demand and freight rates and arrange a more effective approach to the optimization of container shipping network structures and operations than does the model based on the average demand.

  16. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    DEFF Research Database (Denmark)

    Helle, K.B.; Müller, T.O.; Astrup, Poul

    2014-01-01

    of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64......Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often...... source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given...

  17. Mapping the polysaccharide degradation potential of Aspergillus niger

    Science.gov (United States)

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  18. Chaos Synchronization Using Adaptive Dynamic Neural Network Controller with Variable Learning Rates

    Directory of Open Access Journals (Sweden)

    Chih-Hong Kao

    2011-01-01

    Full Text Available This paper addresses the synchronization of chaotic gyros with unknown parameters and external disturbance via an adaptive dynamic neural network control (ADNNC system. The proposed ADNNC system is composed of a neural controller and a smooth compensator. The neural controller uses a dynamic RBF (DRBF network to online approximate an ideal controller. The DRBF network can create new hidden neurons online if the input data falls outside the hidden layer and prune the insignificant hidden neurons online if the hidden neuron is inappropriate. The smooth compensator is designed to compensate for the approximation error between the neural controller and the ideal controller. Moreover, the variable learning rates of the parameter adaptation laws are derived based on a discrete-type Lyapunov function to speed up the convergence rate of the tracking error. Finally, the simulation results which verified the chaotic behavior of two nonlinear identical chaotic gyros can be synchronized using the proposed ADNNC scheme.

  19. Microbial degradation rates of small peptides and amino acids in the oxygen minimum zone of Chilean coastal waters

    Science.gov (United States)

    Pantoja, Silvio; Rossel, Pamela; Castro, Rodrigo; Cuevas, L. Antonio; Daneri, Giovanni; Córdova, Candy

    2009-07-01

    We found similar microbial degradation rates of labile dissolved organic matter in oxic and suboxic waters off northern Chile. Rates of peptide hydrolysis and amino acid uptake in unconcentrated water samples were not low in the water column where oxygen concentration was depleted. Hydrolysis rates ranged from 65 to 160 nmol peptide L -1 h -1 in the top 20 m, 8-28 nmol peptide L -1 h -1 between 100 and 300 m (O 2-depleted zone), and 14-19 nmol peptide L -1 h -1 between 600 and 800 m. Dissolved free amino acid uptake rates were 9-26, 3-17, and 6 nmol L -1 h -1 at similar depth intervals. Since these findings are consistent with a model of comparable potential activity of microbes in degrading labile substrates of planktonic origin, we suggest, as do other authors, that differences in decomposition rates with high and low oxygen concentrations may be a matter of substrate lability. The comparison between hydrolysis and uptake rates indicates that microbial peptide hydrolysis occurs at similar or faster rates than amino acid uptake in the water column, and that the hydrolysis of peptides is not a rate-limiting step for the complete remineralization of labile macromolecules. Low O 2 waters process about 10 tons of peptide carbon per h, double the amount processed in surface-oxygenated water. In the oxygen minimum zone, we suggest that the C balance may be affected by the low lability of the dissolved organic matter when this is upwelled to the surface. An important fraction of dissolved organic matter is processed in the oxygen minimum layer, a prominent feature of the coastal ocean in the highly productive Humboldt Current System.

  20. A prediction method for the wax deposition rate based on a radial basis function neural network

    Directory of Open Access Journals (Sweden)

    Ying Xie

    2017-06-01

    Full Text Available The radial basis function neural network is a popular supervised learning tool based on machinery learning technology. Its high precision having been proven, the radial basis function neural network has been applied in many areas. The accumulation of deposited materials in the pipeline may lead to the need for increased pumping power, a decreased flow rate or even to the total blockage of the line, with losses of production and capital investment, so research on predicting the wax deposition rate is significant for the safe and economical operation of an oil pipeline. This paper adopts the radial basis function neural network to predict the wax deposition rate by considering four main influencing factors, the pipe wall temperature gradient, pipe wall wax crystal solubility coefficient, pipe wall shear stress and crude oil viscosity, by the gray correlational analysis method. MATLAB software is employed to establish the RBF neural network. Compared with the previous literature, favorable consistency exists between the predicted outcomes and the experimental results, with a relative error of 1.5%. It can be concluded that the prediction method of wax deposition rate based on the RBF neural network is feasible.

  1. Noise in attractor networks in the brain produced by graded firing rate representations.

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    Full Text Available Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry.

  2. Irradiation degradation of chlorpyrifos in water solution and asparagus

    International Nuclear Information System (INIS)

    Zhang Qingfang; Wang Feng; Ha Yiming; Li An; Yin Qinggang

    2009-01-01

    In order to seek an effective technique to degrade chlorpyrifos residue, chlorpyrifos water solution and asparagus containing chlorpyrifos as testing materials were irradiated by 60 Co γ-rays and their degradation rate were determined and compared. The results show the degradation rate in water-solution increases with irradiation dose in the range of 0 and 12 kGy, and it reached 95.5% at 4 kGy. The degradation rate of chlorpyrifos in asparagus is low and comes to the maximum of 30.0% when the dose is 8 kGy. Further study indicates that vitamin C, violaquercitrin and total sugar inhibit the irradiation degradation of chlorpyrifos in asparagus. (authors)

  3. Low Duty-Cycling MAC Protocol for Low Data-Rate Medical Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Chongqing Zhang

    2017-05-01

    Full Text Available Wireless body area networks (WBANs are severely energy constrained, and how to improve the energy efficiency so as to prolong the network lifetime as long as possible is one of the most important goals of WBAN research. Low data-rate WBANs are promising to cut down the energy consumption and extend the network lifetime. Considering the characteristics and demands of low data-rate WBANs, a low duty-cycling medium access control (MAC protocol is specially designed for this kind of WBAN in this paper. Longer superframes are exploited to cut down the energy consumed on the transmissions and receptions of redundant beacon frames. Insertion time slots are embedded into the inactive part of a superframe to deliver the frames and satisfy the quality of service (QoS requirements. The number of the data subsections in an insertion time slot can be adaptively adjusted so as to accommodate low data-rate WBANs with different traffic. Simulation results show that the proposed MAC protocol performs well under the condition of low data-rate monitoring traffic.

  4. Optimal multicasting in a multi-line-rate ethernet-over-WDM network

    Science.gov (United States)

    Harve, Shruthi; Batayneh, Marwan; Mukherjee, Biswanath

    2009-11-01

    Ethernet is the dominant transport technology for Local Area Networks. Efforts are now under way to use carrier-grade Ethernet in backbone networks of different service providers. With the advent of applications such as IPTV and Videoon- Demand, there is need for techniques to route multicast traffic over the Ethernet backbone networks. Here, we address the problem of Routing and Wavelength Assignment (RWA) of a set of multicast requests in a Multi-Line-Rate Ethernet backbone network with the objective of minimizing the cost of setting up the network, in terms of the Service Provider's Capital Expenditure (CAPEX). We present an Auxiliary Graph based heuristic algorithm that routes each multicast request on a light-tree structure, and assigns minimum cost wavelengths along the route. We compare the properties of the algorithm to the optimal solution given by a mathematical model formulated as an Integer Linear Program (ILP), and show that they compare very well. We also find that the algorithm is most cost-effective when the incoming requests are processed in descending order of their bandwidth requirements.

  5. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Evaluating failure rate of fault-tolerant multistage interconnection networks using Weibull life distribution

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2015-01-01

    Fault-tolerant multistage interconnection networks (MINs) play a vital role in the performance of multiprocessor systems where reliability evaluation becomes one of the main concerns in analyzing these networks properly. In many cases, the primary objective in system reliability analysis is to compute a failure distribution of the entire system according to that of its components. However, since the problem is known to be NP-hard, in none of the previous efforts, the precise evaluation of the system failure rate has been performed. Therefore, our goal is to investigate this parameter for different fault-tolerant MINs using Weibull life distribution that is one of the most commonly used distributions in reliability. In this paper, four important groups of fault-tolerant MINs will be examined to find the best fault-tolerance techniques in terms of failure rate; (1) Extra-stage MINs, (2) Parallel MINs, (3) Rearrangeable non-blocking MINs, and (4) Replicated MINs. This paper comprehensively analyzes all perspectives of the reliability (terminal, broadcast, and network reliability). Moreover, in this study, all reliability equations are calculated for different network sizes. - Highlights: • The failure rate of different MINs is analyzed by using Weibull life distribution. • This article tries to find the best fault-tolerance technique in the field of MINs. • Complex series-parallel RBDs are used to determine the reliability of the MINs. • All aspects of the reliability (i.e. terminal, broadcast, and network) are analyzed. • All reliability equations will be calculated for different size N×N.

  7. Design of multimodal degradable hydrogels for controlled therapeutic delivery

    Science.gov (United States)

    Kharkar, Prathamesh Madhav

    thiol exchange reaction facilitated rapid and responsive protein release in the presence of GSH. A photolabile o-nitrobenzyl ether group (o-NB) was subsequently incorporated within the PEG-based, gel-forming monomers to demonstrate cargo release triggered by exogenous stimuli for patient-specific therapies. Upon the application of cytocompatible doses of light, the photolabile o-NB linkage underwent irreversible cleavage yielding ketone and carboxylic acid-based cleavage products. Hydrogel degradation kinetics was characterized in response to externally applied cytocompatible light or GSH in aqueous microenvironments. By incorporating a photodegradable o-nitrobenzyl ether group, a thiol-sensitive succinimide thioether linkage, and ester linkages within the hydrogels, we demonstrated unique control over degradation via surface erosion or bulk degradation mechanisms, respectively, with degradation rate constants ranging from 10-1 min-1 to 10-4 min-1. As a proof of concept, the controlled release of nanobeads from the hydrogel was demonstrated in a preprogrammed and stimuli-responsive fashion. The multimodal degradable hydrogels were then investigated for the local controlled release of small molecular weight proteins, which are of interest for regulating various cellular functions and fates in vivo. Low molecular weight heparin, a highly sulfated polysaccharide was incorporated within the hydrogel network by Michael-type reaction due to its affinity with biologics such as growth factors and immunomodulatory proteins. Incorporation of reduction-sensitive linkages resulted in 2.3 fold differences in the release profile of fibroblast growth factor-2 (FGF-2) in the presence of GSH compared to non-reducing microenvironment. Bioactivity of released FGF-2 was comparable to pristine FGF-2, indicating the ability of the hydrogel to retain bioactivity of cargo molecules during encapsulation and release. Further, preliminary in vivo studies demonstrated control over hydrogel

  8. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  9. Stock price change rate prediction by utilizing social network activities.

    Science.gov (United States)

    Deng, Shangkun; Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  10. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    Directory of Open Access Journals (Sweden)

    Shangkun Deng

    2014-01-01

    Full Text Available Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL and genetic algorithm (GA. MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  11. Application of neural networks to validation of feedwater flow rate in a nuclear power plant

    International Nuclear Information System (INIS)

    Khadem, M.; Ipakchi, A.; Alexandro, F.J.; Colley, R.W.

    1993-01-01

    Feedwater flow rate measurement in nuclear power plants requires periodic calibration. This is due to the fact that the venturi surface condition of the feedwater flow rate sensor changes because of a chemical reaction between the surface coating material and the feedwater. Fouling of the venturi surface, due to this chemical reaction and the deposits of foreign materials, has been observed shortly after a clean venturi is put in operation. A fouled venturi causes an incorrect measurement of feedwater flow rate, which in turn results in an inaccurate calculation of the generated power. This paper presents two methods for verifying incipient and continuing fouling of the venturi of the feedwater flow rate sensors. Both methods are based on the use of a set of dissimilar process variables dynamically related to the feedwater flow rate variable. The first method uses a neural network to generate estimates of the feedwater flow rate readings. Agreement, within a given tolerance, of the feedwater flow rate instrument reading, and the corresponding neural network output establishes that the feedwater flow rate instrument is operating properly. The second method is similar to the first method except that the neural network predicts the core power which is calculated from measurements on the primary loop, rather than the feedwater flow rates. This core power is referred to the primary core power in this paper. A comparison of the power calculated from the feedwater flow measurements in the secondary loop, with the calculated and neural network predicted primary core power provides information from which it can be determined whether fouling is beginning to occur. The two methods were tested using data from the feedwater flow meters in the two feedwater flow loops of the TMI-1 nuclear power plant

  12. Mapping the polysaccharide degradation potential of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Andersen Mikael R

    2012-07-01

    Full Text Available Abstract Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  13. Degradation rates and mechanisms of acid-resistant coatings in copper-leaching tanks

    DEFF Research Database (Denmark)

    Møller, Victor Buhl

    coating where the lifetime was estimated to 1:6 ± 0:2 and 1:4 ± 0:1 years, respectively. Part IV A series of newly designed and constructed diffusion cells were used to measure sulfuric acid diffusion rates through the coatings. A mathematical model was developed to simulate the experimental data...... potential in the mineral industry has not yet been thoroughly investigated. This particular industry poses unique challenges, with high operational temperatures (around 75 °C) and combined acidicerosive environments. The use of organic coatings to protect tanks, pipes, and secondary exposure areas, may....... Part I An in-depth literature study was performed to uncover and review uses and limitations ofacid-resistant coatings in the chemical industry, with a comparison to alternative resistant materialsbased on metals and ceramics. In addition, coating degradation phenomena caused by acid exposure, were...

  14. Fractional rate of degradation (kd) of starch in the rumen and its relation to in vivo rumen and total digestibility

    DEFF Research Database (Denmark)

    Hvelplund, Torben; Larsen, Mogens; Lund, Peter

    2009-01-01

    in different ways both chemically and physically. The starch sources were fed in mixed diets together with grass silage and soya bean meal and allocated ad libitum to fistulated dairy cows. The starch content varied between 13 and 35% in ration dry matter for the different starch sources. The design...... was a series of cross-over experiments with two cows and two periods. Ruminal starch pool was estimated from rumen evacuation and starch flow was estimated by duodenal and faeces sampling. Fractional rate of rumen degradation was estimated from the equation [kd = rumen degraded/rumen pool] and rumen and total...

  15. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...... was similar in all horizons, with the rate constant k1F ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k1S ranging between 0.00067 and 0.029/h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils....... Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA...

  16. Will available bit rate (ABR) services give us the capability to offer virtual LANs over wide-area ATM networks?

    Science.gov (United States)

    Ferrandiz, Ana; Scallan, Gavin

    1995-10-01

    The available bit rate (ABR) service allows connections to exceed their negotiated data rates during the life of the connections when excess capacity is available in the network. These connections are subject to flow control from the network in the event of network congestion. The ability to dynamically adjust the data rate of the connection can provide improved utilization of the network and be a valuable service to end users. ABR type service is therefore appropriate for the transmission of bursty LAN traffic over a wide area network in a manner that is more efficient and cost effective than allocating bandwdith at the peak cell rate. This paper describes the ABR service and discusses if it is realistic to operate a LAN like service over a wide area using ABR.

  17. Changes in collagen synthesis and degradation during skeletal muscle growth

    International Nuclear Information System (INIS)

    Laurent, G.J.; McAnulty, R.J.; Gibson, J.

    1985-01-01

    The changes in collagen metabolism during skeletal muscle growth were investigated by measuring rates of synthesis and degradation during stretch-induced hypertrophy of the anterior latissimus dorsi muscle of the adult chicken (Gallus domesticus). Synthesis rates were obtained from the uptake of tritiated proline injected intravenously with a flooding dose of unlabeled proline. Degradation of newly synthesized and ''mature'' collagen was estimated from the amount of hydroxyproline in the free pool as small molecular weight moieties. In normal muscle, the synthesis rate was 1.1 +/- 0.3%/day, with 49 +/- 7% of the newly produced collagen degraded rapidly after synthesis. During hypertrophy there was an increase of about fivefold in the rate of synthesis (P less than 0.01), a 60% decrease in the rate of degradation of newly synthesized collagen (P less than 0.02), and an increase of about fourfold in the amount of degradation of mature collagen (P less than 0.01). These results suggest an important role for degradative as well as synthetic processes in the regulation of collagen mass. They indicate that enhanced degradation of mature collagen is required for muscle growth and suggest a physiological role for the pathway whereby in normal muscle, a large proportion of newly produced collagen is rapidly degraded

  18. Degradation modeling with application to aging and maintenance effectiveness evaluations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hsu, F.; Subduhi, M.; Vesely, W.E.

    1990-01-01

    This paper describes a modeling approach to analyze component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs

  19. Degradation modeling with application to aging and maintenance effectiveness evaluations

    International Nuclear Information System (INIS)

    Samanta, P.K.; Vesely, W.E.; Hsu, F.; Subudhi, M.

    1991-01-01

    This paper describes a modeling approach to analyze light water reactor component degradation and failure data to understand the aging process of components. As used here, degradation modeling is the analysis of information on component degradation in order to develop models of the process and its implications. This particular modeling focuses on the analysis of the times of component degradations, to model how the rate of degradation changes with the age of the component. The methodology presented also discusses the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of component degradation rates and component failure rates from plant-specific data. The statistical techniques which are developed and applied allow aging trends to be effectively identified in the degradation data, and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures also are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends

  20. Upregulation of cognitive control networks in older adults’ speech comprehension

    Directory of Open Access Journals (Sweden)

    Julia eErb

    2013-12-01

    Full Text Available Speech comprehension abilities decline with age and with age-related hearing loss, but it is unclear how this decline expresses in terms of central neural mechanisms. The current study examined neural speech processing in a group of older adults (aged 56–77, n=16, with varying degrees of sensorineural hearing loss, and compared them to a cohort of young adults (aged 22–31, n=30, self-reported normal hearing. In an fMRI experiment, listeners heard and repeated back degraded sentences (4-band vocoding, which preserves the temporal envelope of the acoustic signal, while substantially degrading spectral information. Behaviourally, older adults adapted to degraded speech at the same rate as young listeners, although their overall comprehension of degraded speech was lower. Neurally, both older and young adults relied on the left anterior insula for degraded more than clear speech perception. However, anterior insula engagement in older adults was dependent on hearing acuity. Young adults additionally employed the anterior cingulate cortex (ACC. Interestingly, this age group × degradation interaction was driven by a reduced dynamic range in older adults, who displayed elevated levels of ACC activity in both conditions, consistent with a persistent upregulation in cognitive control irrespective of task difficulty. For correct speech comprehension, older adults recruited the middle frontal gyrus in addition to a core speech comprehension network on which young adults relied, suggestive of a compensatory mechanism. Taken together, the results indicate that older adults increasingly recruit cognitive control networks, even under optimal listening conditions, at the expense of these systems’ dynamic range.

  1. Social Network resources and self-rated health in a deprived Danish neighborhood

    DEFF Research Database (Denmark)

    Tanggaard Andersen, Pernille; Holst Algren, Maria; Fromsejer Heiberg, Regina

    2017-01-01

    Research has demonstrated that living in a deprived neighborhood contributes to the occurrence and development of poor health. Furthermore evidence shows that social networks are fundamental resources in preventing poor mental health. Neighborhood relationships and networks are vital for sustaining...... and improving quality of life. However, to determine potentials for public health action, the health impact of various types of network resources need to be explored and the association between socioeconomic position and self-rated health needs to be analysed to determine whether it is partially explained...... by social network resources. This is the main aim of this article. Cross-sectional data from one deprived neighborhood located in Denmark were collected in 2008 and 2013 using a postal health survey. The target group was defined as adults older than 16 years. In 2008, 408 residents participated...

  2. The study of RMB exchange rate complex networks based on fluctuation mode

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  3. Truth in Reporting: How Data Capture Methods Obfuscate Actual Surgical Site Infection Rates within a Health Care Network System.

    Science.gov (United States)

    Bordeianou, Liliana; Cauley, Christy E; Antonelli, Donna; Bird, Sarah; Rattner, David; Hutter, Matthew; Mahmood, Sadiqa; Schnipper, Deborah; Rubin, Marc; Bleday, Ronald; Kenney, Pardon; Berger, David

    2017-01-01

    Two systems measure surgical site infection rates following colorectal surgeries: the American College of Surgeons National Surgical Quality Improvement Program and the Centers for Disease Control and Prevention National Healthcare Safety Network. The Centers for Medicare & Medicaid Services pay-for-performance initiatives use National Healthcare Safety Network data for hospital comparisons. This study aimed to compare database concordance. This is a multi-institution cohort study of systemwide Colorectal Surgery Collaborative. The National Surgical Quality Improvement Program requires rigorous, standardized data capture techniques; National Healthcare Safety Network allows 5 data capture techniques. Standardized surgical site infection rates were compared between databases. The Cohen κ-coefficient was calculated. This study was conducted at Boston-area hospitals. National Healthcare Safety Network or National Surgical Quality Improvement Program patients undergoing colorectal surgery were included. Standardized surgical site infection rates were the primary outcomes of interest. Thirty-day surgical site infection rates of 3547 (National Surgical Quality Improvement Program) vs 5179 (National Healthcare Safety Network) colorectal procedures (2012-2014). Discrepancies appeared: National Surgical Quality Improvement Program database of hospital 1 (N = 1480 patients) routinely found surgical site infection rates of approximately 10%, routinely deemed rate "exemplary" or "as expected" (100%). National Healthcare Safety Network data from the same hospital and time period (N = 1881) revealed a similar overall surgical site infection rate (10%), but standardized rates were deemed "worse than national average" 80% of the time. Overall, hospitals using less rigorous capture methods had improved surgical site infection rates for National Healthcare Safety Network compared with standardized National Surgical Quality Improvement Program reports. The correlation coefficient

  4. Screening of an oil-degrading strain by N+ implantation and the oil degradation conditions

    International Nuclear Information System (INIS)

    Yan Yajuan; Li Zongwei; Qin Guangyong; Liu Jianling

    2008-01-01

    A strain DC-3-2-50 was obtained through N + implanting into Yarrowia lipolytica DC-3-2. An increase of 11.09% in the oil-degradation rate was obtained. The stain has good genetic stability after 10 times of subculture. The culturing condition of DC-3-2-50 was studied. The optimal culture conditions were as follow: initial pH value, 9.0; inoculum size, 3%; temperature, 25-28 degree C; dissolved oxygen, 180-200 rpm; and carbon nutriments soybean salad oil. The off-degradation rate can be up to 87.7%. (authors)

  5. Degradation of shape memory effect

    International Nuclear Information System (INIS)

    Vandermeer, R.A.

    1983-01-01

    An important parameter for deciding whether or not a SME alloy is suitable for practical applications is the magnitude of the strain reversal accompanying martensite reversion. This research is concerned with elucidating metallurgical factors that cause degradation of this heat-activated recovery strain, E/sub R/. After explaining what is meant by degradation, two manifestations of degradation recently identified in near-monotectoid uranium-niobium alloys are described. The first was associated with the onset of plastic deformation of the martensite beyond the reversible strain limit, E/sub L/; a reduction of E/sub R/ from 5.25% at 8% total strain, i.e. E/sub L/, to 2.9% at 12% total strain was observed. A second type of degradation depended strongly on the heating rate during reversion; the E/sub R/ for an imposed strain of 6.95% was reduced from a value of 5.25% to 1.3% when the heating rate was decreased from 40 0 /sec to 0.05 0 /sec. Degradation was attributed to a change in the transformation path and the interjection of time-dependent, low temperature aging reactions

  6. Analyses of component degradation to evaluate maintenance effectiveness and aging effects

    International Nuclear Information System (INIS)

    Samanta, P.K.; Hsu, F.; Subudhi, M.; Vesely, W.E.

    1991-01-01

    This paper describes degradation modeling, an approach for analyzing degradation and failure of components to understand the aging process of components. As used in our study, degradation modeling is the analysis of information on degradation of components for developing models of the degradation process and its implications. This modeling focuses on the analysis of the times of degradations of components, to model how the rate of degradation changes with the age of the component. With this methodology we also determine the effectiveness of maintenance as applicable to aging evaluations. The specific applications which are performed show quantitative models of degradation rates of components and failure rates of components from plant-specific data. The statistical techniques allow aging trends to be identified in the degradation data and in the failure data. Initial estimates of the effectiveness of maintenance in limiting degradations from becoming failures are developed. These results are important first steps in degradation modeling, and show that degradation can be modeled to identify aging trends. 2 refs., 8 figs., 1 tab

  7. The interchangeability of learning rate and gain in backpropagation neural networks

    NARCIS (Netherlands)

    Thimm, G.; Moerland, P.; Fiesler, E.

    1996-01-01

    The backpropagation algorithm is widely used for training multilayer neural networks. In this publication the gain of its activation function(s) is investigated. In specific, it is proven that changing the gain of the activation function is equivalent to changing the learning rate and the weights.

  8. Degradation kinetics of ptaquiloside in soil and soil solution.

    Science.gov (United States)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-02-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.

  9. Age Replacement and Service Rate Control of Stochastically Degrading Queues

    National Research Council Canada - National Science Library

    Chapin, Patrick

    2004-01-01

    This thesis considers the problem of optimally selecting a periodic replacement time for a multiserver queueing system in which each server is subject to degradation as a function of the mean service...

  10. Bounds on Rates of Variable-Basis and Neural-Network Approximation

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2001-01-01

    Roč. 47, č. 6 (2001), s. 2659-2665 ISSN 0018-9448 R&D Projects: GA ČR GA201/00/1482 Institutional research plan: AV0Z1030915 Keywords : approximation by variable-basis functions * bounds on rates of approximation * complexity of neural networks * high-dimensional optimal decision problems Subject RIV: BA - General Mathematics Impact factor: 2.077, year: 2001

  11. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    Science.gov (United States)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  12. Elucidating PID Degradation Mechanisms and In Situ Dark I-V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    2016-01-01

    A progression of potential-induced degradation (PID) mechanisms are observed in CdTe modules, including shunting/junction degradation and two different manifestations of series resistance depending on the stress level and water ingress. The dark I-V method for in-situ characterization of Pmax bas...

  13. Backtracking and Mixing Rate of Diffusion on Uncorrelated Temporal Networks

    Directory of Open Access Journals (Sweden)

    Martin Gueuning

    2017-10-01

    Full Text Available We consider the problem of diffusion on temporal networks, where the dynamics of each edge is modelled by an independent renewal process. Despite the apparent simplicity of the model, the trajectories of a random walker exhibit non-trivial properties. Here, we quantify the walker’s tendency to backtrack at each step (return where he/she comes from, as well as the resulting effect on the mixing rate of the process. As we show through empirical data, non-Poisson dynamics may significantly slow down diffusion due to backtracking, by a mechanism intrinsically different from the standard bus paradox and related temporal mechanisms. We conclude by discussing the implications of our work for the interpretation of results generated by null models of temporal networks.

  14. Service Degradation in Context Management Frameworks

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Olsen, Rasmus Løvenstein; Pedersen, Jens Myrup

    2011-01-01

    information. The paper considers a developed framework from the ICT project, OPEN, and investigates the impact of applying Differentiated Services (DiffServ) Quality of Services (QoS). The paper finally provides insight in how the insight gained can be utilized to ensure reliable remote accessed context......Context aware network services are a new and inter-esting way to enhance network users experience. A context aware application/service enhances network performance in relation to dynamic context information, e.g. mobility, location and device information as it senses and reacts to environment...... changes. The reliability of the information accessed is a key factor in achieving reliable context aware application. This paper will review the service degradation in Context Management Frameworks (CMF) and the effect of high network utilization, with particular focus on the reliability of the accessed...

  15. The association between social networks and self-rated risk of HIV ...

    African Journals Online (AJOL)

    This study describes the social networks of secondary school students in Moshi Municipality, and their association with self-rated risk of human immunodeficiency virus (HIV) infection. A cross-sectional analytical study was conducted among 300 students aged 15–24 years in 5 secondary schools in Moshi, Tanzania.

  16. Impact of visual repetition rate on intrinsic properties of low frequency fluctuations in the visual network.

    Directory of Open Access Journals (Sweden)

    Yi-Chia Li

    Full Text Available BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz fluctuations (LFFs during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1 interactions between visual stimuli and resting-state; (2 impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses, fALFF (fractional Amplitude of Low Frequency Fluctuation, and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration and disordered behaviors (early blind, but also exogenous sensory stimuli (visual stimuli with various repetition rates. It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.

  17. Harvesting full-duplex rate gains in cellular networks with half-duplex user terminals

    KAUST Repository

    AlAmmouri, Ahmad

    2016-07-26

    Full-Duplex (FD) transceivers may be expensive in terms of complexity, power consumption, and price to be implemented in all user terminals. Therefore, techniques to exploit in-band full-duplex communication with FD base stations (BSs) and half-duplex (HD) users\\' equipment (UEs) are required. In this context, 3-node topology (3NT) has been recently proposed for FD BSs to reuse the uplink (UL) and downlink (DL) channels with HD terminals within the same cell. In this paper, we present a tractable mathematical framework, based on stochastic geometry, for 3NT in cellular networks. To this end, we propose a design paradigm via pulse-shaping and partial overlap between UL and DL channels to maximize the harvested rate gains in 3NT. The results show that 3NT achieves a close performance to networks with FD BSs and FD UEs, denoted by 2-node topology (2NT) networks. A maximum of 5% rate loss is reported when 3NT is compared to 2NT with efficient self-interference cancellation (SIC). If the SIC in 2NT is not efficient, 3NT highly outperforms 2NT. Consequently, we conclude that, irrespective to the UE duplexing scheme, it is sufficient to have FD BSs to harvest FD rate gains.

  18. Combining 3-dimensional degradable electrostatic spinning scaffold and dental follicle cells to build peri-implant periodontium

    Directory of Open Access Journals (Sweden)

    Ximu Zhang

    2013-01-01

    Full Text Available Introduction: Some inevitable problems, such as concentrated bite force and lacked ability of self-renewal, are proved to be the major challenge in the management of implants failures. Thus, it is meaningful to find an ideal dental implant harboring its own peri-implant periodontium, just as the natural teeth. Various studies attempted to reconstruct the periodontium around implants, but unfortunately, it was previously revealed that the artificial periodotium around implants was just a wilderness of fibers, while without the physiological function of natural periodontium, like sensory and homeostatic. The Hypothesis: In this paper, we propose a hypothesis that a modified three-dimensional scaffold with reconstructed peri-implant tissues can be a network for stem cells differentiation. After seeded on the scaffold, stem cells produce various growth factors and differentiate to different orientations in places necessary. This hypothesis, if proven to be valid, will offer a novel and effective therapy for the restoration of missing teeth by implant. Evaluation of the Hypothesis: The scaffold involves three different tissues. Though degradation rate of electrospinning scaffold is under control, its degradation rate should be in consistent with the generation of three tissues. Therefore, the relative experiments are necessary to define the best rate of degradation. Further verification is necessary to check whether the rebuilt cementum, bone and periodontium are strong enough to keep the implant stable and maintain its function.

  19. The association between network social capital and self-rated health: pouring old wine in new bottles?

    Science.gov (United States)

    Verhaeghe, Pieter-Paul; Pattyn, Elise; Bracke, Piet; Verhaeghe, Mieke; Van De Putte, Bart

    2012-03-01

    This study examines whether there is an association between network social capital and self-rated health after controlling for social support. Moreover, we distinguish between network social capital that emerges from strong ties and weak ties. We used a cross-sectional representative sample of 815 adults from the Belgian population. Social capital is measured with the position generator and perceived social support with the MOS Social Support-scale. Results suggest that network social capital is associated with self-rated health after adjustment for social support. Because different social classes have access to different sets of resources, resources of friends and family from the intermediate and higher service classes are beneficial for self-rated health, whereas resources of friends and family from the working class appear to be rather detrimental for self-rated health. From a health-promoting perspective, these findings indicate that policy makers should deal with the root causes of socioeconomic disadvantages in society. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. In-Band α-Duplex Scheme for Cellular Networks: A Stochastic Geometry Approach

    KAUST Repository

    Alammouri, Ahmad

    2016-07-13

    In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink/downlink interference. This paper presents a tractable framework, based on stochastic geometry, to study FD communications in cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains. The study proves the vulnerability of the uplink to the downlink interference and shows that FD rate gains harvested in the downlink (up to 97%) come at the expense of a significant degradation in the uplink rate (up to 94%). Therefore, we propose a novel fine-grained duplexing scheme, denoted as -duplex scheme, which allows a partial overlap between the uplink and the downlink frequency bands. We derive the required conditions to harvest rate gains from the -duplex scheme and show its superiority to both the FD and half-duplex (HD) schemes. In particular, we show that the -duplex scheme provides a simultaneous improvement of 28% for the downlink rate and 56% for the uplink rate. Finally, we show that the amount of the overlap can be optimized based on the network design objective.

  1. Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity

    Science.gov (United States)

    2010-12-10

    Armen Babikyan, Nathaniel M. Jones, Thomas H. Shake, and Andrew P. Worthen MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02420 DDRE, 1777...delay U U U U SAR 11 Zach Sweet 781-981-5997 1 Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity Brooke Shrader, Armen

  2. Degradation of tributyltin in San Diego Bay, California, waters

    International Nuclear Information System (INIS)

    Seligman, P.F.; Valkirs, A.O.; Lee, R.F.

    1986-01-01

    Several experiments were carried out to determine the degradation rate of tributyltin (TBT) in microcosms containing harbor water. Unlabeled or 14 C-labeled tributyltin was added to water samples collected from two stations in San Diego Bay, CA. Degradation rates were determined by calculating the rate of loss of the added parent TBT compound. Calculated half-lives in water collected from a yacht harbor (ambient concentration was 0.5 μg of TBT/L) were 6 and 7 days for light and dark treatments, respectively. Half-lives from a clean-water site ( 14 CO 2 , proceeded slowly with a half-life of 50-75 days. Tributyltin at high concentrations (744 μg/L) was not degraded in sunlight, indicating that photolysis was not taking place and that biological degradation was the primary degradative process for TBT at low ambient concentrations

  3. CONTROL OF DIMENSIONAL STABILITY AND DEGRADATION RATE IN ELECTROSPUN COMPOSITE SCAFFOLDS COMPOSED OF POLY(D,L-LACTIDE-CO-GLYCOLIDE)AND POLY(Ε-CAPROLACTONE)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The purpose of this study is to investigate the effect of composition poly(D,L-lactide-co-glycolide)/poly(ε-caprolactone)(PLGA/PCL)blending on the morphology,shrinkage and degradation behaviors of the electrospun fibers.With the increase of PLGA content in the composite fibers,the average diameter of the electrospun fibers increased from 1.35 μm to 1.95μm.The serious shrinking of the electrospun PLGA meshes could be circumvented by adding 20% PCL in the fibers,resulting from the semi-crystalline nature of PCL.The degradation rate of the electrospun meshes could be modulated by PLGA/PCL composition.In addition,the electrospun meshes containing 20% PCL displayed stable dimensional morphology with degradation.

  4. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  5. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  6. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  7. Near-optimal Downlink precoding of a MISO system for a secondary network under the SINR constraints of a primary network

    KAUST Repository

    Park, Kihong

    2013-04-01

    In this paper, we study a multiple-input single-output cognitive radio (CR) system where only the primary base station (BS) has multiple antennas. We consider a rate maximization problem of the secondary network under signal-to-interference-plus-noise-ratio constraints on the primary network in order to guarantee the quality-of-service for the latter network. While the interference due to the secondary transmission in the conventional underlay CR approach may severely degrade the performance of the primary network, we propose a primary BS-aided approach in which the primary BS helps relay the secondary users\\' signals instead of allowing them to communicate with each other via a direct path between them. In addition, an algorithm to find a near-optimal beamforming solution at the primary BS is proposed. Finally, based on some selected numerical results, we show that the proposed scheme outperforms the conventional underlay CR configuration over a wide transmit power range. © 2013 IEEE.

  8. The association between social networks and self-rated risk of HIV infection among secondary school students in Moshi Municipality, Tanzania

    DEFF Research Database (Denmark)

    Lyimo, Elizabeth; Todd, Jim; Richey, Lisa Ann

    2013-01-01

    This study describes the social networks of secondary school students in Moshi Municipality, and their association with self-rated risk of human immunodeficiency virus (HIV) infection. A cross-sectional analytical study was conducted among 300 students aged 15–24 years in 5 secondary schools...... participation in bonding and bridging social networks and self-rated HIV risk behavior. More participants participated in bonding networks (72%) than in bridging networks (29%). Participation in bridging networks was greater among females (25%) than males (12%, p 

  9. A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2017-07-01

    The extracellular matrix (ECM) of a solid tumor not only affords scaffolding to support tumor architecture and integrity but also plays an essential role in tumor growth, invasion, metastasis, and therapeutics. In this paper, a non-equilibrium thermodynamic theory is established to study the chemo-mechanical behaviors of tumor ECM, which is modeled as a poroelastic polyelectrolyte consisting of a collagen network and proteoglycans. By using the principle of maximum energy dissipation rate, we deduce a set of governing equations for drug transport and mechanosensitive enzymatic degradation in ECM. The results reveal that osmosis is primarily responsible for the compression resistance of ECM. It is suggested that a well-designed ECM degradation can effectively modify the tumor microenvironment for improved efficiency of cancer therapy. The theoretical predictions show a good agreement with relevant experimental observations. This study aimed to deepen our understanding of tumor ECM may be conducive to novel anticancer strategies.

  10. THE EFFECT OF VOLTAGE ON ELECTROCHEMICAL DEGRADATION OF TRICHLOROETHYLENE

    Science.gov (United States)

    This study investigates electrochemical degradation of Trichloroethylene (TCE) using granular graphite as electrodes in a flow-through reactor system. The experiments were conducted to obtain information on the effect of voltage and flow rates on the degradation rates of TCE. The...

  11. Metagenomic Functional Potential Predicts Degradation Rates of a Model Organophosphorus Xenobiotic in Pesticide Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Thomas C. Jeffries

    2018-02-01

    Full Text Available Chemical contamination of natural and agricultural habitats is an increasing global problem and a major threat to sustainability and human health. Organophosphorus (OP compounds are one major class of contaminant and can undergo microbial degradation, however, no studies have applied system-wide ecogenomic tools to investigate OP degradation or use metagenomics to understand the underlying mechanisms of biodegradation in situ and predict degradation potential. Thus, there is a lack of knowledge regarding the functional genes and genomic potential underpinning degradation and community responses to contamination. Here we address this knowledge gap by performing shotgun sequencing of community DNA from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Our results showed two distinct groups of soils defined by differing functional and taxonomic profiles. Degradation assays suggested that these groups corresponded to the organophosphorus degradation potential of soils, with the fastest degrading community being defined by increases in transport and nutrient cycling pathways and enzymes potentially involved in phosphorus metabolism. This was against a backdrop of taxonomic community shifts potentially related to contamination adaptation and reflecting the legacy of exposure. Overall our results highlight the value of using holistic system-wide metagenomic approaches as a tool to predict microbial degradation in the context of the ecology of contaminated habitats.

  12. Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates.

    Science.gov (United States)

    White, H; Racine, J

    2001-01-01

    We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.

  13. Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard; Xu, Cheng; Sørensen, Jens

    2012-01-01

    This study investigated the kinetics of multi-enzymatic degradation of soluble wheat arabinoxylan by monitoring the release of xylose and arabinose during designed treatments with mono-component enzymes at different substrate concentrations. The results of different combinations of α...... α-l-arabinofuranosidases catalyze liberation of arabinose residues linked 1→3 to singly (AFAn) or doubly (AFBa) substituted xyloses in arabinoxylan, respectively. When added to arabinoxylan at equimolar levels, the AFBa enzyme catalyzed the release of more arabinose, i.e. had a higher rate constant...... than AFAn, but with respect to the xylose release, AFAn – as expected – exhibited a better synergistic effect than AFBa with β-xylosidase. This synergistic effect with AFAn was estimated to increase the number of β-xylosidase catalyzed cuts from ∼3 (with β-xylosidase alone) to ∼7 in each arabinoxylan...

  14. Ads' click-through rates predicting based on gated recurrent unit neural networks

    Science.gov (United States)

    Chen, Qiaohong; Guo, Zixuan; Dong, Wen; Jin, Lingzi

    2018-05-01

    In order to improve the effect of online advertising and to increase the revenue of advertising, the gated recurrent unit neural networks(GRU) model is used as the ads' click through rates(CTR) predicting. Combined with the characteristics of gated unit structure and the unique of time sequence in data, using BPTT algorithm to train the model. Furthermore, by optimizing the step length algorithm of the gated unit recurrent neural networks, making the model reach optimal point better and faster in less iterative rounds. The experiment results show that the model based on the gated recurrent unit neural networks and its optimization of step length algorithm has the better effect on the ads' CTR predicting, which helps advertisers, media and audience achieve a win-win and mutually beneficial situation in Three-Side Game.

  15. Thermal degradation process of poly (alpha-methylstyrene) microspheres coated with glow discharge polymer

    International Nuclear Information System (INIS)

    Zhang Zhanwen; Huang Yong; Tang Yongjian; Li Bo; Chen Sufen; He Zhibing

    2009-01-01

    Glow discharge polymer (GDP) shell was made by the decomposable mandrel technique using poly(alpha-methylstyrene) (PAMS) mandrel. The PAMS degradation rate and the GDP shell surface morphology at different equilibrium temperatures were investigated. Degradation rate was calculated from weight variation of PAMS before and after pyrolysis process. Experiment results indicate that the degradation rate decreases at the fixed equilibrium temperature and graded temperature can improve the rate. The degradation process has an effect on the GDP shell properties. The PAMS doesn't molten to flow liquid during degradation. But the degradation can reduce surface finish of GDP coatings. The GDP shell deffects are the result of the PAMS degradiation process. (authors)

  16. The synthesis of hierarchical nanostructured MoS_2/Graphene composites with enhanced visible-light photo-degradation property

    International Nuclear Information System (INIS)

    Zhao, Yongjie; Zhang, Xiaowei; Wang, Chengzhi; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, HaiBo

    2017-01-01

    Graphical abstract: Introducing graphene layer into MoS_2 could construct the steady hierarchical structure which could efficiently separate the photo-induced electrons so as to enhance the photo- degradation behavior. - Highlights: • The MoS_2 and MoS_2/Graphene nanocomposite have been synthesized via a solvothermal process. • The scrolled nanosheets of MoS_2 combining with interconnected graphene network promoted the formation of steady hierarchical architecture. • Comparing with MoS_2, the hierarchical MoS_2/Graphene nanocomposite achieved relatively higher degradation rate. • The synergistic effect mechanism for excellent photo-degradation activity was proposed. - Abstract: Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. Herein, MoS_2 and MoS_2/Graphene nanocomposite with hierarchical nanostructure were successfully synthesized employing a one-step hydrothermal method. Photo-degradation of methylene blue (MB) and rhodamine (RHB) were adopted to assess the photo-degradation ability of the products. Comparing with bare MoS_2, the hierarchical MoS_2/Graphene nanocomposite achieved relatively higher degradation rate of 99% in 28 min for MB as well in 50 min for RHB. These results verified that this proposed hierarchical nanocomposite is a good photo-degradation semiconductor. The excellent performance was mainly ascribed to the synergistic effect of MoS_2 and graphene layers. The MoS_2 possessing a band gap of 1.9 eV would provide abundant electron-hole pairs. The graphene layers with excellent electro-conductivity could realize the quick transport of electrons via its extended π-conjugation structure, consequently benefiting the separation of photo-generated carriers. These findings indicate that the graphene layer is a promising candidate as a co-catalyst for MoS_2 photo-catalyst, and also provide useful information for understanding the observed enhanced photocatalytic mechanism

  17. Rumen degradation characteristics of ryegrass herbage and ryegrass silage are affected by interactions between stage of maturity and nitrogen fertilisation rate

    NARCIS (Netherlands)

    Heeren, J.A.H.; Podesta, S.C.; Hatew, B.; Klop, G.; Laar, van H.; Bannink, A.; Warner, D.; Jonge, de L.H.; Dijkstra, J.

    2014-01-01

    The objective of this experiment was to evaluate interaction effects between stage of maturity and N fertilization rate on rumen degradation characteristics determined with nylon bag incubations of ryegrass herbages and ryegrass silage. Grass herbage (n = 4) was cut after 3 or 5 weeks of regrowth

  18. Spiking neural networks for handwritten digit recognition-Supervised learning and network optimization.

    Science.gov (United States)

    Kulkarni, Shruti R; Rajendran, Bipin

    2018-07-01

    We demonstrate supervised learning in Spiking Neural Networks (SNNs) for the problem of handwritten digit recognition using the spike triggered Normalized Approximate Descent (NormAD) algorithm. Our network that employs neurons operating at sparse biological spike rates below 300Hz achieves a classification accuracy of 98.17% on the MNIST test database with four times fewer parameters compared to the state-of-the-art. We present several insights from extensive numerical experiments regarding optimization of learning parameters and network configuration to improve its accuracy. We also describe a number of strategies to optimize the SNN for implementation in memory and energy constrained hardware, including approximations in computing the neuronal dynamics and reduced precision in storing the synaptic weights. Experiments reveal that even with 3-bit synaptic weights, the classification accuracy of the designed SNN does not degrade beyond 1% as compared to the floating-point baseline. Further, the proposed SNN, which is trained based on the precise spike timing information outperforms an equivalent non-spiking artificial neural network (ANN) trained using back propagation, especially at low bit precision. Thus, our study shows the potential for realizing efficient neuromorphic systems that use spike based information encoding and learning for real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  20. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks

    International Nuclear Information System (INIS)

    Cao Jinde

    2004-01-01

    In this Letter, the domain of attraction of memory patterns and exponential convergence rate of the network trajectories to memory patterns for Hopfield continuous associative memory are estimated by means of matrix measure and comparison principle. A new estimation is given for the domain of attraction of memory patterns and exponential convergence rate. These results can be used for the evaluation of fault-tolerance capability and the synthesis procedures for Hopfield continuous feedback associative memory neural networks

  1. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  2. Degradable and porous Fe-Mn-C alloy for biomaterials candidate

    Science.gov (United States)

    Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna

    2018-02-01

    Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure

  3. Discrete rate and variable power adaptation for underlay cognitive networks

    KAUST Repository

    Abdallah, Mohamed M.

    2010-01-01

    We consider the problem of maximizing the average spectral efficiency of a secondary link in underlay cognitive networks. In particular, we consider the network setting whereby the secondary transmitter employs discrete rate and variable power adaptation under the constraints of maximum average transmit power and maximum average interference power allowed at the primary receiver due to the existence of an interference link between the secondary transmitter and the primary receiver. We first find the optimal discrete rates assuming a predetermined partitioning of the signal-to-noise ratio (SNR) of both the secondary and interference links. We then present an iterative algorithm for finding a suboptimal partitioning of the SNR of the interference link assuming a fixed partitioning of the SNR of secondary link selected for the case where no interference link exists. Our numerical results show that the average spectral efficiency attained by using the iterative algorithm is close to that achieved by the computationally extensive exhaustive search method for the case of Rayleigh fading channels. In addition, our simulations show that selecting the optimal partitioning of the SNR of the secondary link assuming no interference link exists still achieves the maximum average spectral efficiency for the case where the average interference constraint is considered. © 2010 IEEE.

  4. A Rate-Adaptive MAC Protocol Based on TCP throughput for Ad Hoc Networks in Fading Channels

    Directory of Open Access Journals (Sweden)

    Shoko Uchida

    2008-10-01

    Full Text Available Wireless technology is becoming a leading option for future Internet access. Transmission Control Protocol (TCP is one of the protocols designed on the basis of the transmission characteristics in wired networks. It is known that the TCP performance deteriorates drastically under a wireless communication environment. On the other hand, many wireless networking standards such as IEEE 802.11a, 802.11b, and 802.11g have multirate capability. Therefore, adaptive rate control methods have been proposed for ad hoc networks. However, almost methods require the modification of the request to send (RTS and clear to send (CTS packets. Therefore, the conventional methods are not compatible with the standardized system. In this paper, we propose adaptive rate control mechanisms for ad hoc networks. Our mechanisms are based on the RTS/CTS mechanisms. However, no modifications to the RTS and CTS packets are required in the proposed method. Therefore, our proposed method can attempt to satisfy the conventional IEEE 802.11 standards. Moreover, an adequate transmission rate is selected based on an estimated TCP throughput performance. From simulation results, it is observed that the proposed method can improve the throughput performance without any modification of packet structures.

  5. Control mechanism to prevent correlated message arrivals from degrading signaling no. 7 network performance

    Science.gov (United States)

    Kosal, Haluk; Skoog, Ronald A.

    1994-04-01

    Signaling System No. 7 (SS7) is designed to provide a connection-less transfer of signaling messages of reasonable length. Customers having access to user signaling bearer capabilities as specified in the ANSI T1.623 and CCITT Q.931 standards can send bursts of correlated messages (e.g., by doing a file transfer that results in the segmentation of a block of data into a number of consecutive signaling messages) through SS7 networks. These message bursts with short interarrival times could have an adverse impact on the delay performance of the SS7 networks. A control mechanism, Credit Manager, is investigated in this paper to regulate incoming traffic to the SS7 network by imposing appropriate time separation between messages when the incoming stream is too bursty. The credit manager has a credit bank where credits accrue at a fixed rate up to a prespecified credit bank capacity. When a message arrives, the number of octets in that message is compared to the number of credits in the bank. If the number of credits is greater than or equal to the number of octets, then the message is accepted for transmission and the number of credits in the bank is decremented by the number of octets. If the number of credits is less than the number of octets, then the message is delayed until enough credits are accumulated. This paper presents simulation results showing delay performance of the SS7 ISUP and TCAP message traffic with a range of correlated message traffic, and control parameters of the credit manager (i.e., credit generation rate and bank capacity) are determined that ensure the traffic entering the SS7 network is acceptable. The results show that control parameters can be set so that for any incoming traffic stream there is no detrimental impact on the SS7 ISUP and TCAP message delay, and the credit manager accepts a wide range of traffic patterns without causing significant delay.

  6. Impact of composting strategies on the degradation of nonylphenol in sewage sludge.

    Science.gov (United States)

    Zheng, Guodi; Chen, Tongbin; Yu, Jie; Gao, Ding; Shen, Yujun; Niu, Mingjie; Liu, Hongtao

    2015-12-01

    Nonylphenol can be present in sewage sludge, and this can limit the use of the sewage sludge to amend soil. Composting is one of the most efficient and economical methods of making sewage sludge stable and harmless. The nonylphenol degradation rates during composting with added bulking agents and with aeration applied were studied. Three organic bulking agents (sawdust, corn stalk, and mushroom residue) were added to sewage sludge, and the effects of the bulking agents used and the amount added on nonylphenol degradation were determined. The highest apparent nonylphenol degradation rate (71.6%) was found for sewage sludge containing 20% mushroom residue. The lowest apparent nonylphenol degradation rate (22.5%) was found for sewage sludge containing 20% sawdust. The temperature of the composting pile of sewage sludge containing 20% sawdust became too high for nonylphenol to be efficiently degraded, and the apparent nonylphenol degradation rate was lower than was found for sewage sludge containing 10% sawdust. Increasing the ventilating time from 5 to 15 min increased the apparent nonylphenol degradation rate from 19.7 to 41.6%. Using appropriate aerobic conditions facilitates the degradation of nonylphenol in sewage sludge, decreasing the risks posed by sewage sludge applied to land. Adding too much of a bulking agent can decrease the amount of the nonylphenol degraded. Increasing the ventilating time and the amount of air supplied can increase the amount of nonylphenol degraded even if doing so causes the composting pile temperature to remain low.

  7. Radiation induced degradation of xanthan gum in aqueous solution

    Science.gov (United States)

    Hayrabolulu, Hande; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun; Şen, Murat

    2018-03-01

    In our previous study, we have investigated the effect of gamma rays on xanthan gum in the solid state and it was determined that dose rate was an important factor effecting the radiation degradation of xanthan gum. In the present study, in order to provide a better understanding of how ionizing radiation effect xanthan gum, we have investigated the effects of ionizing radiation on aqueous solutions of xanthan at various concentrations (0.5-4%). Xanthan solutions were irradiated with gamma rays in air, at ambient temperature, at different dose rates (0.1-3.3-7.0 kGy/h) and doses (2.5-50 kGy). Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. It was determined that, solution concentration was a factor effecting the degradation chemical yield and degradation rate of xanthan gum. Chain scission reactions were more effective for lower solution concentrations.

  8. A Bootstrap Neural Network Based Heterogeneous Panel Unit Root Test: Application to Exchange Rates

    OpenAIRE

    Christian de Peretti; Carole Siani; Mario Cerrato

    2010-01-01

    This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.

  9. Studies on degradation of chlorinated aromatic hydrocarbon by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... chlorobenzene to study the kinetics of degradation of chlorobenzene. The rate of decomposition of ... hydraulic fluids, biocides, herbicides, plastics, degree- ..... degradation by bacteria isolated from contaminated groundwater.

  10. Modeling and Model Predictive Power and Rate Control of Wireless Communication Networks

    Directory of Open Access Journals (Sweden)

    Cunwu Han

    2014-01-01

    Full Text Available A novel power and rate control system model for wireless communication networks is presented, which includes uncertainties, input constraints, and time-varying delays in both state and control input. A robust delay-dependent model predictive power and rate control method is proposed, and the state feedback control law is obtained by solving an optimization problem that is derived by using linear matrix inequality (LMI techniques. Simulation results are given to illustrate the effectiveness of the proposed method.

  11. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Thermal Degradation of Lead Monoxide Filled Polymer Composite Radiation Shields

    International Nuclear Information System (INIS)

    Harish, V.; Nagaiah, N.

    2011-01-01

    Lead monoxide filled Isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the thermo gravimetric analysis of the composites done to understand their thermal properties especially the effect of filler concentration on the thermal stability and degradation rate of composites. Pristine polymer exhibits single stage degradation whereas filled composites exhibit two stage degradation processes. Further, the IDT values as well as degradation rates decrease with the increased filler content in the composite.

  13. Joint sensor placement and power rating selection in energy harvesting wireless sensor networks

    KAUST Repository

    Bushnaq, Osama M.; Al-Naffouri, Tareq Y.; Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper, the focus is on optimal sensor placement and power rating selection for parameter estimation in wireless sensor networks (WSNs). We take into account the amount of energy harvested by the sensing nodes, communication link quality

  14. Micro-mechanical model for the tension-stabilized enzymatic degradation of collagen tissues

    Science.gov (United States)

    Nguyen, Thao; Ruberti, Jeffery

    We present a study of how the collagen fiber structure influences the enzymatic degradation of collagen tissues. Experiments of collagen fibrils and tissues show that mechanical tension can slow and halt enzymatic degradation. Tissue-level experiments also show that degradation rate is minimum at a stretch level coincident with the onset of strain-stiffening in the stress response. To understand these phenomena, we developed a micro-mechanical model of a fibrous collagen tissue undergoing enzymatic degradation. Collagen fibers are described as sinusoidal elastica beams, and the tissue is described as a distribution of fibers. We assumed that the degradation reaction is inhibited by the axial strain energy of the crimped collagen fibers. The degradation rate law was calibrated to experiments on isolated single fibrils from bovine sclera. The fiber crimp and properties were fit to uniaxial tension tests of tissue strips. The fibril-level kinetic and tissue-level structural parameters were used to predict tissue-level degradation-induced creep rate under a constant applied force. We showed that we could accurately predict the degradation-induce creep rate of the pericardium and cornea once we accounted for differences in the fiber crimp structure and properties.

  15. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng, E-mail: jchen@zjut.edu.cn

    2016-03-05

    Highlights: • A novel efficient DMS-degrading bacterium Alcaligenes sp. SY1 was identified. • A RSM was applied to optimize incubation condition of Alcaligenes sp. SY1. • SIP was applied as C{sup 13} labelled DMS to trace intermediates during DMS degradation. • Kinetics of DMS degradation via batch experiment was revealed. • Carbon and sulfur balance were analyzed during DMS degradation process. - Abstract: Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03 °C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39 μM. Under these conditions, approximately 99% of the DMS was degraded within 30 h of incubation. Two metabolic compounds were detected and identified by gas chromatography–mass spectrometry (GC–MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane–Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17 h{sup −1} and 0.63 gs gx{sup −1} h{sup −1}. A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions.

  16. Gas generation from transuranic waste degradation: an interim assessment

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1979-10-01

    A review of all available, applicable data pertaining to gas generation from the degradation of transuranic waste matrix material and packaging is presented. Waste forms are representative of existing defense-related TRU wastes and include cellulosics, plastics, rubbers, concrete, process sludges, and mild steel. Degradation mechanisms studied were radiolysis, thermal, bacterial, and chemical corrosion. Gas generation rates are presented in terms of moles of gas produced per year per drum, and in G(gas) values for radiolytic degradation. Comparison of generation rates is made, as is a discussion of potential short- and long-term concerns. Techniques for reducing gas generation rates are discussed. 6 figures, 10 tables

  17. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  18. Neural Network for Determining Risk Rate of Post-Heart Stroke Patients

    Directory of Open Access Journals (Sweden)

    Oldřich Trenz

    2014-01-01

    Full Text Available The ischemic heart disease presents an important health problem that affects a great part of the population and is the cause of one third of all deaths in the Czech Republic. The availability of data describing the patients’ prognosis enables their further analysis, with the aim of lowering the patients’ risk, by proposing optimum treatment. The main reason for creating the neural network model is not only to automate the process of establishing the risk rate of patients suffering from ischemic heart disease, but also to adapt it for practical use in clinical conditions. Our aim is to identify especially the specific group of risk-rate patients whose well-timed preventive care can improve the quality and prolong the length of their lives.The aim of the paper is to propose a patient-parameter structure, using which we could create a suitable model based on a self-taught neural network. The emphasis is placed on identifying key descriptive parameters (in the form of a reduction of the available descriptive parameters that are crucial for identifying the required patients, and simultaneously to achieve a portability of the model among individual clinical workplaces (availability of parameters.

  19. Determination of the light-induced degradation rate of the solar cell sensitizer N719 on TiO2 nanocrystalline particles

    DEFF Research Database (Denmark)

    Nour-Mohammadi, Farahnaz; Doan Nguyen, Sau; Boschloo, Gerrit

    2005-01-01

    The oxidative degradation rate, kdeg of the solar cell dye (Bu4N+)2 [Ru(dcbpyH)2(NCS)2]2–, referred to as N719 or [RuL2(NCS)2], was obtained by applying a simple model system. Colloidal solutions of N719-dyed TiO2 particles in acetonitrile were irradiated with 532-nm monochromatic light, and the ...

  20. Plasma-Based Degradation of Mycotoxins Produced by Fusarium, Aspergillus and Alternaria Species

    Directory of Open Access Journals (Sweden)

    Lars ten Bosch

    2017-03-01

    Full Text Available The efficacy of cold atmospheric pressure plasma (CAPP with ambient air as working gas for the degradation of selected mycotoxins was studied. Deoxynivalenol, zearalenone, enniatins, fumonisin B1, and T2 toxin produced by Fusarium spp., sterigmatocystin produced by Aspergillus spp. and AAL toxin produced by Alternaria alternata were used. The kinetics of the decay of mycotoxins exposed to plasma discharge was monitored. All pure mycotoxins exposed to CAPP were degraded almost completely within 60 s. Degradation rates varied with mycotoxin structure: fumonisin B1 and structurally related AAL toxin were degraded most rapidly while sterigmatocystin exhibited the highest resistance to degradation. As compared to pure compounds, the degradation rates of mycotoxins embedded in extracts of fungal cultures on rice were reduced to a varying extent. Our results show that CAPP efficiently degrades pure mycotoxins, the degradation rates vary with mycotoxin structure, and the presence of matrix slows down yet does not prevent the degradation. CAPP appears promising for the decontamination of food commodities with mycotoxins confined to or enriched on surfaces such as cereal grains.

  1. Radiation cross-linked collagen/dextran dermal scaffolds: effects of dextran on cross-linking and degradation.

    Science.gov (United States)

    Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin

    2015-01-01

    Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.

  2. Nash Equilibrium of an Energy Saving Strategy with Dual Rate Transmission in Wireless Regional Area Network

    Directory of Open Access Journals (Sweden)

    Zhanqiang Huo

    2017-01-01

    Full Text Available Wireless regional area network (WRAN adopts centralized network architecture and is currently one of the most typical cognitive radio networks. In order to reduce the energy consumption of the communication networks with the constraint of spectrum resource utilization, a working sleep mechanism is introduced into the base station (BS, and a novel energy saving strategy with dual rate transmission is proposed. Combining the multiple-vacation queue and priority queue, using the quasi-birth-death process and the matrix-geometric solution method, we assess the average latency and the forced termination probability of secondary user packets, as well as the energy saving ratio and the channel utilization of system. Based on the revenue-expenditure structure, a profit function is built, and then the Nash equilibrium behavior and the socially optimal behavior are investigated. With the help of the particle swarm optimization, an intelligent optimization algorithm to search the socially optimal arrival rate of secondary user packets is presented. In order to unify the arrival rates of secondary user packets with Nash equilibrium and social optimization, a reasonable pricing policy is formulated. In addition, system experiments are carried out to verify the effectiveness of the energy saving strategy and the rationality of the pricing policy.

  3. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  4. Degradation of diclofenac by UV-activated persulfate process: Kinetic studies, degradation pathways and toxicity assessments.

    Science.gov (United States)

    Lu, Xian; Shao, Yisheng; Gao, Naiyun; Chen, Juxiang; Zhang, Yansen; Xiang, Huiming; Guo, Youluo

    2017-07-01

    Diclofenac (DCF) is the frequently detected non-steroidal pharmaceuticals in the aquatic environment. In this study, the degradation of DCF was evaluated by UV-254nm activated persulfate (UV/PS). The degradation of DCF followed the pseudo first-order kinetics pattern. The degradation rate constant (k obs ) was accelerated by UV/PS compared to UV alone and PS alone. Increasing the initial PS dosage or solution pH significantly enhanced the degradation efficiency. Presence of various natural water constituents had different effects on DCF degradation, with an enhancement or inhibition in the presence of inorganic anions (HCO 3 - or Cl - ) and a significant inhibition in the presence of NOM. In addition, preliminary degradation mechanisms and major products were elucidated using LC-MS/MS. Hydroxylation, decarbonylation, ring-opening and cyclation reaction involving the attack of SO 4 • - or other substances, were the main degradation mechanism. TOC analyzer and Microtox bioassay were employed to evaluate the mineralization and cytotoxicity of solutions treated by UV/PS at different times, respectively. Limited elimination of TOC (32%) was observed during the mineralization of DCF. More toxic degradation products and their related intermediate species were formed, and the UV/PS process was suitable for removing the toxicity. Of note, longer degradation time may be considered for the final toxicity removal. Copyright © 2017. Published by Elsevier Inc.

  5. Calibration Technique of the Irradiated Thermocouple using Artificial Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Tae; Joung, Chang Young; Ahn, Sung Ho; Yang, Tae Ho; Heo, Sung Ho; Jang, Seo Yoon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To correct the signals, the degradation rate of sensors needs to be analyzed, and re-calibration of sensors should be followed periodically. In particular, because thermocouples instrumented in the nuclear fuel rod are degraded owing to the high neutron fluence generated from the nuclear fuel, the periodic re-calibration process is necessary. However, despite the re-calibration of the thermocouple, the measurement error will be increased until next re-calibration. In this study, based on the periodically calibrated temperature - voltage data, an interpolation technique using the artificial neural network will be introduced to minimize the calibration error of the C-type thermocouple under the irradiation test. The test result shows that the calculated voltages derived from the interpolation function have good agreement with the experimental sampling data, and they also accurately interpolate the voltages at arbitrary temperature and neutron fluence. That is, once the reference data is obtained by experiments, it is possible to accurately calibrate the voltage signal at a certain neutron fluence and temperature using an artificial neural network.

  6. Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis.

    Science.gov (United States)

    Yang, Liming; Yu, Liya E; Ray, Madhumita B

    2008-07-01

    In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.

  7. determination of the specific growth rate on degradation of cassava

    African Journals Online (AJOL)

    user

    aerobic technique was used to effect the degradation in a batch reactor. Sodium ... The substrate concentration is higher at 10 g and low at 0 g and 2 g. At higher ... grown in many countries, such as tropical Africa, Asia and ... efforts are with varied levels of success, cost ... which air mixture of oxygen with other gases freely.

  8. A Spike Neural Controller for Traffic Load Parameter with Priority-Based Rate in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadia Adnan Shiltagh

    2015-11-01

    Full Text Available Wireless Multimedia Sensor Networks (WMSNs are a type of sensor network that contains sensor nodes equipped with cameras, microphones; therefore the WMSNS are able to produce multimedia data such as video and audio streams, still images, and scalar data from the surrounding environment. Most multimedia applications typically produce huge volumes of data, this leads to congestion. To address this challenge, This paper proposes Modify Spike Neural Network control for Traffic Load Parameter with Exponential Weight of Priority Based Rate Control algorithm (MSNTLP with EWBPRC. The Modify Spike Neural Network controller (MSNC can calculate the appropriate traffic load parameter μ for each parent node and then use in the EWPBRC algorithm to estimate the transmission rate of parent nodes and then assign a suitable transmission rate for each child node. A comparative study between (MSNTLP with EWBPRC and fuzzy logic controller for traffic load parameter with Exponential Weight of Priority Based Rate Control algorithm (FTLP with EWBPRC algorithm shows that the (MSNTLP with EWBPRC is more efficient than (FTLP with EWBPRC algorithm in terms of packet loss, queue delay and throughput. Another comparative study between (MSNTLP with EWBPRC and EWBPRC with fixed traffic load parameter (µ shows that the MSNTLP with EWBPRC is more efficient than EWBPRC with fixed traffic load parameter (µ in terms of packet loss ratio and queue delay. A simulation process is developed and tested using the network simulator _2 (NS2 in a computer having the following properties: windows 7 (64-bit, core i7, RAM 8GB, hard 1TB.

  9. Gas-liquid hybrid discharge-induced degradation of diuron in aqueous solution.

    Science.gov (United States)

    Feng, Jingwei; Zheng, Zheng; Luan, Jingfei; Li, Kunquan; Wang, Lianhong; Feng, Jianfang

    2009-05-30

    Degradation of diuron in aqueous solution by gas-liquid hybrid discharge was investigated for the first time. The effect of output power intensity, pH value, Fe(2+) concentration, Cu(2+) concentration, initial conductivity and air flow rate on the degradation efficiency of diuron was examined. The results showed that the degradation efficiency of diuron increased with increasing output power intensity and increased with decreasing pH values. In the presence of Fe(2+), the degradation efficiency of diuron increased with increasing Fe(2+) concentration. The degradation efficiency of diuron was decreased during the first 4 min and increased during the last 10 min with adding of Cu(2+). Decreasing the initial conductivity and increasing the air flow rate were favorable for the degradation of diuron. Degradation of diuron by gas-liquid hybrid discharge fitted first-order kinetics. The pH value of the solution decreased during the reaction process. Total organic carbon removal rate increased in the presence of Fe(2+) or Cu(2+). The generated Cl(-1), NH(4)(+), NO(3)(-), oxalic acid, acetic acid and formic acid during the degradation process were also detected. Based on the detected Cl(-1) and other intermediates, a possible degradation pathway of diuron was proposed.

  10. Residue Geometry Networks: A Rigidity-Based Approach to the Amino Acid Network and Evolutionary Rate Analysis

    Science.gov (United States)

    Fokas, Alexander S.; Cole, Daniel J.; Ahnert, Sebastian E.; Chin, Alex W.

    2016-01-01

    Amino acid networks (AANs) abstract the protein structure by recording the amino acid contacts and can provide insight into protein function. Herein, we describe a novel AAN construction technique that employs the rigidity analysis tool, FIRST, to build the AAN, which we refer to as the residue geometry network (RGN). We show that this new construction can be combined with network theory methods to include the effects of allowed conformal motions and local chemical environments. Importantly, this is done without costly molecular dynamics simulations required by other AAN-related methods, which allows us to analyse large proteins and/or data sets. We have calculated the centrality of the residues belonging to 795 proteins. The results display a strong, negative correlation between residue centrality and the evolutionary rate. Furthermore, among residues with high closeness, those with low degree were particularly strongly conserved. Random walk simulations using the RGN were also successful in identifying allosteric residues in proteins involved in GPCR signalling. The dynamic function of these residues largely remain hidden in the traditional distance-cutoff construction technique. Despite being constructed from only the crystal structure, the results in this paper suggests that the RGN can identify residues that fulfil a dynamical function. PMID:27623708

  11. On the Development and Application of High Data Rate Architecture (HiDRA) in Future Space Networks

    Science.gov (United States)

    Hylton, Alan; Raible, Daniel; Clark, Gilbert

    2017-01-01

    Historically, space missions have been severely constrained by their ability to downlink the data they have collected. These constraints are a result of relatively low link rates on the spacecraft as well as limitations on the time during which data can be sent. As part of a coherent strategy to address existing limitations and get more data to the ground more quickly, the Space Communications and Navigation (SCaN) program has been developing an architecture for a future solar system Internet. The High Data Rate Architecture (HiDRA) project is designed to fit into such a future SCaN network. HiDRA's goal is to describe a general packet-based networking capability which can be used to provide assets with efficient networking capabilities while simultaneously reducing the capital costs and operational costs of developing and flying future space systems.Along these lines, this paper begins by reviewing various characteristics of modern satellite design as well as relevant characteristics of emerging technologies (such as free-space optical links capable of working at 100+ Gbps). Next, the paper describes HiDRA's design, and how the system is able to both integrate and support the operation of not only today's high-rate systems, but also the high-rate systems likely to be found in the future. This section also explores both existing and future networking technologies, such as Delay Tolerant Networking (DTN) protocol (RFC4838 citeRFC:1, RFC5050citeRFC:2), and explains how HiDRA supports them. Additionally, this section explores how HiDRA is used for scheduling data movement through both proactive and reactive link management. After this, the paper moves on to explore a reference implementation of HiDRA. This implementation is currently being realized based on a Field Programmable Gate Array (FPGA) memory and interface controller that is itself controlled by a local computer running DTN software. Next, this paper explores HiDRA's natural evolution, which includes an

  12. Microbial degradation of dissolved proteins in seawater

    International Nuclear Information System (INIS)

    Hollibaugh, J.T.; Azam, F.

    1983-01-01

    An experimental protocol using radiolabeled proteins was developed to investigate the rates and mechanisms whereby dissolved proteins are degraded in natural marine plankton communities. The results of field observations and laboratory experiments indicate that proteins are degraded by a particle-bound, thermolabile system, presumably bacteria-associated enzymes, with an apparent half-saturation constant of ca. 25 μg bovine serum albumin (BSA) per liter. Gel permeation chromatography indicated that peptides of chain length intermediate between BSA and the final products of degradation (MW<700) do not accumulate in the medium. Competition experiments indicate that the system is relatively nonspecific. Turnover rates for the protein pool in samples collected in the Southern California Bight were of the same order of magnitude as the turnover rate of the L-leucine pool and were correlated with primary productivity, chlorophyll a concentrations, bacterial abundance and biomass, and L-leucine turnover rate. These data suggest that amino acids derived from proteins are utilized preferentially and do not completely mix with the amino acids in the bulk phase

  13. Hydrocarbon degradation potential in reference soils and soils contaminated with jet fuel

    International Nuclear Information System (INIS)

    Lee, R.F.; Hoeppel, R.

    1991-01-01

    Petroleum degradation in surface and subsurface soils is affected by such factors as moisture content, pH, soil type, soil organics, temperature, and oxygen concentrations. In this paper, the authors determine the degradation rates of 14 C-labeled hydrocarbons added to soils collected from a contaminated surface site, contaminated subsurface sites, and a clean reference site. The radiolabeled hydrocarbons used include benzene, toluene, naphthalene, 1-methynaphthalene, phenanthrene, fluorene, anthracene, chrysene, and hexadecane. Microbial degradation rates were based on determination of mineralization rates (production of 14 CO 2 ) of hydrocarbons that were added to soil samples. Since water was added and oxygen was not limiting, the hydrocarbon rates determined are likely to be higher than those occurring in situ. Using radiolabeled hydrocarbons, information can be provided on differences in the degradation rates of various petroleum compounds in different types of soils at a site, on possible production of petroleum metabolites in the soil, and on the importance of anaerobic petroleum degradation and the effects of nutrient, water, and surfactant addition on biodegradation rates

  14. User Participation and Honesty in Online Rating Systems: What a Social Network Can Do

    OpenAIRE

    Davoust, Alan; Esfandiari, Babak

    2016-01-01

    An important problem with online communities in general, and online rating systems in particular, is uncooperative behavior: lack of user participation, dishonest contributions. This may be due to an incentive structure akin to a Prisoners' Dilemma (PD). We show that introducing an explicit social network to PD games fosters cooperative behavior, and use this insight to design a new aggregation technique for online rating systems. Using a dataset of ratings from Yelp, we show that our aggrega...

  15. Microbial degradation of pharmaceuticals in estuarine and coastal seawater

    Energy Technology Data Exchange (ETDEWEB)

    Benotti, Mark J. [Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Brownawell, Bruce J. [Marine Sciences Research Center, Stony Brook University, Stony Brook, NY 11794-5000 (United States)], E-mail: bruce.brownawell@sunysb.edu

    2009-03-15

    Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t{sub 1/2} = 35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t{sub 1/2} = 0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t{sub 1/2} = 3.5-13 days). Microbial degradation of caffeine was further confirmed by production {sup 14}CO{sub 2}. The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters. - Microbial degradation rates were measured for 19 structurally variable pharmaceuticals in wastewater-impacted estuarine and coastal seawater.

  16. Microbial degradation of pharmaceuticals in estuarine and coastal seawater

    International Nuclear Information System (INIS)

    Benotti, Mark J.; Brownawell, Bruce J.

    2009-01-01

    Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t 1/2 = 35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t 1/2 = 0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t 1/2 = 3.5-13 days). Microbial degradation of caffeine was further confirmed by production 14 CO 2 . The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters. - Microbial degradation rates were measured for 19 structurally variable pharmaceuticals in wastewater-impacted estuarine and coastal seawater

  17. [Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China.

    Science.gov (United States)

    Zhang, Huan; Cao, Jun; Wang, Hua Bing; Song, Bo; Jia, Guo Dong; Liu, Zi Qiang; Yu, Xin Xiao; Zeng, Jia

    2018-05-01

    In Zhangbei County, Hebei Province, poplar-dominated shelterbelts are degraded to different extents. Water availability is the main limiting factor for plant survival in arid areas. The purpose of this study was to reveal the relationship between water availability and poplar degradation. Based on the hydrogen and oxygen stable isotope techniques, we explored the water sources of Populus simonii under different degradation degrees by comparing the isotopic values of P. simonii xylem water with that in potential water source, and calculated the utilization ratio of each water source. The results showed that the water sources of poplar trees varied with degradation degree. The water sources of P. simonii gradually transferred from the deep layer to the surface layer with the increases of degradation. P. simonii with no degradation mainly absorbed soil water in the range of 320-400 cm, with the utilization rate being 25.1%. P. simonii with slight degradation mainly used soil water at depth of 120-180, 180-240 and 240-320 cm. The total utilization rate of three layers was close to 50.0%, with less utilization of water from other layers. The moderately degraded P. simonii mainly used soil water at depth of 20-40, 40-60 and 60-80 cm. The utilization rate of each layer was 17.5%-20.9%, and the contribution rate of soil water under 120 cm was less than 10.0%. The severely degraded P. simonii mainly used water from surface soil layer (0-20 cm), with the utilization rate being 30.4%, which was significantly higher than that of other water sources. The water sources of poplar shelter forests were gradually shallower during the process of degradation. However, the low soil water content in the shallow layer could not meet the normal water demand of poplar, which would accelerate the degradation and even decline of poplar.

  18. Evolution on neutral networks accelerates the ticking rate of the molecular clock.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2015-01-06

    Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Dissolution of covalent adaptable network polymers in organic solvent

    Science.gov (United States)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  20. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    International Nuclear Information System (INIS)

    Prasad, G.K.; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-01-01

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 × 10 −3 min −1 . Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 × 10 −3 min −1 due to photocatalysis. Gas chromatography–mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P–O–C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: ► Synthesis of titania nanoparticles by sol–gel method. ► Fabrication of titania nanoparticulate film by dip coating. ► Paraoxon ethyl degradation reactions followed pseudo first order behaviour. ► Paraoxon-ethyl degraded to non toxic compounds like CO 2 , acetaldehyde, and nitrophenol.

  1. Topological quantum computing with a very noisy network and local error rates approaching one percent.

    Science.gov (United States)

    Nickerson, Naomi H; Li, Ying; Benjamin, Simon C

    2013-01-01

    A scalable quantum computer could be built by networking together many simple processor cells, thus avoiding the need to create a single complex structure. The difficulty is that realistic quantum links are very error prone. A solution is for cells to repeatedly communicate with each other and so purify any imperfections; however prior studies suggest that the cells themselves must then have prohibitively low internal error rates. Here we describe a method by which even error-prone cells can perform purification: groups of cells generate shared resource states, which then enable stabilization of topologically encoded data. Given a realistically noisy network (≥10% error rate) we find that our protocol can succeed provided that intra-cell error rates for initialisation, state manipulation and measurement are below 0.82%. This level of fidelity is already achievable in several laboratory systems.

  2. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  3. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  4. Possibility of electron beam irradiation degradation of many pesticides in ginseng oral liquid

    International Nuclear Information System (INIS)

    Chen Qiyong; Liu Yang; Ge Hanguang; Wu Ruoxin

    2013-01-01

    This paper is to explore the technological feasibility in degradation of pesticides in ginseng oral liquid under the irradiation of electron beam. Sixteen residual concentration-restricted pesticides in ginseng oral liquid were experimented under the dose of 0 ∼ 15 kGy. Results showed that, when the dose of the irradiation of electron beam increased, the degradation rates of all the pesticides enhanced, and the electron beam radiation showed the most remarkable effect on the degradation of pesticides such as imidacloprid and fenpropathrinwith degradation rates of more than 90% and 50%, respectively. The degradation rates of fonofos, methidathion, diazinon, phosalone and carbaryl were all higher than 30%. No significant degradation was observed in the other 9 pesticides under the same condition. (authors)

  5. On a multistable competitive network model in the case of an inhomogeneous growth rate spectrum: With an application to priming

    International Nuclear Information System (INIS)

    Frank, T.D.

    2009-01-01

    A stability analysis of a network model proposed by Haken is carried out for the case of an inhomogeneous spectrum of growth rates. The degree of multistability as a function of the coupling strength between network units is determined. An application to priming shows that the network can reconstruct the fundamental phenomenon that primed items have shorter recall latencies than non-primed items when assuming that learning affects the inhomogeneity of the growth rate spectrum.

  6. A network-based rating system and its resistance to bribery

    OpenAIRE

    Turrini, P; Grandi, U

    2016-01-01

    We study a rating system in which a set of individ- uals (e.g., the customers of a restaurant) evaluate a given service (e.g, the restaurant), with their ag- gregated opinion determining the probability of all individuals to use the service and thus its generated revenue. We explicitly model the influence relation by a social network, with individuals being influ- enced by the evaluation of their trusted peers. On top of that we allow a malicious service provider (e.g., the restaurant owne...

  7. 3'-5' RNA degradation pathways in human cells

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon

    RNA synthesis and degradation are key steps in the regulation of gene expression in all living organisms. During the course of his PhD studies, Michal Lubas centred his research on the nuclear and cytoplasmic RNA turnover of both noncoding and coding RNAs in human cells. His proteomic studies...... revealed the interaction network of the main 3'-5' RNA degradation machinery – the RNA exosome complex. One of the key findings was the identification and characterisation of the Nuclear Exosome Targeting (NEXT) complex, important for nuclear functions of the exosome. Michal Lubas also studied the role...

  8. Reliability Analysis of Load-Sharing K-out-of-N System Considering Component Degradation

    Directory of Open Access Journals (Sweden)

    Chunbo Yang

    2015-01-01

    Full Text Available The K-out-of-N configuration is a typical form of redundancy techniques to improve system reliability, where at least K-out-of-N components must work for successful operation of system. When the components are degraded, more components are needed to meet the system requirement, which means that the value of K has to increase. The current reliability analysis methods overestimate the reliability, because using constant K ignores the degradation effect. In a load-sharing system with degrading components, the workload shared on each surviving component will increase after a random component failure, resulting in higher failure rate and increased performance degradation rate. This paper proposes a method combining a tampered failure rate model with a performance degradation model to analyze the reliability of load-sharing K-out-of-N system with degrading components. The proposed method considers the value of K as a variable which is derived by the performance degradation model. Also, the load-sharing effect is evaluated by the tampered failure rate model. Monte-Carlo simulation procedure is used to estimate the discrete probability distribution of K. The case of a solar panel is studied in this paper, and the result shows that the reliability considering component degradation is less than that ignoring component degradation.

  9. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  10. Effect of solvents on the enzyme mediated degradation of copolymers

    International Nuclear Information System (INIS)

    Banerjee, Aditi; Chatterjee, Kaushik; Madras, Giridhar

    2015-01-01

    The biodegradation of polycaprolactone (PCL), polylactic acid (PLA), polyglycolide (PGA) and their copolymers, poly (lactide-co-glycolide) and poly (D, L-lactide-co-caprolactone) (PLCL) was investigated. The influence of different solvents on the degradation of these polymers at 37 °C in the presence of two different lipases namely Novozym 435 and the free lipase of porcine pancreas was investigated. The rate coefficients for the polymer degradation and enzyme deactivation were determined using continuous distribution kinetics. Among the homopolymers, the degradation of PGA was nearly an order of magnitude lower than that for PCL and PLA. The overall rate coefficients of the copolymers were higher than their respective homopolymers. Thus, PLCL degraded faster than either PCL or PLA. The degradation was highly dependent on the viscosity of the solvent used with the highest degradation observed in acetone. The degradation of the polymers in acetone was nearly twice that observed in dimethyl sulfoxide indicating that the degradation decreases with increase in the solvent viscosity. The degradation of the polymers in water-solvent mixtures indicated an optimal water content of 2.5 wt% of water. (paper)

  11. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  12. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    Science.gov (United States)

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  13. Choosing optimum noise figure and data rate in wireless sensor network radio transceivers

    NARCIS (Netherlands)

    Dutta, R.; van der Zee, Ronan A.R.; Bentum, Marinus Jan; Kokkeler, Andre B.J.

    2011-01-01

    To reduce the energy consumption in wireless sensor network transceivers, we propose an approach which combines two tradeoffs. The first tradeoff is between the receiver sensitivity and transmitter output power. The second one is the duty cycle and data rate of the transceiver. The combined approach

  14. Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community

    NARCIS (Netherlands)

    Weelink, S.A.B.; Tan, N.C.G.; Broeke, H. ten; Doesburg, W. van; Langenhoff, A.A.M.; Gerritse, J.; Stams, A.J.M.

    2007-01-01

    A stable anoxic enrichment culture was obtained that degraded benzene with chlorate as an electron acceptor. The benzene degradation rate was 1.65 mM benzene per day, which is similar to reported aerobic benzene degradation rates but 20-1650 times higher than reported for anaerobic benzene

  15. Estimating Memory Deterioration Rates Following Neurodegeneration and Traumatic Brain Injuries in a Hopfield Network Model

    Directory of Open Access Journals (Sweden)

    Melanie Weber

    2017-11-01

    Full Text Available Neurodegenerative diseases and traumatic brain injuries (TBI are among the main causes of cognitive dysfunction in humans. At a neuronal network level, they both extensively exhibit focal axonal swellings (FAS, which in turn, compromise the information encoded in spike trains and lead to potentially severe functional deficits. There are currently no satisfactory quantitative predictors of decline in memory-encoding neuronal networks based on the impact and statistics of FAS. Some of the challenges of this translational approach include our inability to access small scale injuries with non-invasive methods, the overall complexity of neuronal pathologies, and our limited knowledge of how networks process biological signals. The purpose of this computational study is three-fold: (i to extend Hopfield's model for associative memory to account for the effects of FAS, (ii to calibrate FAS parameters from biophysical observations of their statistical distribution and size, and (iii to systematically evaluate deterioration rates for different memory-recall tasks as a function of FAS injury. We calculate deterioration rates for a face-recognition task to account for highly correlated memories and also for a discrimination task of random, uncorrelated memories with a size at the capacity limit of the Hopfield network. While it is expected that the performance of any injured network should decrease with injury, our results link, for the first time, the memory recall ability to observed FAS statistics. This allows for plausible estimates of cognitive decline for different stages of brain disorders within neuronal networks, bridging experimental observations following neurodegeneration and TBI with compromised memory recall. The work lends new insights to help close the gap between theory and experiment on how biological signals are processed in damaged, high-dimensional functional networks, and towards positing new diagnostic tools to measure cognitive

  16. Estimating Memory Deterioration Rates Following Neurodegeneration and Traumatic Brain Injuries in a Hopfield Network Model

    Science.gov (United States)

    Weber, Melanie; Maia, Pedro D.; Kutz, J. Nathan

    2017-01-01

    Neurodegenerative diseases and traumatic brain injuries (TBI) are among the main causes of cognitive dysfunction in humans. At a neuronal network level, they both extensively exhibit focal axonal swellings (FAS), which in turn, compromise the information encoded in spike trains and lead to potentially severe functional deficits. There are currently no satisfactory quantitative predictors of decline in memory-encoding neuronal networks based on the impact and statistics of FAS. Some of the challenges of this translational approach include our inability to access small scale injuries with non-invasive methods, the overall complexity of neuronal pathologies, and our limited knowledge of how networks process biological signals. The purpose of this computational study is three-fold: (i) to extend Hopfield's model for associative memory to account for the effects of FAS, (ii) to calibrate FAS parameters from biophysical observations of their statistical distribution and size, and (iii) to systematically evaluate deterioration rates for different memory-recall tasks as a function of FAS injury. We calculate deterioration rates for a face-recognition task to account for highly correlated memories and also for a discrimination task of random, uncorrelated memories with a size at the capacity limit of the Hopfield network. While it is expected that the performance of any injured network should decrease with injury, our results link, for the first time, the memory recall ability to observed FAS statistics. This allows for plausible estimates of cognitive decline for different stages of brain disorders within neuronal networks, bridging experimental observations following neurodegeneration and TBI with compromised memory recall. The work lends new insights to help close the gap between theory and experiment on how biological signals are processed in damaged, high-dimensional functional networks, and towards positing new diagnostic tools to measure cognitive deficits. PMID

  17. The Effect of High-Pressure Arc Discharge Plasma on the Degradation of Chlorpyrifos

    International Nuclear Information System (INIS)

    Yin Meiqiang; Ma Tengcai; Zhang Jialiang; Huang Mingjing; Ma Buzhou

    2006-01-01

    A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml

  18. Optimal Base Station Density of Dense Network: From the Viewpoint of Interference and Load.

    Science.gov (United States)

    Feng, Jianyuan; Feng, Zhiyong

    2017-09-11

    Network densification is attracting increasing attention recently due to its ability to improve network capacity by spatial reuse and relieve congestion by offloading. However, excessive densification and aggressive offloading can also cause the degradation of network performance due to problems of interference and load. In this paper, with consideration of load issues, we study the optimal base station density that maximizes the throughput of the network. The expected link rate and the utilization ratio of the contention-based channel are derived as the functions of base station density using the Poisson Point Process (PPP) and Markov Chain. They reveal the rules of deployment. Based on these results, we obtain the throughput of the network and indicate the optimal deployment density under different network conditions. Extensive simulations are conducted to validate our analysis and show the substantial performance gain obtained by the proposed deployment scheme. These results can provide guidance for the network densification.

  19. Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination.

    Science.gov (United States)

    Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming

    2017-02-01

    Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fungal bio-degradation of 14C-parathion

    International Nuclear Information System (INIS)

    Mohamed, G. A.; Abo-El Seoud, M. A.

    2012-12-01

    1 4 'C-parathion (670 Bq) was applied to mineral salt medium (MSM) to examine and evaluate its biodegradation by some fungi. The studied isolates were Alternaria alternate, Fusarium oxysporim and trichoderma viride. The inoculated media were incubated at 30 o C for periods of 2, 4, 6 and 8 days. Ta each interval, mycelia were separated from nutrient solution and extracted for its radioactivity. However, non extractable compounds were liberated by combustion. Quantitative and qualitative analysis were carried out for the radioactive compound in mycelia l extracts and residues as well as the fungal culture filtrate. Balance sheet for total recovered radioactive compounds was concluded 1 4 'C-parathion metabolism was expressed as original compound, polar metabolite, non polar metabolites and non extractable residues and then degradation rate was calculated. araesults indicated that there was continuous penetration for the radioactivity into mycelia tissues and the maximum, accumulation was recorded by Fusarium Oxysporium. The fungi under investigation showed considerable variations regarding their capacity to degrade the radioactive pesticide. Trichoderma viride exhibited the maximum capability to catabolism the the 1 4C -parathion as it exerted the maximum degradation rate. Fusarium and Alternate alter nata showed less degradation rates for the 1 4C - pesticide under investigation. (Author)

  1. Degradation rate of sludge/fly ash mixture used as landfill liner; Nedbrytningshastigheten foer taetskikt uppbyggda av slam och aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Process AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Technology (Sweden)

    2005-10-01

    In order to be able to use mixtures of ash and sludge as landfill liner an important aspect is to demonstrate that the degradation of organic matter is slow enough. Therefore, the goal of this project has been to find out for how long a landfill liner material of sludge and ash will be stable and keep its function. The degradation of organic material in two different mixtures of sludge and ash has been studied in laboratory experiments. The rate of degradation was then estimated for barriers of sludge and ash, taking into account construction techniques (mixture, compaction, water content), climate conditions (freezing, drying) and biological processes (NaN{sub 3} additive). The effect of the degradation on the permeability has also been quantified. Organic material may disappear for the landfill liner material through 1) initial leaching of soluble organic material, 2) leaching of organic material after chemical reactions or 3) evaporation during biological degradation. Bacterial activity was not found in the sludge/ash mixtures during the experiments. Therefore, the organic material is probably reduced mainly though leaching according to 1) and 2). The leached amount of TOC (total organic carbon) was measured for all samples of sludge/ash in several experimental cycles. The leached amount of TOC was compared to the initial amount of TOC in the material. The results show a small initial reduction of organic material through leaching but the TOC content in the material is then stabilized. In relation to the total weight of the material the leaching of TOC was similar for the mixtures with 80 % ash and 20 % ash. However, this means that a larger amount of TOC was leached out from the mixtures with a high ash content since the initial amount of organic material was smaller. General conclusions about which ash-sludge ratio that is suitable for a landfill liner material could not be drawn from the experiments from a degradation point of view. If the initial

  2. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    Science.gov (United States)

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  3. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-06-30

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 Multiplication-Sign 10{sup -3} min{sup -1}. Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 Multiplication-Sign 10{sup -3} min{sup -1} due to photocatalysis. Gas chromatography-mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P-O-C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: Black-Right-Pointing-Pointer Synthesis of titania nanoparticles by sol-gel method. Black-Right-Pointing-Pointer Fabrication of titania nanoparticulate film by dip coating. Black-Right-Pointing-Pointer Paraoxon ethyl degradation reactions followed pseudo first order behaviour. Black-Right-Pointing-Pointer Paraoxon-ethyl degraded to non toxic compounds like CO{sub 2}, acetaldehyde, and nitrophenol.

  4. Control of the Protein Turnover Rates in Lemna minor

    Science.gov (United States)

    Trewavas, A.

    1972-01-01

    The control of protein turnover in Lemna minor has been examined using a method described in the previous paper for determining the rate constants of synthesis and degradation of protein. If Lemna is placed on water, there is a reduction in the rate constants of synthesis of protein and an increase (3- to 6-fold) in the rate constant of degradation. The net effect is a loss of protein from the tissue. Omission of nitrate, phosphate, sulfate, magnesium, or calcium results in increases in the rate constant of degradation of protein. An unusual dual effect of benzyladenine on the turnover constants has been observed. Treatment of Lemna grown on sucrose-mineral salts with benzyladenine results in alterations only in the rate constant of synthesis. Treatment of Lemna grown on water with benzyladenine alters only the rate constant of degradation. Abscisic acid on the other hand alters both rate constants of synthesis and degradation of protein together. Inclusion of growth-inhibiting amino acids in the medium results in a reduction in the rate constants of synthesis and increases in the rate constant of degradation of protein. It is concluded that the rate of turnover of protein in Lemna is very dependent on the composition of the growth medium. Conditions which reduce growth rates also reduce the rates of synthesis of protein and increase those of degradation. PMID:16657895

  5. Ethernet image communication performance in a multimodal PACS network

    International Nuclear Information System (INIS)

    Lou, S.L.; Valentino, D.J.; Chan, K.K.; Huang, H.K.

    1989-01-01

    The authors have evaluated the performance of an Ethernet network in a multimodal picture archiving and communications system (PACS) environment. The study included measurements between Sun workstations and PC- AT computers running communication software at the TCP level. First they initiated image transfers between two workstations, a server and a client. Next, they successively added clients to transfer images to the server and they measured degradation in network performance. Finally, they initiated image transfers between pairs of workstations and again measured performance degradation. The results of the authors' experiments indicate that Ethernet is suitable for image communication only in limited network situations. They discuss how to maximize network performance given these constraints

  6. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    International Nuclear Information System (INIS)

    Xu, L.J.; Chu, W.; Graham, Nigel

    2014-01-01

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H 2 O 2 decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US and USUV

  7. Atrazine degradation using chemical-free process of USUV: Analysis of the micro-heterogeneous environments and the degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.J., E-mail: xulijie827@gmail.com [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Chu, W., E-mail: cewchu@polyu.edu.hk [Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Graham, Nigel, E-mail: n.graham@imperial.ac.uk [Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2014-06-30

    Graphical abstract: - Highlights: • Two chemical-free AOP processes are combined to enhance atrazine degradation. • ATZ degradation in sonophotolytic process was analyzed using a previous proposed model. • The micro-bubble/liquid heterogeneous environments in sonolytic processes were investigated. • The salt effects on different sonolytic processes were examined. • ATZ degradation mechanisms were investigated and pathways were proposed. - Abstract: The effectiveness of sonolysis (US), photolysis (UV), and sonophotolysis (USUV) for the degradation of atrazine (ATZ) was investigated. An untypical kinetics analysis was found useful to describe the combined process, which is compatible to pseudo first-order kinetics. The heterogeneous environments of two different ultrasounds (20 and 400 kHz) were evaluated. The heterogeneous distribution of ATZ in the ultrasonic solution was found critical in determining the reaction rates at different frequencies. The presence of NaCl would promote/inhibit the rates by the growth and decline of “salting out” effect and surface tension. The benefits of combining these two processes were for the first time investigated from the aspect of promoting the intermediates degradation which were resistant in individual processes. UV caused a rapid transformation of ATZ to 2-hydroxyatrazine (OIET), which was insensitive to UV irradiation; however, US and USUV were able to degrade OIET and other intermediates through • OH attack. On the other hand, UV irradiation also could promote radical generation via H{sub 2}O{sub 2} decomposition, thereby resulting in less accumulation of more hydrophilic intermediates, which are difficult to degradation in the US process. Reaction pathways for ATZ degradation by all three processes are proposed. USUV achieved the greatest degree of ATZ mineralization with more than 60% TOC removed, contributed solely by the oxidation of side chains. Ammeline was found to be the only end-product in both US

  8. Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jae Kyun Kwon

    2015-10-01

    Full Text Available Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method.

  9. Estimating the Biodegradation Kinetics by Mixed Culture Degrading Pyrene (Pyr

    Directory of Open Access Journals (Sweden)

    B. S. U. Ibn Abubakar

    2017-02-01

    Full Text Available Biodegradation and kinetics of Pyrene (Pyr degradation by a mixed culture previously isolated from hydrocarbon-polluted soil were conducted. Preliminary investigation on environmental factors affecting the degradation of Pyr such as temperature, pH and concentrations of Pyr was performed. These factors were optimised and established in aqueous experiments. In order to develop kinetics of Pyr degradation, an optimum temperature of 30oC and pH of 7.0 was used. Biodegradation kinetics was carried out, at first, using higher concentration between (100-700 ppm as sole source of carbon in mineral salt medium (MSM supplemented with 0.1% yeast extract. The result indicated that a range of concentration between (100-700 ppm inhibits the performance of the mixed culture. A concentration range between (10-100 ppm did not inhibit the growth of the mixed culture. A First-order rate constant, k was higher (0.0487 mg/lh with a substrate concentration of 20 ppm than other concentrations. The average degradation rate constant is 0.0029 mg/Lh for all the concentrations tested. This indicated that the mixed culture could degrade over 0.0696 ppm of Pyr per day. It also confirmed that kinetics of microbial degradation was partially fitted into Monod model. The data can be used to estimate biodegradation of Pyr by a mixed culture and preliminarily estimation of degradation rates.

  10. In-Field Spatial Variability in the Degradation of the Phenyl-Urea Herbicide Isoproturon Is the Result of Interactions between Degradative Sphingomonas spp. and Soil pH

    Science.gov (United States)

    Bending, Gary D.; Lincoln, Suzanne D.; Sørensen, Sebastian R.; Morgan, J. Alun W.; Aamand, Jens; Walker, Allan

    2003-01-01

    Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were investigated at Deep Slade field in Warwickshire, United Kingdom. Most-probable-number analysis showed that rapid degradation of IPU was associated with proliferation of IPU-degrading organisms. Slow degradation of IPU was linked to either a delay in the proliferation of IPU-degrading organisms or apparent cometabolic degradation. Using enrichment techniques, an IPU-degrading bacterial culture (designated strain F35) was isolated from fast-degrading soil, and partial 16S rRNA sequencing placed it within the Sphingomonas group. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial community 16S rRNA revealed two bands that increased in intensity in soil during growth-linked metabolism of IPU, and sequencing of the excised bands showed high sequence homology to the Sphingomonas group. However, while F35 was not closely related to either DGGE band, one of the DGGE bands showed 100% partial 16S rRNA sequence homology to an IPU-degrading Sphingomonas sp. (strain SRS2) isolated from Deep Slade field in an earlier study. Experiments with strains SRS2 and F35 in soil and liquid culture showed that the isolates had a narrow pH optimum (7 to 7.5) for metabolism of IPU. The pH requirements of IPU-degrading strains of Sphingomonas spp. could largely account for the spatial variation of IPU degradation rates across the field. PMID:12571001

  11. THE FTIR STUDIES OF PHOTO-OXIDATIVE DEGRADATION OF POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    WEN Zaiqing; HU Xingzhou; SHEN Deyan

    1988-01-01

    The photo-oxidative degradation process of polypropylene film containing iron ions was investigated via FTIR and absorbance substraction technique. It is shown that the iron ions play an important role in the decomposition of hydroperoxide and the increase of the degradation rate of polypropylene film. Theamorphous region of PP film undergoes degradation prior to the crystalline one.

  12. Self-Interested Routing in Queueing Networks

    OpenAIRE

    Ali K. Parlaktürk; Sunil Kumar

    2004-01-01

    We study self-interested routing in stochastic networks, taking into account the discrete stochastic dynamics of such networks. We analyze a two-station multiclass queueing network in which the system manager chooses the scheduling rule and individual customers choose routes in a self-interested manner. We show that this network can be unstable in Nash equilibrium under some scheduling rules. We also design a nontrivial scheduling rule that negates the performance degradation resulting from s...

  13. Quantitative framework for ordered degradation of APC/C substrates.

    Science.gov (United States)

    Lu, Dan; Girard, Juliet R; Li, Weihan; Mizrak, Arda; Morgan, David O

    2015-11-16

    During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis. We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20). Using a computational model based on multi-step ubiquitination, we then show how changes in the interaction between a single substrate and APC/C(Cdc20) can alter the timing of degradation onset relative to APC/C(Cdc20) activation, while ensuring a fast degradation rate. Degradation timing and dynamics depend on substrate affinity for the enzyme as well as the catalytic rate at which the substrate is modified. When two substrates share the same pool of APC/C(Cdc20), their relative enzyme affinities and rates of catalysis influence the partitioning of APC/C(Cdc20) among substrates, resulting in substrate competition. Depending on how APC/C(Cdc20) is partitioned among its substrates, competition can have minor or major effects on the degradation of certain substrates. We show experimentally that increased expression of the early APC/C(Cdc20) substrate Clb5 does not delay the degradation of the later substrate securin, arguing against a role for competition with Clb5 in establishing securin degradation timing. The degradation timing of APC/C(Cdc20) substrates depends on the multi-step nature of ubiquitination, differences in substrate-APC/C(Cdc20) interactions, and competition among substrates. Our studies provide a conceptual framework for understanding how ordered modification can be established among substrates of the same regulatory enzyme, and facilitate our understanding of how precise temporal control is achieved by a small number of master regulators to ensure a successful cell division cycle.

  14. Control and Optimization of Network in Networked Control System

    Directory of Open Access Journals (Sweden)

    Wang Zhiwen

    2014-01-01

    Full Text Available In order to avoid quality of performance (QoP degradation resulting from quality of service (QoS, the solution to network congestion from the point of control theory, which marks departure of our results from the existing methods, is proposed in this paper. The congestion and bandwidth are regarded as state and control variables, respectively; then, the linear time-invariant (LTI model between congestion state and bandwidth of network is established. Consequently, linear quadratic method is used to eliminate the network congestion by allocating bandwidth dynamically. At last, numerical simulation results are given to illustrate the effectiveness of this modeling approach.

  15. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Accelerated thermal and radiation-oxidation combined degradation of electric cable insulation materials

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Seguchi, Tadao; Yoshida, Kenzo

    1986-03-01

    For the development of accelerated testing methodology to estimate the life time of electric cable, which is installed in radiation field such as a nuclear reactor containment vessel, radiation and thermal combined degradation of cable insulation and jacketing materials was studied. The materials were two types of formulated polyethylene, ethylene-propylene rubber, Hypalon, and Neoprene. With Co-60 γ-rays the materials were irradiated up to 0.5 MGy under vacuum and in oxygen under pressure, then exposed to thermal aging at elevated temperature in oxygen. The degradation was investigated by the tensile test, gelfraction, and swelling measurements. The thermal degradation rate for each sample increases with increase of oxygen concentration, i.e. oxygen pressure, during the aging, and tends to saturate above 0.2 MPa of oxygen pressure. Then, the effects of irradiation and the temperature on the thermal degradation rate were investigated at the oxygen pressure of 0.2 MPa in the temperature range from 110 deg C to 150 deg C. For all of samples irradiated in oxygen, the following thermal degradation rate was accelerated by several times comparing with unirradiated samples, while the rate of thermal degradation for the sample except Neoprene irradiated under vacuum was nearly equal to that of unirradiated one. By the analysis of thermal degradation rate against temperature using Arrhenius equation, it was found that the activation energy tends to decrease for the samples irradiated in oxidation condition. (author)

  17. Resource allocation via sum-rate maximization in the uplink of multi-cell OFDMA networks

    KAUST Repository

    Tabassum, Hina; Alouini, Mohamed-Slim; Dawy, Zaher

    2012-01-01

    In this paper, we consider maximizing the sum rate in the uplink of a multi-cell orthogonal frequency-division multiple access network. The problem has a non-convex combinatorial structure and is known to be NP-hard. Because of the inherent

  18. Planning the electron traffic in semiconductor networks: A mesoscopic analog of the Braess paradox encountered in road networks

    International Nuclear Information System (INIS)

    Huant, S.; Liu, P.; Sellier, H.; Baltazar, S.; Hackens, B.; Martins, F.; Bayot, V.; Wallart, X.; Desplanque, L.; Pala, M. G.

    2013-01-01

    By combining quantum simulations of electron transport and scanning-gate microscopy, we have shown that the current transmitted through a semiconductor two-path rectangular network in the ballistic and coherent regimes of transport can be paradoxically degraded by adding a third path to the network. This is analogous to the Braess paradox occurring in classical networks. Simulations reported here enlighten the role played by congestion in the network

  19. The impact of ambient dose rate measuring network and precipitation radar system for detection of environmental radioactivity released by accident

    International Nuclear Information System (INIS)

    Bleher, M; Stoehlker, U.

    2003-01-01

    For the surveillance of environmental radioactivity, the German measuring network of BfS consists of more than 2000 stations where the ambient gamma dose rate is continuously measured. This network is a helpful tool to detect and localise enhanced environmental contamination from artificial radionuclides. The threshold for early warning is so low, that already an additional dose rate contribution of 0,07 μGy/h is detectable. However, this threshold is frequently exceeded due to precipitation events caused by washout of natural activity in air. Therefore, the precipitation radar system of the German Weather Service provides valuable information on the problem, whether the increase of the ambient dose rate is due to natural or man-made events. In case of an accidental release, the data of this radar system show small area precipitation events and potential local hot spots not detected by the measuring network. For the phase of cloud passage, the ambient dose rate measuring network provides a reliable database for the evaluation of the current situation and its further development. It is possible to compare measured data for dose rate with derived intervention levels for countermeasures like ''sheltering''. Thus, critical regions can be identified and it is possible to verify implemented countermeasures. During and after this phase of cloud passage the measured data of the monitoring network help to adapt the results of the national decision support systems PARK and RODOS. Therefore, it is necessary to derive the actual additional contribution to the ambient dose rate. Map representations of measured dose rate are rapidly available and helpful to optimise measurement strategies of mobile systems and collection strategies for samples of agricultural products. (orig.)

  20. Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant.

    Science.gov (United States)

    Singla, Ritu; Grieser, Franz; Ashokkumar, Muthupandian

    2009-03-26

    The sonolytic degradation of the nonionic surfactant, octaethylene glycol monododecyl ether (C(12)E(8)), has been studied at various initial concentrations below and above its critical micelle concentration (CMC). It has been observed that the degradation rate increases with an increase in the initial concentration of the surfactant until the CMC is reached. Above the CMC an almost constant degradation rate is observed, suggesting that the surfactant in its monomer form is involved in the degradation process. The degradation process of C(12)E(8) involves two distinct primary processes occurring at the bubble/solution interface: (a) hydroxylation/oxidation of the surfactant and (b) pyrolytic fragmentation of the surfactant. The oxidative cleavage of ethylene oxide units provides evidence for OH radical attack. Hydroxylation of the ethoxy chain gives rise to various short-chain carboxyalkyl-polyethylene glycol intermediates. The polyethylene glycol chain formed, due to the scission of the C(12)E(8) molecule, undergoes rapid hydroxylation/oxidation to yield simple compounds that have the potential to undergo further degradation. The detection of multiple intermediates indicates that several processes affect the complete degradation pathways of the surfactant molecule. TOC analysis, however, indicates that the sonolytic mineralization of the surfactant is difficult to achieve at reasonable rates due to the relatively low surface activity of the degradation products formed during sonolysis.

  1. Degradation of dimethyl disulphide in soil with or without biochar amendment.

    Science.gov (United States)

    Han, Dawei; Yan, Dongdong; Cao, Aocheng; Fang, Wensheng; Liu, Pengfei; Li, Yuan; Ouyang, Canbin; Wang, Qiuxia

    2017-09-01

    Dimethyl disulphide (DMDS) is a new and effective alternative to methyl bromide for soil fumigation. The effect of biochar on the fate of DMDS in soil is not fully understood. The objective of this study was to determine the degradation kinetics of DMDS in different soils and evaluate the effect of biochar amendment on DMDS degradation using incubation experiments. The degradation half-life of DMDS was between 1.05 and 6.66 days under non-sterile conditions, and 12.63 to 22.67 days under sterile conditions in five types of soil. Seven out of the eight tested biochar amendments (BC-2 to BC-8) delayed the degradation of DMDS in soil, increasing the half-life of DMDS in Fangshan soil from 1.05 to 1.16-5.87 days following amendment with 1% (w/w) biochar. The degradation rate of DMDS in Fangshan soil accelerated as the amendment rate of BC-1 increased, and decreased as the amendment rate of BC-7 increased. Biodegradation is an important degradation route for DMDS in soil, and DMDS degraded faster in alkaline soil. The effects of biochar amendments on DMDS degradation in soil are determined by complex multiple factors (such as surface area, pH and physicochemical composition), rather than by any single property of biochar. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Directory of Open Access Journals (Sweden)

    Lukas Falat

    2016-01-01

    Full Text Available This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  3. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    Science.gov (United States)

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  4. Working session 1: Tubing degradation

    International Nuclear Information System (INIS)

    Kharshafdjian, G.; Turluer, G.

    1997-01-01

    A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to open-quotes develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.close quotes Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym open-quotes MESSclose quotes by some of the group members, were noted. The element of time (i.e., evolution of these variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed

  5. Carbazole degradation in the soil microcosm by tropical bacterial strains

    Directory of Open Access Journals (Sweden)

    Lateef B. Salam

    2015-01-01

    Full Text Available In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonassp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg, 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg, 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  6. The synthesis of hierarchical nanostructured MoS{sub 2}/Graphene composites with enhanced visible-light photo-degradation property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yongjie, E-mail: zhaoyjpeace@gmail.com [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Zhang, Xiaowei; Wang, Chengzhi [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China); Zhao, Yuzhen; Zhou, Heping [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Li, Jingbo; Jin, HaiBo [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081 (China)

    2017-08-01

    Graphical abstract: Introducing graphene layer into MoS{sub 2} could construct the steady hierarchical structure which could efficiently separate the photo-induced electrons so as to enhance the photo- degradation behavior. - Highlights: • The MoS{sub 2} and MoS{sub 2}/Graphene nanocomposite have been synthesized via a solvothermal process. • The scrolled nanosheets of MoS{sub 2} combining with interconnected graphene network promoted the formation of steady hierarchical architecture. • Comparing with MoS{sub 2}, the hierarchical MoS{sub 2}/Graphene nanocomposite achieved relatively higher degradation rate. • The synergistic effect mechanism for excellent photo-degradation activity was proposed. - Abstract: Novel two-dimensional materials with a layered structure are of special interest for a variety of promising applications. Herein, MoS{sub 2} and MoS{sub 2}/Graphene nanocomposite with hierarchical nanostructure were successfully synthesized employing a one-step hydrothermal method. Photo-degradation of methylene blue (MB) and rhodamine (RHB) were adopted to assess the photo-degradation ability of the products. Comparing with bare MoS{sub 2}, the hierarchical MoS{sub 2}/Graphene nanocomposite achieved relatively higher degradation rate of 99% in 28 min for MB as well in 50 min for RHB. These results verified that this proposed hierarchical nanocomposite is a good photo-degradation semiconductor. The excellent performance was mainly ascribed to the synergistic effect of MoS{sub 2} and graphene layers. The MoS{sub 2} possessing a band gap of 1.9 eV would provide abundant electron-hole pairs. The graphene layers with excellent electro-conductivity could realize the quick transport of electrons via its extended π-conjugation structure, consequently benefiting the separation of photo-generated carriers. These findings indicate that the graphene layer is a promising candidate as a co-catalyst for MoS{sub 2} photo-catalyst, and also provide useful information

  7. Contaminant degradation by irradiated semiconducting silver chloride particles: kinetics and modelling.

    Science.gov (United States)

    Ma, Tian; Garg, Shikha; Miller, Christopher J; Waite, T David

    2015-05-15

    The kinetics and mechanism of light-mediated formic acid (HCOO(-)) degradation in the presence of semiconducting silver chloride particles are investigated in this study. Our experimental results show that visible-light irradiation of AgCl(s) results in generation of holes and electrons with the photo-generated holes and its initial oxidation product carbonate radical, oxidizing HCOO(-) to form CO2. The HCOO(-) degradation rate increases with increase in silver concentration due to increase in rate of photo-generation of holes while the increase in chloride concentration decreases the degradation rate of HCOO(-) as a result of the scavenging of holes by Cl(-), thereby resulting in decreased holes and carbonate radical concentration. The results obtained indicate that a variety of other solution conditions including dioxygen concentration, bicarbonate concentration and pH influence the availability of holes and hence the HCOO(-) degradation rate in a manner consistent with our understanding of key processes. Based on our experimental results, we have developed a kinetic model capable of predicting AgCl(s)-mediated HCOO(-) photo-degradation over a wide range of conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Radiation-induced degradation of organic pollutants in wastewater

    International Nuclear Information System (INIS)

    Bagyo, A.N.M.; Lindu, W.A.; Sadjirun, S.; Winarno, E.K.; Widayat, E.; Aryanti; Winarno, H.

    2001-01-01

    The degradation and decolouration of organic pollutants, i.e. dye stuffs and phenolic compounds, by gamma irradiation have been studied. First, samples from effluent of textile industry were taken to be irradiated at a certain condition. Irradiation was done after dissolving the samples five times with distilled water in laboratory scale, followed by upscaling those samples into 5 litre in volume. Irradiation was done at a dose of 0- 25 kGy, aerated and a dose rate of 5 kGy/h. The parameters examined were the change of absorption spectra. COD (Chemical Oxygen Demand), the percentage of the degradation, the change of pH and degradation product using HPLC. It was demonstrated that the dilution of sample enhanced the degradation and decreased the COD values. The degradation product of textile wastewater is mainly oxalic acid. Second, the effects of radiation on aerated phenolic compounds mixture, i.e. resorcinol, o-cresol and m- cresol were done. Individual phenol was studied followed by mixture of the phenolic compounds. Irradiation was done in aerated condition with doses of 0-10 kGy, dose rate of 5 kGy/h and pH range from 3 to 12. The initial concentration of resorcinol, o-cresol and w-cresol were 50 ppm and 60 ppm for phenolic compounds mixture, respectively. Parameters examined were absorption spectrum, pH, and degradation products. The uv-vis absorption of the solution were observed before and after irradiation. HPLC was used to determine the products of degradation. Degradation of resorcinol, w-cresol and o-cresol could be achieved at dose of 6 kGy at pH 9, while o-cresol in acid condition (pH 3). The degree of degradation for resorcinol, w-cresol and o-cresol at above conditions were 90%, 88% and 45%, respectively. Degradation of phenolic compound mixture occurred at a dose of 7.5 kGy and pH 9', at this condition almost 99% of phenolic compounds degraded. Oxalic acid was the main degradation product. (author)

  9. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  10. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    Science.gov (United States)

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Radiolytic degradation of sorbic acid in isolated systems

    International Nuclear Information System (INIS)

    Thakur, B.R.; Trehan, I.R.; Arya, S.S.

    1990-01-01

    Effect of Co(60) gamma-irradiation on stability of sorbic acid (SA) in solutions, dough and chapaties has been investigated. SA was highly susceptible to radiolytic degradation in aqueous systems. Rate of degradation decreased with rise in pH. Sugars, hydrocolloids except pectin, citric acid, lactic acid, malic acid, arginine and threonine, catalyzed degradation while oxalic acid, maleic acid, Cu2+, nitrite, nitrate and phthalate had protective effects. SA was more stable in alcohols and vegetable oils than in aqueous solutions. In wheat flour radiolytic degradation of SA was less at lower moisture. Relatively SA was more stable in chapaties than in dough. Gelatinization and addition of oil in dough reduced degradation of SA

  12. Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole on nanocrystalline titania films in alkaline media: Effect of applied electrical bias on degradation and transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Tantis, Iosif [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Bousiakou, Leda [Department of Physics and Astronomy, King Saud University, Riyadh (Saudi Arabia); Department of Automation Engineering, Technological Educational Institute of Pireaus, GR-12244 Athens (Greece); Frontistis, Zacharias; Mantzavinos, Dionissios [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); Konstantinou, Ioannis; Antonopoulou, Maria [Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio (Greece); Karikas, George-Albert [Department of Medical Laboratories Technology, Technological Educational Institute of Athens, 12210 Athens (Greece); Lianos, Panagiotis, E-mail: lianos@upatras.gr [Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras (Greece); FORTH/ICE-HT, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-08-30

    Highlights: • Photocatalytic and photoelectrocatalytic degradation of the proton pump omeprazole. • Improvement of photocatalysis rate by applying a moderate forward bias. • Highlighting of the advantages of photoelectrocatalysis in a straightforward manner. • HPLC and HR-LC–MS analysis of transformation products. - Abstract: Photocatalytic and photoelectrocatalytic degradation of the drug omeprazole has been studied in the presence of nanocrystalline titania films supported on glass slides or transparent FTO electrodes in alkaline environment. Its photocatalytic degradation rate was assessed by its UV absorbance and by HPLC, while its transformation products were analyzed by HR-LC–MS. Based on UV absorbance, omeprazole can be photocatalytically degraded at an average rate of 6.7 × 10{sup −4} min{sup −1} under low intensity UVA irradiation of 1.5 mW cm{sup −2} in the presence of a nanoparticulate titania film. This corresponds to degradation of 1.4 mg of omeprazole per gram of the photocatalyst per liter of solution per hour. The photodegradation rate can be accelerated in a photoelectrochemical cell by applying a forward bias. In this case, the maximum rate reached under the present conditions was 11.6 × 10{sup −4} min{sup −1} by applying a forward bias of +0.6 V vs. Ag/AgCl. Four major transformation products were successfully identified and their profiles were followed by HR-LC–MS. The major degradation path includes the scission of the sulfoxide bridge into the corresponding pyridine and benzimidazole ring derivates and this is accompanied by the release of sulfate anions in the reaction mixture.

  13. Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network

    Energy Technology Data Exchange (ETDEWEB)

    Du, Zhimin; Jin, Xinqiao; Yang, Yunyu [School of Mechanical Engineering, Shanghai Jiao Tong University, 800, Dongchuan Road, Shanghai (China)

    2009-09-15

    Wavelet neural network, the integration of wavelet analysis and neural network, is presented to diagnose the faults of sensors including temperature, flow rate and pressure in variable air volume (VAV) systems to ensure well capacity of energy conservation. Wavelet analysis is used to process the original data collected from the building automation first. With three-level wavelet decomposition, the series of characteristic information representing various operation conditions of the system are obtained. In addition, neural network is developed to diagnose the source of the fault. To improve the diagnosis efficiency, three data groups based on several physical models or balances are classified and constructed. Using the data decomposed by three-level wavelet, the neural network can be well trained and series of convergent networks are obtained. Finally, the new measurements to diagnose are similarly processed by wavelet. And the well-trained convergent neural networks are used to identify the operation condition and isolate the source of the fault. (author)

  14. FODA/IBEA-TDMA - A flexible fade countermeasure system for integrated services in user-oriented networks

    Science.gov (United States)

    Celandroni, N.; Ferro, E.; James, N.; Potorti, F.

    1992-12-01

    A flexible, processor based, TDMA station has been implemented. This station and its associated variable data rate modem enables users to implement very complex frame structures under software control. Burst rates of 512 kb/s-8x192 Mb/s and different coding rates are possible allowing the transmitted bit energy from each station in the network to be adapted to prevailing conditions. The proposed application of the station is the transmission of mixed stream and packet traffic, in a LANs interconnection via satellite environment, using a modification of the FODA technique. The association of the up-link power control feature with the bit and coding rate variation gives the system an interesting ability to cope with fade conditions. The link outage probability is investigated for the Olympus transponder in Ka band. The ability of the system, together with the good performance of Olympus, shows that the Ka band is usable for the above mentioned types of networks without prohibitive fade degradation, at least for limited coverages.

  15. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  16. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Cooper, William J.; Song Weihua

    2012-01-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e - aq ). The bimolecular reaction rate constants (M -1 s -1 ) for diclofenac for •OH was (9.29 ± 0.11) x 10 9 , and, for e- aq was (1.53 ± 0.03) x10 9 . Preliminary degradation mechanisms are suggested based on product analysis using 60 Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  17. A Game Theory Based Congestion Control Protocol for Wireless Personal Area Networks

    Directory of Open Access Journals (Sweden)

    Chuang Ma

    2016-01-01

    Full Text Available In wireless sensor networks (WSNs, the presence of congestion increases the ratio of packet loss and energy consumption and reduces the network throughput. Particularly, this situation will be more complex in Internet of Things (IoT environment, which is composed of thousands of heterogeneous nodes. RPL is an IPv6 routing protocol in low power and lossy networks standardized by IETF. However, the RPL can induce problems under network congestion, such as frequently parent changing and throughput degradation. In this paper, we address the congestion problem between parent nodes and child nodes in RPL-enabled networks, which typically consist of low power and resource constraint devices. To mitigate the effect of network congestion, we design a parent-change procedure by game theory strategy, by which the child nodes can change next hop neighbors toward the sink. Comparing to the ContikiRPL implementation, the simulation results show that our protocol can achieve more than two times improvement in throughput and reduce packet loss rate with less increasing of average hop count.

  18. Kinetic Parameters of Thermal Degradation of Polymers

    Institute of Scientific and Technical Information of China (English)

    朱新生; 程嘉祺

    2003-01-01

    The derivative expressions between activation energy (E) and the temperature at the maximum mass loss rate(Tmax) and between activation energy (E) and exponent (N) were deduced in the light of Arrhenius theory. It was found that the increase of activation energy results in the decrease of exponent and the increase of Tmax. The kinetic parameters were involved in the analysis of the thermal degradation of several polymers. The degradation kinetics of these polymers well complied with the prediction of the derivative expressions for the polymer degradation with single mechanism dominated.

  19. Who Do Hospital Physicians and Nurses Go to for Advice About Medications? A Social Network Analysis and Examination of Prescribing Error Rates.

    Science.gov (United States)

    Creswick, Nerida; Westbrook, Johanna Irene

    2015-09-01

    To measure the weekly medication advice-seeking networks of hospital staff, to compare patterns across professional groups, and to examine these in the context of prescribing error rates. A social network analysis was conducted. All 101 staff in 2 wards in a large, academic teaching hospital in Sydney, Australia, were surveyed (response rate, 90%) using a detailed social network questionnaire. The extent of weekly medication advice seeking was measured by density of connections, proportion of reciprocal relationships by reciprocity, number of colleagues to whom each person provided advice by in-degree, and perceptions of amount and impact of advice seeking between physicians and nurses. Data on prescribing error rates from the 2 wards were compared. Weekly medication advice-seeking networks were sparse (density: 7% ward A and 12% ward B). Information sharing across professional groups was modest, and rates of reciprocation of advice were low (9% ward A, 14% ward B). Pharmacists provided advice to most people, and junior physicians also played central roles. Senior physicians provided medication advice to few people. Many staff perceived that physicians rarely sought advice from nurses when prescribing, but almost all believed that an increase in communication between physicians and nurses about medications would improve patient safety. The medication networks in ward B had higher measures for density, reciprocation, and fewer senior physicians who were isolates. Ward B had a significantly lower rate of both procedural and clinical prescribing errors than ward A (0.63 clinical prescribing errors per admission [95%CI, 0.47-0.79] versus 1.81/ admission [95%CI, 1.49-2.13]). Medication advice-seeking networks among staff on hospital wards are limited. Hubs of advice provision include pharmacists, junior physicians, and senior nurses. Senior physicians are poorly integrated into medication advice networks. Strategies to improve the advice-giving networks between senior

  20. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    Science.gov (United States)

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  1. Calculating the Degradation Rate of Individual Proteins Using Xenopus Extract Systems.

    Science.gov (United States)

    McDowell, Gary S; Philpott, Anna

    2018-05-16

    The Xenopus extract system has been used extensively as a simple, quick, and robust method for assessing the stability of proteins against proteasomal degradation. In this protocol, methods are provided for assessing the half-life of in vitro translated radiolabeled proteins using Xenopus egg or embryo extracts. © 2019 Cold Spring Harbor Laboratory Press.

  2. Recursive Estimation for Dynamical Systems with Different Delay Rates Sensor Network and Autocorrelated Process Noises

    Directory of Open Access Journals (Sweden)

    Jianxin Feng

    2014-01-01

    Full Text Available The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property is described by the covariances between different time instants. The system model under consideration is subject to multiplicative noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution. By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the proposed approaches.

  3. Impact of dynamic rate coding aspects of mobile phone networks on forensic voice comparison.

    Science.gov (United States)

    Alzqhoul, Esam A S; Nair, Balamurali B T; Guillemin, Bernard J

    2015-09-01

    Previous studies have shown that landline and mobile phone networks are different in their ways of handling the speech signal, and therefore in their impact on it. But the same is also true of the different networks within the mobile phone arena. There are two major mobile phone technologies currently in use today, namely the global system for mobile communications (GSM) and code division multiple access (CDMA) and these are fundamentally different in their design. For example, the quality of the coded speech in the GSM network is a function of channel quality, whereas in the CDMA network it is determined by channel capacity (i.e., the number of users sharing a cell site). This paper examines the impact on the speech signal of a key feature of these networks, namely dynamic rate coding, and its subsequent impact on the task of likelihood-ratio-based forensic voice comparison (FVC). Surprisingly, both FVC accuracy and precision are found to be better for both GSM- and CDMA-coded speech than for uncoded. Intuitively one expects FVC accuracy to increase with increasing coded speech quality. This trend is shown to occur for the CDMA network, but, surprisingly, not for the GSM network. Further, in respect to comparisons between these two networks, FVC accuracy for CDMA-coded speech is shown to be slightly better than for GSM-coded speech, particularly when the coded-speech quality is high, but in terms of FVC precision the two networks are shown to be very similar. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Mineral induced mechanochemical degradation: the imazaquin case.

    Science.gov (United States)

    Nasser, Ahmed; Buchanovsky, Nadia; Gerstl, Zev; Mingelgrin, Uri

    2009-03-01

    The potential role of mechanochemical processes in enhancing degradation of imazaquin by soil components is demonstrated. The investigated components include montmorillonite saturated with Na(+), Ca(2+), Cu(2+)and Al(3+), Agsorb (a commercial clay mix), birnessite and hematite. The mechanical force applied was manual grinding of mixtures of imazaquin and the minerals, using mortar and pestle. The degradation rates of imazaquin in these mixtures were examined as a function of the following parameters: time of grinding, herbicide load (3.9, 8.9, 16.7 and 26.6 mg imazaquin per g mineral), temperature (10, 25, 40 and 70 degrees C), acidic/basic conditions, and dry or wet grinding. Dry grinding of imazaquin for 5 min with Al-montmorillonite or with hematite resulted in 56% and 71% degradation of the imazaquin, respectively. Wet grinding slightly reduced the degradation rate with hematite and entirely cancelled the enhancing effect of grinding with Al-montmorillonite. Wet grinding in the presence of the transition metals: Ni(2+), Cu(2+), Fe(3+) added as chlorides was carried out. Addition of Cu(2+) to Na-montmorillonite loaded with imazaquin was the most effective treatment in degrading imazaquin (more than 90% of the imazaquin degraded after 5 min of grinding). In this treatment, Cu-montmorillonite formation during the grinding process was confirmed by XRD and accordingly, grinding with Cu-montmorillonite gave similar degradation values. LC-MS analysis revealed that the mechanochemical transformation of imazaquin resulted in the formation of a dimer and several breakdown products. The reported results demonstrate once again that mechanochemical procedures offer a remediation avenue applicable to soils polluted with organic contaminants.

  5. Degradation of dome cutting minerals in Hanford waste-13100

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  6. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  7. Increased radiation degradation in methyl methacrylate copolymers

    International Nuclear Information System (INIS)

    Helbert, J.N; Wagner, G.E.; Caplan, P.J.; Poindexter, E.H.

    1975-01-01

    The effect of polar substituents at the quaternary carbon on degradation processes in several polymers and 10 to 20 percent copolymers of methyl methacrylate was explored. EPR was used to monitor radiation degradation products and to determine radiation G values. Irradiations were carried out at 77 0 K in a gamma irradiator at a dose rate of 0.3 Mrad/hr. (U.S.)

  8. Trade-off Analysis of Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Tuna, G.; Das, R.

    2017-09-01

    In the last couple of decades, Underwater Acoustic Sensor Networks (UASNs) were started to be used for various commercial and non-commercial purposes. However, in underwater environments, there are some specific inherent constraints, such as high bit error rate, variable and large propagation delay, limited bandwidth capacity, and short-range communications, which severely degrade the performance of UASNs and limit the lifetime of underwater sensor nodes as well. Therefore, proving reliability of UASN applications poses a challenge. In this study, we try to balance energy consumption of underwater acoustic sensor networks and minimize end-to-end delay using an efficient node placement strategy. Our simulation results reveal that if the number of hops is reduced, energy consumption can be reduced. However, this increases end-to-end delay. Hence, application-specific requirements must be taken into consideration when determining a strategy for node deployment.

  9. Too-connected versus too-big-to-fail: banks’ network centrality and overnight interest rates.

    OpenAIRE

    Gabrieli, S.

    2012-01-01

    What influences banks’ borrowing costs in the unsecured money market? The objective of this paper is to test whether measures of centrality, quantifying network effects due to interactions among banks in the market, can help explain heterogeneous patterns in the interest rates paid to borrow unsecured funds once bank size and other bank and market factors that affect the overnight segment are controlled for. Preliminary evidence shows that large banks borrow on average at better rates compare...

  10. Degradation of PPCPs in activated sludge from different WWTPs in Denmark

    DEFF Research Database (Denmark)

    Chen, Xijuan; Vollertsen, Jes; Nielsen, Jeppe Lund

    2015-01-01

    was performed to assess the removal of frequently occurring pharmaceuticals (Naproxen, Fenoprofen, Ketoprofen, Dichlofenac, Carbamazepine) and the biocide Triclosan in activated sludge from four different Danish WWTPs. The respective degradation constants were compared to operational parameters previous shown...... to be of importance for degradation of micropollutants such as biomass concentration, and sludge retention time (SRT). The most rapid degradation, was observed for NSAID pharmaceuticals (55–90 % for Fenoprofen, 77–94 % for Ketoprofen and 46–90 % for Naproxen), followed by Triclosan (61–91 %), while Dichlofenac...... and Carbamazepine were found to be persistent in the systems. Degradation rate constants were calculated as 0.0026–0.0407 for NSAID pharmaceuticals and 0.0022–0.0065 for triclosan. No relationships were observed between degradation rates and biomass concentrations in the diverse sludges. However...

  11. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  12. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  13. Combating Forest Corruption: the Forest Integrity Network

    NARCIS (Netherlands)

    Gupta, A.; Siebert, U.

    2004-01-01

    This article describes the strategies and activities of the Forest Integrity Network. One of the most important underlying causes of forest degradation is corruption and related illegal logging. The Forest Integrity Network is a timely new initiative to combat forest corruption. Its approach is to

  14. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    Science.gov (United States)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  15. Design of a heart rate controller for treadmill exercise using a recurrent fuzzy neural network.

    Science.gov (United States)

    Lu, Chun-Hao; Wang, Wei-Cheng; Tai, Cheng-Chi; Chen, Tien-Chi

    2016-05-01

    In this study, we developed a computer controlled treadmill system using a recurrent fuzzy neural network heart rate controller (RFNNHRC). Treadmill speeds and inclines were controlled by corresponding control servo motors. The RFNNHRC was used to generate the control signals to automatically control treadmill speed and incline to minimize the user heart rate deviations from a preset profile. The RFNNHRC combines a fuzzy reasoning capability to accommodate uncertain information and an artificial recurrent neural network learning process that corrects for treadmill system nonlinearities and uncertainties. Treadmill speeds and inclines are controlled by the RFNNHRC to achieve minimal heart rate deviation from a pre-set profile using adjustable parameters and an on-line learning algorithm that provides robust performance against parameter variations. The on-line learning algorithm of RFNNHRC was developed and implemented using a dsPIC 30F4011 DSP. Application of the proposed control scheme to heart rate responses of runners resulted in smaller fluctuations than those produced by using proportional integra control, and treadmill speeds and inclines were smoother. The present experiments demonstrate improved heart rate tracking performance with the proposed control scheme. The RFNNHRC scheme with adjustable parameters and an on-line learning algorithm was applied to a computer controlled treadmill system with heart rate control during treadmill exercise. Novel RFNNHRC structure and controller stability analyses were introduced. The RFNNHRC were tuned using a Lyapunov function to ensure system stability. The superior heart rate control with the proposed RFNNHRC scheme was demonstrated with various pre-set heart rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Adaptive sampling rate control for networked systems based on statistical characteristics of packet disordering.

    Science.gov (United States)

    Li, Jin-Na; Er, Meng-Joo; Tan, Yen-Kheng; Yu, Hai-Bin; Zeng, Peng

    2015-09-01

    This paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design. Then, a sufficient condition for stochastic stability in terms of Linear Matrix Inequalities (LMIs) is given. Moreover, an adaptive tracking controller is designed such that the sampling period tracks a desired sampling period, which represents a significant contribution. Finally, experimental results are given to illustrate the effectiveness and advantages of the proposed scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation of temperature-enhanced gain degradation of verticle npn and lateral pnp bipolar transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Lacoe, R.C.; Galloway, K.F.

    1997-01-01

    The effect of dose rate on radiation-induced gain degradation is compared for verticle npn and lateral pnp bipolar transistors. High dose rate irradiations at elevated temperatures are more effective at simulating low dose rate degradation in the lateral pnp transistors

  18. Experimental study of key parameters investigation in turnout crossing degradation process

    NARCIS (Netherlands)

    Liu, X.; Markine, V.L.; Shevtsov, I.; Dollevoet, R.P.B.J.

    2015-01-01

    The continuous increasing demand of public transportation capacity requires the railway network operating in tight schedule. The high transporting volumes not only aggravate the degradation of railway infrastructure but also shorten the time for maintenance. Well-arranged infrastructure maintenance

  19. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    International Nuclear Information System (INIS)

    Thornton, T.A.

    2000-01-01

    The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix

  20. DSNF and other waste form degradation abstraction

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Thomas A.

    2000-12-20

    The purpose of this analysis/model report (AMR) is to select and/or abstract conservative degradation models for DOE-(US. Department of Energy) owned spent nuclear fuel (DSNF) and the immobilized ceramic plutonium (Pu) disposition waste forms for application in the proposed monitored geologic repository (MGR) postclosure Total System Performance Assessment (TSPA). Application of the degradation models abstracted herein for purposes other than TSPA should take into consideration the fact that they are, in general, very conservative. Using these models, the forward reaction rate for the mobilization of radionuclides, as solutes or colloids, away from the waste fondwater interface by contact with repository groundwater can then be calculated. This forward reaction rate generally consists of the dissolution reaction at the surface of spent nuclear fuel (SNF) in contact with water, but the degradation models, in some cases, may also include and account for the physical disintegration of the SNF matrix. The models do not, however, account for retardation, precipitation, or inhibition of the migration of the mobilized radionuclides in the engineered barrier system (EBS). These models are based on the assumption that all components of the DSNF waste form are released congruently with the degradation of the matrix.

  1. Enrofloxacin degradation in broiler chicken manure under various laboratory conditions.

    Science.gov (United States)

    Slana, Marko; Sollner-Dolenc, Marija

    2016-03-01

    The rate of degradation of enrofloxacin in broiler chicken manure has been characterized in the laboratory according to the CVMP guideline on determining the fate of veterinary medicinal products in manure. Degradation was followed in a flow-through system under aerobic and anaerobic conditions, in the dark and in the presence of light. The rate of degradation of enrofloxacin and the formation of its degradation products are dependent on laboratory conditions. A rapid degradation of enrofloxacin in the dark was noticed, where a shorter degradation half-life under aerobic (DT50 = 59.1 days), comparing to anaerobic conditions (DT50 = 88.9 days), was determined. The presence of light slowed down the enrofloxacin degradation half-life, which was significantly shorter under aerobic (DT50 = 115.0 days), comparing to anaerobic conditions (DT50 = 190.8 days). Desethylene-enrofoxacin was the only degradation product formed, its concentrations ranged from 2.5 to 14.9 %. The concentration of the degradation product was approximately 2.5-fold higher under aerobic conditions. Enrofloxacin degradation in sterile manure incubated under sterile conditions was marginal comparing to non-sterile conditions; after 120 days of incubation, approximately 80 % of enrofloxacin was still present in manure and only 1 % of desethylene-enrofloxacin was formed. The present work demonstrates that enrofloxacin degradation in chicken manure is relatively fast when incubated in the dark under aerobic conditions which is the recommended incubation system for chicken manure according to CVMP guideline.

  2. Wellbore Integrity Network

    Energy Technology Data Exchange (ETDEWEB)

    Carey, James W. [Los Alamos National Laboratory; Bachu, Stefan [Alberta Innovates

    2012-06-21

    In this presentation, we review the current state of knowledge on wellbore integrity as developed in the IEA Greenhouse Gas Programme's Wellbore Integrity Network. Wells are one of the primary risks to the successful implementation of CO{sub 2} storage programs. Experimental studies show that wellbore materials react with CO{sub 2} (carbonation of cement and corrosion of steel) but the impact on zonal isolation is unclear. Field studies of wells in CO{sub 2}-bearing fields show that CO{sub 2} does migrate external to casing. However, rates and amounts of CO{sub 2} have not been quantified. At the decade time scale, wellbore integrity is driven by construction quality and geomechanical processes. Over longer time-scales (> 100 years), chemical processes (cement degradation and corrosion) become more important, but competing geomechanical processes may preserve wellbore integrity.

  3. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil

    DEFF Research Database (Denmark)

    Johansen, Henrik; Damgaard, Lars Holm; Olsen, Carl Erik

    2007-01-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-b-D-glucoside) produced by sorghum has been studied...

  4. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis.

    Science.gov (United States)

    Brignardello-Petersen, Romina; Bonner, Ashley; Alexander, Paul E; Siemieniuk, Reed A; Furukawa, Toshi A; Rochwerg, Bram; Hazlewood, Glen S; Alhazzani, Waleed; Mustafa, Reem A; Murad, M Hassan; Puhan, Milo A; Schünemann, Holger J; Guyatt, Gordon H

    2018-01-01

    This article describes conceptual advances of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) working group guidance to evaluate the certainty of evidence (confidence in evidence, quality of evidence) from network meta-analysis (NMA). Application of the original GRADE guidance, published in 2014, in a number of NMAs has resulted in advances that strengthen its conceptual basis and make the process more efficient. This guidance will be useful for systematic review authors who aim to assess the certainty of all pairwise comparisons from an NMA and who are familiar with the basic concepts of NMA and the traditional GRADE approach for pairwise meta-analysis. Two principles of the original GRADE NMA guidance are that we need to rate the certainty of the evidence for each pairwise comparison within a network separately and that in doing so we need to consider both the direct and indirect evidence. We present, discuss, and illustrate four conceptual advances: (1) consideration of imprecision is not necessary when rating the direct and indirect estimates to inform the rating of NMA estimates, (2) there is no need to rate the indirect evidence when the certainty of the direct evidence is high and the contribution of the direct evidence to the network estimate is at least as great as that of the indirect evidence, (3) we should not trust a statistical test of global incoherence of the network to assess incoherence at the pairwise comparison level, and (4) in the presence of incoherence between direct and indirect evidence, the certainty of the evidence of each estimate can help decide which estimate to believe. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes.

    Science.gov (United States)

    Costa E Silva, Beatriz; de Lima Perini, João Angelo; Nogueira, Raquel F Pupo

    2017-03-01

    The degradation of paracetamol (PCT) and ciprofloxacin (CIP) was compared in relation to the generation of dihydroxylated products, Fe(III) reduction and reaction rate in the presence of dihydroxybenzene (DHB) compounds, or under irradiation with free iron (Fe 3+ ) or citrate complex (Fecit) in Fenton or photo-Fenton process. The formation of hydroquinone (HQ) was observed only during PCT degradation in the dark, which increased drastically the rate of PCT degradation, since HQ formed was able to reduce Fe 3+ and contributed to PCT degradation efficiency. When HQ was initially added, PCT and CIP degradation rate in the dark was much higher in comparison to the absence of HQ, due to the higher and faster formation of Fe 2+ at the beginning of reaction. In the absence of HQ, no CIP degradation was observed; however, when HQ was added after 30 min, the degradation rate increased drastically. Ten PCT hydroxylated intermediates were identified in the absence of HQ, which could contribute for Fe(III) reduction and consequently to the degradation in a similar way as HQ. During CIP degradation, only one product of hydroxyl radical attack on benzene ring and substitution of the fluorine atom was identified when HQ was added to the reaction medium.

  6. Advanced Oxidation Degradation of Diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States); Song Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2012-07-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e{sup -}{sub aq}). The bimolecular reaction rate constants (M{sup -1} s{sup -1}) for diclofenac for •OH was (9.29 ± 0.11) x 10{sup 9}, and, for e- aq was (1.53 ± 0.03) x10{sup 9}. Preliminary degradation mechanisms are suggested based on product analysis using {sup 60}Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  7. Repeated batch and continuous degradation of chlorpyrifos by Pseudomonas putida.

    Science.gov (United States)

    Pradeep, Vijayalakshmi; Subbaiah, Usha Malavalli

    2015-01-01

    The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 10(3) cfu mL(-1). During continuous treatment, 100% degradation was observed at 100 mL h(-1) flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h(-1) and 100 mL h(-1) flow rate respectively. The products of degradation detected by liquid chromatography-mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.

  8. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  9. Degradation of epoxy coatings under gamma irradiation

    International Nuclear Information System (INIS)

    Djouani, F.; Zahra, Y.; Fayolle, B.; Kuntz, M.; Verdu, J.

    2013-01-01

    Epoxy networks based on Diglycidyl ether of bisphenol A (DGEBA) and cured with Jeffamine® (POPA) or polyamidoamine (PAA) were gamma irradiated at 25 °C in air. Dose rates of 50, 200 or 2000 Gy h −1 for doses up 100 kGy were used. Structural changes were monitored by IR spectrophotometry, DSC and sol–gel analysis. Both networks display some common features: for I≥200 Gy h −1 , reaction products grow proportionally to time and the rate is a decreasing function of dose rate. The simplest explanation is that peroxy radicals are the main precursors of these products (in the dose rate domain under study), through a unimolecular rearrangement of which an hypothetical mechanism is proposed. DGEBA–POPA are more reactive then DGEBA–PAA networks (according to IR criteria), that can be attributed to the high reactivity of tertiary CH bands in polyoxypropylene segments. The oxidation of these sites leads to methyl ketones. A simple kinetic model in which methyl ketones result from rearrangements of tertiary peroxyls and from tertiary alkoxyls was proposed. It leads to an expression of the radiochemical yield of methyl ketones (G(MK)) of the form G(MK)=a+bI −1/2 where a and b are parameters depending of elementary rate constants. Experimental G(MK) values are reasonably well fitted by this equation. In DGEBA–PAA networks, a wide variety of oxidation products, among which amides predominate, can be observed. In these networks, chain scissions predominate over crosslinking, whereas a slight predominance of crosslinking was observed, at least for the lowest dose rate, in DGEBA–POPA. - Highlights: ► The effects of irradiation at three distinct dose rates have been studied on two epoxy networks. ► DGEBA–polyamidoamine networks appear more stable than DGEBA–polyoxypropylene diamine ones. ► A simple kinetic model involving methyl ketones is proposed.

  10. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits

    International Nuclear Information System (INIS)

    Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M.

    1987-01-01

    To determine the relative importance of protein degradation in the development of starvation-induced cardiac atrophy, in vivo fractional synthetic rates of total cardiac protein, myosin heavy chain, actin, light chain 1, and light chain 2 were measured in fed and fasted rabbits by continuous infusion of [ 3 H] leucine. In addition, the rate of left ventricular protein accumulation and loss were assessed in weight-matched control and fasted rabbits. Rates of total cardiac protein degradation were then estimated as the difference between rates of synthesis and growth. Fasting produced left ventricular atrophy by decreasing the rate of left ventricular protein synthesis (34.8 +/- 1.4, 27.3 +/- 3.0, and 19.3 +/- 1.2 mg/day of left ventricular protein synthesized for 0-, 3-, and 7-day fasted rabbits, respectively). Inhibition of contractile protein synthesis was evident by significant reductions in the fractional synthetic rates of all myofibrillar protein subunits. Although fractional rates of protein degradation increased significantly within 7 days of fasting, actual amounts of left ventricular protein degraded per day were unaffected. Thus, prolonged fasting profoundly inhibits the synthesis of new cardiac protein, including the major protein constituents of the myofibril. Both this inhibition in new protein synthesis as well as a smaller but significant reduction in the average half-lives of cardiac proteins are responsible for atrophy of the heart in response to fasting

  11. Study on the degradation of chitosan slurries

    Directory of Open Access Journals (Sweden)

    Benjamin Martini

    2016-01-01

    Full Text Available In the present work, we measured the degradation rate of different chitosan slurries. Several parameters were monitored such as temperature (25 °C, 37 °C, 50 °C; chitosan concentration (1% and 2% (w/V; and polymer molecular weight. The samples were tested in dynamic sweep test mode. This test is able to provide a reliable estimation of viscosity variations of the slurries; in turn, these variations could be related to degradation rate of the system in the considered conditions. The resulting information is particularly important especially in applications in which there is a close relationship between physical properties and molecular structure.

  12. Degradation kinetics of monoethanolamine during CO2 and H2 S absorption from biogas

    Directory of Open Access Journals (Sweden)

    Preecha Kasikamphaiboon

    2015-02-01

    Full Text Available The rate of degradation of MEA during CO2 and H2 S absorption in the biogas upgrading process was examined in four degradation systems, i.e., MEA-CO2 , MEA-CO2 -O2 , MEA-CO2 -H2 S and MEA-CO2 -O2 -H2 S. Degradation experiments were performed in a 800-ml stainless steel autoclave reactor, using MEA concentrations of 3 and 5 mol/L, CO2 loadings of 0.4 and 0.5 mol CO2 /mol MEA, O2 pressure of 200 kPa, and H2 S concentrations of 84 and 87 mg/L at temperatures of 120 and 140C. The results showed that, for the MEA-CO2 system, an increase in temperature or MEA concentration resulted in a higher rate of MEA degradation. In contrast, an increase in CO2 loading in the MEA-CO2 -O2 system led to a reduction of MEA degradation. The degradation rate of the system with O2 was with 8.3 times as high as that of the system without O2 . The presence of H2 S did not appear to affect the rate of degradation in the MEA-CO2 -H2 S system. However, for the system in which both H2 S and O2 were present, the MEA degradation was additionally induced by H2 S, thus, resulting in higher degradation rates than those of the system with O2 only. The extent of degradation under the same period of time increased in the order MEA-CO2 , MEA-CO2 -H2 S < MEA-CO2 -O2 < MEA-CO2 -O2 -H2 S.

  13. Interactive Video Coding and Transmission over Heterogeneous Wired-to-Wireless IP Networks Using an Edge Proxy

    Directory of Open Access Journals (Sweden)

    Modestino James W

    2004-01-01

    Full Text Available Digital video delivered over wired-to-wireless networks is expected to suffer quality degradation from both packet loss and bit errors in the payload. In this paper, the quality degradation due to packet loss and bit errors in the payload are quantitatively evaluated and their effects are assessed. We propose the use of a concatenated forward error correction (FEC coding scheme employing Reed-Solomon (RS codes and rate-compatible punctured convolutional (RCPC codes to protect the video data from packet loss and bit errors, respectively. Furthermore, the performance of a joint source-channel coding (JSCC approach employing this concatenated FEC coding scheme for video transmission is studied. Finally, we describe an improved end-to-end architecture using an edge proxy in a mobile support station to implement differential error protection for the corresponding channel impairments expected on the two networks. Results indicate that with an appropriate JSCC approach and the use of an edge proxy, FEC-based error-control techniques together with passive error-recovery techniques can significantly improve the effective video throughput and lead to acceptable video delivery quality over time-varying heterogeneous wired-to-wireless IP networks.

  14. Potential impact of methyl isobutyl ketone (MIBK) on phenols degradation in an UASB reactor and its degradation properties.

    Science.gov (United States)

    Wang, Wei; Yang, Kai; Sierra, Julian Muñoz; Zhang, Xuedong; Yuan, Shoujun; Hu, Zhenhu

    2017-07-05

    Methyl isobutyl ketone (MIBK) as a solvent is extensively used for the phenols extraction from the wastewater, so it is unavoidable to expose in the effluent due to the solubility and leakage problem. The present study evaluated the impact of MIBK on phenols degradation in an UASB reactor and analyzed its degradation properties. The results indicated that the continuous dosing (0.1gL -1 ) and impact (10gL -1 ) of MIBK had limited effect on phenols removal (1-2% reduction) in the UASB reactor, but the specific methanogenic activity (SMA) values of sludge decreased by 45-75% after MIBK exposure. Anaerobic degradation rate of MIBK fitted well to a pseudo-first-order kinetic equation with respect to the initial concentration of 35mgL -1 (k=0.0115h -1 , R 2 =0.9664). Furthermore, the relative methane generation rate constants of MIBK were 0.00816, 0.00613, 0.00273, and 0.00207d -1 at the initial concentrations of 0.1, 0.5, 5, and 10gL -1 , respectively. MIBK showed higher inhibitory effect on the methanogenesis than on phenols degradation. This study pointed out that the industrial installations should consider the influence of solvent on anaerobic treatment of phenolic wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast

    Directory of Open Access Journals (Sweden)

    Alba Timón-Gómez

    2018-01-01

    Full Text Available Repair and removal of damaged mitochondria is a key process for eukaryotic cell homeostasis. Here we investigate in the yeast model how different protein complexes of the mitochondrial electron transport chain are subject to specific degradation upon high respiration load and organelle damage. We find that the turnover of subunits of the electron transport complex I equivalent and complex III is preferentially stimulated upon high respiration rates. Particular mitochondrial proteases, but not mitophagy, are involved in this activated degradation. Further mitochondrial damage by valinomycin treatment of yeast cells triggers the mitophagic removal of the same respiratory complexes. This selective protein degradation depends on the mitochondrial fusion and fission apparatus and the autophagy adaptor protein Atg11, but not on the mitochondrial mitophagy receptor Atg32. Loss of autophagosomal protein function leads to valinomycin sensitivity and an overproduction of reactive oxygen species upon mitochondrial damage. A specific event in this selective turnover of electron transport chain complexes seems to be the association of Atg11 with the mitochondrial network, which can be achieved by overexpression of the Atg11 protein even in the absence of Atg32. Furthermore, the interaction of various Atg11 molecules via the C-terminal coil domain is specifically and rapidly stimulated upon mitochondrial damage and could therefore be an early trigger of selective mitophagy in response to the organelles dysfunction. Our work indicates that autophagic quality control upon mitochondrial damage operates in a selective manner.

  16. Thermal behavior of poly(2-hydroxyethyl methacrylate-bis-[trimethoxysilylpropyl]amine) networks

    International Nuclear Information System (INIS)

    Bustos Figueroa, L A; Salgado Delgado, R; García Hernandez, E; Vargas Galarza, Z; Rubio Rosas, E; Salgado Rodriguez, R

    2013-01-01

    Poly(HEMA-BisSi) networks were prepared by using acid-catalyzed sol-gel of bis-[trimethoxysilylpropyl]amine (BisSi) and free radical polymerization of 2-hydroxyethyl methacrylate (HEMA). The thermal properties of the poly(HEMA-BisSi) networks were investigated with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The thermal behavior of these networks was also compared with homopolymers (The networks formed in both PHEMA and PBisSi gels were identified). The glass transition temperature (T g ) of PHEMA homopolymer was found as 103.74 °C. The thermal degradation of the poly(HEMA-BisSi) networks with different silica contents (e.g. 10, 15 and 25 wt%) were evaluated with use of DTG. It was observed that the thermal degradation temperature of poly(HEMA-BisSi) networks changed much with the BisSi content.

  17. Near-optimal Downlink precoding of a MISO system for a secondary network under the SINR constraints of a primary network

    KAUST Repository

    Park, Kihong; Alouini, Mohamed-Slim

    2013-01-01

    -to-interference-plus-noise-ratio constraints on the primary network in order to guarantee the quality-of-service for the latter network. While the interference due to the secondary transmission in the conventional underlay CR approach may severely degrade the performance of the primary

  18. 乳酸扩链聚合物的降解性能%DEGRADABLE BEHAVIORS OF LACTIDE CHAIN-EXTENED POLYMERS

    Institute of Scientific and Technical Information of China (English)

    封瑞江

    2001-01-01

    In this paper,the effects of change of degradable rate and relative molecular mass on the degradable behaviors of four lactide chain-extened polymers are contrasted with those of lactide polymers.The results indicated that the four lactide chain-extened polymers could degrade in this experiment and their degradable rate were lower than that of P-LA.LA-SDI has the highest degradable rates among the four lactide chain-extened polymers,but there was no significant difference among aromatic and aliphatic lactide chain-extened polymers.The results showed that the degradable rates were dependent on experiment methods and condition and also indicated that the relative molecular mass became smaller and smaller with the progress of degradation time.

  19. Wireless Powered Relaying Networks Under Imperfect Channel State Information: System Performance and Optimal Policy for Instantaneous Rate

    Directory of Open Access Journals (Sweden)

    D. T. Do

    2017-09-01

    Full Text Available In this investigation, we consider wireless powered relaying systems, where energy is scavenged by a relay via radio frequency (RF signals. We explore hybrid time switching-based and power splitting-based relaying protocol (HTPSR and compare performance of Amplify-and-Forward (AF with Decode-and-Forward (DF scheme under imperfect channel state information (CSI. Most importantly, the instantaneous rate, achievable bit error rate (BER are determined in the closed-form expressions under the impact of imperfect CSI. Through numerical analysis, we evaluate system insights via different parameters such as power splitting (PS and time switching (TS ratio of the considered HTPSR which affect outage performance and BER. It is noted that DF relaying networks outperform AF relaying networks. Besides that, the numerical results are given to prove the optimization problems of PS and TS ratio to obtain optimal instantaneous rate.

  20. Microcantilever sensors for fast analysis of enzymatic degradation of poly (D, L-lactide)

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2015-01-01

    of the biodegradation rate of PDLLA with a minute amount of sample and without the need of thermal and chemical acceleration. The degradation rate of the polymer has been estimated by multilayer cantilever theory and model simulation. A bulk degradation rate of 0.24 μg mm-2 hour-1 is estimated which agrees well...

  1. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units.

    Science.gov (United States)

    Dreher, Maureen L; Nagaraja, Srinidhi; Batchelor, Benjamin

    2016-06-01

    Understanding the fatigue and durability performance of implantable cardiovascular stents is critical for assessing their performance. When the stent is manufactured from an absorbable material, however, this durability assessment is complicated by the transient nature of the device. Methodologies for evaluating the fatigue performance of absorbable stents while accurately simulating the degradation are limited and little is known about the interaction between fatigue and degradation. In this study, we investigated the fatigue behavior and effect of fatigue on the degradation rate for a model absorbable cardiovascular stent. Custom v-shaped stent sub-units manufactured from poly(L-lactide), i.e., PLLA, were subjected to a simultaneous fatigue and degradation study with cycle counts representative of one year of expected in vivo use. Fatigue loading was carried out such that the polymer degraded at a rate that was aligned with a modest degree of fatigue acceleration. Control, un-loaded specimens were also degraded under static immersion conditions representative of simulated degradation without fatigue. The study identified that fatigue loading during degradation significantly increased specimen stiffness and lowered the force at break. Fatigue loading also significantly increased the degree of molecular weight decline highlighting an interaction between mechanical loading and chemical degradation. This study demonstrates that fatigue loading during degradation can affect both the mechanical properties and the chemical degradation rate. The results are important for defining appropriate in vitro degradation conditions for absorbable stent preclinical evaluation. Published by Elsevier Ltd.

  2. Concentrated Light for Accelerated Photo Degradation of Polymer Materials

    DEFF Research Database (Denmark)

    Madsen, Morten Vesterager; Tromholt, Thomas; Norrman, Kion

    2013-01-01

    Concentrated light is used to perform photochemical degradation of polymer solar cell materials with acceleration factors up to 1200. At constant temperature the photon efficiency in regards to photo degradation is constant for 1–150 suns and oxygen diffusion rates are not a limiting factor...

  3. Degradation network reconstruction in uric acid and ammonium amendments in oil-degrading marine microcosms guided by metagenomic data

    Directory of Open Access Journals (Sweden)

    Rafael eBargiela

    2015-11-01

    Full Text Available Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyse the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy amended with natural fertilizer, uric acid (UA, or ammonium (AMM. We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180 to identify potential catabolic differences. A total of 45 (for UA and 65 (AMM gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM, were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered

  4. Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data

    KAUST Repository

    Bargiela, Rafael

    2015-11-24

    Biostimulation with different nitrogen sources is often regarded as a strategy of choice in combating oil spills in marine environments. Such environments are typically depleted in nitrogen, therefore limiting the balanced microbial utilization of carbon-rich petroleum constituents. It is fundamental, yet only scarcely accounted for, to analyze the catabolic consequences of application of biostimulants. Here, we examined such alterations in enrichment microcosms using sediments from chronically crude oil-contaminated marine sediment at Ancona harbor (Italy) amended with natural fertilizer, uric acid (UA), or ammonium (AMM). We applied the web-based AromaDeg resource using as query Illumina HiSeq meta-sequences (UA: 27,893 open reading frames; AMM: 32,180) to identify potential catabolic differences. A total of 45 (for UA) and 65 (AMM) gene sequences encoding key catabolic enzymes matched AromaDeg, and their participation in aromatic degradation reactions could be unambiguously suggested. Genomic signatures for the degradation of aromatics such as 2-chlorobenzoate, indole-3-acetate, biphenyl, gentisate, quinoline and phenanthrene were common for both microcosms. However, those for the degradation of orcinol, ibuprofen, phenylpropionate, homoprotocatechuate and benzene (in UA) and 4-aminobenzene-sulfonate, p-cumate, dibenzofuran and phthalate (in AMM), were selectively enriched. Experimental validation was conducted and good agreement with predictions was observed. This suggests certain discrepancies in action of these biostimulants on the genomic content of the initial microbial community for the catabolism of petroleum constituents or aromatics pollutants. In both cases, the emerging microbial communities were phylogenetically highly similar and were composed by very same proteobacterial families. However, examination of taxonomic assignments further revealed different catabolic pathway organization at the organismal level, which should be considered for designing

  5. The mutant strain of ZHJ6 degrading organophosphorous pesticide by 60Co-γ irradiation

    International Nuclear Information System (INIS)

    Zhao Renbang; Chi Jian; He Yi

    2013-01-01

    The strain of Penicillium oxalicum ZHJ6 that can degrade methamidophos was employed to obtain the mutant stain which has higher degradation rate than original strain by 60 Co-γ irradiation. Results showed that the Penicillium oxalicum ZHJ6 was sensitive to 60 Co-γ irradiation, and was easy to be killed by 60 Co-γ irradiation. Under the absorbed dose of 2.1 kGy, the survival rate of the strain was 0.04%. Two strains of A17 and A18 were obtained from the irradiated strains after first- and second- screening and the degradation rate of methamidophos of A17 and A18 strains were 10% higher than that of A0 strain (original stain). Moreover, the abilities to degrade folimat, phoxim and glyphosate were improved. Through 5 generations, the variation coefficient in degradation rate of methamidophos in the 6th day was 1.2%, showing that the new strains had hereditary stability. (authors)

  6. Cost-related model for transit rates in electric power distribution networks

    International Nuclear Information System (INIS)

    Collstrand, F.

    1994-02-01

    The planned deregulation of the swedish electrical power market will require a new structure of the electrical energy rates. In this report different models of transit rates are studied. The report includes studies of literature and a proposal to a rate structure and is made specifically for Malmoe Energi AB. The differences between various methods of calculating the transfer cost are illustrated. Further, the build-up of the tariff structure and its base elements are discussed. The costs are divided on different categories of costumers and shows the cost for each customer. The new regulations should apply simultaneously to all networks, independent of the voltage level. The transit cost should be based on a number of basic elements: capital cost, operation and maintenance, losses, measuring and administration. Capital cost and operation and maintenance should be charged as power fees, the loss cost as an energy fee and the measuring and administration cost as a fixed fee. The customer bill should be split into two parts, one for the transit cost and one for the energy usage. 15 refs., 37 tabs., 6 figs

  7. Exponential convergence rate estimation for uncertain delayed neural networks of neutral type

    International Nuclear Information System (INIS)

    Lien, C.-H.; Yu, K.-W.; Lin, Y.-F.; Chung, Y.-J.; Chung, L.-Y.

    2009-01-01

    The global exponential stability for a class of uncertain delayed neural networks (DNNs) of neutral type is investigated in this paper. Delay-dependent and delay-independent criteria are proposed to guarantee the robust stability of DNNs via LMI and Razumikhin-like approaches. For a given delay, the maximal allowable exponential convergence rate will be estimated. Some numerical examples are given to illustrate the effectiveness of our results. The simulation results reveal significant improvement over the recent results.

  8. Study on the Degradation of Polylactide Microsphere In Vitro

    Institute of Scientific and Technical Information of China (English)

    HeYing; WeiShuli

    2001-01-01

    This report concentrated on the rules and mechanism of the degradation of polylactide and the microspheres. The rate of degradation was assessed with five methods: observation of microsphere surface morphology by SEM, determination of the weight loss of the microspheres, determination of the molecular mass of the polymers by GPC, determination of pH and determination of the contents of lactic acid by UV spectrophotometry. The degradation of polylactide microspheres showed two-phase characteristics. At the early stage of the degradation, the high molecular mass polymers were cleaved into lower molecular mass fractions and at the late stage, there was a period of erosion and weight loss of the microspheres. The degradation was much slower for polymers with a higher molecular mass. The polylactide degradation showed good regularity.

  9. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Large scale commercial introduction of CIGS photovoltaics (PV) requires modules with low costs, high efficiencies and long and predictable lifetimes. Unfortunately,knowledge about the lifetime of CIGS PV is limited, which is reflected in the results of field studies: degradation rates varying from

  10. Collaborative multi-layer network coding for cellular cognitive radio networks

    KAUST Repository

    Sorour, Sameh

    2013-06-01

    In this paper, we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in underlay cellular cognitive radio networks. This scheme allows the collocated primary and cognitive radio base-stations to collaborate with each other, in order to minimize their own and each other\\'s packet recovery overheads, and thus improve their throughput, without any coordination between them. This non-coordinated collaboration is done using a novel multi-layer instantly decodable network coding scheme, which guarantees that each network\\'s help to the other network does not result in any degradation in its own performance. It also does not cause any violation to the primary networks interference thresholds in the same and adjacent cells. Yet, our proposed scheme both guarantees the reduction of the recovery overhead in collocated primary and cognitive radio networks, and allows early recovery of their packets compared to non-collaborative schemes. Simulation results show that a recovery overhead reduction of 15% and 40% can be achieved by our proposed scheme in the primary and cognitive radio networks, respectively, compared to the corresponding non-collaborative scheme. © 2013 IEEE.

  11. Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers.

    Science.gov (United States)

    Koda, Shinobu; Taguchi, Kimihiko; Futamura, Kazunori

    2011-01-01

    Ultrasonic degradation of methyl cellulose, pullulan, dextran and poly(ethylene oxide) in aqueous solutions was investigated at the frequencies of 20 and 500 kHz, where the ultrasonic power delivered into solutions was kept constant (22 W). The number average molecular mass and the polydispersity were obtained as a function of sonication time. The degradation under sonication at the 500 kHz frequency proceeded faster in comparison with the 20 kHz sonication for four polymers. The addition of a radical scavenger, t-BuOH, resulted in suppression of degradation of water-soluble polymers. The degradation rate constants were estimated from the plot of molecular weight against sonication time. The degradation rate of methyl cellulose was the largest one among the investigated polymers. The difference in the degradation rates was discussed in terms of the flexibility and the hydrodynamic radius of polymer chains in aqueous solutions. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. PHOTOCATALYTIC DEGRADATION OF CRYSTAL VIOLET BY ...

    African Journals Online (AJOL)

    In recent years, removal of undesirable organic contaminants from water and wastewater is ... accidental leakage of tanks containing pollutants, etc. ..... Consideration of reaction pathways and degradation rates is critical for detection of waste.

  13. Direct ubiquitin independent recognition and degradation of a folded protein by the eukaryotic proteasomes-origin of intrinsic degradation signals.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh Gautam

    Full Text Available Eukaryotic 26S proteasomes are structurally organized to recognize, unfold and degrade globular proteins. However, all existing model substrates of the 26S proteasome in addition to ubiquitin or adaptor proteins require unstructured regions in the form of fusion tags for efficient degradation. We report for the first time that purified 26S proteasome can directly recognize and degrade apomyoglobin, a globular protein, in the absence of ubiquitin, extrinsic degradation tags or adaptor proteins. Despite a high affinity interaction, absence of a ligand and presence of only helices/loops that follow the degradation signal, apomyoglobin is degraded slowly by the proteasome. A short floppy F-helix exposed upon ligand removal and in conformational equilibrium with a disordered structure is mandatory for recognition and initiation of degradation. Holomyoglobin, in which the helix is buried, is neither recognized nor degraded. Exposure of the floppy F-helix seems to sensitize the proteasome and primes the substrate for degradation. Using peptide panning and competition experiments we speculate that initial encounters through the floppy helix and additional strong interactions with N-terminal helices anchors apomyoglobin to the proteasome. Stabilizing helical structure in the floppy F-helix slows down degradation. Destabilization of adjacent helices accelerates degradation. Unfolding seems to follow the mechanism of helix unraveling rather than global unfolding. Our findings while confirming the requirement for unstructured regions in degradation offers the following new insights: a origin and identification of an intrinsic degradation signal in the substrate, b identification of sequences in the native substrate that are likely to be responsible for direct interactions with the proteasome, and c identification of critical rate limiting steps like exposure of the intrinsic degron and destabilization of an unfolding intermediate that are presumably

  14. Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012.

    Science.gov (United States)

    Hu, Jun; Zhang, Li L; Chen, Jian M; Liu, Yu

    2013-01-01

    Pseudomonas aeruginosa strain HJ1012 was isolated on paracetamol as a sole carbon and energy source. This organism could completely degrade paracetamol as high as 2200 mg/L. Following paracetamol consumption, a CO₂ yield rate up to 71.4% proved that the loss of paracetamol was mainly via mineralization. Haldane's equation adequately described the relationship between the specific growth rate and substrate concentration. The maximum specific growth rate and yield coefficient were 0.201 g-Paracetamol/g-VSS·h and 0.101 mg of biomass yield/mg of paracetamol consumed, respectively. A total of 8 metabolic intermediates was identified and classified into aromatic compounds, carboxylic acids, and inorganic species (nitrite and nitrate ions). P-aminophenol and hydroquinone are the two key metabolites of the initial steps in the paracetamol catabolic pathway. Paracetamol is degraded predominantly via p-aminophenol to hydroquinone with subsequent ring fission, suggesting partially new pathways for paracetamol-degrading bacteria.

  15. Fault-tolerant capacity-1 protocol for very fast local networks

    Science.gov (United States)

    Dobosiewicz, Wlodek; Gburzynski, Pawel

    1991-08-01

    A substantial amount of attention has been paid recently to DQDB--a proposed bus architecture and MAC-level protocol for fast local and metropolitan area networks. The main advantage of this solution over previous concepts is in the fact that the performance of DQDB does not degrade with the increasing value of a--the ratio of the packet length to the propagation length of the bus expressed in bits. The big value of a characterizes networks that are either long geographically or very fast, or both. Thus, at the threshold of the forthcoming era of very high transmission rates and increasing demands for wide-area networks with the functionality of LANs, DQDB has been enthusiastically received by the networking community. DQDB's disadvantages can be stresses in the following two points: (1) The flexibility of the network is limited: each station must know the relative location on the bus of every other station. (2) The network is susceptible for faults: the failure of one of the extreme stations or disconnection of one bus segment makes it totally inoperable. In this paper, a capacity-1 network inspired by the DQDB concept which attempts to eliminate the above disadvantages of original DQDB is proposed. The solution is based on the UU-BUS topology, i.e., a network consisting of two separate, folded, unidirectional busses.

  16. Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information.

    Science.gov (United States)

    Baptista, M S; Moukam Kakmeni, F M; Grebogi, C

    2010-09-01

    In this work we studied the combined action of chemical and electrical synapses in small networks of Hindmarsh-Rose (HR) neurons on the synchronous behavior and on the rate of information produced (per time unit) by the networks. We show that if the chemical synapse is excitatory, the larger the chemical synapse strength used the smaller the electrical synapse strength needed to achieve complete synchronization, and for moderate synaptic strengths one should expect to find desynchronous behavior. Otherwise, if the chemical synapse is inhibitory, the larger the chemical synapse strength used the larger the electrical synapse strength needed to achieve complete synchronization, and for moderate synaptic strengths one should expect to find synchronous behaviors. Finally, we show how to calculate semianalytically an upper bound for the rate of information produced per time unit (Kolmogorov-Sinai entropy) in larger networks. As an application, we show that this upper bound is linearly proportional to the number of neurons in a network whose neurons are highly connected.

  17. Die degradation effect on aging rate in accelerated cycling tests of SiC power MOSFET modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Baker, Nick; Iannuzzo, Francesco

    2017-01-01

    In order to distinguish the die and bond wire degradations, in this paper both the die and bond wire resistances of SiC MOSFET modules are measured and tested during the accelerated cycling tests. It is proved that, since the die degradation under specific conditions increases the temperature swing...

  18. Mitigation of land degradation at Juana Watershed, Central Java

    Directory of Open Access Journals (Sweden)

    I.B. Pramono

    2014-10-01

    Full Text Available Land degradation became more and more widespread, especially in areas with a dense population and dependence on agriculture is high enough. Land degradation can be approximated by the susceptibility of land to erosion. This study aims to identify existing land degradation in the Juana watershed, Central Java. The method used is the analysis of the typology of the watershed. This method is based on the interaction between landforms and land cover. The results showed that the degradation of land in the watershed very heavy scattered in the upstream areas in the territory of the Kudus and Pati regency. While severe land degradation are also scattered in Kudus, Pati, and Blora regency. Almost all of these degraded areas are used for dry land farming. By knowing the rate of spread of land degradation, the authority having jurisdiction in this district offices on issues related to land degradation can plan the actions necessary to resolve or mitigate land degradation in each region so that a major disaster will not happen or the impact can be minimized

  19. Phenol degradation by advanced Fenton process in combination with ultrasonic irradiation

    Directory of Open Access Journals (Sweden)

    F.Z. Yehia

    2015-03-01

    Full Text Available In this study, a successful degradation of phenol was achieved by means of coupling nano-sized zero-valent iron (NZVI, H2O2 and 20 kHz ultrasound irradiation. The effect of H2O2 concentration, initial pH, ultrasonic irradiation time and NZVI addition on the degradation efficiency was investigated and the kinetics of the process was discussed. The results showed that the degradation rate increased by increasing the H2O2 concentration and the irradiation time but decreased with the increase of the initial pH value. These results clearly indicate that the degradation of phenol is intensified in the presence of NZVI and H2O2, which can be attributed to enhanced production of ·−OH radicals in the system. The degradation rate in the presence of NZVI was faster than in its absence. Thus, an appropriate selection of operating conditions will lead to an economical and highly efficient technology with eventual large-scale commercial applications for the degradation of organic pollutants in aqueous effluents.

  20. Status Report - Cane Fiberboard Properties and Degradation Rates for Storage of the 9975 Shipping Package in KAMS

    International Nuclear Information System (INIS)

    Daugherty, W. L.

    2013-01-01

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 7 years. The aging environments have included elevated temperature > 250 deg F (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight loss and height decrease) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAMS, these models allow development of service life predictions. Some of the predicted degradation rates presented in this report are relatively extreme. However, these relate to environments that do not exist within KAMS, or would be postulated only as upset conditions that would not likely persist for an extended period. For a typical package with ∼10 watts internal heat load or less, and ambient temperatures below 90 deg F, the fiberboard experiences storage conditions less severe than any of the aging environments. Little or no degradation of the fiberboard is expected for typical storage conditions. It should be noted that the ultimate service life will be determined by the cumulative effect of degradation from all the conditions these packages might encounter. The assumptions and inputs behind the models in this report should be well understood before attempting to identify an actual service life in KAMS. Additional data continue to be collected to permit future refinements to the models and assumptions. For developing service life predictions, the ambient conditions within KAMS can be reasonably identified, and the temperature profiles within the various packages (with a range of heat loads and at varying locations within an array of packages) can be calculated. However, the humidity within

  1. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands

    Science.gov (United States)

    Zhang, Tong; Hsu-Kim, Heileen

    2010-07-01

    Methylmercury is a neurotoxin that accumulates in food webs and poses a significant risk to human health. In natural water bodies, methylmercury concentrations remain low due to the degradation of methylmercury into inorganic mercury by sunlight, a process known as photodecomposition. Rates of photodecomposition are relatively rapid in freshwater lakes, and slow in marine waters, but the cause of this difference is not clear. Here, we carry out incubation experiments with artificial freshwater and seawater samples to examine the mechanisms regulating methylmercury photodecomposition. We show that singlet oxygen-a highly reactive form of dissolved oxygen generated by sunlight falling on dissolved organic matter-drives photodecomposition. However, in our experiments the rate of methylmercury degradation depends on the type of methylmercury-binding ligand present in the water. Relatively fast degradation rates (similar to observations in freshwater lakes) were detected when methylmercury species were bound to sulphur-containing ligands such as glutathione and mercaptoacetate. In contrast, methylmercury-chloride complexes, which are the dominant form of methylmercury in marine systems, did not degrade as easily. Our results could help to explain why methylmercury photodecomposition rates are relatively rapid in freshwater lakes and slow in marine waters.

  2. Full-Duplex Communications in Large-Scale Cellular Networks

    KAUST Repository

    AlAmmouri, Ahmad

    2016-04-01

    In-band full-duplex (FD) communications have been optimistically promoted to improve the spectrum utilization and efficiency. However, the penetration of FD communications to the cellular networks domain is challenging due to the imposed uplink/downlink interference. This thesis presents a tractable framework, based on stochastic geometry, to study FD communications in multi-tier cellular networks. Particularly, we assess the FD communications effect on the network performance and quantify the associated gains. The study proves the vulnerability of the uplink to the downlink interference and shows that the improved FD rate gains harvested in the downlink (up to 97%) comes at the expense of a significant degradation in the uplink rate (up to 94%). Therefore, we propose a novel fine-grained duplexing scheme, denoted as α-duplex scheme, which allows a partial overlap between the uplink and the downlink frequency bands. We derive the required conditions to harvest rate gains from the α-duplex scheme and show its superiority to both the FD and half-duplex (HD) schemes. In particular, we show that the α-duplex scheme provides a simultaneous improvement of 28% for the downlink rate and 56% for the uplink rate. We also show that the amount of the overlap can be optimized based on the network design objective. Moreover, backward compatibility is an essential ingredient for the success of new technologies. In the context of in-band FD communication, FD base stations (BSs) should support HD users\\' equipment (UEs) without sacrificing the foreseen FD gains. The results show that FD-UEs are not necessarily required to harvest rate gains from FD-BSs. In particular, the results show that adding FD-UEs to FD-BSs offers a maximum of 5% rate gain over FD-BSs and HD-UEs case, which is a marginal gain compared to the burden required to implement FD transceivers at the UEs\\' side. To this end, we shed light on practical scenarios where HD-UEs operation with FD-BSs outperforms the

  3. A Decade of Improvements for Solid Oxide Electrolysis Cells. Long-Term Degradation Rate from 40%/Kh to 0.4 % Kh

    DEFF Research Database (Denmark)

    Hauch, Anne; Brodersen, Karen; Chen, Ming

    2016-01-01

    Solid oxide electrolysis cells (SOEC) have the potential for efficient large-scale conversion from electrical energy to chemical energy stored in fuels, such as hydrogen or synthetic hydrocarbon fuels by use of well-known catalysis processes. Key issues for the break-through of this technology...... are to provide inexpensive, reliable, high performing and long-term stable SOEC for stack and system applications. At DTU Energy (formerly Department of Fuel Cells and Solid State Chemistry, Risø National Laboratory), research within SOEC for more than a decade has led to long-term degradation rates on cell...

  4. Influence of HEPES buffer on the local pH and formation of surface layer during in vitro degradation tests of magnesium in DMEM

    Directory of Open Access Journals (Sweden)

    S. Naddaf Dezfuli

    2014-10-01

    Full Text Available The human body is a buffered environment where pH is effectively maintained. HEPES is a biological buffer often used to mimic the buffering activity of the body in in vitro studies on the degradation behavior of magnesium. However, the influence of HEPES on the degradation behavior of magnesium in the DMEM pseudo-physiological solution has not yet been determined. The research aimed at elucidating the degradation mechanisms of magnesium in DMEM with and without HEPES. The morphologies and compositions of surface layers formed during in vitro degradation tests for 15–3600 s were characterized. The effect of HEPES on the electrochemical behavior and corrosion tendency was determined by performing electrochemical tests. HEPES indeed retained the local pH, leading to intense intergranular/interparticle corrosion of magnesium made from powder and an increased degradation rate. This was attributed to an interconnected network of cracks formed at the original powder particle boundaries and grain boundaries in the surface layer, which provided pathways for the corrosive medium to interact continuously with the internal surfaces and promoted further dissolution. Surface analysis revealed significantly reduced amounts of precipitated calcium phosphates due to the buffering activity of HEPES so that magnesium became less well protected in the buffered environment.

  5. Evaluation of Bioaugmentation with Entrapped Degrading Cells as a Soil Remediation Technology

    DEFF Research Database (Denmark)

    Owsianiak, Mikolaj; Dechesne, Arnaud; Binning, Philip John

    2010-01-01

    Soil augmentation with microbial degraders immobilized on carriers is evaluated as a potential remediation technology using a mathematical model that includes degradation within spatially distributed carriers and diffusion or advectiondispersion as contaminant mass transfer mechanisms. The total...... degraders have low intrinsic degradation rates and that only limited carrier to soil volume ratios are practically feasible, bioaugmented soils are characterized by low effective degradation ratesandcanbeconsidered fully mixed. A simple exponential model is then sufficient to predict biodegradation...

  6. Increasing sync rate of pulse-coupled oscillators via phase response function design: theory and application to wireless networks

    OpenAIRE

    Wang, Yongqiang; Nunez, Felipe; Doyle III, Francis J.

    2012-01-01

    This paper addresses the synchronization rate of weakly connected pulse-coupled oscillators (PCOs). We prove that besides coupling strength, the phase response function is also a determinant of synchronization rate. Inspired by the result, we propose to increase the synchronization rate of PCOs by designing the phase response function. This has important significance in PCO-based clock synchronization of wireless networks. By designing the phase response function, synchronization rate is incr...

  7. Seepage into drifts with mechanical degradation

    International Nuclear Information System (INIS)

    Li, Guomin; Tsang, Chin-Fu

    2002-01-01

    Seepage into drifts in unsaturated tuff is an important issue for the long-term performance of the potential nuclear waste repository at Yucca Mountain, Nevada. Drifts in which waste packages will potentially be emplaced are subject to degradation in the form of rockfall from the drift ceiling induced by stress relief, seismic, or thermal effects. The objective of this study is to calculate seepage rates for various drift-degradation scenarios and for different values of percolation flux for the Topopah Spring middle nonlithophysal (Tptpmn) and the Topopah Spring lower lithophysal (Tptpll) units. Seepage calculations are conducted by (1) defining a heterogeneous permeability model on the drift scale that is consistent with field data, (2) selecting calibrated parameters associated with the Tptpmn and Tptpll units, and (3) simulating seepage on detailed degraded-drift profiles, which were obtained from a separate rock mechanics engineering analysis. The simulation results indicate (1) that the seepage threshold (i.e., the percolation flux at which seepage first occurs) is not significantly changed by drift degradation, and (2) the degradation-induced increase in seepage above the threshold is influenced more by the shape of the cavity created by rockfall than the rockfall volume

  8. Anoxic degradation of nitrogenous heterocyclic compounds by activated sludge and their active sites.

    Science.gov (United States)

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-05-01

    The potential for degradation of five nitrogenous heterocyclic compounds (NHCs), i.e., imidazole, pyridine, indole, quinoline, and carbazole, was investigated under anoxic conditions with acclimated activated sludge. Results showed that NHCs with initial concentration of 50 mg/L could be completely degraded within 60 hr. The degradation of five NHCs was dependent upon the chemical structures with the following sequence: imidazole>pyridine>indole>quinoline>carbazole in terms of their degradation rates. Quantitative structure-biodegradability relationship studies of the five NHCs showed that the anoxic degradation rates were correlated well with highest occupied molecular orbital. Additionally, the active sites of NHCs identified by calculation were confirmed by analysis of intermediates using gas chromatography and mass spectrometry. Copyright © 2015. Published by Elsevier B.V.

  9. Regulation of tissue levels of metallothionein with emphasis on metallothionein degradation

    International Nuclear Information System (INIS)

    Chen, M.L.

    1988-01-01

    The synthesis and degradation of metallothionein (MT) was studied in streptozotocin-induced diabetic rats and monolayer cultures of adult rat hepatocytes. Critical analysis of in vivo studies with diabetic rats and other literature revealed that cytoplasmic turnover of MT may not reflect actual degradation of this protein. Therefore, the characteristics of MT degradation in primary cultures of hepatocytes were investigated in subsequent studies. Hepatocytes were incubated in medium containing 35 S-cysteine and 100 μM Zn overnight to induce MT synthesis. The level of 35 S-MT was quantified in heat stable extracts of cell homogenates by Fast Protein Liquid Chromatography (FPLC). When Zn was removed from medium, the rate of 35 S-MT turnover was found times faster than general 3 H-protein. This decrease in cellular MT level reflected degradation since less than 1% of cellular MT was secreted. The rate of MT degradation was inversely proportional to cellular Zn status

  10. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  11. Image recovery using diffusion equation embedded neural network

    International Nuclear Information System (INIS)

    Torkamani-Azar, F.

    2001-01-01

    Artificial neural networks with their inherent parallelism have been shown to perform well in many processing applications. In this paper, a new self-organizing approach for the recovery of gray level images degraded by additive noise based on embedding the diffusion equation in a neural network (without using a priori knowledge about the image point spread function, noise or original image) is described which enhances and restores gray levels of degraded images and is for application in low-level processing. Two learning features have been proposed which would be effective in the practical implementation of such a network. The recovery procedure needs some parameter estimation such as different error goals. While the required computation is not excessive, the procedure dose not require too many iterations and convergence is very fast. In addition, through the simulation the new network showed that it has superior ability to give a better quality result with a minimum of the sum of the squared error

  12. A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes

    International Nuclear Information System (INIS)

    Caballé, N.C.; Castro, I.T.; Pérez, C.J.; Lanza-Gutiérrez, J.M.

    2015-01-01

    This paper proposes a condition-based maintenance strategy for a system subject to two dependent causes of failure: degradation and sudden shocks. The internal degradation is reflected by the presence of multiple degradation processes in the system. Degradation processes start at random times following a Non-homogeneous Poisson process and their growths are modelled by using a gamma process. When the deterioration level of a degradation process exceeds a predetermined value, we assume that a degradation failure occurs. Furthermore, the system is subject to sudden shocks that arrive at the system following a Doubly Stochastic Poisson Process. A sudden shock provokes the total breakdown of the system. Thus, the state of the system is evaluated at inspection times and different maintenance tasks can be carried out. If the system is still working at an inspection time, a preventive maintenance task is performed if the deterioration level of a degradation process exceeds a certain threshold. A corrective maintenance task is performed if the system is down at an inspection time. A preventive (corrective) maintenance task implies the replacement of the system by a new one. Under this maintenance strategy, the expected cost rate function is obtained. A numerical example illustrates the analytical results. - Highlights: • A condition-based maintenance model is proposed. • Two dependent causes of failure are considered: deterioration and external shocks. • Deterioration is given by multiple degradation processes growing by a gamma process. • The initiation of degradation processes follows a Non-homogeneous Poisson process. • External shocks arrive at the system by using a Doubly Stochastic Poisson Process

  13. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    Science.gov (United States)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  14. Overview of restoration and management practices in the degraded ...

    African Journals Online (AJOL)

    The highest deforestation and forest degradation rates in Africa occur in the dry forests and woodlands where pressure for land is increasing, poverty is rampant, livelihood options are few and climate change effects are severe. This paper examines factors that cause land and forest degradation in the Sahel and dry forests ...

  15. Collaborative Multi-Layer Network Coding in Hybrid Cellular Cognitive Radio Networks

    KAUST Repository

    Moubayed, Abdallah J.

    2015-05-01

    In this paper, as an extension to [1], we propose a prioritized multi-layer network coding scheme for collaborative packet recovery in hybrid (interweave and underlay) cellular cognitive radio networks. This scheme allows the uncoordinated collaboration between the collocated primary and cognitive radio base-stations in order to minimize their own as well as each other\\'s packet recovery overheads, thus by improving their throughput. The proposed scheme ensures that each network\\'s performance is not degraded by its help to the other network. Moreover, it guarantees that the primary network\\'s interference threshold is not violated in the same and adjacent cells. Yet, the scheme allows the reduction of the recovery overhead in the collocated primary and cognitive radio networks. The reduction in the cognitive radio network is further amplified due to the perfect detection of spectrum holes which allows the cognitive radio base station to transmit at higher power without fear of violating the interference threshold of the primary network. For the secondary network, simulation results show reductions of 20% and 34% in the packet recovery overhead, compared to the non-collaborative scheme, for low and high probabilities of primary packet arrivals, respectively. For the primary network, this reduction was found to be 12%. © 2015 IEEE.

  16. Biomechanical analysis of running in military boots with new and degraded insoles.

    Science.gov (United States)

    Dixon, Sharon J; Waterworth, Claire; Smith, Calum V; House, Carol M

    2003-03-01

    The purpose of the present study was to investigate the influence of degradation using repeated impacts on the ability of different shock-absorbing insoles to reduce peak impact loading during running in military boots. Four insole types were degraded mechanically to simulate typical running loads that occur during approximately 100 km of running. The influence of insole mechanical degradation on stiffness and impact-absorbing ability was assessed using standard test procedures. The ability of new and degraded insole samples to reduce peak impact loading during running was assessed by monitoring peak impact force and rate of loading. In addition, the influence of insoles on sagittal plane kinematics was quantified by measurement of hip, knee, and ankle joint flexion. Insole mechanical degradation resulted in an increase in mechanical stiffness and a decrease in ability to reduce mechanical impacts for all test insoles. Measurements taken during running indicated that only one insole type reduced peak impact loading when new, as indicated by a significant (P< 0.05) reduction in peak rate of loading. The ability of this insole type to reduce peak rate of loading during running was maintained after mechanical degradation. This insole was also found to significantly (P< 0.05) reduce peak ankle dorsiflexion. The present study identifies an insole type that reduces peak rate of loading during running both when new and when mechanically degraded. It is suggested that this indicates an insole that could potentially reduce the frequency of overuse injuries. Based on these results, this insole is recommended for use in the investigation of the practical use of insoles by military recruits, particularly for study of the influence on injury occurrence.

  17. Changes in Flow and Transport Patterns in Fen Peat as a Result of Soil Degradation

    Science.gov (United States)

    Liu, Haojie; Janssen, Manon; Lennartz, Bernd

    2016-04-01

    The preferential movement of water and transport of substances play an important role in soils and are not yet fully understood especially in degraded peat soils. In this study, we aimed at deducing changes in flow and transport patterns in the course of soil degradation as resulting from peat drainage, using titanium dioxide (TiO2) as a dye tracer. The dye tracer experiments were conducted on columns of eight types of differently degraded peat soils from three sites taken both in vertical and horizontal directions. The titanium dioxide suspension (average particle size of 0.3 μm; 10 g l-1) was applied in a pulse of 40 mm to each soil core. Twenty-four hours after the application of the tracer, cross sections of the soil cores were prepared for photo documentation. In addition, the saturated hydraulic conductivity (Ks) was determined. Preferential flow occurred in all investigated peat types. From the stained soil structural elements, we concluded that undecomposed plant remains are the major preferential flow pathways in less degraded peat. For more strongly degraded peat, bio-pores, such as root and earthworm channels, operated as the major transport domain. Results show that Ks and the effective pore network in less degraded peat soils are anisotropic. With increasing peat degradation, the Ks and cross section of effective pore network decreased. The results also indicate a strong positive relationship between Ks and number of macropores as well as pore continuity. Hence, we conclude that changes in flow and transport pathways as well as Ks with an increasing peat degradation are due to the disintegration of the peat forming plant material and decrement of number and continuity of macropores after drainage.

  18. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Directory of Open Access Journals (Sweden)

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  19. Photochemical degradation of alachlor in water

    Directory of Open Access Journals (Sweden)

    Tajana Đurkić

    2017-01-01

    Full Text Available This study investigates the photochemical degradation of alachlor, a chloroacetanilide herbicide. All experiments were conducted in ultra-pure deionized water (ASTM Type I quality using direct ultraviolet (UV photolysis and the UV/H2O2 advanced oxidation process. The direct UV photolysis and UV/H2O2 experiments were conducted in a commercial photochemical reactor with a quartz reaction vessel equipped with a 253.7 nm UV low pressure mercury lamp (Philips TUV 16 W. The experimental results demonstrate that UV photolysis was very effective for alachlor degradation (up to 97% removal using a high UV fluence of 4200 mJ/cm2. The UV/H2O2 process promoted alachlor degradation compared to UV photolysis alone, with a high degree of decomposition (97% achieved at a significantly lower UV fluence of 600 mJ/cm2 when combined with 1 mg H2O2/L. The application of UV photolysis alone with a UV fluence of 600 mJ/cm2 gave a negligible 4% alachlor degradation. The photo degradation of alachlor, in both direct UV photolysis and the UV/H2O2 process, followed pseudo first-order kinetics. The degradation rate constant was about 6 times higher for the UV/H2O2 process than for UV photolysis alone.

  20. Network coding at different layers in wireless networks

    CERN Document Server

    2016-01-01

    This book focuses on how to apply network coding at different layers in wireless networks – including MAC, routing, and TCP – with special focus on cognitive radio networks. It discusses how to select parameters in network coding (e.g., coding field, number of packets involved, and redundant information ration) in order to be suitable for the varying wireless environments. The book explores how to deploy network coding in MAC to improve network performance and examines joint network coding with opportunistic routing to improve the successful rate of routing. In regards to TCP and network coding, the text considers transport layer protocol working with network coding to overcome the transmission error rate, particularly with how to use the ACK feedback of TCP to enhance the efficiency of network coding. The book pertains to researchers and postgraduate students, especially whose interests are in opportunistic routing and TCP in cognitive radio networks.

  1. Comparative efficacy of multimodal digital methods in assessing trail/resource degradation

    Science.gov (United States)

    Logan O. Park

    2014-01-01

    Outdoor recreation can cause both positive and negative impacts on associated forest ecosystems. Forest recreation trails localize negative impacts to a controlled spatial extent while providing recreation access beyond developed areas and transportation networks. Current methods for assessing extent and severity of trail and proximal resource degradation require...

  2. A novel implementation of TCP Vegas for optical burst switched networks

    KAUST Repository

    Shihada, Basem; Zhang, Qiong; Ho, Pin-Han; Jue, Jason P.

    2010-01-01

    TCP performance over bufferless Optical Burst Switched (OBS) networks could be significantly degraded due to the misinterpretation of network congestion status (referred to as false congestion detection). It has been reported that burst

  3. Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways.

    Science.gov (United States)

    Nie, Er; Yang, Mo; Wang, Dong; Yang, Xiaoying; Luo, Xingzhang; Zheng, Zheng

    2014-10-01

    Diclofenac (DCF) is a widely used anti-inflammatory drug found in various water bodies, posing threats to human health. In this research, the effects of ultrasonic irradiation at 585kHz on the degradation of DCF were studied under the air, oxygen, argon, and nitrogen saturated conditions. First, the dechlorination efficiencies under the air, oxygen, argon, and nitrogen saturated conditions were calculated to be 67%, 60%, 53% and 59%. Second, there was full mineralization of nitrogen during DCF degradation under the air, oxygen, and argon saturated conditions, but no mineralization of nitrogen under the nitrogen-saturated condition. Different from nitrogen, only partial mineralization of carbon occurred under the four gas-saturated conditions. Third, OH scavengers were added to derive the rate constants in the three reaction zones: cavitation bubble, supercritical interface, and bulk solution. Comparison of the constants indicated that DCF degradation was not limited to the bulk solution as conventionally assumed. Oxidation in the supercritical interface played a dominant role under the air and oxygen saturated conditions, while OH reactions in the cavitation bubble and/or bulk solution were dominant under the nitrogen and argon saturated conditions. After the addition of H2O2, reactions in the cavitation bubble and bulk solution kept their dominant roles under the nitrogen and argon saturated conditions, while reaction in the supercritical interface decreased under the air and oxygen saturated conditions. Finally, LC-MS analysis was used to derive the by-products and propose the main pathways of DCF degradation by ultrasonic irradiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Stress induced degradation of critical currents in filamentary Nb3Sn

    International Nuclear Information System (INIS)

    McDougall, I.L.

    1976-01-01

    An investigation of the critical stress and strain values of bronze, Nb 3 Sn composites at 4.2 K has been made with simultaneous determination of critical currents in a field of 2.5 Tesla. Evidence of grain boundary microcrack formation has been found associated with reversible degradation of critical current. At a critical strain characteristic of the composite geometry these cracks propagate to give a GB fracture network. A compound with a small grain size formed at low temperatures has the best mechanical properties with a critical strain to the onset of reversible degradation of about 0.5%. (author)

  5. TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.

    2009-01-01

    Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.

  6. Effect and Analysis of Sustainable Cell Rate using MPEG video Traffic in ATM Networks

    Directory of Open Access Journals (Sweden)

    Sakshi Kaushal

    2006-04-01

    Full Text Available The broadband networks inhibit the capability to carry multiple types of traffic – voice, video and data, but these services need to be controlled according to the traffic contract negotiated at the time of the connection to maintain desired Quality of service. Such control techniques use traffic descriptors to evaluate its performance and effectiveness. In case of Variable Bit Rate (VBR services, Peak Cell Rate (PCR and its Cell Delay Variation Tolerance (CDVTPCR are mandatory descriptors. In addition to these, ATM Forum proposed Sustainable Cell Rate (SCR and its Cell delay variation tolerance (CDVTSCR. In this paper, we evaluated the impact of specific SCR and CDVTSCR values on the Usage Parameter Control (UPC performance in case of measured MPEG traffic for improving the efficiency

  7. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    Science.gov (United States)

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Selective epidemic broadcast algorithm to suppress broadcast storm in vehicular ad hoc networks

    Directory of Open Access Journals (Sweden)

    M. Chitra

    2018-03-01

    Full Text Available Broadcasting in Vehicular Ad Hoc Networks is the best way to spread emergency messages all over the network. With the dynamic nature of vehicular ad hoc networks, simple broadcast or flooding faces the problem called as Broadcast Storm Problem (BSP. The issue of the BSP will degrade the performance of a message broadcasting process like increased overhead, collision and dissemination delay. The paper is motivated to solve the problems in the existing Broadcast Strom Suppression Algorithms (BSSAs like p-Persistence, TLO, VSPB, G-SAB and SIR. This paper proposes to suppress the Broadcast Storm Problem and to improve the Emergency Safety message dissemination rate through a new BSSA based on Selective Epidemic Broadcast Algorithm (SEB. The simulation results clearly show that the SEB outperforms the existing algorithms in terms of ESM Delivery Ratio, Message Overhead, Collision Ratio, Broadcast Storm Ratio and Redundant Rebroadcast Ratio with decreased Dissemination Delay.

  9. Resource aware sensor nodes in wireless sensor networks

    International Nuclear Information System (INIS)

    Merrett, G V; Al-Hashimi, B M; White, N M; Harris, N R

    2005-01-01

    Wireless sensor networks are continuing to receive considerable research interest due, in part, to the range of possible applications. One of the greatest challenges facing researchers is in overcoming the limited network lifetime inherent in the small locally powered sensor nodes. In this paper, we propose IDEALS, a system to manage a wireless sensor network using a combination of information management, energy harvesting and energy monitoring, which we label resource awareness. Through this, IDEALS is able to extend the network lifetime for important messages, by controlling the degradation of the network to maximise information throughput

  10. Wind Erosion Induced Soil Degradation in Northern China: Status, Measures and Perspective

    Directory of Open Access Journals (Sweden)

    Zhongling Guo

    2014-12-01

    Full Text Available Soil degradation is one of the most serious ecological problems in the world. In arid and semi-arid northern China, soil degradation predominantly arises from wind erosion. Trends in soil degradation caused by wind erosion in northern China frequently change with human activities and climatic change. To decrease soil loss by wind erosion and enhance local ecosystems, the Chinese government has been encouraging residents to reduce wind-induced soil degradation through a series of national policies and several ecological projects, such as the Natural Forest Protection Program, the National Action Program to Combat Desertification, the “Three Norths” Shelter Forest System, the Beijing-Tianjin Sand Source Control Engineering Project, and the Grain for Green Project. All these were implemented a number of decades ago, and have thus created many land management practices and control techniques across different landscapes. These measures include conservation tillage, windbreak networks, checkerboard barriers, the Non-Watering and Tube-Protecting Planting Technique, afforestation, grassland enclosures, etc. As a result, the aeolian degradation of land has been controlled in many regions of arid and semiarid northern China. However, the challenge of mitigating and further reversing soil degradation caused by wind erosion still remains.

  11. Enantioselective degradation and enantiomerization of indoxacarb in soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Qiu, Jing; Li, Li; Liu, Chenglan; Jiao, Bining

    2013-11-27

    In this study, the enantioselective degradation and enantiomerizaton of indoxacarb were investigated in two soils under nonsterilized and sterilized conditions using a chiral OD-RH column on a reversed-phase HPLC. Under nonsterilized conditions, the degradation of indoxacarb in two soils was enantioselective. In acidic soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 10.43 and 14.00 days, respectively. Acidic soil was preferential to the degradation of R-(-)-indoxacarb. In alkaline soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 12.14 and 4.88 days, respectively. S-(+)-Indoxacarb was preferentially degraded. Under sterilized conditions, approximately 5-10% of the initial concentration degraded after 75 days of incubation in acidic soil, whereas in alkaline soil, approximately half of the initial concentration degraded due to chemical hydrolysis under alkaline conditions. Enantiomerization was also discovered in acidic and alkaline soils. The results showed that mutual transformation existed between two enantiomers and that S-(+)-indoxacarb had a significantly higher inversion rate to R-(-)-indoxacarb than its antipode.

  12. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel

    Science.gov (United States)

    Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal

    2018-03-01

    A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.

  13. Power consumption analysis of constant bit rate data transmission over 3G mobile wireless networks

    DEFF Research Database (Denmark)

    Wang, Le; Ukhanova, Ann; Belyaev, Evgeny

    2011-01-01

    This paper presents the analysis of the power consumption of data transmission with constant bit rate over 3G mobile wireless networks. Our work includes the description of the transition state machine in 3G networks, followed by the detailed energy consumption analysis and measurement results...... of the radio link power consumption. Based on these description and analysis, we propose power consumption model. The power model was evaluated on the smartphone Nokia N900, which follows a 3GPP Release 5 and 6 supporting HSDPA/HSPA data bearers. Further we propose method of parameters selection for 3GPP...... transition state machine that allows to decrease power consumption on the mobile device....

  14. Degradation of organophosphorus pesticide parathion methyl on nanostructured titania-iron mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Henych, Jiří, E-mail: henych@iic.cas.cz [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Štengl, Václav; Slušná, Michaela; Matys Grygar, Tomáš [Department of Material Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 25068 Řež (Czech Republic); Janoš, Pavel; Kuráň, Pavel; Štastný, Martin [Faculty of the Environment, J.E. Purkyně University, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2015-07-30

    Highlights: • Ti–Fe mixed oxides were synthesized via low-temperature one-pot method. • Mixed oxides were used for degradation of parathion methyl. • Pure reference oxide samples showed no degradation ability. • Mixed oxides reached 70% degree of conversion of parathion methyl. - Abstract: Titania-iron mixed oxides with various Ti:Fe ratio were prepared by homogeneous hydrolysis of aqueous solutions of titanium(IV) oxysulphate and iron(III) sulphate with urea as a precipitating agent. The synthesized samples were characterized by X-ray diffraction, Raman and infrared spectroscopy, scanning and transmission electron microscopy, XRF analysis, specific surface area (BET) and porosity determination (BJH). These oxides were used for degradation of organophosporus pesticide parathion methyl. The highest degradation efficiency approaching <70% was found for the samples with Ti:Fe ratio 0.25:1 and 1:0.25. Contrary, parathion methyl was not degraded on the surfaces of pure oxides. In general, the highest degradation rate exhibited samples consisted of the iron or titanium oxide containing a moderate amount of the admixture. However, distinct correlations between the degradation rate and the sorbent composition were not identified.

  15. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential.

    Science.gov (United States)

    Bending, Gary D; Friloux, Maxime; Walker, Allan

    2002-06-18

    The capacity of nine species of white rot fungus from a variety of basidiomycete orders to degrade contrasting mono-aromatic pesticides was investigated. There was no relationship between degradation of the dye Poly R-478, a presumptive test for ligninolytic potential, and degradation of the highly available pesticides diuron, metalaxyl, atrazine or terbuthylazine in liquid culture. However, there were significant positive correlations between the rates of degradation of the different pesticides. Greatest degradation of all the pesticides was achieved by Coriolus versicolor, Hypholoma fasciculare and Stereum hirsutum. After 42 days, maximum degradation of diuron, atrazine and terbuthylazine was above 86%, but for metalaxyl less than 44%. When grown in the organic matrix of an on-farm "biobed" pesticide remediation system, relative degradation rates of the highly available pesticides by C. versicolor, H. fasciculare and S. hirsutum showed some differences to those in liquid culture. While H. fasciculare and C. versicolor were able to degrade about a third of the poorly available compound chlorpyrifos in biobed matrix after 42 days, S. hirsutum, which was the most effective degrader of the available pesticides, showed little capacity to degrade the compound.

  16. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    Science.gov (United States)

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  17. Enhanced Photocatalytic Performance of NiO-Decorated ZnO Nanowhiskers for Methylene Blue Degradation

    Directory of Open Access Journals (Sweden)

    I. Abdul Rahman

    2014-01-01

    Full Text Available ZnO nanowhiskers were used for photodecomposition of methylene blue in aqueous solution under UV irradiation. The rate of methylene blue degradation increased linearly with time of UV irradiation. 54% of degradation rate was observed when the ZnO nanowhiskers were used as photocatalysts for methylene blue degradation for 80 min under UV irradiation. The decoration of p-type NiO nanoparticles on n-type ZnO nanowhiskers significantly enhanced photocatalytic activity and reached 72% degradation rate of methylene blue by using the same method. NiO-decorated ZnO was recycled for second test and shows 66% degradation from maximal peak of methylene blue within the same period. The increment of photocatalytic activity of NiO-decorated ZnO nanowhiskers was explained by the extension of the electron depletion layer due to the formation of nanoscale p-n junctions between p-type NiO and n-type ZnO. Hence, these products provide new alternative proficient photocatalysts for wastewater treatment.

  18. Degradation of tetraethyllead in leaded gasoline contaminated and uncontaminated soils

    International Nuclear Information System (INIS)

    Ou, L.; Jing, W.; Thomas, J.; Mulroy, P.

    1995-01-01

    For over 50 years, since its introduction in 1923 by General Motors, tetraethyllead (TEL) was the major antiknock agent used in leaded gasoline. Since the middle of 1970, use of leaded gasoline in automobiles was gradually phased out. The main objective of this study is to determine the degradation rates and metabolites of TEL in gasoline contaminated and uncontaminated soils. TEL in uncontaminated soils disappeared rapidly. Ionic triethyllead (TREL) was the major organolead metabolite in these soils, with ionic diethyllead (DEL) being the minor product. Nonsterile soils, but not autoclaved soils, had limited capacity to mineralize 14 C-TEL to 14 CO 2 , H 2 0, and Pb 2+ . Unlike TEL in uncontaminated soils, petroleum hydrocarbons protected TEL in leaded gasoline contaminated soils from being degraded. Both disappearance and mineralization rates of TEL in leaded gasoline contaminated soils decreased with the increase in gasoline concentration. It appears that TEL in leaded gasoline contaminated soils is relatively stable until the level of petroleum hydrocarbons falls below a critical value. TEL is then rapidly degraded. Hydrocarbon degrading microorganisms may be involved, to some extent, in the degradation of TEL

  19. Data-flow Performance Optimisation on Unreliable Networks: the ATLAS Data-Acquisition Case

    CERN Document Server

    Colombo, T; The ATLAS collaboration

    2015-01-01

    Abstract The ATLAS detector at CERN records proton-proton collisions delivered by the Large Hadron Collider (LHC). The ATLAS Trigger and Data-Acquisition (TDAQ) system identifies, selects, and stores interesting collision data. These are received from the detector readout electronics at an average rate of 100 kHz. The typical event data size is 1 to 2 MB. Overall, the ATLAS TDAQ can be seen as a distributed software system executed on a farm of roughly 2000 commodity PCs. The worker nodes are interconnected by an Ethernet network that at the restart of the LHC in 2015 is expected to experience a sustained throughput of several 10 GB/s. Abstract A particular type of challenge posed by this system, and by DAQ systems in general, is the inherently bursty nature of the data traffic from the readout buffers to the worker nodes. This can cause instantaneous network congestion and therefore performance degradation. The effect is particularly pronounced for unreliable network interconnections, such as Ethernet. Abstr...

  20. Data-flow performance optimization on unreliable networks: the ATLAS data-acquisition case

    CERN Document Server

    Colombo, T; The ATLAS collaboration

    2014-01-01

    The ATLAS detector at CERN records proton-proton collisions delivered by the Large Hadron Collider (LHC). The ATLAS Trigger and Data-Acquisition (TDAQ) system identifies, selects, and stores interesting collision data. These are received from the detector readout electronics at an average rate of 100 kHz. The typical event data size is 1 to 2 MB. Overall, the ATLAS TDAQ can be seen as a distributed software system executed on a farm of roughly 2000 commodity PCs. The worker nodes are interconnected by an Ethernet network that at the restart of the LHC in 2015 is expected to experience a sustained throughput of several 10 GB/s. A particular type of challenge posed by this system, and by DAQ systems in general, is the inherently bursty nature of the data traffic from the readout buffers to the worker nodes. This can cause instantaneous network congestion and therefore performance degradation. The effect is particularly pronounced for unreliable network interconnections, such as Ethernet. In this presentation we...

  1. Energy Efficient Design for Two-Way AF Relay Networks

    Directory of Open Access Journals (Sweden)

    Yong Li

    2014-01-01

    Full Text Available Conventional designs on two-way relay networks mainly focus on the spectral efficiency (SE rather than energy efficiency (EE. In this paper, we consider a system where two source nodes communicate with each other via an amplify-and-forward (AF relay node and study the power allocation schemes to maximize EE while ensuring a certain data rate. We propose an optimal energy-efficient power allocation algorithm based on iterative search technique. In addition, a closed-form suboptimal solution is derived with reduced complexity and negligible performance degradation. Numerical results show that the proposed schemes can achieve considerable EE improvement compared with conventional designs.

  2. Sonochemical Degradation Kinetics of Methyl Violet in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wei Lin Guo

    2003-01-01

    Full Text Available The sonochemical degradation in aqueous solution of methyl violet, chosen as a model of a basic dye, was studied. The ultrasonic degradation kinetics in water were found to be first-order and the degradation rate coefficient is 1.35×10-2 min-1 (R= 0.9934, n=8 at 20±1°C. The influence of the initial concentrations, reaction temperature and the pH of medium on the ultrasonic decomposition of methyl violet were also investigated.

  3. Recovery of acid-degraded tributyl phosphate by solvent extraction

    International Nuclear Information System (INIS)

    Young, G.C.; Holladay, D.W.

    1981-01-01

    During nuclear fuel reprocessing the organic solvent becomes loaded with various acidic degradation products, which can be effectively removed through solvent extraction. Studies have been made with a small bench-scale solvent extraction system to optimize such parameters as pH of aqueous phase, phase ratio, residence time, flow rates, and temperature. The necessary decontamination factors have been obtained for various degradation products during continuous solvent extraction in one stage, with the aqueous phase being recycled. The aqueous phase contains compounds that can be degraded to gases to minimize waste disposal problems

  4. Enhancement and degradation of the R2* relaxation rate resulting from the encapsulation of magnetic particles with hydrophilic coatings.

    Science.gov (United States)

    de Haan, Hendrick W; Paquet, Chantal

    2011-12-01

    The effects of including a hydrophilic coating around the particles are studied across a wide range of particle sizes by performing Monte Carlo simulations of protons diffusing through a system of magnetic particles. A physically realistic methodology of implementing the coating by cross boundary jump scaling and transition probabilities at the coating surface is developed. Using this formulation, the coating has three distinct impacts on the relaxation rate: an enhancement at small particle sizes, a degradation at intermediate particle sizes, and no effect at large particles sizes. These varied effects are reconciled with the underlying dephasing mechanisms by using the concept of a full dephasing zone to present a physical picture of the dephasing process with and without the coating for all sizes. The enhancement at small particle sizes is studied systemically to demonstrate the existence of an optimal ratio of diffusion coefficients inside/outside the coating to achieve maximal increase in the relaxation rate. Copyright © 2011 Wiley Periodicals, Inc.

  5. Depression and unemployment incidence rate evolution in Portugal, 1995-2013: General Practitioner Sentinel Network data.

    Science.gov (United States)

    Rodrigues, Ana Paula; Sousa-Uva, Mafalda; Fonseca, Rita; Marques, Sara; Pina, Nuno; Matias-Dias, Carlos

    2017-11-17

    Quantify, for both genders, the correlation between the depression incidence rate and the unemployment rate in Portugal between 1995 and 2013. An ecological study was developed to correlate the evolution of the depression incidence rates estimated by the General Practitioner Sentinel Network and the annual unemployment rates provided by the National Statistical Institute in official publications. There was a positive correlation between the depression incidence rate and the unemployment rate in Portugal, which was significant only for males (R2 = 0.83, p = 0.04). For this gender, an increase of 37 new cases of depression per 100,000 inhabitants was estimated for each 1% increase in the unemployment rate between 1995 and 2013. Although the study design does not allow the establishment of a causal association between unemployment and depression, the results suggest that the evolution of unemployment in Portugal may have had a significant impact on the level of mental health of the Portuguese, especially among men.

  6. Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil

    Energy Technology Data Exchange (ETDEWEB)

    Poznyak, Tatyana [Superior School of Chemical Engineering, National Polytechnic Institute of Mexico (ESIQIE-IPN), Edif. 7, UPALM, C.P. 07738, Mexico D.F. (Mexico)]. E-mail: tpoznyak@ipn.mx; Garcia, Alejandro [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico); Chairez, Isaac [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico); Gomez, Miriam [Superior School of Chemical Engineering, National Polytechnic Institute of Mexico (ESIQIE-IPN), Edif. 7, UPALM, C.P. 07738, Mexico D.F. (Mexico); Poznyak, Alexander [Department of Automatic Control, CINVESTAV-IPN, Av. Instituto Politecnico Nacional, Col. San Pedro Zacatenco, C.P. 07360, Mexico D.F. (Mexico)]. E-mail: apoznyak@ctrl.cinvestav.mx

    2007-07-31

    In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24 mg/g and treated by ozone (with the ozone initial concentration 16 mg/L) during 90 min in a reactor by the 'fluid bed' principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20 min and by-products of ozonation are started to be destroyed after 30 min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method.

  7. Application of the differential neural network observer to the kinetic parameters identification of the anthracene degradation in contaminated model soil

    International Nuclear Information System (INIS)

    Poznyak, Tatyana; Garcia, Alejandro; Chairez, Isaac; Gomez, Miriam; Poznyak, Alexander

    2007-01-01

    In this work a new technique dealing with differential neural network observer (DNNO), which is related with differential neural networks (DNN) approach, is applied to estimate the anthracene dynamics decomposition and to identify the kinetic parameters in a contaminated model soil treatment by simple ozonation. To obtain the experimental data set, the model soil (sand) is combined with an initial anthracene concentration of 3.24 mg/g and treated by ozone (with the ozone initial concentration 16 mg/L) during 90 min in a reactor by the 'fluid bed' principle. The anthracene degradation degree was controlled by UV-vis spectrophotometry and HPLC techniques. Based on the HPLC data, the obtained results confirm that anthracene may be decomposed completely in the solid phase by simple ozonation during 20 min and by-products of ozonation are started to be destroyed after 30 min of treatment. In the ozonation process the ozone concentration in the gas phase at the reactor outlet is registered by an ozone detector. The variation of this parameter is used to obtain the summary characteristic curve of the anthracene ozonation (ozonogram). Then, using the experimental decomposition dynamics of anthracene and the ozonogram, the proposed DNNO is trained to reconstruct the anthracene decomposition and to estimate the anthracene ozonation constant using the DNN technique and a modified Least Square method

  8. The analysis of failure data in the presence of critical and degraded failures

    International Nuclear Information System (INIS)

    Haugen, Knut; Hokstad, Per; Sandtorv, Helge

    1997-01-01

    Reported failures are often classified into severityclasses, e.g., as critical or degraded. The critical failures correspond to loss of function(s) and are those of main concern. The rate of critical failures is usually estimated by the number of observed critical failures divided by the exposure time, thus ignoring the observed degraded failures. In the present paper failure data are analyzed, applying an alternative estimate for the critical failure rate, also taking the number of observed degraded failures into account. The model includes two alternative failure mechanisms, one being of the shock type, immediately leading to a critical failure, another resulting in a gradual deterioration, leading to a degraded failure before the critical failure occurs. Failure data on safety valves from the OREDA (Offshore REliability DAta) data base are analyzed using this model. The estimate for the critical failure rate is obtained and compared with the standard estimate

  9. Degradation of 2,4-DB in Argentinean agricultural soils with high humic matter content.

    Science.gov (United States)

    Cuadrado, Virginia; Merini, Luciano J; Flocco, Cecilia G; Giulietti, Ana M

    2008-01-01

    The dissipation of 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) in high-humic-matter-containing soils from agricultural fields of the Argentinean Humid Pampa region was studied, employing soil microcosms under different experimental conditions. The added herbicide was dissipated almost completely by soils with and without history of herbicide use by day 28. At 500 ppm, both soils showed the same degradation rates; but at 5-ppm concentration, the chronically exposed soil demonstrated a faster degradation of the herbicide. 2,4-DB addition produced increases in herbicide-degrading bacteria of three and 1.5 orders of magnitude in soils with and without history of herbicide use, respectively, in microcosms with 5 ppm. At 500-ppm concentration, the increase in 2,4-DB degraders was five orders of magnitude after 14 days, independent of the history of herbicide use. No differences were observed in either 2,4-DB degradation rates or in degrader bacteria numbers in the presence and absence of alfalfa plants, in spite of some differential characteristics in patterns of 2,4-DB metabolite accumulation. The main factor affecting 2,4-DB degradation rate would be the history of herbicide use, as a consequence of the adaptation of the indigenous microflora to the presence of herbicides in the field.

  10. Studies on the physiology of microbial degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Valo, R.; Apajalahti, J.; Salkinoja-Salonen, M.

    1985-03-01

    The requirements and conditions for pentachlorophenol (PCP) biodegradation by a mixed bacterial culture was studied. The effects of oxygen, nutrients, additional carbon sources, pH and temperature are described. Up to 90% of PCP was degraded into CO/sub 2/ and inorganic chloride in 1 week at an input concentration of <600 ..mu..M. Degradation continued when pO/sub 2/ was lowered to 0.0002 atm but ceased when pO/sub 2/ was further decreased to 0.00002 atm. Supplementary carbon sources, such as phenol, hydroxybenzoic acids or complex nutrients did not affect the biodegradation, but the presence of ammonium salts enhanced the rate of PCP degradation without affecting the yield of CO/sub 2/. The degrading organisms were shown to be procaryotic mesophiles; no degradation was shown at temperatures below +8/sup 0/ and above +50/sup 0/C. The optimum pH for degradation was from 6.4 to 7.2 and at higher pH value (8.4) degradation was inhibited more than at lower pH (5.6).

  11. Degradation of isoproturon and bentazone in peat- and compost-based biomixtures.

    Science.gov (United States)

    Coppola, Laura; Pilar Castillo, Maria Del; Vischetti, Costantino

    2011-01-01

    The composition and properties of a biomixture used in a biobed are decisive for pesticide sorption and degradation. This study was performed to investigate the capability of compost-based substrates in mixtures with citrus peel and vine branch straw and peat-based substrates in mixtures with soil and vine branch straw at different levels in order to degrade isoproturon and bentazone. Dissipation and mineralisation rates of both pesticides were determined, and metabolic activity was followed as respiration. Compost-based substrates showed faster pesticide dissipation in the presence of lignocellulosic materials, as in garden compost and vine branch straw. The increasing content of vine branch straw in peat-based substrates does not seem to affect dissipation of the parent compounds. Low mineralisation rate was observed in all treatments. Higher pesticide degradation was observed in the lignocellulosic substrates, probably because of the development of lignin-degrading microorganisms which have shown to be robust and are able to degrade recalcitrant pesticides. Copyright © 2010 Society of Chemical Industry. Copyright © 2010 Society of Chemical Industry.

  12. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yongjun [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)], E-mail: lclei@zju.edu.cn; Zhang Xingwang; Zhou Minghua; Zhang Yi [Institute of Environmental Pollution Control Technologies, Zhejiang University, Hangzhou 310028 (China)

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  13. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges.

    Science.gov (United States)

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Zhou, Minghua; Zhang, Yi

    2008-02-11

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone>oxygen>argon>nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed.

  14. Effect of various gases and chemical catalysts on phenol degradation pathways by pulsed electrical discharges

    International Nuclear Information System (INIS)

    Shen Yongjun; Lei Lecheng; Zhang Xingwang; Zhou Minghua; Zhang Yi

    2008-01-01

    The processes of phenol degradation by pulsed electrical discharges were investigated under several kinds of discharge atmospheres (oxygen, argon, nitrogen and ozone) and chemical catalysts (ferrous ion and hydrogen peroxide). The temporal variations of the concentrations of phenol and the intermediate products were monitored by HPLC and GC-MS, respectively. It has been found that the effect of various gases bubbling on phenol degradation rate ranked in the following order: oxygen-containing ozone > oxygen > argon > nitrogen. The high gas bubbling flow rate was beneficial to the removal of phenol. It was found that the degradation proceeded differently when in the presence and absence of catalysts. The phenol removal rate was increased when ferrous ion was added. This considerable enhancement may be due to the Fenton's reaction. What's more, putting the chemical additives hydrogen peroxide into the reactor led to a dramatic increase in phenol degradation rate. The mechanism was due to the direct or indirect photolysis and pyrolysis destruction in plasma channel. Furthermore, the intermediate products were monitored by GC-MS under three degradation conditions. More THBs were generated under degradation conditions without gases bubbling or adding any catalyst, and more DHBs under the condition of adding ferrous ion, and more carboxylic acids under the condition of oxygen-containing ozone gas bubbling. Consequently, three distinct degradation pathways based on different conditions were proposed

  15. Nuclear reactor pump diagnostics via noise analysis/artificial neural networks

    International Nuclear Information System (INIS)

    Keyvan, S.; Rabelo, L.C.

    1991-01-01

    A feasibility study is performed on the utilization of artificial neural networks as a tool for reactor diagnostics. Reactor pump signals utilized in a wear-out monitoring system developed for early detection of degradation of pump shaft are analyzed as a semi-benchmark test to study the feasibility of neural networks for pattern recognition. The Adaptive Resonance Theory (ART 2) paradigm of artificial neural networks is applied in this study. The signals are collected signals as well as generated signals simulating the wear progress. The wear-out monitoring system applies noise analysis techniques, and is capable of distinguishing between these signals and providing a measure of the progress of the degradation. This paper presents the results of the analysis of these data via the ART 2 paradigm

  16. Degradation of MTBE and TBA by a new isolate from MTBE-contaminated soil.

    Science.gov (United States)

    Zhang, Rui-Ling; Huang, Guo-Qiang; Lian, Jing-Yan; Li, Xin-Gang

    2007-01-01

    Methyl tert-butyl ether (MTBE), a gasoline additive, possesses serious problems to the environmental health. In the present study, a bacterial culture named A-3 which could effectively degrade MTBE was isolated from the MTBE contaminated soil. The isolate was identified as Chryseobacterium sp., a new species capable of degrading MTBE. In order to enhance its degradation ability, selected environment factors were investigated. The results showed that the optimal temperature was in the range of 25-30 degrees C, the pH was 7.0, the inoculum size was 2 x 10(8) CFU/ml and the optimal concentration of MTBE was from 50 to 100 mg/L. The maximum MTBE utilization rate (upsilon(max)) was 102 nmol MTBE/(mg cell protein x h). Furthermore, it was found that the isolate could also degrade tert-butyl alcohol (TBA). The degradation rates of TBA were much faster than those of MTBE. The additional TBA would lead to the decrease of the initial MTBE degradation rate and the inhibitory effect of TBA increased with the increase of TBA concentration. Similar protein profiles at least seven peptides were demonstrated after SDS-PAGE analysis of crude extracts obtained from the cells growing in MTBE and TBA culture.

  17. Thermogravimetric analysis and thermal degradation behaviour of advanced PMR-X carbon fiber composites

    International Nuclear Information System (INIS)

    Rngie, M.

    2003-01-01

    Thermal degradation behavior of sized and unsized carbon fibers in polyimide matrix was investigated. Degradation of neat resin and unidirectional laminates were investigated by thermogravimetric analysis technique at temperatures between 470 d ig C -650 d ig C and up to 250 h rs. Isothermal ageing of the PMR-X composite samples under different test conditions (i. e. different temperatures and prolonged aging times), showed that oxidation and degradation occurs in stage three different rates. Thermogravimetric analysis showed that the cured PMR-X composite panels are more stable in an inert atmosphere (nitrogen atmosphere)than in air and the degradation of neat resin is much higher than the composite samples. However, the rate of degradation of the unsized untreated carbon fibers in nitrogen environment is much higher than that for the PMR-X composites containing sized fibers

  18. Power consumption analysis of constant bit rate video transmission over 3G networks

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Belyaev, Evgeny; Wang, Le

    2012-01-01

    This paper presents an analysis of the power consumption of video data transmission with constant bit rate over 3G mobile wireless networks. The work includes the description of the radio resource control transition state machine in 3G networks, followed by a detailed power consumption analysis...... and measurements of the radio link power consumption. Based on this description and analysis, we propose our power consumption model. The power model was evaluated on a smartphone Nokia N900, which follows 3GPP Release 5 and 6 supporting HSDPA/HSUPA data bearers. We also propose a method for parameter selection...... for the 3GPP transition state machine that allows to decrease power consumption on a mobile device taking signaling traffic, buffer size and latency restrictions into account. Furthermore, we discuss the gain in power consumption vs. PSNR for transmitted video and show the possibility of performing power...

  19. Disentangling degradation and auto-recovery of luminescence in Alq3 based organic light emitting diodes

    International Nuclear Information System (INIS)

    Rao, K. Sudheendra; Mohapatra, Y.N.

    2014-01-01

    Organic semiconductor devices and materials have matured sufficiently to be limited by intrinsic degradation processes which are as yet not understood well. We use high quality Alq 3 based organic light emitting diodes to study the rate processes involved in degradation due to electrical stressing and its auto-recovery. The method involves interspersing degradation due to electrical pulsing with variable relaxation windows to monitor time evolution of loss and recovery of luminescence. The corresponding rate processes for permanent and auto-recoverable degradation is discussed on the basis of charging and discharging of traps, and a phenomenological model based on metastability in configuration-coordinate diagram is proposed. -- Highlights: • Luminescence degradation of high quality Alq 3 based OLED device. • Auto-recovery of luminance as function of relaxation time is exponential. • Individual rates of permanent, recoverable and relaxation process measured. • A Phenomenological model based on metastable state in configuration-coordinate

  20. Measure of robustness for complex networks

    Science.gov (United States)

    Youssef, Mina Nabil

    Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance (VCSIS ) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible (SIS) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, VCSIS provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barabasi-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric VCSIR is introduced to assess the robustness of networks with respect

  1. The effect of network degradation on speech recognition

    CSIR Research Space (South Africa)

    Joubert, G

    2005-11-01

    Full Text Available become increasingly popular, VoIP (Voice over Internet Protocol) is predicted to become the standard means of spoken telecommunication. As a consequence, a significant amount of research has been undertaken on the effect of various packet... to measure the effect of network traffic degeneration during a VoIP transmission, on speech-recognition accuracy. Sentences from the TIMIT database [2] were selected as basis for comparison. The open-source toolkit SOX [3] was used to code the samples...

  2. The signal extraction of fetal heart rate based on wavelet transform and BP neural network

    Science.gov (United States)

    Yang, Xiao Hong; Zhang, Bang-Cheng; Fu, Hu Dai

    2005-04-01

    This paper briefly introduces the collection and recognition of bio-medical signals, designs the method to collect FM signals. A detailed discussion on the system hardware, structure and functions is also given. Under LabWindows/CVI,the hardware and the driver do compatible, the hardware equipment work properly actively. The paper adopts multi threading technology for real-time analysis and makes use of latency time of CPU effectively, expedites program reflect speed, improves the program to perform efficiency. One threading is collecting data; the other threading is analyzing data. Using the method, it is broaden to analyze the signal in real-time. Wavelet transform to remove the main interference in the FM and by adding time-window to recognize with BP network; Finally the results of collecting signals and BP networks are discussed. 8 pregnant women's signals of FM were collected successfully by using the sensor. The correctness rate of BP network recognition is about 83.3% by using the above measure.

  3. Current State and Development of Land Degradation Processes Based on Soil Monitoring in Slovakia

    Directory of Open Access Journals (Sweden)

    Kobza Jozef

    2017-08-01

    Full Text Available Current state and development of land degradation processes based on soil monitoring system in Slovakia is evaluated in this contribution. Soil monitoring system in Slovakia is consistently running since 1993 year in 5-years repetitions. Soil monitoring network in Slovakia is constructed using ecological principle, taking into account all main soil types and subtypes, soil organic matter, climatic regions, emission regions, polluted and non-polluted regions as well as various land use. The result of soil monitoring network is 318 sites on agricultural land in Slovakia. Soil properties are evaluated according to the main threats to soil relating to European Commission recommendation for European soil monitoring performance as follows: soil erosion and compaction, soil acidification, decline in soil organic matter and soil contamination. The most significant change has been determined in physical degradation of soils. The physical degradation was especially manifested in compacted and the eroded soils. It was determined that about 39% of agricultural land is potentially affected by soil erosion in Slovakia. In addition, slight decline in soil organic matter indicates the serious facts on evaluation and extension of soil degradation processes during the last period in Slovakia. Soil contamination is without significant change for the time being. It means the soils contaminated before soil monitoring process this unfavourable state lasts also at present.

  4. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone nerve conduit with tailored degradation rate

    Directory of Open Access Journals (Sweden)

    Jiang Xinquan

    2011-07-01

    Full Text Available Abstract Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone (collagen/PCL fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it

  5. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    Science.gov (United States)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  6. ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants.

    Science.gov (United States)

    Isono, Erika; Kalinowska, Kamila

    2017-12-01

    To control the abundance of plasma membrane receptors and transporters is crucial for proper perception and response to extracellular signals from surrounding cells and the environment. Posttranslational modification of plasma membrane proteins, especially ubiquitin conjugation or ubiquitylation, is key for the determination of stability for many transmembrane proteins localized on the cell surface. The targeted degradation is ensured by a complex network of proteins among which the endosomal sorting complex required for transport (ESCRT) plays a central role. This review focuses on progresses made in recent years on the understanding of the function of the ESCRT machinery in the degradation of ubiquitylated plasma membrane proteins in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The Degradation of a Nation.

    Science.gov (United States)

    Morozova, Galina Fedorouna

    1995-01-01

    Maintains that the process of national degradation is a real danger and concern of all Russian society. Discusses environmental concerns, such as water, soil, and air pollution; falling birth rates; aging of the population; crime; and decline in moral values. Concludes that it is imperative for all citizens to stop and reverse these trends. (CFR)

  8. Enhancing Sensor Network Data Quality via Collaborated Circuit and Network Operations

    Directory of Open Access Journals (Sweden)

    Lucas Vespa

    2013-04-01

    Full Text Available In many applications, the quality of data gathered by sensor networks is directly related to the signal-to-noise ratio (SNR of the sensor data being transmitted in the networks. Different from the SNR that is often used in measuring the quality of communication links, the SNR used in this work measures how accurately the data in the network packets represent the physical parameters being sensed. Hence, the signal here refers to the physical parameters that are being monitored by sensor networks; the noise is due to environmental interference and circuit noises at sensor nodes, and packet loss during network transmission. While issues affecting SNR at sensor nodes have been intensively investigated, the impact of network packet loss on data SNR has not attracted significant attention in sensor network design. This paper investigates the impact of packet loss on sensor network data SNR and shows that data SNR is dramatically affected by network packet loss. A data quality metric, based on data SNR, is developed and a cross-layer adaptive scheme is presented to minimize data quality degradation in congested sensor networks. The proposed scheme consists of adaptive downsampling and bit truncation at sensor nodes and intelligent traffic management techniques at the network level. Simulation results are presented to demonstrate the validity and effectiveness of the proposed techniques.

  9. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes

    International Nuclear Information System (INIS)

    Bandala, Erick R.; Pelaez, Miguel A.; Salgado, Maria J.; Torres, Luis

    2008-01-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR 15 ). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR 15 values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR 15 values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice

  10. Comparative Thermal Degradation Patterns of Natural Yellow Colorants Used in Foods.

    Science.gov (United States)

    Giménez, Pedro J; Fernández-López, José A; Angosto, José M; Obón, José M

    2015-12-01

    There is a great interest in natural yellow colorants due to warnings issued about certain yellow food colorings of synthetic origin. However, no comparative studies have been reported of their thermal stability. For this reason, the thermal stabilities of six natural yellow colorants used in foods--lutein, riboflavin, curcumin, ß-carotene, gardenia yellow and Opuntia betaxanthins--were studied in simple solutions over a temperature range 30-90 °C. Spectral properties and visual color were investigated during 6 h of heat treatment. Visual color was monitored from the CIEL*a*b* parameters. The remaining absorbance at maximum wavelength and the total color difference were used to quantify color degradation. The rate of color degradation increased as the temperature rose. The results showed that the thermal degradation of the colorants followed a first-order reaction kinetics. The reaction rate constants and half-life periods were determined as being central to understanding the color degradation kinetics. The temperature-dependent degradation was adequately modeled on the Arrhenius equation. Activation energies ranged from 3.2 kJmol(-1) (lutein) to 43.7 kJmol(-1) (Opuntia betaxanthins). ß-carotene and lutein exhibited high thermal stability, while betaxanthins and riboflavin degraded rapidly as temperature increased. Gardenia yellow and curcumin were in an intermediate position.

  11. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  12. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  13. Degradation of m-dihydroxybenzene by contact glow discharge electrolysis in aqueous

    International Nuclear Information System (INIS)

    Gai, Ke; Qi, Huili; Ma, Dongping; Wang, Chunlin

    2013-01-01

    This paper reported the degradation of m-dihydroxybenzene aqueous solution with contact Glow Discharge Electrolysis. The rate of degradation in different conditions such as pH, H 2 O 2 , Fe 2+ , methanol, and other affecting factors were studied. The results showed that there is faster removal rate when the solution is in a relatively higher acidity; H 2 O 2 can improve the efficiency rate. Fe 2+ can promote reaction, but radical elimination agent of methanol will decrease the rate of the reaction. On the basis of analyzing the ultraviolet (UV) spectra of the solution and the intermediate products from High Performance Liquid Chromatography-Mass Spectrum (HPLC-MS), reaction pathway was proposed.

  14. FAST TCP over optical burst switched networks: Modeling and stability analysis

    KAUST Repository

    Shihada, Basem; El-Ferik, Sami; Ho, Pin-Han

    2013-01-01

    congestion-control mechanism in bufferless Optical Burst Switched Networks (OBS). The paper first shows that random burst contentions are essential to stabilize the network, but cause throughput degradation in FAST TCP flows when a burst with all the packets

  15. Rate based failure detection

    Science.gov (United States)

    Johnson, Brett Emery Trabun; Gamage, Thoshitha Thanushka; Bakken, David Edward

    2018-01-02

    This disclosure describes, in part, a system management component and failure detection component for use in a power grid data network to identify anomalies within the network and systematically adjust the quality of service of data published by publishers and subscribed to by subscribers within the network. In one implementation, subscribers may identify a desired data rate, a minimum acceptable data rate, desired latency, minimum acceptable latency and a priority for each subscription. The failure detection component may identify an anomaly within the network and a source of the anomaly. Based on the identified anomaly, data rates and or data paths may be adjusted in real-time to ensure that the power grid data network does not become overloaded and/or fail.

  16. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  17. Comparison of degradation between indigenous and spiked bisphenol A and triclosan in a biosolids amended soil

    International Nuclear Information System (INIS)

    Langdon, Kate A.; Warne, Michael StJ.; Smernik, Ronald J.; Shareef, Ali; Kookana, Rai S.

    2013-01-01

    This study compared the degradation of indigenous bisphenol A (BPA) and triclosan (TCS) in a biosolids-amended soil, to the degradation of spiked labelled surrogates of the same compounds (BPA-d 16 and TCS- 13 C 12 ). The aim was to determine if spiking experiments accurately predict the degradation of compounds in biosolids-amended soils using two different types of biosolids, a centrifuge dried biosolids (CDB) and a lagoon dried biosolids (LDB). The rate of degradation of the compounds was examined and the results indicated that there were considerable differences between the indigenous and spiked compounds. These differences were more marked for BPA, for which the indigenous compound was detectable throughout the study, whereas the spiked compound decreased to below the detection limit prior to the study completion. The rate of degradation for the indigenous BPA was approximately 5-times slower than that of the spiked BPA-d 16 . The indigenous and spiked TCS were both detectable throughout the study, however, the shape of the degradation curves varied considerably, particularly in the CDB treatment. These findings show that spiking experiments may not be suitable to predict the degradation and persistence of organic compounds following land application of biosolids. - Highlights: ► Degradation of indigenous and spiked compounds from biosolids were compared. ► Differences were observed for both the rate and pattern of degradation. ► Spiked bisphenol A entirely degraded however the indigenous compound remained. ► TCS was detectable during the experiment however the degradation patterns varied. ► Spiking experiments may not be suitable to predict degradation of organic compounds

  18. A microfluidic device for simultaneous measurement of viscosity and flow rate of blood in a complex fluidic network.

    Science.gov (United States)

    Jun Kang, Yang; Yeom, Eunseop; Lee, Sang-Joon

    2013-01-01

    Blood viscosity has been considered as one of important biophysical parameters for effectively monitoring variations in physiological and pathological conditions of circulatory disorders. Standard previous methods make it difficult to evaluate variations of blood viscosity under cardiopulmonary bypass procedures or hemodialysis. In this study, we proposed a unique microfluidic device for simultaneously measuring viscosity and flow rate of whole blood circulating in a complex fluidic network including a rat, a reservoir, a pinch valve, and a peristaltic pump. To demonstrate the proposed method, a twin-shaped microfluidic device, which is composed of two half-circular chambers, two side channels with multiple indicating channels, and one bridge channel, was carefully designed. Based on the microfluidic device, three sequential flow controls were applied to identify viscosity and flow rate of blood, with label-free and sensorless detection. The half-circular chamber was employed to achieve mechanical membrane compliance for flow stabilization in the microfluidic device. To quantify the effect of flow stabilization on flow fluctuations, a formula of pulsation index (PI) was analytically derived using a discrete fluidic circuit model. Using the PI formula, the time constant contributed by the half-circular chamber is estimated to be 8 s. Furthermore, flow fluctuations resulting from the peristaltic pumps are completely removed, especially under periodic flow conditions within short periods (T viscosity with respect to varying flow rate conditions [(a) known blood flow rate via a syringe pump, (b) unknown blood flow rate via a peristaltic pump]. As a result, the flow rate and viscosity of blood can be simultaneously measured with satisfactory accuracy. In addition, the proposed method was successfully applied to identify the viscosity of rat blood, which circulates in a complex fluidic network. These observations confirm that the proposed method can be used for

  19. Degradation of diuron in aqueous solution by dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jingwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210093 (China); Zheng Zheng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210093 (China)], E-mail: zzheng@nju.edu.cn; Sun Yabing; Luan Jingfei; Wang Zhen; Wang Lianhong; Feng Jianfang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment Nanjing University, Nanjing 210093 (China)

    2008-06-15

    Degradation of diuron in aqueous solution was conducted in a dielectric barrier discharge (DBD) reactor and the proposed degradation mechanism was investigated in detail. The factors that affect the degradation of diuron were examined. The degradation efficiency of diuron and the removal of total organic carbon (TOC) increased with increasing input power, and the degradation of diuron by DBD fitted first-order kinetics. Both strong acidic and alkaline solution conditions could improve diuron degradation efficiency and TOC removal rate. Degradation of diuron could be accelerated or inhibited in the presence of H{sub 2}O{sub 2} depending on the dosage. The degradation efficiency increased dramatically with adding Fe{sup 2+}. The removal of TOC and the amount of the detected Cl{sup -}, NO{sub 3}{sup -} and NH{sub 4}{sup +} were increased in the presence of Fe{sup 2+}. The concentrations of oxalic and acetic acids were almost the same in the absence and presence of Fe{sup 2+}, but high concentration of formic acid was accumulated in the presence of Fe{sup 2+}. The main degradation pathway of diuron by DBD involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes.

  20. Information report on electricity distribution network security and financing

    International Nuclear Information System (INIS)

    2011-01-01

    This report first outlines the degradation of electricity quality, and identifies the lack of investment as the main reason of the network weakness. It notices that the French network is much extended, and that the medium and low voltage networks need to be secured, and outlines that some legal measures have already been implemented to correct these problems. In its second part, the report comments the network manager's point of view, and denies his critics of the conceding authorities. It also discusses the network manager's investments, and finally formulates six propositions for a better future of the distribution network