WorldWideScience

Sample records for networking artificial intelligence

  1. Advanced Applications of Neural Networks and Artificial Intelligence: A Review

    OpenAIRE

    Koushal Kumar; Gour Sundar Mitra Thakur

    2012-01-01

    Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...

  2. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  3. Utilising artificial intelligence in software defined wireless sensor network

    CSIR Research Space (South Africa)

    Matlou, OG

    2017-10-01

    Full Text Available Software Defined Wireless Sensor Network (SDWSN) is realised by infusing Software Defined Network (SDN) model in Wireless Sensor Network (WSN), Reason for that is to overcome the challenges of WSN. Artificial Intelligence (AI) and machine learning...

  4. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  5. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  6. Semantic Network and Frame Knowledge Representation Formalisms in Artificial Intelligence

    OpenAIRE

    Rashid, Pshtiwan Qader

    2015-01-01

    ABSTRACT: Choosing a suitable method to represent the knowledge concerning the real world is one of the major issues involved in Artificial Intelligence. The purpose of this research is to consider the important beneficial roles of semantic network and frame formalisms for knowledge representation in Artificial Intelligence. The basic properties of the above methods for appropriate structuring and arranging the knowledge are presented. Some types of relationships, the conceptual graph...

  7. THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS

    OpenAIRE

    Mary Violeta Bar

    2014-01-01

    The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...

  8. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  9. The artificial neural networks: An approach to artificial intelligence; Un approccio ``biologico`` all`intelligenza artificiale

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, Sergio; Zanela, Andrea [ENEA, Casaccia (Italy). Dipt. Innovazione

    1997-05-01

    The artificial neural networks try to simulate the functionalities of the nervous system through a complex network of simple computing elements. In this work is presented an introduction to the neural networks and some of their possible applications, especially in the field of Artificial Intelligence.

  10. Artificial neural network intelligent method for prediction

    Science.gov (United States)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  11. Artificial Intelligence.

    Science.gov (United States)

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  12. On the synergy of network science and artificial intelligence

    NARCIS (Netherlands)

    Mocanu, D.C.

    2016-01-01

    Traditionally science is done using the reductionism paradigm. Artificial intelligence does not make an exception and it follows the same strategy. At the same time, network science tries to study complex systems as a whole. This Ph.D. research takes an alternative approach to the reductionism

  13. Intelligible Artificial Intelligence

    OpenAIRE

    Weld, Daniel S.; Bansal, Gagan

    2018-01-01

    Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. In order to trust their behavior, we must make it intelligible --- either by using inherently interpretable models or by developing methods for explaining otherwise overwh...

  14. Automation of seismic network signal interpolation: an artificial intelligence approach

    International Nuclear Information System (INIS)

    Chiaruttini, C.; Roberto, V.

    1988-01-01

    After discussing the current status of the automation in signal interpretation from seismic networks, a new approach, based on artificial-intelligence tecniques, is proposed. The knowledge of the human expert analyst is examined, with emphasis on its objects, strategies and reasoning techniques. It is argued that knowledge-based systems (or expert systems) provide the most appropriate tools for designing an automatic system, modelled on the expert behaviour

  15. Evaluating neural networks and artificial intelligence systems

    Science.gov (United States)

    Alberts, David S.

    1994-02-01

    Systems have no intrinsic value in and of themselves, but rather derive value from the contributions they make to the missions, decisions, and tasks they are intended to support. The estimation of the cost-effectiveness of systems is a prerequisite for rational planning, budgeting, and investment documents. Neural network and expert system applications, although similar in their incorporation of a significant amount of decision-making capability, differ from each other in ways that affect the manner in which they can be evaluated. Both these types of systems are, by definition, evolutionary systems, which also impacts their evaluation. This paper discusses key aspects of neural network and expert system applications and their impact on the evaluation process. A practical approach or methodology for evaluating a certain class of expert systems that are particularly difficult to measure using traditional evaluation approaches is presented.

  16. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  17. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  18. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  19. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  20. Intelligence in Artificial Intelligence

    OpenAIRE

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  1. Artificial intelligence

    International Nuclear Information System (INIS)

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  2. Artificial Intelligence in Astronomy

    Science.gov (United States)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  3. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  4. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    International Nuclear Information System (INIS)

    Saini, K. K.; Saini, Sanju

    2008-01-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  5. Artificial intelligence in medicine.

    OpenAIRE

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of ...

  6. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  7. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    Science.gov (United States)

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  8. Artificial Intelligence and Moral intelligence

    OpenAIRE

    Laura Pana

    2008-01-01

    We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined,...

  9. Aspects concerning power distribution networks planning using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, Gh.; Gavrilas, M.; Cartina, Gh. [Gh. Asachi Technical Univ. of Iasi, Iasi (Romania)

    1997-12-31

    This paper presents the application of AI tools for the on-line identification of load structure in distribution networks. The authors have considered Artificial Neural Networks (ANN) which are known as valuable and fast tools for pattern identification or completion. This approach to the load model allows a more detailed analysis directed towards the optimization of system structure and working conditions. Traditional methods produce good results but raise the processing time problem, especially when applied to large systems. For such cases another approach appeal to the Genetic Algorithms, which are frequently referenced in the literature concerned with PDS (reconfiguration of open loop radial networks, optimal var-sources distribution, optimal selection of transformer tap position). (author)

  10. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    Science.gov (United States)

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in…

  11. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  12. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  13. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    Science.gov (United States)

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  15. Artificial intelligence. Application of the Statistical Neural Networks computer program in nuclear medicine

    International Nuclear Information System (INIS)

    Stefaniak, B.; Cholewinski, W.; Tarkowska, A.

    2005-01-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)

  16. DATA MAYHEM VERSUS NIMBLE INFORMATION: TRANSFORMING HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS

    Science.gov (United States)

    2017-10-01

    organized intelligence with a comprehensive account of the information derived, validated by intelligence requirements tasking. Third Phase...AU/ACSC/MORALES/AY17 AIR COMMAND AND STAFF COLLEGE DISTANCE LEARNING AIR UNIVERSITY DATA MAYHEM VERSUS NIMBLE INFORMATION : TRANSFORMING...HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS by Luis A. Morales, Major, USAF A Research

  17. Intelligence: Real or artificial?

    OpenAIRE

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  18. Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network

    Science.gov (United States)

    Qiu, Feng; Dai, Guang; Zhang, Ying

    According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.

  19. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, M.

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more

  20. Artificial Consciousness or Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Spanache Florin

    2017-05-01

    Full Text Available Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus automatic. But conscience is above these differences because it is neither conditioned by the self-preservation of autonomy, because a conscience is something that you use to help your neighbor, nor automatic, because one’s conscience is tested by situations which are not similar or subject to routine. So, artificial intelligence is only in science-fiction literature similar to an autonomous conscience-endowed being. In real life, religion with its notions of redemption, sin, expiation, confession and communion will not have any meaning for a machine which cannot make a mistake on its own.

  1. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  2. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  3. Artificial Intelligence Project

    Science.gov (United States)

    1990-01-01

    Symposium on Aritificial Intelligence and Software Engineering Working Notes, March 1989. Blumenthal, Brad, "An Architecture for Automating...Artificial Intelligence Project Final Technical Report ARO Contract: DAAG29-84-K-OGO Artificial Intelligence LaboratO"ry The University of Texas at...Austin N>.. ~ ~ JA 1/I 1991 n~~~ Austin, Texas 78712 ________k A,.tificial Intelligence Project i Final Technical Report ARO Contract: DAAG29-84-K-0060

  4. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    Science.gov (United States)

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  5. LOCATING HUBS IN TRANSPORT NETWORKS: AN ARTIFICIAL INTELLIGENCE APPROACH

    OpenAIRE

    Dušan Teodorović; Milica Šelmić; Ivana Vukićević

    2014-01-01

    Hub facilities serve as switching and transshipment points in transportation and communication networks as well as in logistic systems. Hub networks have an influence on flows on the hub-to-hub links and ensure benefit from economies of scale in inter-hub transportation. The key factors for designing a successful hub-and-spoke network are to determine the optimal number of hubs, to properly locate hubs, and to allocate the non-hubs to the hubs. This paper presents the model to determine the l...

  6. Artificial intelligence for networks recognition in remote sensing images

    Science.gov (United States)

    Gilliot, Jean-Marc; Amat, Jean-Louis

    1993-12-01

    We describe here a knowledge-based system, NEXSYS (Nextwork EXtraction SYStem) which was designed for the recognition of communication networks in SPOT satellite images. NEXSYS is a frame-based system and uses a co-operative and distributed structure based on a blackboard architecture. Communication networks in SPOT images are composed of thin linear segments. Segments are extracted using mathematical morphology and a Hough transform. An intermediate image representation composed of geometric primitives is obtained. Then an expert module is able to process the segments at the symbolic level trying to recognize networks.

  7. Natural and artificial intelligence misconceptions about brains and neural networks

    CERN Document Server

    de Callataÿ, A

    1992-01-01

    How does the mind work? How is data stored in the brain? How does the mental world connect with the physical world? The hybrid system developed in this book shows a radically new view on the brain. Briefly, in this model memory remains permanent by changing the homeostasis rebuilding the neuronal organelles. These transformations are approximately abstracted as all-or-none operations. Thus the computer-like neural systems become plausible biological models. This illustrated book shows how artificial animals with such brains learn invariant methods of behavior control from their repeated action

  8. Artificial intelligence in diagnosis and supply restoration for a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Teo, C.Y.; Gooi, H.B. [Nanyang Technological University (Singapore). School of Electrical and Electronic Engineering

    1998-07-01

    The development of a PC-based integrated system, to illustrate the application of artificial intelligence in the fault diagnosis and supply restoration for an interconnected distribution network is described. The intelligent process utilises the post-fault network status, a list of the tripped breakers, main protection alarm, and the conventional event log. The fault diagnostic system is implemented by three independent mechanisms, namely the generic core rule, specific post-fault network matching, and generic relay inference rules. The intelligent restoration process is implemented by the switching check, the dynamic restoration algorithm and the mechanism for restoration by record matching and learning. By linking to a PC-based distribution simulator it has been demonstrated that the developed mechanisms enable the correct deduction of fault under different network configurations. The appropriate restoration plan can also be generated to restore supply to the entire restorable load for various post-fault networks. This system is currently used for undergraduate teaching and will be ideal for the training of network operation engineers. As the system developed is generic and can be used for a general network, it can be further developed for practical operation in a subtransmission system or an urban distribution system operated in any configuration. (author)

  9. The role of networks and artificial intelligence in nanotechnology design and analysis.

    Science.gov (United States)

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  10. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  11. Artificial Intelligence Study (AIS).

    Science.gov (United States)

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  12. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  13. Artificial Intelligence and Moral intelligence

    Directory of Open Access Journals (Sweden)

    Laura Pana

    2008-07-01

    Full Text Available We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined, even unpredictable conduct, 2- entities endowed with diverse or even multiple intelligence forms, like moral intelligence, 3- open and, even, free-conduct performing systems (with specific, flexible and heuristic mechanisms and procedures of decision, 4 – systems which are open to education, not just to instruction, 5- entities with “lifegraphy”, not just “stategraphy”, 6- equipped not just with automatisms but with beliefs (cognitive and affective complexes, 7- capable even of reflection (“moral life” is a form of spiritual, not just of conscious activity, 8 – elements/members of some real (corporal or virtual community, 9 – cultural beings: free conduct gives cultural value to the action of a ”natural” or artificial being. Implementation of such characteristics does not necessarily suppose efforts to design, construct and educate machines like human beings. The human moral code is irremediably imperfect: it is a morality of preference, of accountability (not of responsibility and a morality of non-liberty, which cannot be remedied by the invention of ethical systems, by the circulation of ideal values and by ethical (even computing education. But such an imperfect morality needs perfect instruments for its implementation: applications of special logic fields; efficient psychological (theoretical and technical attainments to endow the machine not just with intelligence, but with conscience and even spirit; comprehensive technical

  14. Bibliography: Artificial Intelligence.

    Science.gov (United States)

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  15. Cost/worth assessment of reliability improvement in distribution networks by means of artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Bouhouras, Aggelos S.; Labridis, Dimitris P.; Bakirtzis, Anastasios G. [Power Systems Laboratory, Aristotle University of Thessaloniki, Dept. of Electrical and Computer Engineering, 54124 Thessaloniki (Greece)

    2010-06-15

    A major challenge for the power utilities today is to ensure a high level of reliability of supply to customers. Two main factors determine the feasibility of a project that improves the reliability of supply: the project cost (investment and operational) and the benefits that result from the implementation of the project. This paper examines the implementation of an Artificial Intelligence System in an urban distribution network, capable to locate and isolate short circuit faults in the feeder, thus accomplishing immediate restoration of electric supply to the customers. The paper describes the benefits of the project, which are supply reliability improvement and distribution network loss reduction through network reconfigurations. By comparison of the project benefits and costs the economic feasibility of such a project for an underground distribution feeder in Greece is demonstrated. (author)

  16. Minimally Naturalistic Artificial Intelligence

    OpenAIRE

    Hansen, Steven Stenberg

    2017-01-01

    The rapid advancement of machine learning techniques has re-energized research into general artificial intelligence. While the idea of domain-agnostic meta-learning is appealing, this emerging field must come to terms with its relationship to human cognition and the statistics and structure of the tasks humans perform. The position of this article is that only by aligning our agents' abilities and environments with those of humans do we stand a chance at developing general artificial intellig...

  17. Artificial intelligence in cardiology

    OpenAIRE

    Bonderman, Diana

    2017-01-01

    Summary Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiol...

  18. Artificial intelligence methods applied in the controlled synthesis of polydimethilsiloxane - poly (methacrylic acid) copolymer networks with imposed properties

    Science.gov (United States)

    Rusu, Teodora; Gogan, Oana Marilena

    2016-05-01

    This paper describes the use of artificial intelligence method in copolymer networks design. In the present study, we pursue a hybrid algorithm composed from two research themes in the genetic design framework: a Kohonen neural network (KNN), path (forward problem) combined with a genetic algorithm path (backward problem). The Tabu Search Method is used to improve the performance of the genetic algorithm path.

  19. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  20. Artificial intelligence in radiology.

    Science.gov (United States)

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  1. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Gilberto Bojorquez

    2007-08-01

    Full Text Available The development of smart sensors involves the design of reconfigurable systemscapable of working with different input sensors. Reconfigurable systems ideally shouldspend the least possible amount of time in their calibration. An autocalibration algorithmfor intelligent sensors should be able to fix major problems such as offset, variation of gainand lack of linearity, as accurately as possible. This paper describes a new autocalibrationmethodology for nonlinear intelligent sensors based on artificial neural networks, ANN.The methodology involves analysis of several network topologies and training algorithms.The proposed method was compared against the piecewise and polynomial linearizationmethods. Method comparison was achieved using different number of calibration points,and several nonlinear levels of the input signal. This paper also shows that the proposedmethod turned out to have a better overall accuracy than the other two methods. Besides,experimentation results and analysis of the complete study, the paper describes theimplementation of the ANN in a microcontroller unit, MCU. In order to illustrate themethod capability to build autocalibration and reconfigurable systems, a temperaturemeasurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  2. Acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: A review.

    Science.gov (United States)

    Dande, Payal; Samant, Purva

    2018-01-01

    Tuberculosis [TB] has afflicted numerous nations in the world. As per a report by the World Health Organization [WHO], an estimated 1.4 million TB deaths in 2015 and an additional 0.4 million deaths resulting from TB disease among people living with HIV, were observed. Most of the TB deaths can be prevented if it is detected at an early stage. The existing processes of diagnosis like blood tests or sputum tests are not only tedious but also take a long time for analysis and cannot differentiate between different drug resistant stages of TB. The need to find newer prompt methods for disease detection has been aided by the latest Artificial Intelligence [AI] tools. Artificial Neural Network [ANN] is one of the important tools that is being used widely in diagnosis and evaluation of medical conditions. This review aims at providing brief introduction to various AI tools that are used in TB detection and gives a detailed description about the utilization of ANN as an efficient diagnostic technique. The paper also provides a critical assessment of ANN and the existing techniques for their diagnosis of TB. Researchers and Practitioners in the field are looking forward to use ANN and other upcoming AI tools such as Fuzzy-logic, genetic algorithms and artificial intelligence simulation as a promising current and future technology tools towards tackling the global menace of Tuberculosis. Latest advancements in the diagnostic field include the combined use of ANN with various other AI tools like the Fuzzy-logic, which has led to an increase in the efficacy and specificity of the diagnostic techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  4. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  5. Artificial Intelligence in Cardiology.

    Science.gov (United States)

    Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T

    2018-06-12

    Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  7. THE INTEREST OF GEOGRAPHICAL INFORMATION, ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY FOR THE UNDERGROUND NETWORK REPRESENTATION

    Directory of Open Access Journals (Sweden)

    M. Lacroix

    2016-01-01

    Full Text Available Two years ago, 63 people died and more than 150 were seriously injured in Beijing (China because of damage to a hydrocarbon pipeline. Urban networks are invisible because usually buried between 1 and 1,5 meters underground. They should be identified to prevent such accidents which involve workers as well as the public. Rural and urban districts, network concessionaries and contractors: everyone could benefit from their networks becoming safer. To prevent such accidents and protect workers and the public as well, some new regulations propose to identify and secure the buried networks. That’s why it is important to develop a software which deals with the risk management process and also about the risk visualization. This work is structured around three major sections:– the utility of the Geographical Information to determine the minimal distances and the topological relations between the networks themselves, and also with the other element in their vicinity;– the use of some Artificial Intelligence tools, and more particularly of Expert System, to take the current regulation into account and determine the accident risk probability;– the contribution of virtual reality to perceive the underground world.

  8. Artificial intelligence executive summary

    International Nuclear Information System (INIS)

    Wamsley, S.J.; Purvis, E.E. III

    1984-01-01

    Artificial intelligence (AI) is a high technology field that can be used to provide problem solving diagnosis, guidance and for support resolution of problems. It is not a stand alone discipline, but can also be applied to develop data bases for retention of the expertise that is required for its own knowledge base. This provides a way to retain knowledge that otherwise may be lost. Artificial Intelligence Methodology can provide an automated construction management decision support system, thereby restoring the manager's emphasis to project management

  9. Artificial intelligence in cardiology.

    Science.gov (United States)

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  10. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  11. Is Intelligence Artificial?

    OpenAIRE

    Greer, Kieran

    2014-01-01

    Our understanding of intelligence is directed primarily at the level of human beings. This paper attempts to give a more unifying definition that can be applied to the natural world in general. The definition would be used more to verify a degree of intelligence, not to quantify it and might help when making judgements on the matter. A version of an accepted test for AI is then put forward as the 'acid test' for Artificial Intelligence itself. It might be what a free-thinking program or robot...

  12. DESIGN OF AN INTELLIGENT SYSTEM TO DETECT TYPE OF PAIN USING ARTIFICIAL NEURAL NETWORK FOR PATIENTS WITH SPINAL CORD INJURY IN SHEFA NEUROSCIENCE RESEARCH CENTER

    OpenAIRE

    Nasrolah Nasr HeidarAbadi, Reza Safdari, Peirhossein Kolivand, Amir Javadi, Azimeh Danesh Shahraki1, Marjan Ghazi Saeidi*

    2017-01-01

    Using artificial intelligence in computerized clinical systems helps physicians diagnose disease or choose treatment. Intelligent methods are constantly changed to be more effective and accurate for quick medical diagnosis. Neural networks are a powerful tool to help physicians. The tools can process a high number of data and minimize errors in ignoring patients' information. Intelligent system design based on artificial neural network was performed in 3 phases. Phase1: Designing the data rec...

  13. Web Intelligence and Artificial Intelligence in Education

    Science.gov (United States)

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  14. Generality in Artificial Intelligence

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  15. Artificial intelligence within AFSC

    Science.gov (United States)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  16. Database in Artificial Intelligence.

    Science.gov (United States)

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  17. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  18. Artificial Intelligence and Public Healthcare Service Innovation

    DEFF Research Database (Denmark)

    Sun, Tara Qian; Medaglia, Rony

    Public healthcare ecosystems are complex networks of diverse actors that are subject to pressures to innovate, also a result of technological advancements. Artificial Intelligence (AI), in particular, has the potential to transform the way hospitals, doctors, patients, government agencies...

  19. Artificial Intelligence and Economic Theories

    OpenAIRE

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  20. Artificial intelligence in medicine

    OpenAIRE

    Scerri, Mariella; Grech, Victor E.

    2016-01-01

    Various types of artificial intelligence programs are already available as consultants to physicians, and these help in medical diagnostics and treatment. At the time of writing, extant programs constitute “weak” AI—lacking in consciousness and intentionality. With AI currently making rapid progress in all domains, including those of healthcare, physicians face possible competitors—or worse, claims that doctors may become obsolete. We will explore the development of AI and robotics in medicin...

  1. Essentials of artificial intelligence

    CERN Document Server

    Ginsberg, Matt

    1993-01-01

    Since its publication, Essentials of Artificial Intelligence has beenadopted at numerous universities and colleges offering introductory AIcourses at the graduate and undergraduate levels. Based on the author'scourse at Stanford University, the book is an integrated, cohesiveintroduction to the field. The author has a fresh, entertaining writingstyle that combines clear presentations with humor and AI anecdotes. At thesame time, as an active AI researcher, he presents the materialauthoritatively and with insight that reflects a contemporary, first hand

  2. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Directory of Open Access Journals (Sweden)

    Montri Inthachot

    2016-01-01

    Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.

  3. Sustainable Technology Analysis of Artificial Intelligence Using Bayesian and Social Network Models

    Directory of Open Access Journals (Sweden)

    Juhwan Kim

    2018-01-01

    Full Text Available Recent developments in artificial intelligence (AI have led to a significant increase in the use of AI technologies. Many experts are researching and developing AI technologies in their respective fields, often submitting papers and patent applications as a result. In particular, owing to the characteristics of the patent system that is used to protect the exclusive rights to registered technology, patent documents contain detailed information on the developed technology. Therefore, in this study, we propose a statistical method for analyzing patent data on AI technology to improve our understanding of sustainable technology in the field of AI. We collect patent documents that are related to AI technology, and then analyze the patent data to identify sustainable AI technology. In our analysis, we develop a statistical method that combines social network analysis and Bayesian modeling. Based on the results of the proposed method, we provide a technological structure that can be applied to understand the sustainability of AI technology. To show how the proposed method can be applied to a practical problem, we apply the technological structure to a case study in order to analyze sustainable AI technology.

  4. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    Science.gov (United States)

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  5. Artificial intelligence, neural network, and Internet tool integration in a pathology workstation to improve information access

    Science.gov (United States)

    Sargis, J. C.; Gray, W. A.

    1999-03-01

    The APWS allows user friendly access to several legacy systems which would normally each demand domain expertise for proper utilization. The generalized model, including objects, classes, strategies and patterns is presented. The core components of the APWS are the Microsoft Windows 95 Operating System, Oracle, Oracle Power Objects, Artificial Intelligence tools, a medical hyperlibrary and a web site. The paper includes a discussion of how could be automated by taking advantage of the expert system, object oriented programming and intelligent relational database tools within the APWS.

  6. Evolution Engines and Artificial Intelligence

    Science.gov (United States)

    Hemker, Andreas; Becks, Karl-Heinz

    In the last years artificial intelligence has achieved great successes, mainly in the field of expert systems and neural networks. Nevertheless the road to truly intelligent systems is still obscured. Artificial intelligence systems with a broad range of cognitive abilities are not within sight. The limited competence of such systems (brittleness) is identified as a consequence of the top-down design process. The evolution principle of nature on the other hand shows an alternative and elegant way to build intelligent systems. We propose to take an evolution engine as the driving force for the bottom-up development of knowledge bases and for the optimization of the problem-solving process. A novel data analysis system for the high energy physics experiment DELPHI at CERN shows the practical relevance of this idea. The system is able to reconstruct the physical processes after the collision of particles by making use of the underlying standard model of elementary particle physics. The evolution engine acts as a global controller of a population of inference engines working on the reconstruction task. By implementing the system on the Connection Machine (Model CM-2) we use the full advantage of the inherent parallelization potential of the evolutionary approach.

  7. Artificial intelligence in cardiology

    Directory of Open Access Journals (Sweden)

    Srishti Sharma

    2017-01-01

    Full Text Available Artificial intelligence (AI provides machines with the ability to learn and respond the way humans do and is also referred to as machine learning. The step to building an AI system is to provide the data to learn from so that it can map relations between inputs and outputs and set up parameters such as “weights”/decision boundaries to predict responses for inputs in the future. Then, the model is tested on a second data set. This article outlines the promise this analytic approach has in medicine and cardiology.

  8. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  9. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    NARCIS (Netherlands)

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  10. Artificial intelligence in medicine.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application. Copyright © 2017. Published by Elsevier Inc.

  11. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

    Science.gov (United States)

    Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro

    2018-07-01

    Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.

  12. Brain Intelligence: Go Beyond Artificial Intelligence

    OpenAIRE

    Lu, Huimin; Li, Yujie; Chen, Min; Kim, Hyoungseop; Serikawa, Seiichi

    2017-01-01

    Artificial intelligence (AI) is an important technology that supports daily social life and economic activities. It contributes greatly to the sustainable growth of Japan's economy and solves various social problems. In recent years, AI has attracted attention as a key for growth in developed countries such as Europe and the United States and developing countries such as China and India. The attention has been focused mainly on developing new artificial intelligence information communication ...

  13. What Is Artificial Intelligence Anyway?

    Science.gov (United States)

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  14. Artificial Intelligence in Civil Engineering

    OpenAIRE

    Lu, Pengzhen; Chen, Shengyong; Zheng, Yujun

    2012-01-01

    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applicati...

  15. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  16. Artificial Intelligence in Space Platforms.

    Science.gov (United States)

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  17. Artificial Intelligence and brain.

    Science.gov (United States)

    Shapshak, Paul

    2018-01-01

    From the start, Kurt Godel observed that computer and brain paradigms were considered on a par by researchers and that researchers had misunderstood his theorems. He hailed with displeasure that the brain transcends computers. In this brief article, we point out that Artificial Intelligence (AI) comprises multitudes of human-made methodologies, systems, and languages, and implemented with computer technology. These advances enhance development in the electron and quantum realms. In the biological realm, animal neurons function, also utilizing electron flow, and are products of evolution. Mirror neurons are an important paradigm in neuroscience research. Moreover, the paradigm shift proposed here - 'hall of mirror neurons' - is a potentially further productive research tactic. These concepts further expand AI and brain research.

  18. 14th ACIS/IEEE International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    Studies in Computational Intelligence : Volume 492

    2013-01-01

    This edited book presents scientific results of the 14th ACIS/IEEE International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2013), held in Honolulu, Hawaii, USA on July 1-3, 2013. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 17 outstanding papers from those papers accepted for presentation at the conference.  

  19. 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    2015-01-01

    This edited book presents scientific results of 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2014) held on June 30 – July 2, 2014 in Las Vegas Nevada, USA. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 13 outstanding papers from those papers accepted for presentation at the conference.

  20. Intelligent quotient estimation of mental retarded people from different psychometric instruments using artificial neural networks.

    Science.gov (United States)

    Di Nuovo, Alessandro G; Di Nuovo, Santo; Buono, Serafino

    2012-02-01

    The estimation of a person's intelligence quotient (IQ) by means of psychometric tests is indispensable in the application of psychological assessment to several fields. When complex tests as the Wechsler scales, which are the most commonly used and universally recognized parameter for the diagnosis of degrees of retardation, are not applicable, it is necessary to use other psycho-diagnostic tools more suited for the subject's specific condition. But to ensure a homogeneous diagnosis it is necessary to reach a common metric, thus, the aim of our work is to build models able to estimate accurately and reliably the Wechsler IQ, starting from different psycho-diagnostic tools. Four different psychometric tests (Leiter international performance scale; coloured progressive matrices test; the mental development scale; psycho educational profile), along with the Wechsler scale, were administered to a group of 40 mentally retarded subjects, with various pathologies, and control persons. The obtained database is used to evaluate Wechsler IQ estimation models starting from the scores obtained in the other tests. Five modelling methods, two statistical and three from machine learning, that belong to the family of artificial neural networks (ANNs) are employed to build the estimator. Several error metrics for estimated IQ and for retardation level classification are defined to compare the performance of the various models with univariate and multivariate analyses. Eight empirical studies show that, after ten-fold cross-validation, best average estimation error is of 3.37 IQ points and mental retardation level classification error of 7.5%. Furthermore our experiments prove the superior performance of ANN methods over statistical regression ones, because in all cases considered ANN models show the lowest estimation error (from 0.12 to 0.9 IQ points) and the lowest classification error (from 2.5% to 10%). Since the estimation performance is better than the confidence interval of

  1. Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes

    Directory of Open Access Journals (Sweden)

    Igor Vyacheslavovich Buzaev

    2016-09-01

    Full Text Available Objective: The continuous uninterrupted feedback system is the essential part of any well-organized system. We propose aLYNX concept that is a possibility to use an artificial intelligence algorithm or a neural network model in decision-making system so as to avoid possible mistakes and to remind the doctors to review tactics once more in selected cases. Method: aLYNX system includes: registry with significant factors, decisions and results; machine learning process based on this registry data; the use of the machine learning results as the adviser. We show a possibility to build a computer adviser with a neural network model for making a choice between coronary aortic bypass surgery (CABG and percutaneous coronary intervention (PCI in order to achieve a higher 5-year survival rate in patients with angina based on the experience of 5107 patients. Results: The neural network was trained by 4679 patients who achieved 5-year survival. Among them, 2390 patients underwent PCI and 2289 CABG. After training, the correlation coefficient (r of the network was 0.74 for training, 0.67 for validation, 0.71 for test and 0.73 for total. Simulation of the neural network function has been performed after training in the two groups of patients with known 5-year outcome. The disagreement rate was significantly higher in the dead patient group than that in the survivor group between neural network model and heart team [16.8% (787/4679 vs. 20.3% (87/428, P = 0.065]. Conclusion: The study shows the possibility to build a computer adviser with a neural network model for making a choice between CABG and PCI in order to achieve a higher 5-year survival rate in patients with angina. Keywords: Coronary artery bypass grafting, Percutaneous coronary intervention, Artificial intelligence, Decision making

  2. Building Explainable Artificial Intelligence Systems

    National Research Council Canada - National Science Library

    Core, Mark G; Lane, H. Chad; van Lent, Michael; Gomboc, Dave; Solomon, Steve; Rosenberg, Milton

    2006-01-01

    As artificial intelligence (AI) systems and behavior models in military simulations become increasingly complex, it has been difficult for users to understand the activities of computer-controlled entities...

  3. Artificial Intelligence and Expert Systems.

    Science.gov (United States)

    Wilson, Harold O.; Burford, Anna Marie

    1990-01-01

    Delineates artificial intelligence/expert systems (AI/ES) concepts; provides an exposition of some business application areas; relates progress; and creates an awareness of the benefits, limitations, and reservations of AI/ES. (Author)

  4. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  5. Artificial Intelligence Techniques and Methodology

    OpenAIRE

    Carbonell, Jaime G.; Sleeman, Derek

    1982-01-01

    Two closely related aspects of artificial intelligence that have received comparatively little attention in the recent literature are research methodology, and the analysis of computational techniques that span multiple application areas. We believe both issues to be increasingly significant as Artificial Intelligence matures into a science and spins off major application efforts. It is imperative to analyze the repertoire of AI methods with respect to past experience, utility in new domains,...

  6. Artificial Intelligence and Science Education.

    Science.gov (United States)

    Good, Ron

    1987-01-01

    Defines artificial intelligence (AI) in relation to intelligent computer-assisted instruction (ICAI) and science education. Provides a brief background of AI work, examples of expert systems, examples of ICAI work, and addresses problems facing AI workers that have implications for science education. Proposes a revised model of the Karplus/Renner…

  7. Artificial intelligence approaches in statistics

    International Nuclear Information System (INIS)

    Phelps, R.I.; Musgrove, P.B.

    1986-01-01

    The role of pattern recognition and knowledge representation methods from Artificial Intelligence within statistics is considered. Two areas of potential use are identified and one, data exploration, is used to illustrate the possibilities. A method is presented to identify and separate overlapping groups within cluster analysis, using an AI approach. The potential of such ''intelligent'' approaches is stressed

  8. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    Science.gov (United States)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  9. [Artificial intelligence in psychiatry-an overview].

    Science.gov (United States)

    Meyer-Lindenberg, A

    2018-06-18

    Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.

  10. Computer automation and artificial intelligence

    International Nuclear Information System (INIS)

    Hasnain, S.B.

    1992-01-01

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  11. Artificial Neural Networks and Instructional Technology.

    Science.gov (United States)

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  12. Artificial Intelligence and Its Importance in Education.

    Science.gov (United States)

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  13. Application of artificial intelligence to the management of urological cancer.

    Science.gov (United States)

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  14. Artificial Intelligence in planetary spectroscopy

    Science.gov (United States)

    Waldmann, Ingo

    2017-10-01

    The field of exoplanetary spectroscopy is as fast moving as it is new. Analysing currently available observations of exoplanetary atmospheres often invoke large and correlated parameter spaces that can be difficult to map or constrain. This is true for both: the data analysis of observations as well as the theoretical modelling of their atmospheres.Issues of low signal-to-noise data and large, non-linear parameter spaces are nothing new and commonly found in many fields of engineering and the physical sciences. Recent years have seen vast improvements in statistical data analysis and machine learning that have revolutionised fields as diverse as telecommunication, pattern recognition, medical physics and cosmology.In many aspects, data mining and non-linearity challenges encountered in other data intensive fields are directly transferable to the field of extrasolar planets. In this conference, I will discuss how deep neural networks can be designed to facilitate solving said issues both in exoplanet atmospheres as well as for atmospheres in our own solar system. I will present a deep belief network, RobERt (Robotic Exoplanet Recognition), able to learn to recognise exoplanetary spectra and provide artificial intelligences to state-of-the-art atmospheric retrieval algorithms. Furthermore, I will present a new deep convolutional network that is able to map planetary surface compositions using hyper-spectral imaging and demonstrate its uses on Cassini-VIMS data of Saturn.

  15. Progress and Challenge of Artificial Intelligence

    Institute of Scientific and Technical Information of China (English)

    Zhong-Zhi Shi; Nan-Ning Zheng

    2006-01-01

    Artificial Intelligence (AI) is generally considered to be a subfield of computer science, that is concerned to attempt simulation, extension and expansion of human intelligence. Artificial intelligence has enjoyed tremendous success over the last fifty years. In this paper we only focus on visual perception, granular computing, agent computing, semantic grid. Human-level intelligence is the long-term goal of artificial intelligence. We should do joint research on basic theory and technology of intelligence by brain science, cognitive science, artificial intelligence and others. A new cross discipline intelligence science is undergoing a rapid development. Future challenges are given in final section.

  16. Hybrid intelligence systems and artificial neural network (ANN approach for modeling of surface roughness in drilling

    Directory of Open Access Journals (Sweden)

    Ch. Sanjay

    2014-12-01

    Full Text Available In machining processes, drilling operation is material removal process that has been widely used in manufacturing since industrial revolution. The useful life of cutting tool and its operating conditions largely controls the economics of machining operations. Drilling is most frequently performed material removing process and is used as a preliminary step for many operations, such as reaming, tapping, and boring. Drill wear has a bad effect on the surface finish and dimensional accuracy of the work piece. The surface finish of a machined part is one of the most important quality characteristics in manufacturing industries. The primary objective of this research is the prediction of suitable parameters for surface roughness in drilling. Cutting speed, cutting force, and machining time were given as inputs to the adaptive fuzzy neural network and neuro-fuzzy analysis for estimating the values of surface roughness by using 2, 3, 4, and 5 membership functions. The best structures were selected based on minimum of summation of square with the actual values with the estimated values by artificial neural fuzzy inference system (ANFIS and neuro-fuzzy systems. For artificial neural network (ANN analysis, the number of neurons was selected from 1, 2, 3, … , 20. The learning rate was selected as .5 and .5 smoothing factor was used. The inputs were selected as cutting speed, feed, machining time, and thrust force. The best structures of neural networks were selected based on the criteria as the minimum of summation of square with the actual value of surface roughness. Drilling experiments with 10 mm size were performed at two cutting speeds and feeds. Comparative analysis has been done between the actual values and the estimated values obtained by ANFIS, neuro-fuzzy, and ANN analysis.

  17. Artificial intelligence: Deep neural reasoning

    Science.gov (United States)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  18. 6th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 16th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2015) which was held on June 1 – 3, 2015 in Takamatsu, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them.

  19. 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    SNPD 2016

    2016-01-01

    This edited book presents scientific results of the 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2016) which was held on May 30 - June 1, 2016 in Shanghai, China. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them.

  20. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  1. ARTIFICIAL INTELLIGENCE APPLICATIONS IN THE FINANCIAL SECTOR

    OpenAIRE

    Adrian Cozgarea; Gabriel Cozgarea; Andrei Stanciu

    2008-01-01

    The present paper exposes some of artificial intelligence specific technologies regarding financial sector. Through non-deterministic solutions and simple algorithms, artificial intelligence could become a base alternative for solving financial problems which require complex mathematic calculations or complex optimization.

  2. Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes.

    Science.gov (United States)

    Buzaev, Igor Vyacheslavovich; Plechev, Vladimir Vyacheslavovich; Nikolaeva, Irina Evgenievna; Galimova, Rezida Maratovna

    2016-09-01

    The continuous uninterrupted feedback system is the essential part of any well-organized system. We propose aLYNX concept that is a possibility to use an artificial intelligence algorithm or a neural network model in decision-making system so as to avoid possible mistakes and to remind the doctors to review tactics once more in selected cases. aLYNX system includes: registry with significant factors, decisions and results; machine learning process based on this registry data; the use of the machine learning results as the adviser. We show a possibility to build a computer adviser with a neural network model for making a choice between coronary aortic bypass surgery (CABG) and percutaneous coronary intervention (PCI) in order to achieve a higher 5-year survival rate in patients with angina based on the experience of 5107 patients. The neural network was trained by 4679 patients who achieved 5-year survival. Among them, 2390 patients underwent PCI and 2289 CABG. After training, the correlation coefficient ( r ) of the network was 0.74 for training, 0.67 for validation, 0.71 for test and 0.73 for total. Simulation of the neural network function has been performed after training in the two groups of patients with known 5-year outcome. The disagreement rate was significantly higher in the dead patient group than that in the survivor group between neural network model and heart team [16.8% (787/4679) vs. 20.3% (87/428), P  = 0.065)]. The study shows the possibility to build a computer adviser with a neural network model for making a choice between CABG and PCI in order to achieve a higher 5-year survival rate in patients with angina.

  3. Artificial Intelligence: A Selected Bibliography.

    Science.gov (United States)

    Smith, Linda C., Comp.

    1984-01-01

    This 19-item annotated bibliography introducing the literature of artificial intelligence (AI) is arranged by type of material--handbook, books (general interest, textbooks, collected readings), journals and newsletters, and conferences and workshops. The availability of technical reports from AI laboratories at universities and private companies…

  4. Hybrid Applications Of Artificial Intelligence

    Science.gov (United States)

    Borchardt, Gary C.

    1988-01-01

    STAR, Simple Tool for Automated Reasoning, is interactive, interpreted programming language for development and operation of artificial-intelligence application systems. Couples symbolic processing with compiled-language functions and data structures. Written in C language and currently available in UNIX version (NPO-16832), and VMS version (NPO-16965).

  5. Artificial Intelligence: Applications in Education.

    Science.gov (United States)

    Thorkildsen, Ron J.; And Others

    1986-01-01

    Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)

  6. Research and applications: Artificial intelligence

    Science.gov (United States)

    Chaitin, L. J.; Duda, R. O.; Johanson, P. A.; Raphael, B.; Rosen, C. A.; Yates, R. A.

    1970-01-01

    The program is reported for developing techniques in artificial intelligence and their application to the control of mobile automatons for carrying out tasks autonomously. Visual scene analysis, short-term problem solving, and long-term problem solving are discussed along with the PDP-15 simulator, LISP-FORTRAN-MACRO interface, resolution strategies, and cost effectiveness.

  7. Artificial Intelligence: The Expert Way.

    Science.gov (United States)

    Bitter, Gary G.

    1989-01-01

    Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)

  8. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  9. Artificial Intelligence in Education.

    Science.gov (United States)

    Ruyle, Kim E.

    Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have…

  10. Impact of Artificial Intelligence on Economic Theory

    OpenAIRE

    Tshilidzi Marwala

    2015-01-01

    Artificial intelligence has impacted many aspects of human life. This paper studies the impact of artificial intelligence on economic theory. In particular we study the impact of artificial intelligence on the theory of bounded rationality, efficient market hypothesis and prospect theory.

  11. Artificial intelligence and the future.

    Science.gov (United States)

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations.

  12. How to Improve Artificial Intelligence through Web

    OpenAIRE

    Adrian Lupasc

    2005-01-01

    Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers may make their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced into Web Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logic layer. The Intelligent Wireless Web’s significant potential for ra...

  13. Application of artificial intelligence in process control

    CERN Document Server

    Krijgsman, A

    1993-01-01

    This book is the result of a united effort of six European universities to create an overall course on the appplication of artificial intelligence (AI) in process control. The book includes an introduction to key areas including; knowledge representation, expert, logic, fuzzy logic, neural network, and object oriented-based approaches in AI. Part two covers the application to control engineering, part three: Real-Time Issues, part four: CAD Systems and Expert Systems, part five: Intelligent Control and part six: Supervisory Control, Monitoring and Optimization.

  14. Parallel processing for artificial intelligence 1

    CERN Document Server

    Kanal, LN; Kumar, V; Suttner, CB

    1994-01-01

    Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus

  15. Uncertainty in artificial intelligence

    CERN Document Server

    Levitt, TS; Lemmer, JF; Shachter, RD

    1990-01-01

    Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i

  16. The National Artificial Intelligence Research And Development Strategic Plan

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Executive Summary: Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential...

  17. Automated Machinery Health Monitoring Using Stress Wave Analysis & Artificial Intelligence

    National Research Council Canada - National Science Library

    Board, David

    1998-01-01

    .... Army, for application to helicopter drive train components. The system will detect structure borne, high frequency acoustic data, and process it with feature extraction and polynomial network artificial intelligence software...

  18. Artificial intelligence techniques in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Laughton, M.A.

    1997-12-31

    Since the early to mid 1980s much of the effort in power systems analysis has turned away from the methodology of formal mathematical modelling which came from the fields of operations research, control theory and numerical analysis to the less rigorous techniques of artificial intelligence (AI). Today the main AI techniques found in power systems applications are those utilising the logic and knowledge representations of expert systems, fuzzy systems, artificial neural networks (ANN) and, more recently, evolutionary computing. These techniques will be outlined in this chapter and the power system applications indicated. (Author)

  19. ARTIFICIAL INTELLIGENCE: APPLICATIONS AND FUTURE

    OpenAIRE

    Ellur Anand; S. G. Varun Kumar

    2017-01-01

    Artificial Intelligence (AI) or Augmented Intelligence happens to be the most talked about technology that would have a major impact on the way the current day world functions. The next step in evolution of digital world is AI. The safety of the world with more and more use of AI also becomes necessity. Safety rules and regulations of the digital world need to be drafted and redrafted as AI evolves and becomes a new normal in every one’s life just as mobile phone has become in the current sce...

  20. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  1. Artificial intelligence for analyzing orthopedic trauma radiographs.

    Science.gov (United States)

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max

    2017-12-01

    Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

  2. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two diff- erent ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods ...

  3. Artificial intelligence approach with the use of artificial neural networks for the creation of a forecasting model of Plasmopara viticola infection.

    Science.gov (United States)

    Bugliosi, R; Spera, G; La Torre, A; Campoli, L; Scaglione, M

    2006-01-01

    Most of the forecasting models of Plasmopara viticola infections are based upon empiric correlations between meteorological/environmental data and pathogen outbreak. These models generally overestimate the risk of infections and induce to treat the vineyard even if it should be not necessary. In rare cases they underrate the risk of infection leaving the pathogen to breakout. Starting from these considerations we have decided to approach the problem from another point of view utilizing Artificial Intelligence techniques for data elaboration and analysis. Meanwhile the same data have been studied with a more classic approach with statistical tools to verify the impact of a large data collection on the standard data analysis methods. A network of RTUs (Remote Terminal Units) distributed all over the Italian national territory transmits 12 environmental parameters every 15 minutes via radio or via GPRS to a centralized Data Base. Other pedologic data is collected directly from the field and sent via Internet to the centralized data base utilizing Personal Digital Assistants (PDAs) running a specific software. Data is stored after having been preprocessed, to guarantee the quality of the information. The subsequent analysis has been realized mostly with Artificial Neural Networks (ANNs). Collecting and analizing data in this way will probably bring us to the possibility of preventing Plasmospara viticola infection starting from the environmental conditions in this very complex context. The aim of this work is to forecast the infection avoiding the ineffective use of the plant protection products in agriculture. Applying different analysis models we will try to find the best ANN capable of forecasting with an high level of affordability.

  4. The application and development of artificial intelligence in smart clothing

    Science.gov (United States)

    Wei, Xiong

    2018-03-01

    This paper mainly introduces the application of artificial intelligence in intelligent clothing. Starting from the development trend of artificial intelligence, analysis the prospects for development in smart clothing with artificial intelligence. Summarize the design key of artificial intelligence in smart clothing. Analysis the feasibility of artificial intelligence in smart clothing.

  5. Anesthesiology, automation, and artificial intelligence.

    Science.gov (United States)

    Alexander, John C; Joshi, Girish P

    2018-01-01

    There have been many attempts to incorporate automation into the practice of anesthesiology, though none have been successful. Fundamentally, these failures are due to the underlying complexity of anesthesia practice and the inability of rule-based feedback loops to fully master it. Recent innovations in artificial intelligence, especially machine learning, may usher in a new era of automation across many industries, including anesthesiology. It would be wise to consider the implications of such potential changes before they have been fully realized.

  6. Important Themas in Artificial Intelligence

    OpenAIRE

    Šudoma, Petr

    2013-01-01

    The paper studies description logics as a method of field of artificial intelligence, describes history of knowledge representation as series of events leading to founding of description logics. Furthermore the paper compares description logics with their predecessor, the frame systems. Syntax, semantics and description logics naming convention is also presented and algorithms solving common knowledge representation tasks with usage of description logics are described. Paper compares computat...

  7. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  8. Artificial intelligence and computer vision

    CERN Document Server

    Li, Yujie

    2017-01-01

    This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.

  9. Viewpoint: Artificial Intelligence and Labour

    OpenAIRE

    Samothrakis, Spyridon

    2018-01-01

    The welfare of modern societies has been intrinsically linked to wage labour. With some exceptions, the modern human has to sell her labour-power to be able reproduce biologically and socially. Thus, a lingering fear of technological unemployment features predominately as a theme among Artificial Intelligence researchers. In this short paper we show that, if past trends are anything to go by, this fear is irrational. On the contrary, we argue that the main problem humanity will be facing is t...

  10. Artificial Intelligence, Employment, and Income

    OpenAIRE

    Nilsson, Nils J.

    1984-01-01

    Artificial intelligence (AI) will have profound societal effects. It promises potential benefits (and may also pose risks) in education, defense, business, law and science. In this article we explore how AI is likely to affect employment and the distribution of income. We argue that AI will indeed reduce drastically the need of human toil. We also note that some people fear the automation of work by machines and the resulting of unemployment. Yet, since the majority of us probably would rathe...

  11. A novel framework for intelligent signal detection via artificial neural networks for cyclic voltammetry in pyroprocessing technology

    International Nuclear Information System (INIS)

    Rakhshan Pouri, Samaneh; Manic, Milos; Phongikaroon, Supathorn

    2018-01-01

    Highlights: •First time ANN implementation toward pyroprocessing safeguards. •Real time monitoring in terms of intelligent materials detection and accountability. •CV simulation via ANN showing a high accuracy of prediction for the unseen situation. •Elimination of trial and error approach to avoid overfitting in learning. -- Abstract: Electrorefiner (ER) is the heart of pyroprocessing technology which contains different fission, rare-earth, and transuranic chloride compositions during the operation. This is still a developing technology that needs to be advanced for the commercial reprocessing design of used nuclear fuel (UNF) in terms of intelligent materials detection and accountability towards safeguards. A novel signal detection, artificial neural network (ANN), has been proposed in this study to apply on massive ER systemic parameters to simulate cyclic voltammetry (CV) graphs for the unseen situation. ANN could be trained to mimic the system by driving the data sets interrelation between variables to provide current and potential simulated data sets with a high accuracy of prediction. For this purpose, over 230,000 experimental data points reported in literature have been explored—0.5–5 wt% of zirconium chloride (ZrCl 4 ) in LiCl-KCl molten salt with different scan rates at 773 K. This study has illustrated a new framework of ANN implementation to eliminate trial and error approach by comparing the average error of one to three hidden layers with different number of neurons. In addition, this framework results in finding a preferable balance between underfitting and overfitting in deep learning. Furthermore, simulated CV graphs were compared with the experimental data and illustrated a reasonable prediction. The results reveal two structures with three hidden layers providing a good prediction with a low average error. The outcomes indicate that ANN has a strong potential in applying toward safeguards for pyroprocessing technology.

  12. Use of artificial intelligence in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, there are a large number of non-operating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) in which artificial intelligence can increase the efficiency and effectiveness of overall plant and corporate operations. This paper reviews the state-of-the-art of artificial intelligence techniques, specifically, expert systems and neural networks, to nuclear power plants. This paper has reviewed the state-of-the-art of artificial intelligence, specifically expert systems and neural networks that are applied to problems in nuclear power plants

  13. Artificial Intelligence--Applications in Education.

    Science.gov (United States)

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  14. Research in artificial intelligence for nuclear facilities

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1990-01-01

    The application of artificial intelligence, in the form of expert systems and neural networks, to the control room activities in a nuclear power plant has the potential to reduce operator error and increase plant safety, reliability, and efficiency. Furthermore, artificial intelligence can increase efficiency and effectiveness in a large number of nonoperating activities (testing, routine maintenance, outage planning, equipment diagnostics, and fuel management) and in research facility experiments. Recent work at the University of Tennessee has demonstrated the feasibility of using neural networks to identify six different transients introduced into the simulation of a steam generator of a nuclear power plant. This work is now being extended to utilize data from a nuclear power plant training simulator. In one configuration, the inputs to the neural network are a subset of the quantities that are typical of those available from the safety parameter display system. The outputs of the network represent the various states of the plant (e.g., normal operation, coolant leakage, inadequate core flow, excessive peak fuel temperature, etc.). Training of the neural network is performed by introducing various faults or conditions to be diagnosed into the simulator. The goal of this work is to demonstrate a neural network diagnostic system that could provide advice to the operators in accordance with the emergency operating procedures

  15. Artificial intelligence analysis of paraspinal power spectra.

    Science.gov (United States)

    Oliver, C W; Atsma, W J

    1996-10-01

    OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.

  16. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    Science.gov (United States)

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  17. An application of neural networks and artificial intelligence for in-core fuel management

    International Nuclear Information System (INIS)

    Miller, L.F.; Algutifan, F.; Uhrig, R.E.

    1992-01-01

    This paper reports the feasibility of using expert systems in combination with neural networks and neutronics calculations to improve the efficiency for obtaining optimal candidate reload core designs. The general objectives of this research are as follows: (1) generate a suitable data base and ancillary software for training neural networks that duplicate neutronics calculations. (2) develop a graphical interface with neutronics software and neural networks for manual shuffling of reload cores. (3) construct an expert system for shuffling reload cores with specified rules. (4) develp neural networks that capture the nonlinear behavior of fuel depletion. (5) integrate the neural networks and neutronics software with an expert system to specify reload cores that obtain appropriate figure of merit

  18. Readings in artificial intelligence and software engineering

    CERN Document Server

    Rich, Charles

    1986-01-01

    Readings in Artificial Intelligence and Software Engineering covers the main techniques and application of artificial intelligence and software engineering. The ultimate goal of artificial intelligence applied to software engineering is automatic programming. Automatic programming would allow a user to simply say what is wanted and have a program produced completely automatically. This book is organized into 11 parts encompassing 34 chapters that specifically tackle the topics of deductive synthesis, program transformations, program verification, and programming tutors. The opening parts p

  19. Artificial Intelligence (AI) Studies in Water Resources

    OpenAIRE

    Ay, Murat; Özyıldırım, Serhat

    2018-01-01

    Artificial intelligence has been extensively used in many areas such as computer science,robotics, engineering, medicine, translation, economics, business, and psychology. Variousstudies in the literature show that the artificial intelligence in modeling approaches give closeresults to the real data for solution of linear, non-linear, and other systems. In this study, wereviewed the current state-of-the-art and progress on the modelling of artificial intelligence forwater variables: rainfall-...

  20. Ethical Considerations in Artificial Intelligence Courses

    OpenAIRE

    Burton, Emanuelle; Goldsmith, Judy; Koenig, Sven; Kuipers, Benjamin; Mattei, Nicholas; Walsh, Toby

    2017-01-01

    The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for ...

  1. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  2. Artificial intelligence model for sustain ability measurement

    International Nuclear Information System (INIS)

    Navickiene, R.; Navickas, K.

    2012-01-01

    The article analyses the main dimensions of organizational sustain ability, their possible integrations into artificial neural network. In this article authors performing analyses of organizational internal and external environments, their possible correlations with 4 components of sustain ability, and the principal determination models for sustain ability of organizations. Based on the general principles of sustainable development organizations, a artificial intelligence model for the determination of organizational sustain ability has been developed. The use of self-organizing neural networks allows the identification of the organizational sustain ability and the endeavour to explore vital, social, antropogenical and economical efficiency. The determination of the forest enterprise sustain ability is expected to help better manage the sustain ability. (Authors)

  3. Artificial intelligence and knowledge management

    OpenAIRE

    Hoesch, Hugo Cesar; Barcellos, Vânia

    2006-01-01

    This article intends to make an analysis about the Artificial Intelligence (AI) and the Knowledge Management (KM). Faced with the dualism mind and body how we be able to see it AI? It doesn’t intent to create identical copy of human being, but try to find the better form to represent all the knowledge contained in our minds. The society of the information lives a great paradox, at the same time that we have access to an innumerable amount of information, the capacity and the forms of its proc...

  4. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  5. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  6. Artificial intelligence a beginner's guide

    CERN Document Server

    Whitby, Blay

    2012-01-01

    Tomorrow begins right here as we embark on an enthralling and jargon-free journey into the world of computers and the inner recesses of the human mind. Readers encounter everything from the nanotechnology used to make insect-like robots, to computers that perform surgery, in addition to discovering the biggest controversies to dog the field of AI. Blay Whitby is a Lecturer on Cognitive Science and Artificial Intelligence at the University of Sussex UK. He is the author of two books and numerous papers.

  7. Epistasis analysis using artificial intelligence.

    Science.gov (United States)

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  8. Artificial Intelligence in Autonomous Telescopes

    Science.gov (United States)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  9. Artificial intelligence methods for diagnostic

    International Nuclear Information System (INIS)

    Dourgnon-Hanoune, A.; Porcheron, M.; Ricard, B.

    1996-01-01

    To assist in diagnosis of its nuclear power plants, the Research and Development Division of Electricite de France has been developing skills in Artificial Intelligence for about a decade. Different diagnostic expert systems have been designed. Among them, SILEX for control rods cabinet troubleshooting, DIVA for turbine generator diagnosis, DIAPO for reactor coolant pump diagnosis. This know how in expert knowledge modeling and acquisition is direct result of experience gained during developments and of a more general reflection on knowledge based system development. We have been able to reuse this results for other developments such as a guide for auxiliary rotating machines diagnosis. (authors)

  10. An Artificial Intelligence-Based Environment Quality Analysis System

    OpenAIRE

    Oprea , Mihaela; Iliadis , Lazaros

    2011-01-01

    Part 20: Informatics and Intelligent Systems Applications for Quality of Life information Services (ISQLIS) Workshop; International audience; The paper describes an environment quality analysis system based on a combination of some artificial intelligence techniques, artificial neural networks and rule-based expert systems. Two case studies of the system use are discussed: air pollution analysis and flood forecasting with their impact on the environment and on the population health. The syste...

  11. Application of artificial intelligence in load frequency control of ...

    African Journals Online (AJOL)

    This paper presents the use of artificial intelligence to study the load frequency control of interconnected power system. In the proposed scheme, a control methodology is developed using Artificial Neural Network (ANN) and Fuzzy Logic controller (FLC) for interconnected hydro-thermal power system. The control strategies ...

  12. An Improvement of E-Systems over Networks via the use of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Yaser A. Jasim

    2018-03-01

    Full Text Available Nowadays, many research has been dedicated to the distribution of expert systems; unfortunately, few have deliberated the study of Dynamic Host Configuration Protocol (DHCP. In this paper, the researcher will demonstrate the construction of vacuum tubes, which embodies the principles of software engineering. In order to classify this challenge, the researcher argues not only that local-area networks (LAN can be made event-driven, stable, and random but the same is true for the Universal Automatic Computer (UNIVAC. 

  13. Marine litter prediction by artificial intelligence

    International Nuclear Information System (INIS)

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T.; Koc, Levent

    2004-01-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems

  14. Marine litter prediction by artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T.; Koc, Levent

    2004-03-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems.

  15. Artificial intelligence in astronomy - a forecast.

    Science.gov (United States)

    Adorf, H. M.

    Since several years artificial intelligence techniques are being actively used in astronomy, particularly within the Hubble Space Telescope project. This contribution reviews achievements, analyses some problems of using artificial intelligence in an astronomical environment, and projects current AI programming trends into the future.

  16. The Artificial Intelligence Applications to Learning Programme.

    Science.gov (United States)

    Williams, Noel

    1992-01-01

    Explains the Artificial Intelligence Applications to Learning Programme, which was developed in the United Kingdom to explore and accelerate the use of artificial intelligence (AI) technologies in learning in both the educational and industrial sectors. Highlights include program evaluation, marketing, ownership of information, consortia, and cost…

  17. Contribution of artificial intelligence to operation

    International Nuclear Information System (INIS)

    Malvache, P.; Mourlevat, J.L.

    1993-01-01

    Artificial Intelligence techniques are already used in nuclear plants for assistance to operation: synthesis from numerous information sources may be then derived, based on expert knowledge. Artificial intelligence may be used also for quality and reliability assessment of software-based control-command systems. Various expert systems developed by CEA, EDF and Framatome are presented

  18. Forming of the regional core transport network taking into account the allocation of alternative energy sources based on artificial intelligence methods

    Directory of Open Access Journals (Sweden)

    Marina ZHURAVSKAYA

    2014-12-01

    Full Text Available In the modern world the alternative energy sources, which considerably depend on a region, play more and more significant role. However, the transition of regions to new energy sources lead to the change of transport and logistic network configuration. The formation of optimal core transport network today is a guarantee of the successful economic development of a region tomorrow. The present article studies the issue of advanced core transport network development in a region based on the experience of European and Asian countries and the opportunity to adapt the best foreign experience to Russian conditions. On the basis of artificial intelligence methods for forest industry complex of Sverdlovskaya Oblast the algorithm of problem solution of an optimal logistic infrastructure allocation is offered and some results of a regional transport network are presented. These methods allowed to solve the set task in the conditions of information uncertainty. There are suggestions on the improvement of transport and logistic network in the territory of Sverdlovskaya Oblast. Traditionally the logistics of mineral fuel plays main role in regions development. Actually it is required to develop logistic strategic plans to be able to provide different possibilities of power-supply, flexible enough to change with the population density, transport infrastructure and demographics of different regions. The problem of logistic centers allocation was studied by many authors. The approach, offered by the authors of this paper is to solve the set of tasks by applying artificial intelligence methods, such as fuzzy set theory and genetic algorithms.

  19. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks.

    Science.gov (United States)

    Kim, D H; MacKinnon, T

    2018-05-01

    To identify the extent to which transfer learning from deep convolutional neural networks (CNNs), pre-trained on non-medical images, can be used for automated fracture detection on plain radiographs. The top layer of the Inception v3 network was re-trained using lateral wrist radiographs to produce a model for the classification of new studies as either "fracture" or "no fracture". The model was trained on a total of 11,112 images, after an eightfold data augmentation technique, from an initial set of 1,389 radiographs (695 "fracture" and 694 "no fracture"). The training data set was split 80:10:10 into training, validation, and test groups, respectively. An additional 100 wrist radiographs, comprising 50 "fracture" and 50 "no fracture" images, were used for final testing and statistical analysis. The area under the receiver operator characteristic curve (AUC) for this test was 0.954. Setting the diagnostic cut-off at a threshold designed to maximise both sensitivity and specificity resulted in values of 0.9 and 0.88, respectively. The AUC scores for this test were comparable to state-of-the-art providing proof of concept for transfer learning from CNNs in fracture detection on plain radiographs. This was achieved using only a moderate sample size. This technique is largely transferable, and therefore, has many potential applications in medical imaging, which may lead to significant improvements in workflow productivity and in clinical risk reduction. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. A development framework for distributed artificial intelligence

    Science.gov (United States)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  1. A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2013-01-01

    A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...

  2. Groundhog Day for Medical Artificial Intelligence.

    Science.gov (United States)

    London, Alex John

    2018-05-01

    Following a boom in investment and overinflated expectations in the 1980s, artificial intelligence entered a period of retrenchment known as the "AI winter." With advances in the field of machine learning and the availability of large datasets for training various types of artificial neural networks, AI is in another cycle of halcyon days. Although medicine is particularly recalcitrant to change, applications of AI in health care have professionals in fields like radiology worried about the future of their careers and have the public tittering about the prospect of soulless machines making life-and-death decisions. Medicine thus appears to be at an inflection point-a kind of Groundhog Day on which either AI will bring a springtime of improved diagnostic and predictive practices or the shadow of public and professional fear will lead to six more metaphorical weeks of winter in medical AI. © 2018 The Hastings Center.

  3. Accelerating artificial intelligence with reconfigurable computing

    Science.gov (United States)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  4. Research and applications: Artificial intelligence

    Science.gov (United States)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  5. Artificial intelligence and process management

    International Nuclear Information System (INIS)

    Epton, J.B.A.

    1989-01-01

    Techniques derived from work in artificial intelligence over the past few decades are beginning to change the approach in applying computers to process management. To explore this new approach and gain real practical experience of its potential a programme of experimental applications was initiated by Sira in collaboration with the process industry. This programme encompassed a family of experimental applications ranging from process monitoring, through supervisory control and troubleshooting to planning and scheduling. The experience gained has led to a number of conclusions regarding the present level of maturity of the technology, the potential for further developments and the measures required to secure the levels of system integrity necessary in on-line applications to critical processes. (author)

  6. [Artificial Intelligence in Drug Discovery].

    Science.gov (United States)

    Fujiwara, Takeshi; Kamada, Mayumi; Okuno, Yasushi

    2018-04-01

    According to the increase of data generated from analytical instruments, application of artificial intelligence(AI)technology in medical field is indispensable. In particular, practical application of AI technology is strongly required in "genomic medicine" and "genomic drug discovery" that conduct medical practice and novel drug development based on individual genomic information. In our laboratory, we have been developing a database to integrate genome data and clinical information obtained by clinical genome analysis and a computational support system for clinical interpretation of variants using AI. In addition, with the aim of creating new therapeutic targets in genomic drug discovery, we have been also working on the development of a binding affinity prediction system for mutated proteins and drugs by molecular dynamics simulation using supercomputer "Kei". We also have tackled for problems in a drug virtual screening. Our developed AI technology has successfully generated virtual compound library, and deep learning method has enabled us to predict interaction between compound and target protein.

  7. An Intelligent Approach to Educational Data: Performance Comparison of the Multilayer Perceptron and the Radial Basis Function Artificial Neural Networks

    Science.gov (United States)

    Kayri, Murat

    2015-01-01

    The objective of this study is twofold: (1) to investigate the factors that affect the success of university students by employing two artificial neural network methods (i.e., multilayer perceptron [MLP] and radial basis function [RBF]); and (2) to compare the effects of these methods on educational data in terms of predictive ability. The…

  8. Artificial Astrocytes Improve Neural Network Performance

    Science.gov (United States)

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  9. Artificial astrocytes improve neural network performance.

    Directory of Open Access Journals (Sweden)

    Ana B Porto-Pazos

    Full Text Available Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN and artificial neuron-glia networks (NGN to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  10. Artificial astrocytes improve neural network performance.

    Science.gov (United States)

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  11. Neuro-Based Artificial Intelligence Model for Loan Decisions

    OpenAIRE

    Shorouq F. Eletter; Saad G. Yaseen; Ghaleb A. Elrefae

    2010-01-01

    Problem statement: Despite the increase in consumer loans defaults and competition in the banking market, most of the Jordanian commercial banks are reluctant to use artificial intelligence software systems for supporting loan decisions. Approach: This study developed a proposed model that identifies artificial neural network as an enabling tool for evaluating credit applications to support loan decisions in the Jordanian Commercial banks. A multi-layer feed-forward neural network with backpr...

  12. Artificial Intelligence and Information Management

    Science.gov (United States)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  13. Economic reasoning and artificial intelligence.

    Science.gov (United States)

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. Copyright © 2015, American Association for the Advancement of Science.

  14. Development and evaluation of a novel lossless image compression method (AIC: artificial intelligence compression method) using neural networks as artificial intelligence

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi; Naganawa, Shinji; Yumura, Shinnichiro

    2008-01-01

    This study was aimed to validate the performance of a novel image compression method using a neural network to achieve a lossless compression. The encoding consists of the following blocks: a prediction block; a residual data calculation block; a transformation and quantization block; an organization and modification block; and an entropy encoding block. The predicted image is divided into four macro-blocks using the original image for teaching; and then redivided into sixteen sub-blocks. The predicted image is compared to the original image to create the residual image. The spatial and frequency data of the residual image are compared and transformed. Chest radiography, computed tomography (CT), magnetic resonance imaging, positron emission tomography, radioisotope mammography, ultrasonography, and digital subtraction angiography images were compressed using the AIC lossless compression method; and the compression rates were calculated. The compression rates were around 15:1 for chest radiography and mammography, 12:1 for CT, and around 6:1 for other images. This method thus enables greater lossless compression than the conventional methods. This novel method should improve the efficiency of handling of the increasing volume of medical imaging data. (author)

  15. Projective simulation for artificial intelligence

    Science.gov (United States)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  16. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  17. Intelligent Prediction of Soccer Technical Skill on Youth Soccer Player's Relative Performance Using Multivariate Analysis and Artificial Neural Network Techniques

    OpenAIRE

    Abdullah, M. R; Maliki, A. B. H. M; Musa, R. M; Kosni, N. A; Juahir, H

    2016-01-01

    This study aims to predict the potential pattern of soccer technical skill on Malaysia youth soccer players relative performance using multivariate analysis and artificial neural network techniques. 184 male youth soccer players were recruited in Malaysia soccer academy (average age = 15.2±2.0) underwent to, physical fitness test, anthropometric, maturity, motivation and the level of skill related soccer. Unsupervised pattern recognition of principal component analysis (PCA) was used to ident...

  18. Artificial intelligence approaches to astronomical observation scheduling

    Science.gov (United States)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  19. Exploring Artificial Intelligence Utilizing BioArt

    OpenAIRE

    Simou , Panagiota; Tiligadis , Konstantinos; Alexiou , Athanasios

    2013-01-01

    Part 15: First Workshop on Ethics and Philosophy in Artificial Intelligence (EPAI 2013); International audience; While artificial intelligence combined with Bioinformatics and Nanotechnology offers a variety of improvements and a technological and healthcare revolution, Bioartists attempt to replace the traditional artistic medium with biological materials, bio-imaging techniques, bioreactors and several times to treat their own body as an alive canvas. BioArt seems to play the role of a new ...

  20. Artificial intelligence in medicine: the challenges ahead.

    OpenAIRE

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM m...

  1. ARTIFICIAL INTELLIGENCE- BENEFITS, CHALLENGES AND ETHICAL ISSUES

    OpenAIRE

    Elena Juganaru Andreou

    2017-01-01

    Nowadays, all big companies and most of small businesses are focused on increasing profitability and improving competitiveness. With this goal in mind, many of them turned to replace many tasks performed by humans with Artificial Intelligence. Artificial Intelligence (AI) is receiving an increasing attention lately and the debate is fiercely growing with a question not being answered yet: will it change the world for the better or for worse?

  2. The 2002 Starting Artificial Intelligence Researchers Symposium

    OpenAIRE

    Vidal, Thierry

    2003-01-01

    During the 2002 European Conference on Artificial Intelligence (ECAI-02) was introduced the Starting Artificial Intelligence Researchers Symposium STAIRS), the first-ever international symposium specifically aimed at Ph.D. students in AI. The outcome was a thorough, high-quality, and successful event, with all the features one usually finds in the best international conferences: large international committees, comprehensive coverage, published proceedings, renowned speakers and panelists, sub...

  3. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  4. Improving Tools in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-01-01

    Full Text Available The historical origin of the Artificial Intelligence (AI is usually established in the Dartmouth Conference, of 1956. But we can find many more arcane origins [1]. Also, we can consider, in more recent times, very great thinkers, as Janos Neumann (then, John von Neumann, arrived in USA, Norbert Wiener, Alan Mathison Turing, or Lofti Zadeh, for instance [12, 14]. Frequently AI requires Logic. But its Classical version shows too many insufficiencies. So, it was necessary to introduce more sophisticated tools, as Fuzzy Logic, Modal Logic, Non-Monotonic Logic and so on [1, 2]. Among the things that AI needs to represent are categories, objects, properties, relations between objects, situations, states, time, events, causes and effects, knowledge about knowledge, and so on. The problems in AI can be classified in two general types [3, 5], search problems and representation problems. On this last "peak", there exist different ways to reach their summit. So, we have [4] Logics, Rules, Frames, Associative Nets, Scripts, and so on, many times connected among them. We attempt, in this paper, a panoramic vision of the scope of application of such representation methods in AI. The two more disputable questions of both modern philosophy of mind and AI will be perhaps the Turing Test and the Chinese Room Argument. To elucidate these very difficult questions, see our final note.

  5. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  6. Artificial Intelligence Applications for Education: Promise, ...Promises.

    Science.gov (United States)

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  7. Implementation and Validation of Artificial Intelligence Techniques for Robotic Surgery

    OpenAIRE

    Aarshay Jain; Deepansh Jagotra; Vijayant Agarwal

    2014-01-01

    The primary focus of this study is implementation of Artificial Intelligence (AI) technique for developing an inverse kinematics solution for the Raven-IITM surgical research robot [1]. First, the kinematic model of the Raven-IITM robot was analysed along with the proposed analytical solution [2] for inverse kinematics problem. Next, The Artificial Neural Network (ANN) techniques was implemented. The training data for the same was careful selected by keeping manipulability constraints in mind...

  8. SOME PARADIGMS OF ARTIFICIAL INTELLIGENCE IN FINANCIAL COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2015-12-01

    Full Text Available The article discusses some paradigms of artificial intelligence in the context of their applications in computer financial systems. The proposed approach has a significant po-tential to increase the competitiveness of enterprises, including financial institutions. However, it requires the effective use of supercomputers, grids and cloud computing. A reference is made to the computing environment for Bitcoin. In addition, we characterized genetic programming and artificial neural networks to prepare investment strategies on the stock exchange market.

  9. SOME PARADIGMS OF ARTIFICIAL INTELLIGENCE IN FINANCIAL COMPUTER SYSTEMS

    OpenAIRE

    Jerzy Balicki

    2015-01-01

    The article discusses some paradigms of artificial intelligence in the context of their applications in computer financial systems. The proposed approach has a significant po-tential to increase the competitiveness of enterprises, including financial institutions. However, it requires the effective use of supercomputers, grids and cloud computing. A reference is made to the computing environment for Bitcoin. In addition, we characterized genetic programming and artificial neural networks to p...

  10. Artificial intelligence in the diagnosis of low back pain.

    Science.gov (United States)

    Mann, N H; Brown, M D

    1991-04-01

    Computerized methods are used to recognize the characteristics of patient pain drawings. Artificial neural network (ANN) models are compared with expert predictions and traditional statistical classification methods when placing the pain drawings of low back pain patients into one of five clinically significant categories. A discussion is undertaken outlining the differences in these classifiers and the potential benefits of the ANN model as an artificial intelligence technique.

  11. Minimum DNBR Prediction Using Artificial Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Su; Kim, Ju Hyun; Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)

    2011-05-15

    The minimum DNBR (MDNBR) for prevention of the boiling crisis and the fuel clad melting is very important factor that should be consistently monitored in safety aspects. Artificial intelligence methods have been extensively and successfully applied to nonlinear function approximation such as the problem in question for predicting DNBR values. In this paper, support vector regression (SVR) model and fuzzy neural network (FNN) model are developed to predict the MDNBR using a number of measured signals from the reactor coolant system. Also, two models are trained using a training data set and verified against test data set, which does not include training data. The proposed MDNBR estimation algorithms were verified by using nuclear and thermal data acquired from many numerical simulations of the Yonggwang Nuclear Power Plant Unit 3 (YGN-3)

  12. Artificial Intelligence in Surgery: Promises and Perils.

    Science.gov (United States)

    Hashimoto, Daniel A; Rosman, Guy; Rus, Daniela; Meireles, Ozanan R

    2018-07-01

    The aim of this review was to summarize major topics in artificial intelligence (AI), including their applications and limitations in surgery. This paper reviews the key capabilities of AI to help surgeons understand and critically evaluate new AI applications and to contribute to new developments. AI is composed of various subfields that each provide potential solutions to clinical problems. Each of the core subfields of AI reviewed in this piece has also been used in other industries such as the autonomous car, social networks, and deep learning computers. A review of AI papers across computer science, statistics, and medical sources was conducted to identify key concepts and techniques within AI that are driving innovation across industries, including surgery. Limitations and challenges of working with AI were also reviewed. Four main subfields of AI were defined: (1) machine learning, (2) artificial neural networks, (3) natural language processing, and (4) computer vision. Their current and future applications to surgical practice were introduced, including big data analytics and clinical decision support systems. The implications of AI for surgeons and the role of surgeons in advancing the technology to optimize clinical effectiveness were discussed. Surgeons are well positioned to help integrate AI into modern practice. Surgeons should partner with data scientists to capture data across phases of care and to provide clinical context, for AI has the potential to revolutionize the way surgery is taught and practiced with the promise of a future optimized for the highest quality patient care.

  13. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  14. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    Science.gov (United States)

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  15. An Artificial Intelligence Approach to Transient Stability Assessment

    OpenAIRE

    Akella, Vijay Ahaskar; Khincha, HP; Kumar, Sreerama R

    1991-01-01

    An artificial intelligence approach to online transient stability assessment is briefly discussed, and some crucial requirements for this algorithm are identified. Solutions to these are proposed. Some new attributes are suggested so as to reflect machine dynamics and changes in the network. Also a new representative learning set algorithm has been developed.

  16. #%Applications of artificial intelligence in intelligent manufacturing: a review

    Institute of Scientific and Technical Information of China (English)

    #

    2017-01-01

    #%Based on research into the applications of artificial intelligence (AI) technology in the manufacturing industry in recent years, we analyze the rapid development of core technologies in the new era of 'Internet plus AI', which is triggering a great change in the models, means, and ecosystems of the manufacturing industry, as well as in the development of AI. We then propose new models, means, and forms of intelligent manufacturing, intelligent manufacturing system architecture, and intelligent man-ufacturing technology system, based on the integration of AI technology with information communications, manufacturing, and related product technology. Moreover, from the perspectives of intelligent manufacturing application technology, industry, and application demonstration, the current development in intelligent manufacturing is discussed. Finally, suggestions for the appli-cation of AI in intelligent manufacturing in China are presented.

  17. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  18. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  19. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    Energy Technology Data Exchange (ETDEWEB)

    Zarzalejo, L.F.; Ramirez, L.; Polo, J. [DER-CIEMAT, Madrid (Spain). Renewable Energy Dept.

    2005-07-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models. (author)

  20. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    International Nuclear Information System (INIS)

    Zarzalejo, Luis F.; Ramirez, Lourdes; Polo, Jesus

    2005-01-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models

  1. Artificial intelligence in robot control systems

    Science.gov (United States)

    Korikov, A.

    2018-05-01

    This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.

  2. Artificial Intelligence Research at the Artificial Intelligence Laboratory, Massachusetts Institute of Technology

    OpenAIRE

    Winston, Patrick H.

    1983-01-01

    The primary goal of the Artificial Intelligence Laboratory is to understand how computers can be made to exhibit intelligence. Two corollary goals are to make computers more useful and to understand certain aspects of human intelligence. Current research includes work on computer robotics and vision, expert systems, learning and commonsense reasoning, natural language understanding, and computer architecture.

  3. Amplify scientific discovery with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  4. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves

    Science.gov (United States)

    Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John

    2005-04-01

    To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.

  5. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  6. Mode Choice Modeling Using Artificial Neural Networks

    OpenAIRE

    Edara, Praveen Kumar

    2003-01-01

    Artificial intelligence techniques have produced excellent results in many diverse fields of engineering. Techniques such as neural networks and fuzzy systems have found their way into transportation engineering. In recent years, neural networks are being used instead of regression techniques for travel demand forecasting purposes. The basic reason lies in the fact that neural networks are able to capture complex relationships and learn from examples and also able to adapt when new data becom...

  7. How to Improve Artificial Intelligence through Web

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2005-10-01

    Full Text Available Intelligent agents, intelligent software applications and artificial intelligent applications from artificial intelligence service providers maymake their way onto the Web in greater number as adaptive software, dynamic programming languages and Learning Algorithms are introduced intoWeb Services. The evolution of Web architecture may allow intelligent applications to run directly on the Web by introducing XML, RDF and logiclayer. The Intelligent Wireless Web’s significant potential for rapidly completing information transactions may take an important contribution toglobal worker productivity. Artificial intelligence can be defined as the study of the ways in which computers can be made to perform cognitivetasks. Examples of such tasks include understanding natural language statements, recognizing visual patterns or scenes, diagnosing diseases orillnesses, solving mathematical problems, performing financial analyses, learning new procedures for solving problems. The term expert system canbe considered to be a particular type of knowledge-based system. An expert system is a system in which the knowledge is deliberately represented“as it is”. Expert systems are applications that make decisions in real-life situations that would otherwise be performed by a human expert. They areprograms designed to mimic human performance at specialized, constrained problem-solving tasks. They are constructed as a collection of IF-THENproduction rules combined with a reasoning engine that applies those rules, either in a forward or backward direction, to specific problems.

  8. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  9. Human-in-the-loop Artificial Intelligence

    OpenAIRE

    Zanzotto, Fabio Massimo

    2017-01-01

    Little by little, newspapers are revealing the bright future that Artificial Intelligence (AI) is building. Intelligent machines will help everywhere. However, this bright future has a dark side: a dramatic job market contraction before its unpredictable transformation. Hence, in a near future, large numbers of job seekers will need financial support while catching up with these novel unpredictable jobs. This possible job market crisis has an antidote inside. In fact, the rise of AI is sustai...

  10. Algorithms and architectures of artificial intelligence

    CERN Document Server

    Tyugu, E

    2007-01-01

    This book gives an overview of methods developed in artificial intelligence for search, learning, problem solving and decision-making. It gives an overview of algorithms and architectures of artificial intelligence that have reached the degree of maturity when a method can be presented as an algorithm, or when a well-defined architecture is known, e.g. in neural nets and intelligent agents. It can be used as a handbook for a wide audience of application developers who are interested in using artificial intelligence methods in their software products. Parts of the text are rather independent, so that one can look into the index and go directly to a description of a method presented in the form of an abstract algorithm or an architectural solution. The book can be used also as a textbook for a course in applied artificial intelligence. Exercises on the subject are added at the end of each chapter. Neither programming skills nor specific knowledge in computer science are expected from the reader. However, some p...

  11. Application Of Artificial Intelligence To Wind Tunnels

    Science.gov (United States)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  12. Artificial Intelligence in Unity Game Engine

    OpenAIRE

    Yu, Li

    2017-01-01

    This thesis was conducted for Oulu Game Lab. The aim of this bachelor thesis was to develop in Oulu Game Lab a game called the feels good to be evil. The main purpose of the project was to develop a game and learn game development focus in the artificial intelligence area. This thesis has explained the theory behind Artificial Intelligence. The game was developed in Unity Game Engine with C# language, and also Panda Behavior Tree was used in this project as an asset. The result was the ...

  13. Artificial intelligence for Mariáš

    OpenAIRE

    Kaštánková, Petra

    2016-01-01

    This thesis focuses on the implementation of a card game, Mariáš, and an artificial intelligence for this game. The game is designed for three players and it can be played with either other human players, or with a computer adversary. The game is designed as a client-server application, whereby the player connects to the game using a web page. The basis of the artificial intelligence is the Minimax algorithm. To speed it up we use the Alpha-Beta pruning, hash tables for storing equivalent sta...

  14. Knowledge representation an approach to artificial intelligence

    CERN Document Server

    Bench-Capon, TJM

    1990-01-01

    Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the ch

  15. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  16. Integrated Artificial Intelligence Approaches for Disease Diagnostics.

    Science.gov (United States)

    Vashistha, Rajat; Chhabra, Deepak; Shukla, Pratyoosh

    2018-06-01

    Mechanocomputational techniques in conjunction with artificial intelligence (AI) are revolutionizing the interpretations of the crucial information from the medical data and converting it into optimized and organized information for diagnostics. It is possible due to valuable perfection in artificial intelligence, computer aided diagnostics, virtual assistant, robotic surgery, augmented reality and genome editing (based on AI) technologies. Such techniques are serving as the products for diagnosing emerging microbial or non microbial diseases. This article represents a combinatory approach of using such approaches and providing therapeutic solutions towards utilizing these techniques in disease diagnostics.

  17. VAR control in distribution systems by using artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Golkar, M.A. [Curtin Univ. of Technology, Sarawak (Malaysia). School of Engineering and Science

    2005-07-01

    This paper reviewed artificial intelligence techniques used in VAR control systems. Reactive power controls in distribution systems were also reviewed. While artificial intelligence methods are widely used in power control systems, the techniques require extensive human knowledge bases and experiences in order to operate correctly. Expert systems use knowledge and interface procedures to solve problems that often require human expertise. Expert systems often cause knowledge bottlenecks as they are unable to learn or adopt to new situations. While neural networks possess learning ability, they are computationally expensive. However, test results in recent neural network studies have demonstrated that they work well in a variety of loading conditions. Fuzzy logic techniques are used to accurately represent the operational constraints of power systems. Fuzzy logic has an advantage over other artificial intelligence techniques as it is able to remedy uncertainties in data. Evolutionary computing algorithms use probabilistic transition rules which can search complicated data to determine optimal constraints and parameters. Over 95 per cent of all papers published on power systems use genetic algorithms. It was concluded that hybrid systems using various artificial intelligence techniques are now being used by researchers. 69 refs.

  18. Solving Complex Logistics Problems with Multi-Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Y.K. Tse

    2009-10-01

    Full Text Available The economy, which has become more information intensive, more global and more technologically dependent, is undergoing dramatic changes. The role of logistics is also becoming more and more important. In logistics, the objective of service providers is to fulfill all customers? demands while adapting to the dynamic changes of logistics networks so as to achieve a higher degree of customer satisfaction and therefore a higher return on investment. In order to provide high quality service, knowledge and information sharing among departments becomes a must in this fast changing market environment. In particular, artificial intelligence (AI technologies have achieved significant attention for enhancing the agility of supply chain management, as well as logistics operations. In this research, a multi-artificial intelligence system, named Integrated Intelligent Logistics System (IILS is proposed. The objective of IILS is to provide quality logistics solutions to achieve high levels of service performance in the logistics industry. The new feature of this agile intelligence system is characterized by the incorporation of intelligence modules through the capabilities of the case-based reasoning, multi-agent, fuzzy logic and artificial neural networks, achieving the optimization of the performance of organizations.

  19. The unknown-unknowns: Revealing the hidden insights in massive biomedical data using combined artificial intelligence and knowledge networks

    Directory of Open Access Journals (Sweden)

    Chris Yoo

    2017-12-01

    Full Text Available Genomic data is estimated to be doubling every seven months with over 2 trillion bases from whole genome sequence studies deposited in Genbank in just the last 15 years alone. Recent advances in compute and storage have enabled the use of artificial intelligence techniques in areas such as feature recognition in digital pathology and chemical synthesis for drug development. To apply A.I. productively to multidimensional data such as cellular processes and their dysregulation, the data must be transformed into a structured format, using prior knowledge to create contextual relationships and hierarchies upon which computational analysis can be performed. Here we present the organization of complex data into hypergraphs that facilitate the application of A.I. We provide an example use case of a hypergraph containing hundreds of biological data values and the results of several classes of A.I. algorithms applied in a popular compute cloud. While multiple, biologically insightful correlations between disease states, behavior, and molecular features were identified, the insights of scientific import were revealed only when exploration of the data included visualization of subgraphs of represented knowledge. The results suggest that while machine learning can identify known correlations and suggest testable ones, the greater probability of discovering unexpected relationships between seemingly independent variables (unknown-unknowns requires a context-aware system – hypergraphs that impart biological meaning in nodes and edges. We discuss the implications of a combined hypergraph-A.I. analysis approach to multidimensional data and the pre-processing requirements for such a system.

  20. Cognitive logical systems with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Liss, E

    1983-09-01

    The simulation of cognitive processes for the purpose of the technical development of learning systems with intelligent behavior is a basic object of the young interdisciplinary cognition science which is based upon artificial intelligence, cognitive psychology, computer science, linguistics and pedagogics. Cognitive systems may be described as knowledge-based logical systems. Based on structural and functional principles of intelligent automata and elementary information processing systems with structural learning capability the future process, machine and robot controls, advising units and fifth generation computers may be developed.

  1. Simulation of CO2 Solubility in Polystyrene-b-Polybutadieneb-Polystyrene (SEBS) by artificial intelligence network (ANN) method

    Science.gov (United States)

    Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.

    2018-05-01

    This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.

  2. Statistical Software and Artificial Intelligence: A Watershed in Applications Programming.

    Science.gov (United States)

    Pickett, John C.

    1984-01-01

    AUTOBJ and AUTOBOX are revolutionary software programs which contain the first application of artificial intelligence to statistical procedures used in analysis of time series data. The artificial intelligence included in the programs and program features are discussed. (JN)

  3. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    This study proposes an application of two techniques of artificial intelligence (AI) ... (2006) applied rainfall–runoff modeling using ANN ... in artificial intelligence, engineering and science .... usually be estimated from a sample of observations.

  4. USE OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN QUALITY IMPROVING PROCESS

    OpenAIRE

    KALİTE İYİLEŞTİRME SÜRECİNDE YAPAY ZEKÃ KAYA; Orhan ENGİN

    2005-01-01

    Today, changing of competition conditions and customer preferences caused to happen many differences in the viewpoint of firms' quality studies. At the same time, improvements in computer technologies accelerated use of artificial intelligence. Artificial intelligence technologies are being used to solve many industry problems. In this paper, we investigated the use of artificial intelligence techniques to solve quality problems. The artificial intelligence techniques, which are used in quali...

  5. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  6. Development of a hybrid system of artificial neural networks and ...

    African Journals Online (AJOL)

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market. ... attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining.

  7. The Nexus between Artificial Intelligence and Economics

    NARCIS (Netherlands)

    van de Gevel, A.J.W.; Noussair, C.N.

    2012-01-01

    This book is organized as follows. Section 2 introduces the notion of the Singularity, a stage in development in which technological progress and economic growth increase at a near-infinite rate. Section 3 describes what artificial intelligence is and how it has been applied. Section 4 considers

  8. Artificial Intelligence Techniques: Applications for Courseware Development.

    Science.gov (United States)

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  9. Artificial Intelligence Applications to Videodisc Technology

    OpenAIRE

    Vries, John K.; Banks, Gordon; McLinden, Sean; Moossy, John; Brown, Melanie

    1985-01-01

    Much of medical information is visual in nature. Since it is not easy to describe pictorial information in linguistic terms, it has been difficult to store and retrieve this type of information. Coupling videodisc technology with artificial intelligence programming techniques may provide a means for solving this problem.

  10. Dynamic Restructuring Of Problems In Artificial Intelligence

    Science.gov (United States)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  11. Counseling, Artificial Intelligence, and Expert Systems.

    Science.gov (United States)

    Illovsky, Michael E.

    1994-01-01

    Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…

  12. Applications of artificial intelligence in engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, D; Adey, R

    1986-01-01

    This book presents the papers given at a conference on the use of artificial intelligence in engineering. Topics considered at the conference included Prolog logic, expert systems, knowledge representation and acquisition, knowledge bases, machine learning, robotics, least-square algorithms, vision systems for robots, natural language, probability, mechanical engineering, civil engineering, and electrical engineering.

  13. Event tree analysis using artificial intelligence techniques

    International Nuclear Information System (INIS)

    Dixon, B.W.; Hinton, M.F.

    1985-01-01

    Artificial Intelligence (AI) techniques used in Expert Systems and Object Oriented Programming are discussed as they apply to Event Tree Analysis. A SeQUence IMPortance calculator, SQUIMP, is presented to demonstrate the implementation of these techniques. Benefits of using AI methods include ease of programming, efficiency of execution, and flexibility of application. The importance of an appropriate user interface is stressed. 5 figs

  14. Artificial Intelligence, Computational Thinking, and Mathematics Education

    Science.gov (United States)

    Gadanidis, George

    2017-01-01

    Purpose: The purpose of this paper is to examine the intersection of artificial intelligence (AI), computational thinking (CT), and mathematics education (ME) for young students (K-8). Specifically, it focuses on three key elements that are common to AI, CT and ME: agency, modeling of phenomena and abstracting concepts beyond specific instances.…

  15. Artificial Intelligence Applications to Fire Management

    Science.gov (United States)

    Don J. Latham

    1987-01-01

    Artificial intelligence could be used in Forest Service fire management and land-use planning to a larger degree than is now done. Robots, for example, could be programmed to monitor for fire and insect activity, to keep track of wildlife, and to do elementary thinking about the environment. Catching up with the fast-changing technology is imperative.

  16. Artificial Intelligence, Counseling, and Cognitive Psychology.

    Science.gov (United States)

    Brack, Greg; And Others

    With the exception of a few key writers, counselors largely ignore the benefits that Artificial Intelligence (AI) and Cognitive Psychology (CP) can bring to counseling. It is demonstrated that AI and CP can be integrated into the counseling literature. How AI and CP can offer new perspectives on information processing, cognition, and helping is…

  17. Employing Artificial Intelligence To Minimise Internet Fraud

    Directory of Open Access Journals (Sweden)

    Edward Wong Sek Khin

    2009-12-01

    Full Text Available Internet fraud is increasing on a daily basis with new methods for extracting funds from government, corporations, businesses in general, and persons appearing almost hourly. The increases in on-line purchasing and the constant vigilance of both seller and buyer have meant that the criminal seems to be one-step ahead at all times. To pre-empt or to stop fraud before it can happen occurs in the non-computer based daily transactions of today because of the natural intelligence of the players, both seller and buyer. Currently, even with advances in computing techniques, intelligence is not the current strength of any computing system of today, yet techniques are available which may reduce the occurrences of fraud, and are usually referred to as artificial intelligence systems.This paper provides an overview of the use of current artificial intelligence (AI techniques as a means of combating fraud.Initially the paper describes how artificial intelligence techniques are employed in systems for detecting credit card fraud (online and offline fraud and insider trading.Following this, an attempt is made to propose the using of MonITARS (Monitoring Insider Trading and Regulatory Surveillance Systems framework which use a combination of genetic algorithms, neural nets and statistical analysis in detecting insider dealing. Finally, the paper discusses future research agenda to the role of using MonITARS system.

  18. Forecasting daily lake levels using artificial intelligence approaches

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal; Nikoofar, Bagher

    2012-04-01

    Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.

  19. Artificial Intelligence and the Future of Defense

    DEFF Research Database (Denmark)

    De Spiegeleire, Stephan; Maas, Matthijs Michiel; Sweijs, Tim

    Artificial intelligence (AI) is on everybody’s minds these days. Most of the world’s leading companies are making massive investments in it. Governments are scrambling to catch up. Every single one of us who uses Google Search or any of the new digital assistants on our smartphones has witnessed...... suggests that the advent of artificial super-intelligence (i.e. AI that is superior across the board to human intelligence), which many experts now put firmly within the longer-term planning horizons of our DSOs, presents us with unprecedented risks but also opportunities that we have to start to explore....... The report contains an overview of the role that ‘intelligence’ - the computational part of the ability to achieve goals in the world - has played in defense and security throughout human history; a primer on AI (what it is, where it comes from and where it stands today - in both civilian and military...

  20. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    OpenAIRE

    Straub, Jeremy; Huber, Justin

    2013-01-01

    An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (p...

  1. Meinongian Semantics and Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    William J. Rapaport

    2013-12-01

    Full Text Available This essay describes computational semantic networks for a philosophical audience and surveys several approaches to semantic-network semantics. In particular, propositional semantic networks (exemplified by SNePS are discussed; it is argued that only a fully intensional, Meinongian semantics is appropriate for them; and several Meinongian systems are presented.

  2. Artificial intelligence and bladder cancer arrays.

    Science.gov (United States)

    Wild, P J; Catto, J W F; Abbod, M F; Linkens, D A; Herr, A; Pilarsky, C; Wissmann, C; Stoehr, R; Denzinger, S; Knuechel, R; Hamdy, F C; Hartmann, A

    2007-01-01

    Non-muscle invasive bladder cancer is a heterogenous disease whose management is dependent upon the risk of progression to muscle invasion. Although the recurrence rate is high, the majority of tumors are indolent and can be managed by endoscopic means alone. The prognosis of muscle invasion is poor and radical treatment is required if cure is to be obtained. Progression risk in non-invasive tumors is hard to determine at tumor diagnosis using current clinicopathological means. To improve the accuracy of progression prediction various biomarkers have been evaluated. To discover novel biomarkers several authors have used gene expression microarrays. Various statistical methods have been described to interpret array data, but to date no biomarkers have entered clinical practice. Here, we describe a new method of microarray analysis using neurofuzzy modeling (NFM), a form of artificial intelligence, and integrate it with artificial neural networks (ANN) to investigate non-muscle invasive bladder cancer array data (n=66 tumors). We develop a predictive panel of 11 genes, from 2800 expressed genes, that can significantly identify tumor progression (average Logrank p = 0.0288) in the analyzed cancers. In comparison, this panel appears superior to those genes chosen using traditional analyses (average Logrank p = 0.3455) and tumor grade (Logrank, p = 0.2475) in this non-muscle invasive cohort. We then analyze panel members in a new non-muscle invasive bladder cancer cohort (n=199) using immunohistochemistry with six commercially available antibodies. The combination of 6 genes (LIG3, TNFRSF6, KRT18, ICAM1, DSG2 and BRCA2) significantly stratifies tumor progression (Logrank p = 0.0096) in the new cohort. We discuss the benefits of the transparent NFM approach with respect to other reported methods.

  3. Artificial intelligence and information-control systems of robots - 87

    International Nuclear Information System (INIS)

    Plander, I.

    1987-01-01

    Independent research areas of artificial intelligence represent the following problems: automatic problem solving and new knowledge discovering, automatic program synthesis, natural language, picture and scene recognition and understanding, intelligent control systems of robots equipped with sensoric subsystems, dialogue of two knowledge systems, as well as studying and modelling higher artificial intelligence attributes, such as emotionality and personality. The 4th Conference draws on the problems treated at the preceding Conferences, and presents the most recent knowledge on the following topics: theoretical problems of artificial intelligence, knowledge-based systems, expert systems, perception and pattern recognition, robotics, intelligent computer-aided design, special-purpose computer systems for artificial intelligence and robotics

  4. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence

    OpenAIRE

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-01

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on m...

  5. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  6. The role of automation and artificial intelligence

    Science.gov (United States)

    Schappell, R. T.

    1983-07-01

    Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.

  7. Introducing artificial intelligence into structural optimization programs

    International Nuclear Information System (INIS)

    Jozwiak, S.F.

    1987-01-01

    Artificial Intelligence /AI/ is defined as the branch of the computer science concerned with the study of the ideas that enable computers to be intelligent. The main purpose of the application of AI in engineering is to develop computer programs which function better as tools for engineers and designers. Many computer programs today have properties which make them inconvenient to their final users and the research carried within the field of AI provides tools and techniques so that these restriction can be removed. The continuous progress in computer technology has lead to developing efficient computer systems which can be applied to more than simple solving sets of equations. (orig.)

  8. Artificial intelligence applications to nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Lee, J.C.; Hassberger, J.A.; Wehe, D.K.

    1987-01-01

    The authors research into applications of artificial intelligence to nuclear reactor diagnostics involves three main areas. In the first area, the authors combine reactor simulation models and expert systems to diagnose the state of the plant. The second area examines ways in which the rule or knowledge base of an intelligent controller can be generated systematically from either fault trees or acquired plant data. Third, efforts are described to develop the capabilities to validate these techniques in a realistic reactor setting. The techniques are applicable to all reactor types, including fast reactors

  9. Seventh Scandinavian Conference on Artificial Intelligence

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Mayoh, Brian Henry; Perram, John

    2001-01-01

    The book covers the seventh Scandinavian Conference on Artificial Intelligence, held at the Maersk Mc-Kinney Moller Institute for Production Technology at the University of Southern Denmark during the period 20-21 February, 2001. It continues the tradition established by SCAI of being one...... of the most important regional AI conferences in Europe, attracting high quality submissions from Scandinavia and the rest of the world, including the Baltic countries. The contents include robotics, sensor/motor intelligence, evolutionary robotics, behaviour-based systems, multi-agent systems, applications...

  10. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  11. Artificial intelligence in Animal Science

    OpenAIRE

    COSTA, Ernane José Xavier

    2009-01-01

    Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11) neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA) tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja conc...

  12. DEVELOPING A HUMAN CONTROLLED MODEL FOR SAFE ARTIFICIAL INTELLIGENCE SYSTEMS

    OpenAIRE

    KÖSE, Utku

    2018-01-01

    Artificial Intelligence is known as one of the most effective research field of nowadays and the future. But rapid rise of Artificial Intelligence and its potential to solve all real world problems autonomously, it has caused also several anxieties. Some scientists think that intelligent systems can reach to a level, which is dangerous for the humankind so because of that some precautions should be taken. So, many sub-research fields like Machine Ethics or Artificial Intelligence Safety have ...

  13. ARTIFICIAL INTELLIGENCE IN DETERMINATION OF MARKETING CUSTOMER STRATEGY

    OpenAIRE

    Markić, Brano; Bijakšić, Sanja; Šantić, Marko

    2015-01-01

    Artificial intelligence is a computer-based analytical process that tends to create computational systems which we would incline to be called intelligent. Expert systems are the most important part of the artificial intelligence from economic perspective. Expert systems attempt to mimic the human thought process including reasoning and optimization. “Knowledge” is represented by a set of “if-then” rules in a form of knowledge base. The results of artificial intelligence system implementation ...

  14. ARTIFICIAL INTELLIGENCE IN DETERMINATION OF MARKETING CUSTOMER STRATEGY

    OpenAIRE

    Markić, Brano; Bijakšić, Sanja; Šantić, Marko

    2016-01-01

    Artificial intelligence is a computer-based analytical process that tends to create computational systems which we would incline to be called intelligent. Expert systems are the most important part of the artificial intelligence from economic perspective. Expert systems attempt to mimic the human thought process including reasoning and optimization. “Knowledge” is represented by a set of “if-then” rules in a form of knowledge base. The results of artificial intelligence system implementation ...

  15. Trimaran Resistance Artificial Neural Network

    Science.gov (United States)

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  16. ARTIFICIAL AND NATURAL INTELLIGENCE IN ANTHROPOGENIC EDUCATIONAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Sergey F. Sergeev

    2013-01-01

    Full Text Available In the present article we show the link between both artificial and natural intelligence and the system’s complexity during the life-cycle. Autopoetic’s type of living systems determines the differences between natural and artificial intelligence; artificial environments have an influence to the intelligence abilities development. We present the «diffusion intellect» concept where the diffusion intellect is considered as a synergistic unity of natural and artificial intellect in organized environments. 

  17. Artificial intelligence in medicine: the challenges ahead.

    Science.gov (United States)

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change.

  18. Artificial intelligence in nuclear power plants

    International Nuclear Information System (INIS)

    Haapanen, P.J.

    1990-01-01

    The IAEA Specialists' Meeting on Artificial Intelligence in Nuclear Power Plants was arranged in Helsink/Vantaa, Finland, on October 10-12, 1989, under auspices of the International Working Group of Nuclear Power Plant Control and Instrumentation of the International Atomic Energy Agency (IAEA/IWG NPPCI). Technical Research Centre of Finland together with Imatran Voima Oy and Teollisuuden Voima Oy answered for the practical arrangements of the meeting. 105 participants from 17 countries and 2 international organizations took part in the meeting and 58 papers were submitted for presentation. These papers gave a comprehensive picture of the recent status and further trends in applying the rapidly developing techniques of artificial intelligence and expert systems to improve the quality and safety in designing and using of nuclear power worldwide

  19. Artificial intelligence applications for operation and maintenance

    International Nuclear Information System (INIS)

    Itoh, M.; Tai, I.; Monta, K.; Sekimizu, K.

    1987-01-01

    A nuclear power plant as a typical man-machine system of the modern industry needs an efficient human window through which operators can observe every necessary detail of the plant for its safe and reliable operation. Much efforts have been devoted to the development of the computerized operator support systems (COSS). Recent development of artificial intelligence (AI) seems to offer new possibility to strengthen the performance of the COSS such as more powerful diagnosis and procedure synthesis and user friendly man-machine interfaces. From this point of view, a national project of Advanced Man-Machine System Development for Nuclear Power Plants has been carried out. Artificial intelligence application to nuclear power plant operation and maintenance is also selected as a major theme for the promotion of research and development on frontiers in the recently revised long term national program for development and utilization of nuclear energy in JAPAN

  20. Artificial intelligence - NASA. [robotics for Space Station

    Science.gov (United States)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  1. Rural architecture between artificial intelligence and natural intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Cennamo, M.; Palma, P. di; Ricciardelli, A. [University of Naples Frederico II (Italy). Dept. of Configurazione e Attuazione dell Architettra

    2000-02-01

    Following the field of research carried out and reported in the Second International Conference for Teachers of Architecture held in Florence on October 16, 17 and 18, 1997, which stated the central position of Architectural project in relation to Human Intelligence, Natural Intelligence and Artificial Intelligence, the present paper suggests a phase of application of the theoretical assumptions to spacial models paradigmatic of the complexity of projects and building technique, as well as of the relationship between man-made environment and natural one. Among the different typologies in architecture, this research focuses on the rural buildings in Campania, mainly on the ones in the Vesuvius area, as those are the most suitable to be studied and salvaged with the help of biology, mathematics and high engineering. (author)

  2. Artificial Intelligence Research at General Electric

    OpenAIRE

    Sweet, Larry

    1985-01-01

    General Electric is engaged in a broad range of research and development activities in artificial intelligence, with the dual objectives of improving the productivity of its internal operations and of enhancing future products and services in its aerospace, industrial, aircraft engine, commercial, and service sectors. Many of the applications projected for AI within GE will require significant advances in the state of the art in advanced inference, formal logic, and architectures for real-tim...

  3. Artificial Intelligence for the Bang! Game

    OpenAIRE

    Daniláková, Monika

    2017-01-01

    This work explores artificial intelligence (AI) algorithms for the game Bang!, a Wild West-themed card game created by Italian game designer Emiliano Sciarra. The aim of this work was to design three different AIs for this game and to compare them theoretically and experimentally. First, we analyzed game Bang! with regards to game theory, and researched some of the AI algorithms used in similar games. We then designed three different AIs algorithms and compared their advantages and disadvanta...

  4. Artificial Intelligence techniques for big data analysis

    OpenAIRE

    Aditya Khatri

    2017-01-01

    During my stay in Salamanca (Spain), I was fortunate enough to participate in the BISITE Research Group of the University of Salamanca. The University of Salamanca is the oldest university in Spain and in 2018 it celebrates its 8th centenary. As a computer science researcher, I participated in one of the many international projects that the research group has active, especially in big data analysis using Artificial Intelligence (AI) techniques. AI is one of BISITE's main lines of rese...

  5. Artificial Intelligence and Virology - quo vadis.

    Science.gov (United States)

    Shapshak, Paul; Somboonwit, Charurut; Sinnott, John T

    2017-01-01

    Artificial Intelligence (AI), robotics, co-robotics (cobots), quantum computers (QC), include surges of scientific endeavor to produce machines (mechanical and software) among numerous types and constructions that are accelerating progress to defeat infectious diseases. There is a plethora of additional applications and uses of these methodologies and technologies for the understanding of biomedicine through bioinformation discovery. Therefore, we briefly outline the use of such techniques in virology.

  6. Artificial Intelligence Research in Australia -- A Profile

    OpenAIRE

    Smith, Elizabeth; Whitelaw, John

    1987-01-01

    Does the United States have a 51st state called Australia? A superficial look at the artificial intelligence (AI) research being done here could give that impression. A look beneath the surface, though, indicates some fundamental differences and reveals a dynamic and rapidly expanding AI community. General awareness of the Australian AI research community has been growing slowly for some time. AI was once considered a bit esoteric -- the domain of an almost lunatic fringe- but the large gover...

  7. Applications of artificial intelligence to scientific research

    Science.gov (United States)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  8. Artificial intelligence approach to legal reasoning

    International Nuclear Information System (INIS)

    Gardner, A.V.D.L.

    1984-01-01

    For artificial intelligence, understanding the forms of human reasoning is a central goal. Legal reasoning is a form that makes a new set of demands on artificial intelligence methods. Most importantly, a computer program that reasons about legal problems must be able to distinguish between questions it is competent to answer and questions that human lawyers could seriously argue either way. In addition, a program for analyzing legal problems should be able to use both general legal rules and decisions in past cases; and it should be able to work with technical concepts that are only partly defined and subject to shifts of meaning. Each of these requirements has wider applications in artificial intelligence, beyond the legal domain. This dissertation presents a computational framework for legal reasoning, within which such requirements can be accommodated. The development of the framework draws significantly on the philosophy of law, in which the elucidation of legal reasoning is an important topic. A key element of the framework is the legal distinction between hard cases and clear cases. In legal writing, this distinction has been taken for granted more often than it has been explored. Here, some initial heuristics are proposed by which a program might make the distinction

  9. Teachers and artificial intelligence. The Logo connection.

    Science.gov (United States)

    Merbler, J B

    1990-12-01

    This article describes a three-phase program for training special education teachers to teach Logo and artificial intelligence. Logo is derived from the LISP computer language and is relatively simple to learn and use, and it is argued that these factors make it an ideal tool for classroom experimentation in basic artificial intelligence concepts. The program trains teachers to develop simple demonstrations of artificial intelligence using Logo. The material that the teachers learn to teach is suitable as an advanced level topic for intermediate- through secondary-level students enrolled in computer competency or similar courses. The material emphasizes problem-solving and thinking skills using a nonverbal expressive medium (Logo), thus it is deemed especially appropriate for hearing-impaired children. It is also sufficiently challenging for academically talented children, whether hearing or deaf. Although the notion of teachers as programmers is controversial, Logo is relatively easy to learn, has direct implications for education, and has been found to be an excellent tool for empowerment-for both teachers and children.

  10. Artificial intelligence approach to accelerator control systems

    International Nuclear Information System (INIS)

    Schultz, D.E.; Hurd, J.W.; Brown, S.K.

    1987-01-01

    An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms

  11. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    Science.gov (United States)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  12. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Science.gov (United States)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  13. Synthetic biology routes to bio-artificial intelligence

    Science.gov (United States)

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  14. Using Artificial Intelligence to Retrieve the Optimal Parameters and Structures of Adaptive Network-Based Fuzzy Inference System for Typhoon Precipitation Forecast Modeling

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-01-01

    Full Text Available This study aims to construct a typhoon precipitation forecast model providing forecasts one to six hours in advance using optimal model parameters and structures retrieved from a combination of the adaptive network-based fuzzy inference system (ANFIS and artificial intelligence. To enhance the accuracy of the precipitation forecast, two structures were then used to establish the precipitation forecast model for a specific lead-time: a single-model structure and a dual-model hybrid structure where the forecast models of higher and lower precipitation were integrated. In order to rapidly, automatically, and accurately retrieve the optimal parameters and structures of the ANFIS-based precipitation forecast model, a tabu search was applied to identify the adjacent radius in subtractive clustering when constructing the ANFIS structure. The coupled structure was also employed to establish a precipitation forecast model across short and long lead-times in order to improve the accuracy of long-term precipitation forecasts. The study area is the Shimen Reservoir, and the analyzed period is from 2001 to 2009. Results showed that the optimal initial ANFIS parameters selected by the tabu search, combined with the dual-model hybrid method and the coupled structure, provided the favors in computation efficiency and high-reliability predictions in typhoon precipitation forecasts regarding short to long lead-time forecasting horizons.

  15. Artificial intelligence in wireless communications

    CERN Document Server

    Rondeau, Thomas W

    2009-01-01

    This cutting-edge resource offers practical overview of cognitive radio, a paradigm for wireless communications in which a network or a wireless node changes its transmission or reception parameters. The alteration of parameters is based on the active monitoring of several factors in the external and internal radio environment. This book offers a detailed description of cognitive radio and its individual parts. Practitioners learn how the basic processing elements and their capabilities are implemented as modular components. Moreover, the book explains how each component can be developed and t

  16. Application of artificial intelligence to electrofacies identification: neural networks versus discriminant analysis; Aplicacao de inteligencia artificial na identificacao de eletrofacies redes neuroniais versus analise discriminante

    Energy Technology Data Exchange (ETDEWEB)

    Silva Rodrigues, F da [PETROBRAS, Rio de Janeiro, RJ (Brazil); Queiroz Neto, I.A. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1992-07-01

    Electro-facies are identified by neural network trained with well log and core data. Differences between neural network and expert system are discussed. According the author, the combination of neural network computing and traditional computing methods, like discriminant analysis, can help in the solution of many problems in electro-facies identification. 5 figs., 1 tab., 11 refs.

  17. A Multidisciplinary Artificial Intelligence Model of an Affective Robot

    Directory of Open Access Journals (Sweden)

    Hooman Aghaebrahimi Samani

    2012-03-01

    Full Text Available A multidisciplinary approach to a novel artificial intelligence system for an affective robot is presented in this paper. The general objective of the system is to develop a robotic system which strives to achieve a high level of emotional bond between humans and robot by exploring human love. Such a relationship is a contingent process of attraction, affection and attachment from humans towards robots, and the belief of the vice versa from robots to humans. The advanced artificial intelligence of the system includes three modules, namely Probabilistic Love Assembly (PLA, based on the psychology of love, Artificial Endocrine System (AES, based on the physiology of love, and Affective State Transition (AST, based on emotions. The PLA module employs a Bayesian network to incorporate psychological parameters of affection in the robot. The AES module employs artificial emotional and biological hormones via a Dynamic Bayesian Network (DBN. The AST module uses a novel transition method for handling affective states of the robot. These three modules work together to manage emotional behaviours of the robot.

  18. The Birth of Artificial Intelligence: First Conference on Artificial Intelligence in Paris in 1951?

    OpenAIRE

    Bruderer , Herbert

    2016-01-01

    International audience; The 1956 Dartmouth conference is often considered as the cradle of artificial intelligence. There is a controversy on its origin. Some historians of computing believe that Turing or Zuse were the fathers of machine intelligence. However, the first working chess-playing automaton was developed by Torres Quevedo by 1912. Moreover, there was a large and important (but forgotten) European conference on computing and human thinking in Paris in 1951.

  19. BRAIN. Broad Research in Artificial Intelligence and Neuroscience-Are We Safe Enough in the Future of Artificial Intelligence? A Discussion on Machine Ethics and Artificial Intelligence Safety

    OpenAIRE

    Utku Köse

    2018-01-01

    Nowadays, there is a serious anxiety on the existence of dangerous intelligent systems and it is not just a science-fiction idea of evil machines like the ones in well-known Terminator movie or any other movies including intelligent robots – machines threatening the existence of humankind. So, there is a great interest in some alternative research works under the topics of Machine Ethics, Artificial Intelligence Safety and the associated research topics like Future of Artificial I...

  20. EU copyright protection of works created by artificial intelligence systems

    OpenAIRE

    Bøhler, Helene Margrethe

    2017-01-01

    This thesis is concerned with copyright regulation of works created by artificial intelligence systems. The rapid advances in artificial intelligence are calling into question some of the fundamental assumptions upon which intellectual property law rests. Currently, the European framework of copyright law does not take non-human innovation into account. Meanwhile, advances in artificial intelligence are quickly making machine-generation of creative works a reality. Institutions of the Europea...

  1. The impact of artificial intelligence on the world economy

    OpenAIRE

    Kuprevich, T. S.

    2017-01-01

    In the article the potential benefits and opportunities offered by AI in the world economy are considered. In the course of the research benefits and tendencies of artificial intelligence in the world economy were revealed, the main directions of development and barriers of artificial intelligence adoption are analyzed and revealed. Nowadays artificial intelligence (AI) is going mainstream, driven by machine learning, big data and cloud computing.

  2. Medical image diagnosis of liver cancer using artificial intelligence

    International Nuclear Information System (INIS)

    Kondo, Tadashi; Ueno, Junji; Takao, Shoichiro

    2010-01-01

    A revised Group Method of Data Handling (GMDH)-type neural network algorithm using artificial intelligence technology for medical image diagnosis is proposed and is applied to medical image diagnosis of liver cancer. In this algorithm, the knowledge base for medical image diagnosis are used for organizing the neural network architecture for medical image diagnosis. Furthermore, the revised GMDH-type neural network algorithm has a feedback loop and can identify the characteristics of the medical images accurately using feedback loop calculations. The optimum neural network architecture fitting the complexity of the medical images is automatically organized so as to minimize the prediction error criterion defined as Prediction Sum of Squares (PSS). It is shown that the revised GMDH-type neural network can be easily applied to the medical image diagnosis. (author)

  3. Does Artificial Neural Network Support Connectivism's Assumptions?

    Science.gov (United States)

    AlDahdouh, Alaa A.

    2017-01-01

    Connectivism was presented as a learning theory for the digital age and connectivists claim that recent developments in Artificial Intelligence (AI) and, more specifically, Artificial Neural Network (ANN) support their assumptions of knowledge connectivity. Yet, very little has been done to investigate this brave allegation. Does the advancement…

  4. Non-Newtonian Aspects of Artificial Intelligence

    Science.gov (United States)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  5. Trends in telemedicine utilizing artificial intelligence

    Science.gov (United States)

    Pacis, Danica Mitch M.; Subido, Edwin D. C.; Bugtai, Nilo T.

    2018-02-01

    With the growth and popularity of the utilization of artificial intelligence (AI) in several fields and industries, studies in the field of medicine have begun to implement its capabilities in handling and analyzing data to telemedicine. With the challenges in the implementation of telemedicine, there has been a need to expand its capabilities and improve procedures to be specialized to solve specific problems. The versatility and flexibility of both AI and telemedicine gave the endless possibilities for development and these can be seen in the literature reviewed in this paper. The trends in the development of the utilization of this technology can be classified in to four: patient monitoring, healthcare information technology, intelligent assistance diagnosis, and information analysis collaboration. Each trend will be discussed and presented with examples of recent literature and the problems they aim to address. Related references will also be tabulated and categorized to see the future and potential of this current trend in telemedicine.

  6. Application of artificial intelligence in coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y.; Deng, J.; Liu, H. [China University of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2001-11-01

    The general situation of using AI (Artificial intelligence) technology in coal preparation was introduced. The expert systems of coal preparation plant design, the expert management system of coal preparation plant, and the intelligent data-drawing bank were discussed. Some opinions about their foundation and method of knowledge expressing, inference, knowledge discovery of databases were presented. It is pointed out that an industrial system such as coal preparation is big and complex, so it is necessary and also difficult to use AI technology in these systems. Because the types of knowledge are different, there are various knowledge expressions and model of knowledge inference, hence only comprehensive methods suitable for the characters of the system may be used. 14 refs., 5 figs.

  7. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  8. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  9. Using Artificial Intelligence Techniques to Implement a Multifactor Authentication System

    Directory of Open Access Journals (Sweden)

    Jackson Phiri

    2011-08-01

    Full Text Available The recent years have seen a rise in the number of cases of cyber-crime committed through identity theft and fraud. To address this problem, this paper uses adaptive neural-fuzzy inference system, fuzzy logic and artificial neural network to implement a multifactor authentication system through a technique of information fusion. To begin with, the identity attributes are mined using the three corpora from three major sources namely the social networks, a set of questionnaires and application forms from the various services offered both in the real and cyberspace. The statistical information generated by the corpora is then used to compose an identity attribute metric model. The composed identity attributes metrics values classified as biometrics, device metrics and pseudo metrics are then fused at the score level through a technique of information fusion in a multifactor authentication system by using each of the above artificial intelligence technologies and the results compared.

  10. Harnessing Artificial Intelligence the European Way

    OpenAIRE

    Djeffal, Christian

    2018-01-01

    Will 10 April 2018 be remembered by many as the day of Mark Zuckerberg’s testimony before the US Senate? The hearing was covered by the media in all aspects down to the tie he was wearing. But that was not the only important event taking place on that day, and maybe not even the most important one: I am talking about the Declaration on Cooperation in Artificial Intelligence, signed on the same day but hardly noticed. And yet its impact in the long term might exceed that of the current scandal...

  11. Markov decision processes in artificial intelligence

    CERN Document Server

    Sigaud, Olivier

    2013-01-01

    Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr

  12. Beyond Artificial Intelligence toward Engineered Psychology

    Science.gov (United States)

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  13. Optimizing radiologic workup: An artificial intelligence approach

    International Nuclear Information System (INIS)

    Swett, H.A.; Rothschild, M.; Weltin, G.G.; Fisher, P.R.; Miller, P.L.

    1987-01-01

    The increasing complexity of diagnostic imaging is presenting an ever-expanding variety of radiologic test options to referring clinicians, making it more difficult for them to plan efficient workup. Diagnosis-oriented reimbursement systems are providing new incentives for hospitals and radiologists to use imaging modalities judiciously. This paper describes DxCON, a developmental artificial intelligence-based computer system, which gives advice to physicians about the optimum sequencing of radiologic tests. DxCON analyzes a physician's proposed workup plan and discusses its strengths and weaknesses. The domain chosen for this research is the imaging workup of obstructive jaundice

  14. Human-Level Artificial Intelligence? Be Serious!

    OpenAIRE

    Nilsson, Nils J.

    2005-01-01

    I claim that achieving real human-level artificial intelligence would necessarily imply that most of the tasks that humans perform for pay could be automated. Rather than work toward this goal of automation by building special-purpose systems, I argue for the development of general-purpose, educable systems that can learn and be taught to perform any of the thousands of jobs that humans can perform. Joining others who have made similar proposals, I advocate beginning with a system that has mi...

  15. The Third Age of Artificial Intelligence

    OpenAIRE

    Miailhe, Nicolas; Hodes, Cyrus

    2018-01-01

    If the definitional boundaries of Artificial Intelligence (AI) remains contested, experts agree that we are witnessing a revolution. “Is this time different?” is the question that they worryingly argue over when they analyze the socio-economic impact of the AI revolution as compared with the other industrial revolutions of the 19th and 20th centuries. This Schumpeterian wave may prove to be a creative destruction raising incomes, enhancing quality of life for all and generating previously uni...

  16. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  17. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  18. Quantum neuromorphic hardware for quantum artificial intelligence

    Science.gov (United States)

    Prati, Enrico

    2017-08-01

    The development of machine learning methods based on deep learning boosted the field of artificial intelligence towards unprecedented achievements and application in several fields. Such prominent results were made in parallel with the first successful demonstrations of fault tolerant hardware for quantum information processing. To which extent deep learning can take advantage of the existence of a hardware based on qubits behaving as a universal quantum computer is an open question under investigation. Here I review the convergence between the two fields towards implementation of advanced quantum algorithms, including quantum deep learning.

  19. Parallel processing for artificial intelligence 2

    CERN Document Server

    Kumar, V; Suttner, CB

    1994-01-01

    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  20. Artificial intelligence applied to process signal analysis

    Science.gov (United States)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  1. Artificial intelligence applications at the ICPP

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1989-01-01

    Westinghouse Idaho Nuclear Company (WINCO) initiated an aggressive program for artificial intelligence (AI) expert system implementations in 1985. The first expert system, Safety Analysis Methods Advisor (SAMA) was completed in 1986 to help operational safety analysts select analysis methodologies for safety analysis reports. The SAMA expert system was implemented as a rule-based system using a commercial expert system shell. The major benefit of the system is for training new safety analysts. The first successful implementation launched three other expert system projects: a process alarm filtering system, a process control advisor, and a mass spectrometer trouble-shooting advisor. This paper describes the current status of these projects

  2. Enhancing nuclear power plant performance through the use of artificial intelligence

    International Nuclear Information System (INIS)

    Maren, A.J.; Miller, L.F.; Tsoukalas, L.H.; Uhrig, R.E.; Upadhyaya, B.R.

    1992-01-01

    The objective of this research was to advance the state-of-the-art of applying artificial intelligence technology (both expert systems and neural networks) to enhancing the performance (safety, efficiency, control and management) of nuclear power plants. A second, but equally important objective, was to build a broadly based critical mass of expertise in the artificial intelligence field that can be brought to bear on the technology of nuclear power plants

  3. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2013-05-01

    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  4. A Progress Report on Artificial Intelligence: Hospital Applications and a Review of the Artificial Intelligence Marketplace

    OpenAIRE

    Brenkus, Lawrence M.

    1984-01-01

    Artificial intelligence applications are finally beginning to move from the university research laboratory into commercial use. Before the end of the century, this new computer technology will have profound effects on our work, economy, and lives. At present, relatively few products have appeared in the hospital, but we can anticipate significant product offerings in instrumentation and affecting hospital administration within 5 years.

  5. Artificial intelligence expert systems with neural network machine learning may assist decision-making for extractions in orthodontic treatment planning.

    Science.gov (United States)

    Takada, Kenji

    2016-09-01

    New approach for the diagnosis of extractions with neural network machine learning. Seok-Ki Jung and Tae-Woo Kim. Am J Orthod Dentofacial Orthop 2016;149:127-33. Not reported. Mathematical modeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy.

    Science.gov (United States)

    Hueso, Miguel; Vellido, Alfredo; Montero, Nuria; Barbieri, Carlo; Ramos, Rosa; Angoso, Manuel; Cruzado, Josep Maria; Jonsson, Anders

    2018-02-01

    Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve the patient's quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters, and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for the assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of "big data" and will require real-time predictive models. These may come from the fields of machine learning and computational intelligence, both included in artificial intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of artificial intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in artificial intelligence and machine learning, a scientific meeting was organized in the Hospital Universitari Bellvitge (L'Hospitalet, Barcelona). As an outcome of that meeting, the aim of this review is to investigate artificial intel ligence experiences on dialysis, with a focus on potential barriers, challenges, and prospects for future applications of these technologies. Artificial intelligence research on dialysis is still in an early stage, and the main challenge relies on interpretability and/or comprehensibility of data models when applied to decision making. Artificial neural networks and medical decision support systems have been used to make predictions about anemia, total body water, or intradialysis hypotension and are promising

  7. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  8. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  9. artificial neural network model for low strength rc beam shear capacity

    African Journals Online (AJOL)

    User

    RESEARCH PAPER. Keywords: Shear strength, reinforced concrete, Artificial Neural Network, design equations ... searchers using artificial intelligence to im- prove on theoretical ...... benefit to humanity or a waste of time?” The. Structural ...

  10. Artificial intelligence for the CTA Observatory scheduler

    Science.gov (United States)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  11. Teaching artificial intelligence to read electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Powers, David

    2016-11-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Predicting asthma exacerbations using artificial intelligence.

    Science.gov (United States)

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  13. Artificial intelligence. Fears of an AI pioneer.

    Science.gov (United States)

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.

  14. Artificial Intelligence Research Branch future plans

    Science.gov (United States)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  15. Simulation of Artificial Intelligence for Automotive Air-conditioning System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-mei; CHEN You-hua; CHEN Zhi-jiu

    2002-01-01

    The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.

  16. PLANNING IN ARTIFICIAL INTELLIGENCE AND ROBOTICS (PAIR

    Directory of Open Access Journals (Sweden)

    Editorial, Foreword

    2016-11-01

    Full Text Available September 18th, 2016Deggendorf, Germanyhttp://robotics.fel.cvut.cz/pair16/Organized by: Artificial Intelligence Center Department of Computer Science Faculty of Electrical Engineering Czech Technical University in PragueTechnicka 2, Prague 6, 166 27, Czech RepublicGuest editors:Jan Faigl (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueJiří Vokřínek (Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in PragueScientific comittee:D. Belter (Poznań University of Technology, PolandW. Dorner (Technische Hochschule Deggendorf, GermanyJ. Faigl (Czech Technical University in PragueT. Krajník (University of Lincoln, United KingdomA. Komenda (Czech Technical University in PragueG. Kupris (Technische Hochschule Deggendorf, GermanyM. Rollo (Czech Technical University in PragueM. Saska (Czech Technical University in PragueJ. Vokřínek (Czech Technical University in PragueV. Vonásek (Czech Technical University in PragueK. Walas (Poznań University of Technology, Poland Foreword:The third year of the student conference on “Planning in Artificial Intelligence and Robotics” (PAIR continues in joining young researchers and students interested in robotics and artificial intelligence. In 2016, we follow the schema of the last year as a joint event with the RoboTour competition in Deggendorf, Germany. Thanks to the great collaboration with Gerald Kupris and Wolfgang Donner from Technische Hochschule Deggendorf and support from Czech Technical University under project No. SVK 26/16/F3 and Bayerisches Staatsministerium der Finanzen, für Landesentwicklung und Heimat, we have been able to provide accommodations and travel support to participants and an invited speaker. Fourteen papers have accepted and listed in the conference program. The papers have been authored by students from Central Europe

  17. Smart Collections: Can Artificial Intelligence Tools and Techniques Assist with Discovering, Evaluating and Tagging Digital Learning Resources?

    Science.gov (United States)

    Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen

    2010-01-01

    This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…

  18. Applications of artificial intelligence, including expert systems

    International Nuclear Information System (INIS)

    Abbott, M.B.

    1989-01-01

    When Artificial Intelligence is applied to a complex physical system like a nuclear plant it is useful to distinguish between two rather distinct and different intelligent views of such a plant. The first view may be characterised as ''the designer's view''. This is the view of the plant as it was originally conceived and designed; it is essentially a once-and-for-all static view, corresponding to the implicit assumption of an ''ageless plant'', or at most a plant which ages in a preconceived, preset manner. The second view, which may be characterised as ''the operators view'', has to do more with a real-world, ageing plant. It is a more dynamic view, which sees the ageing process as one in which unforeseen, and possibly unforeseeable events may occur at equally unforeseen, and possibly unforeseeable times. The first view is predominantly a way of thinking about the plant, while the second is very often more a way of feeling about it. It should be emphasized that both ways are ways of intelligence. (author)

  19. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  20. Brain anatomical network and intelligence.

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2009-05-01

    Full Text Available Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.

  1. The coming of age of artificial intelligence in medicine

    NARCIS (Netherlands)

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in

  2. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  3. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  4. Expertise, Task Complexity, and Artificial Intelligence: A Conceptual Framework.

    Science.gov (United States)

    Buckland, Michael K.; Florian, Doris

    1991-01-01

    Examines the relationship between users' expertise, task complexity of information system use, and artificial intelligence to provide the basis for a conceptual framework for considering the role that artificial intelligence might play in information systems. Cognitive and conceptual models are discussed, and cost effectiveness is considered. (27…

  5. A critique of artificial intelligence | Airoboman | Sophia: An African ...

    African Journals Online (AJOL)

    ... for mental attribution to further buttress the distinction between man and automata. Key Words: Cybernetics, Artificial intelligence, automata, virtual reality, consciousness, mind, the criterion of the mental. Key Words: Cybernetics, Artificial intelligence, automata, virtual reality, consciousness, mind, the criterion of the mental ...

  6. Ethico-epistemological implications of artificial intelligence for ...

    African Journals Online (AJOL)

    We argued for a re-direction of AI. research and suggested a humanization of Artificial Intelligence that cloaks technoscientific innovations with humanistic life jackets for man‟s preservation. The textual analysis method is adopted for this research. Key words: Ethics, Epistemology, Artificial Intelligence, Humanity.

  7. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques

    International Nuclear Information System (INIS)

    Ortiz R, J. M.; Martinez B, M. R.; Vega C, H. R.; Gallego D, E.; Lorente F, A.; Mendez V, R.; Los Arcos M, J. M.; Guerrero A, J. E.

    2011-01-01

    With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks (Ann) have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Ann still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning Ann parameters. In recent years the use of hybrid technologies, combining Ann and genetic algorithms, has been utilized to. In this work, several Ann topologies were trained and tested using Ann and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out. (Author)

  8. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    Science.gov (United States)

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-04-12

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  9. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    Directory of Open Access Journals (Sweden)

    Graciliano Nicolás Marichal

    2016-04-01

    Full Text Available In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles, where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  10. Artificial Intelligence Applications to High-Technology Training.

    Science.gov (United States)

    Dede, Christopher

    1987-01-01

    Discusses the use of artificial intelligence to improve occupational instruction in complex subjects with high performance goals, such as those required for high-technology jobs. Highlights include intelligent computer assisted instruction, examples in space technology training, intelligent simulation environments, and the need for adult training…

  11. What can the brain teach us about building artificial intelligence?

    Science.gov (United States)

    George, Dileep

    2017-01-01

    Lake et al. offer a timely critique on the recent accomplishments in artificial intelligence from the vantage point of human intelligence and provide insightful suggestions about research directions for building more human-like intelligence. Because we agree with most of the points they raised, here we offer a few points that are complementary.

  12. Cotton genotypes selection through artificial neural networks.

    Science.gov (United States)

    Júnior, E G Silva; Cardoso, D B O; Reis, M C; Nascimento, A F O; Bortolin, D I; Martins, M R; Sousa, L B

    2017-09-27

    Breeding programs currently use statistical analysis to assist in the identification of superior genotypes at various stages of a cultivar's development. Differently from these analyses, the computational intelligence approach has been little explored in genetic improvement of cotton. Thus, this study was carried out with the objective of presenting the use of artificial neural networks as auxiliary tools in the improvement of the cotton to improve fiber quality. To demonstrate the applicability of this approach, this research was carried out using the evaluation data of 40 genotypes. In order to classify the genotypes for fiber quality, the artificial neural networks were trained with replicate data of 20 genotypes of cotton evaluated in the harvests of 2013/14 and 2014/15, regarding fiber length, uniformity of length, fiber strength, micronaire index, elongation, short fiber index, maturity index, reflectance degree, and fiber quality index. This quality index was estimated by means of a weighted average on the determined score (1 to 5) of each characteristic of the HVI evaluated, according to its industry standards. The artificial neural networks presented a high capacity of correct classification of the 20 selected genotypes based on the fiber quality index, so that when using fiber length associated with the short fiber index, fiber maturation, and micronaire index, the artificial neural networks presented better results than using only fiber length and previous associations. It was also observed that to submit data of means of new genotypes to the neural networks trained with data of repetition, provides better results of classification of the genotypes. When observing the results obtained in the present study, it was verified that the artificial neural networks present great potential to be used in the different stages of a genetic improvement program of the cotton, aiming at the improvement of the fiber quality of the future cultivars.

  13. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  14. Analyze of the Measuring Performance for Artificially Business Intelligent Systems

    OpenAIRE

    Vatuiu, Teodora

    2007-01-01

    This paper analyzes the measuring performance of artificially business intelligent systems. Thousands of persons-years have been devoted to the research and development in the vari¬ous aspects of artificially intelligent systems. Much progress has been attained. However, there has been no means of evaluating the progress of the field. How can we assess the cur¬rent state of the science? Most of business intelligent systems are beginning to be deployed commercially. How can a commercial buyer ...

  15. Artificial Intelligence and Urbanization: The Rise of the Elysium City

    OpenAIRE

    MUNOZ, J. Mark; NAQVI, Al

    2017-01-01

    Abstract. From ancient times, Greek religion introduced Elysium as a heavenly place to which admission was exclusively reserved for mortals related to gods, heroes, and those blessed by gods. We argue that the rise of artificial intelligence technology will lead to the creation of Elysium cities. Elysium cities agents will be technologists, technocrats, intelligent machines, and wealthy capitalists. These cities will be the first embracers of the artificial intelligence technology and will do...

  16. Artificial intelligence in molecular biology: a review and assessment.

    Science.gov (United States)

    Rawlings, C J; Fox, J P

    1994-06-29

    Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.

  17. Artificial intelligence implementation in the APS process diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Guessasma, Sofiane; Salhi, Zahir; Montavon, Ghislain; Gougeon, Patrick; Coddet, Christian

    2004-07-25

    Thermal spray process is a technique of coating manufacturing implementing a wide variety of materials and processes. This technique is characterized by up to 150 processing parameters influencing the coating properties. The control of the coating quality is needed through the consideration of a robust methodology that takes into account the parameter interdependencies, the process variability and offers the ability to quantify the processing parameter-process response relationships. The aim of this work is to introduce a new approach based on artificial intelligence responding to these requirements. A detailed procedure is presented considering an artificial neural network (ANN) structure which encodes implicitly the physical phenomena governing the process. The implementation of such a structure was coupled to experimental results of an optic sensor controlling the powder particle fusion state before the coating formation. The optimization steps were discussed and the predicted results were compared to the experimental ones allowing the identification of the control factors.

  18. Artificial intelligence implementation in the APS process diagnostic

    International Nuclear Information System (INIS)

    Guessasma, Sofiane; Salhi, Zahir; Montavon, Ghislain; Gougeon, Patrick; Coddet, Christian

    2004-01-01

    Thermal spray process is a technique of coating manufacturing implementing a wide variety of materials and processes. This technique is characterized by up to 150 processing parameters influencing the coating properties. The control of the coating quality is needed through the consideration of a robust methodology that takes into account the parameter interdependencies, the process variability and offers the ability to quantify the processing parameter-process response relationships. The aim of this work is to introduce a new approach based on artificial intelligence responding to these requirements. A detailed procedure is presented considering an artificial neural network (ANN) structure which encodes implicitly the physical phenomena governing the process. The implementation of such a structure was coupled to experimental results of an optic sensor controlling the powder particle fusion state before the coating formation. The optimization steps were discussed and the predicted results were compared to the experimental ones allowing the identification of the control factors

  19. A genetic-neural artificial intelligence approach to resins optimization

    International Nuclear Information System (INIS)

    Cabral, Denise C.; Barros, Marcio P.; Lapa, Celso M.F.; Pereira, Claudio M.N.A.

    2005-01-01

    This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)

  20. The application of hybrid artificial intelligence systems for forecasting

    Science.gov (United States)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  1. Artificial intelligence in sports biomechanics: new dawn or false hope?

    Science.gov (United States)

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  2. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  3. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  4. Artificial Intelligence based technique for BTS placement

    International Nuclear Information System (INIS)

    Alenoghena, C O; Emagbetere, J O; 1 Minna (Nigeria))" data-affiliation=" (Department of Telecommunications Engineering, Federal University of Techn.1 Minna (Nigeria))" >Aibinu, A M

    2013-01-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  5. Artificial Intelligence Support for Computational Chemistry

    Science.gov (United States)

    Duch, Wlodzislaw

    Possible forms of artificial intelligence (AI) support for quantum chemistry are discussed. Questions addressed include: what kind of support is desirable, what kind of support is feasible, what can we expect in the coming years. Advantages and disadvantages of current AI techniques are presented and it is argued that at present the memory-based systems are the most effective for large scale applications. Such systems may be used to predict the accuracy of calculations and to select the least expensive methods and basis sets belonging to the same accuracy class. Advantages of the Feature Space Mapping as an improvement on the memory based systems are outlined and some results obtained in classification problems given. Relevance of such classification systems to computational chemistry is illustrated with two examples showing similarity of results obtained by different methods that take electron correlation into account.

  6. Clinical Note Creation, Binning, and Artificial Intelligence.

    Science.gov (United States)

    Deliberato, Rodrigo Octávio; Celi, Leo Anthony; Stone, David J

    2017-08-03

    The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. ©Rodrigo Octávio Deliberato, Leo Anthony Celi, David J Stone. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.08.2017.

  7. Artificial intelligence in the materials processing laboratory

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  8. An artificial intelligence approach towards disturbance analysis

    International Nuclear Information System (INIS)

    Fiedler, U.; Lindner, A.; Baldeweg, F.; Klebau, J.

    1986-01-01

    Scale and degree of sophistication of technological plants, e.g. nuclear power plants, have been essentially increased during the last decades. Conventional disturbance analysis systems have proved to work successfully in well-known situations. But in cases of emergencies, the operator needs more advanced assistance in realizing diagnosis and therapy control. The significance of introducing artificial intelligence (AI) methods in nuclear power technology is emphasized. Main features of the on-line disturbance analysis system SAAP-2 are reported about. It is being developed for application to nuclear power plants. Problems related to man-machine communication will be gone into more detail, because their solution will influence end-user acceptance considerably. (author)

  9. Artificial intelligence approach to interwell log correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong-Se [Korea Maritime University, Pusan(Korea); Kang, Joo Myung [Seoul National University, Seoul(Korea); Kim, Jung Whan [Korea National Oil Corp., Anyang(Korea)

    2000-04-30

    This paper describes a new approach to automated interwell log correlation using artificial intelligence and principal component analysis. The approach to correlate wire line logging data is on the basis of a large set of subjective rules that are intended to represent human logical processes. The data processed are mainly the qualitative information such as the characteristics of the shapes extracted along log traces. The apparent geologic zones are identified by pattern recognition for the specific characteristics of log trace collected as a set of objects by object oriented programming. The correlation of zones between wells is made by rule-based inference program. The reliable correlation can be established from the first principal component logs derived from both the important information around well bore and the largest common part of variances of all available well log data. Correlation with field log data shows that this approach can make interwell log correlation more reliable and accurate. (author). 6 refs., 7 figs.

  10. Issues and challenges in artificial intelligence

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa; Wtorek, Jerzy

    2014-01-01

    The importance of human-computer system interaction problems is increasing due to the growing expectations of users on general computer systems capabilities in human work and life facilitation. Users expect system which is not only a passive tool in human hands but rather an active partner equipped with a sort of artificial intelligence, having access to large information resources, being able to adapt its behavior to the human requirements and to collaborate with the human users.   This book collects examples of recent human-computer system solutions. The content of the book is divided into three parts. Part I is devoted to detection, recognition and reasoning in different circumstances and applications. Problems associated with data modeling, acquisition and mining are presented by papers collected in part II and part III is devoted to Optimization.

  11. Artificial Intelligence In Computational Fluid Dynamics

    Science.gov (United States)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  12. Artificial intelligence in process design and operation

    International Nuclear Information System (INIS)

    Sudduth, A.L.

    1988-01-01

    Artificial Intelligence (AI) has recently become prominent in the discussion of computer applications in the utility business. In order to assess this technology, a research project was performed to determine whether software development techniques based on AI could be used to facilitate management of information associated with the design of a generating station. The approach taken was the development of an expert system, using a relatively simple set of rules acting on a more complex knowledge base. A successful prototype for the application was developed and its potential extension to a production environment demonstrated. During the course of prototype development, other possible applications of AI in design engineering were discovered, and areas of particular interest selected for further investigation. A plan for AI R and D was formulated. That plan and other possible future work in AI are discussed

  13. Artificial Intelligence Software Engineering (AISE) model

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  14. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  15. Robotics and artificial intelligence: Jewish ethical perspectives.

    Science.gov (United States)

    Rappaport, Z H

    2006-01-01

    In 16th Century Prague, Rabbi Loew created a Golem, a humanoid made of clay, to protect his community. When the Golem became too dangerous to his surroundings, he was dismantled. This Jewish theme illustrates some of the guiding principles in its approach to the moral dilemmas inherent in future technologies, such as artificial intelligence and robotics. Man is viewed as having received the power to improve upon creation and develop technologies to achieve them, with the proviso that appropriate safeguards are taken. Ethically, not-harming is viewed as taking precedence over promoting good. Jewish ethical thinking approaches these novel technological possibilities with a cautious optimism that mankind will derive their benefits without coming to harm.

  16. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  17. Artificial intelligence applied to fuel management in BWR type reactors

    International Nuclear Information System (INIS)

    Ortiz S, J.J.

    1998-01-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  18. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  19. Distributed Problem Solving: Adaptive Networks with a Computer Intermediary Resource. Intelligent Executive Computer Communication

    Science.gov (United States)

    1991-06-01

    Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent

  20. Artificial intelligence techniques for embryo and oocyte classification.

    Science.gov (United States)

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  1. Virtual Enterprise Risk Management Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2010-01-01

    Full Text Available Virtual enterprise (VE has to manage its risk effectively in order to guarantee the profit. However, restricting the risk in a VE to the acceptable level is considered difficult due to the agility and diversity of its distributed characteristics. First, in this paper, an optimization model for VE risk management based on distributed decision making model is introduced. This optimization model has two levels, namely, the top model and the base model, which describe the decision processes of the owner and the partners of the VE, respectively. In order to solve the proposed model effectively, this work then applies two powerful artificial intelligence optimization techniques known as evolutionary algorithms (EA and swarm intelligence (SI. Experiments present comparative studies on the VE risk management problem for one EA and three state-of-the-art SI algorithms. All of the algorithms are evaluated against a test scenario, in which the VE is constructed by one owner and different partners. The simulation results show that the PS2O algorithm, which is a recently developed SI paradigm simulating symbiotic coevolution behavior in nature, obtains the superior solution for VE risk management problem than the other algorithms in terms of optimization accuracy and computation robustness.

  2. Applying Artificial Intelligence and Internet Techniques in Rural Tourism Domain

    OpenAIRE

    Turcu, Cristina; Turcu, Cornel

    2017-01-01

    Society has become more dependent on automated intelligent systems, at the same time, these systems have become more and more complicated. Society's expectation regarding the capabilities and intelligence of such systems has also grown. We have become a more complicated society with more complicated problems. As the expectation of intelligent systems rises, we discover many more applications for artificial intelligence. Additionally, as the difficulty level and computational requirements of s...

  3. Beyond AI: Interdisciplinary Aspects of Artificial Intelligence

    CERN Document Server

    Romportl, Jan; Zackova, Eva; Beyond Artificial Intelligence : Contemplations, Expectations, Applications

    2013-01-01

    Products of modern artificial intelligence (AI) have mostly been formed by the views, opinions and goals of the “insiders”, i.e. people usually with engineering background who are driven by the force that can be metaphorically described as the pursuit of the craft of Hephaestus. However, since the present-day technology allows for tighter and tighter mergence of the “natural” everyday human life with machines of immense complexity, the responsible reaction of the scientific community should be based on cautious reflection of what really lies beyond AI, i.e. on the frontiers where the tumultuous ever-growing and ever-changing cloud of AI touches the rest of the world.   The chapters of this boo are based on the selected subset of the presentations that were delivered by their respective authors at the conference “Beyond AI: Interdisciplinary Aspects of Artificial Intelligence” held in Pilsen in December 2011.   From its very definition, the reflection of the phenomena that lie beyond AI must be i...

  4. Artificial intelligence in sports on the example of weight training.

    Science.gov (United States)

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  5. A Novel Artificial Intelligence System for Endotracheal Intubation.

    Science.gov (United States)

    Carlson, Jestin N; Das, Samarjit; De la Torre, Fernando; Frisch, Adam; Guyette, Francis X; Hodgins, Jessica K; Yealy, Donald M

    2016-01-01

    Adequate visualization of the glottic opening is a key factor to successful endotracheal intubation (ETI); however, few objective tools exist to help guide providers' ETI attempts toward the glottic opening in real-time. Machine learning/artificial intelligence has helped to automate the detection of other visual structures but its utility with ETI is unknown. We sought to test the accuracy of various computer algorithms in identifying the glottic opening, creating a tool that could aid successful intubation. We collected a convenience sample of providers who each performed ETI 10 times on a mannequin using a video laryngoscope (C-MAC, Karl Storz Corp, Tuttlingen, Germany). We recorded each attempt and reviewed one-second time intervals for the presence or absence of the glottic opening. Four different machine learning/artificial intelligence algorithms analyzed each attempt and time point: k-nearest neighbor (KNN), support vector machine (SVM), decision trees, and neural networks (NN). We used half of the videos to train the algorithms and the second half to test the accuracy, sensitivity, and specificity of each algorithm. We enrolled seven providers, three Emergency Medicine attendings, and four paramedic students. From the 70 total recorded laryngoscopic video attempts, we created 2,465 time intervals. The algorithms had the following sensitivity and specificity for detecting the glottic opening: KNN (70%, 90%), SVM (70%, 90%), decision trees (68%, 80%), and NN (72%, 78%). Initial efforts at computer algorithms using artificial intelligence are able to identify the glottic opening with over 80% accuracy. With further refinements, video laryngoscopy has the potential to provide real-time, direction feedback to the provider to help guide successful ETI.

  6. Beyond AI: Multi-Intelligence (MI) Combining Natural and Artificial Intelligences in Hybrid Beings and Systems

    OpenAIRE

    Stephen Fox

    2017-01-01

    Framing strongly influences actions among technology proponents and end-users. Underlying much debate about artificial intelligence (AI) are several fundamental shortcomings in its framing. First, discussion of AI is atheoretical, and therefore has limited potential for addressing the complexity of causation. Second, intelligence is considered from an anthropocentric perspective that sees human intelligence, and intelligence developed by humans, as superior to all other intelligences. Thus, t...

  7. Collective intelligent wireless sensor networks

    NARCIS (Netherlands)

    Mihaylov, M.; Nowe, A.; Tuyls, K.P.; Nijholt, A.; Pantic, M.

    2008-01-01

    In this paper we apply the COllective INtelligence (COIN) framework ofWolpert et al. toWireless Sensor Networks (WSNs) with the aim to increase the autonomous lifetime of the network in a decentralized manner. COIN describes how selfish agents can learn to optimize their own performance, so that the

  8. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence.

    Science.gov (United States)

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-30

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.

  9. The coming of age of artificial intelligence in medicine

    OpenAIRE

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the ...

  10. Correlation between crystallographic computing and artificial intelligence research

    Energy Technology Data Exchange (ETDEWEB)

    Feigenbaum, E A [Stanford Univ., CA; Engelmore, R S; Johnson, C K

    1977-01-01

    Artificial intelligence research, as a part of computer science, has produced a variety of programs of experimental and applications interest: programs for scientific inference, chemical synthesis, planning robot control, extraction of meaning from English sentences, speech understanding, interpretation of visual images, and so on. The symbolic manipulation techniques used in artificial intelligence provide a framework for analyzing and coding the knowledge base of a problem independently of an algorithmic implementation. A possible application of artificial intelligence methodology to protein crystallography is described. 2 figures, 2 tables.

  11. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  12. Distributed artificial intelligence, diversity and information literacy

    Directory of Open Access Journals (Sweden)

    Peter Kåhre

    2010-09-01

    Full Text Available My proposal is based on my doctoral dissertation On the Shoulders of AI-technology : Sociology of Knowledge and Strong Artificial Intelligence which I succesfully defended on May 29th 2009. E-published http://www.lu.se/o.o.i.s?id=12588&postid=1389611 The dissertation is concerned with Sociology’s stance in the debate on Strong Artificial Intelligence,.i.e. AI-systems that is able to shape knowledge on their own. There is a need for sociologists to realize the difference between two approaches to constructing AI systems: Symbolic AI (or Classic AI and Connectionistic AI in a distributed model – DAI. Sociological literature shows a largely critical attitude towards Symbolic AI, an attitude that is justified. The main theme of the dissertation is that DAI is not only compatible with Sociology’s approach to what is social, but also constitutes an apt model of how a social system functions. This is consolidated with help from german sociologist Niklas Luhmann’s social systems theory. A lot of sociologists criticize AI because they think that diversity is important and can only be comprehended in informal circumstances that only humans interacting together can handle. They mean that social intelligence is needed to make something out of diversity and informalism. Luhmann´s systems theory gives the opposite perspective. It tells us that it is social systems that communicate and produce new knowledge structures out of contincency. Psychological systems, i.e. humans, can only think within the circumstances the social system offer. In that way human thoughts are bound by formalism. Diversity is constructed when the social systems interact with complexity in their environments. They reduce the complexity and try to present it as meaningful diversity. Today when most of academic literature is electronically stored and is accessible through the Internet from al over the world, DAI can help social systems to observe and reduce complexity in this

  13. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Artificial intelligence applications in offshore oil and gas production

    International Nuclear Information System (INIS)

    Attia, F.G.

    1994-01-01

    The field of Artificial Intelligence (AI) has gained considerable acceptance in virtually all fields, of engineering applications. Artificial intelligence is now being applied in several areas of offshore oil and gas operations, such as drilling, well testing, well logging and interpretation, reservoir engineering, planning and economic evaluation, process control, and risk analysis. Current AI techniques offer a new and exciting technology for solving problems in the oil and gas industry. Expert systems, fuzzy logic systems, neural networks and genetic algorithms are major AI technologies which have made an impact on the petroleum industry. Presently, these technologies are at different stages of maturity with expert systems being the most mature and genetic algorithms the least. However, all four technologies have evolved such that practical applications were produced. This paper describes the four major Al techniques and their many applications in offshore oil and gas production operations. A summary description of future developments in Al technology that will affect the execution and productivity of offshore operations will be also provided

  15. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.

    Science.gov (United States)

    Merk, Daniel; Friedrich, Lukas; Grisoni, Francesca; Schneider, Gisbert

    2018-01-01

    Generative artificial intelligence offers a fresh view on molecular design. We present the first-time prospective application of a deep learning model for designing new druglike compounds with desired activities. For this purpose, we trained a recurrent neural network to capture the constitution of a large set of known bioactive compounds represented as SMILES strings. By transfer learning, this general model was fine-tuned on recognizing retinoid X and peroxisome proliferator-activated receptor agonists. We synthesized five top-ranking compounds designed by the generative model. Four of the compounds revealed nanomolar to low-micromolar receptor modulatory activity in cell-based assays. Apparently, the computational model intrinsically captured relevant chemical and biological knowledge without the need for explicit rules. The results of this study advocate generative artificial intelligence for prospective de novo molecular design, and demonstrate the potential of these methods for future medicinal chemistry. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  16. Synthetic biology routes to bio-artificial intelligence.

    Science.gov (United States)

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

  17. Artificial neural networks for decision-making in urologic oncology.

    Science.gov (United States)

    Anagnostou, Theodore; Remzi, Mesut; Lykourinas, Michael; Djavan, Bob

    2003-06-01

    The authors are presenting a thorough introduction in Artificial Neural Networks (ANNs) and their contribution to modern Urologic Oncology. The article covers a description of Artificial Neural Network methodology and points out the differences of Artificial Intelligence to traditional statistic models in terms of serving patients and clinicians, in a different way than current statistical analysis. Since Artificial Intelligence is not yet fully understood by many practicing clinicians, the authors have reviewed a careful selection of articles in order to explore the clinical benefit of Artificial Intelligence applications in modern Urology questions and decision-making. The data are from real patients and reflect attempts to achieve more accurate diagnosis and prognosis, especially in prostate cancer that stands as a good example of difficult decision-making in everyday practice. Experience from current use of Artificial Intelligence is also being discussed, and the authors address future developments as well as potential problems such as medical record quality, precautions in using ANNs or resistance to system use, in an attempt to point out future demands and the need for common standards. The authors conclude that both methods should continue to be used in a complementary manner. ANNs still do not prove always better as to replace standard statistical analysis as the method of choice in interpreting medical data.

  18. Predicting chick body mass by artificial intelligence-based models

    Directory of Open Access Journals (Sweden)

    Patricia Ferreira Ponciano Ferraz

    2014-07-01

    Full Text Available The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks - with the variables dry-bulb air temperature, duration of thermal stress (days, chick age (days, and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs and neuro-fuzzy networks (NFNs. The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

  19. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    Science.gov (United States)

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented. Copyright © 2016 Longwoods Publishing.

  20. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.W.; Lager, D.L.

    1985-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  1. Third Conference on Artificial Intelligence for Space Applications, part 2

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  2. Third Conference on Artificial Intelligence for Space Applications, part 1

    Science.gov (United States)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  3. Demonstration of artificial intelligence technology for transit railcar diagnostics

    Science.gov (United States)

    1999-01-01

    This report will be of interest to railcar maintenance professionals concerned with improving railcar maintenance fault-diagnostic capabilities through the use of artificial intelligence (AI) technologies. It documents the results of a demonstration ...

  4. Artificial Intelligence In Automatic Target Recognizers: Technology And Timelines

    Science.gov (United States)

    Gilmore, John F.

    1984-12-01

    The recognition of targets in thermal imagery has been a problem exhaustively analyzed in its current localized dimension. This paper discusses the application of artificial intelligence (AI) technology to automatic target recognition, a concept capable of expanding current ATR efforts into a new globalized dimension. Deficiencies of current automatic target recognition systems are reviewed in terms of system shortcomings. Areas of artificial intelligence which show the most promise in improving ATR performance are analyzed, and a timeline is formed in light of how near (as well as far) term artificial intelligence applications may exist. Current research in the area of high level expert vision systems is reviewed and the possible utilization of artificial intelligence architectures to improve low level image processing functions is also discussed. Additional application areas of relevance to solving the problem of automatic target recognition utilizing both high and low level processing are also explored.

  5. Researches in Artificial Intelligence in Republic of Moldova

    OpenAIRE

    Yu. Pechersky

    1994-01-01

    The article presents a review of researches in the field of Artificial Intelligence in Republic of Moldova concerning pattern recognition and also theory and applications of intellectual knowledge based systems.

  6. Software Reviews. PC Software for Artificial Intelligence Applications.

    Science.gov (United States)

    Epp, Helmut; And Others

    1988-01-01

    Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)

  7. Artificial intelligence: Learning to play Go from scratch

    Science.gov (United States)

    Singh, Satinder; Okun, Andy; Jackson, Andrew

    2017-10-01

    An artificial-intelligence program called AlphaGo Zero has mastered the game of Go without any human data or guidance. A computer scientist and two members of the American Go Association discuss the implications. See Article p.354

  8. Artificial intelligence - applications in high energy and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U. E-mail: mueller@whep.uni-wuppertal.de

    2003-04-21

    In the parallel sessions at ACAT2002 different artificial intelligence applications in high energy and nuclear physics were presented. I will briefly summarize these presentations. Further details can be found in the relevant section of these proceedings.

  9. Researches in Artificial Intelligence in Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Yu. Pechersky

    1994-11-01

    Full Text Available The article presents a review of researches in the field of Artificial Intelligence in Republic of Moldova concerning pattern recognition and also theory and applications of intellectual knowledge based systems.

  10. Automation of neutral beam source conditioning with artificial intelligence techniques

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques. The architecture of the system is presented followed by a description of its performance

  11. Artificial intelligence in NMR imaging and image processing

    International Nuclear Information System (INIS)

    Kuhn, M.H.

    1988-01-01

    NMR tomography offers a wealth of information and data acquisition variants. Artificial intelligence is able to efficiently support the selection of measuring parameters and the evaluation of results. (orig.) [de

  12. Artificial intelligence and applications relevant to nuclear industries

    International Nuclear Information System (INIS)

    Haridasan, G.; Das, Debashis

    1987-01-01

    Possible areas of application of artificial intelligence systems such as machine vision systems and expert systems are indicated. The work underway in this field at the Bhabha Atomic Research Centre, Bombay is briefly mentioned. (M.G.B.)

  13. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    Science.gov (United States)

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  14. The First Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI '06)

    OpenAIRE

    Augusto, Juan Carlos; Shapiro, Daniel

    2007-01-01

    The first annual workshop on the role of AI in ambient intelligence was held in Riva de Garda, Italy, on August 29, 2006. The workshop was colocated with the European Conference on Artificial Intelligence (ECAI 2006). It provided an opportunity for researchers in a variety of AI subfields together with representatives of commercial interests to explore ambient intelligence technology and applications.

  15. Artificial Neural Network Based Model of Photovoltaic Cell

    Directory of Open Access Journals (Sweden)

    Messaouda Azzouzi

    2017-03-01

    Full Text Available This work concerns the modeling of a photovoltaic system and the prediction of the sensitivity of electrical parameters (current, power of the six types of photovoltaic cells based on voltage applied between terminals using one of the best known artificial intelligence technique which is the Artificial Neural Networks. The results of the modeling and prediction have been well shown as a function of number of iterations and using different learning algorithms to obtain the best results. 

  16. Artificial intelligence as a means to moral enhancement

    OpenAIRE

    Klincewicz, Michał

    2016-01-01

    This paper critically assesses the possibility of moral enhancement with ambient intelligence technologies and artificial intelligence presented in Savulescu and Maslen (2015). The main problem with their proposal is that it is not robust enough to play a normative role in users’ behavior. A more promising approach, and the one presented in the paper, relies on an artificial moral reasoning engine, which is designed to present its users with moral arguments grounded in first-order normative t...

  17. The Birth of Artificial Intelligence and its Baby Steps

    OpenAIRE

    Melendez, Nataly

    2017-01-01

    We are living in the era of technology; it is hard not to see it in our everyday lives. Ray Kurzweil and Michio Kaku, prominent figures in the field of artificial intelligence, affirm that the role it will play in the present and future will be a positive one. Developments and innovations such as autonomous cars, advanced prosthetic limbs, predator drones, etc. aim to assist humans in adequate situations. Artificial intelligence is often depicted as antagonistic, however, the testimonies of i...

  18. Knowledge in Artificial Intelligence Systems: Searching the Strategies for Application

    OpenAIRE

    Kornienko, Alla A.; Kornienko, Anatoly V.; Fofanov, Oleg B.; Chubik, Maxim P.

    2015-01-01

    The studies based on auto-epistemic logic are pointed out as an advanced direction for development of artificial intelligence (AI). Artificial intelligence is taken as a system that imitates the solution of complicated problems by human during the course of life. The structure of symbols and operations, by which intellectual solution is performed, as well as searching the strategic reference points for those solutions, which are caused by certain structures of symbols and operations, – are co...

  19. Comparing Artificial Intelligence and Genetic Engineering: Commercialization Lessons

    OpenAIRE

    Dickson, Edward M.

    1984-01-01

    Artificial Intelligence is rapidly leaving its academic home and moving into the marketplace. There are few precedents for an arcane academic subject becoming commercialized so rapidly. But, genetic engineering, which recently burst forth from academia to become the foundation for the hot new biotechnology industry, provides useful insights into the rites of passage awaiting the commercialization of artificial intelligence. This article examines the structural similarities and dissimilarities...

  20. IJCAI-91 Workshop on Objects and Artificial Intelligence

    OpenAIRE

    Hatzilygeroudis, Ioannis

    1994-01-01

    The Objects and Artificial Intelligence Workshop was held on 25 August 1991 in conjunction with the 1991 International Joint Conference on Artificial Intelligence. The workshop brought together researchers in AI and object-oriented programming to exchange ideas and investigate possible avenues of cooperation between AI and object-oriented programming. The workshop dealt with both the theoretical and the practical aspects of this cooperation.

  1. Human Brain inspired Artificial Intelligence & Developmental Robotics: A Review

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Along with the developments in the field of the robotics, fascinating contributions and developments can be seen in the field of Artificial intelligence (AI. In this paper we will discuss about the developments is the field of artificial intelligence focusing learning algorithms inspired from the field of Biology, particularly large scale brain simulations, and developmental Psychology. We will focus on the emergence of the Developmental robotics and its significance in the field of AI.

  2. Artificial intelligence applications in information and communication technologies

    CERN Document Server

    Bouguila, Nizar

    2015-01-01

    This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.  .

  3. The Role of Artificial Intelligence Technologies in Crisis Response

    OpenAIRE

    Khalil, Khaled M.; Abdel-Aziz, M.; Nazmy, Taymour T.; Salem, Abdel-Badeeh M.

    2008-01-01

    Crisis response poses many of the most difficult information technology in crisis management. It requires information and communication-intensive efforts, utilized for reducing uncertainty, calculating and comparing costs and benefits, and managing resources in a fashion beyond those regularly available to handle routine problems. In this paper, we explore the benefits of artificial intelligence technologies in crisis response. This paper discusses the role of artificial intelligence technolo...

  4. Load Forecasting with Artificial Intelligence on Big Data

    OpenAIRE

    Glauner, Patrick; State, Radu

    2016-01-01

    In the domain of electrical power grids, there is a particular interest in time series analysis using artificial intelligence. Machine learning is the branch of artificial intelligence giving computers the ability to learn patterns from data without being explicitly programmed. Deep Learning is a set of cutting-edge machine learning algorithms that are inspired by how the human brain works. It allows to self-learn feature hierarchies from the data rather than modeling hand-crafted features. I...

  5. Artificial Intelligence: Threat or Boon to Radiologists?

    Science.gov (United States)

    Recht, Michael; Bryan, R Nick

    2017-11-01

    The development and integration of machine learning/artificial intelligence into routine clinical practice will significantly alter the current practice of radiology. Changes in reimbursement and practice patterns will also continue to affect radiology. But rather than being a significant threat to radiologists, we believe these changes, particularly machine learning/artificial intelligence, will be a boon to radiologists by increasing their value, efficiency, accuracy, and personal satisfaction. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  6. A Python Engine for Teaching Artificial Intelligence in Games

    OpenAIRE

    Riedl, Mark O.

    2015-01-01

    Computer games play an important role in our society and motivate people to learn computer science. Since artificial intelligence is integral to most games, they can also be used to teach artificial intelligence. We introduce the Game AI Game Engine (GAIGE), a Python game engine specifically designed to teach about how AI is used in computer games. A progression of seven assignments builds toward a complete, working Multi-User Battle Arena (MOBA) game. We describe the engine, the assignments,...

  7. [Artificial intelligence in medicine: limits and obstacles.

    Science.gov (United States)

    Santoro, Eugenio

    2017-12-01

    Data scientists and physicians are starting to use artificial intelligence (AI) even in the medical field in order to better understand the relationships among the huge amount of data coming from the great number of sources today available. Through the data interpretation methods made available by the recent AI tools, researchers and AI companies have focused on the development of models allowing to predict the risk of suffering from a specific disease, to make a diagnosis, and to recommend a treatment that is based on the best and most updated scientific evidence. Even if AI is used to perform unimaginable tasks until a few years ago, the awareness about the ongoing revolution has not yet spread through the medical community for several reasons including the lack of evidence about safety, reliability and effectiveness of these tools, the lack of regulation accompanying hospitals in the use of AI by health care providers, the difficult attribution of liability in case of errors and malfunctions of these systems, and the ethical and privacy questions that they raise and that, as of today, are still unanswered.

  8. Artificial intelligence in mitral valve analysis.

    Science.gov (United States)

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention.

  9. Artificial intelligence: contemporary applications and future compass.

    Science.gov (United States)

    Khanna, Sunali

    2010-08-01

    The clinical use of information technology in the dental profession has increased substantially in the past 10 to 20 years. In most developing countries an insufficiency of medical and dental specialists has increased the mortality of patients suffering from various diseases. Employing technology, especially artificial intelligence technology, in medical and dental application could reduce cost, time, human expertise and medical error. This approach has the potential to revolutionise the dental public health scenario in developing countries. Clinical decision support systems (CDSS) are computer programs that are designed to provide expert support for health professionals. The applications in dental sciences vary from dental emergencies to differential diagnosis of orofacial pain, radiographic interpretations, analysis of facial growth in orthodontia to prosthetic dentistry. However, despite the recognised need for CDSS, the implementation of these systems has been limited and slow. This can be attributed to lack of formal evaluation of the systems, challenges in developing standard representations, cost and practitioner scepticism about the value and feasibility of CDSS. Increasing public awareness of safety and quality has accelerated the adoption of generic knowledge based CDSS. Information technology applications for dental practice continue to develop rapidly and will hopefully contribute to reduce the morbidity and mortality of oral and maxillofacial diseases and in turn impact patient care.

  10. Applications of artificial intelligence to mission planning

    Science.gov (United States)

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.

    1990-01-01

    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  11. [Artificial intelligence] AI for protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, R.; Johns, A.

    1997-12-31

    The reliable operation of large power systems with small stability margins is highly dependent on control systems and protection devices. Progress in the field of microprocessor systems and demanding requirements in respect of the performance of protective relays are the reasons for digital device applications to power system protection. The superiority of numeric protection over its analogue alternatives is attributed to such factors as accurate extraction of the fundamental voltage and current components through filtering, functional benefits resulting from multi-processor design and extensive self-monitoring, etc. However, all these reasons have not led to a major impact on speed, sensitivity and selectivity of primary protective relays, and the gains are only marginal; this is so because conventional digital relays still rely on deterministic signal models and a heuristic approach for decision making, so that only a fraction of the information contained within voltage and current signals as well as knowledge about the plant to be protected is used. The performance of digital relays may be substantially improved if the decision making is based on elements of artificial intelligence (AI). (Author)

  12. Computational neuroscience for advancing artificial intelligence

    Directory of Open Access Journals (Sweden)

    Fernando P. Ponce

    2011-07-01

    Full Text Available resumen del libro de Alonso, E. y Mondragón, E. (2011. Hershey, NY: Medical Information Science Reference. La neurociencia como disciplinapersigue el entendimiento del cerebro y su relación con el funcionamiento de la mente a través del análisis de la comprensión de la interacción de diversos procesos físicos, químicos y biológicos (Bassett & Gazzaniga, 2011. Por otra parte, numerosas disciplinasprogresivamente han realizado significativas contribuciones en esta empresa tales como la matemática, la psicología o la filosofía, entre otras. Producto de este esfuerzo, es que junto con la neurociencia tradicional han aparecido disciplinas complementarias como la neurociencia cognitiva, la neuropsicología o la neurocienciacomputacional (Bengio, 2007; Dayan & Abbott, 2005. En el contexto de la neurociencia computacional como disciplina complementaria a laneurociencia tradicional. Alonso y Mondragón (2011 editan el libroComputacional Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications.

  13. Using artificial intelligence to automate remittance processing.

    Science.gov (United States)

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  14. Artificial intelligence aid to efficient plant operations

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Pack, R.W.

    1987-01-01

    As the nuclear power industry matures, it is becoming more and more important that plants be operated in an efficient, cost-effective manner, without, of course, any decrease in the essential margins of safety. Indeed, most opportunities for improved efficiency have little or no relation to nuclear safety, but are based on trade-offs among operator controllable parameters both within and external to the reactor itself. While these trade-offs are describable in terms of basic physical theory, thermodynamics, and the mathematics of control systems, their actual application is highly plant specific and influenced even by the day-to-day condition of the various plant components. This paper proposes the use of artificial intelligence techniques to construct a computer-based expert assistant to the plant operator for the purpose of aiding him in improving the efficiency of plant operation on a routine basis. The proposed system, which only advises the human operator, seems more amenable to the current regulatory approach than a truly automated control system even if the latter provides for manual override

  15. Artificial intelligence, physiological genomics, and precision medicine.

    Science.gov (United States)

    Williams, Anna Marie; Liu, Yong; Regner, Kevin R; Jotterand, Fabrice; Liu, Pengyuan; Liang, Mingyu

    2018-04-01

    Big data are a major driver in the development of precision medicine. Efficient analysis methods are needed to transform big data into clinically-actionable knowledge. To accomplish this, many researchers are turning toward machine learning (ML), an approach of artificial intelligence (AI) that utilizes modern algorithms to give computers the ability to learn. Much of the effort to advance ML for precision medicine has been focused on the development and implementation of algorithms and the generation of ever larger quantities of genomic sequence data and electronic health records. However, relevance and accuracy of the data are as important as quantity of data in the advancement of ML for precision medicine. For common diseases, physiological genomic readouts in disease-applicable tissues may be an effective surrogate to measure the effect of genetic and environmental factors and their interactions that underlie disease development and progression. Disease-applicable tissue may be difficult to obtain, but there are important exceptions such as kidney needle biopsy specimens. As AI continues to advance, new analytical approaches, including those that go beyond data correlation, need to be developed and ethical issues of AI need to be addressed. Physiological genomic readouts in disease-relevant tissues, combined with advanced AI, can be a powerful approach for precision medicine for common diseases.

  16. [Artificial intelligence applied to radiation oncology].

    Science.gov (United States)

    Bibault, J-E; Burgun, A; Giraud, P

    2017-05-01

    Performing randomised comparative clinical trials in radiation oncology remains a challenge when new treatment modalities become available. One of the most recent examples is the lack of phase III trials demonstrating the superiority of intensity-modulated radiation therapy in most of its current indications. A new paradigm is developing that consists in the mining of large databases to answer clinical or translational issues. Beyond national databases (such as SEER or NCDB), that often lack the necessary level of details on the population studied or the treatments performed, electronic health records can be used to create detailed phenotypic profiles of any patients. In parallel, the Record-and-Verify Systems used in radiation oncology precisely document the planned and performed treatments. Artificial Intelligence and machine learning algorithms can be used to incrementally analyse these data in order to generate hypothesis to better personalize treatments. This review discusses how these methods have already been used in previous studies. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  17. The Potential Role of Artificial Intelligence Technology in Education.

    Science.gov (United States)

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  18. Interactive Video and Artificial Intelligence: A Convenient Marriage.

    Science.gov (United States)

    Midoro, V.; And Others

    1988-01-01

    Describes the theoretical framework of a research project aimed at exploring the new potentials for instructional systems offered by videodisc technology and artificial intelligence. A prototype of an intelligent tutoring system, "Earth," is described, and types of interactions in instructional systems are discussed as they relate to the…

  19. Applications of Artificial Intelligence in Education--A Personal View.

    Science.gov (United States)

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  20. Artificial Intelligence and Educational Technology: A Natural Synergy. Extended Abstract.

    Science.gov (United States)

    McCalla, Gordon I.

    Educational technology and artificial intelligence (AI) are natural partners in the development of environments to support human learning. Designing systems with the characteristics of a rich learning environment is the long term goal of research in intelligent tutoring systems (ITS). Building these characteristics into a system is extremely…

  1. Intelligent networked teleoperation control

    CERN Document Server

    Li, Zhijun; Su, Chun-Yi

    2015-01-01

    This book describes a unified framework for networked teleoperation systems involving multiple research fields: networked control systems for linear and nonlinear forms, bilateral teleoperation, trilateral teleoperation, multilateral teleoperation and cooperative teleoperation. It closely examines networked control as a field at the intersection of systems & control and robotics and presents a number of experimental case studies on testbeds for robotic systems, including networked haptic devices, robotic network systems and sensor network systems. The concepts and results outlined are easy to understand, even for readers fairly new to the subject. As such, the book offers a valuable reference work for researchers and engineers in the fields of systems & control and robotics.

  2. Macrocell path loss prediction using artificial intelligence techniques

    Science.gov (United States)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  3. Computerized detection of breast cancer with artificial intelligence and thermograms.

    Science.gov (United States)

    Ng, E Y-K; Fok, S C; Peh, Y C; Ng, F C; Sim, L S J

    2002-01-01

    This paper shows the concurrent use of thermography and artificial neural networks (ANN) for the diagnosis of breast cancer, a disease that is growing in prominence in women all over the world. It has been reported that breast thermography itself could detect breast cancer up to 10 years earlier than the conventional golden methods such as mammography, in particular in the younger patient. However, the accuracy of thermography is dependent on many factors such as the symmetry of the breasts' temperature and temperature stability. A woman's body temperature is known to be stable in certain periods after menstruation and it was found that the accuracy of thermography in women whose thermal images are taken in a suitable period (5th - 12th and 21st day of menstruation) is higher (80%) than the total population of patients (73%). The stability of the body temperature will depend on physiological state. This paper examines the use of ANN to complement the infrared heat radiating from the surface of the body with other physiological data. Four backpropagation neural networks were developed and trained using the results from the Singapore General Hospital patients' physiological data and thermographs. Owing to the inaccuracies found in thermography and the low population size gathered for this project, the networks developed could only accurately diagnose about 61.54% of the breast cancer cases. Nevertheless, the basic neural network framework has been established and it has great potential for future development of an intelligent breast cancer diagnosis system. This would be especially useful to the teenagers and young adults who are unsuitable for mammography at a young age. An intelligent breast thermography-neural network will be able to give an accurate diagnosis of breast cancer and can make a positive impact on breast disease detection.

  4. ANALYSIS DATA SETS USING HYBRID TECHNIQUES APPLIED ARTIFICIAL INTELLIGENCE BASED PRODUCTION SYSTEMS INTEGRATED DESIGN

    OpenAIRE

    Daniel-Petru GHENCEA; Miron ZAPCIU; Claudiu-Florinel BISU; Elena-Iuliana BOTEANU; Elena-Luminiţa OLTEANU

    2017-01-01

    The paper proposes a prediction model of behavior spindle from the point of view of the thermal deformations and the level of the vibrations by highlighting and processing the characteristic equations. This is a model analysis for the shaft with similar electro-mechanical characteristics can be achieved using a hybrid analysis based on artificial intelligence (genetic algorithms - artificial neural networks - fuzzy logic). The paper presents a prediction mode obtaining valid range of values f...

  5. Artificial versus Natural Intelligence: An Adendum to the Philosophy ...

    African Journals Online (AJOL)

    in modern science that is causing waves in the philosophy of mind. Can there be artificial minds? Can machines be made to think? Can machines be conscious? Is it possible for artificial intelligence to replace the human brain? These and similar questions pervade most discussions and philosophical polemics on the issue ...

  6. Application of Artificial Intelligence for Optimization in Pavement Management

    Directory of Open Access Journals (Sweden)

    Reus Salini

    2015-07-01

    Full Text Available Artificial intelligence (AI is a group of techniques that have quite a potential to be applied to pavement engineering and management. In this study, we developed a practical, flexible and out of the box approach to apply genetic algorithms to optimizing the budget allocation and the road maintenance strategy selection for a road network. The aim is to provide an alternative to existing software and better fit the requirements of an important number of pavement managers. To meet the objectives, a new indicator, named Road Global Value Index (RGVI, was created to contemplate the pavement condition, the traffic and the economic and political importance for each and every road section. This paper describes the approach and its components by an example confirming that genetic algorithms are very effective for the intended purpose.

  7. Artificial intelligence in healthcare: past, present and future.

    Science.gov (United States)

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-12-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI.

  8. Artificial intelligence in healthcare: past, present and future

    Science.gov (United States)

    Jiang, Fei; Jiang, Yong; Zhi, Hui; Dong, Yi; Li, Hao; Ma, Sufeng; Wang, Yilong; Dong, Qiang; Shen, Haipeng; Wang, Yongjun

    2017-01-01

    Artificial intelligence (AI) aims to mimic human cognitive functions. It is bringing a paradigm shift to healthcare, powered by increasing availability of healthcare data and rapid progress of analytics techniques. We survey the current status of AI applications in healthcare and discuss its future. AI can be applied to various types of healthcare data (structured and unstructured). Popular AI techniques include machine learning methods for structured data, such as the classical support vector machine and neural network, and the modern deep learning, as well as natural language processing for unstructured data. Major disease areas that use AI tools include cancer, neurology and cardiology. We then review in more details the AI applications in stroke, in the three major areas of early detection and diagnosis, treatment, as well as outcome prediction and prognosis evaluation. We conclude with discussion about pioneer AI systems, such as IBM Watson, and hurdles for real-life deployment of AI. PMID:29507784

  9. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    International Nuclear Information System (INIS)

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry

  10. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  11. Application of Artificial Intelligence in Prediction of Road Freight Transportation

    Directory of Open Access Journals (Sweden)

    Bogna Mrowczynska

    2017-08-01

    Full Text Available Road freight transport often requires the prediction of volume. Such knowledge is necessary to capture trends in the industry and support decision making by large and small trucking companies. The aim of the presented work is to demonstrate that application of some artificial intelligence methods can improve the accuracy of the forecasts. The first method employed was double exponential smoothing. The modification of this method has been proposed. Not only the parameters but also the initial values were set in order to minimize the mean absolute percentage error (MAPE using the artificial immune system. This change resulted in a marked improvement in the effects of minimization, and suggests that the variability of the initial value of S2 has an impact on this result. Then, the forecasting Bayesian networks method was applied. The Bayesian network approach is able to take into account not only the historical data concerning the volume of freight, but also the data related to the overall state of the national economy. This significantly improves the quality of forecasting. The application of this approach can also help in predicting the trend changes caused by overall state of economy, which is rather impossible when analysing only the historical data.

  12. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  13. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    Science.gov (United States)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  14. BWR shutdown analyzer using artificial intelligence (AI) techniques

    International Nuclear Information System (INIS)

    Cain, D.G.

    1986-01-01

    A prototype alarm system for detecting abnormal reactor shutdowns based on artificial intelligence technology is described. The system incorporates knowledge about Boiling Water Reactor (BWR) plant design and component behavior, as well as knowledge required to distinguish normal, abnormal, and ATWS accident conditions. The system was developed using a software tool environment for creating knowledge-based applications on a LISP machine. To facilitate prototype implementation and evaluation, a casual simulation of BWR shutdown sequences was developed and interfaced with the alarm system. An intelligent graphics interface for execution and control is described. System performance considerations and general observations relating to artificial intelligence application to nuclear power plant problems are provided

  15. Training Software in Artificial-Intelligence Computing Techniques

    Science.gov (United States)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  16. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Jiqiang Niu

    2016-05-01

    Full Text Available In this article, we conducted the evaluation of artificial intelligence research from 1990–2014 by using bibliometric analysis. We introduced spatial analysis and social network analysis as geographic information retrieval methods for spatially-explicit bibliometric analysis. This study is based on the analysis of data obtained from database of the Science Citation Index Expanded (SCI-Expanded and Conference Proceedings Citation Index-Science (CPCI-S. Our results revealed scientific outputs, subject categories and main journals, author productivity and geographic distribution, international productivity and collaboration, and hot issues and research trends. The growth of article outputs in artificial intelligence research has exploded since the 1990s, along with increasing collaboration, reference, and citations. Computer science and engineering were the most frequently-used subject categories in artificial intelligence studies. The top twenty productive authors are distributed in countries with a high investment of research and development. The United States has the highest number of top research institutions in artificial intelligence, producing most single-country and collaborative articles. Although there is more and more collaboration among institutions, cooperation, especially international ones, are not highly prevalent in artificial intelligence research as expected. The keyword analysis revealed interesting research preferences, confirmed that methods, models, and application are in the central position of artificial intelligence. Further, we found interesting related keywords with high co-occurrence frequencies, which have helped identify new models and application areas in recent years. Bibliometric analysis results from our study will greatly facilitate the understanding of the progress and trends in artificial intelligence, in particular, for those researchers interested in domain-specific AI-driven problem-solving. This will be

  17. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  18. Artificial intelligence as a reflection of reality in the twenty-first century

    Directory of Open Access Journals (Sweden)

    Gusev S. S.

    2016-03-01

    Full Text Available the article discusses artificial intelligence (AI at the present stage of development, as a way of presenting and understanding AI as the mechanisms of computers. Features a large bunch of some algorithmic procedures for the solution by computer of a specific task, an example of which can serve as an attempt of modeling of biological neural networks.

  19. Artificial intelligence in mitral valve analysis

    Directory of Open Access Journals (Sweden)

    Jelliffe Jeganathan

    2017-01-01

    Full Text Available Background: Echocardiographic analysis of mitral valve (MV has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. Aim: The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA. Three examiners analyzed three end-systolic (ES frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. Statistical Analysis: A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both. Conclusion: We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention.

  20. Artificial Intelligence in Mitral Valve Analysis

    Science.gov (United States)

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Background: Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. Aim: The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. Statistical Analysis: A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). Conclusion: We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention. PMID:28393769

  1. Artificial intelligence in drug combination therapy.

    Science.gov (United States)

    Tsigelny, Igor F

    2018-02-09

    Currently, the development of medicines for complex diseases requires the development of combination drug therapies. It is necessary because in many cases, one drug cannot target all necessary points of intervention. For example, in cancer therapy, a physician often meets a patient having a genomic profile including more than five molecular aberrations. Drug combination therapy has been an area of interest for a while, for example the classical work of Loewe devoted to the synergism of drugs was published in 1928-and it is still used in calculations for optimal drug combinations. More recently, over the past several years, there has been an explosion in the available information related to the properties of drugs and the biomedical parameters of patients. For the drugs, hundreds of 2D and 3D molecular descriptors for medicines are now available, while for patients, large data sets related to genetic/proteomic and metabolomics profiles of the patients are now available, as well as the more traditional data relating to the histology, history of treatments, pretreatment state of the organism, etc. Moreover, during disease progression, the genetic profile can change. Thus, the ability to optimize drug combinations for each patient is rapidly moving beyond the comprehension and capabilities of an individual physician. This is the reason, that biomedical informatics methods have been developed and one of the more promising directions in this field is the application of artificial intelligence (AI). In this review, we discuss several AI methods that have been successfully implemented in several instances of combination drug therapy from HIV, hypertension, infectious diseases to cancer. The data clearly show that the combination of rule-based expert systems with machine learning algorithms may be promising direction in this field. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Electron beam lithographic modeling assisted by artificial intelligence technology

    Science.gov (United States)

    Nakayamada, Noriaki; Nishimura, Rieko; Miura, Satoru; Nomura, Haruyuki; Kamikubo, Takashi

    2017-07-01

    We propose a new concept of tuning a point-spread function (a "kernel" function) in the modeling of electron beam lithography using the machine learning scheme. Normally in the work of artificial intelligence, the researchers focus on the output results from a neural network, such as success ratio in image recognition or improved production yield, etc. In this work, we put more focus on the weights connecting the nodes in a convolutional neural network, which are naturally the fractions of a point-spread function, and take out those weighted fractions after learning to be utilized as a tuned kernel. Proof-of-concept of the kernel tuning has been demonstrated using the examples of proximity effect correction with 2-layer network, and charging effect correction with 3-layer network. This type of new tuning method can be beneficial to give researchers more insights to come up with a better model, yet it might be too early to be deployed to production to give better critical dimension (CD) and positional accuracy almost instantly.

  3. Scheduling with artificial neural networks

    OpenAIRE

    Gürgün, Burçkaan

    1993-01-01

    Ankara : Department of Industrial Engineering and The Institute of Engineering and Sciences of Bilkent Univ., 1993. Thesis (Master's) -- Bilkent University, 1993. Includes bibliographical references leaves 59-65. Artificial Neural Networks (ANNs) attempt to emulate the massively parallel and distributed processing of the human brain. They are being examined for a variety of problems that have been very difficult to solve. The objective of this thesis is to review the curren...

  4. Artificial Intelligence, Evolutionary Computing and Metaheuristics In the Footsteps of Alan Turing

    CERN Document Server

    2013-01-01

    Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation.  Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo sear...

  5. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  6. Learning modalities in artificial intelligence systems: a framework and review

    Energy Technology Data Exchange (ETDEWEB)

    Araya, A A

    1982-01-01

    Intelligent systems should possess two fundamental capabilities: problem solving and learning. Problem solving capabilities allow an intelligent system to cope with problems in a given domain. Learning capabilities make possible for an intelligent system to improve the solution to the problems within its current reach or to cope with new problems. This paper examines research in artificial intelligence from the perspective of learning with the purpose of: 1) developing and understanding of the problem of learning from the AI point of view, and II) characterizing the current state of the art on learning in AI. 35 references.

  7. Development of hybrid artificial intelligent based handover decision algorithm

    Directory of Open Access Journals (Sweden)

    A.M. Aibinu

    2017-04-01

    Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.

  8. Artificial Neural Networks and the Mass Appraisal of Real Estate

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2018-03-01

    Full Text Available With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.

  9. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review.

    Science.gov (United States)

    Contreras, Ivan; Vehi, Josep

    2018-05-30

    Artificial intelligence methods in combination with the latest technologies, including medical devices, mobile computing, and sensor technologies, have the potential to enable the creation and delivery of better management services to deal with chronic diseases. One of the most lethal and prevalent chronic diseases is diabetes mellitus, which is characterized by dysfunction of glucose homeostasis. The objective of this paper is to review recent efforts to use artificial intelligence techniques to assist in the management of diabetes, along with the associated challenges. A review of the literature was conducted using PubMed and related bibliographic resources. Analyses of the literature from 2010 to 2018 yielded 1849 pertinent articles, of which we selected 141 for detailed review. We propose a functional taxonomy for diabetes management and artificial intelligence. Additionally, a detailed analysis of each subject category was performed using related key outcomes. This approach revealed that the experiments and studies reviewed yielded encouraging results. We obtained evidence of an acceleration of research activity aimed at developing artificial intelligence-powered tools for prediction and prevention of complications associated with diabetes. Our results indicate that artificial intelligence methods are being progressively established as suitable for use in clinical daily practice, as well as for the self-management of diabetes. Consequently, these methods provide powerful tools for improving patients' quality of life. ©Ivan Contreras, Josep Vehi. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 30.05.2018.

  10. Short-term Local Forecasting by Artificial Intelligence Techniques and Assess Related Social Effects from Heterogeneous Data

    OpenAIRE

    Gong, Bing

    2017-01-01

    This work aims to use the sophisticated artificial intelligence and statistic techniques to forecast pollution and assess its social impact. To achieve the target of the research, this study is divided into several research sub-objectives as follows: First research sub-objective: propose a framework for relocating and reconfiguring the existing pollution monitoring networks by using feature selection, artificial intelligence techniques, and information theory. Second research sub-objective: c...

  11. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    Science.gov (United States)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  12. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources

    International Nuclear Information System (INIS)

    Medhat, M.E.

    2012-01-01

    Highlights: ► Basic description of artificial neural networks. ► Natural gamma ray sources and problem of detections. ► Application of neural network for peak detection and activity determination. - Abstract: Artificial neural network (ANN) represents one of artificial intelligence methods in the field of modeling and uncertainty in different applications. The objective of the proposed work was focused to apply ANN to identify isotopes and to predict uncertainties of their activities of some natural radioactive sources. The method was tested for analyzing gamma-ray spectra emitted from natural radionuclides in soil samples detected by a high-resolution gamma-ray spectrometry based on HPGe (high purity germanium). The principle of the suggested method is described, including, relevant input parameters definition, input data scaling and networks training. It is clear that there is satisfactory agreement between obtained and predicted results using neural network.

  13. Intelligent distribution network design

    NARCIS (Netherlands)

    Provoost, F.

    2009-01-01

    Distribution networks (medium voltage and low voltage) are subject to changes caused by re-regulation of the energy supply, economical and environmental constraints more sensitive equipment, power quality requirements and the increasing penetration of distributed generation. The latter is seen as

  14. [Artificial intelligence to assist clinical diagnosis in medicine].

    Science.gov (United States)

    Lugo-Reyes, Saúl Oswaldo; Maldonado-Colín, Guadalupe; Murata, Chiharu

    2014-01-01

    Medicine is one of the fields of knowledge that would most benefit from a closer interaction with Computer studies and Mathematics by optimizing complex, imperfect processes such as differential diagnosis; this is the domain of Machine Learning, a branch of Artificial Intelligence that builds and studies systems capable of learning from a set of training data, in order to optimize classification and prediction processes. In Mexico during the last few years, progress has been made on the implementation of electronic clinical records, so that the National Institutes of Health already have accumulated a wealth of stored data. For those data to become knowledge, they need to be processed and analyzed through complex statistical methods, as it is already being done in other countries, employing: case-based reasoning, artificial neural networks, Bayesian classifiers, multivariate logistic regression, or support vector machines, among other methodologies; to assist the clinical diagnosis of acute appendicitis, breast cancer and chronic liver disease, among a wide array of maladies. In this review we shift through concepts, antecedents, current examples and methodologies of machine learning-assisted clinical diagnosis.

  15. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    Science.gov (United States)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  16. Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation

    Science.gov (United States)

    Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty

    2017-09-01

    In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.

  17. Inteligência artificial aplicada à Zootecnia Artificial intelligence in Animal Science

    Directory of Open Access Journals (Sweden)

    Ernane José Xavier Costa

    2009-07-01

    Full Text Available Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11 neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.Biological systems are surprising flexible in processing information in the real world. Some biological organisms have a central unit processing named brain. The human's brain, consisting of 10(11 neurons, realizes intelligent information processing based on exact and commonsense reasoning. Artificial intelligence (AI has been trying to implement biological intelligence in computers in various ways, but is still far from real one. Therefore, there are approaches like Symbolic AI, Artificial Neural Network and Fuzzy system that partially successful in implementing heuristic from biological intelligence. Many recent applications of these approaches show an increased interest in animal science research. The main goal of this article is to explain the principles of heuristic problem-solving approach and to demonstrate how they can be applied to building knowledge-based systems for animal science problem solving.

  18. Designing and testing a chemical demulsifier dosage controller in a crude oil desalting plant: an artificial Intelligence-Based network approach

    Energy Technology Data Exchange (ETDEWEB)

    Alshehri, A.K.; Ricardez-Sandoval, L.A.; Elkamel, A. [Department of Chemical Engineering, University of Waterloo, Waterloo (Canada)

    2010-06-15

    The aim of this paper is to present an artificial neural network (ANN) controller trained on a historical data set that covers a wide operating range of the fundamental parameters that affect the demulsifier dosage in a crude oil desalting process. The designed controller was tested and implemented on-line in a gas-oil separation plant. The results indicate that the current control strategy overinjects chemical demulsifier into the desalting process whereas the proposed ANN controller predicts a lower demulsifier dosage while keeping the salt content within its specification targets. Since an on-line salt analyzer is not available in the desalting plant, an ANN based on historical measurements of the salt content in the desalting process was also developed. The results show that the predictions made by this ANN controller can be used as an on-line strategy to predict and control the salt concentration in the treated oil. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. Artificial neural network detects human uncertainty

    Science.gov (United States)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  20. Intelligent Wireless Sensor Network

    OpenAIRE

    Saeed, Bakhtiar I.; Mehrdadi, Bruce

    2010-01-01

    In recent years, there has been significant increase in utilisation of embedded-microcontrollers in broad range of applications extending from commercial products to industrial process system monitoring. Furthermore, improvements in speed, size and power consumption of microcontrollers with added wireless capabilities has provided new generation of applications. These include versatile and\\ud low cost solutions in wireless sensor networking applications such as wireless system monitoring and ...

  1. Liquefaction Microzonation of Babol City Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin

    2012-01-01

    that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... microzonation map is produced for research area. Based on the obtained results, it can be stated that the trained neural network is capable in prediction of liquefaction potential with an acceptable level of confidence. At the end, zoning of the city is carried out based on the prediction of liquefaction...... that can be classified as machine learning. Simplified methods have been practiced by researchers to assess nonlinear liquefaction potential of soil. In order to address the collective knowledge built-up in conventional liquefaction engineering, an alternative general regression neural network model...

  2. The coming of age of artificial intelligence in medicine.

    Science.gov (United States)

    Patel, Vimla L; Shortliffe, Edward H; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-05-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its "adolescence" (Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the '90s? Artificial Intelligence in Medicine 1993;5:93-106). In this article, the discussants reflect on medical AI research during the subsequent years and characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision-making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems.

  3. A review of European applications of artificial intelligence to space

    Science.gov (United States)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  4. 9th International conference on distributed computing and artificial intelligence

    CERN Document Server

    Santana, Juan; González, Sara; Molina, Jose; Bernardos, Ana; Rodríguez, Juan; DCAI 2012; International Symposium on Distributed Computing and Artificial Intelligence 2012

    2012-01-01

    The International Symposium on Distributed Computing and Artificial Intelligence 2012 (DCAI 2012) is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. This conference is a forum in which  applications of innovative techniques for solving complex problems will be presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and indus...

  5. Tuberculosis control, and the where and why of artificial intelligence

    Directory of Open Access Journals (Sweden)

    Riddhi Doshi

    2017-06-01

    Full Text Available Countries aiming to reduce their tuberculosis (TB burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.

  6. A PHILOSOPHICAL APPROACH TO ARTIFICIAL INTELLIGENCE AND ISLAMIC VALUES

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ziaee

    2012-02-01

    Full Text Available Artificial Intelligence has the potential to empower humans through enhanced learning and performance. But if this potential is to be realized and accepted, the ethical aspects as well as the technical must be addressed. Many engineers claim that AI will be smarter than human brains, including scientific creativity, general wisdom and social skills, so we must consider it an important factor for making decisions in our social life and especially in our Islamic societies. The most important challenges will be the quality of representing the Islamic values like piety, obedience, Halal and Haram, and etc in the form of semantics. In this paper, I want to emphasize on the role of Divine Islamic values in the application of AI and discuss it according to philosophy of AI and Islamic perspective.Keywords- Value, expert, Community Development, Artificial Intelligence, Superintelligence, Friendly Artificial Intelligence

  7. Distributed computing and artificial intelligence : 10th International Conference

    CERN Document Server

    Neves, José; Rodriguez, Juan; Santana, Juan; Gonzalez, Sara

    2013-01-01

    The International Symposium on Distributed Computing and Artificial Intelligence 2013 (DCAI 2013) is a forum in which applications of innovative techniques for solving complex problems are presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. This conference is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and industry se...

  8. The Coming of Age of Artificial Intelligence in Medicine*

    Science.gov (United States)

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  9. Artificial intelligence tool development and applications to nuclear power

    International Nuclear Information System (INIS)

    Naser, J.A.

    1987-01-01

    Two parallel efforts are being performed at the Electric Power Research Institute (EPRI) to help the electric utility industry take advantage of the expert system technology. The first effort is the development of expert system building tools, which are tailored to electric utility industry applications. The second effort is the development of expert system applications. These two efforts complement each other. The application development tests the tools and identifies additional tool capabilities that are required. The tool development helps define the applications that can be successfully developed. Artificial intelligence, as demonstrated by the developments described is being established as a credible technological tool for the electric utility industry. The challenge to transferring artificial intelligence technology and an understanding of its potential to the electric utility industry is to gain an understanding of the problems that reduce power plant performance and identify which can be successfully addressed using artificial intelligence

  10. Artificial intelligence and robot responsibilities: innovating beyond rights.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  11. Tuberculosis control, and the where and why of artificial intelligence.

    Science.gov (United States)

    Doshi, Riddhi; Falzon, Dennis; Thomas, Bruce V; Temesgen, Zelalem; Sadasivan, Lal; Migliori, Giovanni Battista; Raviglione, Mario

    2017-04-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB.

  12. [Artificial intelligence--the knowledge base applied to nephrology].

    Science.gov (United States)

    Sancipriano, G P

    2005-01-01

    The idea that efficacy efficiency, and quality in medicine could not be reached without sorting the huge knowledge of medical and nursing science is very common. Engineers and computer scientists have developed medical software with great prospects for success, but currently these software applications are not so useful in clinical practice. The medical doctor and the trained nurse live the 'information age' in many daily activities, but the main benefits are not so widespread in working activities. Artificial intelligence and, particularly, export systems charm health staff because of their potential. The first part of this paper summarizes the characteristics of 'weak artificial intelligence' and of expert systems important in clinical practice. The second part discusses medical doctors' requirements and the current nephrologic knowledge bases available for artificial intelligence development.

  13. Tuberculosis control, and the where and why of artificial intelligence

    Science.gov (United States)

    Falzon, Dennis; Thomas, Bruce V.; Temesgen, Zelalem; Sadasivan, Lal; Raviglione, Mario

    2017-01-01

    Countries aiming to reduce their tuberculosis (TB) burden by 2035 to the levels envisaged by the World Health Organization End TB Strategy need to innovate, with approaches such as digital health (electronic and mobile health) in support of patient care, surveillance, programme management, training and communication. Alongside the large-scale roll-out required for such interventions to make a significant impact, products must stay abreast of advancing technology over time. The integration of artificial intelligence into new software promises to make processes more effective and efficient, endowing them with a potential hitherto unimaginable. Users can benefit from artificial intelligence-enabled pattern recognition software for tasks ranging from reading radiographs to adverse event monitoring, sifting through vast datasets to personalise a patient's care plan or to customise training materials. Many experts forecast the imminent transformation of the delivery of healthcare services. We discuss how artificial intelligence and machine learning could revolutionise the management of TB. PMID:28656130

  14. A Framework for Intelligent Instructional Systems: An Artificial Intelligence Machine Learning Approach.

    Science.gov (United States)

    Becker, Lee A.

    1987-01-01

    Presents and develops a general model of the nature of a learning system and a classification for learning systems. Highlights include the relationship between artificial intelligence and cognitive psychology; computer-based instructional systems; intelligent instructional systems; and the role of the learner's knowledge base in an intelligent…

  15. Advances in neural networks computational intelligence for ICT

    CERN Document Server

    Esposito, Anna; Morabito, Francesco; Pasero, Eros

    2016-01-01

    This carefully edited book is putting emphasis on computational and artificial intelligent methods for learning and their relative applications in robotics, embedded systems, and ICT interfaces for psychological and neurological diseases. The book is a follow-up of the scientific workshop on Neural Networks (WIRN 2015) held in Vietri sul Mare, Italy, from the 20th to the 22nd of May 2015. The workshop, at its 27th edition became a traditional scientific event that brought together scientists from many countries, and several scientific disciplines. Each chapter is an extended version of the original contribution presented at the workshop, and together with the reviewers’ peer revisions it also benefits from the live discussion during the presentation. The content of book is organized in the following sections. 1. Introduction, 2. Machine Learning, 3. Artificial Neural Networks: Algorithms and models, 4. Intelligent Cyberphysical and Embedded System, 5. Computational Intelligence Methods for Biomedical ICT in...

  16. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  17. Fifth Conference on Artificial Intelligence for Space Applications

    Science.gov (United States)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  18. Machine learning \\& artificial intelligence in the quantum domain

    OpenAIRE

    Dunjko, Vedran; Briegel, Hans J.

    2017-01-01

    Quantum information technologies, and intelligent learning systems, are both emergent technologies that will likely have a transforming impact on our society. The respective underlying fields of research -- quantum information (QI) versus machine learning (ML) and artificial intelligence (AI) -- have their own specific challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question to what extent th...

  19. Artificial and Computational Intelligence for Games on Mobile Platforms

    OpenAIRE

    Congdon, Clare Bates; Hingston, Philip; Kendall, Graham

    2013-01-01

    In this chapter, we consider the possibilities of creating new and innovative games that are targeted for mobile devices, such as smart phones and tablets, and that showcase AI (Artificial Intelligence) and CI (Computational Intelligence) approaches. Such games might take advantage of the sensors and facilities that are not available on other platforms, or might simply rely on the "app culture" to facilitate getting the games into users' hands. While these games might be profitable in themsel...

  20. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    Science.gov (United States)

    Altman, R B

    2017-05-01

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.