WorldWideScience

Sample records for networked unattended ground

  1. Study of data fusion algorithms applied to unattended ground sensor network

    Science.gov (United States)

    Pannetier, B.; Moras, J.; Dezert, Jean; Sella, G.

    2014-06-01

    In this paper, data obtained from wireless unattended ground sensor network are used for tracking multiple ground targets (vehicles, pedestrians and animals) moving on and off the road network. The goal of the study is to evaluate several data fusion algorithms to select the best approach to establish the tactical situational awareness. The ground sensor network is composed of heterogeneous sensors (optronic, radar, seismic, acoustic, magnetic sensors) and data fusion nodes. The fusion nodes are small hardware platforms placed on the surveillance area that communicate together. In order to satisfy operational needs and the limited communication bandwidth between the nodes, we study several data fusion algorithms to track and classify targets in real time. A multiple targets tracking (MTT) algorithm is integrated in each data fusion node taking into account embedded constraint. The choice of the MTT algorithm is motivated by the limit of the chosen technology. In the fusion nodes, the distributed MTT algorithm exploits the road network information in order to constrain the multiple dynamic models. Then, a variable structure interacting multiple model (VS-IMM) is adapted with the road network topology. This algorithm is well-known in centralized architecture, but it implies a modification of other data fusion algorithms to preserve the performances of the tracking under constraints. Based on such VS-IMM MTT algorithm, we adapt classical data fusion techniques to make it working in three architectures: centralized, distributed and hierarchical. The sensors measurements are considered asynchronous, but the fusion steps are synchronized on all sensors. Performances of data fusion algorithms are evaluated using simulated data and also validated on real data. The scenarios under analysis contain multiple targets with close and crossing trajectories involving data association uncertainties.

  2. Communications for unattended sensor networks

    Science.gov (United States)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  3. Technologies for unattended network operations

    Science.gov (United States)

    Jaworski, Allan; Odubiyi, Jide; Holdridge, Mark; Zuzek, John

    1991-01-01

    The necessary network management functions for a telecommunications, navigation and information management (TNIM) system in the framework of an extension of the ISO model for communications network management are described. Various technologies that could substantially reduce the need for TNIM network management, automate manpower intensive functions, and deal with synchronization and control at interplanetary distances are presented. Specific technologies addressed include the use of the ISO Common Management Interface Protocol, distributed artificial intelligence for network synchronization and fault management, and fault-tolerant systems engineering.

  4. Technologies for unattended network operations

    Science.gov (United States)

    Jaworski, Allan; Odubiyi, Jide; Holdridge, Mark; Zuzek, John

    1991-09-01

    The necessary network management functions for a telecommunications, navigation and information management (TNIM) system in the framework of an extension of the ISO model for communications network management are described. Various technologies that could substantially reduce the need for TNIM network management, automate manpower intensive functions, and deal with synchronization and control at interplanetary distances are presented. Specific technologies addressed include the use of the ISO Common Management Interface Protocol, distributed artificial intelligence for network synchronization and fault management, and fault-tolerant systems engineering.

  5. Acoustic and Seismic Modalities for Unattended Ground Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  6. Bio-inspired approach for intelligent unattended ground sensors

    Science.gov (United States)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  7. Changing requirements and solutions for unattended ground sensors

    Science.gov (United States)

    Prado, Gervasio; Johnson, Robert

    2007-10-01

    Unattended Ground Sensors (UGS) were first used to monitor Viet Cong activity along the Ho Chi Minh Trail in the 1960's. In the 1980's, significant improvement in the capabilities of UGS became possible with the development of digital signal processors; this led to their use as fire control devices for smart munitions (for example: the Wide Area Mine) and later to monitor the movements of mobile missile launchers. In these applications, the targets of interest were large military vehicles with strong acoustic, seismic and magnetic signatures. Currently, the requirements imposed by new terrorist threats and illegal border crossings have changed the emphasis to the monitoring of light vehicles and foot traffic. These new requirements have changed the way UGS are used. To improve performance against targets with lower emissions, sensors are used in multi-modal arrangements. Non-imaging sensors (acoustic, seismic, magnetic and passive infrared) are now being used principally as activity sensors to cue imagers and remote cameras. The availability of better imaging technology has made imagers the preferred source of "actionable intelligence". Infrared cameras are now based on un-cooled detector-arrays that have made their application in UGS possible in terms of their cost and power consumption. Visible light imagers are also more sensitive extending their utility well beyond twilight. The imagers are equipped with sophisticated image processing capabilities (image enhancement, moving target detection and tracking, image compression). Various commercial satellite services now provide relatively inexpensive long-range communications and the Internet provides fast worldwide access to the data.

  8. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections

    Science.gov (United States)

    2015-06-01

    employment and range in using the McQ UGS. It is encryption capable and has an internal solar power charger for the repeaters to aid in extended...assets to support long range, all weather, reduced footprint, and multi -sensor collections in any environment [3]. Ground reconnaissance forces may be...approaches toward asset integration for multi -source intelligence collections, specifically UGS as cueing assets, all to better support EF 21 intelligence

  9. Terra Harvest Open Source Environment (THOSE): a universal unattended ground sensor controller

    Science.gov (United States)

    Gold, Joshua; Klawon, Kevin; Humeniuk, David; Landoll, Darren

    2011-06-01

    Under the Terra Harvest Program, the Defense Intelligence Agency (DIA) has the objective of developing a universal Controller for the Unattended Ground Sensor (UGS) community. The mission is to define, implement, and thoroughly document an open architecture that universally supports UGS missions, integrating disparate systems, peripherals, etc. The Controller's inherent interoperability with numerous systems enables the integration of both legacy and future Unattended Ground Sensor System (UGSS) components, while the design's open architecture supports rapid third-party development to ensure operational readiness. The successful accomplishment of these objectives by the program's Phase 3b contractors is demonstrated via integration of the companies' respective plug-'n-play contributions that include various peripherals, such as sensors, cameras, etc., and their associated software drivers. In order to independently validate the Terra Harvest architecture, L-3 Nova Engineering, along with its partner, the University of Dayton Research Institute (UDRI), is developing the Terra Harvest Open Source Environment (THOSE), a Java based system running on an embedded Linux Operating System (OS). The Use Cases on which the software is developed support the full range of UGS operational scenarios such as remote sensor triggering, image capture, and data exfiltration. The Team is additionally developing an ARM microprocessor evaluation platform that is both energyefficient and operationally flexible. The paper describes the overall THOSE architecture, as well as the implementation strategy for some of the key software components. Preliminary integration/test results and the Team's approach for transitioning the THOSE design and source code to the Government are also presented.

  10. Cooperative surveillance and pursuit using unmanned aerial vehicles and unattended ground sensors.

    Science.gov (United States)

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-13

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios.

  11. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    Science.gov (United States)

    Las Fargeas, Jonathan; Kabamba, Pierre; Girard, Anouck

    2015-01-01

    This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles' paths nominally. The algorithm uses detections from the sensors to predict intruders' locations and selects the vehicles' paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm's completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios. PMID:25591168

  12. Cooperative Surveillance and Pursuit Using Unmanned Aerial Vehicles and Unattended Ground Sensors

    Directory of Open Access Journals (Sweden)

    Jonathan Las Fargeas

    2015-01-01

    Full Text Available This paper considers the problem of path planning for a team of unmanned aerial vehicles performing surveillance near a friendly base. The unmanned aerial vehicles do not possess sensors with automated target recognition capability and, thus, rely on communicating with unattended ground sensors placed on roads to detect and image potential intruders. The problem is motivated by persistent intelligence, surveillance, reconnaissance and base defense missions. The problem is formulated and shown to be intractable. A heuristic algorithm to coordinate the unmanned aerial vehicles during surveillance and pursuit is presented. Revisit deadlines are used to schedule the vehicles’ paths nominally. The algorithm uses detections from the sensors to predict intruders’ locations and selects the vehicles’ paths by minimizing a linear combination of missed deadlines and the probability of not intercepting intruders. An analysis of the algorithm’s completeness and complexity is then provided. The effectiveness of the heuristic is illustrated through simulations in a variety of scenarios.

  13. Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    Science.gov (United States)

    Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.

    1991-01-01

    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.

  14. Implementing the distributed consensus-based estimation of environmental variables in unattended wireless sensor networks

    Science.gov (United States)

    Contreras, Rodrigo; Restrepo, Silvia E.; Pezoa, Jorge E.

    2014-10-01

    In this paper, the prototype implementation of a scalable, distributed protocol for calculating the global average of sensed environmental variables in unattended wireless sensor networks (WSNs) is presented. The design and implementation of the protocol introduces a communication scheme for discovering the WSN topology. Such scheme uses a synchronous flooding algorithm, which was implemented over an unreliable radiogram-based wireless channel. The topology discovery protocol has been synchronized with sampling time of the WSN and must be executed before the consensus-based estimation of the global averages. An average consensus algorithm, suited for clustered WSNs with static topologies, was selected from the literature. The algorithm was properly modified so that its implementation guarantees that the convergence time is bounded and less than the sampling time of the WSN. Moreover, to implement the consensus algorithm, a reliable packet-passing protocol was designed to exchange the weighting factors among the sensor nodes. Since the amount of data exchanged in each packet is bounded by the degree of the WSN, the scalability of the protocol is guaranteed to be linear. The proposed protocol was implemented in the Sun SPOT hardware/software platform using the Java programming language. All the radio communications were implemented over the IEEE 802.15.4 standard and the sensed environmental variables corresponded to the temperature and luminosity.

  15. An object-oriented modeling and simulation framework for bearings-only multi-target tracking using an unattended acoustic sensor network

    Science.gov (United States)

    Aslan, Murat Šamil

    2013-10-01

    Tracking ground targets using low cost ground-based sensors is a challenging field because of the limited capabilities of such sensors. Among the several candidates, including seismic and magnetic sensors, the acoustic sensors based on microphone arrays have a potential of being useful: They can provide a direction to the sound source, they can have a relatively better range, and the sound characteristics can provide a basis for target classification. However, there are still many problems. One of them is the difficulty to resolve multiple sound sources, another is that they do not provide distance, a third is the presence of background noise from wind, sea, rain, distant air and land traffic, people, etc., and a fourth is that the same target can sound very differently depending on factors like terrain type, topography, speed, gear, distance, etc. Use of sophisticated signal processing and data fusion algorithms is the key for compensating (to an extend) the limited capabilities and mentioned problems of these sensors. It is hard, if not impossible, to evaluate the performance of such complex algorithms analytically. For an effective evaluation, before performing expensive field trials, well-designed laboratory experiments and computer simulations are necessary. Along this line, in this paper, we present an object-oriented modeling and simulation framework which can be used to generate simulated data for the data fusion algorithms for tracking multiple on-road targets in an unattended acoustic sensor network. Each sensor node in the network is a circular microphone array which produces the direction of arrival (DOA) (or bearing) measurements of the targets and sends this information to a fusion center. We present the models for road networks, targets (motion and acoustic power) and acoustic sensors in an object-oriented fashion where different and possibly time-varying sampling periods for each sensor node is possible. Moreover, the sensor's signal processing and

  16. A Self-Adaptive Energy-Efficient Framework for Large Unattended Wireless Sensor Networks

    Science.gov (United States)

    2014-11-06

    Transactions on Vehicular Technology, (10 2011): 3919. doi: 10.1109/ TVT .2011.2166093 Miao Zhao, Yuanyuan Yang. Optimization-Based DistributedAlgorithms for...Networks, IEEE Transactions on Vehicular Technology, (05 2013): 0. doi: 10.1109/ TVT .2012.2229309 Miao Zhao, Ming Ma, Yuanyuan Yang. Applying

  17. Cortical response of the ventral attention network to unattended angry facial expressions: an EEG source analysis study

    Directory of Open Access Journals (Sweden)

    Alberto eInuggi

    2014-12-01

    Full Text Available Introduction: We used an affective prime task composed of emotional (happy, angry, and neutral prime faces and target words with either positive or negative valence. By asking subjects to attend to either the faces’ emotional expression or to the glasses’ shape, we assessed whether angry facial expressions were processed when they were unattended and task-irrelevant. Methods: We conducted a distributed source analysis on the corresponding event-related potentials focused on the early activity of face processing and attention networks’ related areas. We also evaluated the magnitude of the affective priming effect. Results: We observed a reduction of occipitotemporal areas’ (BA37 activation to unattended compared to attended faces and a modulation of primary visual areas’ activity lateralization. The latter was more right lateralized for attended than for unattended faces, and emotional faces were more right lateralized than neutral ones only in the former condition. Affective priming disappeared when emotional expressions of prime faces were ignored. Moreover, an increased activation in the right temporo-parietal junction (TPJ, but not in the intraparietal sulcus, was observed only for unattended angry facial expressions at approximately 170 ms after face presentation. Conclusions: We suggest that attentional resources affect the early processing in visual and occipito-temporal areas, irrespective of the faces’ threatening content. The disappearance of the affective priming effect suggests that when subjects were asked to focus on glasses’ shape, attentional resources were not available to process the facial emotional expression, even though emotion relevant and emotion irrelevant features of the face were presented in the same position. On the other hand, unattended angry faces evoked a pre-attentive TPJ activity, which most likely represents a bottom-up trigger that signals their high behavioral relevance, although it is unrelated

  18. Initial Experiment in Using a Powered Parafoil for Employment of Intelligence, Surveillance, and Reconnaissance (ISR) Unattended Ground Sensors (UGS)

    National Research Council Canada - National Science Library

    Kolodny, Michael

    2004-01-01

    Experiments were run by the U.S. Army Research Laboratory at Yuma Proving Ground, AZ, on 10 and 12 June 2004 to obtain an initial assessment of the viability of using a powered parafoil as an unmanned air vehicle for employment...

  19. NVESD's battlefield simulation of unattended sensors and munitions

    Science.gov (United States)

    Harkrider, Susan; Self, Mid; Martinez, Ivan

    2005-05-01

    This paper describes the Comprehensive Munitions and Sensor Server (CMS2) simulation software, its representation of Unattended Ground Sensors (UGS), Intelligent Munition Systems (IMS) and mines, and its application to high visibility US Army programs. The Comprehensive Munitions and Sensor Server (CMS2) provides a high-fidelity representation of mines, Intelligent Munitions Systems (IMS), and Unattended Ground Sensors (UGS) to support a broad range of engineering and operational simulation applications. Mine types modeled by CMS2 include conventional anti-personnel and anti-tank, side attack, command activated and individual and networked smart munitions. Sensor technologies modeled include, but are not limited to, imaging IR, acoustic, seismic, and magnetic. Since the CMS2 software is predominantly implemented as parametric models and plug-in libraries, the sensors, munitions, mines and their components can be configured or even added at run time. CMS2 interfaces with an imaging sensor simulation and a Human-In-The-Loop (HITL) controller application that allows for the control of IMS and UGS systems simulated by CMS2. The controller, in conjunction with the imaging sensor simulation, provides static visible and infrared (IR) images of the target area of interest to the operator. CMS2 typically complements the OneSAF Testbed within force-on-force simulations. Because of its modularity and software reuse, the CMS2 simulation is utilized extensively to support programs such as TRADOC"s Unit of Action experimentation, Intelligent Munitions System (IMS), Tactical Unattended Ground Sensor (T-UGS), Networked Sensors for the Future Force (NSFF) program and the Future Combat Systems (FCS). This paper will describe how some of these programs are using CMS2 to support the development and acquisition of UGS and IMS technologies.

  20. Networked unattented ground sensors assesment

    Science.gov (United States)

    Bouguereau, Julien; Gattefin, Christian; Dupuy, Gilles

    2003-09-01

    Within the framework of the NATO AC 323 / RTO TG 25 group, relating to advanced concepts of acoustic and seismic technology for military applications, Technical Establishment of Bourges welcomed and organized a joint campaign of experiment intending to demonstrate the interest of a networked unattented ground sensors for vehicles detection and tracking in an area defense context. Having reminded the principle of vehicles tracking, this paper describes the progress of the test campaign and details particularly sensors and participants deployment, the solution of interoperability chosen by the group and the instrumentation used to acquire, network, process and publish in real-time data available during the test: meteorological data, trajectography data and targets detection reports data. Finally, some results of the campaign are presented.

  1. Unattended Monitoring of Suspicious Behaviour for Route Surveillance

    NARCIS (Netherlands)

    Schoemaker, R.M.; Sandbrink, R.D.J.; Voorthuijsen, G.P. van

    2010-01-01

    A priori information on suspicious behaviour is extremely valuable for countering threats involving improvised explosive devices (IEDs). Suspicious activities along routes during expeditionary operations can be monitored by unattended networks using simple sensing nodes that can gather data for

  2. Disposable Multi-Sensor Unattended Ground Sensor Systems for Detecting Personnel (Systemes de detection multi-capteurs terrestres autonome destines a detecter du personnel)

    Science.gov (United States)

    2015-02-01

    the set of DCT coefficients for all the training data corresponding to the people. Then, the matrix ][ pX can be written as: ][][][ −+ −= ppp XXX ...deployed on two types of ground conditions. This included ARL multi-modal sensors, video and acoustic sensors from the Universities of Memphis and...Mississippi, SASNet from Canada, video from Night Vision Laboratory and Pearls of Wisdom system from Israel operated in conjunction with ARL personnel. This

  3. 36 CFR 13.1240 - Unattended property.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Unattended property. 13.1240 Section 13.1240 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR... Developed Area § 13.1240 Unattended property. Leaving property, other than motorboats and planes, unattended...

  4. Priming motivation through unattended speech.

    Science.gov (United States)

    Radel, Rémi; Sarrazin, Philippe; Jehu, Marie; Pelletier, Luc

    2013-12-01

    This study examines whether motivation can be primed through unattended speech. Study 1 used a dichotic-listening paradigm and repeated strength measures. In comparison to the baseline condition, in which the unattended channel was only composed by neutral words, the presence of words related to high (low) intensity of motivation led participants to exert more (less) strength when squeezing a hand dynamometer. In a second study, a barely audible conversation was played while participants' attention was mobilized on a demanding task. Participants who were exposed to a conversation depicting intrinsic motivation performed better and persevered longer in a subsequent word-fragment completion task than those exposed to the same conversation made unintelligible. These findings suggest that motivation can be primed without attention. © 2013 The British Psychological Society.

  5. Polarization dynamics in optical ground wire network.

    Science.gov (United States)

    Leeson, Jesse; Bao, Xiaoyi; Côté, Alain

    2009-04-20

    We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers' electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun-induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300 Hz for the sampling frequency of 1 KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

  6. Sustainable unattended sensors for security and environmental monitoring

    Science.gov (United States)

    Carapezza, Edward M.; Molter, Trent M.

    2008-10-01

    This paper describes two ocean energy harvesting approaches and technologies for providing sustainable power for distributed unattended sensor and unmanned underwater vehicle networks in open ocean and in coastal and riverine areas. Technologies and systems described include energy harvesting using bottom mounted microbial fuel cells and energy harvesting from naturally occurring methane and methane hydrate deposits. The potential continuous power that could be extracted using these methods ranges from milliwatts for very small microbial fuel cells to tens of kilowatts for methane hydrate processing systems. Exploiting the appropriate naturally occurring ocean or coastal energy source will enable the placement and use of large networks of unattended sensors, both fixed in position and on rechargeable unmanned undersea vehicles. The continuous operation of such systems will have a profound impact on our knowledge of marine biological, physical and chemical processes and systems and will also facilitate improved homeland security and port surveillance.

  7. Surveillance Unattended Foliage Penetrating Radar for Border Control and Homeland Protection

    Directory of Open Access Journals (Sweden)

    Felicia Amato

    2013-06-01

    Full Text Available The increasing request for safety, security and environment protection at local and national level reveal the deficiency of the traditional surveillance and control centers to satisfy the needs and requirements of modern border control systems for homeland protection where land border is expected to be monitored as well as the maritime one. This is, for instance, the case of any land border affected by hidden immigration and/or illegal traffics as well as any small areas such as critical infrastructures or military/ civilian posts in forest or jungle environment characterized by vegetation. In such challenging environment, logistics constraints strongly recommend to have very low power devices able to operate months or years without maintenance. A such scenario should be the perfect place for implementing an Unattended Ground Sensors (UGS network making use FOliage PENetration (FOPEN radar for border control. The paper aims to present the basic characteristics and preliminary results of a Surveillance Unattended FOPEN (SUF radar suitable for detecting moving targets, people or vehicles, in dense forest environment.

  8. GPM GROUND VALIDATION EARTH NETWORKS TOTAL LIGHTNING NETWORK (ENTLN) MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Networks Total Lightning Network (ENTLN) is an integrated in-cloud (IC) lightning and cloud-to-ground (CG) detection network deployed on a global basis...

  9. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K. [Saskatchewan Univ., Saskatoon, SK (Canada)

    1995-12-31

    Adaptive protection was used for designing a protection system for the City of Saskatoon`s distribution network. The software and hardware were developed and the protection system was implemented in the laboratory at the University of Saskatchewan. In the first phase of the project, phase overcurrent relays were coordinated on the basis of three-phase faults. Most faults in distribution networks were single-phase to ground faults. Ground fault currents varied due to different grounding practices, changes in operating conditions and system topology. In the second phase of the project, adaptive capabilities for ground overcurrent and directional ground overcurrent protection were added. Software modules developed for achieving adaptive ground fault protection were described. Results from system studies carried out using the City of Saskatoon`s distribution network were also analyzed. 7 refs., 8 figs.

  10. The potential use of fiducial ground networks.

    Science.gov (United States)

    Bianco, G.

    1991-12-01

    Collocation of space geodetic techniques will play an important role for precision orbit determination of ARISTOTELES. The FLINN network concept is ideal for defining and maintaining an highly precise conventional terrestrial reference frame by means of collocated SLR, VLBI and GPS stations. The proposed, "on-line" ARISTOTELES GPS tracking network should be supported by an extended, "off-line" tracking network with several selected FLINN sites, in order to include the ARISTOTELES mission within a standard, high accuracy conventional terrestrial reference system.

  11. Adaptive relaying for ground fault protection of a distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M.S.; Sidhu, T.S.; Talukdar, B.K.

    1995-12-31

    With the advent of digital technology and microprocessor-based relays, it is possible to continuously monitor a power network, analyze it in real time, and change the relay settings to those most suitable at that time, thereby achieving improved protection of the network. This approach, known as adaptive relaying, was applied to the Saskatoon distribution network. This paper describes the software modules developed for setting ground fault overcurrent relays in the adaptive relay protection system. The major task in this system was the on-line coordination of relays, as most faults in a distribution system are of the single-phase to ground type and current unbalance due to single-phase loading contributes to the complexity of relay coordination. The modules served for network topology detection, state estimation, fault analysis, and relay setting and coordination. The paper also presents results of a study of the proposed adaptive ground fault protection scheme using a model distribution network.

  12. A Framework for Dimensioning VDL-2 Air-Ground Networks

    Science.gov (United States)

    Ribeiro, Leila Z.; Monticone, Leone C.; Snow, Richard E.; Box, Frank; Apaza, Rafel; Bretmersky, Steven

    2014-01-01

    This paper describes a framework developed at MITRE for dimensioning a Very High Frequency (VHF) Digital Link Mode 2 (VDL-2) Air-to-Ground network. This framework was developed to support the FAA's Data Communications (Data Comm) program by providing estimates of expected capacity required for the air-ground network services that will support Controller-Pilot-Data-Link Communications (CPDLC), as well as the spectrum needed to operate the system at required levels of performance. The Data Comm program is part of the FAA's NextGen initiative to implement advanced communication capabilities in the National Airspace System (NAS). The first component of the framework is the radio-frequency (RF) coverage design for the network ground stations. Then we proceed to describe the approach used to assess the aircraft geographical distribution and the data traffic demand expected in the network. The next step is the resource allocation utilizing optimization algorithms developed in MITRE's Spectrum ProspectorTM tool to propose frequency assignment solutions, and a NASA-developed VDL-2 tool to perform simulations and determine whether a proposed plan meets the desired performance requirements. The framework presented is capable of providing quantitative estimates of multiple variables related to the air-ground network, in order to satisfy established coverage, capacity and latency performance requirements. Outputs include: coverage provided at different altitudes; data capacity required in the network, aggregated or on a per ground station basis; spectrum (pool of frequencies) needed for the system to meet a target performance; optimized frequency plan for a given scenario; expected performance given spectrum available; and, estimates of throughput distributions for a given scenario. We conclude with a discussion aimed at providing insight into the tradeoffs and challenges identified with respect to radio resource management for VDL-2 air-ground networks.

  13. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    Science.gov (United States)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure

  14. The ground truth about metadata and community detection in networks.

    Science.gov (United States)

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  15. The Distributed Unattended Networked Sensors Field Experiment

    National Research Council Canada - National Science Library

    Sim, Leng

    2000-01-01

    .... Army Research Laboratory (ARL) regularly conducts field experiments to demonstrate and evaluate real-time performance of the acoustic sensor test bed and to collect signature data of new targets for an ARL acoustic and seismic database...

  16. GPM ground validation via commercial cellular networks: an exploratory approach

    Science.gov (United States)

    Rios Gaona, Manuel Felipe; Overeem, Aart; Leijnse, Hidde; Brasjen, Noud; Uijlenhoet, Remko

    2016-04-01

    The suitability of commercial microwave link networks for ground validation of GPM (Global Precipitation Measurement) data is evaluated here. Two state-of-the-art rainfall products are compared over the land surface of the Netherlands for a period of 7 months, i.e., rainfall maps from commercial cellular communication networks and Integrated Multi-satellite Retrievals for GPM (IMERG). Commercial microwave link networks are nowadays the core component in telecommunications worldwide. Rainfall rates can be retrieved from measurements of attenuation between transmitting and receiving antennas. If adequately set up, these networks enable rainfall monitoring tens of meters above the ground at high spatiotemporal resolutions (temporal sampling of seconds to tens of minutes, and spatial sampling of hundreds of meters to tens of kilometers). The GPM mission is the successor of TRMM (Tropical Rainfall Measurement Mission). For two years now, IMERG offers rainfall estimates across the globe (180°W - 180°E and 60°N - 60°S) at spatiotemporal resolutions of 0.1° x 0.1° every 30 min. These two data sets are compared against a Dutch gauge-adjusted radar data set, considered to be the ground truth given its accuracy, spatiotemporal resolution and availability. The suitability of microwave link networks in satellite rainfall evaluation is of special interest, given the independent character of this technique, its high spatiotemporal resolutions and availability. These are valuable assets for water management and modeling of floods, landslides, and weather extremes; especially in places where rain gauge networks are scarce or poorly maintained, or where weather radar networks are too expensive to acquire and/or maintain.

  17. Continuous remote unattended monitoring for safeguards data collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Klosterbuer, S.F.; Halbig, J.K.; Harker, W.C.; Menlove, H.O.; Painter, J.A.; Stewart, J.E.

    1994-02-01

    To meet increased inspection requirements, unattended and remote monitoring systems have been developed and installed in several large facilities to perform safeguards functions. These unattended monitoring systems are based on instruments originally developed for traditional safeguards and the domestic nuclear industry to nondestructively assay nuclear materials. Through specialized measurement procedures, these instruments have been adapted to be unattended monitors. This paper defines the parts of these unattended monitoring systems, describes the systems that have been installed in the field and their status, and discusses future trends for unattended systems.

  18. Integrated operational control and dynamic task allocation of unattended distributed sensor systems

    Science.gov (United States)

    Talukder, Ashit

    2009-05-01

    Unattended autonomous systems of the future will involve groups of static and mobile sensors functioning in coordination to achieve overall task objectives. Such systems can be viewed as wirelessly networked unmanned heterogeneous sensor networks. We discuss a distributed heterogeneous sensing system with static sensors and mobile robots with novel control optimization algorithms for dynamic adaptation, coordinated control and end to end resource management of all sensors in response to detected events to achieve overall system goals and objectives. Our system is designed for a host of applications, such as unmediated data monitoring and record keeping of the environment, battlefield monitoring using integrated ground, ocean and air sensors, and reactive operation to threats or changing conditions, and homeland security or border/road surveillance systems where unmanned vehicles can be deployed autonomously in response to detected events. Results for large area coastal monitoring are presented. Offline results using actual modeled data from in-situ sensory measurements demonstrate how the sensor parameters can be adapted to maximize observability of a freshwater plume while ensuring that individual system components operate within their physical limitations.1 2

  19. Low-Cost Ground Sensor Network for Intrusion Detection

    Science.gov (United States)

    2017-09-01

    requirement for this task and yet not compromise the security of the operating location. We found Internet of Things ( IoT ) platforms such as Raspberry Pi...field environment, and evaluated its performance. We conclude that COTS IoT platforms have much potential to support surveillance of FARPs and other...forward operating locations. 14. SUBJECT TERMS wireless, low-cost, network, IoT , PIR, image recognition, air base ground defense system, OpenCV

  20. Don’t leave your baggage unattended

    CERN Multimedia

    2016-01-01

    “Don’t leave your baggage unattended” is a familiar request to anyone who travels by air, but it’s good advice wherever you may be.    At CERN, if an unattended bag is found anywhere on the site, the Fire and Rescue service will be called to evacuate the area, maintain a security perimeter for as long as necessary, and attempt to identify the owner. If the owner cannot be found in a reasonable amount of time, there’s a very strong chance that the bag will be destroyed. You can take two simple steps to avoid this fate: Don’t leave your baggage unattended;   Make sure that your contact details are clearly visible on the bag or suitcase so that, should you find yourself separated from it, you can easily be reunited.

  1. Adaptive relaying for ground fault protection of distribution network

    Energy Technology Data Exchange (ETDEWEB)

    Sachdev, M. S.; Sidhu, T. S.; Talukdar, B. K.

    1995-06-01

    In consequence of the increasing complexity of power distribution networks frequent changes in relay settings to achieve effective protection against ground faults is essential. The principal focus of this paper was adaptive relaying which makes use of digital technology and microprocessors to design systems which can provide protection of complex distribution networks under all operating conditions. Specifically, the paper described software modules that were developed to achieve this capability, developed for the City of Saskatoon`s distribution network. The system provides reliable, fast and selective protection of all components of the distribution system by constantly monitoring all the buses and currents in the circuit by substation computers, which are under the control of a central control computer. In addition to adaptive protection, the system can also provide optimal control of feeder loads, transformers, reactors, and capacitors, cold load pick up and reclosing of circuit breakers and reclosers. 2 refs., 8 figs.

  2. Establishing a Modern Ground Network for Space Geodesy Applications

    Science.gov (United States)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  3. A Practical Guide to the Open Standards for Unattended Sensors (OSUS)

    Science.gov (United States)

    2018-01-01

    US Army Research Laboratory ATTN: RDRL-SES-A Aberdeen Proving Ground , MD 21005-5066 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-8279 9...ARL-TR-8279 ● JAN 2018 US Army Research Laboratory A Practical Guide to the Open Standards for Unattended Sensors (OSUS) by...needed. Do not return it to the originator. ARL-TR-8279 ● JAN 2018 US Army Research Laboratory A Practical Guide to the Open

  4. Ground Motion Prediction Model Using Artificial Neural Network

    Science.gov (United States)

    Dhanya, J.; Raghukanth, S. T. G.

    2017-12-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude (M w), closest distance to rupture plane (R rup), shear wave velocity in the region (V s30) and focal mechanism (F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  5. Strong Ground Motion Database System for the Mexican Seismic Network

    Science.gov (United States)

    Perez-Yanez, C.; Ramirez-Guzman, L.; Ruiz, A. L.; Delgado, R.; Macías, M. A.; Sandoval, H.; Alcántara, L.; Quiroz, A.

    2014-12-01

    A web-based system for strong Mexican ground motion records dissemination and archival is presented. More than 50 years of continuous strong ground motion instrumentation and monitoring in Mexico have provided a fundamental resource -several thousands of accelerograms- for better understanding earthquakes and their effects in the region. Lead by the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM), the engineering strong ground motion monitoring program at IE relies on a continuously growing network, that at present includes more than 100 free-field stations and provides coverage to the seismic zones in the country. Among the stations, approximately 25% send the observed acceleration to a processing center in Mexico City in real-time, and the rest require manual access, remote or in situ, for later processing and cataloguing. As part of a collaboration agreement between UNAM and the National Center for Disaster Prevention, regarding the construction and operation of a unified seismic network, a web system was developed to allow access to UNAM's engineering strong motion archive and host data from other institutions. The system allows data searches under a relational database schema, following a general structure relying on four databases containing the: 1) free-field stations, 2) epicentral location associated with the strong motion records available, 3) strong motion catalogue, and 4) acceleration files -the core of the system. In order to locate and easily access one or several records of the data bank, the web system presents a variety of parameters that can be involved in a query (seismic event, region boundary, station name or ID, radial distance to source or peak acceleration). This homogeneous platform has been designed to facilitate dissemination and processing of the information worldwide. Each file, in a standard format, contains information regarding the recording instrument, the station, the corresponding earthquake

  6. Predicting thunderstorm evolution using ground-based lightning detection networks

    Science.gov (United States)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  7. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    OpenAIRE

    Wang, Wen; Yan, L.; Zeng, X.; Zhao, Xin; Wei, Baoze; Guerrero, Josep M.

    2016-01-01

    The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output...

  8. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  9. Analysis and applications of spectral properties of grounded Laplacian matrices for directed networks

    NARCIS (Netherlands)

    Xia, Weiguo; Cao, Ming

    In-depth understanding of the spectral properties of grounded Laplacian matrices is critical for the analysis of convergence speeds of dynamical processes over complex networks, such as opinion dynamics in social networks with stubborn agents. We focus on grounded Laplacian matrices for directed

  10. Feature Extraction Method for High Impedance Ground Fault Localization in Radial Power Distribution Networks

    DEFF Research Database (Denmark)

    Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted

    1998-01-01

    A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...... of three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...... processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement...

  11. Impact of grounding and filtering on power insulation monitoring in insulated terrestrial power networks

    NARCIS (Netherlands)

    van Vugt, Pieter Karel Anton; Bijman, Rob; Timens, R.B.; Leferink, Frank Bernardus Johannes

    2013-01-01

    Insulated terrestrial power networks are used for reliable systems such as large production plants, hospital operating rooms and naval ships. The system is isolated from ground and a first fault, such as a short circuit between a phase and ground, will not result in disconnection of the power via

  12. MODELING NITRATE CONCENTRATION IN GROUND WATER USING REGRESSION AND NEURAL NETWORKS

    OpenAIRE

    Ramasamy, Nacha; Krishnan, Palaniappa; Bernard, John C.; Ritter, William F.

    2003-01-01

    Nitrate concentration in ground water is a major problem in specific agricultural areas. Using regression and neural networks, this study models nitrate concentration in ground water as a function of iron concentration in ground water, season and distance of the well from a poultry house. Results from both techniques are comparable and show that the distance of the well from a poultry house has a significant effect on nitrate concentration in groundwater.

  13. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...... of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground...... voltage compensation. Then, a current control method consisting of proportional resonant (PR) and proportional integral (PI) with capacitive current feedback is then proposed to guarantee sufficient output current accuracy and stability margin subjecting to large range of load change. The performance...

  14. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  15. Ground rules of the pluripotency gene regulatory network.

    KAUST Repository

    Li, Mo

    2017-01-03

    Pluripotency is a state that exists transiently in the early embryo and, remarkably, can be recapitulated in vitro by deriving embryonic stem cells or by reprogramming somatic cells to become induced pluripotent stem cells. The state of pluripotency, which is stabilized by an interconnected network of pluripotency-associated genes, integrates external signals and exerts control over the decision between self-renewal and differentiation at the transcriptional, post-transcriptional and epigenetic levels. Recent evidence of alternative pluripotency states indicates the regulatory flexibility of this network. Insights into the underlying principles of the pluripotency network may provide unprecedented opportunities for studying development and for regenerative medicine.

  16. Maryland Ground-Water Observation Well Network, 2001

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MDNET is a point coverage that represents the locations and names of a network of observation wells for the State of Maryland. Additional information on water...

  17. Large File Transfers from Space Using Multiple Ground Terminals and Delay-Tolerant Networking

    Science.gov (United States)

    Ivancic, William D.; Paulsen, Phillip; Stewart, Dave; Eddy, Wesley; McKim, James; Taylor, John; Lynch, Scott; Heberle, Jay; Northam, James; Jackson, Chris; hide

    2010-01-01

    We use Delay-Tolerant Networking (DTN) to break control loops between space-ground communication links and ground-ground communication links to increase overall file delivery efficiency, as well as to enable large files to be proactively fragmented and received across multiple ground stations. DTN proactive fragmentation and reactive fragmentation were demonstrated from the UK-DMC satellite using two independent ground stations. The files were reassembled at a bundle agent, located at Glenn Research Center in Cleveland Ohio. The first space-based demonstration of this occurred on September 30 and October 1, 2009. This paper details those experiments. Communication, delay-tolerant networking, DTN, satellite, Internet, protocols, bundle, IP, TCP.

  18. GGOS working group on ground networks and communications

    Science.gov (United States)

    Pearlman, M.; Altamimi, Z.; Beck, N.; Forsberg, R.; Gurtner, W.; Kenyon, S.; Behrend, D.; Lemoine, F. G.; Ma, C.; Noll, C. E.; hide

    2005-01-01

    Activities of this Working Group include the investigation of the status quo and the development of a plan for full network integration to support improvements in terrestrial reference frame establishment and maintenance, Earth orientation and gravity field monitoring, precision orbit determination, and other geodetic and gravimetric applications required for the long-term observation of global change. This integration process includes the development of a network of fundamental stations with as many co-located techniques as possible, with precisely determined intersystem vectors. This network would exploit the strengths of each technique and minimize the weaknesses where possible. This paper discusses the organization of the working group, the work done to date, and future tasks.

  19. An Air-Ground Wireless Sensor Network for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Claudio Rossi

    2011-06-01

    Full Text Available This paper presents a collaborative system made up of a Wireless Sensor Network (WSN and an aerial robot, which is applied to real-time frost monitoring in vineyards. The core feature of our system is a dynamic mobile node carried by an aerial robot, which ensures communication between sparse clusters located at fragmented parcels and a base station. This system overcomes some limitations of the wireless networks in areas with such characteristics. The use of a dedicated communication channel enables data routing to/from unlimited distances.

  20. 30 CFR 57.20020 - Unattended mine openings.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Unattended mine openings. 57.20020 Section 57.20020 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Miscellaneous...

  1. A framework for recovery-oriented, COTS-based ground station networks

    Science.gov (United States)

    Cutler, James William

    The complexity of space communication has limited our access to space systems and kept mission operations costs high. Ultimately, this results in reduced mission capabilities and yields. In particular, ground stations, the access point between space and terrestrial networks, suffer from monolithic designs, narrow interfaces, and unreliability that raise significant financial barriers for low-cost, experimental satellite missions. This research reduces these barriers by developing technology for recovery-oriented, flexible access networks built from commercial-off-the-shelf (COTS) components. Based on our extensive small satellite experiences, we decomposed ground station services and captured them in an extensible framework that simplified reuse of ground station services and improved portability across heterogeneous installations. This capability, combined with selective customization through virtual machine technology, allowed us to deliver "just in time" ground stations for QuakeSat-1 at a fraction of the price of current commodity solutions. This decomposition is also informed by principles of robust system design. Thus, our ground station reference implementation called Mercury was a candidate for recursive recovery (RR), a high availability technique whose effectiveness in reducing recovery time has been demonstrated on research prototypes of Internet server systems. Augmenting Mercury to implement RR reduced recovery time of typical ground station software failures by a factor of four, dropping recovery time to within the "window of recovery" and effectively eliminating the adverse effects of these failures. Since the time of failures cannot be predicted, RR allowed us to mitigate the effects of the failures and greatly reduce their potential impact on ground station operations. Our ground station architecture harnessed the benefits of COTS components, including rapid prototyping and deployment, while overcoming the challenges of COTS reliability and mission

  2. BOREAS RSS-11 Ground Network of Sunphotometer Measurements

    Science.gov (United States)

    Markham, Brian L.; Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Schafer, Joel; Smith, David E. (Technical Monitor)

    2000-01-01

    The BOREAS RSS-11 team operated a network of five automated (Cimel) and two hand-held (Miami) solar radiometers from 1994 to 1996 during the BOREAS field campaigns. The data provide aerosol optical depth measurements, size distribution, phase function, and column water vapor amounts over points in northern Saskatchewan and Manitoba, Canada. The data are useful for the correction of remotely sensed aircraft and satellite images. The data are provided in tabular ASCII files.

  3. Resonant Dynamics of Grounded Cognition: Explanation of Behavioral and Neuroimaging Data Using the ART Neural Network

    OpenAIRE

    Domijan, Dražen; Šetić, Mia

    2016-01-01

    Research on grounded cognition suggests that the processing of a word or concept reactivates the perceptual representations that are associated with the referent object. The objective of this work is to demonstrate how behavioral and functional neuroimaging data on grounded cognition can be understood as different manifestations of the same cortical circuit designed to achieve stable category learning, as proposed by the adaptive resonance theory (ART). We showed that the ART neural network p...

  4. Positive cloud-to-ground lightning detection by a direction-finder network

    Science.gov (United States)

    Macgorman, Donald R.; Taylor, William L.

    1989-01-01

    Consideration is given to the ability of an automatic direction-finder network to identify cloud-to-ground flashes that effectively lower positive charge to the ground (+CG flashes). Records from an extremely low frequency system are examined to determine whether or not 340 +CG flashes detected by the network have coincident waveforms characteristic of +CG flashes. It is found that false detection in the system is negligible for +CG flashes with range-normalized amplitudes of at least 50 direction-finder units. Also, it is shown that no more than about 15 percent of the +CG flashes detected by the system at smaller amplitudes are false detections.

  5. A neutral grounding metallic resistor failure in a 35 kV network

    Directory of Open Access Journals (Sweden)

    Simić Ninoslav

    2011-01-01

    Full Text Available This paper presents the results of observations and measurements of the impedance of the metal resistor for grounding neutral of the 35 kV network, before and after damaging event. The proposed measures are to be taken in order to eliminate a failure in this particular case, as well as the prevention of similar events.

  6. Boarding Team Networking on the Move: Applying Unattended Relay Nodes

    Science.gov (United States)

    2014-09-01

    phase, BT members are transferred to target vessels either by a helicopter or by a RHIB. After deployment, BT members climb aboard, or are dropped...within two different indoor environments [14]. As Kothari et al. mentioned, the system does not provide perfect localization due to an error in the...dead reckoning provides a better position estimation within indoor environments, while a combination of wireless and reckoning provides a better

  7. Automatic processing of unattended object features by functional connectivity

    Directory of Open Access Journals (Sweden)

    Katja Martina Mayer

    2013-05-01

    Full Text Available Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended and task-irrelevant (unattended object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, colour, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks or remained constant (no-change blocks during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioural level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localised several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction analyses revealed that several functionally-localised areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.

  8. Unattended Hospital and Home Sleep Apnea Testing Following Cerebrovascular Events.

    Science.gov (United States)

    Boulos, Mark I; Elias, Sara; Wan, Anthony; Im, James; Frankul, Fadi; Atalla, Mina; Black, Sandra E; Basile, Vincenzo S; Sundaram, Arun; Hopyan, Julia J; Boyle, Karl; Gladstone, David J; Swartz, Richard H; Murray, Brian J

    2017-01-01

    Home sleep apnea testing (HSAT) is an alternative to polysomnography for the detection of obstructive sleep apnea (OSA). We assessed the feasibility of HSAT as an unattended screening tool for patients with a stroke or transient ischemic attack (TIA). The primary outcome was the feasibility of unattended HSAT, as defined by analyzability of the data. Secondary outcomes included determining (1) predictors of obtaining nonanalyzable sleep data and (2) time to OSA detection and continuous positive airway pressure (CPAP) initiation. In this single-center prospective observational study, inpatients or outpatients who had sustained a stroke or TIA were screened for OSA using the ApneaLink Plus ambulatory sleep monitor in their home or hospital room. There were 102 patients who completed unattended sleep monitoring. Mean age was 68.7 ± 13.7 years, 55.9% were male, 57.8% were outpatients, and 77.5% had a stroke (22.5% with TIA). Eighty-two (80.4%) patients obtained four or more hours of analyzable sleep data. Functional dependence (defined as a modified Rankin Scale of >2) and elevated body mass index were independently associated with obtaining nonanalyzable data. OSA was detected in 63.4% (52 of 82) of patients and, of those, 34 of 52 (65.4%) initiated CPAP therapy. The mean time from study recruitment to HSAT was 1.7 days (median: 1, interquartile range [IQR]: 2) and CPAP was initiated on average within 62.7 days of recruitment (median: 53, IQR: 30). Unattended HSAT can be feasibly implemented after stroke or TIA. This method facilitates rapid diagnosis and management of OSA in both the outpatient and inpatient settings. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Processing of unattended facial emotions: a visual mismatch negativity study.

    Science.gov (United States)

    Stefanics, Gábor; Csukly, Gábor; Komlósi, Sarolta; Czobor, Pál; Czigler, István

    2012-02-01

    Facial emotions express our internal states and are fundamental in social interactions. Here we explore whether the repetition of unattended facial emotions builds up a predictive representation of frequently encountered emotions in the visual system. Participants (n=24) were presented peripherally with facial stimuli expressing emotions while they performed a visual detection task presented in the center of the visual field. Facial stimuli consisted of four faces of different identity, but expressed the same emotion (happy or fearful). Facial stimuli were presented in blocks of oddball sequence (standard emotion: p=0.9, deviant emotion: p=0.1). Event-related potentials (ERPs) to the same emotions were compared when the emotions were deviant and standard, respectively. We found visual mismatch negativity (vMMN) responses to unattended deviant emotions in the 170-360 ms post-stimulus range over bilateral occipito-temporal sites. Our results demonstrate that information about the emotional content of unattended faces presented at the periphery of the visual field is rapidly processed and stored in a predictive memory representation by the visual system. We also found evidence that differential processing of deviant fearful faces starts already at 70-120 ms after stimulus onset. This finding shows a 'negativity bias' under unattended conditions. Differential processing of fearful deviants were more pronounced in the right hemisphere in the 195-275 ms and 360-390 ms intervals, whereas processing of happy deviants evoked larger differential response in the left hemisphere in the 360-390 ms range, indicating differential hemispheric specialization for automatic processing of positive and negative affect. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Hierarchical neural network model of the visual system determining figure/ground relation

    Science.gov (United States)

    Kikuchi, Masayuki

    2017-07-01

    One of the most important functions of the visual perception in the brain is figure/ground interpretation from input images. Figural region in 2D image corresponding to object in 3D space are distinguished from background region extended behind the object. Previously the author proposed a neural network model of figure/ground separation constructed on the standpoint that local geometric features such as curvatures and outer angles at corners are extracted and propagated along input contour in a single layer network (Kikuchi & Akashi, 2001). However, such a processing principle has the defect that signal propagation requires manyiterations despite the fact that actual visual system determines figure/ground relation within the short period (Zhou et al., 2000). In order to attain speed-up for determining figure/ground, this study incorporates hierarchical architecture into the previous model. This study confirmed the effect of the hierarchization as for the computation time by simulation. As the number of layers increased, the required computation time reduced. However, such speed-up effect was saturatedas the layers increased to some extent. This study attempted to explain this saturation effect by the notion of average distance between vertices in the area of complex network, and succeeded to mimic the saturation effect by computer simulation.

  11. A novel delay-constraint routing algorithm in integrated space-ground communication networks

    Science.gov (United States)

    Yu, Xiaosong; Yang, Liu; Cao, Yuan; Zhao, Yongli; Chen, Xue; Zhang, Jie; Wang, Chunfeng

    2016-03-01

    In recent years, the integrated space-ground network communication system plays an increasingly important role in earth observation and space information confrontation for the civilian and military service. Their characteristic on wide coverage, which may be the only way to provide Internet access and communication services in many areas, has extensively promoted its significance. This paper discusses the architecture of integrated space-ground communication networks, and introduces a novel routing algorithm named Improved Store-and-forward Routing Mechanism (ISRM) to shorten the transmission delay in such a network. The proposed ISRM algorithm is based on store and forward mechanism, while it trying to find several alternative delay-constraint paths by building the route-related nodes encounter-probability information table and communication timing diagram. Simulation is conducted at the end, and comparisons between ISRM and baseline algorithm are given. The results show that ISRM can achieve relatively good performance in terms of transmission latency in integrated space-ground networks.

  12. Spatial prediction of ground subsidence susceptibility using an artificial neural network.

    Science.gov (United States)

    Lee, Saro; Park, Inhye; Choi, Jong-Kuk

    2012-02-01

    Ground subsidence in abandoned underground coal mine areas can result in loss of life and property. We analyzed ground subsidence susceptibility (GSS) around abandoned coal mines in Jeong-am, Gangwon-do, South Korea, using artificial neural network (ANN) and geographic information system approaches. Spatial data of subsidence area, topography, and geology, as well as various ground-engineering data, were collected and used to create a raster database of relevant factors for a GSS map. Eight major factors causing ground subsidence were extracted from the existing ground subsidence area: slope, depth of coal mine, distance from pit, groundwater depth, rock-mass rating, distance from fault, geology, and land use. Areas of ground subsidence were randomly divided into a training set to analyze GSS using the ANN and a test set to validate the predicted GSS map. Weights of each factor's relative importance were determined by the back-propagation training algorithms and applied to the input factor. The GSS was then calculated using the weights, and GSS maps were created. The process was repeated ten times to check the stability of analysis model using a different training data set. The map was validated using area-under-the-curve analysis with the ground subsidence areas that had not been used to train the model. The validation showed prediction accuracies between 94.84 and 95.98%, representing overall satisfactory agreement. Among the input factors, "distance from fault" had the highest average weight (i.e., 1.5477), indicating that this factor was most important. The generated maps can be used to estimate hazards to people, property, and existing infrastructure, such as the transportation network, and as part of land-use and infrastructure planning.

  13. Principle and Design of a Single-phase Inverter-Based Grounding System for Neutral-to-ground Voltage Compensation in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, Lingjie; Zeng, Xiangjun

    2017-01-01

    Neutral-to-ground overvoltage may occur in non-effectively grounded power systems because of the distributed parameters asymmetry and resonance between Petersen coil and distributed capacitances. Thus, the constraint of neutral-to-ground voltage is critical for the safety of distribution networks....... In this paper, an active grounding system based on single-phase inverter and its control parameter design method is proposed to achieve this objective. Relationship between its output current and neutral-to-ground voltage is derived to explain the principle of neutral-to-ground voltage compensation. Then......, a practical current detection method is proposed to specify the reference of compensated current. A current control method consisting of proportional resonant (PR) and proportional integral (PI) with capacitive current feedback is then proposed to guarantee sufficient output current accuracy and stability...

  14. On Seismic Ground Roll Filtering Using the Wavelet Transform and Neural Network

    Science.gov (United States)

    Benaissa, Zahia; Benaissa, Abdelkader; Ouadfeul, Sid-Ali; Aliouane, Leila; Boudella, Amar

    2013-04-01

    Here, we present an adapted filtering technique for the non-stationary signals. It is based on the wavelet transform and its rebuilding formula. This technique is used generally to detect and extract locally in the time-scale field particular events from seismic data. We show the efficiency of this technique to filter the ground roll from reflection seismic vibroseis recording (shot gather). The results for two different filtering processes are presented, one of these results is based on the annulment of the transform coefficients in the selected zone relating to the ground roll, and the other one is based on their attenuation (roll-off). Obtained results shows the efficiency of the first process especially when the wavelet transform is calculated only on the noisy zone and when the ground roll is made up of two or more pseudo-Rayleigh waves, in this case iterations are mandatory to improve the signal to noise ratio using the second process. The current work shows also the use of the artificial neural network on the prediction of the mute parameters in the F-K domain to be used on the Ground Roll attenuation. The proposed idea is very robust and useful in case of 3D seismic data. A set of 3D seismic Inlines are used for the training of the Multilayer Perceptron (MLP) neural network machine. Application to real data shows clearly the robustness of the proposed technique. Keywords: Filtering - Ground roll - Wavelet transform - Seismic - Reflection - Signal to noise ratio - Artificial neuronal network -3D-MLP- Training.

  15. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    Science.gov (United States)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network

  16. Validation of OMI NO2 Data to Enhance EPA Ground Network Data: An RPC Experiment

    Science.gov (United States)

    Kleb, M. M.; Pippin, M. R.; Parker, P. A.; Rhew, R. D.; Szykman, J. J.; Neil, D. O.

    2007-12-01

    We present an RPC validation study to determine the potential use of OMI tropospheric NO2 column data to enhance spatial surface predictions of NO2 as an augmentation to the continuous NO2 ground network data collected by the State and Local Air Monitoring Stations (SLAMS) and National Air Monitoring Stations (NAMS) for the continental United States. Using one year of OMI and SLAMS/NAMS ground based data from the EPA's Air Quality System (AQS), NO2 values are compared using a variety of statistical techniques including a time series analysis at each EPA ground station in the continental United States, a site-by- site correlation analysis, site-by-site comparison of mean and standard deviation values, and regional (defined by the ten EPA regions) spatial statistics. In addition, a multivariate statistical prediction model with significance testing is developed to determine within a 95% confidence level the impact of concentration, latitude, region, season, environment (urban vs. rural), and pixel size on the correlation of OMI to EPA NO2 data. The robustness of the statistical model is evaluated using statistical methods. Results of this experiment quantify the ability to use OMI-derived NO2 observations to provide predicted surface concentrations to augment the coverage of the existing NO2 ground networks in regions of sparse or non-existent ground monitors. This predictive capability could facilitate a more capable and integrated observing network for NO2 and lead to more informed air quality management decisions at the local, state, and national level.

  17. Untangling complex networks: risk minimization in financial markets through accessible spin glass ground states.

    Science.gov (United States)

    Lisewski, Andreas Martin; Lichtarge, Olivier

    2010-08-15

    Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the relative margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network's Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.

  18. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  19. Personal messages reduce vandalism and theft of unattended scientific equipment.

    Science.gov (United States)

    Clarin, B-Markus; Bitzilekis, Eleftherios; Siemers, Björn M; Goerlitz, Holger R

    2014-02-01

    Scientific equipment, such as animal traps and autonomous data collection systems, is regularly left in the field unattended, making it an easy target for vandalism or theft. We tested the effectiveness of three label types, which differed in their information content and tone of the message, that is, personal,neutral or threatening, for reducing incidents of vandalism and theft of unattended scientific field equipment. The three label types were attached to 20 scientific equipment dummies each, which were placed semi-hidden and evenly distributed in four public parks in Munich, Germany. While the label type had no effect on the severity of the interactions with our equipment dummies, the personal label reduced the overall number of interactions by c. 40-60%, compared with the dummies showing the neutral or threatening label type. We suggest that researchers, in addition to securing their field equipment, label it with personal and polite messages that inform about the ongoing research and directly appeal to the public not to disturb the equipment. Further studies should extend these results to areas with different socio-economic structure.

  20. Information Technology Management: Select Controls for the Information Security of the Ground-Based Midcourse Defense Communications Network

    National Research Council Canada - National Science Library

    Truex, Kathryn M; Lamar, Karen J; Leighton, George A; Woodruff, Courtney E; Brunetti, Tina N; Russell, Dawn M

    2006-01-01

    ... to the Ground-Based Midcourse Defense Communications Network should read this report to reduce the risk of interruption, misuse, modification, and unauthorized access to information in the system...

  1. Resonant Dynamics of Grounded Cognition: Explanation of Behavioral and Neuroimaging Data Using the ART Neural Network.

    Science.gov (United States)

    Domijan, Dražen; Šetić, Mia

    2016-01-01

    Research on grounded cognition suggests that the processing of a word or concept reactivates the perceptual representations that are associated with the referent object. The objective of this work is to demonstrate how behavioral and functional neuroimaging data on grounded cognition can be understood as different manifestations of the same cortical circuit designed to achieve stable category learning, as proposed by the adaptive resonance theory (ART). We showed that the ART neural network provides a mechanistic explanation of why reaction times in behavioral studies depend on the expectation or attentional priming created by the word meaning (Richter and Zwaan, 2009). A mismatch between top-down expectation and bottom-up sensory data activates an orienting subsystem that slows execution of the current task. Furthermore, we simulated the data from functional neuroimaging studies of color knowledge retrieval that showed anterior shift (Chao and Martin, 1999; Thompson-Schill, 2003) and an overlap effect (Simmons et al., 2007; Hsu et al., 2011) in the left fusiform gyrus. We explain the anterior effect as a result of the partial activation of different components of the same ART circuit in the condition of passive viewing. Conversely, a demanding perceptual task requires activation of the whole ART circuit. This condition is reflected in the fMRI image as an overlap between cortical activation during perceptual and conceptual processing. We conclude that the ART neural network is able to explain how the brain grounds symbols in perception via perceptual simulation.

  2. Resonant Dynamics of Grounded Cognition: Explanation of Behavioral and Neuroimaging Data Using the ART Neural Network

    Directory of Open Access Journals (Sweden)

    Dražen eDomijan

    2016-02-01

    Full Text Available Research on grounded cognition suggests that the processing of a word or concept reactivates the perceptual representations that are associated with the referent object. The objective of this work is to demonstrate how behavioral and functional neuroimaging data on grounded cognition can be understood as different manifestations of the same cortical circuit designed to achieve stable category learning, as proposed by the adaptive resonance theory (ART. We showed that the ART neural network provides a mechanistic explanation of why reaction times in behavioral studies depend on the expectation or attentional priming created by the word meaning (Richter & Zwaan, 2009. A mismatch between top-down expectation and bottom-up sensory data activates an orienting subsystem that slows execution of the current task. Furthermore, we simulated the data from functional neuroimaging studies of color knowledge retrieval that showed anterior shift (Chao & Martin, 1999; Thompson-Schill, 2003 and an overlap effect (Hsu et al., 2011; Simmons et al., 2007 in the left fusiform gyrus. We explain the anterior effect as a result of the partial activation of different components of the same ART circuit in the condition of passive viewing. Conversely, a demanding perceptual task requires activation of the whole ART circuit. This condition is reflected in the fMRI image as an overlap between cortical activation during perceptual and conceptual processing. We conclude that the ART neural network is able to explain how the brain grounds symbols in perception via perceptual simulation.

  3. Injuries and Unattended Home Exits in Persons with Dementia: A 12-Month Prospective Study

    Science.gov (United States)

    Rowe, Meredeth A.; Ahn, HyoChol; Benito, Andrea Pe; Stone, Heather; Wilson, Amanda

    2009-01-01

    Persons with dementia (PWD) are at particular risk for injuries and unattended home exits. The purposes of this study were to prospectively describe the characteristics and determine the hazard rates of unattended home exits and injuries. Nine times over 12 months, data were collected from 53 PWD’s caregivers about PWD unattended home exits or injuries. Twenty-four percent of PWD had at least one unattended exit; four participants exited multiple times. Males and younger PWD were significantly more likely to exit than females or older individuals. Thirty percent of PWD sustained injuries in 29 separate incidents; all but three injuries were caused by falls, and 38% of injuries resulted in nursing home placement. The hazard rate of untoward events was high, at approximately 1 unattended exit and 1 fall per person-year. For all PWD living in the community, healthcare plans should include specific interventions to prevent these untoward events. PMID:19001350

  4. Networked sensors for the combat forces

    Science.gov (United States)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details

  5. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  6. Untangling complex networks: Risk minimization in financial markets through accessible spin glass ground states

    Science.gov (United States)

    Lisewski, Andreas Martin; Lichtarge, Olivier

    2010-08-01

    Recurrent international financial crises inflict significant damage to societies and stress the need for mechanisms or strategies to control risk and tamper market uncertainties. Unfortunately, the complex network of market interactions often confounds rational approaches to optimize financial risks. Here we show that investors can overcome this complexity and globally minimize risk in portfolio models for any given expected return, provided the margin requirement remains below a critical, empirically measurable value. In practice, for markets with centrally regulated margin requirements, a rational stabilization strategy would be keeping margins small enough. This result follows from ground states of the random field spin glass Ising model that can be calculated exactly through convex optimization when relative spin coupling is limited by the norm of the network’s Laplacian matrix. In that regime, this novel approach is robust to noise in empirical data and may be also broadly relevant to complex networks with frustrated interactions that are studied throughout scientific fields.

  7. Strategy of thunderstorm measurement with super dense ground-based observation network

    Science.gov (United States)

    Takahashi, Y.; Sato, M.

    2014-12-01

    It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.

  8. Qualitative time trend analysis of ground water monitoring networks : An example from The Netherlands.

    Science.gov (United States)

    Frapporti, G; Vriend, S P; van Gaans, P F

    1994-03-01

    The detection of significant (short-term) time trends is one of the major goals of ground water monitoring networks. These trends can be used to recognize active geochemical processes and potential environmental threats. This paper presents a case history of time trend analysis on macrochemical parameters of ground water quality. It shows the difficulties and traps that are generally encountered in such studies. The data used originated from the Dutch National Groundwater Quality Monitoring Network. This network is operative since 1979, and keeps track of the ground water composition at 350 locations at two depths (ca. 10 and 25 m below surface; general density, one location per 100 km(2)). Prior to the trend analysis the data set was divided into geochemically homogeneous groups using fuzzy c-means clustering. Each group represents a specific ground water type, characterized by a distinct source (seawater, surface water or precipitation) and a unique combination of dominant geochemical processes (e.g. mineralization of organic matter, carbonate dissolution and cation exchange).To study trends qualitatively, the concentrations of the various macro-constituents in ground water are correlated with time of sampling. The nonparametric and outlier insensitive Spearman rank correlation coefficient is computed per well screen. A frequency distribution of correlation coefficients is formed by combining the Spearman correlation coefficients of all individual wells within a homogeneous group. This distribution is tested for trends against the appropriate theoretical distribution of zero correlation by use of the Kolmogorov-Smirnov one-sample test. The type of trend is derived from the shape of the distribution.Most ground water types show statistically significant qualitative trends, of which many, however, are caused by changes in the sampling and analytical procedures over the monitoring period. After elimination of differences in limits of detection for NO3, total-P, and

  9. Quantum communication for satellite-to-ground networks with partially entangled states

    Science.gov (United States)

    Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong

    2015-02-01

    To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).

  10. Peak Ground Acceleration Prediction by Artificial Neural Networks for Northwestern Turkey

    Directory of Open Access Journals (Sweden)

    Kemal Günaydın

    2008-01-01

    Full Text Available Three different artificial neural network (ANN methods, namely, feed-forward back-propagation (FFBP, radial basis function (RBF, and generalized regression neural networks (GRNNs were applied to predict peak ground acceleration (PGA. Ninety five three-component records from 15 ground motions that occurred in Northwestern Turkey between 1999 and 2001 were used during the applications. The earthquake moment magnitude, hypocentral distance, focal depth, and site conditions were used as inputs to estimate PGA for vertical (U-D, east-west (E-W, and north-south (N-S directions. The direction of the maximum PGA of the three components was also added to the input layer to obtain the maximum PGA. Testing stage results of three ANN methods indicated that the FFBPs were superior to the GRNN and the RBF for all directions. The PGA values obtained from the FFBP were modified by linear regression analysis. The results showed that these modifications increased the prediction performances.

  11. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  12. Ground Motion Simulations for Bursa Region (Turkey) Using Input Parameters derived from the Regional Seismic Network

    Science.gov (United States)

    Unal, B.; Askan, A.

    2014-12-01

    Earthquakes are among the most destructive natural disasters in Turkey and it is important to assess seismicity in different regions with the use of seismic networks. Bursa is located in Marmara Region, Northwestern Turkey and to the south of the very active North Anatolian Fault Zone. With around three million inhabitants and key industrial facilities of the country, Bursa is the fourth largest city in Turkey. Since most of the focus is on North Anatolian Fault zone, despite its significant seismicity, Bursa area has not been investigated extensively until recently. For reliable seismic hazard estimations and seismic design of structures, assessment of potential ground motions in this region is essential using both recorded and simulated data. In this study, we employ stochastic finite-fault simulation with dynamic corner frequency approach to model previous events as well to assess potential earthquakes in Bursa. To ensure simulations with reliable synthetic ground motion outputs, the input parameters must be carefully derived from regional data. In this study, using strong motion data collected at 33 stations in the region, site-specific parameters such as near-surface high frequency attenuation parameter and amplifications are obtained. Similarly, source and path parameters are adopted from previous studies that as well employ regional data. Initially, major previous events in the region are verified by comparing the records with the corresponding synthetics. Then simulations of scenario events in the region are performed. We present the results in terms of spatial distribution of peak ground motion parameters and time histories at selected locations.

  13. An unattended device for high-voltage sampling and passive measurement of thoron decay products

    Energy Technology Data Exchange (ETDEWEB)

    Gierl, Stefanie; Meisenberg, Oliver, E-mail: oliver.meisenberg@helmholtz-muenchen.de; Wielunski, Marek; Tschiersch, Jochen [Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany); Haninger, Thomas [Helmholtz Zentrum München, German Research Center for Environmental Health, Auswertungsstelle für Strahlendosimeter, Otto-Hahn-Ring 6, 81739 München (Germany)

    2014-02-15

    An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m{sup 3} × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4–9.9 Bq/m{sup 3} of thoron decay products were measured.

  14. Network operability of ground-based microwave radiometers: Calibration and standardization efforts

    Science.gov (United States)

    Pospichal, Bernhard; Löhnert, Ulrich; Küchler, Nils; Czekala, Harald

    2017-04-01

    Ground-based microwave radiometers (MWR) are already widely used by national weather services and research institutions all around the world. Most of the instruments operate continuously and are beginning to be implemented into data assimilation for atmospheric models. Especially their potential for continuously observing boundary-layer temperature profiles as well as integrated water vapor and cloud liquid water path makes them valuable for improving short-term weather forecasts. However until now, most MWR have been operated as stand-alone instruments. In order to benefit from a network of these instruments, standardization of calibration, operation and data format is necessary. In the frame of TOPROF (COST Action ES1303) several efforts have been undertaken, such as uncertainty and bias assessment, or calibration intercomparison campaigns. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR have been developed and recommendations for radiometer users compiled. Based on the results of the TOPROF campaigns, a new, high-accuracy liquid-nitrogen calibration load has been introduced for MWR manufactured by Radiometer Physics GmbH (RPG). The new load improves the accuracy of the measurements considerably and will lead to even more reliable atmospheric observations. Next to the recommendations for set-up, calibration and operation of ground-based MWR within a future network, we will present homogenized methods to determine the accuracy of a running calibration as well as means for automatic data quality control. This sets the stage for the planned microwave calibration center at JOYCE (Jülich Observatory for Cloud Evolution), which will be shortly introduced.

  15. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-07-01

    This article present a comparison of artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) applied for modelling a ground-coupled heat pump system (GCHP). The aim of this study is predicting system performance related to ground and air (condenser inlet and outlet) temperatures by using desired models. Performance forecasting is the precondition for the optimal design and energy-saving operation of air-conditioning systems. So obtained models will help the system designer to realize this precondition. The most suitable algorithm and neuron number in the hidden layer are found as Levenberg-Marquardt (LM) with seven neurons for ANN model whereas the most suitable membership function and number of membership functions are found as Gauss and two, respectively, for ANFIS model. The root-mean squared (RMS) value and the coefficient of variation in percent (cov) value are 0.0047 and 0.1363, respectively. The absolute fraction of variance (R{sup 2}) is 0.9999 which can be considered as very promising. This paper shows the appropriateness of ANFIS for the quantitative modeling of GCHP systems. (author)

  16. GPM Ground Validation Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) IFloodS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS)...

  17. OAdM Observatory: Towards Fully Unattended Control

    Science.gov (United States)

    Colomé, J.; Ribas, I.; Fernández, D.; Francisco, X.; Isern, J.; Palau, X.; Torra, J.; Colomé, J.; Ribas, I.; Fernández, D.; Isern, J.

    The Montsec Astronomical Observatory (OAdM) is a small-class observatory working on a completely unattended control, due to the isolation of the site. Robotic operation is, then, mandatory for its routine use. The level of robotization of an observatory is given by the confidence reached to respond to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. There are key problems to solve when a robotic control is envisaged. Learned lessons and solutions to these issues at the OAdM are discussed here. We present a description of the general control software (SW) and several SW packages developed. They specially protect the system at the identified single points of failure and constitute a distributed control of any subsystem, which is able to respond independently when an alarm is triggered thanks to a top-down control flow. All together this composes a SW suite designed to reach the complete robotization of an observatory.

  18. Elevating Baseline Activation Does Not Facilitate Reading of Unattended Words

    Science.gov (United States)

    Lien, Mei-Ching; Kouchi, Scott; Ruthruff, Eric; Lachter, Joel B.

    2009-01-01

    Previous studies have disagreed the extent to which people extract meaning from words presented outside the focus of spatial attention. The present study, examined a possible explanation for such discrepancies, inspired by attenuation theory: unattended words can be read more automatically when they have a high baseline level of activation (e.g., due to frequent repetition or due to being expected in a given context). We presented a brief prime word in lowercase, followed by a target word in uppercase. Participants indicated whether the target word belonged to a particular category (e.g., "sport"). When we drew attention to the prime word using a visual cue, the prime produced substantial priming effects on target responses (i.e., faster responses when the prime and target words were identical or from the same category than when they belonged to different categories). When prime words were not attended, however, they produced no priming effects. This finding replicated even when there were only 4 words, each repeated 160 times during the experiment. Even with a very high baseline level of activation, it appears that very little word processing is possible without spatial attention.

  19. Next-Generation Ground Network Architecture for Communications and Tracking of Interplanetary Smallsats

    Science.gov (United States)

    Cheung, K.-M.; Abraham, D.; Arroyo, B.; Basilio, E.; Babuscia, A.; Duncan, C.; Lee, D.; Oudrhiri, K.; Pham, T.; Staehle, R.; Waldherr, S.; Welz, G.; Wyatt, J.; Lanucara, M.; Malphrus, B.; Bellardo, J.; Puig-Suari, J.; Corpino, S.

    2015-08-01

    As small spacecraft venture out of Earth orbit, they will encounter challenges not experienced or addressed by the numerous low Earth orbit (LEO) CubeSat and smallsat missions staged to date. The LEO CubeSats typically use low-cost, proven CubeSat radios, antennas, and university ground stations with small apertures. As more ambitious yet cost-constrained space mission concepts to the Moon and beyond are being developed, CubeSats and smallsats have the potential to provide a more affordable platform for exploring deep space and performing the associated science. Some of the challenges that have, so far, slowed the proliferation of small interplanetary spacecraft are those of communications and navigation. Unlike Earth-orbiting spacecraft that navigate via government services such as North American Aerospace Defense Command's (NORAD's) tracking elements or the Global Positioning Satellite (GPS) system, interplanetary spacecraft would have to operate in a fundamentally different manner that allows the deep-space communications link to provide both command/telemetry and the radiometric data needed for navigation. Another challenge occurs when smallsat and CubeSat missions would involve multiple spacecraft that require near-simultaneous communication and/or navigation, but have a very limited number of ground antenna assets, as well as available spectrum, to support their links. To address these challenges, the Jet Propulsion Laboratory (JPL) and the Deep Space Network (DSN) it operates for NASA are pursuing the following efforts: (1) Developing a CubeSat-compatible, DSN-compatible transponder -- Iris -- which a commercial vendor can then make available as a product line. (2) Developing CubeSat-compatible high-gain antennas -- deployable reflectors, reflectarrays, and inflatable antennas. (3) Streamlining access and utilization processes for DSN and related services such as the Advanced Multi-Mission Operations System (AMMOS). (4) Developing methodologies for tracking

  20. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  1. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    DEFF Research Database (Denmark)

    Gunnink, J.L.; Bosch, A.; Siemon, B.

    2012-01-01

    Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used ArtificialNeural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case...

  2. Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks

    NARCIS (Netherlands)

    Dr Hans C.C.M. Savelberg; Dr. ir. A. de Lange

    1999-01-01

    Objective. In this study it was investigated whether an artificial neural network can be used to determine the horizontal, fore-aft component of the ground reaction force from insole pressure patterns. Design. An artificial neural network was applied to map insole pressures and ground reaction

  3. Identification of geomagnetic current systems from a ground-based network

    Science.gov (United States)

    Pereira, F.; Dudok de Wit, T.; Menvielle, M.

    2003-04-01

    The Earth's total magnetic field is a superposition of magnetic fields from a variety of sources. At the Earth's surface, the most important source is the internal field produced by currents within the Earth's liquid core. At high latitudes of our planet, magnetopheric and ionospheric current systems are other important sources of magnetic field. A large part of research in geomagnetism is devoted to the identification of these internal and external sources. The separation of current systems from ground-based measurements is a source separation problem. In this study, our approach consists in inferring from a statistical analysis of the data set what are the different contributing source terms. Our analysis will be done by a statistical method known as the Singular Value Decomposition. The SVD is widely used in multivariate analysis for reduction of dimensionality, which offers a more concise description of the observed data and helps to extract significant information from the data. From geomagnetic data provided by the INTERMAGNET global network, the results of the SVD analysis can be interpreted in terms of current systems such as the magnetic field declination, the separation of the auroral electrojets into quiet and intermittent components, the seasonal effects, the ring current signature, the observation of the polar cusp and the cross-tail currents, the displacement of the auroral oval (and even the detection of geomagnetic jerks ?).

  4. The ground-based FTIR network's potential for investigating the atmospheric water cycle

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-04-01

    Full Text Available We present tropospheric H216O and HD16O/H216O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively. We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM. If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails.

  5. Study of the Ground-State Geometry of Silicon Clusters Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    M.R. Lemes

    2002-09-01

    Full Text Available Theoretical determination of the ground-state geometry of Si clusters is a difficult task. As the number of local minima grows exponentially with the number of atoms, to find the global minimum is a real challenge. One may start the search procedure from a random distribution of atoms but it is probably wiser to make use of any available information to restrict the search space. Here, we introduce a new approach, the Assisted Genetic Optimization (AGO that couples an Artificial Neural Network (ANN to a Genetic Algorithm (GA. Using available information on small Silicon clusters, we trained an ANN to predict good starting points (initial population for the GA. AGO is applied to Si10 and Si20 and compared to pure GA. Our results indicate: i AGO is, at least, 5 times faster than pure GA in our test case; ii ANN training can be made very fast and successfully plays the role of an experienced investigator; iii AGO can easily be adapted to other optimization problems.

  6. Community is the message: Viewing networked public displays through McLuhan's lens of figure and ground

    OpenAIRE

    Memarovic, Nemanja; et al.,

    2014-01-01

    Networked public displays are being portrayed as “a new communication medium for the 21st century”, potentially having the same impact on society as radio, TV, and the Internet. In order to understand how this new medium can impact the society this paper uses a (small) part of Marshall McLuhan's media theory, i.e., the interplay between the figure - the medium - and the ground - the context in which the medium operates - and how the figure amplifies otherwise invisible effects of the ground. ...

  7. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Silvia R; Romo, Miguel P; Mayoral, Juan M [Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    2007-01-15

    An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared. [Spanish] Un analisis exhaustivo de la base de datos mexicana de sismos fuertes se llevo a cabo utilizando tecnicas de computo aproximado, SC (soft computing). En particular, una red neuronal, NN, es utilizada para estimar ambos componentes ortogonales de la maxima aceleracion horizontal del terreno, PGAh, y la vertical, PGAv, medidas en sitios en roca durante terremotos generados en la zona de subduccion de la Republica Mexicana. El trabajo discute el desarrollo, entrenamiento, y prueba de este modelo neuronal. El fenomeno de atenuacion fue caracterizado en terminos de la magnitud, la distancia epicentral y la profundidad focal. Aproximaciones neuronales fueron utilizadas en lugar de tecnicas de regresion tradicionales por su flexibilidad para tratar con incertidumbre y ruido en los datos. La NN sigue de cerca la respuesta medida exhibiendo capacidades predictivas mejores que las mostradas por muchas de las relaciones de atenuacion establecidas para la zona de

  8. The advances in airglow study and observation by the ground-based airglow observation network over China

    Science.gov (United States)

    Xu, Jiyao; Li, Qinzeng; Yuan, Wei; Liu, Xiao; Liu, Weijun; Sun, Longchang

    2017-04-01

    Ground-based airglow observation networks over China used to study airglow have been established, which contains 15 stations. Some new results were obtained using the networks. For OH airglow observations, firstly, an unusual outbreak of Concentric Gravity Wave (CGW) events were observed by the first no-gap network nearly every night during the first half of August 2013. Combination of the ground imager network with satellites provides multilevel observations of the CGWs from the troposphere to the mesopause region. Secondly, three-year OH airglow images (2012-2014) from Qujing (25.6°N, 103.7°E) were used to study how orographic features of the Tibetan Plateau (TP) affect the geographical distributions of gravity wave (GW) sources. We find the orographic forcings have a significant impact on the gravity wave propagation features. Thirdly, ground-based observations of the OH (9-4, 8-3, 6-2, 5-1, 3-0) band airglow over Xinglong (40°2N, 117°4E) in northern China from 2012 to 2014 are used to calculate rotational temperatures. By comparing the ground-based OH rotational temperature with SABER's observations, five Einstein coefficient datasets are evaluated. We find rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. We have obtained a set of optimal Einstein coefficients ratios for rotational temperature derivation using three years data from ground-based OH spectra and SABER temperatures. For the OI 630.0 nm airglow observations, we used three-year (2011-2013) observations of thermospheric winds (at 250 km) by Fabry-Perot interferometers at Xinglong to study the climatology of atmospheric planetary wave-type oscillations (PWTOs) with periods of 4-19 days. We found these PWTOs occur more frequently in the months from May to October. They are consistent with the summertime preference of middle-latitude ionospheric electron density oscillations noted in other studies. By using an all-sky airglow imager

  9. Application of higher harmonics in protection against single-phase earth faults in resonant grounded cable networks of medium voltage

    OpenAIRE

    Vinokurova, T. Yu.; Dobryagina, O. A.; Shagurina, E. S.; Shuin, V. A.

    2015-01-01

    Protections based by higher harmonics absolute measurements the zero sequence currents of the protected object connections against single-phase earth faults in resonant grounded cable networks of medium voltage industrial and urban energy supply systems have been widely applied in Russia since the late 60s of the 20th century. However, some operational problems connected with sufficient selectivity and sensitivity of these protection devices appeared with time. Sensitivity and selectivity of ...

  10. Exploring the use of grounded theory as a methodological approach to examine the 'black box' of network leadership in the national quality forum.

    Science.gov (United States)

    Hoflund, A Bryce

    2013-01-01

    This paper describes how grounded theory was used to investigate the "black box" of network leadership in the creation of the National Quality Forum. Scholars are beginning to recognize the importance of network organizations and are in the embryonic stages of collecting and analyzing data about network leadership processes. Grounded theory, with its focus on deriving theory from empirical data, offers researchers a distinctive way of studying little-known phenomena and is therefore well suited to exploring network leadership processes. Specifically, this paper provides an overview of grounded theory, a discussion of the appropriateness of grounded theory to investigating network phenomena, a description of how the research was conducted, and a discussion of the limitations and lessons learned from using this approach.

  11. Mobile Situational Awareness Tool: Unattended Ground Sensor-Based Remote Surveillance System

    Science.gov (United States)

    2014-09-01

    from the system to friendly forces. Figure 2 depicts a proposed wire/ straw -man frame of what a usable interface would look like for the MSAT...were intended to be utilized for the capturing of still images and video. c. Housing The ADAPT sensor node consisted of a cylindrical, hard plastic ...the plastic components met, in order to make the nodes water-resistant. d. Operating System Each ADAPT node ran a version of the Android operating

  12. Motion Planning and Task Assignment for Unmanned Aerial Vehicles Cooperating with Unattended Ground Sensors

    Science.gov (United States)

    2014-10-24

    Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302...986410 9864101 |V2,n| 19 61 201 871 5293 40713 363457 3629611 If the min-priority queue used by Dijkstra’s algorithm is implemented as a Fibonacci heap

  13. Deciding on Innovation at a Railway Network Operator : A Grounded Theory Approach

    NARCIS (Netherlands)

    Van den Hoogen, J.; Meijer, S.A.

    2012-01-01

    Innovation at a railway network operator depends on the decision-making processes in the daily work of operational professionals and staff. This paper is about innovative measures at a railway network operator, required to increase capacity on the railway network without investing in expensive

  14. Using radar ground-truth to validate and improve the location accuracy of a lightning direction-finding network

    Science.gov (United States)

    Goodman, Steven J.

    1989-01-01

    A technique is described in which isolated radar echoes associated with clusters of lightning strikes are used to validate and improve the location accuracy of a lightning-direction-finding network. Using this technique, site errors of a magnetic direction-finding network for locating lightning strikes to ground were accurately determined. The technique offers advantages over existing techniques in that large sample sizes are readily attainable over a broad area on a regular basis; the technique can also provide additional constraints to redundant data methods such as that described by Orville (1987). Since most lightning strike networks have either partial or full weather radar coverage, the technique is practical for all but a few users.

  15. Front-end Electronics for Unattended Measurement (FEUM). Prototype Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Ryan C.; Morris, Scott J.; Smith, Leon E.; Keller, Daniel T.

    2015-09-16

    The IAEA has requested that PNNL perform an initial set of tests on front-end electronics for unattended measurement (FEUM) prototypes. The FEUM prototype test plan details the tests to be performed, the criteria for evaluation, and the procedures used to execute the tests.

  16. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    Science.gov (United States)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.

  17. Quantifying the spatio-temporal pattern of the ground impact of space weather events using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    Science.gov (United States)

    Dods, Joe; Chapman, Sandra; Gjerloev, Jesper

    2016-04-01

    Quantitative understanding of the full spatial-temporal pattern of space weather is important in order to estimate the ground impact. Geomagnetic indices such as AE track the peak of a geomagnetic storm or substorm, but cannot capture the full spatial-temporal pattern. Observations by the ~100 ground based magnetometers in the northern hemisphere have the potential to capture the detailed evolution of a given space weather event. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the

  18. Elettronika Virtual Network Management

    OpenAIRE

    Marco Fiore; Giuseppe Modugnio; Doru Ursutiu; Alexandra Teodor; Atilla Valadi

    2009-01-01

    This article introduces a simple and efficient implementation of a remote control system for the telecommunication networks. The paper deals with the automatization of transmission sites, the unattended monitoring and the ease of management of those. For the hardware’s remote control we introduce a user friendly software interface between the user and the stations.

  19. The Improvement and Data Acquisition Systems on Electrical Systems and Grounding Networks in NSRRC

    CERN Document Server

    Liu, Yung-Hui; Chen June Rong; Lin, Yu-Chih; Tsai, Zong-Da

    2005-01-01

    The purpose of this paper is to declare the improvement on electrical and grounding systems in NSRRC. In electrical power system, an Automated Voltage Regulator (AVR) was established to RF system in 2003. The variation of voltage supply from Taiwan Power Company (TPC) is reduced from 3% to 0.2% through the AVR system. And a Supervisory Control and Data Acquisition (SCADA) system was also setup to monitoring the electrical power conditions in each power station. After the high precision grounding systems were constructed in 2004, the stability of beam line was raised. For comprehending the grounding current and noise control, a grounding monitoring system with 32 channels was built in the storage ring. The grounding currents of 4 kickers, one septum and grounding bus are on-line acquisition. Two Electromagnetic Field (EMF) apparatuses were also installed to collect electrical and magnetic fields in the R1 section. It was observed that the electromagnetic field was correlated to grounding currents in certain lo...

  20. Implementation of remove monitoring in facilities under safeguards with unattended systems

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H [Los Alamos National Laboratory; Nordquist, Heather A [Los Alamos National Laboratory; Umebayaashi, Eiji [JAEA

    2009-01-01

    Remote monitoring is being applied by the International Atomic Energy Agency (IAEA) at nuclear facilities around the world. At the Monju Reactor in Japan we have designed, developed and implemented a remote monitoring approach that can serve as a model for applying remote monitoring to facilities that are already under full-scope safeguards using unattended instrumentation. Remote monitoring implementations have historically relied upon the use of specialized data collection hardware and system design features that integrate remote monitoring into the safeguards data collection system. The integration of remote monitoring and unattended data collection increases the complexity of safeguards data collection systems. This increase in complexity necessarily produces a corresponding reduction of system reliability compared to less-complex unattended monitoring systems. At the Monju facility we have implemented a remote monitoring system that is decoupled from the activity of safeguards data collection. In the completed system the function of remote data transfer is separated from the function of safeguards data collection. As such, a failure of the remote monitoring function cannot produce an associated loss of safeguards data, as is possible with integrated remote-monitoring implementations. Currently, all safeguards data from this facility is available to the IAEA on a 24/7 basis. This facility employs five radiation-based unattended systems, video surveillance and numerous optical seal systems. The implementation of remote monitoring at this facility, while increasing the complexity of the safeguards system, is designed to avoid any corresponding reduction in reliability of the safeguards data collection systems by having decoupled these functions. This design and implementation can serve as a model for implementation of remote monitoring at nuclear facilities that currently employ unattended safeguards systems.

  1. A Novel Ground Fault Non-Directional Selective Protection Method for Ungrounded Distribution Networks

    Directory of Open Access Journals (Sweden)

    Ricardo Granizo

    2015-02-01

    Full Text Available This paper presents a new selective and non-directional protection method to detect ground faults in neutral isolated power systems. The new proposed method is based on the comparison of the rms value of the residual current of all the lines connected to a bus, and it is able to determine the line with ground defect. Additionally, this method can be used for the protection of secondary substation. This protection method avoids the unwanted trips produced by wrong settings or wiring errors, which sometimes occur in the existing directional ground fault protections. This new method has been validated through computer simulations and experimental laboratory tests.

  2. Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China

    Science.gov (United States)

    Zhanqing Li; Feng Niu; Kwon-Ho Lee; Jinyuan Xin; Wei Min Hao; Bryce L. Nordgren; Yuesi Wang; Pucai Wang

    2007-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) currently provides the most extensive aerosol retrievals on a global basis, but validation is limited to a small number of ground stations. This study presents a comprehensive evaluation of Collection 4 and 5 MODIS aerosol products using ground measurements from the Chinese Sun Hazemeter Network (CSHNET). The...

  3. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    Science.gov (United States)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (gmos.eu" target="_blank">http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  4. Probabilistic low-rank factorization accelerates tensor network simulations of critical quantum many-body ground states

    Science.gov (United States)

    Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone

    2018-01-01

    We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.

  5. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations

    Directory of Open Access Journals (Sweden)

    C. Vigouroux

    2008-12-01

    Full Text Available Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network, six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC, have joined their efforts to evaluate the trends of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar. The observed total column ozone trends are in agreement with previous studies: 1 no total column ozone trend is seen at the lowest latitude station Izaña (28° N; 2 slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N, only one of them being significant; 3 the highest latitude stations Harestua (60° N, Kiruna (68° N and Ny-Ålesund (79° N show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground-10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost

  6. Seeding on Moving Ground: How Understanding Network Instability Can Improve Message Dissemination

    Directory of Open Access Journals (Sweden)

    Muchnik Lev

    2017-11-01

    Full Text Available Most analyses of the social structure of a network implicitly assume that the relationships in the network are relatively stable. We present evidence that this is not the case. The focal network of this study grew in bursts rather than monotonously over time, and the bursts were highly localized. Links were added and deleted in nearby localities and are not randomly dispersed throughout the network. Also changes in structure lead to simultaneous changes in self-stated interests of its members. For SNA marketing applications the findings suggest interesting improvements. Local bursts around a seed can change the structure of the network dramatically and therefore a marketer’s influence and his chances of success. Therefore, network measurements should be carried out more frequently and closer to the actual implementation of a seeding campaign. To detect these abrupt, dramatic local changes marketers also use a finer resolution. Further, recommendation algorithms that simultaneously account for changes in network structure and content should be applied.

  7. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    Science.gov (United States)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  8. Ground wave emergency network environmental assessment for northwestern Colorado relay node site number RN 8C924CO

    Science.gov (United States)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in southern Nevada consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  9. SCaN Network Ground Station Receiver Performance for Future Service Support

    Science.gov (United States)

    Estabrook, Polly; Lee, Dennis; Cheng, Michael; Lau, Chi-Wung

    2012-01-01

    Objectives: Examine the impact of providing the newly standardized CCSDS Low Density Parity Check (LDPC) codes to the SCaN return data service on the SCaN SN and DSN ground stations receivers: SN Current Receiver: Integrated Receiver (IR). DSN Current Receiver: Downlink Telemetry and Tracking (DTT) Receiver. Early Commercial-Off-The-Shelf (COTS) prototype of the SN User Service Subsystem Component Replacement (USS CR) Narrow Band Receiver. Motivate discussion of general issues of ground station hardware design to enable simple and cheap modifications for support of future services.

  10. Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2017-04-01

    Full Text Available Signal injection method (SIM is widely applied to the insulation parameters’ measurement in distribution network for its convenience and safety. It can be divided into two kinds of patterns: injecting a specific frequency signal or several frequencies’ groups, and scanning frequency in a scheduled frequency scope. In order to avoid the disadvantages in related researches, improved signal injection method (ISIM, in which the frequency characteristic of the transformer magnetizing impedance is taken into consideration, is proposed. In addition, optimization for signal injection position has been accomplished, and the corresponding three calculation methods of line-to-ground capacitance has been derived. Calculations are carried out through the vector information (vector calculation method, the amplitude information (amplitude calculation method, the phase information (phase calculation method of voltage and current in signal injecting port, respectively. The line-to-ground capacitance is represented by lumped parameter capacitances in high-voltage simulation test. Eight different sinusoidal signals are injected into zero-sequence circuit, and then line-to-ground capacitance is calculated with the above-mentioned vector calculation method based on the voltage and the current data of the injecting port. The results obtained by the vector calculation method show that ISIM has a wider application frequency range compared with signal injection method with rated parameters (RSIM and SIM. The RSIM is calculated with the rated transformer parameters of magnetizing impedance, and the SIM based on the ideal transformer model, and the relative errors of calculation results of ISIM are smaller than that for other methods in general. The six groups of two-frequency set are chosen in a specific scope which is recommended by vector calculation results. Based on ISIM, the line-to-ground capacitance calculations through the amplitude calculation method and

  11. Technology Infusion of CodeSonar into the Space Network Ground Segment (RII07): Software Assurance Symposium Technical Summary

    Science.gov (United States)

    Benson, Markland J.

    2008-01-01

    Presents a source code analysis tool (CodeSonar) for use in the Space Network Ground Segment. The Space Network requires 99.9% proficiency and 97.0% availability of systems. Software has historically accounted for an annual average of 28% of the Space Network loss of availability and proficiency. CSCI A and CSCI B account for 42% of the previous eight months of software data loss. The technology infusion of CodeSonar into the Space Network Ground segment is meant to aid in determining the impact of the technology on the project both in the expenditure of effort and the technical results of the technology. Running a CodeSonar analysis and performing a preliminary review of the results averaged 3.5 minutes per finding (approximately 20 hours total). An additional 40 hours is estimated to analyze the 37 findings deemed too complex for the initial review. Using CodeSonar's tools to suppress known non-problems, delta tool runs will not repeat findings that have been marked as non-problems, further reducing the time needed for review. The 'non-interesting' finding rate of 70% is a large number, but filtering, search, and detailed contextual features of CodeSonar reduce the time per finding. Integration of the tool into the build process may also provide further savings by preventing developers from having to configure and operate the tool separately. These preliminary results show the tool to be easy to use and incorporate into the engineering process. These findings also provide significant potential improvements in proficiency and availability on the part of the software. As time-to-fix data become available a better cost trade can be made on person hours saved versus tool cost. Selective factors may be necessary to determine where best to apply CodeSonar to balance cost and benefits.

  12. Technology Infusion of CodeSonar into the Space Network Ground Segment (RII07)

    Science.gov (United States)

    Benson, Markland

    2008-01-01

    The NASA Software Assurance Research Program (in part) performs studies as to the feasibility of technologies for improving the safety, quality, reliability, cost, and performance of NASA software. This study considers the application of commercial automated source code analysis tools to mission critical ground software that is in the operations and sustainment portion of the product lifecycle.

  13. Active Time Domain Reflectometry for Tamper Indication in Unattended Safeguards Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Smith, Leon E.; Tedeschi, Jonathan R.; Moore, David E.; Gavric, Gordan; Conrad, Ryan C.

    2015-07-14

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This paper describes the TDR methods under investigation and the associated benchtop test-bed, tampering scenarios of interest,, and viability measurement results to date (e.g., comparison of relative sensitivity to tamper scenarios).

  14. Time-Domain Reflectometry for Tamper Indication in Unattended Monitoring Systems for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended, remotely monitored measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Pacific Northwest National Laboratory (PNNL) leads a collaboration that is exploring various tamper-indicating (TI) measures that could help to address some of the long-standing detector and data-transmission authentication challenges with IAEA’s unattended systems. PNNL is investigating the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s progress and preliminary findings from the first year of the study, and describes the path forward.

  15. Music Training Enhances Rapid Neural Plasticity of N1 and P2 Source Activation for Unattended Sounds

    OpenAIRE

    Seppänen, Miia; Hämäläinen, Jarmo; Pesonen, Anu-Katriina; Tervaniemi, Mari

    2012-01-01

    Neurocognitive studies have demonstrated that long-term music training enhances the processing of unattended sounds. It is not clear, however, whether music training also modulates rapid (within tens of minutes) neural plasticity for sound encoding. To study this phenomenon, we examined whether adult musicians display enhanced rapid neural plasticity compared to non-musicians. More specifically, we compared the modulation of P1, N1, and P2 responses to standard sounds between four unattended ...

  16. Quantifying the spatio-temporal correlation during a substorm using dynamical networks formed from the SuperMAG database of ground based magnetometer stations.

    Science.gov (United States)

    Dods, J.; Chapman, S. C.; Gjerloev, J. W.; Barnes, R. J.

    2014-12-01

    The overall morphology and dynamics of magnetospheric substorms is well established in terms of observed qualitative auroral features and signatures seen in ground based magnetometers. The detailed evolution of a given substorm is captured by typically ~100 ground based magnetometer observations and this work seeks to synthesise all these observations in a quantitative manner. We present the first analysis of the full available set of ground based magnetometer observations of substorms using dynamical networks. SuperMAG offers a database containing ground station magnetometer data at a cadence of 1min from 100s stations situated across the globe. We use this data to form dynamic networks which capture spatial dynamics on timescales from the fast reconfiguration seen in the aurora, to that of the substorm cycle. Windowed linear cross-correlation between pairs of magnetometer time series along with a threshold is used to determine which stations are correlated and hence connected in the network. Variations in ground conductivity and differences in the response functions of magnetometers at individual stations are overcome by normalizing to long term averages of the cross-correlation. These results are tested against surrogate data in which phases have been randomised. The network is then a collection of connected points (ground stations); the structure of the network and its variation as a function of time quantify the detailed dynamical processes of the substorm. The network properties can be captured quantitatively in time dependent dimensionless network parameters and we will discuss their behaviour for examples of 'typical' substorms and storms. The network parameters provide a detailed benchmark to compare data with models of substorm dynamics, and can provide new insights on the similarities and differences between substorms and how they correlate with external driving and the internal state of the magnetosphere.

  17. Differential modulation of auditory responses to attended and unattended speech in different listening conditions.

    Science.gov (United States)

    Kong, Ying-Yee; Mullangi, Ala; Ding, Nai

    2014-10-01

    This study investigates how top-down attention modulates neural tracking of the speech envelope in different listening conditions. In the quiet conditions, a single speech stream was presented and the subjects paid attention to the speech stream (active listening) or watched a silent movie instead (passive listening). In the competing speaker (CS) conditions, two speakers of opposite genders were presented diotically. Ongoing electroencephalographic (EEG) responses were measured in each condition and cross-correlated with the speech envelope of each speaker at different time lags. In quiet, active and passive listening resulted in similar neural responses to the speech envelope. In the CS conditions, however, the shape of the cross-correlation function was remarkably different between the attended and unattended speech. The cross-correlation with the attended speech showed stronger N1 and P2 responses but a weaker P1 response compared to the cross-correlation with the unattended speech. Furthermore, the N1 response to the attended speech in the CS condition was enhanced and delayed compared with the active listening condition in quiet, while the P2 response to the unattended speaker in the CS condition was attenuated compared with the passive listening in quiet. Taken together, these results demonstrate that top-down attention differentially modulates envelope-tracking neural activity at different time lags and suggest that top-down attention can both enhance the neural responses to the attended sound stream and suppress the responses to the unattended sound stream. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Automatic processing of unattended lexical information in visual oddball presentation: neurophysiological evidence

    Directory of Open Access Journals (Sweden)

    Yury eShtyrov

    2013-08-01

    Full Text Available Previous electrophysiological studies of automatic language processing revealed early (100-200 ms reflections of access to lexical characteristics of speech signal using the so-called mismatch negativity (MMN, a negative ERP deflection elicited by infrequent irregularities in unattended repetitive auditory stimulation. In those studies, lexical processing of spoken stimuli became manifest as an enhanced ERP in response to unattended real words as opposed to phonologically matched but meaningless pseudoword stimuli. This lexical ERP enhancement was explained by automatic activation of word memory traces realised as distributed strongly intra-connected neuronal circuits, whose robustness guarantees memory trace activation even in the absence of attention on spoken input. Such an account would predict the automatic activation of these memory traces upon any presentation of linguistic information, irrespective of the presentation modality. As previous lexical MMN studies exclusively used auditory stimulation, we here adapted the lexical MMN paradigm to investigate early automatic lexical effects in the visual modality. In a visual oddball sequence, matched short word and pseudoword stimuli were presented tachistoscopically in perifoveal area outside the visual focus of attention, as the subjects’ attention was concentrated on a concurrent non-linguistic visual dual task in the centre of the screen. Using EEG, we found a visual analogue of the lexical ERP enhancement effect, with unattended written words producing larger brain response amplitudes than matched pseudowords, starting at ~100 ms. Furthermore, we also found significant visual MMN, reported here for the first time for unattended lexical stimuli presented perifoveally. The data suggest early automatic lexical processing of visually presented language outside the focus of attention.

  19. Overview of the software for the Telemation/Sandia unattended video surveillance system

    Energy Technology Data Exchange (ETDEWEB)

    Merillat, P.D.

    1979-10-01

    A microprocessor has been used to provide the major control functions in the Telemation/Sandia unattended video surveillance system. The software in the microprocessor provides control of the various hardware components and provides the capability of interactive communications with the operator. This document, in conjunction with the commented source listing, defines the philosophy and function of the software. It is assumed that the reader is familiar with the RCA 1802 COSMAC microprocessor and has a reasonable computer science background.

  20. Strong lateral variation of ground temperature revealed by a large network of boreholes in the Slave Geological Province of Canada

    Science.gov (United States)

    Gruber, Stephan; Riddick, Julia; Brown, Nick; Karunaratne, Kumari; Kokelj, Steve V.

    2017-04-01

    The Slave Geological Province is a key region in the Canadian North. Its tundra areas form a large and resource-rich landscape in which comparably few systematic permafrost observations exist. Because the region contains layers of ice-rich till, the ground is susceptible to subsidence during thaw. Consequently, possible impacts of permafrost thawing on infrastructure and the natural environment motivate baseline investigations and simulation studies. In this context, the spatial variation of ground temperatures is relevant: How well can we extrapolate from one or few locations of observation? How well can we describe permafrost characteristics with coarse-grid (e.g., 50 km) models assuming relatively homogenous conditions? In July 2015, an observation network of more than 40 plots was installed to monitor ground thermal regime and to detect surface subsidence. Plots are within few tens of meters to few tens of kilometers from each other and were chosen to represent a distinct combination of surficial geology, vegetation, drainage conditions, and snow accumulation. In each plot (15 m x 15 m), temperatures are recorded in a borehole as well as about 10 cm deep at four locations. Data on surface and subsurface properties has been recorded as well. In September 2016, data was downloaded from the loggers and the conditions of the instruments were described. This contribution presents the first year of temperature data. In the annual averages, it reveals more than 7°C lateral variation between plots as well as within-plot variations of more than 2.5°C. This underscores the need for carefully designing measurement campaigns and methods when aiming to test coarse-scale permafrost simulations, even in gentle topography. The data resulting from this observational network will be made available publicly in the near future.

  1. Active Time-Domain Reflectometry for Unattended Safeguards Systems: FY16 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pratt, Richard M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-21

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. Traditional data security measures, for example tamper-indicating (TI) conduit, are impractical for the long separation distances (often 100 meters or more) between unattended monitoring system (UMS) components. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) for the detection of cable tampering in unattended radiation detection systems. The instrument concept under investigation would allow for unmanned cable integrity measurements, remote surveillance reporting and locating of cable faults and/or tampers. This report describes PNNL’s FY16 progress and includes: an overview of the TDR methods under investigation; description of the TDR evaluation testbed developed by PNNL; development and testing of advanced signal processing algorithms to extract weak signals from relatively high noise levels; and initial testing of a laboratory prototype intended for IAEA UMS applications and based on a commercially available TDR module. Preliminary viability findings and recommendations for the next stage of development and testing are provided.

  2. Front-end Electronics for Unattended Measurement (FEUM). Results of Prototype Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Keller, Daniel T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Morris, Scott J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-01

    The International Atomic Energy Agency (IAEA) deploys unattended monitoring systems to provide continuous monitoring of nuclear material within safeguarded facilities around the world. As the number of unattended monitoring instruments increases, the IAEA is challenged to become more efficient in the implementation of those systems. In 2010, the IAEA initiated the Front-End Electronics for Unattended Measurement (FEUM) project with the goals of greater flexibility in the interfaces to various sensors and data acquisition systems, and improved capabilities for remotely located sensors (e.g., where sensor and front-end electronics might be separated by tens of meters). In consultation with the IAEA, a technical evaluation of a candidate FEUM device produced by a commercial vendor has been performed. This evaluation assessed the device against the IAEA’s original technical specifications and a broad range of important parameters that include sensor types, cable lengths and types, industrial electromagnetic noise that can degrade signals from remotely located detectors, and high radiation fields. Testing data, interpretation, findings and recommendations are provided.

  3. Music training enhances rapid plasticity of N1 and P2 source activation for unattended sounds

    Directory of Open Access Journals (Sweden)

    Miia eSeppänen

    2012-03-01

    Full Text Available Neurocognitive studies demonstrate that long-term musical training enhances the processing of unattended sounds. It is not clear, however, whether musical training modulates also rapid (within tens of minutes neural plasticity for sound encoding. To study this, we examined whether adult musicians display enhanced rapid neural plasticity when compared to nonmusicians. More specifically, we examined the modulation of P1, N1, and P2 responses to regular standard sounds in an oddball paradigm between unattended passive blocks which were separated by an active task. Source analysis for event-related potentials showed that N1 and P2 source activation decreased selectively in musicians already after fifteen minutes of passive exposure to sounds and that P2 source activation re-enhanced after the active task in musicians. Additionally, event-related potential (ERP analysis revealed that in both musicians and nonmusicians, P2 ERP amplitude enhanced after fifteen minutes of passive exposure but only at frontal electrodes. Furthermore, in musicians, N1 ERP enhanced after the active discrimination task but only at parietal electrodes. Musical training modulates the rapid plasticity reflected in N1 and P2 source activation for unattended regular standard sounds. Enhanced rapid plasticity of N1 and P2 might reflect the faster auditory perceptual learning in musicians when compared to nonmusicians.

  4. Active Time-Domain Reflectometry for Unattended Safeguards Systems FY15 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, Jonathan R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, David E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sheen, David M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Conrad, Ryan C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gavric, Gordan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The International Atomic Energy Agency (IAEA) continues to expand its use of unattended measurement systems. An increasing number of systems and an expanding family of instruments create challenges in terms of deployment efficiency and the implementation of data authentication measures. In collaboration with the IAEA, tamper-indicating measures to address data-transmission authentication challenges with unattended safeguards systems are under investigation. Pacific Northwest National Laboratory (PNNL) is studying the viability of active time-domain reflectometry (TDR) along two parallel but interconnected paths: (1) swept-frequency TDR as the highly flexible, laboratory gold standard to which field-deployable options can be compared, and (2) a low-cost commercially available spread-spectrum TDR technology as one option for field implementation. This report describes PNNL’s FY15 progress in the viability study including: an overview of the TDR methods under investigation; description of the testing configurations and mock tampering scenarios; results from a preliminary sensitivity comparison of the two TDR methods; demonstration of a quantitative metric for estimating field performance that acknowledges the need for high detection probability while minimizing false alarms. FY15 progress reported here sets the stage for a rigorous comparison of the candidate TDR methods, over a range of deployment scenarios and perturbing effects typical of IAEA unattended monitoring systems.

  5. Global manifestations of a substorm onset observed by a multi-satellite and ground station network

    Directory of Open Access Journals (Sweden)

    H. Wang

    2006-12-01

    Full Text Available With a favorable constellation of spacecraft and ground stations, a study is made on the global manifestations of a substorm onset. The onset occurred simultaneously and conjugately in both hemispheres, confirmed by observations of the auroral breakup from IMAGE FUV-WIC and a sudden intensification of a westward electrojet from ground-based magnetometers. Concurrently with the onset, field-aligned and Hall currents in the auroral ionosphere are observed by CHAMP, which are consistent with the signature of a Harang discontinuity. Immediately after the onset a magnetic field dipolarization is clearly observed by Double Star TC-1, located near the central magnetotail and subsequently, by the Cluster quartet. The observations can be explained by a dawnward propagation of the substorm current wedge at a speed of about 300 km/s.

  6. Inter-Vehicular Ad Hoc Networks: From the Ground Truth to Algorithm Design and Testbed Architecture

    Science.gov (United States)

    Giordano, Eugenio

    2011-01-01

    Many of the devices we interact with on a daily basis are currently equipped with wireless connectivity. Soon this will be extended to the vehicles we drive/ride every day. Wirelessly connected vehicles will form a new kind of network that will enable a wide set of innovative applications ranging from enhanced safety to entertainment. To…

  7. The coseismic ground deformations of the 1997 Umbria-Marche earthquakes: a lesson for the development of new GPS networks

    Directory of Open Access Journals (Sweden)

    E. Serpelloni

    2008-06-01

    Full Text Available After the occurrence of the two main shocks Mw=5.7 (00.33 GMT and Mw=6.0 (09:40 GMT on September 26, 1997, which caused severe damages and ground cracks in a wide area of the Umbria Marche region, the Istituto Nazionale di Geofisica in cooperation with the Istituto Geografico Militare Italiano set out to detect the coseismic ground deformation and reoccupied the available geodetic monuments placed across the epicentral area, belonging to the first order Italian GPS network IGM95 and to the Tyrgeonet network. The comparison between the pre and post-earthquakes coordinate set, the latter obtained from the surveys performed in the early days of October 1997 in the Umbria Marche earthquake area, showed maximum displacements values at the closest stations to the epicentres, up to 14.0±1.8 and 24.0±3.0 cm in the horizontal and vertical components, respectively. The availability of the IGM95 stations allowed geodetic data to be translated into relevant geophysical results. For the first time in Italy, the evaluation of post-earthquake coordinates at 13 vertices provided the estimation of a significant deformation field associated with a seismic sequence. Unfortunately, the same actions could not be applied to the October 14, 1997, Mw=5.6 Sellano earthquake, whose epicentre was located a few tens of km south of the previous ones, due to a lack of available geodetic vertices of Tyrgeonet and IGM95 networks in the surroundings of the epicentral zone. This fact, which prevented the estimation of coseismic deformation and seismic source modelling for this earthquake, clarified the need to set up tailor made GPS networks devoted to geophysical applications, able to capture a possible coseismic signal, but also interseismic and post-seismic signals, at the surface of the Earth’s crust at the scale of the expected magnitudes and fault length. Here we show and discuss the development of the Discrete GPS and Continuous GPS (CGPS networks in

  8. Technology Infusion of CodeSonar into the Space Network Ground Segment

    Science.gov (United States)

    Benson, Markland J.

    2009-01-01

    This slide presentation reviews the applicability of CodeSonar to the Space Network software. CodeSonar is a commercial off the shelf system that analyzes programs written in C, C++ or Ada for defects in the code. Software engineers use CodeSonar results as an input to the existing source code inspection process. The study is focused on large scale software developed using formal processes. The systems studied are mission critical in nature but some use commodity computer systems.

  9. Gait Phases Recognition from Accelerations and Ground Reaction Forces: Application of Neural Networks

    Directory of Open Access Journals (Sweden)

    S. Rafajlović

    2009-06-01

    Full Text Available The goal of this study was to test the applicability of accelerometer as the sensor for assessment of the walking. We present here the comparison of gait phases detected from the data recorded by force sensing resistors mounted in the shoe insoles, non-processed acceleration and processed acceleration perpendicular to the direction of the foot. The gait phases in all three cases were detected by means of a neural network. The output from the neural network was the gait phase, while the inputs were data from the sensors. The results show that the errors were in the ranges: 30 ms (2.7% – force sensors; 150 ms (13.6% – nonprocessed acceleration, and 120 ms (11% – processed acceleration data. This result suggests that it is possible to use the accelerometer as the gait phase detector, however, with the knowledge that the gait phases are time shifted for about 100 ms with respect the neural network predicted times.

  10. Calibration and Recovery of Nuclear Test Seismic Ground-Motion Data from the Leo Brady Seismic Network

    Science.gov (United States)

    Young, B.; Abbott, R. E.

    2016-12-01

    In 1960, Sandia National Laboratories established a small seismic network with stations in Nevada, Utah, and California with the mission to monitor underground nuclear tests (UGTs) at the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site). Over time, this seismic network came to be known as the Leo Brady Seismic Network (LBSN). The LBSN recorded approximately 800 UGTs at the NNSS from its inception through the end of testing in 1992. These irreplaceable data, mostly archived on analog, frequency-modulated magnetic tapes and stored in vaults, are now being digitized. This necessitated a calibration method to take the data from analog FM to digital counts to ground-motion units. Complicating the issue, the seismic system setup, telemetering, instrumentation, and calibration methods changed several times over the course of the LBSN's service life, and much of the documentation and knowledge of the system has been lost to time. The information necessary to understand, interpret, and ultimately calibrate these data was therefore collected from many disparate sources, each of which contains bits and pieces of relevant information. Contradictory information was often the rule rather than the exception. Where necessary (due to a lack of direct information) we made educated guesses as to the exact system, setup, and methodologies used. Ultimately, we documented the evolution and configuration of the seismic network, and determined both empirical and analytical approaches to calibrating these data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Unattended Acoustic Sensor Systems for Noise Monitoring in National Parks

    Science.gov (United States)

    Yaremenko, Vladimir

    field on actual acoustic data and the performance of this implementation was evaluated using receiver operator characteristic (ROC) curves and confusion matrices. In this test the FPGA implementation of SCST was able to achieve acceptable source detection and classification results despite a difficult data set and limited training data. The tracking of acoustic sources is done through successive direction of arrival (DOA) angle estimation using a wideband extension of the Capon beamforming algorithm. This algorithm was also implemented on the EMS in order to provide real-time DOA estimates for the detected sources. This algorithm was partitioned into several stages with some stages implemented in custom logic while others were implemented as software running on the soft-core processor. Just as with SCST, each partition of this beamforming algorithm was verified independently and then a full system test was conducted to evaluate whether it would be able to track an airborne source. For the full system test, a model airplane was flown at various trajectories relative to the EMS and the trajectories estimated by the system were compared to the ground truth. Although in this test the accuracy of the DOA estimates could not be evaluated, it was show that the algorithm was able to approximately form the general trajectory of a moving source which is sufficient for our application as only a general heading of the acoustic sources is desired.

  12. Proposed expansion of the City of Albuquerque/U.S. Geological Survey ground-water-level monitoring network for the middle Rio Grande Basin, New Mexico

    Science.gov (United States)

    Bexfield, L.M.

    1998-01-01

    The Middle Rio Grande Basin in central New Mexico, extending from Cochiti Lake on the north to San Acacia on the south, covers an area of about 3,060 square miles. Ground-water withdrawals in the basin are concentrated in and around the city of Albuquerque. Because of rapid increases in population and associated ground-water pumpage, a network of wells was established cooperatively by the City of and the U.S. Geological Survey between April 1982 and September 1983 to monitor changes in ground-water levels throughout the basin. Expansion of this network has been identified as an essential element in plans to study the relation between surface water and ground water in the basin. An inventory of existing wells in the Albuquerque metropolitan area has brought together information on about 400 wells that either are being monitored for water levels or would be good candidates for monitoring. About 115 wells or well sites are proposed as additions to the current 128-well ground-water-level monitoring network for the Middle Rio Grande Basin. Despite the extensive network that would be created by the addition of the proposed existing wells, however, certain parts of the Albuquerque metropolitan area would remain without adequate coverage areally and/or with depth in the Santa Fe Group aquifer until the installation of the proposed new monitoring wells.

  13. A High Density Ground-Level Ozone Sensor Network in the Lower Fraser Valley, BC, Canada

    Science.gov (United States)

    Bart, M.; Ainslie, B.; Alavi, M.; Henshaw, G.; McKendry, I.; Reid, K.; Salmond, J. A.; Steyn, D.; Williams, D.

    2012-12-01

    Ozone can have a detrimental effect on human health, agricultural crops and the environment. To quantify these impacts, tropospheric chemistry models are often employed, which are continually increasing in complexity and resolution. In order to validate these sophisticated models and provide good quality parameterisation and initialisation data, complementary measurements are often made. However, these measurements can often be difficult to perform, expensive and time consuming to make. A low cost sensor network can overcome some of these limitations, by making spatially dense measurements for a fraction of the cost of traditional measurements. Since the mid-1980s, when reliable observations from the fixed monitoring network began, high ozone concentrations have been a health concern in the Lower Fraser Valley (LFV), BC, Canada and numerous studies have been carried out in the LFV previously [1-4]. In the summer of 2012 we embarked on a programme to advance these studies by deploying the world's first ultra-dense fully automated ozone measurement network. The network consisted of approximately 60 high quality tungsten oxide semi-conductor ozone sensors integrated with low-cost cellular telephone modems and GPS receivers, returning data to a webserver in real-time at 1 minute temporal resolution. This ultra-dense network of sensors has enabled us to perform a detailed study of ozone formation and dispersal in the LFV and associated tributary valleys. Peak ozone production areas have been mapped out, particularly in the surrounding region where ozone is not routinely monitored. This has provided a detailed understanding of small scale variability and ozone transport phenomena, with particular emphasis placed on the previously unknown role of tributary valleys to the south of the LFV, Howe Sound, and Hope. Data quality was routinely checked by co-locating sensors with the local authority, MetroVancouver, reference ozone analysers. A statistical method to check data

  14. Calibration of ground-based microwave radiometers - Accuracy assessment and recommendations for network users

    Science.gov (United States)

    Pospichal, Bernhard; Küchler, Nils; Löhnert, Ulrich; Crewell, Susanne; Czekala, Harald; Güldner, Jürgen

    2016-04-01

    Ground-based microwave radiometers (MWR) are becoming widely used in atmospheric remote sensing and start to be routinely operated by national weather services and other institutions. However, common standards for calibration of these radiometers and a detailed knowledge about the error characteristics is needed, in order to assimilate the data into models. Intercomparisons of calibrations by different MWRs have rarely been done. Therefore, two calibration experiments in Lindenberg (2014) and Meckenheim (2015) were performed in the frame of TOPROF (Cost action ES1303) in order to assess uncertainties and differences between various instruments. In addition, a series of experiments were taken in Oklahoma in autumn 2014. The focus lay on the performance of the two main instrument types, which are currently used operationally. These are the MP-Profiler series by Radiometrics Corporation as well as the HATPRO series by Radiometer Physics GmbH (RPG). Both instrument types are operating in two frequency bands, one along the 22 GHz water vapour line, the other one at the lower wing of the 60 GHz oxygen absorption complex. The goal was to establish protocols for providing quality controlled (QC) MWR data and their uncertainties. To this end, standardized calibration procedures for MWR were developed and recommendations for radiometer users were compiled. We focus here mainly on data types, integration times and optimal settings for calibration intervals, both for absolute (liquid nitrogen, tipping curve) as well as relative (hot load, noise diode) calibrations. Besides the recommendations for ground-based MWR operators, we will present methods to determine the accuracy of the calibration as well as means for automatic data quality control. In addition, some results from the intercomparison of different radiometers will be discussed.

  15. Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground.

    Science.gov (United States)

    Zampieri, Elisa; Murat, Claude; Cagnasso, Matteo; Bonfante, Paola; Mello, Antonietta

    2010-01-01

    Truffles are hypogeous ectomycorrhizal fungi. They belong to the genus Tuber and are currently considered a hot spot in fungal biology due to their ecological and economic relevance. Among all the species, Tuber magnatum is the most appreciated because of its special taste and aroma. The aim of this work was to set up a protocol to detect T. magnatum in soil and to assess its distribution in a natural truffle-ground. We used the beta-tubulin gene as a marker to identify T. magnatum in the soil. This gene allowed us to trace the distribution of the fungus over the entire truffle-ground. Tuber magnatum was found, in one case, 100 m from the productive host plant. This study highlights that T. magnatum mycelium is more widespread than can be inferred from the distribution of truffles and ectomycorrhizas. Interestingly, a new haplotype - never described from fruiting body material - was identified. The specific detection of T. magnatum in the soil will allow to unravel the ecology of this fungus, following its mycelial network. Moreover, this new tool may have practical importance in projects aimed to increase large-scale truffle production, checking for T. magnatum persistence in plantations.

  16. A network analysis of countries' export flows: firm grounds for the building blocks of the economy.

    Directory of Open Access Journals (Sweden)

    Guido Caldarelli

    Full Text Available In this paper we analyze the bipartite network of countries and products from UN data on country production. We define the country-country and product-product projected networks and introduce a novel method of filtering information based on elements' similarity. As a result we find that country clustering reveals unexpected socio-geographic links among the most competing countries. On the same footings the products clustering can be efficiently used for a bottom-up classification of produced goods. Furthermore we mathematically reformulate the "reflections method" introduced by Hidalgo and Hausmann as a fixpoint problem; such formulation highlights some conceptual weaknesses of the approach. To overcome such an issue, we introduce an alternative methodology (based on biased Markov chains that allows to rank countries in a conceptually consistent way. Our analysis uncovers a strong non-linear interaction between the diversification of a country and the ubiquity of its products, thus suggesting the possible need of moving towards more efficient and direct non-linear fixpoint algorithms to rank countries and products in the global market.

  17. Study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations - PWING Project

    Science.gov (United States)

    Shiokawa, K.; Otsuka, Y.; Oyama, S. I.; Miyoshi, Y.; Nishitani, N.; Ozaki, M.; Kataoka, R.; Nose, M.; Seki, K.; Nose, M.

    2016-12-01

    Dynamical variation of particles and waves in the inner magnetosphere is one of the most important research topics in recent space physics. The inner magnetosphere contains plasmas in wide energy ranges from below electron volts to Mega-electron volts. These plasmas (electrons and ions) interact with ULF/ELF/VLF waves at frequencies of 0.1 Hz to 10 kHz to cause their energization in the equatorial plane of the magnetosphere and loss into the ionosphere. In order to provide global distribution and quantitative evaluation of the dynamical variation of plasmas and waves in the inner magnetosphere, we have started PWING Project (study of dynamical variation of Particles and Waves in the INner magnetosphere using Ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/PWING_web_e.htm), which will last for 5 years from April 2016, as a Grant-in-Aid for Specially Promoted Research of the Japan Society for the Promotion of Science (JSPS). In the PWING project, we plan to construct a longitudinal observation network at 8 ground-based stations at subauroral latitudes (magnetic latitudes: 60 degree) to monitor 2-dimentional images of particle precipitation and ULF/ELF/VLF waves at frequencies from 0.1Hz to 10 kHz. We combine these longitudinal network observations with the ERG satellite, which will be launched in fiscal year 2016, and global modeling. Using these comprehensive observations and modeling, we provide global distribution and quantitative evaluation of the dynamical variation of plasmas and waves in the inner magnetosphere at L 4 Re near the plasmapause. The MeV-energy electrons in the inner magnetosphere forms the radiation belts around the Earth, which are continuous thread for space vehicles and human bodies in space. The outcome from the PWING Project will increase the accuracy of forecasting the variations of radiation belt particles in the inner magnetosphere and contribute to the safe operation of human activities in space. The results

  18. Developmental word grounding through a growing neural network with a humanoid robot.

    Science.gov (United States)

    He, Xiaoyuan; Kojima, Ryo; Hasegawa, Osamu

    2007-04-01

    This paper presents an unsupervised approach of integrating speech and visual information without using any prepared data. The approach enables a humanoid robot, Incremental Knowledge Robot 1 (IKR1), to learn word meanings. The approach is different from most existing approaches in that the robot learns online from audio-visual input, rather than from stationary data provided in advance. In addition, the robot is capable of learning incrementally, which is considered to be indispensable to lifelong learning. A noise-robust self-organized growing neural network is developed to represent the topological structure of unsupervised online data. We are also developing an active-learning mechanism, called "desire for knowledge," to let the robot select the object for which it possesses the least information for subsequent learning. Experimental results show that the approach raises the efficiency of the learning process. Based on audio and visual data, they construct a mental model for the robot, which forms a basis for constructing IKRI's inner world and builds a bridge connecting the learned concepts with current and past scenes.

  19. Grid-Search Location Methods for Ground-Truth Collection From Local and Regional Seismic Networks

    Energy Technology Data Exchange (ETDEWEB)

    William Rodi; Craig A. Schultz; Gardar Johannesson; Stephen C. Myers

    2005-05-13

    This project investigated new techniques for improving seismic event locations derived from regional and local networks. The technqiues include a new approach to empirical travel-time calibration that simultaneously fits data from multiple stations and events, using a generalization of the kriging method, and predicts travel-time corrections for arbitrary event-station paths. We combined this calibration approach with grid-search event location to produce a prototype new multiple-event location method that allows the use of spatially well-distributed events and takes into account correlations between the travel-time corrections from proximate event-station paths. Preliminary tests with a high quality data set from Nevada Test Site explosions indicated that our new calibration/location method offers improvement over the conventional multiple-event location methods now in common use, and is applicable to more general event-station geometries than the conventional methods. The tests were limited, however, and further research is needed to fully evaluate, and improve, the approach. Our project also demonstrated the importance of using a realistic model for observational errors in an event location procedure. We took the initial steps in developing a new error model based on mixture-of-Gaussians probability distributions, which possess the properties necessary to characterize the complex arrival time error processes that can occur when picking low signal-to-noise arrivals. We investigated various inference methods for fitting these distributions to observed travel-time residuals, including a Markov Chain Monte Carlo technique for computing Bayesian estimates of the distribution parameters.

  20. Integrating Satellite, Aircraft, and Ground-Based Observations to Improve a GHG Inventory Network

    Science.gov (United States)

    Midzik, M.; Abbate, J.; Raheja, G.

    2016-12-01

    Methane (CH4) is the second-most effective greenhouse gas, with a global warming potential up to 70 times that of carbon dioxide (CO2) over the span of 25 years. With a majority of these emissions attributed to livestock, landfill, and wastewater treatment, CH4 emissions are a concern for both urban and rural landscapes. Though Earth-observing satellites can effectively monitor mid-to-upper tropospheric CH4 on a global scale, current instrumentation is limited in its capacity to accurately measure near-surface CH4 on a local scale. The Bay Area Air Quality Management District (BAAQMD) regulates stationary sources of air pollution in the nine counties surrounding San Francisco Bay. BAAQMD traditionally estimates emissions using a bottom-up approach, combining emissions factor and activity data to estimate source emissions per sector. However, recent literature suggests that these bottom-up approaches are underestimating CH4 emissions by nearly 50% in many regions of California. In efforts to address the discrepancy, this project compares BAAQMD's current CH4 spatial emissions inventory with top-down sub-Planetary Boundary Layer aircraft measurements from the NASA Alpha Jet Atmospheric eXperiment (AJAX). Together, these different approaches were used to identify CH4 hot-spots in the San Francisco Bay Area. In addition, sources of high-CH4 anomalies were identified using USGS high resolution aerial imagery and trajectory analysis. Furthermore, this project used NASA Landsat 8 imagery and USGS orthoimagery to classify the types of indicated emissions and infer other points of interest not included in the current BAAQMD inventory. These findings help pinpoint specific sites for BAAQMD's upcoming Mobile GHG Measurement Network; furthermore, results from this project suggest future sites for coincident data collection between advancing bottom-up and top-down instruments.

  1. The application of formal software engineering methods to the unattended and remote monitoring software suite at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Determan, John Clifford [Los Alamos National Laboratory; Longo, Joseph F [Los Alamos National Laboratory; Michel, Kelly D [Los Alamos National Laboratory

    2009-01-01

    The Unattended and Remote Monitoring (UNARM) system is a collection of specialized hardware and software used by the International Atomic Energy Agency (IAEA) to institute nuclear safeguards at many nuclear facilities around the world. The hardware consists of detectors, instruments, and networked computers for acquiring various forms of data, including but not limited to radiation data, global position coordinates, camera images, isotopic data, and operator declarations. The software provides two primary functions: the secure and reliable collection of this data from the instruments and the ability to perform an integrated review and analysis of the disparate data sources. Several years ago the team responsible for maintaining the software portion of the UNARM system began the process of formalizing its operations. These formal operations include a configuration management system, a change control board, an issue tracking system, and extensive formal testing, for both functionality and reliability. Functionality is tested with formal test cases chosen to fully represent the data types and methods of analysis that will be commonly encountered. Reliability is tested with iterative, concurrent testing where up to five analyses are executed simultaneously for thousands of cycles. Iterative concurrent testing helps ensure that there are no resource conflicts or leaks when multiple system components are in use simultaneously. The goal of this work is to provide a high quality, reliable product, commensurate with the criticality of the application. Testing results will be presented that demonstrate that this goal has been achieved and the impact of the introduction of a formal software engineering framework to the UNARM product will be presented.

  2. Laboratory demonstration of a multi-sensor unattended cylinder verification station for uranium enrichment plant safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, David I [Univ. of Michigan, Ann Arbor, MI (United States); Rowland, Kelly L [Univ. of California, Berkeley, CA (United States); Smith, Sheriden [Colorado State Univ., Fort Collins, CO (United States); Miller, Karen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-10

    The objective of safeguards is the timely detection of the diversion of a significant quantity of nuclear materials, and safeguarding uranium enrichment plants is especially important in preventing the spread of nuclear weapons. The IAEA’s proposed Unattended Cylinder Verification Station (UCVS) for UF6 cylinder verification would combine the operator’s accountancy scale with a nondestructive assay system such as the Passive Neutron Enrichment Meter (PNEM) and cylinder identification and surveillance systems. In this project, we built a laboratory-scale UCVS and demonstrated its capabilities using mock UF6 cylinders. We developed a signal processing algorithm to automate the data collection and processing from four continuous, unattended sensors. The laboratory demonstration of the system showed that the software could successfully identify cylinders, snip sensor data at the appropriate points in time, determine the relevant characteristics of the cylinder contents, check for consistency among sensors, and output the cylinder data to a file. This paper describes the equipment, algorithm and software development, laboratory demonstration, and recommendations for a full-scale UCVS.

  3. Development of comprehensive unattended child warning and feedback system in vehicle

    Directory of Open Access Journals (Sweden)

    Sulaiman Norizam

    2017-01-01

    Full Text Available The cases of children being trapped and suffocated in unattended vehicle keep increasing even though the awareness campaign on the safety of children in non-moving vehicle were carried out by government. Various methods were introduced by researchers to overcome this issue but yet to be effective. Among them were the usage of capacitive sensor, microwave sensor, pressure sensor and image sensor where most of the techniques or systems were applied on the child’s seat to detect the presence of baby or infant. Thus, this research is carried out to provide a comprehensive and effective detection system to detect the presence of children including infant in unattended vehicle by using the combination of human physiological signals (voice and body odor detectors with the temperature and motion sensors. Here, once the proposed system recognizes any signals that generated from voice, odor, motion and temperature detectors in vehicle’s cabin, the system then will provide effective feedback system by sending short message to the parents first. If no response received in the specified allocation time, the system then will activate the vehicle’s horn system. Finally, the system will lower down the vehicle’s window to release the toxic gas and reduce the cabin temperature. The system is in prototyping stage where every design component was evaluated individually. Besides, the overall system was successfully tested where the detection and feedback system follow the instruction given by the microcontroller.

  4. Comparison of the KSC-ER Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network(TradeMark)(NLDN)

    Science.gov (United States)

    Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip

    2007-01-01

    The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground lightning detection networks, CGLSS and NLDN, during ground and launch operations at the KSC-ER. For these applications, it is very important to understand the location accuracy and detection efficiency of each network near the KSC-ER. If a cloud-to-ground (CG) lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail. To evaluate recent upgrades in the CGLSS sensors in 2000 and the entire NLDN in 2002- 2003, we have compared. measurements provided by these independent networks in the summers of 2005 and 2006. Our analyses have focused on the fraction of first strokes reported individually and in-common by each network (flash detection efficiency), the spatial separation between the strike points reported by both networks (relative location accuracy), and the values of the estimated peak current, Ip, reported by each network. The results within 100 km of the KSC-ER show that the networks produce very similar values of Ip (except for a small scaling difference) and that the relative location accuracy is consistent with model estimates that give median values of 200-300m for the CGLSS and 600-700m for the NLDN in the region of the KSC-ER. Because of differences in the network geometries and sensor gains, the NLDN does not report 10-20% of the flashes that have a low Ip (2 kA =0 kA).

  5. Synthesis and characterization of chemically functionalized shape memory nanofoams for unattended sensing applications

    Science.gov (United States)

    Soliani, Anna Paola

    The work in this dissertation is devoted to the synthesis and characterization of novel materials for off-line unattended sensing: shape-memory grafted nanofoams. The fabrication process and characterization of highly efficient, polymeric nanosensor element with the ability to selectively detect analytes and retain memory of specific exposure events is reported. These shape memory nanofoams could potentially act as efficient and highly sensitive coatings for evanescent waveguide-based optical monitoring systems. On exposure to specific analytes, the polymeric coatings locally change their internal structure irreversibly at the nanolevel, affecting the local optical properties such as refractive index. Currently, enrichment polymer layers (EPLs) are currently being used to detect of chemical vapors. EPLs are thin polymer films that can increase signal of an analyte through absorption. These films are designed to interact with analytes via chemical interactions while this analyte is present in the environment. Once the analyte is removed from the environment surrounding the EPL, these EPLs have no residual memory of the interaction(s). This dissertation will address this limitation in the field of chemical unattended sensing through the use of functionalized polymeric films that possess ability to retain memory of analyte exposure. Specifically, we will use chemically cross-linked gradient nanofoam as a material with built-in analyte-specific sensing properties. A novel method has been created to fabricate chemically functionalized shape memory nanofoams. First, a polymer film containing epoxy groups is deposited onto a substrate. Then, the film is cross-linked via reaction of the epoxy groups to create a non-soluble, yet swellable coating. This film is then treated with specific chemical substances capable of reacting with the epoxy functionalities. This procedure is necessary to convert the epoxy groups into various functional moieties. This process generates a

  6. Applying Artificial Neural Networks to Estimate Net Radiation at Surface Using the Synergy between GERB-SEVIRI and Ground Data

    Science.gov (United States)

    Geraldo Ferreira, A.; Soria, Emilio; Lopez-Baeza, Ernesto; Vila, Joan; Serrano, Antonio J.; Martinez, Marcelino; Velazquez Blazquez, Almudena; Clerbaux, Nicolas

    This paper describes the results obtained using Artificial Neural Networks (AAN) models to estimate the diurnal cycle of net radiation (Rn) at surface. The data used as input parameter in the AAN model were that measured by Geostationary Earth Radiation Budget (GERB-1) instrument, on board Meteosat 9 satellite. The data concerning Rn at the surface were collected at the Valencia Anchor Station (VAS), a ground reference meteorological station for the validation of low spatial resolution sensors situated near de city of Valencia, Spain. This data refers to the periods July 31st -August 6th 2006 and June 19th -August 18th 2007. Both, GERB-1 and VAS data are used to train and validate the AAN model. The same data set is also used to develop and validate a Multivariate Linear Regression (MLR) model. A comparison between the estimates provided by the AAN and the MLR models has been carried out; the results obtained with the neural model outperform the linear model. Moreover, the low values of the error indexes show that neural models can be used as an alternative methodology to make atmospheric corrections.

  7. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    Directory of Open Access Journals (Sweden)

    J. L. Gunnink

    2012-08-01

    Full Text Available Airborne electromagnetic (AEM methods supply data over large areas in a cost-effective way. We used Artificial Neural Networks (ANN to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case electrical conductivity, EC, from electrical cone penetration tests and geological parameters (presence of glacial till, we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring the EC signal from the till but by using ANN we were able to extract subtle and often non-linear, relations in EC that were representative of the presence of the till. The ANN results were interpreted as the probability of having till and showed a good agreement with drilling data. The glacial till is acting as a layer that inhibits groundwater flow, due to its high clay-content, and is therefore an important layer in hydrogeological modelling and for predicting the effects of climate change on groundwater quantity and quality.

  8. Westward moving dynamic substorm features observed with the IMAGE magnetometer network and other ground-based instruments

    Directory of Open Access Journals (Sweden)

    H. Lühr

    1998-04-01

    Full Text Available We present the ground signatures of dynamic substorm features with particular emphasis on the event interpretation capabilities provided by the IMAGE magnetometer network. This array covers the high latitudes from the sub-auroral to the cusp/cleft region. An isolated substorm on 11 Oct. 1993 during the late evening hours exhibited many of well-known features such as the Harang discontinuity, westward travelling surge and poleward leap, but also discrete auroral forms, known as auroral streamers, appeared propagating westward along the centre of the electrojet. Besides the magnetic field measurements, there were auroral observations and plasma flow and conductivity measurements obtained by EISCAT. The data of all three sets of instruments are consistent with the notion of upward field-aligned currents associated with the moving auroral patches. A detailed analysis of the electrodynamic parameters in the ionosphere, however, reveals that they do not agree with the expectations resulting from commonly used simplifying approximations. For example, the westward moving auroral streamers which are associated with field-aligned current filaments, are not collocated with the centres of equivalent current vortices. Furthermore, there is a clear discrepancy between the measured plasma flow direction and the obtained equivalent current direction. All this suggests that steep conductivity gradients are associated with the transient auroral forms. Also self-induction effects in the ionosphere may play a role for the orientation of the plasma flows. This study stresses the importance of multi-instrument observation for a reliable interpretation of dynamic auroral processes.Keywords. Ionosphere (Auroral ionosphere; Electric fields and currents; Ionosphere-magnetosphere interactions.

  9. Westward moving dynamic substorm features observed with the IMAGE magnetometer network and other ground-based instruments

    Directory of Open Access Journals (Sweden)

    H. Lühr

    Full Text Available We present the ground signatures of dynamic substorm features with particular emphasis on the event interpretation capabilities provided by the IMAGE magnetometer network. This array covers the high latitudes from the sub-auroral to the cusp/cleft region. An isolated substorm on 11 Oct. 1993 during the late evening hours exhibited many of well-known features such as the Harang discontinuity, westward travelling surge and poleward leap, but also discrete auroral forms, known as auroral streamers, appeared propagating westward along the centre of the electrojet. Besides the magnetic field measurements, there were auroral observations and plasma flow and conductivity measurements obtained by EISCAT. The data of all three sets of instruments are consistent with the notion of upward field-aligned currents associated with the moving auroral patches. A detailed analysis of the electrodynamic parameters in the ionosphere, however, reveals that they do not agree with the expectations resulting from commonly used simplifying approximations. For example, the westward moving auroral streamers which are associated with field-aligned current filaments, are not collocated with the centres of equivalent current vortices. Furthermore, there is a clear discrepancy between the measured plasma flow direction and the obtained equivalent current direction. All this suggests that steep conductivity gradients are associated with the transient auroral forms. Also self-induction effects in the ionosphere may play a role for the orientation of the plasma flows. This study stresses the importance of multi-instrument observation for a reliable interpretation of dynamic auroral processes.

    Keywords. Ionosphere (Auroral ionosphere; Electric fields and currents; Ionosphere-magnetosphere interactions.

  10. Achieving Lights-Out Operation of SMAP Using Ground Data System Automation

    Science.gov (United States)

    Sanders, Antonio

    2013-01-01

    The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.

  11. Self-organizing cooperative sensor network for remote surveillance: current results

    Science.gov (United States)

    Burne, Richard A.; Buczak, Anna L.; Jin, Yaochu; Jamalabad, Vikram R.; Kadar, Ivan; Eadan, Eitan R.

    1999-07-01

    The capabilities of unattended ground sensors (UGSs) have steadily improved and have been shown to be of value in various military missions. Today's UGS are multi-functional, integrated sensor platforms that can detect and locate a wide variety of ground-based and airborne targets. The rather large size (> 1 cubic foot) and relatively expensive cost of these integrated platforms are two main drawbacks for remote surveillance applications that support rapidly deployable, small unit operations. As an alternative, remote surveillance may be possible with smaller, less costly sensors that work cooperatively together as a network. The objective of this study was to develop algorithms that can optimally organized and adaptively control a network of UGSs in order to achieve a surveillance mission. In the present study, the sensor network, a random distribution of acoustic sensors over a surveillance area, is tasked to detect and track any targets entering into the surveillance area. In addition, the sensor network is required to maximize its tracking accuracy and minimize its power utilization.

  12. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Science.gov (United States)

    De Angelis, Francesco; Cimini, Domenico; Löhnert, Ulrich; Caumont, Olivier; Haefele, Alexander; Pospichal, Bernhard; Martinet, Pauline; Navas-Guzmán, Francisco; Klein-Baltink, Henk; Dupont, Jean-Charles; Hocking, James

    2017-10-01

    Ground-based microwave radiometers (MWRs) offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL) with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP) models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes) require an accurate representation of the differences between model (background) and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O-B). Monitoring of O-B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O-B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB) measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O-B monitoring can effectively detect instrument malfunctions. O-B statistics (bias, standard deviation, and root mean square) for water vapour channels (22.24-30.0 GHz) are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ˜ 2-2.5 K) towards the high-frequency wing ( ˜ 0.8-1.3 K). Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O-B statistics for temperature channels show different

  13. Statistical Analysis of Wireless Networks: Predicting Performance in Multiple Environments

    Science.gov (United States)

    2006-06-01

    integration of “satellite in a suitcase ” (portable satellite communication equipment) technology, enhanced unattended ground and water-based sensors...transition between night and day and the addition of solar energy always plays an effect on how humidity and temperature respond. Since solar radiation

  14. LONG-TERM STABILITY OF THE LOCAL GROUND CONTROL NETWORK AT THE CO-LOCATION SITE OF MEDICINA

    Science.gov (United States)

    Abbondanza, C.; Sarti, P.; Legrand, J.

    2009-12-01

    ITRF combinations rely on the availability of accurate tie vectors linking reference points of space geodetic techniques. Co-located instruments are assumed to move consistently and no local relative motion is taken into account. Instabilities may degrade the quality of the co-location itself and perturb the result of ITRF combinations. This work aims to determine the stability of the local ground control network at Medicina (Italy) with independent surveying methods. The observatory hosts a co-location between a VLBI telescope and two GPS antennas, MEDI and MSEL. It is located in the Po Plain where thick layers of clays are the prevalent soil characteristics. Hence, provision of long term stability of geodetic monuments is a challenge and monitoring their stability is an issue. MEDI and the VLBI station regularly contribute to the determination of ITRF, while MSEL is part of the EUREF network. A set of five tie vectors observations linking the VLBI and MEDI reference points was acquired between 2001 and 2007. It is our main tool for performing local deformation analysis. Additionally, the GPS time series of MEDI and MSEL were used to cross check and confirm the local instability detected by terrestrial methods. To achieve a rigorous and reliable investigation of the local stability, multi-epoch terrestrial observations were homogeneously processed according to common parameterizations in a consistent reference frame. Similarly, continuous GPS observations from MEDI and MSEL were analysed according to the new EPN reprocessing strategy in order to monitor the short baseline between MEDI and MSEL; to spotlight any change in its length. Both approaches confirm differential motions at the site which can be related to monument instabilities originated by the particularly unfavourable local geological setting and the inapt design of the monuments foundation. The monuments move non homogeneously at rates reaching up to 1.6 mm/year, this value being comparable to intra

  15. The contribution of geology and groundwater studies to city-scale ground heat network strategies: A case study from Cardiff, UK

    Science.gov (United States)

    Boon, David; Farr, Gareth; Patton, Ashley; Kendall, Rhian; James, Laura; Abesser, Corinna; Busby, Jonathan; Schofield, David; White, Debbie; Gooddy, Daren; James, David; Williams, Bernie; Tucker, David; Knowles, Steve; Harcombe, Gareth

    2016-04-01

    The development of integrated heat network strategies involving exploitation of the shallow subsurface requires knowledge of ground conditions at the feasibility stage, and throughout the life of the system. We describe an approach to the assessment of ground constraints and energy opportunities in data-rich urban areas. Geological and hydrogeological investigations have formed a core component of the strategy development for sustainable thermal use of the subsurface in Cardiff, UK. We present findings from a 12 month project titled 'Ground Heat Network at a City Scale', which was co-funded by NERC/BGS and the UK Government through the InnovateUK Energy Catalyst grant in 2015-16. The project examined the technical feasibility of extracting low grade waste heat from a shallow gravel aquifer using a cluster of open loop ground source heat pumps. Heat demand mapping was carried out separately. The ground condition assessment approach involved the following steps: (1) city-wide baseline groundwater temperature mapping in 2014 with seasonal monitoring for at least 12 months prior to heat pump installation (Patton et al 2015); (2) desk top and field-based investigation of the aquifer system to determine groundwater levels, likely flow directions, sustainable pumping yields, water chemistry, and boundary conditions; (3) creation of a 3D geological framework model with physical property testing and model attribution; (4) use steps 1-3 to develop conceptual ground models and production of maps and GIS data layers to support scenario planning, and initial heat network concept designs; (5) heat flow modelling in FEFLOW software to analyse sustainability and predict potential thermal breakthrough in higher risk areas; (6) installation of a shallow open loop GSHP research observatory with real-time monitoring of groundwater bodies to provide data for heat flow model validation and feedback for system control. In conclusion, early ground condition modelling and subsurface

  16. Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network

    Science.gov (United States)

    Shiokawa, Kazuo; Katoh, Yasuo; Hamaguchi, Yoshiyuki; Yamamoto, Yuka; Adachi, Takumi; Ozaki, Mitsunori; Oyama, Shin-Ichiro; Nosé, Masahito; Nagatsuma, Tsutomu; Tanaka, Yoshimasa; Otsuka, Yuichi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Takagi, Yuki; Takeshita, Yuhei; Shinbori, Atsuki; Kurita, Satoshi; Hori, Tomoaki; Nishitani, Nozomu; Shinohara, Iku; Tsuchiya, Fuminori; Obana, Yuki; Suzuki, Shin; Takahashi, Naoko; Seki, Kanako; Kadokura, Akira; Hosokawa, Keisuke; Ogawa, Yasunobu; Connors, Martin; Michael Ruohoniemi, J.; Engebretson, Mark; Turunen, Esa; Ulich, Thomas; Manninen, Jyrki; Raita, Tero; Kero, Antti; Oksanen, Arto; Back, Marko; Kauristie, Kirsti; Mattanen, Jyrki; Baishev, Dmitry; Kurkin, Vladimir; Oinats, Alexey; Pashinin, Alexander; Vasilyev, Roman; Rakhmatulin, Ravil; Bristow, William; Karjala, Marty

    2017-11-01

    The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes ( 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space

  17. Task-switching, inhibition and the processing of unattended auditory stimuli in music trained and non-trained adolescents and young adults

    OpenAIRE

    Mannermaa, Kristiina

    2017-01-01

    Previous research has linked music training to enhanced processing of unattended auditory stimuli as indexed by such auditory event-related potential (ERP) responses as mismatch negativity (MMN) and P3a. Music training has also been linked with enhanced cognitive abilities more generally, and executive functions have been proposed to mediate this link. The current study concentrates on the processing of unattended auditory stimuli and how this relates to two aspects of executive functions: ta...

  18. The Effects of Visual Degradation on Attended Objects and the Ability to Process Unattended Objects within the Visual Array

    Science.gov (United States)

    2010-09-01

    Loraine St. Onge , PhD 334-255-6906 Reset ii   iii   Acknowledgements The authors would like to express their gratitude to the following...process both attended and unattended objects, it should be possible to tax the cognitive mechanism enough so that degradation to the attended object...object. One cognitive mechanism could be processing all of the objects presented on the screen at one time, and this study may have failed to tax that

  19. Music training enhances rapid neural plasticity of n1 and p2 source activation for unattended sounds.

    Science.gov (United States)

    Seppänen, Miia; Hämäläinen, Jarmo; Pesonen, Anu-Katriina; Tervaniemi, Mari

    2012-01-01

    Neurocognitive studies have demonstrated that long-term music training enhances the processing of unattended sounds. It is not clear, however, whether music training also modulates rapid (within tens of minutes) neural plasticity for sound encoding. To study this phenomenon, we examined whether adult musicians display enhanced rapid neural plasticity compared to non-musicians. More specifically, we compared the modulation of P1, N1, and P2 responses to standard sounds between four unattended passive blocks. Among the standard sounds, infrequently presented deviant sounds were presented (the so-called oddball paradigm). In the middle of the experiment (after two blocks), an active task was presented. Source analysis for event-related potentials (ERPs) showed that N1 and P2 source activation was selectively decreased in musicians after 15 min of passive exposure to sounds and that P2 source activation was found to be re-enhanced after the active task in musicians. Additionally, ERP analysis revealed that in both musicians and non-musicians, P2 ERP amplitude was enhanced after 15 min of passive exposure but only at the frontal electrodes. Furthermore, in musicians, the N1 ERP was enhanced after the active discrimination task but only at the parietal electrodes. Musical training modulates the rapid neural plasticity reflected in N1 and P2 source activation for unattended regular standard sounds. Enhanced rapid plasticity of N1 and P2 is likely to reflect faster auditory perceptual learning in musicians.

  20. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    Science.gov (United States)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  1. An attempt to model the relationship between MMI attenuation and engineering ground-motion parameters using artificial neural networks and genetic algorithms

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-12-01

    Full Text Available Complex application domains involve difficult pattern classification problems. This paper introduces a model of MMI attenuation and its dependence on engineering ground motion parameters based on artificial neural networks (ANNs and genetic algorithms (GAs. The ultimate goal of this investigation is to evaluate the target-region applicability of ground-motion attenuation relations developed for a host region based on training an ANN using the seismic patterns of the host region. This ANN learning is based on supervised learning using existing data from past earthquakes. The combination of these two learning procedures (that is, GA and ANN allows us to introduce a new method for pattern recognition in the context of seismological applications. The performance of this new GA-ANN regression method has been evaluated using a Greek seismological database with satisfactory results.

  2. Design of a grounding network in electrical substations. Materials and formulas the most used; Diseno de redes de tierra en subestaciones electricas. Materiales y formulas mas utilizadas

    Energy Technology Data Exchange (ETDEWEB)

    Raull Martin, J. [Facultad de Ingenieria, UNAM, Mexico, D.F. (Mexico)

    2000-09-01

    The purpose of this paper is to present a summarized version of the different types of construction of grounding systems, as well as their materials and formulas, which are necessary and useful for the design and building of a grounding network for medium to high voltage facilities. A description is also made of how to determine the electrical resistivity of subsoil layers with different physical characteristics. Several illustrative examples are also solved in the paper. [Spanish] El proposito de este articulo es presentar de manera resumida los diferentes tipos de construccion de los sistemas de tierra, asi como sus materiales y formulas, los cuales son necesarios y utiles para el diseno y edificacion de una red de tierra para instalaciones de mediana y alta tension. Se describe tambien la obtencion de las diferentes resistividades que presenta los terrenos con diversas caracteristicas fisicas. Asimismo, se solucionan ejercicios ilustrativos a lo largo del articulo.

  3. Theta Oscillations Related to Orientation Recognition in Unattended Condition: A vMMN Study

    Directory of Open Access Journals (Sweden)

    Tianyi Yan

    2017-09-01

    Full Text Available Orientation is one of the important elements of objects that can influence visual processing. In this study, we examined whether changes in orientation could be detected automatically under unattended condition. Visual mismatch negativity (vMMN was used to analyze this processing. In addition, we investigated the underlying neural oscillatory activity. Non-phase-locked spectral power was used to explore the specific frequency related to unexpected changes in orientation. The experiment consisted of standard (0° arrows and deviant (90°/270° arrows stimuli. Compared with standard stimuli, deviant stimuli elicited a larger N170 component (negative wave approximately 170 ms after the stimuli started and a smaller P2 component (positive wave approximately 200 ms after the stimuli started. Furthermore, vMMN was obtained by subtracting the event-related potential (ERP waveforms in response to standard stimuli from those elicited in response to deviant stimuli. According to the time–frequency analysis, deviant stimuli elicited enhanced band power compared with standard stimuli in the delta and theta bands. Compared with previous studies, we concluded that theta activity plays an important role in the generation of the vMMN induced by changes in orientation.

  4. OAdM robotic observatory: solutions for an unattended small-class observatory

    Science.gov (United States)

    Colomé, J.; Ribas, I.; Fernández, D.; Francisco, X.; Isern, J.; Palau, X.; Torra, J.

    2008-07-01

    The Montsec Astronomical Observatory (OAdM) is a small-class observatory working on a completely unattended control, due to the isolation of the site. Robotic operation is, then, mandatory for its routine use. The level of robotization of an observatory is given by the confidence reached to respond to environment changes and by the required human interaction due to possible alarms. These two points establish a level of human attendance to ensure low risk at any time. There are key problems to solve when a robotic control is envisaged. Learned lessons and solutions to these issues at the OAdM are discussed here. We present a description of the general control software (SW) and several SW packages developed. The general control SW specially protects the system at the identified single points of failure and makes a distributed control of any subsystem, which are able to respond independently when an alarm is triggered on thanks to a top-down control flow. Specific SW packages developed are: an environment monitoring SW, a set of alarm routines, a pipeline for calibration and analysis of the images taken, and an observation scheduler. All together compose a SW suite designed to reach the complete robotization of an observatory.

  5. Superior Colliculus Responses to Attended, Unattended, and Remembered Saccade Targets during Smooth Pursuit Eye Movements.

    Science.gov (United States)

    Dash, Suryadeep; Nazari, Sina Alipour; Yan, Xiaogang; Wang, Hongying; Crawford, J Douglas

    2016-01-01

    In realistic environments, keeping track of multiple visual targets during eye movements likely involves an interaction between vision, top-down spatial attention, memory, and self-motion information. Recently we found that the superior colliculus (SC) visual memory response is attention-sensitive and continuously updated relative to gaze direction. In that study, animals were trained to remember the location of a saccade target across an intervening smooth pursuit (SP) eye movement (Dash et al., 2015). Here, we modified this paradigm to directly compare the properties of visual and memory updating responses to attended and unattended targets. Our analysis shows that during SP, active SC visual vs. memory updating responses share similar gaze-centered spatio-temporal profiles (suggesting a common mechanism), but updating was weaker by ~25%, delayed by ~55 ms, and far more dependent on attention. Further, during SP the sum of passive visual responses (to distracter stimuli) and memory updating responses (to saccade targets) closely resembled the responses for active attentional tracking of visible saccade targets. These results suggest that SP updating signals provide a damped, delayed estimate of attended location that contributes to the gaze-centered tracking of both remembered and visible saccade targets.

  6. Look at those two!: The precuneus role in unattended third-person perspective of social interactions.

    Science.gov (United States)

    Petrini, Karin; Piwek, Lukasz; Crabbe, Frances; Pollick, Frank E; Garrod, Simon

    2014-10-01

    Human beings often observe other people's social interactions without being a part of them. Whereas the implications of some brain regions (e.g. amygdala) have been extensively examined, the implication of the precuneus remains yet to be determined. Here we examined the implication of the precuneus in third-person perspective of social interaction using functional magnetic resonance imaging (fMRI). Participants performed a socially irrelevant task while watching the biological motion of two agents acting in either typical (congruent to social conventions) or atypical (incongruent to social conventions) ways. When compared to typical displays, the atypical displays elicited greater activation in the central and posterior bilateral precuneus, and in frontoparietal and occipital regions. Whereas the right precuneus responded with greater activation also to upside down than upright displays, the left precuneus did not. Correlations and effective connectivity analysis added consistent evidence of an interhemispheric asymmetry between the right and left precuneus. These findings suggest that the precuneus reacts to violations of social expectations, and plays a crucial role in third-person perspective of others' interaction even when the social context is unattended. Copyright © 2014 Wiley Periodicals, Inc.

  7. Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring.

    Science.gov (United States)

    Patel, Sanjay V; Tolley, William K

    2014-08-07

    There are over 450 000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these sites stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10(-9), or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors.

  8. Hybrid Decision-making Method for Emergency Response System of Unattended Train Operation Metro

    Directory of Open Access Journals (Sweden)

    Bobo Zhao

    2016-04-01

    Full Text Available Suitable selection of the emergency alternatives is a critical issue in emergency response system of Unattended Train Operation (UTO metro system of China. However, there is no available method for dispatcher group in Operating Control Center (OCC to evaluate the decision under emergency situation. It was found that the emergency decision making in UTO metro system is relative with the preferences and the importance of multi-dispatcher in emergency. Regarding these factors, this paper presents a hybrid method to determinate the priority weights of emergency alternatives, which aggregates the preference matrix by constructing the emergency response task model based on the Weighted Ordered Weighted Averaging (WOWA operator. This calculation approach derives the importance weights depending on the dispatcher emergency tasks and integrates it into the Ordered Weighted Averaging (OWA operator weights based on a fuzzy membership relation. A case from train fire is given to demonstrate the feasibility and practicability of the proposed methods for Group Multi-Criteria Decision Making (GMCDM in emergency management of UTO metro system. The innovation of this research is paving the way for a systematic emergency decision-making solution which connects the automatic metro emergency response system with the GMCDM theory.

  9. Superior colliculus responses to attended, unattended, and remembered saccade targets during smooth pursuit eye movements.

    Directory of Open Access Journals (Sweden)

    Suryadeep eDash

    2016-04-01

    Full Text Available In realistic environments, keeping track of multiple visual targets during eye movements likely involves an interaction between vision,top-down spatial attention, memory, and self-motion information. Recently we found that the superior colliculus (SC visual memory response is attention-sensitive and continuously updated relative to gaze direction. In that study,animals were trained to remember the location of a saccade target across an intervening smooth pursuit (SP eye movement (Dash et al. 2015. Here, we modified this paradigm to directly compare the properties of visual and memory updating responsesto attended and unattended targets.Our analysis shows that during SP, active SC visual vs. memory updating responses share similar gaze-centered spatio-temporal profiles (suggesting a common mechanism, but updating was weaker by ~25%, delayed by ~55ms, and far more dependent on attention. Further, during SP the sum of passive visual responses (to distracter stimuli and memory updating responses (to saccade targets closely resembled the responses for active attentional tracking of visible saccade targets. These results suggest that SP updating signals provide a damped, delayed estimate of attended location that contributes to the gaze-centered tracking of both remembered and visible saccade targets.

  10. A 868MHz-based wireless sensor network for ground truthing of soil moisture for a hyperspectral remote sensing campaign - design and preliminary results

    Science.gov (United States)

    Näthe, Paul; Becker, Rolf

    2014-05-01

    Soil moisture and plant available water are important environmental parameters that affect plant growth and crop yield. Hence, they are significant parameters for vegetation monitoring and precision agriculture. However, validation through ground-based soil moisture measurements is necessary for accessing soil moisture, plant canopy temperature, soil temperature and soil roughness with airborne hyperspectral imaging systems in a corresponding hyperspectral imaging campaign as a part of the INTERREG IV A-Project SMART INSPECTORS. At this point, commercially available sensors for matric potential, plant available water and volumetric water content are utilized for automated measurements with smart sensor nodes which are developed on the basis of open-source 868MHz radio modules, featuring a full-scale microcontroller unit that allows an autarkic operation of the sensor nodes on batteries in the field. The generated data from each of these sensor nodes is transferred wirelessly with an open-source protocol to a central node, the so-called "gateway". This gateway collects, interprets and buffers the sensor readings and, eventually, pushes the data-time series onto a server-based database. The entire data processing chain from the sensor reading to the final storage of data-time series on a server is realized with open-source hardware and software in such a way that the recorded data can be accessed from anywhere through the internet. It will be presented how this open-source based wireless sensor network is developed and specified for the application of ground truthing. In addition, the system's perspectives and potentials with respect to usability and applicability for vegetation monitoring and precision agriculture shall be pointed out. Regarding the corresponding hyperspectral imaging campaign, results from ground measurements will be discussed in terms of their contributing aspects to the remote sensing system. Finally, the significance of the wireless sensor

  11. Comparison of the KSC-ER Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network (NLDN)

    Science.gov (United States)

    Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip

    2008-01-01

    The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) are located in a region of Florida that experiences the highest area density of lightning strikes to ground in the United States, with values approaching 16 fl/km 2/yr when accumulated in 10x10 km (100 sq km) grids (see Figure 1). Consequently, the KSC-ER use data derived from two cloud-to-ground (CG) lightning detection networks to detect hazardous weather, the "Cloud-to-Ground Lightning Surveillance System" (CGLSS) that is owned and operated by the Air Force and the U.S. National Lightning Detection Network (NLDN) that is owned and operated by Vaisala, Inc. These systems are used to provide lightning warnings for ground operations and to insure mission safety during space launches at the KSC-ER. In order to protect the rocket and shuttle fleets, NASA and the Air Force follow a set of lightning safety guidelines that are called the Lightning Launch Commit Criteria (LLCC). These rules are designed to insure that vehicles are not exposed to the hazards of natural or triggered lightning that would in any way jeopardize a mission or cause harm to the shuttle astronauts. Also, if any CG lightning strikes too close to a vehicle on a launch pad, it can cause time-consuming mission delays due to the extensive retests that are often required for vehicles and/or payloads when this occurs. If any CG lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail.

  12. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network

    Directory of Open Access Journals (Sweden)

    F. De Angelis

    2017-10-01

    Full Text Available Ground-based microwave radiometers (MWRs offer the capability to provide continuous, high-temporal-resolution observations of the atmospheric thermodynamic state in the planetary boundary layer (PBL with low maintenance. This makes MWR an ideal instrument to supplement radiosonde and satellite observations when initializing numerical weather prediction (NWP models through data assimilation. State-of-the-art data assimilation systems (e.g. variational schemes require an accurate representation of the differences between model (background and observations, which are then weighted by their respective errors to provide the best analysis of the true atmospheric state. In this perspective, one source of information is contained in the statistics of the differences between observations and their background counterparts (O–B. Monitoring of O–B statistics is crucial to detect and remove systematic errors coming from the measurements, the observation operator, and/or the NWP model. This work illustrates a 1-year O–B analysis for MWR observations in clear-sky conditions for an European-wide network of six MWRs. Observations include MWR brightness temperatures (TB measured by the two most common types of MWR instruments. Background profiles are extracted from the French convective-scale model AROME-France before being converted into TB. The observation operator used to map atmospheric profiles into TB is the fast radiative transfer model RTTOV-gb. It is shown that O–B monitoring can effectively detect instrument malfunctions. O–B statistics (bias, standard deviation, and root mean square for water vapour channels (22.24–30.0 GHz are quite consistent for all the instrumental sites, decreasing from the 22.24 GHz line centre ( ∼  2–2.5 K towards the high-frequency wing ( ∼  0.8–1.3 K. Statistics for zenith and lower-elevation observations show a similar trend, though values increase with increasing air mass. O

  13. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China

    Science.gov (United States)

    Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang

    2017-11-01

    China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.

  14. Composite Grounding Application of Transmission Line Tower with Flexible Graphite Grounding Material

    Science.gov (United States)

    Liu, Hongtao; Zhang, Lei; Xiong, Jia; Cui, Zhenxing; Yang, Qi

    2017-07-01

    To solve the metal corrosion problem of transmission line tower grounding grid, a composite grounding material technique based on flexible graphite grounding is proposed. Using CDEGS software, the power frequency grounding resistances with different soils layers and different ground network size of tower are simulated. The researches show that layered soil resistance can be reduced by laying vertical grounding body and uniform soil can reduce ground resistance by increasing grounding network size.

  15. Ground wave emergency network final operational capability: Environmental assessment for northwestern Nebraska relay node, site number RN 8C930NE

    Science.gov (United States)

    1993-02-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in northwestern Nebraska, consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  16. Ground wave emergency network final operational capability: Environmental assessment for southern Nevada relay node site number RN 8W918NV

    Science.gov (United States)

    1993-03-01

    The Ground Wave Emergency Network (GWEN) is a radio communication system designed to relay emergency messages between strategic military areas in the continental United States. The system is immune to the effects of high-altitude electromagnetic pulse (HEMP) energy surges caused by nuclear bursts in the ionosphere that would disrupt conventional communications equipment such as telephones and shortwave radios. A failure of such equipment would prevent timely communications among top military and civilian leaders and strategic Air Force locations and prevent U.S. assessment and retaliation during an attack. GWEN is an essential part of a defense modernization program to upgrade and improve our nation's communications system, thereby strengthening deterrence. The GWEN system consists of a network of relay nodes, receive-only stations, and input/output stations. Each relay node, such as the one proposed in southern Nevada consists of a guyed radio tower facility similar to those used by commercial AM broadcast transmitters.

  17. Information Technology Management: Select Controls for the Information Security of the Ground-Based Midcourse Defense Communications Network

    Science.gov (United States)

    2006-02-24

    Information Technology Management Department of Defense Office of Inspector General February 24, 2006 AccountabilityIntegrityQuality Select Controls...00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Information Technology Management : Select Controls for the Information Security of the Ground-Based

  18. BN-350 unattended safeguards system current status and initial fuel movement data

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Richard Brady [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Ingegneri, Maurizio [IAEA

    2009-01-01

    The Unattended and Remote Monitoring (UNARM) system at the BN-350 fast breeder reactor facility in Aktau, Kazakhstan continues to provide safeguards monitoring data as the spent fuel disposition project transitions from wet fuel storage to dry storage casks. Qualitative data from the initial cask loading procedures has been released by the International Atomic Energy Agency (IAEA) and is presented here for the first time. The BN-350 fast breeder reactor in Aktau, Kazakhstan, operated as a plutonium-producing facility from 1973 W1til 1999. Kazakhstan signed the Nonproliferation Treaty (NPT) in February 1994, and shortly afterwards the IAEA began safeguarding the reactor facility and its nuclear material. Slnce the cessation of reactor operations ten years ago, the chief proliferation concern has been the spent fuel assemblies stored in the pond on-site. By 2002, all fuel assemblies in wet storage had been repackaged into proliferation-resistant canisters. From the beginning, the IAEA's safeguards campaign at the BN-350 included a constant unattended sensor presence in the form of UNARM which monitors nuclear material activities at the facility in the absence of inspector presence. The UNARM equipment at the BN-350 was designed to be modular and extensible, allowing the system to adapt as the safeguards requirements change. This has been particularly important at the BN-350 due to the prolonged wet storage phase of the project. The primary function of the BN-350 UNARM system is to provide the IAEA with an independent, radiation-centric Containment and Surveillance (C&S) layer in addition to the standard seals and video systems. The UNARM system has provided continuous Continuity of Knowledge (COK) data for the BN-350's nuclear material storage areas in order to ensure the validity of the attended measurements during the lifetime of the project. The first of these attended measurements was characterization of the spent fuel assemblies. This characterization

  19. Managing heterogeneous networks of mobile and stationary sensors

    Science.gov (United States)

    Bürkle, Axel; Solbrig, Peter; Segor, Florian; Bulatov, Dimitri; Wernerus, Peter; Müller, Sven

    2011-11-01

    Protecting critical infrastructure against intrusion, sabotage or vandalism is a task that requires a comprehensive situation picture. Modern security systems should provide a total solution including sensors, software, hardware, and a "control unit" to ensure complete security. Incorporating unmanned mobile sensors can significantly help to close information gaps and gain an ad hoc picture of areas where no pre-installed supervision infrastructure is available or damaged after an incident. Fraunhofer IOSB has developed the generic ground control station AMFIS which is capable of managing sensor data acquisition with all kinds of unattended stationary sensors, mobile ad hoc sensor networks, and mobile sensor platforms. The system is highly mobile and able to control various mobile platforms such as small UAVs (Unmanned Aerial Vehicles) and UGVs (Unmanned Ground Vehicles). In order to establish a real-time situation picture, also an image exploitation process is used. In this process, video frames from different sources (mainly from small UAVs) are georeferenced by means of a system of image registration methods. Relevant information can be obtained by a motion detection module. Thus, the image exploitation process can accelerate the situation assessment significantly.

  20. Sustainable coastal sensor networks: technologies and challenges

    Science.gov (United States)

    Carapezza, Edward M.; Butman, Jerry; Babb, Ivar; Bucklin, Ann

    2008-04-01

    This paper describes a distributed sensor network for a coastal maritime security system. This concept incorporates a network of small passive and active multi-phenomenological unattended sensors and shore based optical sensors to detect, classify, and track submerged threat objects approaching high value coastal assets, such as ports, harbors, residential, commercial, and military facilities and areas. The network of unattended, in-water sensors perform the initial detection, classification, and coarse tracking and then queues shore based optical laser radar sensors. These shore-based sensors perform a queued sector search to develop a refined track on the submerged threat objects that were initially detected by the unattended sensor network. Potential threat objects include swimmers, small unmanned underwater vehicles (UUV's), small submarines, and submerged barges. All of these threats have the potential to transport threat objects such as explosives, chemical, biological, radiological, and nuclear materials. Reliable systems with low false alarm rates (FAR) are proposed. Tens to hundreds of low cost passive sensors are proposed to be deployed conjunctively with several active acoustic and optical sensors in threat and facility dependant patterns to maximize the detection, tracking and classification of submerged threat objects. The integrated command and control system and novel microbial fuel cells to power these sensor networks are also described.

  1. Neural Network Model for Survival and Growth of Salmonella enterica Serotype 8,20:-:z6 in Ground Chicken Thigh Meat during Cold Storage: Extrapolation to Other Serotypes.

    Science.gov (United States)

    Oscar, T P

    2015-10-01

    Mathematical models that predict the behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting the behavior of Salmonella enterica serotype 8,20:-:z6 in chicken meat during cold storage and to determine how well the model would predict the behavior of other serotypes of Salmonella stored under the same conditions. To develop the model, ground chicken thigh meat (0.75 cm(3)) was inoculated with 1.7 log Salmonella 8,20:-:z6 and then stored for 0 to 8 -8 to 16°C. An automated miniaturized most-probable-number (MPN) method was developed and used for the enumeration of Salmonella. Commercial software (Excel and the add-in program NeuralTools) was used to develop a multilayer feedforward neural network model with one hidden layer of two nodes. The performance of the model was evaluated using the acceptable prediction zone (APZ) method. The number of Salmonella in ground chicken thigh meat stayed the same (P > 0.05) during 8 days of storage at -8 to 8°C but increased (P Salmonella in ground chicken thigh meat stored for 0 to 8 days at -4, 4, 12, or 16°C under the same experimental conditions. A pAPZ of ≥0.7 indicates that a model provides predictions with acceptable bias and accuracy. Thus, the results indicated that the model provided valid predictions of the survival and growth of Salmonella 8,20:-:z6 in ground chicken thigh meat stored for 0 to 8 days at -8 to 16°C and that the model was validated for extrapolation to four other serotypes of Salmonella.

  2. Estimating Empirical Site Amplification of Taiwan near-surface structure by Spectral Ratio Methods with CWB Next Generation Seismic Network: toward broadband waveform ground motion prediction

    Science.gov (United States)

    Liou, Y. H.; Ma, K. F.; Wang, Y. J.

    2016-12-01

    Site effect is one of the most important factors dominating ground motion prediction. For engineering usage, the ground motion prediction equation (GMPE) usually includes the site-effect factor (e.g. Vs30, Z1.0). The site-effect, however, is considered as non-linear response, and could be critical for the aspect in broadband waveform modeling for ground motion prediction through simulation. In this study, we utilized four large earthquakes data of surface and borehole seismometers from Central Weather Bureau (CWB) next generation seismic network to analyze the site amplification factors and the transfer functions for sediments over the basement. We used a spectral ratio method by comparing the ground motions of surface and borehole record to acquire empirical amplification factors (EAF) for PGA, PGV and frequency spectra from 0.1 to 20 Hz. The relationship between the EAF and Vs30 value were analyzed as well. The first part of results showed that nonlinear relationship between PGA (or PGV) amplification and Vs30, suggested that the amplification of PGA or PGV from borehole to surface was not dominated by shallow structure (i.e., top 30 m of strata). Thus, estimating the site effect should include not only Vs30 but EAF, because EAF could directly response the amplification of ground motion by site characters. The second part of results showed that the relationships between EAF for frequency spectra range of 0.1 to 20 Hz and Vs30 could be divided into two site types which are strongly correlated to Vs30 values of sites. For Type I sites, the EAF increased with increasing frequency, and the Vs30 of these sites are generally over 760 (m/s). Type II sites which Vs30 are generally lower than 760 (m/s), the peak value of EAF shown around frequency range of 1 to 3 Hz attributed to the soft-soil conditions. The empirical amplification and transfer function analysis could be applied to obtain the GMPE for basement rock and be adopted in ground motion simulation. The effort

  3. A Process Perspective on Regulation: A Grounded Theory Study into Regulatory Practice in Newly Liberalized Network-Based Markets

    NARCIS (Netherlands)

    Ubacht, J.

    The transition from a former monopolistic towards a more competitive market in
    newly liberalized network-based markets raises regulatory issues. National Regulatory Authorities (NRA) face the challenge to deal with these issues in order to guide the transition process. Although this transition

  4. The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, Alessandro; Hernandez, Douglas Antonio; Gutiérrez, Eduardo; Handal, Louis; Polío, Cecilia; Rapisarda, Salvatore; Scarlato, Piergiorgio

    2016-08-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of San Miguel, erupted suddenly with explosive force, forming a column more than 9 km high and projecting ballistic projectiles as far as 3 km away. Pyroclastic density currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force, made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales, was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multiparametric mobile network comprising seismic, geodetic and geochemical sensors (designed to cover all the volcano flanks from the lowest to the highest possible altitudes) and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were colocated into multiparametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  5. The science and technology case for a global network of compact, low cost ground-based laser heterodyne radiometers for column measurements of CO2 and CH4

    Science.gov (United States)

    Mao, J.; Clarke, G.; Wilson, E. L.; Palmer, P. I.; Feng, L.; Ramanathan, A. K.; Ott, L. E.; Duncan, B. N.; Melroy, H.; McLinden, M.; DiGregorio, A.

    2015-12-01

    The importance of atmospheric carbon dioxide (CO2) and methane (CH4) in determining Earth's climate is well established. Recent technological developments in space-borne instrumentation have enabled us to observe changes in these gases to a precision necessary to infer for the responsible geographical fluxes. The Total Carbon Column Observing Network (TCCON), comprising a network of upward-looking Fourier transform spectrometers, was established to provide an accurate ground truth and minimize regional systematic bias. NASA Goddard Space Flight Center (GSFC) has developed a compact, low-cost laser heterodyne radiometer (LHR) for global column measurements CO2 and CH4. This Mini-LHR is a passive instrument that uses sunlight as the primary light source to measure absorption of CO2 and CH4in the shortwave infrared near 1.6 microns. It uses compact telecommunications lasers to offer a low cost (sensitive (CO2 and instruments to accompany the NASA AErosol RObotic NETwork (AERONET) which has more than 500 sites worldwide. In addition, the NASA Micro-Pulse Lidar Network (MPLNET) provides both column and vertically resolved aerosol and cloud data in active remote sensing at nearly 50 sites worldwide. Tandem operation with AERONET/MPLNET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network for carbon cycle science and satellite data validation, offering coverage in cloudy regions (e.g., Amazon basin) and key regions such as the Arctic where accelerated warming due to the release of CO2 and CH4from thawing tundra and permafrost is a concern. These vulnerable geographic regions are not well covered by current space-based CO2 and CH4 measurements. We will present an overview of our instrument development and the implementation of a network based on current and future resources. We will also present preliminary Observing System Simulation Experiments to demonstrate the effectiveness of a network Mini-LHR instruments in quantify regional CO2

  6. A Comparison of Cloud-to-Ground Lightning Characteristics and Observations from Multiple Networks and Videos during the 31 May 2013 El Reno, OK Tornadic Supercell Storm

    Science.gov (United States)

    Kuhlman, K. M.; Coy, J.; Seimon, A.

    2015-12-01

    Cloud-to-ground (CG) lightning flashes recorded by both the National Lightning Detection Network (NLDN) and Earth Networks Total Lightning Network (ENTLN) are compared with three-dimensional lightning mapping observations from the Oklahoma Lightning Mapping Array (OKLMA) and storm chaser video recorded of the 31 May 2013 El Reno tornadic supercell. The El Reno Survey Project (El-Reno-Survey.net) was created to crowd-source the abundance of storm chaser video from this event and provide open-access to the scientific community of the data. An initial comparison of CG lightning flashes captured on these videos with CG data from NLDN revealed a disagreement on the total number of flashes, with NLDN recording many negative CG flashes at lower peak amplitude not apparent in any of the videos. For this study, the area of the comparison was expanded to include the entire storm and data from both the ENTLN and LMA were added to compare the observations from each network in terms of timestamp, location detection, peak current, and polarity of each flash in the period 2230-2330 UTC. An initial comparison of 557 matched NLDN and ENLTN CG flashes, indicated predominately negative polairy CG flashes (58% NLDN/77% ENI) throughout the storm during this period. However, after a 15 kA peak current filter was applied, the NLDN indicated primarily positive polarity (84% +CG) while ENTLN still indicated primarily negative polarity (77% -CG) for the 264 remaining matched flashes. Before the filter was applied, the average distance between the two networks for the same flash was more than 2 km, but improved to approximately 1 km after the 15 kA filter was applied, likely removing some misidentified cloud flashes of uncertain location. This misclassification of IC flashes as CG at low peak current amplitudes for both networks is further evident when compared to video and the OKLMA data. Additionally, the charge analysis of OKLMA flashes revealed the NLDN-determined positive-polarity as

  7. Southwest U.S. Seismo-Acoustic Network: An Autonomous Data Aggregation, Detection, Localization and Ground-Truth Bulletin for the Infrasound Community

    Science.gov (United States)

    Jones, K. R.; Arrowsmith, S.

    2013-12-01

    The Southwest U.S. Seismo-Acoustic Network (SUSSAN) is a collaborative project designed to produce infrasound event detection bulletins for the infrasound community for research purposes. We are aggregating a large, unique, near real-time data set with available ground truth information from seismo-acoustic arrays across New Mexico, Utah, Nevada, California, Texas and Hawaii. The data are processed in near real-time (~ every 20 minutes) with detections being made on individual arrays and locations determined for networks of arrays. The detection and location data are then combined with any available ground truth information and compiled into a bulletin that will be released to the general public directly and eventually through the IRIS infrasound event bulletin. We use the open source Earthworm seismic data aggregation software to acquire waveform data either directly from the station operator or via the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), if available. The data are processed using InfraMonitor, a powerful infrasound event detection and localization software program developed by Stephen Arrowsmith at Los Alamos National Laboratory (LANL). Our goal with this program is to provide the infrasound community with an event database that can be used collaboratively to study various natural and man-made sources. We encourage participation in this program directly or by making infrasound array data available through the IRIS DMC or other means. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. R&A 5317326

  8. Enviro-Net: From Networks of Ground-Based Sensor Systems to a Web Platform for Sensor Data Management

    Directory of Open Access Journals (Sweden)

    Mario A. Nascimento

    2011-06-01

    Full Text Available Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis.

  9. Application of Bayesian neural networks to energy reconstruction in EAS experiments for ground-based TeV astrophysics

    Science.gov (United States)

    Bai, Y.; Xu, Y.; Pan, J.; Lan, J. Q.; Gao, W. W.

    2016-07-01

    A toy detector array is designed to detect a shower generated by the interaction between a TeV cosmic ray and the atmosphere. In the present paper, the primary energies of showers detected by the detector array are reconstructed with the algorithm of Bayesian neural networks (BNNs) and a standard method like the LHAASO experiment [1], respectively. Compared to the standard method, the energy resolutions are significantly improved using the BNNs. And the improvement is more obvious for the high energy showers than the low energy ones.

  10. A study of National Lightning Detection Network responses to natural lightning based on ground truth data acquired at LOG with emphasis on cloud discharge activity

    Science.gov (United States)

    Zhu, Y.; Rakov, V. A.; Tran, M. D.; Nag, A.

    2016-12-01

    The U.S. National Lightning Detection Network (NLDN) detection efficiency (DE) and classification accuracy (CA) for cloud discharge (IC) activity (identified here by a sequence of non-return-stroke-type electric field pulses not accompanied by channels to ground) were evaluated using optical and electric field data acquired at the LOG (Lightning Observatory in Gainesville), Florida. Our ground truth "IC events" include 26 "isolated IC events" (complete IC flashes), 58 "IC events before first return stroke," and 69 "IC events after first return stroke." For the total of 153 IC events, 33% were detected by the NLDN, and the classification accuracy was 86%. For complete IC flashes, the detection efficiency and classification accuracy were 73% and 95%, respectively, and the average number of NLDN-reported cloud pulses was 2.9 per detected event. For 24 preliminary breakdown pulse trains in CG flashes, the detection efficiency and classification accuracy were 46% and 82%, respectively. We have additionally estimated the DE and CA for return strokes in CG flashes. Irrespective of stroke order and polarity, the DE was 92% (339/367), and the CA was also 92% (312/339). The DEs for negative first and subsequent strokes were 98% and 90%, respectively.

  11. Climatology of Ultra Violet (UV) irradiance as measured through the Belgian ground-based monitoring network during the time period of 1995-2014

    Science.gov (United States)

    Pandey, Praveen; Gillotay, Didier; Depiesse, Cedric

    2016-04-01

    In this study we describe the network of ground-based ultraviolet (UV) radiation monitoring stations in Belgium. The evolution of the entire network, together with the details of measuring instruments is given. The observed cumulative irradiances -UVB, UVA and total solar irradiance (TSI)- over the course of measurement for three stations -a northern (Ostende), central (Uccle) and a southern (Redu)- are shown. The longest series of measurement shown in this study is at Uccle, Brussels, from 1995 till 2014. Thus, the variation of the UV index (UVI), together with the variation of irradiances during summer and winter months at Uccle are shown as a part of this climatological study. The trend of UVB irradiance over the above mentioned three stations is shown. This UVB trend is studied in conjunction with the long-term satellite-based total column ozone value over Belgium, which shows two distinct trends marked by a change point. The total column ozone trend following the change point is positive. It is also seen that the UVB trend is positive for the urban/sub-urban sites: Uccle and Redu. Whereas the UVB trend at Ostende, which is a coastal site, is not positive. A possible explanation of this relation between total column ozone and UVB trend could be associated with aerosols, which is shown in this paper by means of a radiative transfer model based study -as a part of a preliminary investigation. It is seen that the UVI is influenced by the type of aerosols.

  12. Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks.

    Science.gov (United States)

    Martín, M L; Turias, I J; González, F J; Galindo, P L; Trujillo, F J; Puntonet, C G; Gorriz, J M

    2008-01-01

    The region of the Bay of Algeciras is a very industrialized area where very few air pollution studies have been carried out. The main objective of this work has been the use of artificial neural networks (ANNs) as a predictive tool of high levels of ambient carbon monoxide (CO). Two approaches have been used: multilayer perceptron models (MLPs) with backpropagation learning rule and k-Nearest Neighbours (k-nn) classifiers, in order to predict future peaks of carbon monoxide. A resampling strategy with twofold cross-validation allowed the statistical comparison of the different topologies and models considered in the study. The procedure of random resampling permits an adequate and robust multiple comparisons of the tested models and allow us to select a group of best models.

  13. Moball-Buoy Network: A Near-Real-Time Ground-Truth Distributed Monitoring System to Map Ice, Weather, Chemical Species, and Radiations, in the Arctic

    Science.gov (United States)

    Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.

    2014-12-01

    The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global

  14. The unrest of S. Miguel volcano (El Salvador, CA): installation of the monitoring network and observed volcano-tectonic ground deformation

    Science.gov (United States)

    Bonforte, A.; Hernandez, D.; Gutiérrez, E.; Handal, L.; Polío, C.; Rapisarda, S.; Scarlato, P.

    2015-10-01

    On 29 December 2013, the Chaparrastique volcano in El Salvador, close to the town of S. Miguel, erupted suddenly with explosive force, forming a more than 9 km high column and projecting ballistic projectiles as far as 3 km away. Pyroclastic Density Currents flowed to the north-northwest side of the volcano, while tephras were dispersed northwest and north-northeast. This sudden eruption prompted the local Ministry of Environment to request cooperation with Italian scientists in order to improve the monitoring of the volcano during this unrest. A joint force made up of an Italian team from the Istituto Nazionale di Geofisica e Vulcanologia and a local team from the Ministerio de Medio Ambiente y Recursos Naturales was organized to enhance the volcanological, geophysical and geochemical monitoring system to study the evolution of the phenomenon during the crisis. The joint team quickly installed a multi-parametric mobile network comprising seismic, geodetic and geochemical sensors, designed to cover all the volcano flanks from the lowest to the highest possible altitudes, and a thermal camera. To simplify the logistics for a rapid installation and for security reasons, some sensors were co-located into multi-parametric stations. Here, we describe the prompt design and installation of the geodetic monitoring network, the processing and results. The installation of a new ground deformation network can be considered an important result by itself, while the detection of some crucial deforming areas is very significant information, useful for dealing with future threats and for further studies on this poorly monitored volcano.

  15. Conjugate observation of sharp dynamical boundary in the inner magnetosphere by Cluster and DMSP spacecraft and ground network

    Directory of Open Access Journals (Sweden)

    S. V. Apatenkov

    2008-09-01

    Full Text Available We investigate an unusual sharp boundary separating two plasma populations (inner magnetospheric plasma with high fluxes of energetic particles and plasma sheet observed by the Cluster quartet near its perigee on 16 December 2003. Cluster was in a pearl-on-string configuration at 05:00 MLT and mapped along magnetic field lines to ~8–9 RE in the equatorial plane. It was conjugate to the MIRACLE network and the DMSP F16 spacecraft passed close to Cluster footpoint. The properties of the sharp boundary, repeatedly crossed 7 times by five spacecraft during ~10 min, are: (1 upward FAC sheet at the boundary with ~30 nA/m2 current density at Cluster and ~2000 nA/m2 at DMSP; (2 the boundary had an embedded layered structure with different thickness scales, the electron population transition was at ~20 km scale at Cluster (<7 km at DMSP, proton population had a scale ~100 km, while the FAC sheet thickness was estimated to be ~500 km at Cluster (~100 km at DMSP; (3 the boundary propagated in the earthward-eastward direction at ~8 km/s in situ (equatorward-eastward ~0.8 km/s in ionosphere, and then decelerated and/or stopped. We discuss the boundary formation by the collision of two different plasmas which may include dynamical three-dimensional field-aligned current loops.

  16. Comparison of the United States Precision Lightning Network(TM) (USPLN(TM)) and the Cloud-to-Ground Lightning Surveillance System (CGLSS)

    Science.gov (United States)

    Jacques, Alexander Andrew

    WSI Corporation requested a performance evaluation of their United States Precision Lightning Network(TM) (USPLN(TM)), which is co-owned by TOA Systems, Inc. The USPLN is a national lightning detection network with over 160 sensors placed across the North American continent. Previous performance evaluations of the network had been limited to simulated lightning events and individual fixed tower case studies. Thus, a longer evaluation of the network had yet to be completed, which this study attempts to achieve. As a validation tool, the second generation of the Cloud-to-Ground Lightning Surveillance System (CGLSS-II) was selected. CGLSS-II is a local detection network used for critical lightning surveillance at Kennedy Space Center and Cape Canaveral Air Force Station (KSC/CCAFS). The network of six sensors has been certified by the U.S. Air Force since 1989, and is constantly monitored and evaluated. CGLSS-II and the USPLN share numerous similarities including: the processing of all lightning strokes, GPS timing, and the time-of-arrival technique for triangulating stroke locations. Stroke data for CGLSS-II and USPLN were acquired and quality controlled for the selected study period of 20 May 2008 to 31 August 2010. The study period was further divided into sub-periods based on changes to CGLSS-II performance, and data were restricted to a region surrounding KSC/CCAFS. A correlation procedure was selected which matched strokes between the two networks using time and distance thresholds, creating a comparative dataset. Data from the Four Dimensional Lightning Surveillance System (4DLSS) was also collected as a means to classify cloud-to-ground (CG) and intra-cloud (IC) strokes. Melbourne (KMLB) composite reflectivity radar imagery was also acquired to further evaluate USPLN performance. Several analyses of USPLN stroke detection efficiency (DE) and location accuracy were conducted to first determine average performance and then to examine specific case studies

  17. Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina)

    Science.gov (United States)

    Calori, A.; Santos, J. R.; Blanco, M.; Pessano, H.; Llamedo, P.; Alexander, P.; de la Torre, A.

    2016-07-01

    Mendoza is a province of Argentina located between 32° S and 34° S at the leeside of the Andes Foothills. Very intense thunderstorms form between October and March (southern hemisphere summer), which produce large hail and damage in crops and properties. Although some hypotheses and conceptual models were proposed in order to identify key possible mechanisms that contribute to trigger convection, they are still waiting for the validation process. As moisture is the main ingredient for storms formation, the identification of its geographical distribution could be used together with other synoptic and mesoscale forcing features to forecast intense convective events. A novel technique in estimating moisture concentration and its geographical distribution has been introduced in order to observe the influx and variability of humidity at this region, during a 45-day period in midsummer. In doing so, we resort to the information provided by the ground-basedGlobal Navigation Satellite System (GNSS) network. More than 300 active stations constitute the continuously operating GNSS network over Southern and Central America (SIRGAS-CON, Sistema de Referencia Geocéntrico para las Américas de Operación Continua). This network allows to retrieve integrated water vapor (IWV) content, mapping this variable by the use of a digital model of terrain. In the period and region under study, a prevailing influx of humidity from N and NE and a high correlation between the accumulation/depletion of humidity and the hail/no hail precipitation days is observed. We discuss in particular the development of five storms detected by the S-Band radar network belonging to the Province of Mendoza. Although the results strongly suggest that IWV maps are capable to represent the humidity dynamics in the considered region, it is still important to highlight that the calculated values for IWV are unrealistic at some locations as the consequence of deep atmospheric gradients. These biases may be

  18. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India.

    Science.gov (United States)

    Deb, Dibyendu; Singh, J P; Deb, Shovik; Datta, Debajit; Ghosh, Arunava; Chaurasia, R S

    2017-10-20

    Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.

  19. Neural Network Model for Thermal Inactivation of Salmonella Typhimurium to Elimination in Ground Chicken: Acquisition of Data by Whole Sample Enrichment, Miniature Most-Probable-Number Method.

    Science.gov (United States)

    Oscar, T P

    2017-01-01

    Predictive models are valuable tools for assessing food safety. Existing thermal inactivation models for Salmonella and ground chicken do not provide predictions above 71°C, which is below the recommended final cooked temperature of 73.9°C for chicken. They also do not predict when all Salmonella are eliminated without extrapolating beyond the data used to develop them. Thus, a study was undertaken to develop a model for thermal inactivation of Salmonella to elimination in ground chicken at temperatures above those of existing models. Ground chicken thigh portions (0.76 cm(3)) in microcentrifuge tubes were inoculated with 4.45 ± 0.25 log most probable number (MPN) of a single strain of Salmonella Typhimurium (chicken isolate). They were cooked at 50 to 100°C in 2 or 2.5°C increments in a heating block that simulated two-sided pan frying. A whole sample enrichment, miniature MPN (WSE-mMPN) method was used for enumeration. The lower limit of detection was one Salmonella cell per portion. MPN data were used to develop a multiple-layer feedforward neural network model. Model performance was evaluated using the acceptable prediction zone (APZ) method. The proportion of residuals in an APZ (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.911 (379 of 416) for dependent data and 0.910 (162 of 178) for independent data for interpolation. A pAPZ ≥0.7 indicated that model predictions had acceptable bias and accuracy. There were no local prediction problems because pAPZ for individual thermal inactivation curves ranged from 0.813 to 1.000. Independent data for interpolation satisfied the test data criteria of the APZ method. Thus, the model was successfully validated. Predicted times for a 1-log reduction ranged from 9.6 min at 56°C to 0.71 min at 100°C. Predicted times for elimination ranged from 8.6 min at 60°C to 1.4 min at 100°C. The model will be a valuable new tool for predicting and managing this important risk to public health.

  20. LYNX: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials

    Science.gov (United States)

    Runkle, Robert C.; Myjak, Mitchell J.; Kiff, Scott D.; Sidor, Daniel E.; Morris, Scott J.; Rohrer, John S.; Jarman, Kenneth D.; Pfund, David M.; Todd, Lindsay C.; Bowler, Ryan S.; Mullen, Crystal A.

    2009-01-01

    This manuscript profiles an unattended and fully autonomous radiation detection system sensitive to gamma-ray and neutron emissions. The L YNX design is intended for locations that require radiation detection capabilities for detection of special nuclear materials but lack supporting infrastructure. Signal-starved data is common in these environments since little or no control may be exerted over measurement conditions. The fundamental sensing elements of the L YNX system are traditional NaI(Tl) and 3He detectors. The new developments reported here center on two themes: low-power electronics and computationally simple analysis algorithms capable of discriminating gamma-ray signatures indicative of special nuclear materials from those of naturally occurring radioactive material. Incorporating tripwire-detection algorithms based on gamma-ray spectral signatures into a low-power electronics package significantly improves performance in environments where sensors encounter nuisance sources.

  1. LYNX: An unattended sensor system for detection of gamma-ray and neutron emissions from special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C.; Myjak, Mitchell J.; Kiff, Scott D.; Sidor, Daniel E.; Morris, Scott J.; Rohrer, John S.; Jarman, Kenneth D.; Pfund, David M.; Todd, Lindsay C.; Bowler, Ryan S.; Mullen, Crystal A.

    2009-01-21

    This manuscript profiles an unattended and fully autonomous detection system sensitive to gamma-ray and neutron emissions from special nuclear material. The LYNX design specifically targets applications that require radiation detection capabilities but possess little or no infrastructure. In these settings, users need the capability to deploy sensors for extended periods of time that analyze whatever signal-starved data can be captured, since little or no control may be exerted over measurement conditions. The fundamental sensing elements of the LYNX system are traditional NaI(Tl) and 3He detectors. The new developments reported here center on two themes: low-power electronics and computationally simple analysis algorithms capable of discriminating gamma-ray signatures indicative of special nuclear materials from those of naturally occurring radioactive material. Incorporating tripwire-detection algorithms based on gamma-ray spectral signatures into a low-power electronics package significantly improves performance in environments where sensors encounter nuisance sources.

  2. Ground-Control Networks for Image Based Surface Reconstruction: An Investigation of Optimum Survey Designs Using UAV Derived Imagery and Structure-from-Motion Photogrammetry

    Directory of Open Access Journals (Sweden)

    Toby N. Tonkin

    2016-09-01

    Full Text Available The use of small UAV (Unmanned Aerial Vehicle and Structure-from-Motion (SfM with Multi-View Stereopsis (MVS for acquiring survey datasets is now commonplace, however, aspects of the SfM-MVS workflow require further validation. This work aims to provide guidance for scientists seeking to adopt this aerial survey method by investigating aerial survey data quality in relation to the application of ground control points (GCPs at a site of undulating topography (Ennerdale, Lake District, UK. Sixteen digital surface models (DSMs were produced from a UAV survey using a varying number of GCPs (3-101. These DSMs were compared to 530 dGPS spot heights to calculate vertical error. All DSMs produced reasonable surface reconstructions (vertical root-mean-square-error (RMSE of <0.2 m, however, an improvement in DSM quality was found where four or more GCPs (up to 101 GCPs were applied, with errors falling to within the suggested point quality range of the survey equipment used for GCP acquisition (e.g., vertical RMSE of <0.09 m. The influence of a poor GCP distribution was also investigated by producing a DSM using an evenly distributed network of GCPs, and comparing it to a DSM produced using a clustered network of GCPs. The results accord with existing findings, where vertical error was found to increase with distance from the GCP cluster. Specifically vertical error and distance to the nearest GCP followed a strong polynomial trend (R2 = 0.792. These findings contribute to our understanding of the sources of error when conducting a UAV-SfM survey and provide guidance on the collection of GCPs. Evidence-driven UAV-SfM survey designs are essential for practitioners seeking reproducible, high quality topographic datasets for detecting surface change.

  3. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    Science.gov (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  4. Improving access to health information for older migrants by using grounded theory and social network analysis to understand their information behaviour and digital technology use.

    Science.gov (United States)

    Goodall, K T; Newman, L A; Ward, P R

    2014-11-01

    Migrant well-being can be strongly influenced by the migration experience and subsequent degree of mainstream language acquisition. There is little research on how older Culturally And Linguistically Diverse (CALD) migrants who have 'aged in place' find health information, and the role which digital technology plays in this. Although the research for this paper was not focused on cancer, we draw out implications for providing cancer-related information to this group. We interviewed 54 participants (14 men and 40 women) aged 63-94 years, who were born in Italy or Greece, and who migrated to Australia mostly as young adults after World War II. Constructivist grounded theory and social network analysis were used for data analysis. Participants identified doctors, adult children, local television, spouse, local newspaper and radio as the most important information sources. They did not generally use computers, the Internet or mobile phones to access information. Literacy in their birth language, and the degree of proficiency in understanding and using English, influenced the range of information sources accessed and the means used. The ways in which older CALD migrants seek and access information has important implications for how professionals and policymakers deliver relevant information to them about cancer prevention, screening, support and treatment, particularly as information and resources are moved online as part of e-health. © 2014 John Wiley & Sons Ltd.

  5. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling.

    Science.gov (United States)

    Chen, Jiacong; Xie, Candie; Liu, Jingyong; He, Yao; Xie, Wuming; Zhang, Xiaochun; Chang, Kenlin; Kuo, Jiahong; Sun, Jian; Zheng, Li; Sun, Shuiyu; Buyukada, Musa; Evrendilek, Fatih

    2017-11-13

    (Co-)combustion characteristics of sewage sludge (SS), coffee grounds (CG) and their blends were quantified under increased O2/CO2 atmosphere (21, 30, 40 and 60%) using a thermogravimetric analysis. Observed percentages of CG mass loss and its maximum were higher than those of SS. Under the same atmospheric O2 concentration, both higher ignition and lower burnout temperatures occurred with the increased CG content. Results showed that ignition temperature and comprehensive combustion index for the blend of 60%SS-40%CG increased, whereas burnout temperature and co-combustion time decreased with the increased O2 concentration. Artificial neural network was applied to predict mass loss percent as a function of gas mixing ratio, heating rate, and temperature, with a good agreement between the experimental and ANN-predicted values. Activation energy in response to the increased O2 concentration was found to increase from 218.91 to 347.32 kJ·mol-1 and from 218.34 to 340.08 kJ·mol-1 according to the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Ground fault protectionmethods for distribution systems

    OpenAIRE

    Tavares, Hugo Ricardo dos Santos; Nogueira, Teresa Alexandre

    2016-01-01

    The system grounding method option has a direct influence on the overall performance of the entire medium voltage network as well as on the ground fault current magnitude. For any kind of grounding systems: ungrounded system, solidly and low impedance grounded and resonant grounded, we can find advantages and disadvantages. A thorough study is necessary to choose the most appropriate grounding protection system. The power distribution utilities justify their choices based on economic and t...

  7. Grounded theory

    OpenAIRE

    Harris, Tina

    2014-01-01

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate app...

  8. The Current State and TRL Assessment of Unattended and Left-Behind Object Detection Technology

    Science.gov (United States)

    2014-09-01

    location. The dataset is real footage as opposed to the scripted scenarios of PETS. The CANDELA [20] is a small dataset acquired during development...of a specific subtask of the large CANDELA project (Content Analysis and Network DELivery Architectures; 2003-2005; 15 participants; budget >15M...scenarios. Five instances of the ‘Leaving bags behind’ scenario are publicly available for download. Similarly to CANDELA , the level of activity in the

  9. Grounded theory.

    Science.gov (United States)

    Harris, Tina

    2015-04-29

    Grounded theory is a popular research approach in health care and the social sciences. This article provides a description of grounded theory methodology and its key components, using examples from published studies to demonstrate practical application. It aims to demystify grounded theory for novice nurse researchers, by explaining what it is, when to use it, why they would want to use it and how to use it. It should enable nurse researchers to decide if grounded theory is an appropriate approach for their research, and to determine the quality of any grounded theory research they read.

  10. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  11. Efficient combined security system for wireless sensor network

    Directory of Open Access Journals (Sweden)

    N.S. Fayed

    2012-11-01

    Full Text Available Wireless Sensor Networks (WSNs need effective security mechanisms because these networks deployed in hostel unattended environments. There are many parameters affect selecting the security mechanism as its speed and energy consumption. This paper presents a combined security system for WSN that enhance the speed of the network and it is energy consumption. This system combines two strong protocols, Lightweight Kerberos and Elliptic Curve Menezes–Qu–Vanstone (ECMQV. The simulation results demonstrate that the combined system can enlarge the life time for wireless sensor networks, enhance its security, and increase its speed.

  12. Viability Study for an Unattended UF6 Cylinder Verification Station: Phase I Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leon E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Karen A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garner, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Branney, Sean [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McDonald, Benjamin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Jennifer B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zalavadia, Mital A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Todd, Lindsay C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kulisek, Jonathan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nordquist, Heather [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Deshmukh, Nikhil S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stewart, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-31

    In recent years, the International Atomic Energy Agency (IAEA) has pursued innovative techniques and an integrated suite of safeguards measures to address the verification challenges posed by the front end of the nuclear fuel cycle. Among the unattended instruments currently being explored by the IAEA is an Unattended Cylinder Verification Station (UCVS) that could provide automated, independent verification of the declared relative enrichment, 235U mass, total uranium mass and identification for all declared UF6 cylinders in a facility (e.g., uranium enrichment plants and fuel fabrication plants). Under the auspices of the United States and European Commission Support Programs to the IAEA, a project was undertaken to assess the technical and practical viability of the UCVS concept. The US Support Program team consisted of Pacific Northwest National Laboratory (PNNL, lead), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL) and Savanah River National Laboratory (SRNL). At the core of the viability study is a long-term field trial of a prototype UCVS system at a Westinghouse fuel fabrication facility. A key outcome of the study is a quantitative performance evaluation of two nondestructive assay (NDA) methods being considered for inclusion in a UCVS: Hybrid Enrichment Verification Array (HEVA), and Passive Neutron Enrichment Meter (PNEM). This report provides context for the UCVS concept and the field trial: potential UCVS implementation concepts at an enrichment facility; an overview of UCVS prototype design; field trial objectives and activities. Field trial results and interpretation are presented, with a focus on the performance of PNEM and HEVA for the assay of over 200 “typical” Type 30B cylinders, and the viability of an “NDA Fingerprint” concept as a high-fidelity means to periodically verify that the contents of a given cylinder are consistent with previous scans. A modeling study, combined with field

  13. Ground Wars

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Kleis

    Political campaigns today are won or lost in the so-called ground war--the strategic deployment of teams of staffers, volunteers, and paid part-timers who work the phones and canvass block by block, house by house, voter by voter. Ground Wars provides an in-depth ethnographic portrait of two...... of ground war tactics for how we understand political campaigns and what it means to participate in them. He shows how ground wars are waged using resources well beyond those of a given candidate and their staff. These include allied interest groups and civic associations, party-provided technical...... of professionals. Yet he also quashes the romantic idea that canvassing is a purer form of grassroots politics. In today's political ground wars, Nielsen demonstrates, even the most ordinary-seeming volunteer knocking at your door is backed up by high-tech targeting technologies and party expertise. Ground Wars...

  14. Biological Computation Indexes of Brain Oscillations in Unattended Facial Expression Processing Based on Event-Related Synchronization/Desynchronization

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2016-01-01

    Full Text Available Estimation of human emotions from Electroencephalogram (EEG signals plays a vital role in affective Brain Computer Interface (BCI. The present study investigated the different event-related synchronization (ERS and event-related desynchronization (ERD of typical brain oscillations in processing Facial Expressions under nonattentional condition. The results show that the lower-frequency bands are mainly used to update Facial Expressions and distinguish the deviant stimuli from the standard ones, whereas the higher-frequency bands are relevant to automatically processing different Facial Expressions. Accordingly, we set up the relations between each brain oscillation and processing unattended Facial Expressions by the measures of ERD and ERS. This research first reveals the contributions of each frequency band for comprehension of Facial Expressions in preattentive stage. It also evidences that participants have emotional experience under nonattentional condition. Therefore, the user’s emotional state under nonattentional condition can be recognized in real time by the ERD/ERS computation indexes of different frequency bands of brain oscillations, which can be used in affective BCI to provide the user with more natural and friendly ways.

  15. The pitfall of experimenting on the web: How unattended selective attrition leads to surprising (yet false) research conclusions.

    Science.gov (United States)

    Zhou, Haotian; Fishbach, Ayelet

    2016-10-01

    The authors find that experimental studies using online samples (e.g., MTurk) often violate the assumption of random assignment, because participant attrition-quitting a study before completing it and getting paid-is not only prevalent, but also varies systemically across experimental conditions. Using standard social psychology paradigms (e.g., ego-depletion, construal level), they observed attrition rates ranging from 30% to 50% (Study 1). The authors show that failing to attend to attrition rates in online panels has grave consequences. By introducing experimental confounds, unattended attrition misled them to draw mind-boggling yet false conclusions: that recalling a few happy events is considerably more effortful than recalling many happy events, and that imagining applying eyeliner leads to weight loss (Study 2). In addition, attrition rate misled them to draw a logical yet false conclusion: that explaining one's view on gun rights decreases progun sentiment (Study 3). The authors offer a partial remedy (Study 4) and call for minimizing and reporting experimental attrition in studies conducted on the Web. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Unattended acoustic sensor simulation of TG25 trials using CHORALE workshop

    Science.gov (United States)

    Gozard, Patrick; Le Goff, Alain; Naz, Pierre; Cathala, Thierry; Latger, Jean; Dupuy, Yann

    2004-08-01

    The simulation workshop CHORALE of the French DGA is used by government services and industrial companies for weapon system validation and qualification trials in the infrared domain, and detection of moving vehicles in the acoustic domain. Recently, acoustic simulation tests were performed on the 3D geometrical database of the DGA/DCE/ETBS proving ground. Results have been compared to the acoustic measurements of the NATO-TG25 trials. This article describes the trials, the modeling of the 3D geometrical database and the comparison between acoustic simulation results and measurements. The 3D scene is described by a set of polygons. Each polygon is characterized by its acoustic resistivity or its complex impedance. Sound sources are associated with moving vehicles and are characterized by their spectra and directivities. A microphone sensor is defined by its position, its frequency band and its directivity. For each trial, atmospheric profiles (air temperature, pressure and humidity according to altitude), trajectories and sound spectrum of moving objects were measured. These data were used to prepare the scenario for the acoustic simulation.

  17. Test and Evaluation of a Prototyped Sensor-Camera Network for Persistent Intelligence, Surveillance, and Reconnaissance in Support of Tactical Coalition Networking Environments

    Science.gov (United States)

    2006-06-01

    or wall outlets, but wireless nodes must be powered by a self-contained power supply. Usually these power supplies are batteries or solar cells. As...application called C3Trak • integration of “satellite in a suitcase ”─portable satellite communication equipment • enhanced unattended ground and water...sources such as solar cells can be designed to create a nearly limitless lifetime. Power management research will help achieve the goal of dense, long

  18. Unusual behavior detection in the entry gate scenes of subway station using Bayesian networks and inference

    Science.gov (United States)

    Kwak, Sooyeong; Bae, Guntae; Kim, Manbae; Byun, Hyeran

    2008-02-01

    In this paper, we propose a method for detecting unusual human behavior using monocular camera which is not moving. Our system composed of three modules which are moving object detection, tracking, and event recognition. The key part is event recognition module. We define unusual events which are composed of two simple events (drop off luggage, unattended luggage) and two complex events (abandoned luggage and steal luggage). In order to detect the simple event, we construct Bayesian network in each unusual event. We extract evidences using bounding box properties which are the location of moving objects, speed, distance between the person and the other moving object (such as bag), existing time. And then, we use finite state automaton which shows the temporal relation of two simple events to detect complex events. To evaluate the performance, we compare the frame number when an even is triggered with our results and the ground truth. The proposed algorithm showed good results on the real world environment and also worked at real time speed.

  19. A comparison of ground based NO2 (Pandora network), the GeoCAPE Airborne Simulator (GCAS), and Geostationary Trace Gas and Aerosol Optimization (GeoTASO) instruments during Discover-AQ deployments.

    Science.gov (United States)

    Janz, S. J.; Kowalewski, M. G.; Nowlan, C. R.

    2015-12-01

    We will present comparisons between measurements of NO2 abundance in the troposphere using both ground and airborne instruments developed for air quality research, focusing on the high spatial resolution requirements of next generation geostationary sensors. The GCAS and GeoTASO aircraft sensors are capable of retrieving NO2 at sub-1km spatial sampling that meets the sensitivity requirements of the TEMPO and GEMS science products. These instruments were flown simultaneously during a portion of both the Houston and Denver Discover-AQ deployments and GeoTASO will be flown during the KORUS-AQ deployment. An assessment will be made of the absolute agreement between these instruments at various spatial scales and under a variety of viewing and surface conditions. The ground based PANDORA network measurements will be used to assess consistency between the instruments.

  20. A Grounded Theory Study of the Risks and Benefits Associated with the Use of Online Social Networking Applications in a Military Organization

    Science.gov (United States)

    Webb, James O., Jr.

    2012-01-01

    There is a perception that there are risks and benefits associated with the use of online social networking media within a military organization. This research study explored this perception by investigating how employees use social networking applications and their perceptions of the benefits they receive. The study also assessed the measures…

  1. Análisis de resistencia de puesta a tierra en redes de distribución urbanas usando distribuciones de probabilidad;Analysis of grounding resistance in urban electrical distribution networks using probability distributions.

    Directory of Open Access Journals (Sweden)

    Juan Miguel Astorga Gómez

    2015-06-01

    Full Text Available En este artículo, se estudia la resistencia de puesta a tierra en redes urbanas de distribución eléctrica de la ciudad de Copiapó (Chile por medio de distribuciones de probabilidad, con el objetivo de evaluar el desempeño del diseño de las mallas que actualmente se utiliza en esta ciudad. El estudio está basado en una muestra de cuarenta y tres mediciones de resistencia de puesta a tierra. Se muestran los principales indicadores de estadística descriptiva para las mediciones de campo, se ajustan tres distribuciones de probabilidad a los datos de la muestra y se usan el criterio de información de Akaike (AIC y el criterio de información Bayesiano (BIC para elegir la distribución que mejor representa el comportamiento de los datos. Finalmente, usando el modelo seleccionado, se calculan algunas probabilidades para la resistencia de puesta a tierra y se entregan las principales conclusiones del trabajo.In this article, the grounding resistance in urban electrical distribution networks of the Copiapó city is studied. The estimation of mean value is calculated using continuous probability distributions. The aim of this study is to performance assessment of grounding grid design currently used in these networks. Forty-three grounding grids are used as sample. The main indices of descriptive statistics of field measurements are shown. Three continuous probability distribution models are fitted to the sample. For selecting the best model, the Akaike information criterion (AIC and the Bayesian information criterion (BIC are used. Finally, using the best model, some probabilities for the grounding resistance are calculated and the main conclusions are presented.

  2. Detection of arcing ground fault location on a distribution network connected PV system; Hikarihatsuden renkei haidensen ni okeru koko chiryaku kukan no kenshutsuho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Iwaya, K.; Morooka, Y. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    In the near future, it is supposed that a great number of small-scale distributed power sources, such as photovoltaic power generation for general houses, will be interconnected with the ungrounded neutral distribution system in Japan. When ground fault of commercial frequency once occurs, great damage is easily guessed. This paper discusses the effect of the ground fault on the ground phase current using a 6.6 kV high-voltage model system by considering the non-linear self-inductance in the line, and by considering the non-linear relation of arcing ground fault current frequency. In the present method, the remarkable difference of series resonance frequency determined by the inductance and earth capacity between the source side and load side is utilized for the detection of high-voltage arcing ground fault location. In this method, there are some cases in which the non-linear effect obtained by measuring the inductance of sound phase including the secondary winding of transformer can not be neglected. Especially, for the actual high-voltage system, it was shown that the frequency characteristics of transformer inductance for distribution should be theoretically derived in the frequency range between 2 kHz and 6 kHz. 2 refs., 5 figs., 1 tab.

  3. Significant Storage on Sensor Storage Space, Energy Consumption and Better Security Based on Routing in Hybrid Sensor Networks

    OpenAIRE

    K.Nageswara rao; D. Rajya Lakshmi; T. Venkateswara rao

    2011-01-01

    WSNs are characterized by limited resources in term s of communication, computation and energy supply. A critical constraint on sensors networks is that s ensor nodes employ batteries. A second constraint i s that sensors will be deployed unattended and in large nu mbers, so that it will be difficult to change or re charge batteries in the sensors .The Energy Consumption in wireless sensor networks varies greatly based on t he protocols the sensors use...

  4. Regional and local variations in atmospheric aerosols using ground-based sun photometry during Distributed Regional Aerosol Gridded Observation Networks (DRAGON in 2012

    Directory of Open Access Journals (Sweden)

    I. Sano

    2016-11-01

    Full Text Available Aerosol mass concentrations are affected by local emissions as well as long-range transboundary (LRT aerosols. This work investigates regional and local variations of aerosols based on Distributed Regional Aerosol Gridded Observation Networks (DRAGON. We constructed DRAGON-Japan and DRAGON-Osaka in spring of 2012. The former network covers almost all of Japan in order to obtain aerosol information in regional scale over Japanese islands. It was determined from the DRAGON-Japan campaign that the values of aerosol optical thickness (AOT decrease from west to east during an aerosol episode. In fact, the highest AOT was recorded at Fukue Island at the western end of the network, and the value was much higher than that of urban areas. The latter network (DRAGON-Osaka was set as a dense instrument network in the megalopolis of Osaka, with a population of 12 million, to better understand local aerosol dynamics in urban areas. AOT was further measured with a mobile sun photometer attached to a car. This transect information showed that aerosol concentrations rapidly changed in time and space together when most of the Osaka area was covered with moderate LRT aerosols. The combined use of the dense instrument network (DRAGON-Osaka and high-frequency measurements provides the motion of aerosol advection, which coincides with the wind vector around the layer between 700 and 850 hPa as provided by the reanalysis data of the National Centers for Environmental Prediction (NCEP.

  5. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    CSIR Research Space (South Africa)

    Snider, G

    2015-01-01

    Full Text Available Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM(sub2.5)) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short...

  6. Neural network model for thermal inactivation of Salmonella Typhimurium to elimination in ground chicken: Acquisition of data by whole sample enrichment, miniature most-probable-number method

    Science.gov (United States)

    Predictive models are valuable tools for assessing food safety. Existing thermal inactivation models for Salmonella and ground chicken do not provide predictions above 71 degrees C, which is below the recommended final cooked temperature of 73.9 degrees C. They also do not predict when all Salmone...

  7. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  8. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  9. Collaborative tactical behaviors for autonomous ground and air vehicles

    Science.gov (United States)

    Albus, James; Barbera, Anthony; Scott, Harry; Balakirsky, Stephen

    2005-05-01

    Tactical behaviors for autonomous ground and air vehicles are an area of high interest to the Army. They are critical for the inclusion of robots in the Future Combat System (FCS). Tactical behaviors can be defined at multiple levels: at the Company, Platoon, Section, and Vehicle echelons. They are currently being defined by the Army for the FCS Unit of Action. At all of these echelons, unmanned ground vehicles, unmanned air vehicles, and unattended ground sensors must collaborate with each other and with manned systems. Research being conducted at the National Institute of Standards and Technology (NIST) and sponsored by the Army Research Lab is focused on defining the Four Dimensional Real-time Controls System (4D/RCS) reference model architecture for intelligent systems and developing a software engineering methodology for system design, integration, test and evaluation. This methodology generates detailed design requirements for perception, knowledge representation, decision making, and behavior generation processes that enable complex military tactics to be planned and executed by unmanned ground and air vehicles working in collaboration with manned systems.

  10. Neural network model for growth of Salmonella serotypes in ground chicken subjected to temperature abuse during cold storage for application in HACCP and risk assessment

    Science.gov (United States)

    With the advent of commercial software applications, it is now easy to develop neural network models for predictive microbiology applications. However, different versions of the model may be required to meet the divergent needs of model users. In the current study, the commercial software applicat...

  11. The Information Behavior of Puerto Rican Migrants to Central Florida, 2003-2009: Grounded Analysis of Six Case Studies Use of Social Networks during the Migration Process

    Science.gov (United States)

    Rodriguez-Mori, Howard

    2009-01-01

    The study of the information behavior of Puerto Ricans and their reliance on personal social networks to procure needed information upon their migration to Central Florida is the core of this research. Life experiences of the researcher, as well as unstructured observations made in Puerto Rico from 1980 to 1996, and in Central Florida from 1996 to…

  12. Designing as Middle Ground

    DEFF Research Database (Denmark)

    Nickelsen, Niels Christian; Binder, Thomas

    2010-01-01

    The theoretical background in this chapter is science and technology studies and actor network theory, enabling investigation of heterogeneity, agency and perfor-mative effects through ‘symmetric’ analysis. The concept of design is defined as being imaginative and mindful to a number of actors in...... research is an articulation of design activity taking place as a middle ground and as an intermixture between a ‘scientific’ regime of knowledge transfer and a capital ‘D’ ‘Designerly’ regime of authoring....

  13. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Hansen, Jonas; Roetter, Daniel Enrique Lucani; Krigslund, Jeppe

    2015-01-01

    . The inherent flexibility of both SDN and NC provides fertile ground to envision more efficient, robust, and secure networking designs, which may also incorporate content caching and storage, all of which are key challenges of the upcoming 5G networks. This article not only proposes the fundamentals......Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm...

  14. Network Coded Software Defined Networking

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Roetter, Daniel Enrique Lucani

    2015-01-01

    Software Defined Networking (SDN) and Network Coding (NC) are two key concepts in networking that have garnered a large attention in recent years. On the one hand, SDN's potential to virtualize services in the Internet allows a large flexibility not only for routing data, but also to manage....... This paper advocates for the use of SDN to bring about future Internet and 5G network services by incorporating network coding (NC) functionalities. The inherent flexibility of both SDN and NC provides a fertile ground to envision more efficient, robust, and secure networking designs, that may also...... incorporate content caching and storage, all of which are key challenges of the future Internet and the upcoming 5G networks. This paper proposes some of the keys behind this intersection and supports it with use cases as well as a an implementation that integrated the Kodo library (NC) into OpenFlow (SDN...

  15. 'Grounded' Politics

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    2012-01-01

    A prominent strand within current migration research argues that, to understand the participation of immigrants in their host societies, we must focus on their incorporation into the cities in which they settle. This article narrows the perspective further by focusing on the role that immigrants...... play within one particular neighbourhood: Nørrebro in the Danish capital, Copenhagen. The article introduces the concept of grounded politics to analyse how groups of Muslim immigrants in Nørrebro use the space, relationships and history of the neighbourhood for identity political statements...

  16. Open System of Agile Ground Stations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an opportunity to build the HETE-2/TESS network of ground stations into an innovative and powerful Open System of Agile Stations, by developing a low-cost...

  17. SAFARI 2000 AERONET Ground-based Aerosol Data, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: AERONET (AErosol RObotic NETwork) is an optical ground-based aerosol monitoring network and data archive system. AERONET measurements of the...

  18. Wireless Authentication Protocol Implementation: Descriptions of a Zero-Knowledge Proof (ZKP) Protocol Implementation for Testing on Ground and Airborne Mobile Networks

    Science.gov (United States)

    2015-01-01

    current FFS Feige-Fiat-Shamir GMP GNU Multiple Precision MANET Mobile Ad Hoc Network MHz Mega-Hertz RF Radio Frequency TCP/IP Transmission Control...payload package consists of a processor board (model: PM-945GSE-270) and wireless radio board (model: TL-WN861N) which are stacked and attached to a...number of devices which include a processor board (model: PM-LX2-800-R10) and wireless radio board (model: TL-WN861N) along with an RF attenuator, a

  19. Vulnerability of network of networks

    Science.gov (United States)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  20. Grounded Intersectionality

    DEFF Research Database (Denmark)

    Marfelt, Mikkel Mouritz

    2016-01-01

    Purpose – The purpose of this paper is to build on contemporary intersectional literature to develop a grounded methodological framework for the study of social differences. Design/methodology/approach – A systematic literature review serves as the foundation for a discussion of the challenges...... associated with intersectional research. The findings assist in positioning the proposed methodological framework within recent intersectional debates. Findings – The review shows a rise in intersectional publications since the birth of the “intersectionality” term in 1989. Moreover, the paper points to four...... tensions within the field: a tension between looking at or beyond oppression; a tension between structural-oriented and process-oriented perspectives; an apparent incommensurability among the macro, meso, and micro levels of analysis; and a lack of coherent methodology. Research limitations...

  1. Geothermal gradients and ground water circulation in fissured and karstic rocks: The role played by the structure of the permeable network

    Science.gov (United States)

    Drogue, C.

    1985-12-01

    In fissured and karstic rocks the general movement of underground waters (forced convection) can modify geothermic gradients. This depends both on the discontinuous structure (channels and fissures) and on hydrodynamic conditions which can vary with the weather, e.g. during the recharging of reserviors in rainy periods. An experimental analysis has been carried out in the broken and karstified Mesozoic limestone in the South of France, on shallow boreholes (60 m) grouped in a closely-spaced network. Nearly a hundred thermal loggings have been measured in the homothermic zone below 25 m. The gradients in dry periods, varying from one drilling to another, are between 0.01 and 0.03°C m -1 for an average thermal conductivity of rock of 2.56 Wm -1 °C -1. During recharging of the aquifer by rain, the gradients do not change in some drillings. This always occurs in those which cut through networks of slightly karstified fissures with low hydraulic conductivity. The slow circulation allows the water to be in thermal quasi-equilibrium with the rock. In other drillings, however, recharging causes local and sometimes very significant modifications of the gradients. Disturbances are temporary and appear directly over well-developed karstic channels which rapidly draw down the infiltrated cold water to the bottom. Thermal profiles, either stable or disturbed, can be surveyed simultaneously in drillings situated at least 10 m from each other. The position and nature of the karstic channels in which the forced convection is most active can be identified through observations by videologging and flow velocity tests.

  2. Euthanasia: above ground, below ground.

    Science.gov (United States)

    Magnusson, R S

    2004-10-01

    The key to the euthanasia debate lies in how best to regulate what doctors do. Opponents of euthanasia frequently warn of the possible negative consequences of legalising physician assisted suicide and active euthanasia (PAS/AE) while ignoring the covert practice of PAS/AE by doctors and other health professionals. Against the background of survey studies suggesting that anything from 4% to 10% of doctors have intentionally assisted a patient to die, and interview evidence of the unregulated, idiosyncratic nature of underground PAS/AE, this paper assesses three alternatives to the current policy of prohibition. It argues that although legalisation may never succeed in making euthanasia perfectly safe, legalising PAS/AE may nevertheless be safer, and therefore a preferable policy alternative, to prohibition. At a minimum, debate about harm minimisation and the regulation of euthanasia needs to take account of PAS/AE wherever it is practised, both above and below ground.

  3. A neural network based 3D/3D image registration quality evaluator for the head-and-neck patient setup in the absence of a ground truth.

    Science.gov (United States)

    Wu, Jian; Murphy, Martin J

    2010-11-01

    To develop a neural network based registration quality evaluator (RQE) that can identify unsuccessful 3D/3D image registrations for the head-and-neck patient setup in radiotherapy. A two-layer feed-forward neural network was used as a RQE to classify 3D/3D rigid registration solutions as successful or unsuccessful based on the features of the similarity surface near the point-of-solution. The supervised training and test data sets were generated by rigidly registering daily cone-beam CTs to the treatment planning fan-beam CTs of six patients with head-and-neck tumors. Two different similarity metrics (mutual information and mean-squared intensity difference) and two different types of image content (entire image versus bony landmarks) were used. The best solution for each registration pair was selected from 50 optimizing attempts that differed only by the initial transformation parameters. The distance from each individual solution to the best solution in the normalized parametrical space was compared to a user-defined error threshold to determine whether that solution was successful or not. The supervised training was then used to train the RQE. The performance of the RQE was evaluated using the test data set that consisted of registration results that were not used in training. The RQE constructed using the mutual information had very good performance when tested using the test data sets, yielding the sensitivity, the specificity, the positive predictive value, and the negative predictive value in the ranges of 0.960-1.000, 0.993-1.000, 0.983-1.000, and 0.909-1.000, respectively. Adding a RQE into a conventional 3D/3D image registration system incurs only about 10%-20% increase of the overall processing time. The authors' patient study has demonstrated very good performance of the proposed RQE when used with the mutual information in identifying unsuccessful 3D/3D registrations for daily patient setup. The classifier had very good generality and required only to

  4. Causas mal definidas de morte e óbitos sem assistência Ill-defined causes of death and unattended deaths, Brazil, 2003

    Directory of Open Access Journals (Sweden)

    Augusto Hasiak Santo

    2008-02-01

    Full Text Available OBJETIVOS: Este trabalho estuda a distribuição dos óbitos por causas mal definidas no Brasil, no ano de 2003, entre as quais identifica a proporção de mortes sem assistência. MÉTODOS: Os dados provieram do Sistema de Informações Sobre Mortalidade, coordenado pelo Ministério da Saúde. As causas mal definidas de morte compreenderam as incluídas no "Capítulo XVIII - Sintomas, sinais e achados anormais de exames clínicos e de laboratório não classificados em outra parte" da Classificação Estatística Internacional de Doenças e Problemas Relacionados à Saúde, décima revisão, capítulo este no qual a categoria R98 identificava a "morte sem assistência". RESULTADOS: No Brasil, em 2003, a causa básica de 13,3% dos óbitos foi identificada como mal definida, sendo que as proporções maiores ocorreram nas Regiões Nordeste e Norte. Do total de causas mal definidas no país, 53,3% corresponderam a mortes sem assistência, proporção esta que superou 70% nos Estados do Maranhão, Piauí, Rio Grande do Norte, Pernambuco, Bahia, Paraíba e Alagoas. CONCLUSÃO: Dada a estrutura descentralizada para o levantamento dos óbitos no país, identifica-se a maior responsabilidade dos municípios e, em seguida, dos Estados para o aprimoramento da qualidade das estatísticas de mortalidade.BACKGROUND: We studied the distribution of deaths from ill-defined causes that occurred in Brazil during 2003, from which was identified the proportion of unattended deaths. METHODS: Data were obtained from the Mortality Information System, coordinated by the Ministry of Health. Causes of death included in "Chapter XVIII - Symptoms, signs and abnormal clinical and laboratory findings, not classified elsewhere" of the International Statistical Classification of Diseases and Related Health Problems, tenth revision, were considered ill-defined, among which the category R98 identified "unattended deaths". RESULTS: In Brazil during 2003 the underlying causes of

  5. Genetical Swarm Optimization of Multihop Routes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Davide Caputo

    2010-01-01

    Full Text Available In recent years, wireless sensor networks have been attracting considerable research attention for a wide range of applications, but they still present significant network communication challenges, involving essentially the use of large numbers of resource-constrained nodes operating unattended and exposed to potential local failures. In order to maximize the network lifespan, in this paper, genetical swarm optimization (GSO is applied, a class of hybrid evolutionary techniques developed in order to exploit in the most effective way the uniqueness and peculiarities of two classical optimization approaches; particle swarm optimization (PSO and genetic algorithms (GA. This procedure is here implemented to optimize the communication energy consumption in a wireless network by selecting the optimal multihop routing schemes, with a suitable hybridization of different routing criteria, confirming itself as a flexible and useful tool for engineering applications.

  6. ZERO: Probabilistic Routing for Deploy and Forget Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jose Carlos Pacho

    2010-09-01

    Full Text Available As Wireless Sensor Networks are being adopted by industry and agriculture for large-scale and unattended deployments, the need for reliable and energy-conservative protocols become critical. Physical and Link layer efforts for energy conservation are not mostly considered by routing protocols that put their efforts on maintaining reliability and throughput. Gradient-based routing protocols route data through most reliable links aiming to ensure 99% packet delivery. However, they suffer from the so-called ”hot spot” problem. Most reliable routes waste their energy fast, thus partitioning the network and reducing the area monitored. To cope with this ”hot spot” problem we propose ZERO a combined approach at Network and Link layers to increase network lifespan while conserving reliability levels by means of probabilistic load balancing techniques.

  7. Restoration of lost connectivity of partitioned wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Virender Ranga

    2016-05-01

    Full Text Available The lost connectivity due to failure of large scale nodes plays major role to degrade the system performance by generating unnecessary overhead or sometimes totally collapse the active network. There are many issues and challenges to restore the lost connectivity in an unattended scenario, i.e. how many recovery nodes will be sufficient and on which locations these recovery nodes have to be placed. A very few centralized and distributed approaches have been proposed till now. The centralized approaches are good for a scenario where information about the disjoint network, i.e. number of disjoint segments and their locations are well known in advance. However, for a scenario where such information is unknown due to the unattended harsh environment, a distributed approach is a better solution to restore the partitioned network. In this paper, we have proposed and implemented a semi-distributed approach called Relay node Placement using Fermat Point (RPFP. The proposed approach is capable of restoring lost connectivity with small number of recovery relay nodes and it works for any number of disjoint segments. The simulation experiment results show effectiveness of our approach as compared to existing benchmark approaches.

  8. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  9. Estimating ground water yield in small research basins

    Science.gov (United States)

    Elon S. Verry

    2003-01-01

    An analysis of ground water recharge in 32 small research watersheds shows the average flow of ground water out of the watershed (deep seepage) is 45% of streamflow and ranges from 8 to 350 mm/year when apportioned over the watershed area. It is time to meld ground water and small watershed science. The use of we11 networks and the evaluation of ground water well...

  10. High-Capacity Ground Communications to Support Future Space Missions: A Forecast of Ground Communications Challenges in the 2010-2020 Period

    Science.gov (United States)

    Markley, Richard W.

    2003-01-01

    The purpose of this presentation is to identify major challenges involved in space ground communications networks to support space flight missions over the next 20 years. The presentation focus is on the Deep Space Network and its customers, but the forecast is applicable to all space ground communications networks.

  11. A Network Access Control Framework for 6LoWPAN Networks

    Science.gov (United States)

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  12. AVE/VAS experiment: Ground truth network

    Science.gov (United States)

    Scoggins, J. R.

    1983-01-01

    The visible/infrared spin scan radiometer (VISSR) atmospheric sounder (VAS) rawinsonde field program is discussed. Specific items covered include: planning, personnel requirements and training, operational requirement and procedures, sounding times and dates, methods of data processing, data inventory, and status of data processing.

  13. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  14. Continuous and unattended measurements of the site preference of nitrous oxide emitted from an agricultural soil using quantum cascade laser spectrometry with intercomparison with isotope ratio mass spectrometry.

    Science.gov (United States)

    Yamamoto, Akinori; Uchida, Yoshitaka; Akiyama, Hiroko; Nakajima, Yasuhiro

    2014-07-15

    The difference between the (15)N natural abundance of (14)N-(15)N-O and (15)N-(14)N-O (site preference; SP) is used to understand the mechanisms underlying N2O emissions from soils. We investigated the use of quantum cascade laser (QCL) absorption spectrometry for continuous and precise analysis of the SP of N2O emitted from a field soil at atmospheric mixing ratios. A QCL-based spectrometer was used to determine the SP of soil-emitted N2O accumulated in a closed chamber system without preconcentration. N2O standards (gas samples. Intercomparison measurements of QCLS and isotope ratio mass spectrometry (IRMS) were performed on N2O calibration gases at different mixing ratios. The observed dependency of the QCLS result on the N2O mixing ratio was corrected. Measurement of SP of N2O emitted from the field suggested that the SP of N2O varied from 0 to 40‰ over a period of 1 month. The precisions of the SP measurements (300-2500 ppbv) were control precision of ±0.01 K. Continuous and unattended measurements of the SP of N2O emitted from soils were achieved at low N2O mixing ratios. The accuracy of the QCLS measurements for the SP of N2O was significantly improved by precisely controlling the temperature of the system and by correcting for the concentration dependency of the raw data through an intercomparison with IRMS measurements. Copyright © 2014 John Wiley & Sons, Ltd.

  15. The ground water monitoring program. Grundwasserueberwachungsprogramm; Ergebnisse der Beprobung 1992

    Energy Technology Data Exchange (ETDEWEB)

    Grimm-Strele, J.; Burk, K.; Barufke, K.P.; Feuerstein, W.; Heidland, S.; Kaltenbach, D.; Maisch, M.; Regner, B.; Schuhmann, D.; Seifert, D.; Stekker, D.; Weiller-Schaefer, M.; Werner, K.

    1993-05-01

    The Baden-Wuerttemberg monitoring network for assessment of the actual state of the ground water and of possible development trends is part of a preventive ground water pollution abatement program. The monitoring network was extended considerably in 1992. The organizational structure was changed through takeover of the monitoring networks owned by Verdichtungsmessnetz Wasserversorgung by the water supply utilities. The analytical data compiled in 1992 are presented placing emphasis on the ground water data obtained for critical substances such as nitrates, herbicides, pesticides, and highly volatile halogenated hydrocarbons. Numerous further results from different types of measuring points are compiled in concise statistical surveys. (orig.)

  16. Electrical Subsurface Grounding Analysis

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Calle

    2000-11-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  17. Constructivist Grounded Theory?

    National Research Council Canada - National Science Library

    Barney G. Glaser, PhD, Hon. PhD

    2012-01-01

    AbstractI refer to and use as scholarly inspiration Charmaz’s excellent article on constructivist grounded theory as a tool of getting to the fundamental issues on why grounded theory is not constructivist...

  18. Constructivist Grounded Theory?

    OpenAIRE

    Glaser, Barney G.

    2007-01-01

    In meinem Beitrag greife ich zurück auf den ausgezeichneten und inspirierenden Artikel von CHARMAZ zu konstruktivistischer Grounded Theory, um an diesem Beispiel zu diskutieren, dass und warum die Grounded Theory kein konstruktivistisches Unterfangen ist. Ich versuche zu zeigen, dass "konstruktivistische Daten" bzw. konstruktivistische Anwendungen der Grounded Theory, sofern sie überhaupt existieren bzw. sinnvoll sein könnten, nur einen verschwindend kleinen Teil der Grounded Theory ausmachen...

  19. Networks Technology Conference

    Science.gov (United States)

    Tasaki, Keiji K. (Editor)

    1993-01-01

    The papers included in these proceedings represent the most interesting and current topics being pursued by personnel at GSFC's Networks Division and supporting contractors involved in Space, Ground, and Deep Space Network (DSN) technical work. Although 29 papers are represented in the proceedings, only 12 were presented at the conference because of space and time limitations. The proceedings are organized according to five principal technical areas of interest to the Networks Division: Project Management; Network Operations; Network Control, Scheduling, and Monitoring; Modeling and Simulation; and Telecommunications Engineering.

  20. Constructivist Grounded Theory?

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD

    2012-06-01

    Full Text Available AbstractI refer to and use as scholarly inspiration Charmaz’s excellent article on constructivist grounded theory as a tool of getting to the fundamental issues on why grounded theory is not constructivist. I show that constructivist data, if it exists at all, is a very, very small part of the data that grounded theory uses.

  1. Communication, concepts and grounding

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, F.

    2015-01-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain

  2. Information networks and links

    Science.gov (United States)

    Davydov, G. B.

    The basic operating principles of a telecommunications network are described. The technical characteristics of three types of telecommunications network are discussed, including voice-based (telephone) systems; television networks; and data (digital) communications. Among the specific transmission and channeling systems described are: satellite relays; microwae relays; ground based microwave relays; and pulse code modulation; (PCM). The integration of world wide systems for coordinating voice data, and video communications is also discussed.

  3. Rigour and grounded theory.

    Science.gov (United States)

    Cooney, Adeline

    2011-01-01

    This paper explores ways to enhance and demonstrate rigour in a grounded theory study. Grounded theory is sometimes criticised for a lack of rigour. Beck (1993) identified credibility, auditability and fittingness as the main standards of rigour for qualitative research methods. These criteria were evaluated for applicability to a Straussian grounded theory study and expanded or refocused where necessary. The author uses a Straussian grounded theory study (Cooney, In press) to examine how the revised criteria can be applied when conducting a grounded theory study. Strauss and Corbin (1998b) criteria for judging the adequacy of a grounded theory were examined in the context of the wider literature examining rigour in qualitative research studies in general and grounded theory studies in particular. A literature search for 'rigour' and 'grounded theory' was carried out to support this analysis. Criteria are suggested for enhancing and demonstrating the rigour of a Straussian grounded theory study. These include: cross-checking emerging concepts against participants' meanings, asking experts if the theory 'fit' their experiences, and recording detailed memos outlining all analytical and sampling decisions. IMPLICATIONS FOR RESEARCH PRACTICE: The criteria identified have been expressed as questions to enable novice researchers to audit the extent to which they are demonstrating rigour when writing up their studies. However, it should not be forgotten that rigour is built into the grounded theory method through the inductive-deductive cycle of theory generation. Care in applying the grounded theory methodology correctly is the single most important factor in ensuring rigour.

  4. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  5. Adiabatic ground state preparation in an expanding lattice

    Science.gov (United States)

    Gazit, Snir; Olund, Chris; Yao, Norman

    2017-04-01

    We numerically investigate the newly proposed s-source framework for constructing ground state wave functions of gapped Hamiltonians. The key idea is to utilize the adiabatic principle to build a tensor network representation that smoothly interpolates between the ground state of system sizes L and 2L via an interleaved set of ancillary degrees of freedom. Repeatedly applying this procedure reproduces the thermodynamic limit. The scheme should be contrasted with conventional tensor network methods that rely on the variational principle to target the ground state by iteratively improving a variational energy. We introduce a simple yet flexible tensor network structure and an optimization protocol borrowing techniques from quantum control theory. We anticipate that this approach can, in principle, allow access to problems beyond current tensor network technology and even serve as an experimental scheme for ground state preparation in quantum engineered systems.

  6. Ground penetrating radar (GPR) analysis : Phase II field evaluation.

    Science.gov (United States)

    2011-10-01

    "The objective of this work was to evaluate the feasibility and value of expanding the MDT's Ground : Penetrating Radar (GPR) program to pavement design and rehabilitation, and to network level : evaluation. Phase I of this project concluded that in ...

  7. GAI LONG RANGE LIGHTNING NETWORK V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The US National Lightning Detection Network is a commercial network that records the time, polarity, signal strength, and number of cloud-to-ground lightning flashes...

  8. Measurement of ground potential difference at power substations

    Energy Technology Data Exchange (ETDEWEB)

    Lipavsky, P. (Cincinnati Bell Telephone, Cincinnati, OH (US)); Nienaber, R.E. (Cincinnati Gas and Electric Co., OH (USA))

    1991-01-01

    Increasing sensitivity of electronic equipment, such as the integrated services digital network, and closer association of telephone and power facilities increase the importance of an accurate determination of ground potential difference (GPD) during a ground fault in or near a power substation. A method of recording actual values of GPD using six years of records at four large substations is presented and analyzed.

  9. Intelligent maritime security system with sensor networks for coastal environmental and homeland security applications

    Science.gov (United States)

    Carapezza, Edward M.; Bucklin, Ann

    2007-10-01

    This paper proposes an innovative command and control system design and the use of low, cost distributed sensor networks for an intelligent maritime security system. This concept utilizes a network of small passive and active multi-phenomenological unattended sensors and shore based optical sensors to detect, classify, and track submerged threat objects approaching high value coastal assets, such as ports, harbors, residential, commercial, and military facilities and areas. The network of unattended, in-water sensors perform the initial detection, classification, and coarse tracking and then queues shore based optical laser radar sensors. These shore-based sensors perform a high resolution sector search to develop a precision track on the submerged threat objects. Potential threat objects include submarines, submerged barges, UUV's, swimmers carrying threat objects such as explosives, chemical, biological, radiological, and nuclear materials. Reliable systems with low false alarm rates (FAR) are proposed. Tens to hundreds of low cost passive sensors are proposed to be deployed conjunctively with several active acoustic and optical sensors in threat and facility dependant patterns to maximize the detection, tracking and classification of submerged threat objects.

  10. Modernization of the Cassini Ground System

    Science.gov (United States)

    Razo, Gus; Fujii, Tammy

    2014-01-01

    The Cassini Spacecraft and its ground system have been operational for over 16 years. Modernization presents several challenges due to the personnel, processes, and tools already invested and embedded into the current ground system structure. Every mission's ground system has its own unique complexities and challenges, involving various organizational units. As any mission from its inception to its execution, schedules are always tight. This forces GDS engineers to implement a working ground system that is not necessarily fully optimized. Ground system challenges increase as technology evolves and cyber threats become more sophisticated. Cassini's main challenges were due to its ground system existing before many security requirements were levied on the multi-mission tools and networks. This caused a domino effect on Cassini GDS tools that relied on outdated technological features. In the aerospace industry reliable and established technology is preferred over innovative yet less proven technology. Loss of data for a spacecraft mission can be catastrophic; therefore, there is a reluctance to make changes and updates to the ground system. Nevertheless, all missions and associated teams face the need to modernize their processes and tools. Systems development methods from well-known system analysis and design principles can be applied to many missions' ground systems. Modernization should always be considered, but should be done in such a way that it does not affect flexibility nor interfere with established practices. Cassini has accomplished a secure and efficient ground data system through periodic updates. The obstacles faced while performing the modernization of the Cassini ground system will be outlined, as well as the advantages and challenges that were encountered.

  11. [Introduction to grounded theory].

    Science.gov (United States)

    Wang, Shou-Yu; Windsor, Carol; Yates, Patsy

    2012-02-01

    Grounded theory, first developed by Glaser and Strauss in the 1960s, was introduced into nursing education as a distinct research methodology in the 1970s. The theory is grounded in a critique of the dominant contemporary approach to social inquiry, which imposed "enduring" theoretical propositions onto study data. Rather than starting from a set theoretical framework, grounded theory relies on researchers distinguishing meaningful constructs from generated data and then identifying an appropriate theory. Grounded theory is thus particularly useful in investigating complex issues and behaviours not previously addressed and concepts and relationships in particular populations or places that are still undeveloped or weakly connected. Grounded theory data analysis processes include open, axial and selective coding levels. The purpose of this article was to explore the grounded theory research process and provide an initial understanding of this methodology.

  12. Airport Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Clausen, Tommy

    travels safely and efficiently through the airport. When an aircraft lands, a significant number of tasks must be performed by different groups of ground crew, such as fueling, baggage handling and cleaning. These tasks must be complete before the aircraft is able to depart, as well as check......-in and security services. These tasks are collectively known as ground handling, and are the major source of activity with airports. The business environments of modern airports are becoming increasingly competitive, as both airports themselves and their ground handling operations are changing to private...... ownership. As airports are in competition to attract airline routes, efficient and reliable ground handling operations are imperative for the viability and continued growth of both airports and airlines. The increasing liberalization of the ground handling market prompts ground handling operators...

  13. SAFARI 2000 AERONET Ground-based Aerosol Data, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — AERONET (AErosol RObotic NETwork) is an optical ground-based aerosol monitoring network and data archive system. AERONET measurements of the column-integrated...

  14. Electrical grounding prong socket

    Science.gov (United States)

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  15. From nature to grounding

    OpenAIRE

    Jago, Mark

    2011-01-01

    Grounding is a powerful metaphysical concept; yet there is widespread scepticism about the intelligibility of the notion. In this paper, I propose an account of an entity’s nature or essence, which I then use to provide grounding conditions for that entity. I claim that an understanding of an entity’s nature, together with an account of how logically complex entities are grounded, provides all we need to understand how that entity is grounded. This approach not only allows us to say what grou...

  16. Serial Network Flow Monitor

    Science.gov (United States)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  17. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  18. Efektivitas Instagram Common Grounds

    OpenAIRE

    Wifalin, Michelle

    2016-01-01

    Efektivitas Instagram Common Grounds merupakan rumusan masalah yang diambil dalam penelitian ini. Efektivitas Instagram diukur menggunakan Customer Response Index (CRI), dimana responden diukur dalam berbagai tingkatan, mulai dari awareness, comprehend, interest, intentions dan action. Tingkatan respons inilah yang digunakan untuk mengukur efektivitas Instagram Common Grounds. Teori-teori yang digunakan untuk mendukung penelitian ini yaitu teori marketing Public Relations, teori iklan, efekti...

  19. Decentralized Ground Staff Scheduling

    DEFF Research Database (Denmark)

    Sørensen, M. D.; Clausen, Jens

    2002-01-01

    Typically, ground staff scheduling is centrally planned for each terminal in an airport. The advantage of this is that the staff is efficiently utilized, but a disadvantage is that staff spends considerable time walking between stands. In this paper a decentralized approach for ground staff...

  20. Mitigating Cyber Security Risk in Satellite Ground Systems

    Science.gov (United States)

    2015-04-01

    examination of private industry standards and theory shows better methods of mitigating cyber security risk via simplifying the security controls...ground system network to actually affect the space asset’s operational effectiveness or siphon data from the network.65 This timeline typically could

  1. Communication, concepts and grounding.

    Science.gov (United States)

    van der Velde, Frank

    2015-02-01

    This article discusses the relation between communication and conceptual grounding. In the brain, neurons, circuits and brain areas are involved in the representation of a concept, grounding it in perception and action. In terms of grounding we can distinguish between communication within the brain and communication between humans or between humans and machines. In the first form of communication, a concept is activated by sensory input. Due to grounding, the information provided by this communication is not just determined by the sensory input but also by the outgoing connection structure of the conceptual representation, which is based on previous experiences and actions. The second form of communication, that between humans or between humans and machines, is influenced by the first form. In particular, a more successful interpersonal communication might require forms of situated cognition and interaction in which the entire representations of grounded concepts are involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The Grounded Theory Bookshelf

    Directory of Open Access Journals (Sweden)

    Dr. Alvita Nathaniel, DSN, APRN, BC

    2005-06-01

    Full Text Available The Grounded Theory Perspective III: Theoretical Coding, Barney G. Glaser (Sociology Press, 2005. Not intended for a beginner, this book further defi nes, describes, and explicates the classic grounded theory (GT method. Perspective III lays out various facets of theoretical coding as Glaser meticulously distinguishes classic GT from other subsequent methods. Developed many years after Glaser’s classic GT, these methods, particularly as described by Strauss and Corbin, adopt the grounded theory name and engender ongoing confusion about the very premises of grounded theory. Glaser distinguishes between classic GT and the adscititious methods in his writings, referring to remodeled grounded theory and its offshoots as Qualitative Data Analysis (QDA models.

  3. A Qualitative Comparison of Different Logical Topologies for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Quazi Mamun

    2012-11-01

    Full Text Available Wireless Sensor Networks (WSNs are formed by a large collection of power-conscious wireless-capable sensors without the support of pre-existing infrastructure, possibly by unplanned deployment. With a sheer number of sensor nodes, their unattended deployment and hostile environment very often preclude reliance on physical configuration or physical topology. It is, therefore, often necessary to depend on the logical topology. Logical topologies govern how a sensor node communicates with other nodes in the network. In this way, logical topologies play a vital role for resource-constraint sensor networks. It is thus more intuitive to approach the constraint minimizing problems from (logical topological point of view. Hence, this paper aims to study the logical topologies of WSNs. In doing so, a set of performance metrics is identified first. We identify various logical topologies from different application protocols of WSNs, and then compare the topologies using the set of performance metrics.

  4. Adding Theoretical Grounding to Grounded Theory: Toward Multi-Grounded Theory

    OpenAIRE

    Göran Goldkuhl; Stefan Cronholm

    2010-01-01

    The purpose of this paper is to challenge some of the cornerstones of the grounded theory approach and propose an extended and alternative approach for data analysis and theory development, which the authors call multi-grounded theory (MGT). A multi-grounded theory is not only empirically grounded; it is also grounded in other ways. Three different grounding processes are acknowledged: theoretical, empirical, and internal grounding. The authors go beyond the pure inductivist approach in GT an...

  5. Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice

    Science.gov (United States)

    Saito, Hiroki; Kato, Masaya

    2018-01-01

    We have developed a variational method to obtain many-body ground states of the Bose-Hubbard model using feedforward artificial neural networks. A fully connected network with a single hidden layer works better than a fully connected network with multiple hidden layers, and a multilayer convolutional network is more efficient than a fully connected network. AdaGrad and Adam are optimization methods that work well. Moreover, we show that many-body ground states with different numbers of particles can be generated by a single network.

  6. Grounding, shielding, and bonding

    Science.gov (United States)

    Catrysse, J.

    1991-06-01

    In the electromagnetic compatibility design (EMC) of systems and circuits, both grounding and shielding are related to the coupling mechanisms of the system with (radiated) electromagnetic fields. Grounding is more related to the source or victim circuit (or system) and determines the characteristic of the coupling mechanism between fields and currents/voltages. Shielding is a way of interacting in the radiation path of an electromagnetic field. The basic principles and practical design rules are discussed.

  7. Infrasound from ground to space

    Science.gov (United States)

    Bowman, Daniel Charles

    Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.

  8. A research on the application of software defined networking in satellite network architecture

    Science.gov (United States)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  9. Ground Enterprise Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Emergent Space Technologies Inc. proposes to develop the Ground Enterprise Management System (GEMS) for spacecraft ground systems. GEMS will provide situational...

  10. Securing underwater wireless communication networks

    OpenAIRE

    Domingo Aladrén, Mari Carmen

    2011-01-01

    Underwater wireless communication networks are particularly vulnerable to malicious attacks due to the high bit error rates, large and variable propagation delays, and low bandwidth of acoustic channels. The unique characteristics of the underwater acoustic communication channel, and the differences between underwater sensor networks and their ground-based counterparts require the development of efficient and reliable security mechanisms. In this article, a compl...

  11. Reinventing Grounded Theory: Some Questions about Theory, Ground and Discovery

    Science.gov (United States)

    Thomas, Gary; James, David

    2006-01-01

    Grounded theory's popularity persists after three decades of broad-ranging critique. In this article three problematic notions are discussed--"theory," "ground" and "discovery"--which linger in the continuing use and development of grounded theory procedures. It is argued that far from providing the epistemic security promised by grounded theory,…

  12. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  13. Grounding of space structures

    Science.gov (United States)

    Bosela, P. A.; Fertis, D. G.; Shaker, F. J.

    1992-01-01

    Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. This paper examines the grounding phenomenon in detail. Numerous stiffness matrices developed by others are examined for rigid body rotation capability, and found lacking. A force imbalance inherent in the formulations examined is the likely cause of the grounding problem, suggesting the need for a directed force formulation.

  14. Collison and Grounding

    DEFF Research Database (Denmark)

    Wang, G.; Ji, C.; Kuhala, P.

    2006-01-01

    COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence, the proba......COMMITTEE MANDATE Concern for structural arrangements on ships and floating structures with regard to their integrity and adequacy in the events of collision and grounding, with the view towards risk assessment and management. Consideration shall be given to the frequency of occurrence...

  15. Coding Issues in Grounded Theory

    Science.gov (United States)

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  16. A network of networks.

    Science.gov (United States)

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more

  17. Grounding in Instant Messaging

    Science.gov (United States)

    Fox Tree, Jean E.; Mayer, Sarah A.; Betts, Teresa E.

    2011-01-01

    In two experiments, we investigated predictions of the "collaborative theory of language use" (Clark, 1996) as applied to instant messaging (IM). This theory describes how the presence and absence of different grounding constraints causes people to interact differently across different communicative media (Clark & Brennan, 1991). In Study 1, we…

  18. Mechanics of Ship Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    In these notes first a simplified mathematical model is presented for analysis of ship hull loading due to grounding on relatively hard and plane sand, clay or rock sea bottoms. In a second section a more rational calculation model is described for the sea bed soil reaction forces on the sea bott...

  19. Informed Grounded Theory

    Science.gov (United States)

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  20. Grounding Anger Management

    Directory of Open Access Journals (Sweden)

    Odis E. Simmons, PhD

    2017-06-01

    Full Text Available One of the things that drew me to grounded theory from the beginning was Glaser and Strauss’ assertion in The Discovery of Grounded Theory that it was useful as a “theoretical foothold” for practical applications (p. 268. From this, when I was a Ph.D student studying under Glaser and Strauss in the early 1970s, I devised a GT based approach to action I later came to call “grounded action.” In this short paper I’ll present a very brief sketch of an anger management program I developed in 1992, using grounded action. I began my research by attending a two-day anger management training workshop designed for training professionals in the most commonly used anger management model. Like other intervention programs I had seen, this model took a psychologizing and pathologizing approach to the issue. Following this, I sat through the full course of an anger management program that used this model, observing the reactions of the participants and the approach of the facilitator. Following each session I conducted open-ended interviews with most of the participants, either individually or in groups of two or three. I had also done previous research in counseling and social work contexts that turned out to be very relevant to an anger management program design.

  1. Korea's School Grounds Projects

    Science.gov (United States)

    Park, Joohun

    2003-01-01

    This article describes two projects which Korea has undertaken to improve its school grounds: (1) the Green School Project; and (2) the School Forest Pilot Project. The Korean Ministry of Education and Human Resources Development (MOE&HRI) recently launched the Green School Project centred on existing urban schools with poor outdoor…

  2. Singlet Ground State Magnetism:

    DEFF Research Database (Denmark)

    Loidl, A.; Knorr, K.; Kjems, Jørgen

    1979-01-01

    The magneticGamma 1 –Gamma 4 exciton of the singlet ground state system TbP has been studied by inelastic neutron scattering above the antiferromagnetic ordering temperature. Considerable dispersion and a pronounced splitting was found in the [100] and [110] directions. Both the band width and th...

  3. LIDeA: A Distributed Lightweight Intrusion Detection Architecture for Sensor Networks

    DEFF Research Database (Denmark)

    Giannetsos, Athanasios; Krontiris, Ioannis; Dimitriou, Tassos

    2008-01-01

    Wireless sensor networks are vulnerable to adversaries as they are frequently deployed in open and unattended environments. Preventive mechanisms can be applied to protect them from an assortment of attacks. However, more sophisticated methods, like intrusion detection systems, are needed...... to achieve a more autonomic and complete defense mechanism, even against attacks that have not been anticipated in advance. In this paper, we present a lightweight intrusion detection system, called LIDeA, designed for wireless sensor networks. LIDeA is based on a distributed architecture, in which nodes...... overhear their neighboring nodes and collaborate with each other in order to successfully detect an intrusion. We show how such a system can be implemented in TinyOS, which components and interfaces are needed, and what is the resulting overhead imposed....

  4. Free cooling in an urban environment - A lake and ground water distribution network to cover the heating and cooling needs of buildings - Feasibility study for the City of Neuchatel, Switzerland; Freecooling en milieu urbain. Reseau de distribution d'eau de lac et d'eau souterraine pour couvrir les besoins en rafraichissement et en chaleur des batiments. Etude de faisabilite pour la Ville de Neuchatel, Suisse - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Matthey, B.; Affolter, M.

    2009-12-15

    The potential cooling demand in the City of Neuchatel (35,000 inhabitants) is estimated to at least 15 MW. Considering the natural cooling resources available (the Lake of Neuchatel, the Serriere spring, groundwater), these needs can be satisfied without electrical refrigeration equipment. However, the multiplicity of resources and needs implicates the use of multiple and complementary water supply systems: individual wells, multiple building network, lake water distribution network for an entire district. Three exploitation systems to supply cooling water to the center of Neuchatel have been evaluated: lake water, ground water, existing drinking water network. The analysis indicates that the realization of a lake water network for free cooling and heat pumps is economically attractive. In a first step and to meet the short-term demand, the providing of cool water through the existing drinking water network can be considered. In Serriere, the use of the heating and cooling resource of the Serriere river has been evaluated. The results demonstrate the technical and economical feasibility of a heating and cooling water supply network. (authors)

  5. Applications of CCSDS recommendations to Integrated Ground Data Systems (IGDS)

    Science.gov (United States)

    Mizuta, Hiroshi; Martin, Daniel; Kato, Hatsuhiko; Ihara, Hirokazu

    1993-01-01

    This paper describes an application of the CCSDS Principle Network (CPH) service model to communications network elements of a postulated Integrated Ground Data System (IGDS). Functions are drawn principally from COSMICS (Cosmic Information and Control System), an integrated space control infrastructure, and the Earth Observing System Data and Information System (EOSDIS) Core System (ECS). From functional requirements, this paper derives a set of five communications network partitions which, taken together, support proposed space control infrastructures and data distribution systems. Our functional analysis indicates that the five network partitions derived in this paper should effectively interconnect the users, centers, processors, and other architectural elements of an IGDS. This paper illustrates a useful application of the CCSDS (Consultive Committee for Space Data Systems) Recommendations to ground data system development.

  6. The ground station of the future

    Science.gov (United States)

    Krynitz, Martin

    2010-11-01

    A workshop on the subject was held at SSC Chile in November 2008 at the Santiago Ground Station. Among the 50 participants were twelve space agencies and key individuals from industry. Topics covering frequencies, remote control, communication, LEOP requirements and the future of the commercial market were discussed in separate working groups and reported to the assembly. These findings have been summarised in this paper. One can see a tendency towards Ku-band and in the future Ka-band from X- and S-band. Optical links may be the next logical step. Standardisation processes and de-facto standardised equipment have led to an increase of interoperability between ground stations, but this can be enhanced much further by agreeing on real standards. This affects the preparation phase of the network in a sense that interfaces as well as testing hours are reduced. The result is that prices are dropping in some regions. Overall there is a pressure on all network operators to provide cheaper and faster services without compromising reliability. Agencies are increasingly relying upon commercial sector capacity both for non-routine operations (e.g. LEOPs and backup emergency) and for their daily support needs. Another change is that the commercial sector is consolidating into global networks under private ownership exploiting the synergies that offer one interface and access point.

  7. Ignoring Grounded Description

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD

    2016-12-01

    Full Text Available Why is there so much grounded description? The simplest, direct answer is that to many a researcher this is GT. This view is supported by several factors. It is easy and natural to describe accurately. So slipping into grounded description comes naturally and is ok as GT. Also departmental support for description is strongly supported by perspective and academic rewards and history and routine QDA. Also many researchers and readers of research cannot conceptualize very well if at all. They want accurate description about the data in the study. They are not into taking a core category as a general category applicable to general implications applicable to much data elsewhere. Their study is about explaining processes the data, NOT in studying the implications of core and sub-core categories as they are integrated into an explanatory theory. I trust the reader can think of other sources of letting GT research slip into conceptual description.

  8. Remodeling Grounded Theory

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser Ph.D., Hon. Ph.D.

    2004-11-01

    Full Text Available This paper outlines my concerns with Qualitative Data Analysis’ (QDAnumerous remodelings of Grounded Theory (GT and the subsequent eroding impact. I cite several examples of the erosion and summarize essential elements of classic GT methodology. It is hoped that the article will clarify my concerns with the continuing enthusiasm but misunderstood embrace of GT by QDA methodologists and serve as a preliminary guide to novice researchers who wish to explore the fundamental principles of GT.

  9. Implementation of ground

    Directory of Open Access Journals (Sweden)

    Abbas M. Abbas

    2016-06-01

    The ground penetrating radar and electrical resistivity tomography are two geophysical tools that have successful applications in archeological assessment. The two techniques were used in integration plan to assert the archeological potentiality of the studied site and to map the feasible tombs. Sum of 798 GPR profiles and 19 ERT cross sections was carried out over the study area. The results of them were analyzed to envisage these results in archeological terms.

  10. A QoS-Oriented Congestion Control Mechanism for Satellite Networks

    OpenAIRE

    Heyu Liu; Fuchun Sun

    2014-01-01

    The sharply increasing amount of data, which are transferred by the satellite network, requires the satellite network to provide quality-of-service (QoS). However, the upsurge in the data flow leads to the network congestion, impeding its ability to offer QoS. Congestion control mechanisms, deployed in the ground networks, have been thoroughly studied. But those deployed in the satellite networks have not been studied yet. As satellite networks are now important supplements to the ground back...

  11. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  12. 46 CFR 183.376 - Grounded distribution systems (neutral grounded).

    Science.gov (United States)

    2010-10-01

    ... VESSELS (UNDER 100 GROSS TONS) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.376... must be only one connection to ground, regardless of the number of power sources. This ground connection must be at the switchboard or at the common ground plate, which must be accessible. (b) Each...

  13. Ground Beef and Food Safety

    Science.gov (United States)

    ... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... JSR 286) Actions ${title} Loading... Ground Beef and Food Safety Questions about "ground meat" or "hamburger" have always ...

  14. Space Data Network: Concept and rationale

    Science.gov (United States)

    Schulz, Klaus-Juergen

    1991-10-01

    An introduction to the concept and rationale of the Space Data Network (SDN) is given. SDN is a conceptual network, which extends from ground via relay satellites to spacecraft. Due to the heterogeneity of the employed network technologies and the needs of spacecraft operation, it provides a serious technological challenge in the fields of interconnection of transmission systems, networks and service management, and uplink data control.

  15. Networking systems design and development

    CERN Document Server

    Chao, Lee

    2009-01-01

    Effectively integrating theory and hands-on practice, Networking Systems Design and Development provides students and IT professionals with the knowledge and skills needed to design, implement, and manage fully functioning network systems using readily available Linux networking tools. Recognizing that most students are beginners in the field of networking, the text provides step-by-step instruction for setting up a virtual lab environment at home. Grounded in real-world applications, this book provides the ideal blend of conceptual instruction and lab work to give students and IT professional

  16. A Feedback-Based Secure Path Approach for Wireless Sensor Network Data Collection

    Directory of Open Access Journals (Sweden)

    Guiyi Wei

    2010-10-01

    Full Text Available The unattended nature of wireless sensor networks makes them very vulnerable to malicious attacks. Therefore, how to preserve secure data collection is an important issue to wireless sensor networks. In this paper, we propose a novel approach of secure data collection for wireless sensor networks. We explore secret sharing and multipath routing to achieve secure data collection in wireless sensor network with compromised nodes. We present a novel tracing-feedback mechanism, which makes full use of the routing functionality of wireless sensor networks, to improve the quality of data collection. The major advantage of the approach is that the secure paths are constructed as a by-product of data collection. The process of secure routing causes little overhead to the sensor nodes in the network. Compared with existing works, the algorithms of the proposed approach are easy to implement and execute in resource-constrained wireless sensor networks. According to the result of a simulation experiment, the performance of the approach is better than the recent approaches with a similar purpose.

  17. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  18. Common Ground and Delegation

    DEFF Research Database (Denmark)

    Dobrajska, Magdalena; Foss, Nicolai Juul; Lyngsie, Jacob

    Much recent research suggests that firms need to increase their level of delegation to better cope with, for example, the challenges introduced by dynamic rapid environments and the need to engage more with external knowledge sources. However, there is less insight into the organizational...... preconditions of increasing delegation. We argue that key HR practices?namely, hiring, training and job-rotation?are associated with delegation of decision-making authority. These practices assist in the creation of shared knowledge conditions between managers and employees. In turn, such a ?common ground...

  19. Network coded software defined networking: enabling 5G transmission and storage networks

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Lucani Rötter, Daniel Enrique

    2015-01-01

    Software defined networking has garnered large attention due to its potential to virtualize services in the Internet, introducing flexibility in the buffering, scheduling, processing, and routing of data in network routers. SDN breaks the deadlock that has kept Internet network protocols stagnant...... for decades, while applications and physical links have evolved. This article advocates for the use of SDN to bring about 5G network services by incorporating network coding (NC) functionalities. The latter constitutes a major leap forward compared to the state-of-the- art store and forward Internet paradigm....... The inherent flexibility of both SDN and NC provides fertile ground to envision more efficient, robust, and secure networking designs, which may also incorporate content caching and storage, all of which are key challenges of the upcoming 5G networks. This article not only proposes the fundamentals...

  20. Empirical ground motion prediction

    Directory of Open Access Journals (Sweden)

    R. J. Archuleta

    1994-06-01

    Full Text Available New methods of site-specific ground motion prediction in the time and frequency domains are presented. A large earthquake is simulated as a composite (linear combination of observed small earthquakes (subevents assuming Aki-Brune functional models of the source time functions (spectra. Source models incorporate basic scaling relations between source and spectral parameters. Ground motion predictions are consistent with the entire observed seismic spectrum from the lowest to the highest frequencies. These methods are designed to use all the available empirical Green’s functions (or any subset of observations at a site. Thus a prediction is not biased by a single record, and different possible source-receiver paths are taken into account. Directivity is accounted for by adjusting the apparent source duration at each site. Our time-series prediction algorithm is based on determination of a non-uniform distribution of rupture times of subevents. By introducing a specific rupture velocity we avoid the major problem of deficiency of predictions around the main event's corner frequency. A novel notion of partial coherence allows us to sum subevents' amplitude spectra directly without using any information on their rupture times and phase histories. Predictions by this spectral method are not Jependent on details of rupture nucleation and propagation, location of asperities and other predominantly phase-affecting factors, responsible for uncertainties in time-domain simulations.

  1. A thermal ground cloak

    Science.gov (United States)

    Yang, Tianzhi; Wu, Qinghe; Xu, Weikai; Liu, Di; Huang, Lujun; Chen, Fei

    2016-02-01

    The thermal cloak has been a long-standing scientific dream of researchers and engineers. Recently thermal metamaterials with man-made micro-structure have been presented based on the principle of transformation optics (TO). This new concept has received considerable attention, which is a powerful tool for manipulating heat flux in thermal imaging systems. However, the inherent material singularity has long been a captivation of experimental realization. As an alternative method, the scattering-cancellation-based cloak (or bi-layer thermal cloak) has been presented to remove the singularity for achieving the same cloaking performance. Nevertheless, such strategy needs prerequisite knowledge (geometry and conductivity) of the object to be cloaked. In this paper, a new thermal ground cloak is presented to overcome the limitations. The device is designed, fabricated and measured to verify the thermal cloaking performance. We experimentally show that the remarkably low complexity of the device can fully and effectively be manipulated using realizable transformation thermal devices. More importantly, this thermal ground cloak is designed to exclude heat flux without knowing the information of the cloaked object.

  2. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    Science.gov (United States)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  3. Declarative Networking

    CERN Document Server

    Loo, Boon Thau

    2012-01-01

    Declarative Networking is a programming methodology that enables developers to concisely specify network protocols and services, which are directly compiled to a dataflow framework that executes the specifications. Declarative networking proposes the use of a declarative query language for specifying and implementing network protocols, and employs a dataflow framework at runtime for communication and maintenance of network state. The primary goal of declarative networking is to greatly simplify the process of specifying, implementing, deploying and evolving a network design. In addition, decla

  4. A new method to detect long term trends of methane (CH4 and nitrous oxide (N2O total columns measured within the NDACC ground-based high resolution solar FTIR network

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2011-07-01

    Full Text Available Total columns measured with the ground-based solar FTIR technique are highly variable in time due to atmospheric chemistry and dynamics in the atmosphere above the measurement station. In this paper, a multiple regression model with anomalies of air pressure, total columns of hydrogen fluoride (HF and carbon monoxide (CO and tropopause height are used to reduce the variability in the methane (CH4 and nitrous oxide (N2O total columns to estimate reliable linear trends with as small uncertainties as possible. The method is developed at the Harestua station (60° N, 11° E, 600 m a.s.l. and used on three other European FTIR stations, i.e. Jungfraujoch (47° N, 8° E, 3600 m a.s.l., Zugspitze (47° N, 11° E, 3000 m a.s.l., and Kiruna (68° N, 20° E, 400 m a.s.l.. Linear CH4 trends between 0.13 ± 0.01-0.25 ± 0.02 % yr−1 were estimated for all stations in the 1996-2009 period. A piecewise model with three separate linear trends, connected at change points, was used to estimate the short term fluctuations in the CH4 total columns. This model shows a growth in 1996–1999 followed by a period of steady state until 2007. From 2007 until 2009 the atmospheric CH4 amount increases between 0.57 ± 0.22–1.15 ± 0.17 % yr−1. Linear N2O trends between 0.19 ± 0.01–0.40 ± 0.02 % yr−1 were estimated for all stations in the 1996-2007 period, here with the strongest trend at Harestua and Kiruna and the lowest at the Alp stations. From the N2O total columns crude tropospheric and stratospheric partial columns were derived, indicating that the observed difference in the N2O trends between the FTIR sites is of stratospheric origin. This agrees well with the N2O measurements by the SMR instrument onboard the Odin satellite showing the highest trends at Harestua, 0.98 ± 0.28 % yr−1, and considerably smaller trends at lower latitudes, 0.27 ± 0.25 % yr−1. The multiple regression model was compared with two other trend methods, the ordinary linear

  5. Airline Operational Control (AOC)/UAS Ground Control Station (GCS) Collaboration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to form a network and a set of tools that will create a shared situation awareness with Unmanned Aircraft Systems (UAS) Ground Control Stations (GCSs) and...

  6. GPM Ground Validation NASA EPFL-LTE Parsivel DSD Data Lausanne, Switzerland V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NASA EPFL-LTE Parsivel DSD Data Lausanne, Switzerland dataset consists of a network of 16 Parsivel disdrometers deployed on the Ecole...

  7. How can social networks ever become complex? Modelling the emergence of complex networks from local social exchanges

    NARCIS (Netherlands)

    Pujol, Josep M.; Flache, Andreas; Delgado, Jordi; Sangüesa, Ramon; Sanguessa, R.

    2005-01-01

    Small-world and power-law network structures have been prominently proposed as models of large networks. However, the assumptions of these models usually-lack sociological grounding. We present a computational model grounded in social exchange theory. Agents search attractive exchange partners in a

  8. Device for limiting single phase ground fault of mining machines

    Science.gov (United States)

    Fediuk, R. S.; Stoyushko, N. Yu; Yevdokimova, Yu G.; Smoliakov, A. K.; Batarshin, V. O.; Timokhin, R. A.

    2017-10-01

    The paper shows the reasons and consequences of the single-phase ground fault. With all the variety of devices for limiting the current single-phase ground fault, it was found that the most effective are Peterson coils having different switching circuits. Measuring of the capacity of the network is of great importance in this case, a number of options capacitance measurement are presented. A closer look is taken at the device for limiting the current of single-phase short circuit, developed in the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The calculation of single-phase short-circuit currents in the electrical network, without compensation and with compensation of capacitive current is carried out. Simulation of a single-phase circuit in a network with the proposed device is conducted.

  9. Satellite-to-ground quantum key distribution

    Science.gov (United States)

    Liao, Sheng-Kai; Cai, Wen-Qi; Liu, Wei-Yue; Zhang, Liang; Li, Yang; Ren, Ji-Gang; Yin, Juan; Shen, Qi; Cao, Yuan; Li, Zheng-Ping; Li, Feng-Zhi; Chen, Xia-Wei; Sun, Li-Hua; Jia, Jian-Jun; Wu, Jin-Cai; Jiang, Xiao-Jun; Wang, Jian-Feng; Huang, Yong-Mei; Wang, Qiang; Zhou, Yi-Lin; Deng, Lei; Xi, Tao; Ma, Lu; Hu, Tai; Zhang, Qiang; Chen, Yu-Ao; Liu, Nai-Le; Wang, Xiang-Bin; Zhu, Zhen-Cai; Lu, Chao-Yang; Shu, Rong; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. However, the distance over which QKD is achievable has been limited to a few hundred kilometres, owing to the channel loss that occurs when using optical fibres or terrestrial free space that exponentially reduces the photon transmission rate. Satellite-based QKD has the potential to help to establish a global-scale quantum network, owing to the negligible photon loss and decoherence experienced in empty space. Here we report the development and launch of a low-Earth-orbit satellite for implementing decoy-state QKD—a form of QKD that uses weak coherent pulses at high channel loss and is secure because photon-number-splitting eavesdropping can be detected. We achieve a kilohertz key rate from the satellite to the ground over a distance of up to 1,200 kilometres. This key rate is around 20 orders of magnitudes greater than that expected using an optical fibre of the same length. The establishment of a reliable and efficient space-to-ground link for quantum-state transmission paves the way to global-scale quantum networks.

  10. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  11. The LOFT Ground Segment

    DEFF Research Database (Denmark)

    Bozzo, E.; Antonelli, A.; Argan, A.

    2014-01-01

    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several...... targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT...... Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution...

  12. Applying Grounded Theory

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD, Hon. PhD

    2014-06-01

    Full Text Available Application of grounded theory (GT is a relatively neglected topic by my colleagues. I have written several chapters in my books on applying GT. Two colleagues, Odis Simmons and Barbara Artinian (2009, as well as Dirks and Mills (2011, and Walsh (2014, have also written about applying GT. In the first two chapters of this book I discuss at length properties of generally applying GT and then professional issues and personal matters when applying of GT. There follows in this book nine chapters, four by me and one by Simmons and one by Artinian and one by Dirks and Mills, that are already published in books on GT, and one by Walsh. Thus, this book ends like a reader which publishes in one place already written work. The reader of this book may experience some redundancy in these chapters, but that is the nature of reader texts as different authors discuss the same ideas and topics.

  13. On slippery ground:

    DEFF Research Database (Denmark)

    Olesen, Birgitte Ravn; Nordentoft, Helle Merete

    2018-01-01

    , as researchers, found ourselves on slippery and emotionally charged ground. Using a critical, reflexive approach informed by poststructuralism, our ambition was to deconstruct gaps between rhetoric and practice and critique normative understandings of the nature of ethically sound coproduction processes......Purpose The purpose of this article is to discuss the ethical complexity and dilemmas, which arise in the coproduction of knowledge between researchers and other participants. Design/methodology/approach The starting-point for the article is a narrative from a conference we attended where we...... in collaborative research. More specifically, at the conference, we sought to expose and discuss the gap between our good intentions and our own practice as researchers in a collaborative research project at a major hospital. However, instead of reflexive discussions with the research community, we experienced...

  14. On slippery ground

    DEFF Research Database (Denmark)

    Olesen, Birgitte Ravn; Jakobsen, Helle Nordentoft

    2018-01-01

    , as researchers, found ourselves on slippery and emotionally charged ground. Using a critical, reflexive approach informed by poststructuralism, our ambition was to deconstruct gaps between rhetoric and practice and critique normative understandings of the nature of ethically sound coproduction processes......Purpose The purpose of this article is to discuss the ethical complexity and dilemmas, which arise in the coproduction of knowledge between researchers and other participants. Design/methodology/approach The starting-point for the article is a narrative from a conference we attended where we...... in collaborative research. More specifically, at the conference, we sought to expose and discuss the gap between our good intentions and our own practice as researchers in a collaborative research project at a major hospital. However, instead of reflexive discussions with the research community, we experienced...

  15. GROUNDED THEORY METHODOLOGY and GROUNDED THEORY RESEARCH in TURKEY

    OpenAIRE

    ARIK, Ferhat; ARIK, Işıl Avşar

    2016-01-01

    This research discusses the historical development of the Grounded Theory Methodology, which is one of the qualitative research method, its transformation over time and how it is used as a methodology in Turkey. The Grounded Theory which was founded by Strauss and Glaser, is a qualitative methodology based on inductive logic to discover theories in contrast with the deductive understanding which is based on testing an existing theory in sociology. It is possible to examine the Grounded Theory...

  16. Multiple Lightning Discharges in Wind Turbines Associated with Nearby Cloud-to-Ground Lightning

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Cummins, Kenneth L.; Madsen, Søren Find

    2015-01-01

    -triggering video cameras were correlated with data from the U.S. National Lighting Detection Network. In all five events, the correlation showed that a cloud-to-ground (CG) lightning stroke with high peak current struck the ground within 10 km of the affected turbines at the time of the currents in the wind...

  17. Earthquake ground motion: Chapter 3

    Science.gov (United States)

    Luco, Nicolas; Kircher, Charles A.; Crouse, C. B.; Charney, Finley; Haselton, Curt B.; Baker, Jack W.; Zimmerman, Reid; Hooper, John D.; McVitty, William; Taylor, Andy

    2016-01-01

    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion into parameters for use in design. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7 (the Standard). Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 describes site-specific ground motion requirements and provides example site-specific design and MCER response spectra and example values of site-specific ground motion parameters. Section 3.4 discusses and provides an example for the selection and scaling of ground motion records for use in various types of response history analysis permitted in the Standard.

  18. Use of group 3-level memory telefacsimiles for enhanced interlibrary loan, part II: Network application.

    Science.gov (United States)

    Bennett, V M; Dell, E Y

    1993-07-01

    The Interlibrary Loan, Document Delivery, and Union List Task Force of the Health Sciences Libraries Consortium (HSLC) accepted the charge of maximizing use of the advanced features of group 3-level memory telefacsimiles. A pilot project was initiated to address the task force's recommendation to the HSLC Board that all nonrush interlibrary loan (ILL) documents be transmitted to participants within forty-eight hours of request receipt. This paper describes the project, which tests a network application for unattended, overnight transmission of documents. In determining whether this technology could be used as the primary medium for ILL of photocopies, the following criteria were used: the percentage of ILL requests filled by telefacsimile; the speed, quality, and reliability of service; and the impact of telefacsimile on document delivery costs. The article discusses the project history, optimal use of equipment features for library applications, full-scale implementation, and operational issues that affect ILL policy.

  19. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Daehee Kim

    2016-07-01

    Full Text Available Code dissemination in wireless sensor networks (WSNs is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption.

  20. The network researchers' network

    DEFF Research Database (Denmark)

    Henneberg, Stephan C.; Jiang, Zhizhong; Naudé, Peter

    2009-01-01

    The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987). In thi......The Industrial Marketing and Purchasing (IMP) Group is a network of academic researchers working in the area of business-to-business marketing. The group meets every year to discuss and exchange ideas, with a conference having been held every year since 1984 (there was no meeting in 1987......). In this paper, based upon the papers presented at the 22 conferences held to date, we undertake a Social Network Analysis in order to examine the degree of co-publishing that has taken place between this group of researchers. We identify the different components in this database, and examine the large main...

  1. Method of locating ground faults

    Science.gov (United States)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  2. Burial Ground Expansion Hydrogeologic Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gaughan , T.F.

    1999-02-26

    Sirrine Environmental Consultants provided technical oversight of the installation of eighteen groundwater monitoring wells and six exploratory borings around the location of the Burial Ground Expansion.

  3. The power of ground user in recommender systems.

    Science.gov (United States)

    Zhou, Yanbo; Lü, Linyuan; Liu, Weiping; Zhang, Jianlin

    2013-01-01

    Accuracy and diversity are two important aspects to evaluate the performance of recommender systems. Two diffusion-based methods were proposed respectively inspired by the mass diffusion (MD) and heat conduction (HC) processes on networks. It has been pointed out that MD has high recommendation accuracy yet low diversity, while HC succeeds in seeking out novel or niche items but with relatively low accuracy. The accuracy-diversity dilemma is a long-term challenge in recommender systems. To solve this problem, we introduced a background temperature by adding a ground user who connects to all the items in the user-item bipartite network. Performing the HC algorithm on the network with ground user (GHC), it showed that the accuracy can be largely improved while keeping the diversity. Furthermore, we proposed a weighted form of the ground user (WGHC) by assigning some weights to the newly added links between the ground user and the items. By turning the weight as a free parameter, an optimal value subject to the highest accuracy is obtained. Experimental results on three benchmark data sets showed that the WGHC outperforms the state-of-the-art method MD for both accuracy and diversity.

  4. The power of ground user in recommender systems.

    Directory of Open Access Journals (Sweden)

    Yanbo Zhou

    Full Text Available Accuracy and diversity are two important aspects to evaluate the performance of recommender systems. Two diffusion-based methods were proposed respectively inspired by the mass diffusion (MD and heat conduction (HC processes on networks. It has been pointed out that MD has high recommendation accuracy yet low diversity, while HC succeeds in seeking out novel or niche items but with relatively low accuracy. The accuracy-diversity dilemma is a long-term challenge in recommender systems. To solve this problem, we introduced a background temperature by adding a ground user who connects to all the items in the user-item bipartite network. Performing the HC algorithm on the network with ground user (GHC, it showed that the accuracy can be largely improved while keeping the diversity. Furthermore, we proposed a weighted form of the ground user (WGHC by assigning some weights to the newly added links between the ground user and the items. By turning the weight as a free parameter, an optimal value subject to the highest accuracy is obtained. Experimental results on three benchmark data sets showed that the WGHC outperforms the state-of-the-art method MD for both accuracy and diversity.

  5. Statistical Analysis of Bus Networks in India

    CERN Document Server

    Chatterjee, Atanu; Ramadurai, Gitakrishnan

    2015-01-01

    Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in \\textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe tha...

  6. Getting grounded: using Glaserian grounded theory to conduct nursing research.

    Science.gov (United States)

    Hernandez, Cheri Ann

    2010-03-01

    Glaserian grounded theory is a powerful research methodology for understanding client behaviour in a particular area. It is therefore especially relevant for nurse researchers. Nurse researchers use grounded theory more frequently than other qualitative analysis research methods because of its ability to provide insight into clients' experiences and to make a positive impact. However, there is much confusion about the use of grounded theory.The author delineates key components of grounded theory methodology, areas of concern, and the resulting implications for nursing knowledge development. Knowledge gained from Glaserian grounded theory research can be used to institute measures for enhancing client-nurse relationships, improving quality of care, and ultimately improving client quality of life. In addition, it can serve to expand disciplinary knowledge in nursing because the resulting substantive theory is a middle-range theory that can be subjected to later quantitative testing.

  7. Radiation Behavior of Analog Neural Network Chip

    Science.gov (United States)

    Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.

    1996-01-01

    A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.

  8. Network cosmology.

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  9. Network Cosmology

    Science.gov (United States)

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  10. Electric circuit networks equivalent to chaotic quantum billiards

    OpenAIRE

    Bulgakov, Evgeny N.; Maksimov, Dmitrii N.; Sadreev, Almas F.

    2004-01-01

    We formulate two types of electric RLC resonance network equivalent to quantum billiards. In the network of inductors grounded by capacitors squared resonant frequencies are eigenvalues of the quantum billiard. In the network of capacitors grounded by inductors squared resonant frequencies are given by inverse eigen values of the billiard. In both cases local voltages play role of the wave function of the quantum billiard. However as different from quantum billiards there is a heat power beca...

  11. Holographic spin networks from tensor network states

    Science.gov (United States)

    Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.

    2018-01-01

    In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.

  12. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  13. A Comparative Parametric Analysis of the Ground Fault Current Distribution on Overhead Transmission Lines

    Directory of Open Access Journals (Sweden)

    VINTAN, M.

    2016-02-01

    Full Text Available The ground fault current distribution in an effectively grounded power network is affected by various factors, such as: tower footing impedances, spans lengths, configuration and parameters of overhead ground wires and power conductors, soil resistivity etc. In this paper, we comparatively analyze, using different models, the ground fault current distribution in a single circuit transmission line with one ground wire. A parametric comparative analysis was done in order to study the effects of the non-uniformity of the towers footing impedances, number of power lines spans, soil resistivity, grounding systems resistances of the terminal substations etc., on the ground fault current distribution. There are presented some useful qualitative and quantitative results obtained through a complex dedicated developed MATLAB 7.0 program.

  14. Epstein on Anchors and Grounds

    Directory of Open Access Journals (Sweden)

    Guala Francesco

    2016-03-01

    Full Text Available The distinction between anchors and grounds is one of the most innovative contributions of The Ant Trap. In this commentary I will argue that the distinction suffers from an ambiguity between tokens and types. This leads Epstein to endorse pluralism about anchors and grounds, a position that is not justified in the book and to which there are plausible alternatives.

  15. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate

  16. Grounding experiments on soft bottoms

    DEFF Research Database (Denmark)

    Sterndorff, M.J.; Pedersen, Preben Terndrup

    1996-01-01

    To verify a theoretical analysis procedure for calculation of the hull girder response of ships running aground, a series of large-scale ship grounding experiments was performed on an artificial island made of engineered fill. The tests were conducted by running a condemned fishing vessel up...... for grounding on soft bottoms....

  17. Ground Attenuation of Railroad Noise

    DEFF Research Database (Denmark)

    Makarewicz, R.; Rasmussen, Karsten Bo; Kokowski, P.

    1996-01-01

    The influence of ground effect on railroad noise is described using the concept of the peak A-weighted sound exposure level, and A-weighted sound exposure level. The train is modelled by a continuous line of incoherent point sources that have a cosine directivity. The ground effect is included...

  18. English for Airport Ground Staff

    Science.gov (United States)

    Cutting, Joan

    2012-01-01

    This article describes part of a European Commission Leonardo project that aimed to design a multimedia course for English language learners seeking work as ground staff in European airports. The structural-functional analysis of the dialogues written from the course showed that, across the four trades explored (security guards, ground handlers,…

  19. Considerations on the Mathematical model for Calculating the Single-phase Grounding

    Directory of Open Access Journals (Sweden)

    TATAI Ildiko

    2013-05-01

    Full Text Available In this paper are presented the results obtained using a mathematical model, conceived in order to analyze the effects of grounding faults that occur in a medium voltage network. Measurements were made on a real electric network. Calculated results using the mathematical model are compared with the actual measurements.

  20. On Grounding of Fast Ships

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Pedersen, Preben Terndrup

    1997-01-01

    The paper deals with analysis of grounding of high-speed crafts. It is the purpose to present a comprehensive mathematical model for calculation of the overall dynamic ship response during grounding. This procedure is applied to derive the motions, the time varying sectional forces and the local...... loads during grounding on plane, sloping, sandy bottoms for six different designs of fast monohull ships made from steel, aluminium or GRP sandwich materials. The results show that the effect of the hull flexibility is to reduce the overall dynamic sectional loads on the hull girder. The considered...... numerical examples also indicate that, even with impact speeds of 40 knots against a 1:10 sloping bottom, the global strength of the hull girder is not exceeded by the grounding induced loads.For the local deformation of high-speed ship hulls at the point of contact with the ground, the paper presents...

  1. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    regulations for design of bottom compartment layout with regard to grounding damages are largely based on statistical damage data. New and updated damage statistics holding 930 grounding accident records has been investigated. The bottom damage statistics is compared to current regulations for the bottom......The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current...... for the relation between the amount of deformed structure and the energy absorption. Finally, the paper shows how damage statistics for existing, conventional vessels can be used together with theoretical prediction methods for determining grounding damage distributions for new vessel types not included...

  2. On LHCb muon MWPC grounding

    CERN Document Server

    Kashchuk, A

    2006-01-01

    My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

  3. Ship Collision and Grounding Analysis

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    2010-01-01

    It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human, e......, environmental and economic costs of collision and grounding events. The main goal of collision and grounding research should be to identify the most economic risk control options associated with prevention and mitigation of collision and grounding events......It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human...

  4. Large scale network-centric distributed systems

    CERN Document Server

    Sarbazi-Azad, Hamid

    2014-01-01

    A highly accessible reference offering a broad range of topics and insights on large scale network-centric distributed systems Evolving from the fields of high-performance computing and networking, large scale network-centric distributed systems continues to grow as one of the most important topics in computing and communication and many interdisciplinary areas. Dealing with both wired and wireless networks, this book focuses on the design and performance issues of such systems. Large Scale Network-Centric Distributed Systems provides in-depth coverage ranging from ground-level hardware issu

  5. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  6. Operating systems for wireless sensor networks: a survey.

    Science.gov (United States)

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  7. Operating Systems for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Omer Farooq

    2011-05-01

    Full Text Available This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN Operating Systems (OSs. In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  8. Random field Ising model and community structure in complex networks

    Science.gov (United States)

    Son, S.-W.; Jeong, H.; Noh, J. D.

    2006-04-01

    We propose a method to determine the community structure of a complex network. In this method the ground state problem of a ferromagnetic random field Ising model is considered on the network with the magnetic field Bs = +∞, Bt = -∞, and Bi≠s,t=0 for a node pair s and t. The ground state problem is equivalent to the so-called maximum flow problem, which can be solved exactly numerically with the help of a combinatorial optimization algorithm. The community structure is then identified from the ground state Ising spin domains for all pairs of s and t. Our method provides a criterion for the existence of the community structure, and is applicable equally well to unweighted and weighted networks. We demonstrate the performance of the method by applying it to the Barabási-Albert network, Zachary karate club network, the scientific collaboration network, and the stock price correlation network. (Ising, Potts, etc.)

  9. Telecommunication networks

    CERN Document Server

    Iannone, Eugenio

    2011-01-01

    Many argue that telecommunications network infrastructure is the most impressive and important technology ever developed. Analyzing the telecom market's constantly evolving trends, research directions, infrastructure, and vital needs, Telecommunication Networks responds with revolutionized engineering strategies to optimize network construction. Omnipresent in society, telecom networks integrate a wide range of technologies. These include quantum field theory for the study of optical amplifiers, software architectures for network control, abstract algebra required to design error correction co

  10. Simulation of Attacks for Security in Wireless Sensor Network.

    Science.gov (United States)

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  11. Ground-Water Climate Response Network - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer shows the locations of wells maintained by the U.S. Geological Survey (USGS) that are used to monitor the effects of droughts and other climate...

  12. Federated Ground Station Network Model and Interface Specification

    Science.gov (United States)

    2014-12-01

    23 III. FGN INFORMATION SECURITY SCHEMES ............................................... 25 A. INFORMATION SECURITY OVERVIEW ...Abstract Syntax Notation 1 BPSK binary phase-shift keying CA central authority CCSDS Consultative Committee for Space Data Systems CGA Neptune ...Authorization—limit who is allowed to use their resources A. INFORMATION SECURITY OVERVIEW The first three concepts form the Confidentiality, Integrity

  13. About the Coupling Factor Influence on the Ground Fault Current Distribution on Overhead Transmission Lines

    Directory of Open Access Journals (Sweden)

    VINTAN, M.

    2010-05-01

    Full Text Available A phase-to-ground fault occurring on a transmission line divides the line into two sections, each extending from the fault towards one end of the line. These two sections of the line may be considered infinite if some certain conditions are met; otherwise, they must be regarded as finite. This paper treats the case when those two sections of the line are both very long and allows the determination of the ground fault current distribution in power networks. The influence of the coupling factor between the faulted phase and the ground wire on the ground fault current distribution is studied.

  14. Initial observations of cloud-to-ground lightning activity in microburst producing storms

    Science.gov (United States)

    Buechler, Dennis E.; Goodman, Steven J.

    1988-01-01

    Preliminary observations of cloud-to-ground lightning activity associated with wet microburst producing storms observed during the summer of 1986 near Huntsville, AL are presented. Reflectivity and velocity measurements obtained from two 10 cm Doppler radars are used to identify and characterize the microburst windshears and their parent clouds. A four-station lightning location network is used to characterize the ground discharges produced by these storms. Results show cloud-to-ground flashes preceding the microburst onset by 0 - 28 minutes and suggest that any storm in a microburst environment that produces a discharge to ground has the potential to generate an intense downdraft.

  15. Ground Control System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-31

    The Ground Control System contributes to the safe construction and operation of the subsurface facility, including accesses and waste emplacement drifts, by maintaining the configuration and stability of the openings during construction, development, emplacement, and caretaker modes for the duration of preclosure repository life. The Ground Control System consists of ground support structures installed within the subsurface excavated openings, any reinforcement made to the rock surrounding the opening, and inverts if designed as an integral part of the system. The Ground Control System maintains stability for the range of geologic conditions expected at the repository and for all expected loading conditions, including in situ rock, construction, operation, thermal, and seismic loads. The system maintains the size and geometry of operating envelopes for all openings, including alcoves, accesses, and emplacement drifts. The system provides for the installation and operation of sensors and equipment for any required inspection and monitoring. In addition, the Ground Control System provides protection against rockfall for all subsurface personnel, equipment, and the engineered barrier system, including the waste package during the preclosure period. The Ground Control System uses materials that are sufficiently maintainable and that retain the necessary engineering properties for the anticipated conditions of the preclosure service life. These materials are also compatible with postclosure waste isolation performance requirements of the repository. The Ground Control System interfaces with the Subsurface Facility System for operating envelopes, drift orientation, and excavated opening dimensions, Emplacement Drift System for material compatibility, Monitored Geologic Repository Operations Monitoring and Control System for ground control instrument readings, Waste Emplacement/Retrieval System to support waste emplacement operations, and the Subsurface Excavation System

  16. Ground water '89. Ground water and mining

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Over 30 papers are presented covering dewatering and ground water development, mine inflows, and ground water contamination. Abstracts from the poster presentations are also included. Papers of interest to the coal industry include evaluation of sodium lauryl sulphate, sodium benzoate and sorbic acid as inhibitors of acidification of South African coal waste, a hydrogeological investigation of the Grootegeluk mine and disposal of washing plant fines at Middelburg mine.

  17. Program review: Ground disposal of reactor effluent

    Energy Technology Data Exchange (ETDEWEB)

    Geier, R.G.

    1967-10-18

    With the exception of N Reactor the plutonium production reactors operated by Douglas United Nuclear, Inc., use treated Columbia River water as coolant on a once through basis. Thus, radionuclides formed by neutron activation of Columbia River salts not removed in the water treatment process and water treatment additives are discharged to the river. Although the quantity and possible effects of the radionuclides released are well within nationally accepted limits, emphasis has been placed for some time on reducing the releases to as low a level as possible. More recently increasing concern has been evidenced with regard to the heat which is also discharged to the river. This report discusses concept which not only would drastically reduce the radionuclide content of the river but which would also substantially decrease the heat discharge. This concept is the disposal of the reactor effluent to the ground either to a pond or to a network of trenches.

  18. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  19. Network maintenance

    CERN Multimedia

    IT Department

    2009-01-01

    A site wide network maintenance has been scheduled for Saturday 28 February. Most of the network devices of the General Purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites along this day. This upgrade will not affect: the Computer centre itself, building 613, the Technical Network and the LHC experiments dedicated networks at the pits. Should you need more details on this intervention, please contact Netops by phone 74927 or email mailto:Netops@cern.ch. IT/CS Group

  20. Network maintenance

    CERN Multimedia

    GS Department

    2009-01-01

    A site-wide network maintenance operation has been scheduled for Saturday 28 February. Most of the network devices of the general purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites throughout the day. This upgrade will not affect the Computer Centre itself, Building 613, the Technical Network and the LHC experiments, dedicated networks at the pits. For further details of this intervention, please contact Netops by phone 74927 or e-mail mailto:Netops@cern.ch. IT/CS Group

  1. Ground Enterprise Management System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft ground systems are on the cusp of achieving "plug-and-play" capability, i.e., they are approaching the state in which the various components can be...

  2. The Modifiability of Grounded Theory

    Directory of Open Access Journals (Sweden)

    Alvita K. Nathaniel, Ph.D., RN

    2010-02-01

    Full Text Available Grounded theories are powerful tools that fit empirical situations and provide “relevant predictions, explanations, interpretations, and applications” (Glaser & Strauss, 1967, p.1. Because of their real-world orientation, grounded theories are particularly appropriate for health care research. They can help professionals understand that certain patterns always seem to emerge, that particular people respond in predictable ways, and that actions produce predictable results (Nathaniel & Andrews, 2007. When physicians and nurses better understand patterns that affect patients, they can work towards altering harmful patterns to improve the quality of patient care. As time passes, one may ask, when do grounded theories become obsolete? When are they no longer useful? The purpose of this paper is to revisit the seminal grounded theory, Awareness of Dying, and compare it to contemporary conceptual and descriptive research on end-of-life care, asking the question, is the theory in need of modification?

  3. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  4. Strong ground motion from the michoacan, Mexico, earthquake.

    Science.gov (United States)

    Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M

    1986-09-05

    The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.

  5. Multimedia Cross–Platform Content Distribution for Mobile Peer–to–Peer Networks using Network Coding

    DEFF Research Database (Denmark)

    Pedersen, Morten Videbæk; Heide, Janus; Vingelmann, Peter

    2010-01-01

    This paper is looking into the possibility of multimedia content distribution over multiple mobile platforms forming wireless peer–to–peer networks. State of the art mobile networks are centralized and base station or access point oriented. Current developments break ground for device to device...

  6. Network Ambivalence

    Directory of Open Access Journals (Sweden)

    Patrick Jagoda

    2015-08-01

    Full Text Available The language of networks now describes everything from the Internet to the economy to terrorist organizations. In distinction to a common view of networks as a universal, originary, or necessary form that promises to explain everything from neural structures to online traffic, this essay emphasizes the contingency of the network imaginary. Network form, in its role as our current cultural dominant, makes scarcely imaginable the possibility of an alternative or an outside uninflected by networks. If so many things and relationships are figured as networks, however, then what is not a network? If a network points towards particular logics and qualities of relation in our historical present, what others might we envision in the future? In  many ways, these questions are unanswerable from within the contemporary moment. Instead of seeking an avant-garde approach (to move beyond networks or opting out of networks (in some cases, to recover elements of pre-networked existence, this essay proposes a third orientation: one of ambivalence that operates as a mode of extreme presence. I propose the concept of "network aesthetics," which can be tracked across artistic media and cultural forms, as a model, style, and pedagogy for approaching interconnection in the twenty-first century. The following essay is excerpted from Network Ambivalence (Forthcoming from University of Chicago Press. 

  7. HURRICANE AND SEVERE STORM SENTINEL (HS3) WORLD WIDE LIGHTNING LOCATION NETWORK (WWLLN) STORMS V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The World Wide Lightning Location Network (WWLLN) is a global, ground-based lightning sensor network operated by the University of Washington in Seattle. This...

  8. Network neuroscience.

    Science.gov (United States)

    Bassett, Danielle S; Sporns, Olaf

    2017-02-23

    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system.

  9. Organizational Networks

    DEFF Research Database (Denmark)

    Grande, Bård; Sørensen, Ole Henning

    1998-01-01

    The paper focuses on the concept of organizational networks. Four different uses of the concept of organizational network are identified and critically discussed. Special focus is placed on how information and communication technologies as communication mediators and cognitive pictures influence...

  10. Network workshop

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry

    2014-01-01

    This paper describes the background for, realisation of and author reflections on a network workshop held at ESERA2013. As a new research area in science education, networks offer a unique opportunity to visualise and find patterns and relationships in complicated social or academic network data...... research community. With this workshop, participants were offered a way into network science based on authentic educational research data. The workshop was constructed as an inquiry lesson with emphasis on user autonomy. Learning activities had participants choose to work with one of two cases of networks...... network methodology in one’s research might supersede the perceived benefits of doing so. As a response to that problem, we argue that workshops can act as a road towards meaningful engagement with networks and highlight that network methodology promises new ways of interpreting data to answer questions...

  11. 50 CFR 36.35 - Unattended property.

    Science.gov (United States)

    2010-10-01

    ... longer than 12 months without the prior permission of the Refuge Manager is prohibited, and any property so left may be impounded by the Refuge Manager. (b) The Refuge Manager may (1) designate areas where...) published in at least one newspaper of general circulation within the State, posted at community post...

  12. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks

    Science.gov (United States)

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-01-01

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.’s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme. PMID:28441331

  13. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks.

    Science.gov (United States)

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-04-25

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.

  14. Social Networks

    OpenAIRE

    Martí, Joan; Zenou, Yves

    2009-01-01

    We survey the literature on social networks by putting together the economics, sociological and physics/applied mathematics approaches, showing their similarities and differences. We expose, in particular, the two main ways of modeling network formation. While the physics/applied mathematics approach is capable of reproducing most observed networks, it does not explain why they emerge. On the contrary, the economics approach is very precise in explaining why networks emerge but does a poor jo...

  15. An advanced temporal credential-based security scheme with mutual authentication and key agreement for wireless sensor networks.

    Science.gov (United States)

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2013-07-24

    Wireless sensor networks (WSNs) can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs). Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.'s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users' attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.'s authentication scheme are left unchanged.

  16. An Advanced Temporal Credential-Based Security Scheme with Mutual Authentication and Key Agreement for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chun-Ta Li

    2013-07-01

    Full Text Available Wireless sensor networks (WSNs can be quickly and randomly deployed in any harsh and unattended environment and only authorized users are allowed to access reliable sensor nodes in WSNs with the aid of gateways (GWNs. Secure authentication models among the users, the sensor nodes and GWN are important research issues for ensuring communication security and data privacy in WSNs. In 2013, Xue et al. proposed a temporal-credential-based mutual authentication and key agreement scheme for WSNs. However, in this paper, we point out that Xue et al.’s scheme cannot resist stolen-verifier, insider, off-line password guessing, smart card lost problem and many logged-in users’ attacks and these security weaknesses make the scheme inapplicable to practical WSN applications. To tackle these problems, we suggest a simple countermeasure to prevent proposed attacks while the other merits of Xue et al.’s authentication scheme are left unchanged.

  17. Energy generation for an ad hoc wireless sensor network-based monitoring system using animal head movement

    DEFF Research Database (Denmark)

    S. Nadimi, Esmaeil; Blanes-Vidal, Victoria; Jørgensen, Rasmus Nyholm

    2011-01-01

    The supply of energy to electronics is an imperative constraining factor to be considered during the design process of mobile ad hoc wireless sensor networks (MANETs). This influence is especially important when the MANET is deployed unattended or the wireless modules within the MANET...... the worst conversion efficiency (25%), a minimum of 214 ± 25 mW of electrical energy per second could be generated. This amount exceeds the energy consumed by the wireless sensors that can be used to gather parameters describing animal behavior such as neck and head movement. This study suggests...... are not easily accessible. Therefore, exploring novel sources of energy generation rather than operating electronics only on limited power supplies such as batteries is a major challenge. Monitoring free-ranging animal behavior is an application in which the entities (animals) within the MANET are not readily...

  18. Network Coding

    Indian Academy of Sciences (India)

    Network coding is a technique to increase the amount of information °ow in a network by mak- ing the key observation that information °ow is fundamentally different from commodity °ow. Whereas, under traditional methods of opera- tion of data networks, intermediate nodes are restricted to simply forwarding their incoming.

  19. Decadal-scale changes of nitrate in ground water of the United States, 1988-2004.

    Science.gov (United States)

    Rupert, Michael G

    2008-01-01

    This study evaluated decadal-scale changes of nitrate concentrations in ground water samples collected by the USGS National Water-Quality Assessment Program from 495 wells in 24 well networks across the USA in predominantly agricultural areas. Each well network was sampled once during 1988-1995 and resampled once during 2000-2004. Statistical tests of decadal-scale changes of nitrate concentrations in water from all 495 wells combined indicate there is a significant increase in nitrate concentrations in the data set as a whole. Eight out of the 24 well networks, or about 33%, had significant changes of nitrate concentrations. Of the eight well networks with significant decadal-scale changes of nitrate, all except one, the Willamette Valley of Oregon, had increasing nitrate concentrations. Median nitrate concentrations of three of those eight well networks increased above the USEPA maximum contaminant level of 10 mg L(-1). Nitrate in water from wells with reduced conditions had significantly smaller decadal-scale changes in nitrate concentrations than oxidized and mixed waters. A subset of wells had data on ground water recharge date; nitrate concentrations increased in response to the increase of N fertilizer use since about 1950. Determining ground water recharge dates is an important component of a ground water trends investigation because recharge dates provide a link between changes in ground water quality and changes in land-use practices.

  20. Site-specific ground response analysis

    National Research Council Canada - National Science Library

    L. GovindaRaju; G. V. Ramana; C. HanumanthaRao; T. G. Sitharam

    2004-01-01

    ... modifications to the underlying motion. We highlight the engineering importance of site-specific ground response analysis and difficulties faced in conducting a complete ground response analysis...

  1. Technical Network

    CERN Multimedia

    2007-01-01

    In order to optimise the management of the Technical Network (TN), to facilitate understanding of the purpose of devices connected to the TN and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive e-mails from IT/CS asking them to add the corresponding information in the network database at "network-cern-ch". Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  2. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo

    2016-01-01

    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  3. Software For Management Of A Packet-Radio Network

    Science.gov (United States)

    Smyth, Patrick J.; Chauvin, Todd H.; Oliver, Gordon P.; Statman, Joseph I.

    1994-01-01

    Network-management software assists in planning, monitoring, and controlling resources of Datalink network. Packet-message network featuring time-division multiple access, frequency and spatial diversity, and dynamic tree-structured routing scheme. Developed for communication between central control station on ground and instrumented aircraft flying over test range. Aircraft derives navigational data from satellites of Global Positioning System, and primary function of Datalink network feeding GPS position data from participating aircraft into control center in real time.

  4. The influence of a hot environment on parental cooperation of a ground-nesting shorebird, the Kentish plover Charadrius alexandrinus

    Directory of Open Access Journals (Sweden)

    Javed Salim

    2010-01-01

    Full Text Available Abstract Background Parental care often increases offspring survival, but is costly to the parents. A trade-off between the cost and benefit of care is expected, so that when care provisioning by both parents is essential for the success of young, for instance in extremely cold or hot environments, the parents should rear their young together. We investigated the latter hypothesis in a ground nesting shorebird, the Kentish plover Charadrius alexandrinus in an extremely hot environment, the Arabian Desert. Midday ground temperature was often above 50°C in our study site in Abu Dhabi (United Arab Emirates, thus leaving the eggs unattended even for a few minute risks overheating and death of embryos. Results Through the use of video surveillance systems we recorded incubation routines of male and female Kentish plovers at 28 nests over a full day (24 h. We show that ambient temperature had a significant influence on incubation behaviour of both sexes, and the relationships are often non-linear. Coordinated incubation between parents was particularly strong in midday with incubation shared approximately equally between the male and the female. The enhanced biparental incubation was due to males increasing their nest attendance with ambient temperature. Conclusions Our results suggest biparental care is essential during incubation in the Kentish plover in extremely hot environments. Shared incubation may also help the parents to cope with heat stress themselves: they can relieve each other frequently from incubation duties. We suggest that once the eggs have hatched the risks associated with hot temperature are reduced: the chicks become mobile, and they gradually develop thermoregulation. When biparental care of young is no longer essential one parent may desert the family. The relaxed demand of the offspring may contribute to the diverse breeding systems exhibited by many shorebirds.

  5. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  6. Marshaling Resources: A Classic Grounded Theory Study of Online Learners

    Directory of Open Access Journals (Sweden)

    Barbara Yalof

    2014-06-01

    Full Text Available Classic grounded theory (CGT was used to identify a main concern of online students in higher education. One of the main impediments to studying online is a sense of isolation and lack of access to support systems as students navigate through complex requirements of their online programs. Hypothetical probability statements illustrate the imbalance between heightened needs of virtual learners and perceived inadequate support provided by educational institutions. The core variable, marshaling resources, explains how peer supports sustain motivation toward successful program completion. Understanding the critical contribution virtual interpersonal networks make towards maximizing resources by group problem solving is a significant aspect of this theory. Keywords: Online learning, e-learning, personal learning networks, peer networks

  7. Cooperative UAV-Based Communications Backbone for Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S

    2001-10-07

    The objective of this project is to investigate the use of unmanned air vehicles (UAVs) as mobile, adaptive communications backbones for ground-based sensor networks. In this type of network, the UAVs provide communication connectivity to sensors that cannot communicate with each other because of terrain, distance, or other geographical constraints. In these situations, UAVs provide a vertical communication path for the sensors, thereby mitigating geographic obstacles often imposed on networks. With the proper use of UAVs, connectivity to a widely disbursed sensor network in rugged terrain is readily achieved. Our investigation has focused on networks where multiple cooperating UAVs are used to form a network backbone. The advantage of using multiple UAVs to form the network backbone is parallelization of sensor connectivity. Many widely spaced or isolated sensors can be connected to the network at once using this approach. In these networks, the UAVs logically partition the sensor network into sub-networks (subnets), with one UAV assigned per subnet. Partitioning the network into subnets allows the UAVs to service sensors in parallel thereby decreasing the sensor-to-network connectivity. A UAV services sensors in its subnet by flying a route (path) through the subnet, uplinking data collected by the sensors, and forwarding the data to a ground station. An additional advantage of using multiple UAVs in the network is that they provide redundancy in the communications backbone, so that the failure of a single UAV does not necessarily imply the loss of the network.

  8. Cleansing crews in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Meermann, H.

    1981-10-15

    Ground water contains a large quantity of bacteria, fungi and animals, and especially small crustaceans which carry out the biological purification process. These organsims are also able to cope with seeping waste water. However, the excessive supply of waste water or the seeping of toxicants e.g. heavy metals, can influence this biological self-purification device considerably or even suspend it. The microbiological fundamentals of this ecosystem had been investigated within the framework of a DFG project since 1973. The conversion of organic matter in ground water had been determined by /sup 14/C-labelled compounds.

  9. DGPS ground station integrity monitoring

    Science.gov (United States)

    Skidmore, Trent A.; Vangraas, Frank

    1995-01-01

    This paper summarizes the development of a unique Differential Global Positioning System (DGPS) ground station integrity monitor which can offer improved availability over conventional code-differential monitoring systems. This monitoring technique, called code/carrier integrity monitoring (CCIM), uses the highly stable integrated Doppler measurement to smooth the relatively noisy code-phase measurements. The pseudorange correction is therefore comprised of the integrated Doppler measurement plus the CCIM offset. The design and operational results of a DGPS ground station integrity monitor are reported. A robust integrity monitor is realized which is optimized for applications such as the Special Category I (SCAT-I) defined in the RTCA Minimum Aviation System Performance Standards.

  10. Creating synergy between ground and space-based precipitation measurements

    Science.gov (United States)

    Gourley, J. J.; Hong, Y.; Petersen, W. A.; Howard, K.; Flamig, Z.; Wen, Y.

    2010-12-01

    As the successor of the Tropical Rainfall Measuring Mission (TRMM) satellite launched in 1997, the multi-national Global Precipitation Measurement (GPM) Mission, to be launched in 2013, will provide next-generation global precipitation estimates from space within a unified framework. On the ground, several countries worldwide are in the throes of expanding their weather radar networks with gap-filling radars and upgrading them to include polarimetric capabilities. While significant improvements in precipitation estimation capabilities have been realized from space- and ground-based platforms separately, little effort has been focused on aligning these communities for synergistic, joint development of algorithms. In this study, we demonstrate the integration of real-time rainfall products from the Tropical Rainfall Measurement Mission (TRMM) into the National Severe Storms Laboratory’s (NSSL) National Mosaic and QPE (NMQ/Q2; http://nmq.ou.edu) system. The NMQ system enables a CONUS-wide comparison of TRMM products to NEXRAD-based Q2 rainfall products. Moreover, NMQ’s ground validation software ingests and quality controls data from all automatic-reporting rain gauge networks throughout the US and provides robust graphical and statistical validation tools, accessible by anyone with internet access. This system will readily incorporate future products from GPM as well as those from the dual-polarization upgrade to the NEXRAD network. While initial efforts are on the intercomparison of rainfall products, we envision this system will ultimately promote the development of precipitation algorithms that capitalize on the strengths of spatiotemporal and error characteristics of space and ground remote-sensing data. An example algorithm is presented where the vertical structure of precipitating systems over complex terrain is more completely resolved using combined information from NMQ and TRMM precipitation radar (PR), leading to more accurate surface rainfall estimates.

  11. New Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, N.

    2012-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates the those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Because of this, many peak ground acceleration attenuation relations have been developed by different authors. Besides, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region; Smit et.al. (2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. The works conducted involved scientific as well as organizational activities: Resolving technical problems concerning communication and data transmission. Thus, today we have a possibility to get real time data and make scientific research based on digital seismic data. Generally, ground motion and damage are influenced by the magnitude of the earthquake, the distance from the seismic source to site, the local ground conditions and the characteristics of buildings. Estimation of expected ground motion is a fundamental earthquake hazard assessment. This is the reason why this topic is emphasized in this study. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models are obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage

  12. Strong systematicity through sensorimotor conceptual grounding: an unsupervised, developmental approach to connectionist sentence processing

    Science.gov (United States)

    Jansen, Peter A.; Watter, Scott

    2012-03-01

    Connectionist language modelling typically has difficulty with syntactic systematicity, or the ability to generalise language learning to untrained sentences. This work develops an unsupervised connectionist model of infant grammar learning. Following the semantic boostrapping hypothesis, the network distils word category using a developmentally plausible infant-scale database of grounded sensorimotor conceptual representations, as well as a biologically plausible semantic co-occurrence activation function. The network then uses this knowledge to acquire an early benchmark clausal grammar using correlational learning, and further acquires separate conceptual and grammatical category representations. The network displays strongly systematic behaviour indicative of the general acquisition of the combinatorial systematicity present in the grounded infant-scale language stream, outperforms previous contemporary models that contain primarily noun and verb word categories, and successfully generalises broadly to novel untrained sensorimotor grounded sentences composed of unfamiliar nouns and verbs. Limitations as well as implications to later grammar learning are discussed.

  13. 30 CFR 77.801 - Grounding resistors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding resistors. 77.801 Section 77.801...-Voltage Distribution § 77.801 Grounding resistors. The grounding resistor, where required, shall be of the proper ohmic value to limit the voltage drop in the grounding circuit external to the resistor to not...

  14. Finding Common Ground at Conventions.

    Science.gov (United States)

    Ibarra, Hector

    1998-01-01

    Presents strategies for getting information and resources, and making contacts at educational conferences. Focuses on networking opportunities, tips for the exhibit hall, and a review of other conference-based opportunities. (DDR)

  15. Moving multiple sinks through wireless sensor networks for lifetime maximization.

    Energy Technology Data Exchange (ETDEWEB)

    Petrioli, Chiara (Universita di Roma); Carosi, Alessio (Universita di Roma); Basagni, Stefano (Northeastern University); Phillips, Cynthia Ann

    2008-01-01

    Unattended sensor networks typically watch for some phenomena such as volcanic events, forest fires, pollution, or movements in animal populations. Sensors report to a collection point periodically or when they observe reportable events. When sensors are too far from the collection point to communicate directly, other sensors relay messages for them. If the collection point location is static, sensor nodes that are closer to the collection point relay far more messages than those on the periphery. Assuming all sensor nodes have roughly the same capabilities, those with high relay burden experience battery failure much faster than the rest of the network. However, since their death disconnects the live nodes from the collection point, the whole network is then dead. We consider the problem of moving a set of collectors (sinks) through a wireless sensor network to balance the energy used for relaying messages, maximizing the lifetime of the network. We show how to compute an upper bound on the lifetime for any instance using linear and integer programming. We present a centralized heuristic that produces sink movement schedules that produce network lifetimes within 1.4% of the upper bound for realistic settings. We also present a distributed heuristic that produces lifetimes at most 25:3% below the upper bound. More specifically, we formulate a linear program (LP) that is a relaxation of the scheduling problem. The variables are naturally continuous, but the LP relaxes some constraints. The LP has an exponential number of constraints, but we can satisfy them all by enforcing only a polynomial number using a separation algorithm. This separation algorithm is a p-median facility location problem, which we can solve efficiently in practice for huge instances using integer programming technology. This LP selects a set of good sensor configurations. Given the solution to the LP, we can find a feasible schedule by selecting a subset of these configurations, ordering them

  16. Telecommunication Networks

    DEFF Research Database (Denmark)

    Olsen, Rasmus Løvenstein; Balachandran, Kartheepan; Hald, Sara Ligaard

    2014-01-01

    In this chapter, we look into the role of telecommunication networks and their capability of supporting critical infrastructure systems and applications. The focus is on smart grids as the key driving example, bearing in mind that other such systems do exist, e.g., water management, traffic control......, etc. First, the role of basic communication is examined with a focus on critical infrastructures. We look at heterogenic networks and standards for smart grids, to give some insight into what has been done to ensure inter-operability in this direction. We then go to the physical network, and look...... at the deployment of the physical layout of the communication network and the related costs. This is an important aspect as one option to use existing networks is to deploy dedicated networks. Following this, we look at some generic models that describe reliability for accessing dynamic information. This part...

  17. Networked Identities

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Larsen, Malene Charlotte

    2008-01-01

    In this article we take up a critique of the concept of Communities of Practice (CoP) voiced by several authors, who suggest that networks may provide a better metaphor to understand social forms of organisation and learning. Through a discussion of the notion of networked learning and the critique...... of CoPs we shall argue that the metaphor or theory of networked learning is itself confronted with some central tensions and challenges that need to be addressed. We then explore these theoretical and analytic challenges to the network metaphor, through an analysis of a Danish social networking site. We...... argue that understanding meaning-making and ‘networked identities’ may be relevant analytic entry points in navigating the challenges....

  18. Inverted-V events simultaneously observed with the Freja satellite and from the ground

    Energy Technology Data Exchange (ETDEWEB)

    Haerendel, G.; Frey, H.U.; Bauer, O.H.; Rieger, E.; Clemmons, J.; Boehm, M.H. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Wallis, D.D. [National Research Council, Ottawa (Canada); Luehr, H. [Technische Universitaet, Braunschweig (Germany)

    1994-08-15

    The authors present data collected by Freja in conjunction with ground based observations made by a special CCD camera, and the CANOPUS network, of auroral arcs, or inverted V systems over Manitoba. The ground based systems are able to optically record the arcs, while Freja, in the lower stratosphere/upper ionosphere is able to make fine structure measurements of current density, electron flux, and energy flux.

  19. Quantitative Investigations of Polygonal Patterned Ground in Continental Antarctica: A Mars analogue

    Science.gov (United States)

    Sassenroth, C.; Hauber, E.; De Vera, J.-P.; Schmitz, N.

    2017-09-01

    Polygonal fractured ground is widespread at middle and high latitudes on Mars. The latitude-dependence and the morphologic similarity to terrestrial patterned ground in permafrost regions may indicate a formation as thermal contraction cracks, but the exact formation mechanisms are still unclear. This study quantitatively investigates polygonal networks in ice-free parts of continental Antarctica to help distinguishing between different hypotheses of their origin on Mars.

  20. Wireless Networks

    OpenAIRE

    Samaka, Mohammed; Khan, Khaled M.D.

    2007-01-01

    Wireless communication is the fastest-growing field in the telecommunication industry. Wireless networks have grown significantly as an important segment of the communications industry. They have become popular networks with the potential to provide high-speed, high-quality information exchange between two or more portable devices without any wire or conductors. Wireless networks can simply be characterized as the technology that provides seamless access to information, anywhere, anyplace, an...

  1. Enterpreneurial network

    OpenAIRE

    Thoma, Antonela; Nguyen, Lien; Kupsyte, Valdone

    2014-01-01

    Network has become more and more indispensable in the entrepreneurial world. Especially in startup businesses, network is crucial for new entrepreneurs. This project looks at how entrepreneurs in different sectors use network to become successful. We chose to work with three entrepreneurs from three companies that have been operational for a few years and conducted face to face interviews with them. Through the data from the interviews, we analyzed firstly what type of entrepreneurs they are,...

  2. Aspects of ground effect modeling.

    Science.gov (United States)

    Taraldsen, Gunnar; Jonasson, Hans

    2011-01-01

    A recently published one-parameter ground model based on Darcy's law is here generalized into a two-parameter model which depends on an effective flow resistivity and an effective layer depth. Extensive field measurements of the acoustic impedance of various ground types have been carried out for frequencies in the range from 200 Hz to 2.5 kHz. The model based on Darcy's law gives an improved fit to the measurements compared to the Delany-Bazley model. It is, in addition, argued on purely theoretical grounds that the suggested model is preferable. In contrast to the Delany-Bazley model it corresponds to a proper causal time-domain model. This is particularly relevant for extrapolation of the models to lower frequencies and for the recently developed harmonized methods intended for use in the implementation of the European Union directive on the assessment and management of environmental noise. The harmonized methods include frequencies down to the 25 Hz third octave band and have the Delany-Bazley ground impedance model as the default choice. The arguments presented here suggest that this default choice should be replaced by the more physically based model from the law of Darcy.

  3. The ground stones from Sphinx

    Czech Academy of Sciences Publication Activity Database

    Řídký, Jaroslav

    2017-01-01

    Roč. 2017, č. 21 (2017), s. 39-42 ISSN 1369-5770 Grant - others:GA ČR(CZ) GA17-03207S Institutional support: RVO:67985912 Keywords : Sudan * Mesolithic * ground stones Subject RIV: AC - Archeology, Anthropology, Ethnology

  4. Maintenance Sourcebook: Landscaping and Grounds.

    Science.gov (United States)

    Macht, Carol; Gomulka, Ken; Harper, Wayne; Conry, Terry

    2003-01-01

    Asserts that facility managers need continual education in many subjects to keep their campuses in excellent condition, highlighting four areas related to landscaping and maintenance: landscaping care; athletic field care; grounds care; and equipment care. Lists of relevant professional organizations are included. (SM)

  5. Broadband Synthetic Ground Motion Records

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The dataset contains broadband synthetic ground motion records for three events: 1) 1994 M6.7 Northridge, CA, 2) 1989 M7.0 Loma Prieta, CA, and 3) 1999 M7.5 Izmit,...

  6. Global trends on local grounds

    DEFF Research Database (Denmark)

    Steensen, Jette Johanne

    2006-01-01

    and built upon similar efforts in Namibia in the 1990s. Steensen´s contribution stresses that any educational system will have to lie firmly on local grounds, that international trends must be analysed strategically as well as critically and that such analysis, for example through Critical Practitioner...

  7. Evaluation of multimodal ground cues

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Lecuyer, Anatole; Serafin, Stefania

    2012-01-01

    This chapter presents an array of results on the perception of ground surfaces via multiple sensory modalities,with special attention to non visual perceptual cues, notably those arising from audition and haptics, as well as interactions between them. It also reviews approaches to combining...

  8. Network security

    CERN Document Server

    Perez, André

    2014-01-01

    This book introduces the security mechanisms deployed in Ethernet, Wireless-Fidelity (Wi-Fi), Internet Protocol (IP) and MultiProtocol Label Switching (MPLS) networks. These mechanisms are grouped throughout the book according to the following four functions: data protection, access control, network isolation, and data monitoring. Data protection is supplied by data confidentiality and integrity control services. Access control is provided by a third-party authentication service. Network isolation is supplied by the Virtual Private Network (VPN) service. Data monitoring consists of applying

  9. Networking Japan

    DEFF Research Database (Denmark)

    Hansen, Annette Skovsted

    HIDA). Many of these alumni have and will in the future exchange ideas and keep contact not only to Japan, but also to fellow alumni around the globe and, thereby, practice south-south exchanges, which are made possible and traceable by their established alumni network and the World Network of Friends...... (WNF). Through the alumni network, Japan continues to infuse ideas to participants and alumni, who interpret and disseminate these ideas through alumni society networks and activities, but their discussions nationally and regionally also get reported back to Japan and affect future policies...

  10. Technical Network

    CERN Multimedia

    2007-01-01

    In order to optimize the management of the Technical Network (TN), to ease the understanding and purpose of devices connected to the TN, and to improve security incident handling, the Technical Network Administrators and the CNIC WG have asked IT/CS to verify the "description" and "tag" fields of devices connected to the TN. Therefore, persons responsible for systems connected to the TN will receive email notifications from IT/CS asking them to add the corresponding information in the network database. Thank you very much for your cooperation. The Technical Network Administrators & the CNIC WG

  11. Ground-to-satellite quantum teleportation

    Science.gov (United States)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  12. Compositional symbol grounding for motor patterns.

    Science.gov (United States)

    Greco, Alberto; Caneva, Claudio

    2010-01-01

    We developed a new experimental and simulative paradigm to study the establishing of compositional grounded representations for motor patterns. Participants learned to associate non-sense arm motor patterns, performed in three different hand postures, with non-sense words. There were two group conditions: in the first (compositional), each pattern was associated with a two-word (verb-adverb) sentence; in the second (holistic), each same pattern was associated with a unique word. Two experiments were performed. In the first, motor pattern recognition and naming were tested in the two conditions. Results showed that verbal compositionality had no role in recognition and that the main source of confusability in this task came from discriminating hand postures. As the naming task resulted too difficult, some changes in the learning procedure were implemented in the second experiment. In this experiment, the compositional group achieved better results in naming motor patterns especially for patterns where hand postures discrimination was relevant. In order to ascertain the differential effect, upon this result, of memory load and of systematic grounding, neural network simulations were also made. After a basic simulation that worked as a good model of subjects performance, in following simulations the number of stimuli (motor patterns and words) was increased and the systematic association between words and patterns was disrupted, while keeping the same number of words and syntax. Results showed that in both conditions the advantage for the compositional condition significantly increased. These simulations showed that the advantage for this condition may be more related to the systematicity rather than to the mere informational gain. All results are discussed in connection to the possible support of the hypothesis of a compositional motor representation and toward a more precise explanation of the factors that make compositional representations working.

  13. Ground-to-satellite quantum teleportation.

    Science.gov (United States)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  14. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-01-01

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments. PMID:27355957

  15. Link Investigation of IEEE 802.15.4 Wireless Sensor Networks in Forests.

    Science.gov (United States)

    Ding, Xingjian; Sun, Guodong; Yang, Gaoxiang; Shang, Xinna

    2016-06-27

    Wireless sensor networks are expected to automatically monitor the ecological evolution and wildlife habits in forests. Low-power links (transceivers) are often adopted in wireless sensor network applications, in order to save the precious sensor energy and then achieve long-term, unattended monitoring. Recent research has presented some performance characteristics of such low-power wireless links under laboratory or outdoor scenarios with less obstacles, and they have found that low-power wireless links are unreliable and prone to be affected by the target environment. However, there is still less understanding about how well the low-power wireless link performs in real-world forests and to what extent the complex in-forest surrounding environments affect the link performances. In this paper, we empirically evaluate the low-power links of wireless sensors in three typical different forest environments. Our experiment investigates the performance of the link layer compatible with the IEEE 802.15.4 standard and analyzes the variation patterns of the packet reception ratio (PRR), the received signal strength indicator (RSSI) and the link quality indicator (LQI) under diverse experimental settings. Some observations of this study are inconsistent with or even contradict prior results that are achieved in open fields or relatively clean environments and thus, provide new insights both into effectively evaluating the low-power wireless links and into efficiently deploying wireless sensor network systems in forest environments.

  16. An Access Control Protocol for Wireless Sensor Network Using Double Trapdoor Chameleon Hash Function

    Directory of Open Access Journals (Sweden)

    Tejeshwari Thakur

    2016-01-01

    Full Text Available Wireless sensor network (WSN, a type of communication system, is normally deployed into the unattended environment where the intended user can get access to the network. The sensor nodes collect data from this environment. If the data are valuable and confidential, then security measures are needed to protect them from the unauthorized access. This situation requires an access control protocol (ACP in the design of sensor network because of sensor nodes which are vulnerable to various malicious attacks during the authentication and key establishment and the new node addition phase. In this paper, we propose a secured ACP for such WSN. This protocol is based on Elliptic Curve Discrete Log Problem (ECDLP and double trapdoor chameleon hash function which secures the WSN from malicious attacks such as node masquerading attack, replay attack, man-in-the-middle attack, and forgery attacks. Proposed ACP has a special feature known as session key security. Also, the proposed ACP is more efficient as it requires only one modular multiplication during the initialization phase.

  17. When are networks truly modular?

    Science.gov (United States)

    Reichardt, Jörg; Bornholdt, Stefan

    2006-12-01

    The study of cluster or community structure of complex networks contributes to the understanding of networks at a functional level. In many networks, latent classes of nodes are suspected which manifest themselves as communities, i.e. groups of nodes with a high link density among the nodes of the same class and low link density between nodes of different classes. Community detection algorithms are used to infer these classes, e.g. by finding a partition of the network which maximizes a quality function such as the network modularity Q [M. Newman, M. Girvan, Finding and evaluating community structure in networks, Phys. Rev. E 69 (2004) 026113]. However, it is known from numerical experiments that even purely random networks display intrinsic modularity and may be partitioned yielding high values of Q. Extending on our earlier results [J. Reichardt, S. Bornholdt, Statistical mechanics of community detection, Phys. Rev. E 74 (2006) 016110], the mapping of the community detection problem onto finding the ground state of a spin glass is exploited in order to derive analytical expressions for the expected modularity in random graphs and assess the theoretical limits to community detection. The results are independent of any specific community detection algorithm and allow for differentiation between modularity arising purely due to the search process in the large configuration space of possible partitionings on the one hand, or due to the actual presence of different classes of nodes on the other hand.

  18. Small "p" Publishing: A Networked Blogging Approach to Academic Discourse

    Science.gov (United States)

    Martin, Julia W.; Hughes, Brian

    2012-01-01

    This article highlights a middle ground for academic publishing between formal peer-reviewed journals and informal blogging that we call "Small "p" Publishing." Having implemented and tested a publishing network that illustrates this middle ground, we describe its unique contributions to scholars and learning communities. Three features that…

  19. Bifurcation in Ground-state Fidelity and Quantum Criticality in Two-leg Potts Ladder

    Directory of Open Access Journals (Sweden)

    Sheng-Hao LI

    2014-02-01

    Full Text Available We have investigated an intriguing connection between bifurcations, reduced fidelity per lattice site, local order parameter, universal order parameter, entropy and quantum phase transitions in the ground state for quantum three-state Potts model with two coupled infinite-size ladder system, in the context of the tensor network algorithm. The tensor network algorithm produces degenerate symmetry-breaking ground-state wave functions arising from the Z3 symmetry breaking, each of results from a randomly chosen initial state. We expect that our approach might provide further insights into critical phenomena in quantum many-body infinite lattice systems in condensed matter physics.

  20. Ground Systems Integration Domain (GSID) Materials for Ground Platforms

    Science.gov (United States)

    2010-09-20

    elastomers • High-strength fibers • Armors that spread the energy • Foams, lattice materials • Chemical manipulation • Unprecedented properties • Multi...TACOM LCMC (ASA(ALT)) ILSC ACQ Center Industrial Base PEO GCS PEO CS&CSS PEO Soldier PEO Integration Department of the Army...Vehicle Development & Integration Large Robotics Integration Cell Prototype Integration Ground Systems Power & Energy Lab Propulsion Laboratories 6

  1. The 18th Annual Intelligent Ground Vehicle Competition: trends and influences for intelligent ground vehicle control

    Science.gov (United States)

    Theisen, Bernard L.; Frederick, Philip; Smuda, William

    2011-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 18 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 75 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  2. The 14 TH Annual Intelligent Ground Vehicle Competition: intelligent teams creating intelligent ground robots

    Science.gov (United States)

    Theisen, Bernard L.; Nguyen, Dmitri

    2006-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 14 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  3. The 15 TH annual intelligent ground vehicle competition: intelligent ground robots created by intelligent students

    Science.gov (United States)

    Theisen, Bernard L.

    2007-09-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 15 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  4. The 13 th Annual Intelligent Ground Vehicle Competition: intelligent ground vehicles created by intelligent teams

    Science.gov (United States)

    Theisen, Bernard L.

    2005-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 13 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  5. The 19th Annual Intelligent Ground Vehicle Competition: student built autonomous ground vehicles

    Science.gov (United States)

    Theisen, Bernard L.

    2012-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 19 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from almost 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  6. Down to Earth systems engineering: The forgotten ground segment

    Science.gov (United States)

    Chester, Ed

    2009-07-01

    Systems engineering involves dealing with a project, a system, at the level at which it operates. The system perspective is concerned with the behaviour and interfaces rather than implementation details, and engineering a given instance of a system is typically much more complex than the sum of its parts precisely because we are concerned with overall behaviour. Systems engineering is an integral aspect of spacecraft engineering throughout the mission lifecycle—systems engineers are architects and designers in a project up to phase B, they are testers, reviewers and modellers in phases C and D, and they are operators in phase E. However, the ground segment that enables a mission to be conducted is surprisingly devoid of systems engineers. It has specialists in networking, in computing, in security. It has a flight operations team extremely familiar with the spacecraft they are responsible for, but they take the ground segment for granted. It has technicians and maintenance teams responsible for components, subsystems, elements and their reliability and availability. Ground segments vary much less than spacecraft do and employ high degrees of re-use, and so systems engineering as a discipline is rarely applied. As current and future missions place ever higher demands on the ground segment in terms of volume of data delivery, timeliness and security, we will find that overall system behaviour of the ground deserves and requires detailed consideration. The present paper summarises two years of work in leveraging the principles of systems engineering in a contemporary ESA mission ground segment, describes how the elements of the ground segment were abstracted, and the end-to-end data-flow modelled. The fundamentals of the "ground as a system" are identified, and we detail how the resulting model was used to define the operational architecture, the systems-level validation planning, detailed test planning, interface coverage analysis, and requirements traceability

  7. Implementing an Integrated Network Defense Construct

    Science.gov (United States)

    2013-06-01

    to create an easily defendable avenue for ingress and egress. In medieval times, castles leveraged this principle. If an attacker was brazen enough...of an encompassing defensive structure for network security (Small, 2012). 2.1. The Cyber Defense Dilemma While the philosophy of network...defense mirrors that of the physical world, its application has some significant drawbacks. Whereas the medieval castle defenders had the high ground

  8. Overlay networks toward information networking

    CERN Document Server

    Tarkoma, Sasu

    2010-01-01

    With their ability to solve problems in massive information distribution and processing, while keeping scaling costs low, overlay systems represent a rapidly growing area of R&D with important implications for the evolution of Internet architecture. Inspired by the author's articles on content based routing, Overlay Networks: Toward Information Networking provides a complete introduction to overlay networks. Examining what they are and what kind of structures they require, the text covers the key structures, protocols, and algorithms used in overlay networks. It reviews the current state of th

  9. BEHAVIOUR OF BACKFILL MATERIALS FOR ELECTRICAL GROUNDING SYSTEMS UNDER HIGH VOLTAGE CONDITIONS

    Directory of Open Access Journals (Sweden)

    S. C. LIM

    2015-06-01

    Full Text Available Backfill materials like Bentonite and cement are effective in lowering grounding resistance of electrodes for a considerable period. During lightning, switching impulses and earth fault occurrences in medium and high voltage networks, the grounding system needs to handle extremely high currents either for a short duration or prolonged period respectively. This paper investigates the behaviour of bentonite, cement and sand under impulse and alternating high voltage (50Hz conditions. Fulguritic-formation was observed in all materials under alternating high voltage. The findings reveal that performance of grounding systems under high voltage conditions may significantly change from the outcomes anticipated at design stage.

  10. Heterodox networks

    DEFF Research Database (Denmark)

    Lala, Purnima; Kumar, Ambuj

    2016-01-01

    It is imperative for the service providers to bring innovation in the network design to meet the exponential growth of mobile subscribers for multi-technology future wireless networks. As a matter of research, studies on providing services to moving subscriber groups aka ‘Place Time Capacity (PTC...

  11. Sensor networks

    NARCIS (Netherlands)

    Chatterjea, Supriyo; Thurston, J.; Kininmonth, S.; Havinga, Paul J.M.

    2006-01-01

    This article describes the details of a sensor network that is currently being deployed at the Great Barrier Reef in Australia. The sensor network allows scientists to retrieve sensor data that has a high spatial and temporal resolution. We give an overview of the energy-efficient data aggregation

  12. Network Protocols

    NARCIS (Netherlands)

    Tanenbaum, A.S.

    1981-01-01

    Dunng the last ten years, many computer networks have been designed, implemented, and put into service in the United States, Canada, Europe, Japan, and elsewhere. From the experience obtamed with these networks, certain key design principles have begun to emerge, principles that can be used to

  13. Probabilistic Networks

    DEFF Research Database (Denmark)

    Jensen, Finn Verner; Lauritzen, Steffen Lilholt

    2001-01-01

    This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs.......This article describes the basic ideas and algorithms behind specification and inference in probabilistic networks based on directed acyclic graphs, undirected graphs, and chain graphs....

  14. Organizational Networks

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning; Grande, Bård

    1996-01-01

    The paper focuses on the concept of organizational networks. Four different uses of the concept are identified and critically discussed.......The paper focuses on the concept of organizational networks. Four different uses of the concept are identified and critically discussed....

  15. Affective Networks

    OpenAIRE

    Jodi Dean

    2010-01-01

    This article sets out the idea of affective networks as a constitutive feature of communicative capitalism. It explores the circulation of intensities in contemporary information and communication networks, arguing that this circulation should be theorized in terms of the psychoanalytic notion of the drive. The article includes critical engagements with theorists such as Guy Debord, Jacques Lacan, Tiziana Terranova, and Slavoj Zizek.

  16. Ground Ammonia Concentrations over China Derived from Satellite and Atmospheric Transport Modeling

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2017-05-01

    Full Text Available As a primary basic gas in the atmosphere, atmospheric ammonia (NH3 plays an important role in determining air quality, environmental degradation, and climate change. However, the limited ground observation currently presents a barrier to estimating ground NH3 concentrations on a regional scale, thus preventing a full understanding of the atmospheric processes in which this trace gas is involved. This study estimated the ground NH3 concentrations over China, combining the Infrared Atmospheric Sounding Interferometer (IASI satellite NH3 columns and NH3 profiles from an atmospheric chemistry transport model (CTM. The estimated ground NH3 concentrations showed agreement with the variability in annual ground NH3 measurements from the Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN. Great spatial heterogeneity of ground NH3 concentrations was found across China, and high ground NH3 concentrations were found in Northern China, Southeastern China, and some areas in Xinjiang Province. The maximum ground NH3 concentrations over China occurred in summer, followed by spring, autumn, and winter seasons, which were in agreement with the seasonal patterns of NH3 emissions in China. This study suggested that a combination of NH3 profiles from CTMs and NH3 columns from satellite obtained reliable ground NH3 concentrations over China.

  17. Network chemistry, network toxicology, network informatics, and network behavioristics: A scientific outline

    OpenAIRE

    WenJun Zhang

    2016-01-01

    In present study, I proposed some new sciences: network chemistry, network toxicology, network informatics, and network behavioristics. The aims, scope and scientific foundation of these sciences are outlined.

  18. Network Affordances

    DEFF Research Database (Denmark)

    Samson, Audrey; Soon, Winnie

    2015-01-01

    This paper examines the notion of network affordance within the context of network art. Building on Gibson's theory (Gibson, 1979) we understand affordance as the perceived and actual parameters of a thing. We expand on Gaver's affordance of predictability (Gaver, 1996) to include ecological...... and computational parameters of unpredictability. We illustrate the notion of unpredictability by considering four specific works that were included in a network art exhibiton, SPEED SHOW [2.0] Hong Kong. The paper discusses how the artworks are contingent upon the parameteric relations (Parisi, 2013......), of the network. We introduce network affordance as a dynamic framework that could articulate the experienced tension arising from the (visible) symbolic representation of computational processes and its hidden occurrences. We base our proposal on the experience of both organising the SPEED SHOW and participating...

  19. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    , the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi

  20. Community Based Networks and 5G

    DEFF Research Database (Denmark)

    Williams, Idongesit

    2016-01-01

    is hinged on a research aimed at understanding how and why Community Based Networks deploy telecom and Broadband infrastructure. The study was a qualitative study carried out inductively using Grounded Theory. Six cases were investigated.Two Community Based Network Mobilization models were identified......The deployment of previous wireless standards has provided more benefits for urban dwellers than rural dwellers. 5G deployment may not be different. This paper identifies that Community Based Networks as carriers that deserve recognition as potential 5G providers may change this. The argument....... The findings indicate that 5G connectivity can be extended to rural areas by these networks, via heterogenous networks. Hence the delivery of 5G data rates delivery via Wireless WAN in rural areas can be achieved by utilizing the causal factors of the identified models for Community Based Networks....

  1. Grounded theory in music therapy research.

    Science.gov (United States)

    O'Callaghan, Clare

    2012-01-01

    Grounded theory is one of the most common methodologies used in constructivist (qualitative) music therapy research. Researchers use the term "grounded theory" when denoting varying research designs and theoretical outcomes. This may be challenging for novice researchers when considering whether grounded theory is appropriate for their research phenomena. This paper examines grounded theory within music therapy research. Grounded theory is briefly described, including some of its "contested" ideas. A literature search was conducted using the descriptor "music therapy and grounded theory" in Pubmed, CINAHL PsychlNFO, SCOPUS, ERIC (CSA), Web of Science databases, and a music therapy monograph series. A descriptive analysis was performed on the uncovered studies to examine researched phenomena, grounded theory methods used, and how findings were presented, Thirty music therapy research projects were found in refereed journals and monographs from 1993 to "in press." The Strauss and Corbin approach to grounded theory dominates the field. Descriptors to signify grounded theory components in the studies greatly varied. Researchers have used partial or complete grounded theory methods to examine clients', family members', staff, music therapy "overhearers," music therapists', and students' experiences, as well as music therapy creative products and professional views, issues, and literature. Seven grounded theories were offered. It is suggested that grounded theory researchers clarify what and who inspired their design, why partial grounded theory methods were used (when relevant), and their ontology. By elucidating assumptions underpinning the data collection, analysis, and findings' contribution, researchers will continue to improve music therapy research using grounded theory methods.

  2. A Ground Systems Architecture Transition for a Distributed Operations System

    Science.gov (United States)

    Sellers, Donna; Pitts, Lee; Bryant, Barry

    2003-01-01

    The Marshall Space Flight Center (MSFC) Ground Systems Department (GSD) recently undertook an architecture change in the product line that serves the ISS program. As a result, the architecture tradeoffs between data system product lines that serve remote users versus those that serve control center flight control teams were explored extensively. This paper describes the resulting architecture that will be used in the International Space Station (ISS) payloads program, and the resulting functional breakdown of the products that support this architecture. It also describes the lessons learned from the path that was followed, as a migration of products cause the need to reevaluate the allocation of functions across the architecture. The result is a set of innovative ground system solutions that is scalable so it can support facilities of wide-ranging sizes, from a small site up to large control centers. Effective use of system automation, custom components, design optimization for data management, data storage, data transmissions, and advanced local and wide area networking architectures, plus the effective use of Commercial-Off-The-Shelf (COTS) products, provides flexible Remote Ground System options that can be tailored to the needs of each user. This paper offers a description of the efficiency and effectiveness of the Ground Systems architectural options that have been implemented, and includes successful implementation examples and lessons learned.

  3. Coupled surface-water and ground-water model

    Science.gov (United States)

    Swain, Eric D.; Wexler, Eliezer J.

    1991-01-01

    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  4. A New Defected Ground Structure for Different Microstrip Circuit Applications

    Directory of Open Access Journals (Sweden)

    S. Das

    2007-04-01

    Full Text Available In this paper, a microstrip transmission line combined with a new U-headed dumb-bell defected ground structure (DGS is investigated. The proposed DGS of two U-shape slots connected by a thin transverse slot is placed in the ground plane of a microstrip line. A finite cutoff frequency and attenuation pole is observed and thus, the equivalent circuit of the DGS unit can be represented by a parallel LC resonant circuit in series with the transmission line. A two-cell DGS microstrip line yields a better lowpass filtering characteristics. The simulation is carried out by the MoM based IE3D software and in the experimental measurements a vector network analyzer is used. The effects of the transverse slot width and the distance between arms of the U-slot on the filter response curve are studied. This DGS is utilized for different microstrip circuit applications. The DGS is placed in the ground of a capacitive loaded microstrip line and a very low cutoff frequency is obtained. The DGS is adopted under the coupled lines of a parallel line coupler and an improvement in coupling coefficient is noticed. The proposed DGS is also incorporated in the ground plane under the feed lines and the coupled lines of a bandpass filter to improve separately the stopband and passband performances.

  5. Estimating the seismotelluric current required for observable electromagnetic ground signals

    Directory of Open Access Journals (Sweden)

    J. Bortnik

    2010-08-01

    Full Text Available We use a relatively simple model of an underground current source co-located with the earthquake hypocenter to estimate the magnitude of the seismotelluric current required to produce observable ground signatures. The Alum Rock earthquake of 31 October 2007, is used as an archetype of a typical California earthquake, and the effects of varying the ground conductivity and length of the current element are examined. Results show that for an observed 30 nT pulse at 1 Hz, the expected seismotelluric current magnitudes fall in the range ~10–100 kA. By setting the detectability threshold to 1 pT, we show that even when large values of ground conductivity are assumed, magnetic signals are readily detectable within a range of 30 km from the epicenter. When typical values of ground conductivity are assumed, the minimum current required to produce an observable signal within a 30 km range was found to be ~1 kA, which is a surprisingly low value. Furthermore, we show that deep nulls in the signal power develop in the non-cardinal directions relative to the orientation of the source current, indicating that a magnetometer station located in those regions may not observe a signal even though it is well within the detectable range. This result underscores the importance of using a network of magnetometers when searching for preseismic electromagnetic signals.

  6. Computer network time synchronization the network time protocol on earth and in space

    CERN Document Server

    Mills, David L

    2010-01-01

    Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib

  7. Inverter Ground Fault Overvoltage Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Andy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chebahtah, Justin [SolarCity Corporation, San Mateo, CA (United States); Wang, Trudie [SolarCity Corporation, San Mateo, CA (United States); McCarty, Michael [SolarCity Corporation, San Mateo, CA (United States)

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  8. Evaluating Autonomous Ground-Robots

    Science.gov (United States)

    2012-06-14

    the paths taken by the multiple robots . The outer dimensions of the maze are about 25m x 25m. At the level of resolution shown in the main image...square meters). The system was also used to track the robots through the plywood walls of the maze , achieving similar accuracies. The system could not...Evaluating Autonomous Ground- Robots Anthony Finn 1 , Adam Jacoff 2 , Mike Del Rose 3 , Bob Kania 3 , Udam Silva 4 and Jon Bornstein 5

  9. Social associations between California sea lions influence the use of a novel foraging ground

    OpenAIRE

    Zachary A Schakner; Petelle, Matthew B.; Tennis, Mathew J.; Van der Leeuw, Bjorn K.; Stansell, Robert T.; Blumstein, Daniel T.

    2017-01-01

    Social relationships define an individual's position in its social network, which can influence the acquisition and spread of information and behavioural variants through the population. Thus, when nuisance behaviours spread through wildlife populations, identifying central individuals may provide valuable insights for problem-species management. We studied the effects of network position on California sea lion (Zalophus californianus) discovery and foraging success at a novel foraging ground...

  10. Flexible network wireless transceiver and flexible network telemetry transceiver

    Science.gov (United States)

    Brown, Kenneth D.

    2008-08-05

    A transceiver for facilitating two-way wireless communication between a baseband application and other nodes in a wireless network, wherein the transceiver provides baseband communication networking and necessary configuration and control functions along with transmitter, receiver, and antenna functions to enable the wireless communication. More specifically, the transceiver provides a long-range wireless duplex communication node or channel between the baseband application, which is associated with a mobile or fixed space, air, water, or ground vehicle or other platform, and other nodes in the wireless network or grid. The transceiver broadly comprises a communication processor; a flexible telemetry transceiver including a receiver and a transmitter; a power conversion and regulation mechanism; a diplexer; and a phased array antenna system, wherein these various components and certain subcomponents thereof may be separately enclosed and distributable relative to the other components and subcomponents.

  11. Social network analysis and dual rover communications

    Science.gov (United States)

    Litaker, Harry L.; Howard, Robert L.

    2013-10-01

    Social network analysis (SNA) refers to the collection of techniques, tools, and methods used in sociometry aiming at the analysis of social networks to investigate decision making, group communication, and the distribution of information. Human factors engineers at the National Aeronautics and Space Administration (NASA) conducted a social network analysis on communication data collected during a 14-day field study operating a dual rover exploration mission to better understand the relationships between certain network groups such as ground control, flight teams, and planetary science. The analysis identified two communication network structures for the continuous communication and Twice-a-Day Communication scenarios as a split network and negotiated network respectfully. The major nodes or groups for the networks' architecture, transmittal status, and information were identified using graphical network mapping, quantitative analysis of subjective impressions, and quantified statistical analysis using Sociometric Statue and Centrality. Post-questionnaire analysis along with interviews revealed advantages and disadvantages of each network structure with team members identifying the need for a more stable continuous communication network, improved robustness of voice loops, and better systems training/capabilities for scientific imagery data and operational data during Twice-a-Day Communications.

  12. Ground level enhancements of cosmic rays in solar cycle 24

    Science.gov (United States)

    Kravtsova, M. V.; Sdobnov, V. E.

    2017-07-01

    Using data from ground-based observations of cosmic rays (CRs) on the worldwide network of stations and spacecraft, we have investigated the proton spectra and the CR anisotropy during the ground level enhancements of CRs on May 17, 2012 (GLE71) and January 6, 2014 (GLE72) occurred in solar cycle 24 by the spectrographic global survey method. We provide the CR rigidity spectra and the relative changes in the intensity of CRs with a rigidity of 2 GV in the solar-ecliptic geocentric coordinate system in specific periods of these events. We show that the proton acceleration during GLE71 and GLE72 occurred up to rigidities R 2.3-2.5 GV, while the differential rigidity spectra of solar CRs are described neither by a power nor by an exponential function of particle rigidity. At the times of the events considered the Earth was in a loop-like structure of the interplanetary magnetic field.

  13. When do lightning strokes become whistlers detectable on the ground?

    Science.gov (United States)

    Koronczay, David; Lichtenberger, Janos; Steinbach, Peter; Ferencz, Csaba; Clilverd, Mark; Rodger, Craig; Darrouzet, Fabien; Sannikov, Dmitry; Cherneva, Nina

    2017-04-01

    AWDANet is a ground-based network for automatic whistler detection and analysis. It detects and analyses whistler waves that penetrate the ionosphere, undergo ducted propagation in the plasmasphere, and return to the ground in the opposite hemisphere. In this study, we analyse recordings of several years from a number of AWDANet stations around the globe. Based on a large number of whistlers detected in these data, we compare the annual, monthly, daily and hourly whistler counts to lightning stroke counts from the source region corresponding to each receiver station (these regions having been determined in our previous studies). For lightning data we use lightning stroke databases such as the WWLLN. We identify periods of correlation between lightning activity and whistler activity, and periods of no correlation, i.e. a lack of whistler detections during lightning activity. We investigate possible effects that contribute to the existence or absence of detectable whistlers, such as geomagnetic activity.

  14. Social networks

    CERN Document Server

    Etaner-Uyar, A Sima

    2014-01-01

    The present volume provides a comprehensive resource for practitioners and researchers alike-both those new to the field as well as those who already have some experience. The work covers Social Network Analysis theory and methods with a focus on current applications and case studies applied in various domains such as mobile networks, security, machine learning and health. With the increasing popularity of Web 2.0, social media has become a widely used communication platform. Parallel to this development, Social Network Analysis gained in importance as a research field, while opening up many

  15. Network Warrior

    CERN Document Server

    Donahue, Gary

    2011-01-01

    Pick up where certification exams leave off. With this practical, in-depth guide to the entire network infrastructure, you'll learn how to deal with real Cisco networks, rather than the hypothetical situations presented on exams like the CCNA. Network Warrior takes you step by step through the world of routers, switches, firewalls, and other technologies based on the author's extensive field experience. You'll find new content for MPLS, IPv6, VoIP, and wireless in this completely revised second edition, along with examples of Cisco Nexus 5000 and 7000 switches throughout. Topics include: An

  16. THE OPERATION MODES OPTIMIZATION OF THE NEUTRAL DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    F. P. Shkarbets

    2009-03-01

    Full Text Available The variants of grounding the neutral wire of electric networks are considered and the recommendations are presented on increasing the level of operational reliability and electric safety of distribution networks with 6 kV voltage on the basis of limitation and suppression of transitional processes at asymmetrical damages.

  17. Data and Network Science for Noisy Heterogeneous Systems

    Science.gov (United States)

    Rider, Andrew Kent

    2013-01-01

    Data in many growing fields has an underlying network structure that can be taken advantage of. In this dissertation we apply data and network science to problems in the domains of systems biology and healthcare. Data challenges in these fields include noisy, heterogeneous data, and a lack of ground truth. The primary thesis of this work is that…

  18. Public Cardiac Arrest Characteristics in Enclosed Pedestrian Networks

    NARCIS (Netherlands)

    Lee, Minha; Demirtas, Derya; Buick, Jason E.; Ng, Amy; Feldman, Michael J.; Cheskes, Sheldon; Morrison, Laurie J.; Chan, Timothy C.Y.

    2015-01-01

    Background: Cities around the world have underground or above-ground enclosed networks for pedestrian travel, representing unique environments for studying out-of-hospital cardiac arrest (OHCA) and resuscitation. The characteristics of OHCAs that occur in such networks are unknown. Objective: To

  19. Airport Ground Resource Planning Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort undertakes the creation of an Airport Ground Resource Planning (AGRP) tool. Little or no automation is currently available to support airport ground...

  20. The Development of Constructivist Grounded Theory

    Directory of Open Access Journals (Sweden)

    Jane Mills

    2006-03-01

    Full Text Available Constructivist grounded theory is a popular method for research studies primarily in the disciplines of psychology, education, and nursing. In this article, the authors aim to locate the roots of constructivist grounded theory and then trace its development. They examine key grounded theory texts to discern their ontological and epistemological orientation. They find Strauss and Corbin's texts on grounded theory to possess a discernable thread of constructivism in their approach to inquiry. They also discuss Charmaz's landmark work on constructivist grounded theory relative to her positioning of the researcher in relation to the participants, analysis of the data, and rendering of participants' experiences into grounded theory. Grounded theory can be seen as a methodological spiral that begins with Glaser and Strauss' original text and continues today. The variety of epistemological positions that grounded theorists adopt are located at various points on this spiral and are reflective of their underlying ontologies.