WorldWideScience

Sample records for network water quality

  1. Progress and lessons learned from water-quality monitoring networks

    Science.gov (United States)

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  2. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  3. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  4. Successful integration efforts in water quality from the integrated Ocean Observing System Regional Associations and the National Water Quality Monitoring Network

    Science.gov (United States)

    Ragsdale, R.; Vowinkel, E.; Porter, D.; Hamilton, P.; Morrison, R.; Kohut, J.; Connell, B.; Kelsey, H.; Trowbridge, P.

    2011-01-01

    The Integrated Ocean Observing System (IOOS??) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  5. Topological clustering as a tool for planning water quality monitoring in water distribution networks

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2015-01-01

    ) identify steady clusters for a part of the network where an actual contamination has occurred; (2) analyze this event by the use of mesh diagrams; and (3) analyze the use of mesh diagrams as a decision support tool for planning water quality monitoring. Initially, the network model was divided...... into strongly and weakly connected clusters for selected time periods and mesh diagrams were used for analysing cluster connections in the Nørrebro district. Here, areas of particular interest for water quality monitoring were identified by including user-information about consumption rates and consumers...... particular sensitive towards water quality deterioration. The analysis revealed sampling locations within steady clusters, which increased samples' comparability over time. Furthermore, the method provided a simplified overview of water movement in complex distribution networks, and could assist...

  6. Coordinating standards and applications for optical water quality sensor networks

    Science.gov (United States)

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  7. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  8. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  9. The national stream quality accounting network: A flux-basedapproach to monitoring the water quality of large rivers

    Science.gov (United States)

    Hooper, R.P.; Aulenbach, Brent T.; Kelly, V.J.

    2001-01-01

    Estimating the annual mass flux at a network of fixed stations is one approach to characterizing water quality of large rivers. The interpretive context provided by annual flux includes identifying source and sink areas for constituents and estimating the loadings to receiving waters, such as reservoirs or the ocean. Since 1995, the US Geological Survey's National Stream Quality Accounting Network (NASQAN) has employed this approach at a network of 39 stations in four of the largest river basins of the USA: The Mississippi, the Columbia, the Colorado and the Rio Grande. In this paper, the design of NASQAN is described and its effectiveness at characterizing the water quality of these rivers is evaluated using data from the first 3 years of operation. A broad range of constituents was measured by NASQAN, including trace organic and inorganic chemicals, major ions, sediment and nutrients. Where possible, a regression model relating concentration to discharge and season was used to interpolate between chemical observations for flux estimation. For water-quality network design, the most important finding from NASQAN was the importance of having a specific objective (that is, estimating annual mass flux) and, from that, an explicitly stated data analysis strategy, namely the use of regression models to interpolate between observations. The use of such models aided in the design of sampling strategy and provided a context for data review. The regression models essentially form null hypotheses for concentration variation that can be evaluated by the observed data. The feedback between network operation and data collection established by the hypothesis tests places the water-quality network on a firm scientific footing.

  10. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks.

    Science.gov (United States)

    Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S

    2017-09-01

    Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).

  11. PREDICTION OF WATER QUALITY INDEX USING BACK PROPAGATION NETWORK ALGORITHM. CASE STUDY: GOMBAK RIVER

    Directory of Open Access Journals (Sweden)

    FARIS GORASHI

    2012-08-01

    Full Text Available The aim of this study is to enable prediction of water quality parameters with conjunction to land use attributes and to find a low-end alternative for water quality monitoring techniques, which are typically expensive and tedious. It also aims to ensure sustainable development, which is essentially has effects on water quality. The research approach followed in this study is via using artificial neural networks, and geographical information system to provide a reliable prediction model. Back propagation network algorithm was used for the purpose of this study. The proposed approach minimized most of anomalies associated with prediction methods and provided water quality prediction with precision. The study used 5 hidden nodes in this network. The network was optimized to complete 23145 cycles before it reaches the best error of 0.65. Stations 18 had shown the greatest fluctuation among the three stations as it reflects an area of on-going rapid development of Gombak river watershed. The results had shown a very close prediction with best error of 0.67 in a sensitivity test that was carried afterwards.

  12. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    Science.gov (United States)

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  13. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  14. System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    B. Mokhtar

    2016-01-01

    Full Text Available This paper presents a comprehensive water quality monitoring system that employs a smart network management, nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS, and Operation Management Subsystem (OMS. The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. The main tasks of OMS are to enable real-time data visualization, managed system control, and secure system operation. The DSFS employs a Hybrid Intelligence (HI scheme which is proposed through integrating an association rule learning algorithm with fuzzy logic and weighted decision trees. The DSFS operation is based on profiling and registering raw data readings, generated from a set of optical nanosensors, as profiles of attribute-value pairs. As a case study, we evaluate our implemented test bed via simulation scenarios in a water quality monitoring framework. The monitoring processes are simulated based on measuring the percentage of dissolved oxygen and potential hydrogen (PH in fresh water. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.

  15. Surface Water Quality Trends from EPA's LTM Network

    Science.gov (United States)

    Funk, C.; Lynch, J. A.

    2013-12-01

    Surface water chemistry provides direct indicators of the potential effects of anthropogenic impacts, such as acid deposition and climate change, on the overall health of aquatic ecosystems. Long-term surface water monitoring networks provide a host of environmental data that can be used, in conjunction with other networks, to assess how water bodies respond to stressors and if they are potentially at risk (e.g., receiving pollutant deposition beyond its critical load). Two EPA-administered monitoring programs provide information on the effects of acidic deposition on headwater aquatic systems: the Long Term Monitoring (LTM) program and the Temporally Integrated Monitoring of Ecosystems (TIME) program, designed to track the effectiveness of the 1990 Clean Air Act Amendments (CAAA) in reducing the acidity of surface waters in acid sensitive ecoregions of the Northeast and Mid-Atlantic. Here we present regional variability of long term trends in surface water quality in response to substantial reductions in atmospheric deposition. Water quality trends at acid sensitive LTM sites exhibit decreasing concentrations of sulfate at 100% of monitored sites in the Adirondack Mountains and New England, 80% of Northern Appalachian Plateau sites, and yet only 15% of sites in the Ridge and Blue Ridge Provinces over the 1990-2011 period of record. Across all regions, most LTM sites exhibited constant or only slightly declining nitrate concentrations over the same time period. Acid Neutralizing Capacity (ANC) levels improved at 68% and 45% of LTM sites in the Adirondacks and Northern Appalachian Plateau, respectively, but few sites showed increases in New England or the Ridge and Blue Ridge Provinces due to lagging improvements in base cation concentration. The ANC of northeastern TIME lakes was also evaluated from 1991 to 1994 and 2008 to 2011. The percentage of lakes with ANC values below 50 μeq/L, lakes of acute or elevated concern, dropped by about 7%, indicating improvement

  16. Water quality modeling in the dead end sections of drinking water distribution networks.

    Science.gov (United States)

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-02-01

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated

  17. A water-quality monitoring network for Vallecitos Valley, Alameda County, California. Water-resources investigations (final)

    International Nuclear Information System (INIS)

    Farrar, C.D.

    1980-10-01

    A water-quality monitoring network is proposed to detect the presence of and trace the movement of radioisotopes in the hydrologic system in the vicinity of the Vallecitos Nuclear Center. The source of the radioisotopes is treated industrial wastewater from the Vallecitos Nuclear Center that is discharged into an unnamed tributary of Vallecitos Creek. The effluent infiltrates the alluvium along the stream course, percolates downward to the water table, and mixes with the native ground water in the subsurface. The average daily discharge of effluent to the hydrologic system in 1978 was about 100,000 gallons. The proposed network consists of four surface-water sampling sites and six wells to sample the ground-water system. Samples collected monthly at each site and analyzed for tritium and for alpha, beta, and gamma radiation would provide adequate data for monitoring

  18. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    Science.gov (United States)

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Status of and changes in water quality monitored for the Idaho statewide surface-water-quality network, 1989—2002

    Science.gov (United States)

    Hardy, Mark A.; Parliman, Deborah J.; O'Dell, Ivalou

    2005-01-01

    The Idaho statewide surface-water-quality monitoring network consists of 56 sites that have been monitored from 1989 through 2002 to provide data to document status and changes in the quality of Idaho streams. Sampling at 33 sites has covered a wide range of flows and seasons that describe water-quality variations representing both natural conditions and human influences. Targeting additional high- or low-flow sampling would better describe conditions at 20 sites during hydrologic extremes. At the three spring site types, sampling covered the range of flow conditions from 1989 through 2002 well. However, high flows at these sites since 1989 were lower than historical high flows as a result of declining ground-water levels in the Snake River Plain. Summertime stream temperatures at 45 sites commonly exceeded 19 and 22 degrees Celsius, the Idaho maximum daily mean and daily maximum criteria, respectively, for the protection of coldwater aquatic life. Criteria exceedances in stream basins with minimal development suggest that such high temperatures may occur naturally in many Idaho streams. Suspended-sediment concentrations were generally higher in southern Idaho than in central and northern Idaho, and network data suggest that the turbidity criteria are most likely to be exceeded at sites in southern Idaho and other sections of the Columbia Plateaus geomorphic province. This is probably because this province has more fine-grained soils that are subject to erosion and disturbance by land uses than the Northern Rocky Mountains province of northern and central

  20. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream.

    Science.gov (United States)

    da Costa, Andréa Oliveira Souza; Silva, Priscila Ferreira; Sabará, Millôr Godoy; da Costa, Esly Ferreira

    2009-08-01

    This paper reports the using of neural networks for water quality analysis in a tropical urban stream before (2002) and after sewerage building and the completion of point-source control-based sanitation program (2003). Mathematical modeling divided water quality data in two categories: (a) input of some in situ water quality variables (temperature, pH, O2 concentration, O2 saturation and electrical conductivity) and (b) water chemical composition (N-NO2(-); N-NO3(-); N-NH4(+) Total-N; P-PO4(3-); K+; Ca2+; Mg+2; Cu2+; Zn2+ and Fe+3) as the output from tested models. Stream water data come from fortnightly sampling in five points along the Ipanema stream (Southeast Brazil, Minas Gerais state) plus two points downstream and upstream Ipanema discharge into Doce River. Once the best models are consistent with variables behavior we suggest that neural networking shows potential as a methodology to enhance guidelines for urban streams restoration, conservation and management.

  1. Stochastic water demand modelling for a better understanding of hydraulics in water distribution networks

    NARCIS (Netherlands)

    Blokker, E.J.M.

    2010-01-01

    In the water distribution network water quality process take place influenced by de flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the water distribution network, a good understanding of hydraulics is required. Specifically in

  2. Identifying uncertainty of the mean of some water quality variables along water quality monitoring network of Bahr El Baqar drain

    Directory of Open Access Journals (Sweden)

    Hussein G. Karaman

    2013-10-01

    Full Text Available Assigning objectives to the environmental monitoring network is the pillar of the design to these kinds of networks. Conflicting network objectives may affect the adequacy of the design in terms of sampling frequency and the spatial distribution of the monitoring stations which in turn affect the accuracy of the data and the information extracted. The first step in resolving this problem is to identify the uncertainty inherent in the network as the result of the vagueness of the design objective. Entropy has been utilized and adopted over the past decades to identify uncertainty in similar water data sets. Therefore it is used to identify the uncertainties inherent in the water quality monitoring network of Bahr El-Baqar drain located in the Eastern Delta. Toward investigating the applicability of the Entropy methodology, comprehensive analysis at the selected drain as well as their data sets is carried out. Furthermore, the uncertainty calculated by the entropy function will be presented by the means of the geographical information system to give the decision maker a global view to these uncertainties and to open the door to other researchers to find out innovative approaches to lower these uncertainties reaching optimal monitoring network in terms of the spatial distribution of the monitoring stations.

  3. Abnormal quality detection and isolation in water distribution networks using simulation models

    Directory of Open Access Journals (Sweden)

    F. Nejjari

    2012-11-01

    Full Text Available This paper proposes a model based detection and localisation method to deal with abnormal quality levels based on the chlorine measurements and chlorine sensitivity analysis in a water distribution network. A fault isolation algorithm which correlates on line the residuals (generated by comparing the available chlorine measurements with their estimations using a model with the fault sensitivity matrix is used. The proposed methodology has been applied to a District Metered Area (DMA in the Barcelona network.

  4. Geostatistical prediction of microbial water quality throughout a stream network using meteorology, land cover, and spatiotemporal autocorrelation.

    Science.gov (United States)

    Holcomb, David Andrew; Messier, Kyle P; Serre, Marc L; Rowny, Jakob G; Stewart, Jill R

    2018-06-11

    Predictive modeling is promising as an inexpensive tool to assess water quality. We developed geostatistical predictive models of microbial water quality that empirically modelled spatiotemporal autocorrelation in measured fecal coliform (FC) bacteria concentrations to improve prediction. We compared five geostatistical models featuring different autocorrelation structures, fit to 676 observations from 19 locations in North Carolina's Jordan Lake watershed using meteorological and land cover predictor variables. Though stream distance metrics (with and without flow-weighting) failed to improve prediction over the Euclidean distance metric, incorporating temporal autocorrelation substantially improved prediction over the space-only models. We predicted FC throughout the stream network daily for one year, designating locations "impaired", "unimpaired", or "unassessed" if the probability of exceeding the state standard was >90%, 10% but <90%, respectively. We could assign impairment status to more of the stream network on days any FC were measured, suggesting frequent sample-based monitoring remains necessary, though implementing spatiotemporal predictive models may reduce the number of concurrent sampling locations required to adequately assess water quality. Together, these results suggest that prioritizing sampling at different times and conditions using geographically sparse monitoring networks is adequate to build robust and informative geostatistical models of water quality impairment.

  5. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    Science.gov (United States)

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A general framework for a collaborative water quality knowledge and information network.

    Science.gov (United States)

    Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge

    2011-03-01

    Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.

  7. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  8. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    Science.gov (United States)

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  9. Trends in Surface-Water Quality at Selected Ambient-Monitoring Network Stations in Kentucky, 1979-2004

    Science.gov (United States)

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among

  10. A feed-forward Hopfield neural network algorithm (FHNNA) with a colour satellite image for water quality mapping

    Science.gov (United States)

    Asal Kzar, Ahmed; Mat Jafri, M. Z.; Hwee San, Lim; Al-Zuky, Ali A.; Mutter, Kussay N.; Hassan Al-Saleh, Anwar

    2016-06-01

    There are many techniques that have been given for water quality problem, but the remote sensing techniques have proven their success, especially when the artificial neural networks are used as mathematical models with these techniques. Hopfield neural network is one type of artificial neural networks which is common, fast, simple, and efficient, but it when it deals with images that have more than two colours such as remote sensing images. This work has attempted to solve this problem via modifying the network that deals with colour remote sensing images for water quality mapping. A Feed-forward Hopfield Neural Network Algorithm (FHNNA) was modified and used with a satellite colour image from type of Thailand earth observation system (THEOS) for TSS mapping in the Penang strait, Malaysia, through the classification of TSS concentrations. The new algorithm is based essentially on three modifications: using HNN as feed-forward network, considering the weights of bitplanes, and non-self-architecture or zero diagonal of weight matrix, in addition, it depends on a validation data. The achieved map was colour-coded for visual interpretation. The efficiency of the new algorithm has found out by the higher correlation coefficient (R=0.979) and the lower root mean square error (RMSE=4.301) between the validation data that were divided into two groups. One used for the algorithm and the other used for validating the results. The comparison was with the minimum distance classifier. Therefore, TSS mapping of polluted water in Penang strait, Malaysia, can be performed using FHNNA with remote sensing technique (THEOS). It is a new and useful application of HNN, so it is a new model with remote sensing techniques for water quality mapping which is considered important environmental problem.

  11. In situ optical water-quality sensor networks - Workshop summary report

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Horsburgh, Jeffery S.

    2012-01-01

    Advanced in situ optical water-quality sensors and new techniques for data analysis hold enormous promise for furthering scientific understanding of aquatic systems. These sensors measure important biogeochemical parameters for long deployments, enabling the capture of data at time scales over which they vary most meaningfully. The high-frequency, real-time water-quality data they generate provide opportunities for early warning of water-quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U. S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) convened a joint 3-day workshop (June 8-10, 2011) at the National Conservation Training Center in Shepardstown, West Virginia, to explore ways to coordinate development of standards and applications for optical sensors, and improve handling, storing, and analyzing the continuous data they produce. The workshop brought together more than 60 scientists, program managers, and vendors from universities, government agencies, and the private sector. Several important outcomes emerged from the presentations and breakout sessions. There was general consensus that making intercalibrated measurements requires that both manufacturers and users better characterize and calibrate the sensors under field conditions. For example, the influence of suspended particles, highly colored water, and temperature on optical sensors remains poorly understood, but consistently accounting for these factors is critical to successful deployment and for interpreting results in different settings. This, in turn, highlights the lack of appropriate standards for sensor calibrations, field checks, and characterizing interferences, as well as methods for

  12. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    Science.gov (United States)

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network and constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of water resources in the State. Six sites from the Ambient Water-Quality Monitoring Network, with data available from the 1993 through 2008 water years, were chosen to compare water-quality conditions and long-term trends of dissolved oxygen, selected physical properties, total suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorous, fecal indicator bacteria, and selected trace elements. The six sites used in the study were classified in groups corresponding to the physiography, main land use, and drainage basin size, and represent most stream types in Missouri. Long-term trends in this study were analyzed using flow-adjusted and non-flow adjusted models. Highly censored datasets (greater than 5 percent but less than 50 percent censored values) were not flow-adjusted. Trends that were detected can possibly be related to changes in agriculture or urban development within the drainage basins. Trends in nutrients were the most prevalent. Upward flow-adjusted trends in dissolved nitrate plus nitrite (as nitrogen) concentrations were identified at the Elk River site, and in total phosphorus concentrations at the South Fabius and Grand River sites. A downward flow-adjusted trend was identified in total phosphorus concentrations from Wilson Creek, the only urban site in the study. The downward trend in phosphorus possibly was related to a phosphorus reduction system that began operation in 2001 at a wastewater treatment plant upstream from the sampling site. Total suspended solids concentrations indicated an upward non-flow adjusted trend at the two northern sites (South Fabius

  13. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  14. Optimal spatio-temporal design of water quality monitoring networks for reservoirs: Application of the concept of value of information

    Science.gov (United States)

    Maymandi, Nahal; Kerachian, Reza; Nikoo, Mohammad Reza

    2018-03-01

    This paper presents a new methodology for optimizing Water Quality Monitoring (WQM) networks of reservoirs and lakes using the concept of the value of information (VOI) and utilizing results of a calibrated numerical water quality simulation model. With reference to the value of information theory, water quality of every checkpoint with a specific prior probability differs in time. After analyzing water quality samples taken from potential monitoring points, the posterior probabilities are updated using the Baye's theorem, and VOI of the samples is calculated. In the next step, the stations with maximum VOI is selected as optimal stations. This process is repeated for each sampling interval to obtain optimal monitoring network locations for each interval. The results of the proposed VOI-based methodology is compared with those obtained using an entropy theoretic approach. As the results of the two methodologies would be partially different, in the next step, the results are combined using a weighting method. Finally, the optimal sampling interval and location of WQM stations are chosen using the Evidential Reasoning (ER) decision making method. The efficiency and applicability of the methodology are evaluated using available water quantity and quality data of the Karkheh Reservoir in the southwestern part of Iran.

  15. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    Science.gov (United States)

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  16. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    Science.gov (United States)

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  17. Assessment for water quality by artificial neural network in Daya Bay, South China Sea.

    Science.gov (United States)

    Wu, Mei-Lin; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.

  18. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; Desimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  19. Water quality in irrigation and drainage networks of Thessaloniki plain in Greece related to land use, water management, and agroecosystem protection.

    Science.gov (United States)

    Litskas, Vassilis D; Aschonitis, Vassilis G; Antonopoulos, Vassilis Z

    2010-04-01

    A representative agricultural area of 150 ha located in a protected ecosystem (Axios River Delta, Thermaikos Gulf-N. Aegean, Greece) was selected in order to investigate water quality parameters [pH, electrical conductivity (EC(w)), NO(3)-N, NH(4)-N, total phosphorus (TP)] in irrigation and drainage water. In the study area, the cultivated crops are mainly rice, maize, cotton, and fodder. Surface irrigation methods are applied using open channels network, and irrigation water is supplied by Axios River, which is facing pollution problems. The return flow from surface runoff and the surplus of irrigation water are collected to drainage network and disposed to Thermaikos Gulf. A 2-year study (2006-2007) was conducted in order to evaluate the effects of land use and irrigation water management on the drainage water quality. The average pH and NO(3)-N concentration was higher in the irrigation water (8.0 and 1.3 mg/L, respectively) than that in the drainage water (7.6 and 1.0 mg/L, respectively). The average EC(W), NH(4)-N, and TP concentration was higher in the drainage water (1,754 muS/cm, 90.3 microg/L, and 0.2 mg/L, respectively) than that in the irrigation water (477.1 muS/cm, 46.7 microg/L, and 0.1 mg/L, respectively). Average irrigation efficiency was estimated at 47% and 51% in 2006 and 2007 growing seasons (April-October), respectively. The loads of NO(3)-N in both seasons were higher in the irrigation water (35.1 kg/ha in 2006 and 24.9 kg/ha in 2007) than those in the drainage water (8.1 kg/ha in 2006 and 7.6 kg/ha in 2007). The load of TP was higher in the irrigation water in season 2006 (2.8 kg/ha) than that in the drainage water (1.1 kg/ha). Total phosphorus load in 2007 was equal in irrigation and drainage water (1.2 kg/ha). Wetland conditions, due to rice irrigation regime, drainage network characteristics, and the crop distribution in the study area, affect the drainage water ending in the protected ecosystem of Thermaikos Gulf.

  20. Monitoring surface-water quality in Arizona: the fixed-station network

    Science.gov (United States)

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  1. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    Science.gov (United States)

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  2. Tracing disturbance impacts on water quantity and quality through a stream network

    Science.gov (United States)

    Ross, Matthew; Nippgen, Fabian; McGlynn, Brian; Bernhardt, Emily

    2017-04-01

    By dismantling and redistributing 100s of meters of bedrock to mine coal from the surface, mountaintop mining with valley fills has dramatically changed catchment hydrology and biogeochemistry over more than 5,000 km2 in Central Appalachia. Throughout this expansive coal region, mining operators deposit tens of millions of m3 of crushed bedrock into headwater valleys, creating valley fills, which have substantial subsurface water storage potential. Streams draining mines have reduced peakflows, elevated baseflows, and lower event runoff ratios on average. The water stored in and percolating through valley fills drives the dissolution and oxidation of pyrite into sulfuric acid which reacts with carbonate-rich materials to rapidly weather out a suite of elements including Ca2+, Mg2+, K+, SO42-, HCO3-, and the pollutant Selenium. Together these ions increase the average specific conductance of mined streams from 60 to 1,500 µS/cm, 25-times higher than unmined streams, exporting 45-times more total dissolved solids. Together, the increased catchment storage, consequent elevated baseflow, and elevated weathering rates from mining have the potential to lower water quality throughout river networks in Central Appalachia, especially during the summer low flow period. To better understand the water quality impacts of mining at the river network scale, we used the paired catchment approach. Working in the Mud River, West Virginia, we instrumented a 4th order catchment 35 km2, that was 46% mined. Within the large catchment we instrumented 8 additional 1st-3rd order sub-catchments that varied in catchment size, mining cover, mine size, and mine age. At each site we measured stream discharge and specific conductance (SC). Using SC as a trace for mining we did simple hydrograph separations at our largest catchments, partitioning the hydrograph between mined and unmined water. Our results suggest that on an annual scale, mine water contributes a disproportionate percentage of

  3. Real Time Assessment of Potable Water Quality in Distribution Network based on Low Cost Multi-Sensor Array

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Khatri, Punit

    2018-03-01

    New concepts and techniques are replacing traditional methods of water quality parameters measurement systems. This paper proposed a new way of potable water quality assessment in distribution network using Multi Sensor Array (MSA). Extensive research suggests that following parameters i.e. pH, Dissolved Oxygen (D.O.), Conductivity, Oxygen Reduction Potential (ORP), Temperature and Salinity are most suitable to detect overall quality of potable water. Commonly MSA is not an integrated sensor array on some substrate, but rather comprises a set of individual sensors measuring simultaneously different water parameters all together. Based on research, a MSA has been developed followed by signal conditioning unit and finally, an algorithm for easy user interfacing. A dedicated part of this paper also discusses the platform design and significant results. The Objective of this proposed research is to provide simple, efficient, cost effective and socially acceptable means to detect and analyse water bodies regularly and automatically.

  4. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  5. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  6. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  7. Trends in surface-water quality at selected National Stream Quality Accounting Network (NASQAN) stations, in Michigan

    Science.gov (United States)

    Syed, Atiq U.; Fogarty, Lisa R.

    2005-01-01

    To demonstrate the value of long-term, water-quality monitoring, the Michigan Department of Environmental Quality (MDEQ), in cooperation with the U.S. Geological Survey (USGS), initiated a study to evaluate potential trends in water-quality constituents for selected National Stream Quality Accounting Network (NASQAN) stations in Michigan. The goal of this study is to assist the MDEQ in evaluating the effectiveness of water-pollution control efforts and the identification of water-quality concerns. The study included a total of nine NASQAN stations in Michigan. Approximately 28 constituents were analyzed for trend tests. Station selection was based on data availability, land-use characteristics, and station priority for the MDEQ Water Chemistry Monitoring Project. Trend analyses were completed using the uncensored Seasonal Kendall Test in the computer program Estimate Trend (ESTREND), a software program for the detection of trends in water-quality data. The parameters chosen for the trend test had (1) at least a 5-year period of record (2) about 5 percent of the observations censored at a single reporting limit, and (3) 40 percent of the values within the beginning one-fifth and ending one-fifth of the selected period. In this study, a negative trend indicates a decrease in concentration of a particular constituent, which generally means an improvement in water quality; whereas a positive trend means an increase in concentration and possible degradation of water quality. The results of the study show an overall improvement in water quality at the Clinton River at Mount Clemens, Manistee River at Manistee, and Pigeon River near Caseville. The detected trend for these stations show decreases in concentrations of various constituents such as nitrogen compounds, conductance, sulfate, fecal coliform bacteria, and fecal streptococci bacteria. The negative trend may indicate an overall improvement in agricultural practices, municipal and industrial wastewater

  8. Entropy Applications to Water Monitoring Network Design: A Review

    Directory of Open Access Journals (Sweden)

    Jongho Keum

    2017-11-01

    Full Text Available Having reliable water monitoring networks is an essential component of water resources and environmental management. A standardized process for the design of water monitoring networks does not exist with the exception of the World Meteorological Organization (WMO general guidelines about the minimum network density. While one of the major challenges in the design of optimal hydrometric networks has been establishing design objectives, information theory has been successfully adopted to network design problems by providing measures of the information content that can be deliverable from a station or a network. This review firstly summarizes the common entropy terms that have been used in water monitoring network designs. Then, this paper deals with the recent applications of the entropy concept for water monitoring network designs, which are categorized into (1 precipitation; (2 streamflow and water level; (3 water quality; and (4 soil moisture and groundwater networks. The integrated design method for multivariate monitoring networks is also covered. Despite several issues, entropy theory has been well suited to water monitoring network design. However, further work is still required to provide design standards and guidelines for operational use.

  9. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  10. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  11. Water quality modeling in the dead end sections of drinking water (Supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to...

  12. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of domestic water quality: case study, Beirut, Lebanon.

    Science.gov (United States)

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  14. A study of electrical power network of renewable energies and water desalination research center using power quality phenomena and indices

    International Nuclear Information System (INIS)

    Segayer, Ali Mehemmed

    2008-08-01

    Renewable energies and water distillation research center (REWDRC) is a very strategic research facility and contains many important and critical industrial and electrical loads that must to be operated as a group to fulfill the requirements and the needs of the center in the operation of the main research facility of the center which a 10 MW reactor. Faults on the electrical or the industrial system can occur on many ways such as a malfunction in the questioned system, power quality related problem, or a failure of any of the loads (such as central ventilation or water circulation system or one of the substations) have a great diverse effect on the operation of the main research facility (reactor). In this research common problems due to power quality phenomena were studied, assessed through a assigning some power quality indices to the electrical network of the center so that the operational condition of the REWDRC electrical and industrial network could be evaluated. power quality indices (PQI) were assigned based on results of real time measurements at the points of common coupling of the network (PCC) and the initial power quality survey report. indices analysis was done using three methods which were the normalization method, method of comparing to the limit value and analysis of measurement data time function profile. As a result of this research a recommendation for safe operation against power quality disturbances was pointed out through a continuous monitoring of assigned power quality indices. (Author)

  15. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  16. Water Quality Assessment of Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  17. A water quality index model using stepwise regression and neural networks models for the Piabanha River basin in Rio de Janeiro, Brazil

    Science.gov (United States)

    Villas Boas, M. D.; Olivera, F.; Azevedo, J. S.

    2013-12-01

    The evaluation of water quality through 'indexes' is widely used in environmental sciences. There are a number of methods available for calculating water quality indexes (WQI), usually based on site-specific parameters. In Brazil, WQI were initially used in the 1970s and were adapted from the methodology developed in association with the National Science Foundation (Brown et al, 1970). Specifically, the WQI 'IQA/SCQA', developed by the Institute of Water Management of Minas Gerais (IGAM), is estimated based on nine parameters: Temperature Range, Biochemical Oxygen Demand, Fecal Coliforms, Nitrate, Phosphate, Turbidity, Dissolved Oxygen, pH and Electrical Conductivity. The goal of this study was to develop a model for calculating the IQA/SCQA, for the Piabanha River basin in the State of Rio de Janeiro (Brazil), using only the parameters measurable by a Multiparameter Water Quality Sonde (MWQS) available in the study area. These parameters are: Dissolved Oxygen, pH and Electrical Conductivity. The use of this model will allow to further the water quality monitoring network in the basin, without requiring significant increases of resources. The water quality measurement with MWQS is less expensive than the laboratory analysis required for the other parameters. The water quality data used in the study were obtained by the Geological Survey of Brazil in partnership with other public institutions (i.e. universities and environmental institutes) as part of the project "Integrated Studies in Experimental and Representative Watersheds". Two models were developed to correlate the values of the three measured parameters and the IQA/SCQA values calculated based on all nine parameters. The results were evaluated according to the following validation statistics: coefficient of determination (R2), Root Mean Square Error (RMSE), Akaike information criterion (AIC) and Final Prediction Error (FPE). The first model was a linear stepwise regression between three independent variables

  18. Modelling microbiological water quality in the Seine river drainage network: past, present and future situations

    Directory of Open Access Journals (Sweden)

    P. Servais

    2007-09-01

    Full Text Available The Seine river watershed is characterized by a high population density and intense agricultural activities. Data show low microbiological water quality in the main rivers (Seine, Marne, Oise of the watershed. Today, there is an increasing pressure from different social groups to restore microbiological water quality in order to both increase the safety of drinking water production and to restore the possible use of these rivers for bathing and rowing activities, as they were in the past. A model, appended to the hydro-ecological SENEQUE/Riverstrahler model describing the functioning of large river systems, was developed to describe the dynamics of faecal coliforms (FC, the most usual faecal contamination indicator. The model is able to calculate the distribution of FC concentrations in the whole drainage network resulting from land use and wastewater management in the watershed. The model was validated by comparing calculated FC concentrations with available field data for some well-documented situations in different river stretches of the Seine drainage network. Once validated, the model was used to test various predictive scenarios, as, for example, the impact of the modifications in wastewater treatment planned at the 2012 horizon in the Seine watershed in the scope of the implementation of the european water framework directive. The model was also used to investigate past situations. In particular, the variations of the microbiological water quality in the Parisian area due to population increase and modifications in wastewater management were estimated over the last century. It was shown that the present standards for bathing and other aquatic recreational activities are not met in the large tributaries upstream from Paris since the middle of the 1950's, and at least since the middle of the XIXth century in the main branch of the Seine river downstream from Paris. Efforts carried out for improving urban wastewater treatment in terms

  19. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    NARCIS (Netherlands)

    Zlatanović, Lj; Hoek, van der J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the

  20. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  1. Prediction ofWater Quality Parameters (NO3, CL in Karaj Riverby Usinga Combinationof Wavelet Neural Network, ANN and MLRModels

    Directory of Open Access Journals (Sweden)

    T. Rajaee

    2016-10-01

    Full Text Available IntroductionThe water quality is an issue of ongoing concern. Evaluation of the quantity and quality of running waters is considerable in hydro-environmental management.The prediction and control of the quality of Karaj river water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, Performance of Artificial Neural Network (ANN, Wavelet Neural Network combination (WANN and multi linear regression (MLR models, to predict next month the Nitrate (NO3 and Chloride (CL ions of "gate ofBylaqan sluice" station located in Karaj River has been evaluated. Materials and MethodsIn this research two separate ANN models for prediction of NO3 and CL has been expanded. Each one of the parameters for prediction (NO3 / CL has been put related to the past amounts of the same time series (NO3 / CL and its amounts of Q in past months.From astatisticalperiod of10yearswas usedforthe input of the models. Hence 80% of entire data from (96 initial months of data as training set, next 10% of data (12 months and 10% of the end of time series (terminal 12 months were considered as for validation and test of the models, respectively. In WANNcombination model, the real monthly observed time series of river discharge (Q and mentioned qualityparameters(NO3 / CL were decomposed to some sub-time series at different levels by wavelet analysis.Then the decomposed quality parameters to predict and Q time series were used at different levels as inputs to the ANN technique for predicting one-step-ahead Nitrate and Chloride. These time series play various roles in the original time series and the behavior of each is distinct, so the contribution to the original time series varies from each other. In addition, prediction of high NO3 and CL values greater than mean of data that have great importancewere investigated by the models. The capability of the models was evaluated by Coefficient of Efficiency (E and the Root Mean Square

  2. Assessment of water quality in distribution networks through the lens ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... method, which identifies the regions with relatively poor water quality and highlights the potential locations for ... intelligent decision-making based on the results and the imple- ... A water supply system where water is treated.

  3. Biological instability in a chlorinated drinking water distribution network.

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  4. Optimum Layout for Sensors in Water Distribution Networks through Ant Colony Algorithm: A Dual Use Vision

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Miri

    2014-07-01

    Full Text Available The accidental or intentional entry of contaminants or self-deterioration of the water quality within the network itself can severely harm public health. Efficient water quality monitoring is one of the most important tools to guarantee a reliable potable water supply to consumers of drinking water distribution systems. Considering the high purchase, installation and maintenance cost of sensors in water distribution networks deploying two independent sensor networks within one distribution system is not only bounded by physical constraints but also is not a cost-effective approach. Therefore, need for combining different objectives and designing sensor network to simultaneity satisfying these objectives is felt. Sensors should comply with dual use benefits. Sensor locations and types should be integrated not only for achieving water security goals but also for accomplishing other water utility objectives, such as satisfying regulatory monitoring requirements or collecting information to solve water quality problems. In this study, a dual use vision for the sensor layout problem in the municipal water networks, is formulated and solved with the ant colony algorithm.

  5. Ditch network maintenance in peat-dominated boreal forests: Review and analysis of water quality management options.

    Science.gov (United States)

    Nieminen, Mika; Piirainen, Sirpa; Sikström, Ulf; Löfgren, Stefan; Marttila, Hannu; Sarkkola, Sakari; Laurén, Ari; Finér, Leena

    2018-03-27

    The objective of this study was to evaluate the potential of different water management options to mitigate sediment and nutrient exports from ditch network maintenance (DNM) areas in boreal peatland forests. Available literature was reviewed, past data reanalyzed, effects of drainage intensity modeled, and major research gaps identified. The results indicate that excess downstream loads may be difficult to prevent. Water protection structures constructed to capture eroded matter are either inefficient (sedimentation ponds) or difficult to apply (wetland buffers). It may be more efficient to decrease erosion, either by limiting peak water velocity (dam structures) or by adjusting ditch depth and spacing to enable satisfactory drainage without exposing the mineral soil below peat. Future research should be directed towards the effects of ditch breaks and adjusted ditch depth and spacing in managing water quality in DNM areas.

  6. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Maui Citizen Science Coastal Water Quality Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A network of citizen science volunteers periodically monitors water quality at several beaches across the island of Maui in the State of Hawaii. This community-based...

  8. Hydrogeology and water quality of the shallow ground-water system in eastern York County, Virginia. Water resources investigation

    International Nuclear Information System (INIS)

    1993-01-01

    The report describes the hydrogeology and water quality of the shallow ground-water system in the eastern part of York County, Va. The report includes a discussion of (1) the aquifers and confining units, (2) the flow of ground water, and (3) the quality of ground water. The report is an evaluation of the shallow ground-water system and focuses on the first 200 ft of sediments below land surface. Historical water-level and water-quality data were not available for the study area; therefore, a network of observation wells was constructed for the study. Water levels were measured to provide an understanding of the flow of ground water through the multiaquifer system. Water samples were collected and analyzed for major inorganic constituents, nutrients, and metals. The report presents maps that show the regional distribution of chloride and iron concentrations. Summary statistics and graphical summaries of selected chemical constituents provide a general assessment of the ground-water quality

  9. Water quality and management of private drinking water wells in Pennsylvania.

    Science.gov (United States)

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  10. Florida's ground water quality monitoring program: background hydrogeochemistry

    OpenAIRE

    Maddox, Gary; Upchurch, Sam; Lloyd, Jacqueline; Scott, Tom

    1992-01-01

    The purpose of this report is to present the results of the initial quantification of background water quality in each of the state's major potable aquifer systems. Results are presented and interpreted in light of the influencing factors which locally and regionally affect ambient ground-water quality. This initial data will serve as a baseline from which future sampling results can be compared. Future sampling of the Network will indicate the extent to which Flori...

  11. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    Science.gov (United States)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  12. Integrated Hydrologic Science and Environmental Engineering Observatory: CLEANER's Vision for the WATERS Network

    Science.gov (United States)

    Montgomery, J. L.; Minsker, B. S.; Schnoor, J.; Haas, C.; Bonner, J.; Driscoll, C.; Eschenbach, E.; Finholt, T.; Glass, J.; Harmon, T.; Johnson, J.; Krupnik, A.; Reible, D.; Sanderson, A.; Small, M.; van Briesen, J.

    2006-05-01

    With increasing population and urban development, societies grow more and more concerned over balancing the need to maintain adequate water supplies with that of ensuring the quality of surface and groundwater resources. For example, multiple stressors such as overfishing, runoff of nutrients from agricultural fields and confined animal feeding lots, and pathogens in urban stormwater can often overwhelm a single water body. Mitigating just one of these problems often depends on understanding how it relates to others and how stressors can vary in temporal and spatial scales. Researchers are now in a position to answer questions about multiscale, spatiotemporally distributed hydrologic and environmental phenomena through the use of remote and embedded networked sensing technologies. It is now possible for data streaming from sensor networks to be integrated by a rich cyberinfrastructure encompassing the innovative computing, visualization, and information archiving strategies needed to cope with the anticipated onslaught of data, and to turn that data around in the form of real-time water quantity and quality forecasting. Recognizing this potential, NSF awarded $2 million to a coalition of 12 institutions in July 2005 to establish the CLEANER Project Office (Collaborative Large-Scale Engineering Analysis Network for Environmental Research; http://cleaner.ncsa.uiuc.edu). Over the next two years the project office, in coordination with CUAHSI (Consortium of Universities for the Advancement of Hydrologic Science, Inc.; http://www.cuahsi.org), will work together to develop a plan for a WATer and Environmental Research Systems Network (WATERS Network), which is envisioned to be a collaborative scientific exploration and engineering analysis network, using high performance tools and infrastructure, to transform our scientific understanding of how water quantity, quality, and related earth system processes are affected by natural and human-induced changes to the environment

  13. How does network design constrain optimal operation of intermittent water supply?

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2015-11-01

    Urban water distribution systems do not always supply water continuously or reliably. As pipes fill and empty, pressure transients may contribute to degraded infrastructure and poor water quality. To help understand and manage this undesirable side effect of intermittent water supply--a phenomenon affecting hundreds of millions of people in cities around the world--we study the relative contributions of fixed versus dynamic properties of the network. Using a dynamical model of unsteady transition pipe flow, we study how different elements of network design, such as network geometry, pipe material, and pipe slope, contribute to undesirable pressure transients. Using an optimization framework, we then investigate to what extent network operation decisions such as supply timing and inflow rate may mitigate these effects. We characterize some aspects of network design that make them more or less amenable to operational optimization.

  14. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    Science.gov (United States)

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  15. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  16. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    Science.gov (United States)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  17. THE CONTRIBUTION OF GIS TO DISPLAY AND ANALYZE THE WATER QUALITY DATA COLLECTED BY A WIRELESS SENSOR NETWORK: CASE OF BOUREGREG CATCHMENT, MOROCCO

    Directory of Open Access Journals (Sweden)

    S. Boubakri

    2017-11-01

    Full Text Available The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn’t provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS with wireless sensor networks (WSN aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  18. Voice Quality Estimation in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Petr Zach

    2015-01-01

    Full Text Available This article deals with the impact of Wireless (Wi-Fi networks on the perceived quality of voice services. The Quality of Service (QoS metrics must be monitored in the computer network during the voice data transmission to ensure proper voice service quality the end-user has paid for, especially in the wireless networks. In addition to the QoS, research area called Quality of Experience (QoE provides metrics and methods for quality evaluation from the end-user’s perspective. This article focuses on a QoE estimation of Voice over IP (VoIP calls in the wireless networks using network simulator. Results contribute to voice quality estimation based on characteristics of the wireless network and location of a wireless client.

  19. Impact of Water Quality on Chlorine Demand of Corroding Copper

    Science.gov (United States)

    Copper is the most widely used material in drinking water premise plumbing systems. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect ag...

  20. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  1. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    Science.gov (United States)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties

  2. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  3. Water quality issues and status in Pakistan

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Tahir, M. A.; Ashraf, M.

    2005-01-01

    Per capita water availability in Pakistan has dropped drastically during the last fifty years. Recent extended droughts have further aggravated the situation. In order to meet the shortage and crop water requirements, groundwater is being used extensively in the Indus Basin. Groundwater is also the main source of water for drinking and industrial uses. This increased pressure on groundwater has lowered the water table in many cities. It is reported that water table has dropped by more than 3 m in many cities. This excessive use of groundwater has seriously affected the quality of groundwater and has increased the incidences of water-borne diseases many folds. A recent water quality study has shown that out of 560,000 tube wells of Indus Basin, about 70 percent are pumping sodic water. The use of sodic water has in turn affected the soil health and crop yields. This situation is being further aggravated due to changes in climate and rainfall patterns. To monitor changes in surface and groundwater quality and groundwater levels, Pakistan Council of Research in Water Resources has undertaken a countrywide programme of water quality monitoring. This programme covers twenty-one cities from the four provinces, five rivers, 10 storage reservoirs and lakes and two main drains of Pakistan. Under this programme a permanent monitoring network is established from where water samples are collected and analyzed once every year. The collected water samples are analyzed for aesthetic, chemical and bacteriological parameters to determine their suitability for agricultural, domestic and industrial uses. The results of the present study indicate serious contamination in many cities. Excessive levels of arsenic, fluoride and sodium have been detected in many cities. This paper highlights the major water quality issues and briefly presents the preliminary results of the groundwater analysis for major cities of Pakistan. (author)

  4. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  5. Water quality relationships and evaluation using a new water quality index

    International Nuclear Information System (INIS)

    Said, A.; Stevens, D.; Sehlke, G.

    2002-01-01

    Water quality is dependent on a variety of measures, including dissolved oxygen, microbial contamination, turbidity, nutrients, temperature, pH, and other constituents. Determining relationships between water quality parameters can improve water quality assessment, and watershed management. In addition, these relationships can be very valuable in case of evaluating water quality in watersheds that have few water quality data. (author)

  6. Water quality modelling and optimisation of wastewater treatment network using mixed integer programming

    CSIR Research Space (South Africa)

    Mahlathi, Christopher

    2016-10-01

    Full Text Available Instream water quality management encompasses field monitoring and utilisation of mathematical models. These models can be coupled with optimisation techniques to determine more efficient water quality management alternatives. Among these activities...

  7. Water hammer research in networks

    Directory of Open Access Journals (Sweden)

    Anželika Jurkienė

    2015-10-01

    Full Text Available Formation of water hammer, its consequences and possible protection measures are rarely topics, however the problem is significant. Water hammer can form in water supply and pressurized sewage networks, for various reasons. The article presents short theory of water hammer and methodology for calculation of specific parameters. Research of water hammer was performed in real water supply and sewer networks of country. Simulation of water hammer was carried out by turning on and off water pumps in pumping station. Successful measurement of water hammer depends on accuracy of the measurement equipment, therefore during the research surge wave fluctuations were measured with especially high resolution pressure meters. Detailed analysis of water hammer and selection of protecting equipment hydraulic model of water supply network was created. Protection against water hammer helps to avoid breaking of the water network and extend operation time.

  8. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  10. Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Ljiljana Zlatanović

    2018-04-01

    Full Text Available Drinking water and fire safety are strongly bonded to each other. Actual drinking water demand and fire flows are both delivered through the same network, and are both devoted to public health and safety. In The Netherlands, the discussion about fire flows supplied by the drinking water networks has drawn fire fighters and drinking water companies together, searching for novel approaches to improve public safety. One of these approaches is the application of residential fire sprinkler systems fed by drinking water. This approach has an impact on the layout of domestic drinking water systems (DDWSs, as extra plumbing is required. This study examined the influence of the added plumbing on quality of both fresh and 10 h stagnant water in two full scale DDWSs: a conventional and an extended system. Overnight stagnation was found to promote copper and zinc leaching from pipes in both DDWSs. Microbial numbers and viability in the stagnant water, measured by heterotrophic plate count (HPC, flow cytometry (FCM and adenosine tri-phosphate (ATP, depended on the temperature of fresh water, as increased microbial numbers and viability was measured in both DDWSs when the temperature of fresh water was below the observed tipping point (15 °C for the HPC and 17 °C for the FCM and ATP measurements respectively and vice versa. A high level of similarity between water and biofilm communities, >98% and >70–94% respectively, indicates that the extension of the DDWS did not affect either the microbial quality of fresh drinking water or the biofilm composition.

  11. The Role of Transnational Municipal Networks in Transboundary Water Governance

    Directory of Open Access Journals (Sweden)

    Savitri Jetoo

    2017-01-01

    Full Text Available The transboundary nature of stressors impacting shared water bodies has been traditionally recognized in agreements between nation states. Several developments have led to new layers of cross border environmental actors, including regional and city level interactions. This proliferation of non-state actors is witnessed in two large water bodies, the Baltic Sea and the North American Great Lakes. In both regions, transboundary water governance was led by nation states in agreements to improve heavily contaminated waters, the Helsinki Convention (1974 and the North American Great Lakes Water Quality Agreement (1972, respectively. Whilst there has been much research on transnational regional networks, especially in Europe, there has been less theoretical work done on transnational municipal transboundary water networks due to the delay of recognition of the legitimacy of these local government actors. This paper aims to examine the role of the transnational municipal networks in transboundary water governance by looking at the case studies of the Union of Baltic cities in the Baltic Sea region and the Great Lakes and St. Lawrence Cities Initiative in the North American Great Lakes Basin. It does this by assessing the role of these transnational municipal networks in bridging water governance gaps in these regions.

  12. Water quality in the Mahoning River and selected tributaries in Youngstown, Ohio

    Science.gov (United States)

    Stoeckel, Donald M.; Covert, S. Alex

    2002-01-01

    The lower reaches of the Mahoning River in Youngstown, Ohio, have been characterized by the Ohio Environmental Protection Agency (OEPA) as historically having poor water quality. Most wastewater-treatment plants (WWTPs) in the watershed did not provide secondary sewage treatment until the late 1980s. By the late 1990s, the Mahoning River still received sewer-overflow discharges from 101 locations within the city of Youngstown, Ohio. The Mahoning River in Youngstown and Mill Creek, a principal tributary to the Mahoning River in Youngstown, have not met biotic index criteria since the earliest published assessment by OEPA in 1980. Youngstown and the OEPA are working together toward the goal of meeting water-quality standards in the Mahoning River. The U.S. Geological Survey collected information to help both parties assess water quality in the area of Youngstown and to estimate bacteria and inorganic nitrogen contributions from sewer-overflow discharges to the Mahoning River. Two monitoring networks were established in the lower Mahoning River: the first to evaluate hydrology and microbiological and chemical water quality and the second to assess indices of fish and aquatic-macroinvertebrate-community health. Water samples and water-quality data were collected from May through October 1999 and 2000 to evaluate where, when, and for how long water quality was affected by sewer-overflow discharges. Water samples were collected during dry- and wet-weather flow, and biotic indices were assessed during the first year (1999). The second year of sample collection (2000) was directed toward evaluating changes in water quality during wet-weather flow, and specifically toward assessing the effect of sewer-overflow discharges on water quality in the monitoring network. Water-quality standards for Escherichia coli (E. coli) concentration and draft criteria for nitrate plus nitrite and total phosphorus were the regulations most commonly exceeded in the Mahoning River and Mill

  13. Evaluation of drinking water quality in Rawalpindi and Islamabad

    International Nuclear Information System (INIS)

    Uzaira, R.; Sumreen, I.; Uzma, R.

    2005-01-01

    Drinking water quality of Rawalpindi and Islamabad was determined in terms of its microbiological and physicochemical characteristics. Water samples were collected from fifty schools of cantonment area Rawalpindi and fifty houses of Sector G-9/4 Islamabad. Survey revealed that surface and ground water are the two major sources of drinking water. Efficiency of domestic filtration units was determined by taking samples before and after filtration, whereas, level of contamination was assessed by collecting samples from storage and dispensing devices in schools. Water quality was determined by pH, conductivity, total dissolved solids, total hardness, concentration of anions and cations, coliforms, viable and colony counts using multiple tube fermentation, titrimetry, UV-Visible spectrophotometry and flame emission photometry. Drinking water quality of Islamabad was found to be better than Rawalpindi. However filtration showed no significant impact in improving water quality due to improper cleaning of filters. Samples were found to exceed WHO guidelines and EPA standards for total dissolved solids and microbiological parameters (WHO, 1996 and EPA, 1980) making water unfit for use due to poor sanitation and cross contamination with sewers in distribution network. (author)

  14. Quality and food network configuration

    DEFF Research Database (Denmark)

    Kjeldsen, Chris; Noe, Egon

    The aim of the paper is to analyze how the emergence of distinct quality conventions relates to particular network relations within two selected Danish organic dairy enterprises. The paper starts out from the assumption that the distinct qualities, which distinguish organic food, can be viewed...... as a form of symbolic capital. In order to be recognized and thus qualified as symbolic capital, mediation of quality takes place throughout the selected networks, all the way from cow to cup. At some point, symbolic capital will be converted into economic capital. In practical terms, management of quality...... is thus extremely important and even more so if the product chain in question is a ‘high-quality’ food chain of a relatively high level of complexity, such as an organic food network. Analytically, our main focus is on the relation between network structure and the qualities mediated from cow to cup...

  15. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  16. Toward implementation of a national ground water monitoring network

    Science.gov (United States)

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  17. Modelling raw water quality: development of a drinking water management tool.

    Science.gov (United States)

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  18. Primer on Water Quality

    Science.gov (United States)

    ... water quality. What do we mean by "water quality"? Water quality can be thought of as a measure ... is suitable for a particular use. How is water quality measured? Some aspects of water quality can be ...

  19. Drinking water quality of Sukkur municipal corporation

    International Nuclear Information System (INIS)

    Kandhar, I.A.; Ansari, A.K.

    2002-01-01

    SMC (Sukkur Municipal Corporation) supply the (filtered/settled) water for domestic purpose to the consumers, through intermittent water supply, from Phases I to IV. The water supply distribution network is underground and at most places pass parallel to sewerage lines. The grab sampling technique was followed for collecting representative samples. The official US-EPA and standard methods of water analysis have been used for drinking water quality analysis. DR/2000 spectrophotometer has been used for monitoring: Nitrates, Fluorides, Sulfates, Copper, Chromium, Iron and manganese. The trace metals Cr/sup 6/, Fe/sup 2+/ and other contaminants like; Turbidity and TSS (Total Suspended Solids) have been found higher than World Health Organization (WHO-1993) guideline values. (author)

  20. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Science.gov (United States)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  1. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    Science.gov (United States)

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  2. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    Science.gov (United States)

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  3. Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results

    Science.gov (United States)

    Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...

  4. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  5. Explore the advantage of High-frequency Water Quality Data in Urban Surface Water: A Case Study in Bristol, UK

    Science.gov (United States)

    Chen, Y.; Han, D.

    2017-12-01

    Water system is an essential component in a smart city for its sustainability and resilience. The freshness and beauty of the water body would please people as well as benefit the local aquatic ecosystems. Water quality monitoring approach has evolved from the manual lab-based monitoring approach to the manual in-situ monitoring approach, and finally to the latest wireless-sensor-network (WSN) based solutions in recent decades. The development of the in-situ water quality sensors enable humans to collect high-frequency and real-time water quality data. This poster aims to explore the advantages of the high-frequency water quality data over the low-frequency data collected manually. The data is collected by a remote real-time high-frequency water quality monitor system based on the cutting edge smart city infrastructure in Bristol - `Bristol Is Open'. The water quality of Bristol Floating Harbour is monitored which is the focal area of Bristol with new buildings and features redeveloped in the past decades. This poster will first briefly introduce the water quality monitoring system, followed by the analysis of the advantages of the sub-hourly water quality data. Thus, the suggestion on the monitoring frequency will be given.

  6. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  7. Quality assurance and quality control for Hydro-Quebec's ambient air monitoring networks

    International Nuclear Information System (INIS)

    Lambert, M.; Varfalvy, L.

    1993-01-01

    Hydro Quebec has three ambient air monitoring networks to determine the contribution of some of its thermal plants to ambient air quality. They are located in Becancour (gas turbines), Iles-de-la-Madeleine (diesel), and Tracy (conventional oil-fired). To ensure good quality results and consistency between networks, a quality assurance/quality control program was set up. A description is presented of the ambient air quality monitoring network and the quality assurance/quality control program. A guide has been created for use by the network operators, discussing objectives of the individual network, a complete description of each network, field operation for each model of instrument in use, treatment of data for each data logger in use, global considerations regarding quality assurance and control, and reports. A brief overview is presented of the guide's purpose and contents, focusing on the field operation section and the sulfur dioxide and nitrogen oxide monitors. 6 figs., 1 tab

  8. Using turbidity for designing water networks.

    Science.gov (United States)

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-23: Part 2: Science plan for improved water-quality information and management

    Science.gov (United States)

    Rowe, Gary L.; Belitz, Kenneth; Demas, Charlie R.; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lee, Casey J.; Munn, Mark D.; Wolock, David W.

    2013-01-01

    This report presents a science strategy for the third decade of the National Water-Quality Assessment (NAWQA) Program, which since 1991, has been responsible for providing nationally consistent information on the quality of the Nation's streams and groundwater; how water quality is changing over time; and the major natural and human factors that affect current water quality conditions and trends. The strategy is based on an extensive evaluation of the accomplishments of NAWQA over its first two decades, the current status of water-quality monitoring activities by USGS and its partners, and an updated analysis of stakeholder priorities. The plan is designed to address priority issues and national needs identified by NAWQA stakeholders and the National Research Council (2012) irrespective of budget constraints. This plan describes four major goals for the third decade (Cycle 3), the approaches for monitoring, modeling, and scientific studies, key partnerships required to achieve these goals, and products and outcomes that will result from planned assessment activities. The science plan for 2013–2023 is a comprehensive approach to meet stakeholder priorities for: (1) rebuilding NAWQA monitoring networks for streams, rivers, and groundwater, and (2) upgrading models used to extrapolate and forecast changes in water-quality and stream ecosystem condition in response to changing climate and land use. The Cycle 3 plan continues approaches that have been central to the Program’s long-term success, but adjusts monitoring intensities and study designs to address critical information needs and identified data gaps. Restoration of diminished monitoring networks and new directions in modeling and interpretative studies address growing and evolving public and stakeholder needs for water-quality information and improved management, particularly in the face of increasing challenges related to population growth, increasing demands for water, and changing land use and climate

  10. WATER NETWORK INTEGRATION IN RAW SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Junior Lorenzo Llanes

    2017-07-01

    Full Text Available One of the main process industries in Cuba is that of the sugarcane. Among the characteristics of this industry is the high demand of water in its processes. In this work a study of water integration was carried out from the different operations of the production process of raw sugar, in order to reduce the fresh water consumption. The compound curves of sources and demands were built, which allowed the determination of the minimum water requirement of the network (1587,84 m3/d, as well as the amount of effluent generated (0,35 m3/tcane.The distribution scheme of fresh water and water reuse among different operations were obtained from the nearest neighbor algorithm. From considering new quality constrains was possible to eliminate the external water consumption, as well as to reduce the amount of effluent in a 37% in relation to the initial constrains.

  11. Design of environmental decision support system and its application to water quality management

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    EDSS is a comprehensive software system for water quality management in tidal river networks in general and for the Pearl River Delta in particular. Its purpose is to provide a practical tool that could assist government agencies in decision making for the efficient management of water resources in terms of both quantity and quality. By combining the capabilities of geographical information system (GIS), database management system (DBMS), model base management system (MBMS) and expert system, the aim is to improve the quality of decision making in what is becoming an increasingly complex area. This paper first outlines the basic concepts and philosophy adopted in developing EDSS, the system architecture, design features, implementation techniques and facilities provided. Thereafter, the core part of the system the hydrodynamic and water quality models are described briefly. The final contribution in this paper describes the application of EDSS to the Pearl River Delta, which has the most complicated tidal river network patterns as well as the fastest economic development in the world. Examples are given of the real-world problems that can be addressed using the system, including cross-boundary water pollution analysis, regional drinking water take-up site selection, screening of important polluters, environmental impact assessment, and water quality zoning and planning. It is illustrated that EDSS can provide efficient and scientific analytical tools for planning and decision-making purposes in the information era.

  12. Water hammer research in networks

    OpenAIRE

    Anželika Jurkienė; Mindaugas Rimeika

    2015-01-01

    Formation of water hammer, its consequences and possible protection measures are rarely topics, however the problem is significant. Water hammer can form in water supply and pressurized sewage networks, for various reasons. The article presents short theory of water hammer and methodology for calculation of specific parameters. Research of water hammer was performed in real water supply and sewer networks of country. Simulation of water hammer was carried out by turning on and off water pumps...

  13. An ANN application for water quality forecasting.

    Science.gov (United States)

    Palani, Sundarambal; Liong, Shie-Yui; Tkalich, Pavel

    2008-09-01

    Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.

  14. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  15. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    OpenAIRE

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-01-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor no...

  16. Sanitary risks related to the installation of hydroelectric turbines on drinking water networks

    International Nuclear Information System (INIS)

    Novelli, A.; Montiel, A.; Cabillic, P.J.; Fourrier, P.; Levi, Y.; Potelon, J.L.; Welte, B.; Fourrier, P.; Levi, Y.; Potelon, J.L.; Welte, B.

    2010-01-01

    With the notion of sustainable development gaining ground, practices aimed at saving water and energy are more and more frequent, particularly the installation of hydroelectric turbine on drinking water networks. It is essential in this case that the water quality should not be deteriorated, and the water supply for consumption and fire protection has to be prioritized over energy production. Thus, a sanitary risk assessment must be done and actions to control the described critical points have to be taken. The installation of a turbine is an additional risk whereas it is not necessary for drinking water production and distribution. As a consequence, a quality management system including the turbine and additional quality water monitoring should be carried out. (authors)

  17. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  18. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-01-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water quality was analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes (LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro- invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  19. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    Directory of Open Access Journals (Sweden)

    J. Bhardwaj

    2018-02-01

    Full Text Available New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  20. Controllability of Surface Water Networks

    Science.gov (United States)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  1. Design of a water quality monitoring network for the Limpopo River Basin in Mozambique

    Science.gov (United States)

    Chilundo, M.; Kelderman, P.; O´keeffe, J. H.

    The measurement of chemical, physical and biological parameters is important for the characterization of streams health. Thus, cost-effective and targeted water quality (WQ) monitoring programmes are required for proper assessment, restoration and protection of such systems. This research proposes a WQ monitoring network for the Limpopo River Basin (LRB) in Mozambique located in Southern Africa, a region prone to severe droughts. In this Basin both anthropogenic and natural driven processes, exacerbated by the increased water demand by the four riparian countries (Botswana, South Africa, Zimbabwe and Mozambique) are responsible for the degradation of surface waters, impairing their downstream use, either for aquatic ecosystem, drinking, industrial or irrigation. Hence, physico-chemical, biological and microbiological characteristics at 23 sites within the basin were studied in November 2006 and January 2007. The physico-chemical and microbiological samples were analyzed according to American Public Health Association (APHA) standard methods, while the biological monitoring working party method (BMWP) was used for biological assessment. The assessment of the final WQ condition at sampled points was done taking into account appropriate indexes, the Mozambican standards for receiving waters and the WHO guidelines for drinking WQ. The assessed data indicated that sites located at proximities to the border with upstream countries were contaminated with heavy metals. The Elephants subcatchment was found with a relatively better WQ, whereas the Changane subcatchment together with the effluent point discharges in the basin were found polluted as indicated by the low dissolved oxygen and high total dissolved solids, electric conductivity, total hardness, sodium adsorption ratio and low benthic macroinvertebrates taxa. Significant differences ( p < 0.05) were found for some parameters when the concentrations recorded in November and January were tested, therefore, indicating

  2. Effectiveness of the stormwater quality devices to improve water quality at Putrajaya

    International Nuclear Information System (INIS)

    Sidek, L M; Basri, H; Puad, A H Mohd; Noh, M N Md; Ainan, A

    2013-01-01

    Development of Putrajaya has changed the character of the natural landform by covering the land with impervious surfaces. Houses, office buildings, commercial place and shopping centres have provided places to live and work. The route between buildings is facilitated and encouraged by a complex network of roads and car parks. However, this change from natural landforms and vegetative cover to impervious surfaces has major effect on stormwater which are water quality (non-point source pollution). This paper describes the effectiveness of the stormwater quality devices to improve water quality at selected Putrajaya for demonstration in order to evaluate low cost storm inlet type devices in the Putrajaya Catchment. Five stormwater quality devices were installed and monitored during the study. The devices include Ultra Drain Guard Recycle model, Ultra Curb Guard Plus, Ultra Grate Guard, Absorbent Tarp and Ultra Passive Skimmer. This paper will provide information on the benefits and costs of these devices, including operations and maintenance requirements. Applicability of these devices in gas stations, small convenience stores, residential and small parking lots in the catchment are possible due to their low cost.

  3. Perceptual tools for quality-aware video networks

    Science.gov (United States)

    Bovik, A. C.

    2014-01-01

    Monitoring and controlling the quality of the viewing experience of videos transmitted over increasingly congested networks (especially wireless networks) is a pressing problem owing to rapid advances in video-centric mobile communication and display devices that are straining the capacity of the network infrastructure. New developments in automatic perceptual video quality models offer tools that have the potential to be used to perceptually optimize wireless video, leading to more efficient video data delivery and better received quality. In this talk I will review key perceptual principles that are, or could be used to create effective video quality prediction models, and leading quality prediction models that utilize these principles. The goal is to be able to monitor and perceptually optimize video networks by making them "quality-aware."

  4. Enhancing Sensor Network Data Quality via Collaborated Circuit and Network Operations

    Directory of Open Access Journals (Sweden)

    Lucas Vespa

    2013-04-01

    Full Text Available In many applications, the quality of data gathered by sensor networks is directly related to the signal-to-noise ratio (SNR of the sensor data being transmitted in the networks. Different from the SNR that is often used in measuring the quality of communication links, the SNR used in this work measures how accurately the data in the network packets represent the physical parameters being sensed. Hence, the signal here refers to the physical parameters that are being monitored by sensor networks; the noise is due to environmental interference and circuit noises at sensor nodes, and packet loss during network transmission. While issues affecting SNR at sensor nodes have been intensively investigated, the impact of network packet loss on data SNR has not attracted significant attention in sensor network design. This paper investigates the impact of packet loss on sensor network data SNR and shows that data SNR is dramatically affected by network packet loss. A data quality metric, based on data SNR, is developed and a cross-layer adaptive scheme is presented to minimize data quality degradation in congested sensor networks. The proposed scheme consists of adaptive downsampling and bit truncation at sensor nodes and intelligent traffic management techniques at the network level. Simulation results are presented to demonstrate the validity and effectiveness of the proposed techniques.

  5. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Explore the impacts of river flow and quality on biodiversity for water resources management by AI techniques

    Science.gov (United States)

    Chang, Fi-John; Tsai Tsai, Wen-Ping; Chang, Li-Chiu

    2016-04-01

    Water resources development is very challenging in Taiwan due to her diverse geographic environment and climatic conditions. To pursue sustainable water resources development, rationality and integrity is essential for water resources planning. River water quality and flow regimes are closely related to each other and affect river ecosystems simultaneously. This study aims to explore the complex impacts of water quality and flow regimes on fish community in order to comprehend the situations of the eco-hydrological system in the Danshui River of northern Taiwan. To make an effective and comprehensive strategy for sustainable water resources management, this study first models fish diversity through implementing a hybrid artificial neural network (ANN) based on long-term observational heterogeneity data of water quality, stream flow and fish species in the river. Then we use stream flow to estimate the loss of dissolved oxygen based on back-propagation neural networks (BPNNs). Finally, the non-dominated sorting genetic algorithm II (NSGA-II) is established for river flow management over the Shihmen Reservoir which is the main reservoir in this study area. In addition to satisfying the water demands of human beings and ecosystems, we also consider water quality for river flow management. The ecosystem requirement takes the form of maximizing fish diversity, which can be estimated by the hybrid ANN. The human requirement is to provide a higher satisfaction degree of water supply while the water quality requirement is to reduce the loss of dissolved oxygen in the river among flow stations. The results demonstrate that the proposed methodology can offer diversified alternative strategies for reservoir operation and improve reservoir operation strategies for producing downstream flows that could better meet both human and ecosystem needs as well as maintain river water quality. Keywords: Artificial intelligence (AI), Artificial neural networks (ANNs), Non

  7. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-06-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water samples were analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes(LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro-invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  8. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2017-11-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  9. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  10. Cyanobacteria Assessment Network (CyAN) - 2017 NASA Water Resources PI Presentation

    Science.gov (United States)

    Presentation on the Cyanobacteria Assessment Network (CYAN) and how is supports the environmental management and public use of the U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.

  11. Water quality problems associated with intermittent water supply.

    Science.gov (United States)

    Tokajian, S; Hashwa, F

    2003-01-01

    A controlled study was conducted in Lebanon over a period of 12 months to determine bacterial regrowth in a small network supplying the Beirut suburb of Naccache that had a population of about 3,000. The residential area, which is fed by gravity, is supplied twice a week with chlorinated water from two artesian wells of a confined aquifer. A significant correlation was detected between the turbidity and the levels of heterotrophic plate count bacteria (HPC) in the samples from the distribution network as well as from the artesian wells. However, a negative significant correlation was found between the temperature and the HPC count in the samples collected from the source. A statistically significant increase in counts, possibly due to regrowth, was repeatedly established between two sampling points lying on a straight distribution line but 1 km apart. Faecal coliforms were detected in the source water but none in the network except during a pipe breakage incident with confirmed Escherichia coli reaching 40 CFU/100 mL. However, coliforms such as Citrobacter freundii, Enterobacter agglomerans, E. cloacae and E. skazakii were repeatedly isolated from the network, mainly due to inadequate chlorination. A second controlled study was conducted to determine the effect of storage on the microbial quality of household storage tanks (500 L), which were of two main types - galvanized cast iron and black polyethylene. The mean bacterial count increased significantly after 7 d storage in both tank types. A significant difference was found in the mean HPC/mL between the winter and the summer. Highest counts were found April-June although the maximum temperature was reported later in the summer. A positive correlation was established between the HPC/mL and pH, temperature and storage time.

  12. Evaluation of physical, chemical and microbial quality of distribution network drinkingwater in Bushehr, Iran

    Directory of Open Access Journals (Sweden)

    Elham Shabankareh fard

    2015-01-01

    Full Text Available Background: The physical, chemical and microbial properties of water are the criteria to consider it as drinking water quality. Unfavorable changes in such parameters may threat consumers' health. The aim of this study is to give a clear view of physical, chemical and microbial quality of distribution network drinking water in Bushehr and compare with national and EPA standards. Materials and Methods: This descriptive sectional study was done during Sep 2012 to Feb 2013 (6 months. 50 Samples were collected directly from distribution network drinking water in Bushehr. Physical and chemical analyses were done according to standard methods. Multiple tube fermentation method was used to determine fecal and total coliform bacteria and spread plate method was used to measure heterotrophic bacteria. Results: The mean values of measured parameters were as follow: electrical conductivity 1155.5 µs/cm, turbidity 0.27 NTU, pH 7.12, alkalinity 171.5, total hardness 458.96, calcium hardness 390.96, magnesium hardness 68 mg/L as CaCO3, calcium 156.38, magnesium 16.95, residual chlorine 0.61, chloride 83.26, TDS 577.7, iron 0.115, fluoride 0.48, phosphate 0.059, nitrate 3.08, nitrite 0.003 and sulphate 728.38 mg/L. Total coliform (0, fecal coliform (0 MPN/100 ml and HPC 309.8 CFU/mL. Except TDS and sulphate, all cited results met the national and EPA standards. Conclusion: Quality of water from distribution network in Bushehr was not problematical from health point of view. However, high TDS and sulphate content may increase diarrhea risk in consumer as well as corrosive effect of water.

  13. Historical water-quality data from the Harlem River, New York

    Science.gov (United States)

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  14. Surface-water data and statistics from U.S. Geological Survey data-collection networks in New Jersey on the World Wide Web

    Science.gov (United States)

    Reiser, Robert G.; Watson, Kara M.; Chang, Ming; Nieswand, Steven P.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates and maintains a variety of surface-water data-collection networks throughout the State of New Jersey. The networks include streamflow-gaging stations, low-flow sites, crest-stage gages, tide gages, tidal creststage gages, and water-quality sampling sites. Both real-time and historical surface-water data for many of the sites in these networks are available at the USGS, New Jersey District, web site (http://nj.usgs.gov/), and water-quality data are available at the USGS National Water Information System (NWIS) web site (http://waterdata.usgs.gov/nwis/). These data are an important source of information for water managers, engineers, environmentalists, and private citizens.

  15. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  16. Quality of service in optical packet switched networks

    CERN Document Server

    Rahbar, Akbar G

    2015-01-01

    This book is a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service.  The book includes: Introduction to OPS networks, OOFDM networks, GMPLS-enabled optical networks, QoS in OPS networks Hybrid contention avoidance/resolution schemes in both long-haul and metro optical networks Hybrid optical switching schemes

  17. Optimal design of monitoring networks for multiple groundwater quality parameters using a Kalman filter: application to the Irapuato-Valle aquifer.

    Science.gov (United States)

    Júnez-Ferreira, H E; Herrera, G S; González-Hita, L; Cardona, A; Mora-Rodríguez, J

    2016-01-01

    A new method for the optimal design of groundwater quality monitoring networks is introduced in this paper. Various indicator parameters were considered simultaneously and tested for the Irapuato-Valle aquifer in Mexico. The steps followed in the design were (1) establishment of the monitoring network objectives, (2) definition of a groundwater quality conceptual model for the study area, (3) selection of the parameters to be sampled, and (4) selection of a monitoring network by choosing the well positions that minimize the estimate error variance of the selected indicator parameters. Equal weight for each parameter was given to most of the aquifer positions and a higher weight to priority zones. The objective for the monitoring network in the specific application was to obtain a general reconnaissance of the water quality, including water types, water origin, and first indications of contamination. Water quality indicator parameters were chosen in accordance with this objective, and for the selection of the optimal monitoring sites, it was sought to obtain a low-uncertainty estimate of these parameters for the entire aquifer and with more certainty in priority zones. The optimal monitoring network was selected using a combination of geostatistical methods, a Kalman filter and a heuristic optimization method. Results show that when monitoring the 69 locations with higher priority order (the optimal monitoring network), the joint average standard error in the study area for all the groundwater quality parameters was approximately 90 % of the obtained with the 140 available sampling locations (the set of pilot wells). This demonstrates that an optimal design can help to reduce monitoring costs, by avoiding redundancy in data acquisition.

  18. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  19. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality...

  20. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  1. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    Science.gov (United States)

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  2. Applications of continuous water quality monitoring techniques for more efficient water quality research and water resources management

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Velde, Y. van der; Broers, H.P.; Geer, F. van

    2013-01-01

    Understanding and taking account of dynamics in water quality is essential for adequate water quality policy and management. In conventional regional surface water and upper groundwater quality monitoring, measurement frequencies are too low to capture the short-term dynamic behavior of solute

  3. Reduction of water losses by rehabilitation of water distribution network.

    Science.gov (United States)

    Güngör, Mahmud; Yarar, Ufuk; Firat, Mahmut

    2017-09-11

    Physical or real losses may be indicated as the most important component of the water losses occurring in a water distribution network (WDN). The objective of this study is to examine the effects of piping material management and network rehabilitation on the physical water losses and water losses management in a WDN. For this aim, the Denizli WDN consisting of very old pipes that have exhausted their economic life is selected as the study area. The fact that the current network is old results in the decrease of pressure strength, increase of failure intensity, and inefficient use of water resources thus leading to the application of the rehabilitation program. In Denizli, network renewal works have been carried out since the year 2009 under the rehabilitation program. It was determined that the failure rate at regions where network renewal constructions have been completed decreased down to zero level. Renewal of piping material enables the minimization of leakage losses as well as the failure rate. On the other hand, the system rehabilitation has the potential to amortize itself in a very short amount of time if the initial investment cost of network renewal is considered along with the operating costs of the old and new systems, as well as water loss costs. As a result, it can be stated that renewal of piping material in water distribution systems, enhancement of the physical properties of the system, provide significant contributions such as increase of water and energy efficiency and more effective use of resources.

  4. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  5. SOME ASPECTS REGARING CHLORINE DECAY IN WATER DISTRIBUTION NETWORKS

    Directory of Open Access Journals (Sweden)

    LIANA IOANA VUŢĂ

    2011-03-01

    Full Text Available A major objective of drinking water treatment is to provide microbiologically safe drinking water. The combination of conventional drinking water treatment and disinfection has proved to be one of the major public health advances in modern times. The quality of drinking water delivered to the customer’s tap is influenced by a number of processes; namely water treatment, disinfection and changes during transport of treated water via the distribution system. All natural waters and even treated drinking water exerts disinfectant demand due to the reactions with NOM and other constituents in water. Therefore, the applied disinfectant dose must be sufficient to meet the inherent demand in the treated water, to provide sufficient protection against microbial infection. Thus, controlling free residual chlorine properly is definitely important to ensure meeting regulatory requirements and satisfying customer needs.This paper presents the main aspects regarding chlorine decay in drinking-water distribution networks and, also a free chlorine decay simulation with EPANET2 on Ramnicu Valcea water distribution system.

  6. WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P. R.; Belvedere, D. R.; Pozzi, W. H.; Imam, B.; Schiffer, R.; Lawford, R.; Schlosser, C. A.; Gupta, H.; Welty, C.; Vorosmarty, C.; Matthews, D.

    2007-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering practices. The water cycle is a critical resource for industry, agriculture, natural ecosystems, fisheries, aquaculture, hydroelectric power, recreation, and water supply, and is central to drought, flood, transportation-aviation, and disease hazards. It is therefore a national priority to use advancements in scientific observations and knowledge to develop solutions to the water challenges faced by society. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction. NASA has collected substantial water cycle information and knowledge that must be transitioned to develop solutions for all twelve National Priority Application (NPA) areas. NASA cannot achieve this goal alone -it must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. Therefore, WaterNet: The NASA Water Cycle Solutions Network goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. WaterNet is a catalyst for discovery and sharing of creative solutions to water problems. It serves as a creative, discovery process that is the entry-path for a research-to-solutions systems engineering NASA framework, with the end result to ultimately improve decision support.

  7. Managing erosion, sediment transport and water quality in drained peatland catchments

    Energy Technology Data Exchange (ETDEWEB)

    Marttila, H.

    2010-07-01

    Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and disturbed headwater catchments in Finland are presented and potential sediment load management methods are discussed for drainage areas and headwater brooks. Particular attention is devoted to erosion of organic peat, sediment transport and methods to reduce the impacts of peatland drainage in boreal headwaters. This thesis consists of six articles. The first and second papers focus on the erosion and sediment transport processes at peat harvesting and peatland forestry drainage networks. The results indicate that in-channel processes are important in drained peatland, since the drainage network often constitutes temporary inter-storm storage for eroding and transporting material. Sediment properties determine the bed sediment erosion sensitivity, as fluffy organic peat sediment consolidates over time. As flashiness and peak runoff control sediment entrainment and transport from drained peatland areas, water quality management should include peak runoff management. The third, fourth and fifth papers studies use and application of peak runoff control (PRC) method to the peat harvesting and peatland forestry conditions for water protection. Results indicate that effective water quality management in drained peatland areas can be achieved using this method. Installation of the PRC structures is a useful and cost-effective way of storing storm runoff waters temporarily in the ditch system and providing a retention time for eroded sediment to settle to the ditch bed and drainage network. The main

  8. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  9. Assessment of water quality

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2002-01-01

    Water is the most essential component of all living things and it supports the life process. Without water, it would not have been possible to sustain life on this planet. The total quantity of water on earth is estimated to be 1.4 trillion cubic meter. Of this, less than 1 % water, present in rivers and ground resources is available to meet our requirement. These resources are being contaminated with toxic substances due to ever increasing environmental pollution. To reduce this contamination, many countries have established standards for the discharge of municipal and industrial waste into water streams. We use water for various purposes and for each purpose we require water of appropriate quality. The quality of water is assessed by evaluating the physical chemical, biological and radiological characteristics of water. Water for drinking and food preparation must be free from turbidity, colour, odour and objectionable tastes, as well as from disease causing organisms and inorganic and organic substances, which may produce adverse physiological effects, Such water is referred to as potable water and is produced by treatment of raw water, involving various unit operations. The effectiveness of the treatment processes is checked by assessing the various parameters of water quality, which involves sampling and analysis of water and comparison with the National Quality Standards or WHO standards. Water which conforms to these standards is considered safe and palatable for human consumption. Periodic assessment of water is necessary, to ensure the quality of water supplied to the public. This requires proper sampling at specified locations and analysis of water, employing reliable analytical techniques. (author)

  10. Accelerate Water Quality Improvement

    Science.gov (United States)

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  11. Synthesis of Industrial Water Networks

    DEFF Research Database (Denmark)

    Pennati, A.; Quaglia, Alberto; Gani, Rafiqul

    of the water networks proposed comprise few contaminants and do not consider critical parameters for wastewater treatment equipment, such as limiting inlet concentrations, flow rates, and other specific design constraints. Thus, these networks are arguably not fit to manage the complexity of a real industrial...... case (in terms of number of contaminants, number of processing options, design constraints etc.). In this work, a systematic framework for the formulation and solution of water networks problems is proposed, based on the modification of an earlier work [3]. The optimization problem is formulated...

  12. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...... consumer pressure desire. A model predictive controller, MPC, is based on a simple model that models the main characteristics of a water distribution network, optimizes a desired cost minimisation, and keeps the system inside specified constraints. In comparison to a logic (on/off) control design...

  13. Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean.

    Science.gov (United States)

    Alizadeh, Mohamad Javad; Kavianpour, Mohamad Reza

    2015-09-15

    The main objective of this study is to apply artificial neural network (ANN) and wavelet-neural network (WNN) models for predicting a variety of ocean water quality parameters. In this regard, several water quality parameters in Hilo Bay, Pacific Ocean, are taken under consideration. Different combinations of water quality parameters are applied as input variables to predict daily values of salinity, temperature and DO as well as hourly values of DO. The results demonstrate that the WNN models are superior to the ANN models. Also, the hourly models developed for DO prediction outperform the daily models of DO. For the daily models, the most accurate model has R equal to 0.96, while for the hourly model it reaches up to 0.98. Overall, the results show the ability of the model to monitor the ocean parameters, in condition with missing data, or when regular measurement and monitoring are impossible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    International Nuclear Information System (INIS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-01-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  15. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  16. Water Quality Monitoring

    Science.gov (United States)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  17. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    Science.gov (United States)

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  18. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    Science.gov (United States)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  19. Targeting and design of chilled water network

    International Nuclear Information System (INIS)

    Foo, Dominic C.Y.; Ng, Denny K.S.; Leong, Malwynn K.Y.; Chew, Irene M.L.; Subramaniam, Mahendran; Aziz, Ramlan; Lee, Jui-Yuan

    2014-01-01

    Highlights: • Minimum flowrate targeting for chilled water network. • Mixed series/parallel configuration of chilled water-using units. • Integrated cooling and chilled water networks. - Abstract: Chilled water is a common cooling agent used in various industrial, commercial and institutional facilities. In conventional practice, chilled water is distributed via chilled water networks (CHWNs) in parallel configuration to provide required air conditioning and/or equipment cooling in the heating, ventilating and air conditioning (HVAC) system. In this paper, process integration approach based on pinch analysis technique is used to address energy efficiency issues in the CHWN system for grassroots design problem. Graphical and algebraic targeting techniques are developed to identify the minimum chilled water flowrate needed to remove a given amount of heat load from the CHWN. Doing this leads to higher chilled water return temperature and enhanced energy efficiency of the HVAC system. A recent proposed network design technique is extended to synthesize the CHWN in a mixed series/parallel configuration. A novel concept of integrated cooling and chilled water networks (IWN) is also proposed in this work, with its targeting and design techniques presented. Hypothetical examples and an industrial case study are solved to elucidate the proposed approaches

  20. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  1. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  2. Quantifying tap-to-household water quality deterioration in urban communities in Vellore, India: The impact of spatial assumptions.

    Science.gov (United States)

    Alarcon Falconi, Tania M; Kulinkina, Alexandra V; Mohan, Venkata Raghava; Francis, Mark R; Kattula, Deepthi; Sarkar, Rajiv; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2017-01-01

    Municipal water sources in India have been found to be highly contaminated, with further water quality deterioration occurring during household storage. Quantifying water quality deterioration requires knowledge about the exact source tap and length of water storage at the household, which is not usually known. This study presents a methodology to link source and household stored water, and explores the effects of spatial assumptions on the association between tap-to-household water quality deterioration and enteric infections in two semi-urban slums of Vellore, India. To determine a possible water source for each household sample, we paired household and tap samples collected on the same day using three spatial approaches implemented in GIS: minimum Euclidean distance; minimum network distance; and inverse network-distance weighted average. Logistic and Poisson regression models were used to determine associations between water quality deterioration and household-level characteristics, and between diarrheal cases and water quality deterioration. On average, 60% of households had higher fecal coliform concentrations in household samples than at source taps. Only the weighted average approach detected a higher risk of water quality deterioration for households that do not purify water and that have animals in the home (RR=1.50 [1.03, 2.18], p=0.033); and showed that households with water quality deterioration were more likely to report diarrheal cases (OR=3.08 [1.21, 8.18], p=0.02). Studies to assess contamination between source and household are rare due to methodological challenges and high costs associated with collecting paired samples. Our study demonstrated it is possible to derive useful spatial links between samples post hoc; and that the pairing approach affects the conclusions related to associations between enteric infections and water quality deterioration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Water-quality aspects of uranium mining and milling in New Mexico

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Goad, M.S.

    1981-01-01

    Since 1977 the New Mexico Environmental Improvement Division has been implementing a systematic program for the regular collection of water-quality data relevant to the uranium mining and milling industry in New Mexico. This program has had two parts: (1) regular sampling of effluents discharged to ponds or to watercourses from all active uranium mills in the State and from all water-producing mines, whether active or under development; and (2) establishment and gradual expansion of a regional water-quality monitoring network in the Grants mineral belt (the region of principal uranium activity) to characterize hydraulic relationships and to trace contaminant migration within and between surface water and shallow ground-water flow systems. Based on information collected to date, some general observations are that the quality of water pumped from uranium mines varies considerably from area to area with much of it meeting most New Mexico ground-water standards and Federal NPDES (National Pollutant Discharge Elimination System) permit guidelines after treatment; that mill-tailings water is of much worse quality than mine water, containing concentrations of numerous contaminants far in excess of the above-mentioned standards; that surface waters and shallow ground-water systems in the Grants mineral belt usually are in hydraulic connection; that both surface and ground waters show some degradation downgradient from uranium industry areas, especially with respect to heavy metals; that the relative importance of various contaminant sources in contributing to this degradation is very difficult to determine at present; and that much more data is needed, especially data on the contribution of nonpoint sources

  4. Setting water quality criteria for agricultural water reuse purposes

    Directory of Open Access Journals (Sweden)

    K. Müller

    2017-06-01

    Full Text Available The use of reclaimed water for agricultural irrigation is practiced worldwide and will increase in the future. The definition of water quality limits is a useful instrument for the assessment of water quality regarding its suitability for irrigation purposes and the performance of wastewater treatment steps. This study elaborates water quality objectives for a water reuse project in a setting where national guidelines do not exist. Internationally established guidelines are therefore applied to the local context. Additional limits for turbidity, total suspended solids, biochemical and chemical oxygen demand, total phosphorus and potassium are suggested to meet the requirements of water reuse projects. Emphasis is put on water quality requirements prior to UV disinfection and nutrient requirements of cultivated crops. The presented values can be of assistance when monitoring reclaimed water quality. To facilitate the realization of water reuse projects, comprehensive and more detailed information, in particular on water quality requirements prior to disinfection steps, should be provided as well as regarding the protection of the irrigation infrastructure.

  5. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  6. Radon levels in a water distribution network

    International Nuclear Information System (INIS)

    Alabdula'aly, A.I.

    1997-01-01

    The capital city of Saudi Arabia, Riyadh, relies on both desalinated sea water as well as treated groundwater to meet all its water requirements. About 66% of the water demand is met by desalinated sea water, and the remaining is supplied by six groundwater treatment plants located in the vicinity of the city and supplied with water from 161 wells. The desalinated sea water is blended with only one plant product water and pumped to the distribution network, whereas the other five plants product water is pumped directly to the network. A study of 222 Rn levels in the city distribution network was carried out in which 89 samples were collected from different locations representing the city districts. All samples have shown low radon levels with an average concentration of 0.2 Bq l -1 and a range values of 0.1-1.0 Bq l -1 . The level of radon in different parts of the network was found to be influenced by the water sources to which they are supplied. The lowest radon levels were observed in districts supplied mostly by desalinated sea water. (Author)

  7. Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review

    Science.gov (United States)

    Zhong, D.; Ma, W. C.; Jiang, X. Q.; Yuan, Y. X.; Yuan, Y.; Wang, Z. Q.; Fang, T. T.; Huang, W. Y.

    2017-08-01

    Chlorinated hydrocarbons are widely used as organic solvent and chemical raw materials. After treatment, water polluted with trichloroethylene (TCE)/tetrachloroethylene (PCE) can reach the water quality requirements, while water with trace amounts of TCE/PCE is still harmful to humans, which will cause cancers. Water distribution network is an extremely complicated system, in which adsorption, desorption, flocculation, movement, transformation and reduction will occur, leading to changes of TCE/PCE concentrations and products. Therefore, it is important to investigate the transformation rules of TCE/PCE in water distribution network. What’s more, growth-ring, including drinking water pipes deposits, can act as catalysts in Fenton-like reagent (H2O2). This review summarizes the status of transformation rules of CAHs in water distribution network. It also evaluates the effectiveness and fruit of CAHs degradation by Fenton-like reagent based on growth-ring. This review is important in solving the potential safety problems caused by TCE/PCE in water distribution network.

  8. Environmental, political, and economic determinants of water quality monitoring in Europe

    Science.gov (United States)

    Beck, Lucas; Bernauer, Thomas; Kalbhenn, Anna

    2010-11-01

    Effective monitoring is essential for effective pollution control in national and international water systems. To what extent are countries' monitoring choices driven by environmental criteria, as they should be? And to what extent are they also influenced by other factors, such as political and economic conditions? To address these questions, we describe and explain the evolution of one of the most important international environmental monitoring networks in Europe, the one for water quality, in the time period 1965-2004. We develop a geographic information system that contains information on the location of several thousand active monitoring stations in Europe. Using multivariate statistics, we then examine whether and to what extent the spatial and temporal clustering of monitoring intensity is driven by environmental, political, and economic factors. The results show that monitoring intensity is higher in river basins exposed to greater environmental pressure. However, political and economic factors also play a strong role in monitoring decisions: democracy, income, and peer pressure are conducive to monitoring intensity, and monitoring intensity generally increases over time. Moreover, even though monitoring is more intense in international upstream-downstream settings, we observe only a weak bias toward more monitoring downstream of international borders. In contrast, negative effects of European Union (EU) membership and runup to the EU's Water Framework Directive are potential reasons for concern. Our results strongly suggest that international coordination and standardization of water quality monitoring should be intensified. It will be interesting to apply our analytical approach also to other national and international monitoring networks, for instance, the U.S. National Water-Quality Assessment Program or the European Monitoring and Evaluation Program for air pollution.

  9. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  10. Water resources between conditions of quality and quantity in the Oued Souf region!

    Science.gov (United States)

    Miloudi, Abdelmonem; Remini, Bouallem

    2018-05-01

    Waters from the Terminal complex (TC) in the Souf region have been gushing since Spring1956 through the first drilling carried out in the municipality of Guemmar (El-Oued) to ensure the need for drinking water requirements. Water needs of the habitat and farmers are increasing with the population growth in the Souf region; there are 153 boreholes in the Terminal complex for Habitat needs, of which more than 80% are available for drinking water supply. These needs are causing negative consequences for the serene life of the Souafa by the phenomenon of water upwellings, the free water table, and the change in the quality of the waters from the Terminal complex. Our work will be conducted to produce a piezometric map of the Souf Terminal complex and to conduct a study on the quality of water resources in the Algerian south-east, leading to a diagnosis of pollution and its impact on the water. The quality of water resources is examined by the establishment of sampling and water analysis campaigns for both irrigation and public consumption, following the static measurement of water levels in the network boreholes of TC Monitoring.

  11. A versatile and interoperable network sensors for water resources monitoring

    Science.gov (United States)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  12. Dynamic hydraulic models to study sedimentation in drinking water networks in detail

    Directory of Open Access Journals (Sweden)

    I. W. M. Pothof

    2012-12-01

    Full Text Available Sedimentation in drinking water networks can lead to discolouration complaints. A sufficient criterion to prevent sedimentation in the Dutch drinking water networks is a daily maximum velocity of 0.25 m s−1. Flushing experiments have shown that this criterion is a sufficient condition for a clean network, but not a necessary condition. Drinking water networks include many locations with a maximum velocity well below 0.25 m s−1 without accumulated sediments. Other criteria need to be developed to predict which locations are susceptible to sedimentation and to prevent sedimentation in future networks. More distinctive criteria are helpful to prioritise flushing operations and to prevent water quality complaints.

    The authors use three different numerical modelling approaches – quasi-steady, rigid column and water hammer – with a temporal discretisation of 1 s in order to assess the influence of unsteady flows on the wall shear stress, causing resuspension of sediment particles. The model predictions are combined with results from flushing experiments in the drinking water distribution system of Purmerend, the Netherlands. The waterhammer model does not result in essentially different flow distribution patterns, compared to the rigid column and quasi-steady modelling approach. The extra information from the waterhammer model is a velocity oscillation of approximately 0.02 m s−1 around the quasi-steady solution. The presence of stagnation zones and multiple flow direction reversals seem to be interesting new parameters to predict sediment accumulation, which are consistent with the observed turbidity data and theoretical considerations on critical shear stresses.

  13. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    Science.gov (United States)

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean

  14. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  15. Communicating water quality risk

    International Nuclear Information System (INIS)

    Scherer, C.W.

    1990-01-01

    Technology for detecting and understanding water quality problems and the impacts of activities on long-range groundwater quality has advanced considerably. In the past a technical solution was considered adequate but today one must consider a wide range of both technical and social factors in evaluating technical alternatives that are also acceptable social solutions. Policies developed and implemented with limited local participation generally are resisted and become ineffective if public cooperation is necessary for effective implementation. The public, the experts and the policymakers all must understand and appreciate the different perspectives present in risk policymaking. The typical model used to involve the public in policy decisions is a strategy described as the decide-announce-defend-approach. Much more acceptable to the public, but also more difficult to implement, is a strategy that calls for free flow of information within the community about the problem, policies and potential solutions. Communication about complex issues will be more successful if the communication is substantial; if it takes advantage of existing interpersonal networks and mass media; if it pays particular attention to existing audience knowledge, interest and behaviors; and if it clearly targets messages to various segments of the audience

  16. Water quality assessment of selected domestic water sources in ...

    African Journals Online (AJOL)

    However, lead ion appears higher than the approved WHO and SON standard for water quality in all the sources except that of water vendors which is 0.04mg/l. It is therefore recommended that periodic monitoring of water quality, effective waste management system to improve the general water quality in the town, and ...

  17. Development of Water Quality Forecasting Models Based on the SOM-ANN on TMDL Unit Watershed in Nakdong River

    Science.gov (United States)

    KIM, M.; Kim, J.; Baek, J.; Kim, C.; Shin, H.

    2013-12-01

    It has being happened as flush flood or red/green tide in various natural phenomena due to climate change and indiscreet development of river or land. Especially, water being very important to man should be protected and managed from water quality pollution, and in water resources management, real-time watershed monitoring system is being operated with the purpose of keeping watch and managing on rivers. It is especially important to monitor and forecast water quality in watershed. A study area selected Nak_K as one site among TMDL unit watershed in Nakdong River. This study is to develop a water quality forecasting model connected with making full use of observed data of 8 day interval from Nakdong River Environment Research Center. When forecasting models for each of the BOD, DO, COD, and chlorophyll-a are established considering correlation of various water quality factors, it is needed to select water quality factors showing highly considerable correlation with each water quality factor which is BOD, DO, COD, and chlorophyll-a. For analyzing the correlation of the factors (reservoir discharge, precipitation, air temperature, DO, BOD, COD, Tw, TN, TP, chlorophyll-a), in this study, self-organizing map was used and cross correlation analysis method was also used for comparing results drawn. Based on the results, each forecasting model for BOD, DO, COD, and chlorophyll-a was developed during the short period as 8, 16, 24, 32 days at 8 day interval. The each forecasting model is based on neural network with back propagation algorithm. That is, the study is connected with self-organizing map for analyzing correlation among various factors and neural network model for forecasting of water quality. It is considerably effective to manage the water quality in plenty of rivers, then, it specially is possible to monitor a variety of accidents in water quality. It will work well to protect water quality and to prevent destruction of the environment becoming more and more

  18. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  19. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  20. Optimal Intermittent Operation of Water Distribution Networks under Water Shortage

    Directory of Open Access Journals (Sweden)

    mohamad Solgi

    2017-07-01

    Full Text Available Under water shortage conditions, it is necessary to exercise water consumption management practices in water distribution networks (WDN. Intermittent supply of water is one such practice that makes it possible to supply consumption nodal demands with the required pressure via water cutoff to some consumers during certain hours of the day. One of the most important issues that must be observed in this management practice is the equitable and uniform water distribution among the consumers. In the present study, uniformity in water distribution and minimum supply of water to all consumers are defined as justice and equity, respectively. Also, an optimization model has been developed to find an optimal intermittent supply schedule that ensures maximum number of demand nodes are supplied with water while the constraints on the operation of water distribution networks are also observed. To show the efficiency of the proposed model, it has been used in the Two-Loop distribution network under several different scenarios of water shortage. The optimization model has been solved using the honey bee mating optimization algorithm (HBMO linked to the hydraulic simulator EPANET. The results obtained confirm the efficiency of the proposed model in achieving an optimal intermittent supply schedule. Moreover, the model is found capable of distributing the available water in an equitable and just manner among all the consumers even under severe water shoratges.

  1. Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective

    Science.gov (United States)

    Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku

    2009-01-01

    Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050

  2. Removal of soft deposits from the distribution system improves the drinking water quality.

    Science.gov (United States)

    Lehtola, Markku J; Nissinen, Tarja K; Miettinen, Ilkka T; Martikainen, Pertti J; Vartiainen, Terttu

    2004-02-01

    Deterioration in drinking water quality in distribution networks represents a problem in drinking water distribution. These can be an increase in microbial numbers, an elevated concentration of iron or increased turbidity, all of which affect taste, odor and color in the drinking water. We studied if pipe cleaning would improve the drinking water quality in pipelines. Cleaning was arranged by flushing the pipes with compressed air and water. The numbers of bacteria and the concentrations of iron and turbidity in drinking water were highest at 9 p.m., when the water consumption was highest. Soft deposits inside the pipeline were occasionally released to bulk water, increasing the concentrations of iron, bacteria, microbially available organic carbon and phosphorus in drinking water. The cleaning of the pipeline decreased the diurnal variation in drinking water quality. With respect to iron, only short-term positive effects were obtained. However, removing of the nutrient-rich soft deposits did decrease the microbial growth in the distribution system during summer when there were favorable warm temperatures for microbial growth. No Norwalk-like viruses or coliform bacteria were detected in the soft deposits, in contrast to the high numbers of heterotrophic bacteria.

  3. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem.

    Science.gov (United States)

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H

    2011-01-01

    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  4. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  5. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  6. Comparing risk of failure models in water supply networks using ROC curves

    International Nuclear Information System (INIS)

    Debon, A.; Carrion, A.; Cabrera, E.; Solano, H.

    2010-01-01

    The problem of predicting the failure of water mains has been considered from different perspectives and using several methodologies in engineering literature. Nowadays, it is important to be able to accurately calculate the failure probabilities of pipes over time, since water company profits and service quality for citizens depend on pipe survival; forecasting pipe failures could have important economic and social implications. Quantitative tools (such as managerial or statistical indicators and reliable databases) are required in order to assess the current and future state of networks. Companies managing these networks are trying to establish models for evaluating the risk of failure in order to develop a proactive approach to the renewal process, instead of using traditional reactive pipe substitution schemes. The main objective of this paper is to compare models for evaluating the risk of failure in water supply networks. Using real data from a water supply company, this study has identified which network characteristics affect the risk of failure and which models better fit data to predict service breakdown. The comparison using the receiver operating characteristics (ROC) graph leads us to the conclusion that the best model is a generalized linear model. Also, we propose a procedure that can be applied to a pipe failure database, allowing the most appropriate decision rule to be chosen.

  7. Comparing risk of failure models in water supply networks using ROC curves

    Energy Technology Data Exchange (ETDEWEB)

    Debon, A., E-mail: andeau@eio.upv.e [Centro de Gestion de la Calidad y del Cambio, Dpt. Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Carrion, A. [Centro de Gestion de la Calidad y del Cambio, Dpt. Estadistica e Investigacion Operativa Aplicadas y Calidad, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Cabrera, E. [Dpto. De Ingenieria Hidraulica Y Medio Ambiente, Instituto Tecnologico del Agua, Universidad Politecnica de Valencia, E-46022 Valencia (Spain); Solano, H. [Universidad Diego Portales, Santiago (Chile)

    2010-01-15

    The problem of predicting the failure of water mains has been considered from different perspectives and using several methodologies in engineering literature. Nowadays, it is important to be able to accurately calculate the failure probabilities of pipes over time, since water company profits and service quality for citizens depend on pipe survival; forecasting pipe failures could have important economic and social implications. Quantitative tools (such as managerial or statistical indicators and reliable databases) are required in order to assess the current and future state of networks. Companies managing these networks are trying to establish models for evaluating the risk of failure in order to develop a proactive approach to the renewal process, instead of using traditional reactive pipe substitution schemes. The main objective of this paper is to compare models for evaluating the risk of failure in water supply networks. Using real data from a water supply company, this study has identified which network characteristics affect the risk of failure and which models better fit data to predict service breakdown. The comparison using the receiver operating characteristics (ROC) graph leads us to the conclusion that the best model is a generalized linear model. Also, we propose a procedure that can be applied to a pipe failure database, allowing the most appropriate decision rule to be chosen.

  8. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    Science.gov (United States)

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  9. Application of ann for predicting water quality parameters in the mediterranean sea along gaza-palestine

    International Nuclear Information System (INIS)

    Zaqoot, H.A.; Unar, M.A.

    2008-01-01

    Seawater pollution problems are gaining interest world wide because of their health impacts and other environmental issues. Intense human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. This paper is concerned with the use of ANNs (Artificial Neural Networks) MLP ( Multilayer Perceptron) model for the prediction of pH and EC (Electrical Conductivity) in water quality parameters along Gaza city coast. MLP neural networks are trained and developed with reference to three major oceanographic parameters (water temperature, wind speed and turbidity) to predict the values of pH and EC; these parameters are considered as inputs of the neural network. The data collected comprised of four years and collected from nine locations along Gaza coastline. Results show that the model has high capability and accuracy in predicting both parameters. The network performance has been validated with different data sets and the results show satisfactory performance. Results of the developed model have been compared with multiple regression statistical models and found that MLP predictions are slightly better than the conventional methods. Prediction results prove that the proposed approach is suitable for modeling the water quality in the Mediterranean Sea along Gaza. (author)

  10. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    Science.gov (United States)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  11. Offset Trace-Based Video Quality Evaluation Network Transport

    DEFF Research Database (Denmark)

    Seeling, P.; Reisslein, M.; Fitzek, Frank

    2006-01-01

    Video traces contain information about encoded video frames, such as frame sizes and qualities, and provide a convenient method to conduct multimedia networking research. Although wiedely used in networking research, these traces do not allow to determine the video qaulityin an accurate manner...... after networking transport that includes losses and delays. In this work, we provide (i) an overview of frame dependencies that have to be taken into consideration when working with video traces, (ii) an algorithmic approach to combine traditional video traces and offset distortion traces to determine...... the video quality or distortion after lossy network transport, (iii) offset distortion and quality characteristics and (iv) the offset distortion trace format and tools to create offset distortion traces....

  12. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    Science.gov (United States)

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  13. Research on Holographic Evaluation of Service Quality in Power Data Network

    Science.gov (United States)

    Wei, Chen; Jing, Tao; Ji, Yutong

    2018-01-01

    With the rapid development of power data network, the continuous development of the Power data application service system, more and more service systems are being put into operation. Following this, the higher requirements for network quality and service quality are raised, in the actual process for the network operation and maintenance. This paper describes the electricity network and data network services status. A holographic assessment model was presented to achieve a comprehensive intelligence assessment on the power data network and quality of service in the operation and maintenance on the power data network. This evaluation method avoids the problems caused by traditional means which performs a single assessment of network performance quality. This intelligent Evaluation method can improve the efficiency of network operation and maintenance guarantee the quality of real-time service in the power data network..

  14. Land use and water quality degradation in the Peixe-Boi River watershed

    Directory of Open Access Journals (Sweden)

    Bruno Wendell de Freitas Pereira

    2016-04-01

    Full Text Available This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage network. The relationship between human disturbance and water quality was analyzed based on observations of land use changes using satellite imagery and in situ collection of water samples. The results show that 46% of the permanent preservation areas have conflicted uses, especially with respect to urban squatters, exposed soil and, most notably, pasture, with over 84 % of the area in conflict. Critical levels of dissolved oxygen reaching 2.14 mg L-1 and pH of 5.12 were observed in some sampling points. These values are below the fresh water standards set by Resolution 357/05 of CONAMA. The poorest water quality may be related to irregular use and occupation of areas within the permanent preservation areas. There is therefore an urgent need to develop a plan for the sustainable use and occupation of catchment area land in the Peixe-Boi River watershed in order to restore the environment and improve water quality.

  15. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; De Cicco, Laura; Dugan, Hilary A.; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke A.

    2017-02-01

    xml:id="wrcr22485-sec-1001" numbered="no">Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  16. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  17. Evaluation of global water quality - the potential of a data- and model-driven analysis

    Science.gov (United States)

    Bärlund, Ilona; Flörke, Martina; Alcamo, Joseph; Völker, Jeanette; Malsy, Marcus; Kaus, Andrew; Reder, Klara; Büttner, Olaf; Katterfeld, Christiane; Dietrich, Désirée; Borchardt, Dietrich

    2016-04-01

    The ongoing socio-economic development presents a new challenge for water quality worldwide, especially in developing and emerging countries. It is estimated that due to population growth and the extension of water supply networks, the amount of waste water will rise sharply. This can lead to an increased risk of surface water quality degradation, if the wastewater is not sufficiently treated. This development has impacts on ecosystems and human health, as well as food security. The United Nations Member States have adopted targets for sustainable development. They include, inter alia, sustainable protection of water quality and sustainable use of water resources. To achieve these goals, appropriate monitoring strategies and the development of indicators for water quality are required. Within the pre-study for a 'World Water Quality Assessment' (WWQA) led by United Nations Environment Programme (UNEP), a methodology for assessing water quality, taking into account the above-mentioned objectives has been developed. The novelty of this methodology is the linked model- and data-driven approach. The focus is on parameters reflecting the key water quality issues, such as increased waste water pollution, salinization or eutrophication. The results from the pre-study show, for example, that already about one seventh of all watercourses in Latin America, Africa and Asia show high organic pollution. This is of central importance for inland fisheries and associated food security. In addition, it could be demonstrated that global water quality databases have large gaps. These must be closed in the future in order to obtain an overall picture of global water quality and to target measures more efficiently. The aim of this presentation is to introduce the methodology developed within the WWQA pre-study and to show selected examples of application in Latin America, Africa and Asia.

  18. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  20. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  1. Impact of pipes networks simplification on water hammer phenomenon

    Indian Academy of Sciences (India)

    Simplification of water supply networks is an indispensible design step to make the original network easier to be analysed. The impact of networks' simplification on water hammer phenomenon is investigated. This study uses two loops network with different diameters, thicknesses, and roughness coefficients. The network is ...

  2. Neural Network-Based Resistance Spot Welding Control and Quality Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Allen, J.D., Jr.; Ivezic, N.D.; Zacharia, T.

    1999-07-10

    This paper describes the development and evaluation of neural network-based systems for industrial resistance spot welding process control and weld quality assessment. The developed systems utilize recurrent neural networks for process control and both recurrent networks and static networks for quality prediction. The first section describes a system capable of both welding process control and real-time weld quality assessment, The second describes the development and evaluation of a static neural network-based weld quality assessment system that relied on experimental design to limit the influence of environmental variability. Relevant data analysis methods are also discussed. The weld classifier resulting from the analysis successfldly balances predictive power and simplicity of interpretation. The results presented for both systems demonstrate clearly that neural networks can be employed to address two significant problems common to the resistance spot welding industry, control of the process itself, and non-destructive determination of resulting weld quality.

  3. Water quality measure in urban basin of Fossolo; Le misure di qualita` nel bacino urbano Fossolo

    Energy Technology Data Exchange (ETDEWEB)

    Artina, Sandro; Maglionico, Marco; Marinelli, Alberto [Bologna, Univ. (Italy); Raffaelli, Giuseppe; Anzalone, Claudio [Consorzio A.Co.Se.R., Bologna (Italy); Lanzarini, Sergio; Guzzinati, Ermes [AMIU, Bologna (Italy)

    1997-03-01

    Water quantity and quality characteristics of a combined sewer system in a 40 ha urban catchment in the vicinity of Bologna have been studied for two years. The catchment, having residential characteristics with about 10000 inhabitants, is loaded with heavy traffic. The drainage network ends with a main duct having a multicenter cross section of 1800 mm x 1440 mm. The monitoring phase has pointed out how some quality parameters often trespass the Italian regulations on water quality. Moreover, it has been observed how BOD{sub 5}, COD and Suspended Solids are strictly correlated.

  4. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  5. Seasonal variations of ground water quality and its agglomerates by water quality index

    International Nuclear Information System (INIS)

    Sharma, S.; Chhipa, R.C.

    2016-01-01

    Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality in north-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluoride and potassium, p H, turbidity, temperature) were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70), Lalawas (362.74,396.67), Jaisinghpura area (286.00, 273.78) were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium. Saipura (122.52, 131.00), Naila (120.25, 239.86), Galta (160.9, 204.1) were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  6. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    Science.gov (United States)

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  7. SIMULATION OF NEGATIVE PRESSURE WAVE PROPAGATION IN WATER PIPE NETWORK

    Directory of Open Access Journals (Sweden)

    Tang Van Lam

    2017-11-01

    Full Text Available Subject: factors such as pipe wall roughness, mechanical properties of pipe materials, physical properties of water affect the pressure surge in the water supply pipes. These factors make it difficult to analyze the transient problem of pressure evolution using simple programming language, especially in the studies that consider only the magnitude of the positive pressure surge with the negative pressure phase being neglected. Research objectives: determine the magnitude of the negative pressure in the pipes on the experimental model. The propagation distance of the negative pressure wave will be simulated by the valve closure scenarios with the help of the HAMMER software and it is compared with an experimental model to verify the quality the results. Materials and methods: academic version of the Bentley HAMMER software is used to simulate the pressure surge wave propagation due to closure of the valve in water supply pipe network. The method of characteristics is used to solve the governing equations of transient process of pressure change in the pipeline. This method is implemented in the HAMMER software to calculate the pressure surge value in the pipes. Results: the method has been applied for water pipe networks of experimental model, the results show the affected area of negative pressure wave from valve closure and thereby we assess the largest negative pressure that may appear in water supply pipes. Conclusions: the experiment simulates the water pipe network with a consumption node for various valve closure scenarios to determine possibility of appearance of maximum negative pressure value in the pipes. Determination of these values in real-life network is relatively costly and time-consuming but nevertheless necessary for identification of the risk of pipe failure, and therefore, this paper proposes using the simulation model by the HAMMER software. Initial calibration of the model combined with the software simulation results and

  8. South Asia transboundary water quality monitoring workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification

  9. The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    OpenAIRE

    Zia, Huma; Harris, Nick; Merrett, Geoff V.; Rivers, Mark; Coles, Neil

    2013-01-01

    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is cu...

  10. 40 CFR 130.3 - Water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made...

  11. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks

    International Nuclear Information System (INIS)

    Francis, Royce A.; Guikema, Seth D.; Henneman, Lucas

    2014-01-01

    In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a water zone. To the authors’ knowledge, this is the first attempt to model drinking water distribution system pipe breaks using BBNs. Development of expert systems such as BBNs for analyzing drinking water distribution system data is not only important for pipe break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate data-based distribution system monitoring and asset management. Due to the difficulties in collecting, preparing, and managing drinking water distribution system data, most pipe break models can be classified as “statistical–physical” or “hypothesis-generating.” We develop the BBN with the hope of contributing to the “hypothesis-generating” class of models, while demonstrating the possibility that BBNs might also be used as “statistical–physical” models. Our model is learned from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network. BBN models are learned using a constraint-based method, a score-based method, and a hybrid method. Model evaluation is based on log-likelihood scoring. Sensitivity analysis using mutual information criterion is also reported. While our results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may be difficult to select among model alternatives. This model uncertainty may mean that more research is needed for understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter might be important for asset management planning. - Highlights: • We show Bayesian Networks for predictive and diagnostic management of water distribution systems. • Our model may enable system operators and managers to prioritize system

  12. Connecting Social Networks with Ecosystem Services for Watershed Governance: a Social-Ecological Network Perspective Highlights the Critical Role of Bridging Organizations

    Directory of Open Access Journals (Sweden)

    Kaitlyn J. Rathwell

    2012-06-01

    Full Text Available In many densely settled agricultural watersheds, water quality is a point of conflict between amenity and agricultural activities because of the varied demands and impacts on shared water resources. Successful governance of these watersheds requires coordination among different activities. Recent research has highlighted the role that social networks between management entities can play to facilitate cross-scale interaction in watershed governance. For example, bridging organizations can be positioned in social networks to bridge local initiatives done by single municipalities across whole watersheds. To better understand the role of social networks in social-ecological system dynamics, we combine a social network analysis of the water quality management networks held by local governments with a social-ecological analysis of variation in water management and ecosystem services across the Montérégie, an agricultural landscape near Montréal, Québec, Canada. We analyze municipal water management networks by using one-mode networks to represent direct collaboration between municipalities, and two-mode networks to capture how bridging organizations indirectly connect municipalities. We find that municipalities do not collaborate directly with one another but instead are connected via bridging organizations that span the water quality management network. We also discovered that more connected municipalities engaged in more water management activities. However, bridging organizations preferentially connected with municipalities that used more tourism related ecosystem services rather than those that used more agricultural ecosystem services. Many agricultural municipalities were relatively isolated, despite being the main producers of water quality problems. In combination, these findings suggest that further strengthening the water management network in the Montérégie will contribute to improving water quality in the region. However, such

  13. A decision tree model to estimate the value of information provided by a groundwater quality monitoring network

    Science.gov (United States)

    Khader, A. I.; Rosenberg, D. E.; McKee, M.

    2013-05-01

    Groundwater contaminated with nitrate poses a serious health risk to infants when this contaminated water is used for culinary purposes. To avoid this health risk, people need to know whether their culinary water is contaminated or not. Therefore, there is a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management options. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision-maker and the expected outcomes from these alternatives. The alternatives include (i) ignore the health risk of nitrate-contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, contaminant transport processes, and climate (Khader, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine, where methemoglobinemia (blue baby syndrome) is the main health problem associated with the principal contaminant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs

  14. Water Network Tool for Resilience (WNTR) User Manual

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new Python package designed to simulate and analyze resilience of water distribution networks to a variety of disaster scenarios. WNTR can help water utilities to explore the capacity of their systems to handle disasters and gui...

  15. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  16. Water Quality Monitoring Manual.

    Science.gov (United States)

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  17. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...... the physical signal parameters and the subjectively perceived sound quality. No simple objective-subjective relationship was evident from this analysis....

  18. Comparison Between Water Quality Index (WQI) and Biological Water Quality Index (BWQI) for Water Quality Assessment: Case Study of Melana River, Johor

    International Nuclear Information System (INIS)

    Nor Zaiha Arman; Mohd Ismid Mohd Said; Shamila Azman; Muhammad Hazim Mat Hussin

    2013-01-01

    A study of water quality in Melana River, Johor was carried out in three consecutive months (March - May 2012). This study aims to determine the comparative results through biological monitoring as well as conventional method (physical and chemical analysis). Assessment is carried out through collection and identification of the biological indicator which comprises of macro benthos based on Biological Water Quality Index (BWQI). Comparison was done based on two methods namely invertebrate analysis and also laboratory analysis. For invertebrate analysis, Melana River consist of three types of Family groups namely Nymphs, Larvae and Molluscs. The result for Water Quality Index (WQI) and also Biological Water Quality Index (BWQI) analysis showed that the level of Melana River is polluted and classified in Class III. This study shows that even though different methods were used, the similar results were obtained for both rivers and can be applied to any river to identify their level of cleanliness. (author)

  19. Results of Geoenvironmental Studies (2013-2014) Applied to a Monitoring Water Quality Network in Real Time in the Atoyac River (upstream) Puebla, Mexico.

    Science.gov (United States)

    Rodriguez-Espinosa, P. F.; Tavera, E. M.; Morales-Garcia, S. S.; Muñoz-Sevilla, N. P.

    2014-12-01

    Results of geoenvironment studies, referents to geochemistry, weathering, size, mineral composition, and metals contained in sediments and physicochemical parameters of water in urban rivers associated with dam are presented. Emphasis on the interpretation of these results, was detect environmental susceptibility areas associated at the water quality in Upper basin of Atoyac River, Puebla, Mexico. The environmental sub secretary of the state government of Puebla, Mexico has initiated actions to clean up the urban Atoyac River, with measurements of physicochemical parameters associated of the water quality in real-time monitoring and sampling network along the river. The results identified an important role in the rivers, not only to receive and transport the contaminants associated with sedimentological and geochemical conditions, but magnified the effects of pollutant discharges. A significant concentration of hazardous metals in sediments of the dam, reflecting the geo-environmental conditions of anthropogenic Valsequillo Dam induction was determined. For example, a moderately contaminated Pb contaminated extreme class, and Cu and Zn contaminated with moderate to heavy contaminated under geoenvironment class index. Large concentration of clay minerals with larger surface areas was found there in the study, the minerals are definitely the fittest in nature to accept on their surfaces constitution of metals, metalloids and other contaminants which were reflected in the Geoenvironmental index. The results of the studies performed here enable us to locate monitoring stations and sampling network to physicochemical parameters in real time, in the areas of higher contamination found in geoenvironmental studies Atoyac High River Basin. Similarly, we can elucidate the origin of pollutants and monitoring agents reflected in BOD5 (223 mg / l) and COD (610 mg / l), suspended solids totals (136 mg / l) and dissolved solids totals (840 mg / l), in others. Recent hydrometric

  20. Water supply network district metering theory and case study

    CERN Document Server

    Di Nardo, Armando; Di Mauro, Anna

    2013-01-01

    The management of a water supply network can be substantially improved defining permanent sectors or districts that enhances simpler water loss detection and pressure management. However, the water network partitioning may compromise water system performance, since some pipes are usually closed to delimit districts in order not to have too many metering stations, to decrease costs and simplify water balance. This may reduce the reliability of the whole system and not guarantee the delivery of water at the different network nodes. In practical applications, the design of districts or sectors is generally based on empirical approaches or on limited field experiences. The book proposes a design support methodology, based on graph theory principles and tested on real case study. The described methodology can help water utilities, professionals and researchers to define the optimal districts or sectors of a water supply network.

  1. Stochastic model and method of zoning water networks

    OpenAIRE

    Тевяшев, Андрей Дмитриевич; Матвиенко, Ольга Ивановна

    2014-01-01

    Water consumption at different time of the day is uneven. The model of steady flow distribution in water-supply networks is calculated for maximum consumption and effectively used in the network design and reconstruction. Quasi-stationary modes, in which the parameters are random variables and vary relative to their mean values are more suitable for operational management and planning of rational network operation modes.Leaks, which sometimes exceed 50 % of the volume of water supplied, are o...

  2. Node vulnerability of water distribution networks under cascading failures

    International Nuclear Information System (INIS)

    Shuang, Qing; Zhang, Mingyuan; Yuan, Yongbo

    2014-01-01

    Water distribution networks (WDNs) are important in modern lifeline system. Its stability and reliability are critical for guaranteeing high living quality and continuous operation of urban functions. The aim of this paper is to evaluate the nodal vulnerability of WDNs under cascading failures. Vulnerability is defined to analyze the effects of the consequent failures. A cascading failure is a step-by-step process which is quantitatively investigated by numerical simulation with intentional attack. Monitored pressures in different nodes and flows in different pipes have been used to estimate the network topological structure and the consequences of nodal failure. Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. A load variation function is established to record the nodal failure reason and describe the relative differences between the load and the capacity. The proposed method is validated by an illustrative example. The results revealed that the network vulnerability should be evaluated with the consideration of hydraulic analysis and network topology. In the case study, 70.59% of the node failures trigger the cascading failures with different failure processes. It is shown that the cascading failures result in severe consequences in WDNs. - Highlights: • The aim of this paper is to evaluate the nodal vulnerability of water distribution networks under cascading failures. • Monitored pressures and flows have been used to estimate the network topological structure and the consequences of nodal failure. • Based on the connectivity loss of topological structure, the nodal vulnerability has been evaluated. • A load variation function is established to record the failure reason and describe the relative differences between load and capacity. • The results show that 70.59% of the node failures trigger the cascading failures with different failure processes

  3. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    water, and expressing them to non-technical people may not always be easy. ... parameters for a case study; dissolved oxygen, pH, total coliforms, ... Several national agencies responsible for water supply and water pollution, have strongly .... good quality and required proper treatment if it were to be consumed as potable.

  4. The REDCAM, institutional Cooperation for the Surveillance of the Quality of the Marine and Coastal waters in Colombia

    International Nuclear Information System (INIS)

    Ana Maria Velez G; Marin Z, Bienvenido; Garay T, Jesus A

    2003-01-01

    The Colombian Marine Environment Monitoring Network (REDCAM) initiated in 2001, with the purpose of grouping the institutions and the efforts necessary to evaluate the chemical and sanitary quality of the marine and estuarine waters of Colombia; it is composed of 16 nodes and main server located at INVEMAR (Santa Marta); each node counts with hardware and software for a Input and retrieval tables and cartographic information a about the quality o marine and coastal waters of Colombia. It was established a network of field stations that covers most of the Colombian coasts. In each one, since 2001, twice a year, it has been registering the values of the main physicochemical and bacteriological variables that characterize the quality of the marine and estuarine waters. Based on this information, the following zones have been identified as critical for its marine and coastal pollution: Santa Marta, Cartagena, Barranquilla, Morrosquillo, Uraba and San Andres, in the Caribbean coast and Buenaventura, Guapi and La Tola in Pacific coast

  5. Ground-water quality in the Santa Rita, Buellton, and Los Olivos hydrologic subareas of the Santa Ynez River basin, Santa Barbara County, California

    Science.gov (United States)

    Hamlin, S.N.

    1985-01-01

    Groundwater quality in the upper Santa Ynez River Valley in Santa Barbara County has degraded due to both natural and anthropogenic causes. The semiarid climate and uneven distribution of rainfall has limited freshwater recharge and caused salt buildup in water supplies. Tertiary rocks supply mineralized water. Agricultural activities (irrigation return flow containing fertilizers and pesticides, cultivation, feedlot waste disposal) are a primary cause of water quality degradation. Urban development, which also causes water quality degradation (introduced contaminants, wastewater disposal, septic system discharge, and land fill disposal of waste), has imposed stricter requirements on water supply quality. A well network was designed to monitor changes in groundwater quality related to anthropogenic activities. Information from this network may aid in efficient management of the groundwater basins as public water supplies, centered around three basic goals. First is to increase freshwater recharge to the basins by conjunctive surface/groundwater use and surface-spreading techniques. Second is to optimize groundwater discharge by efficient timing and spacing of pumping. Third is to control and reduce sources of groundwater contamination by regulating wastewater quality and distribution and, preferably, by exporting wastewaters from the basin. (USGS)

  6. National Recommended Water Quality Criteria

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health...

  7. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  8. British Columbia water quality guidelines (criteria): 1998 edition

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, N.K.; Pommen, L.W.; Swain, L.G.

    1998-08-01

    British Columbia has developed water quality guidelines in order that water quality data can be assessed and site-specific water quality objectives can be prepared. The guidelines provide benchmarks for the assessment of water quality and setting water quality objectives. Guidelines are provided to protect the following six major water uses: drinking water, aquatic life, wildlife, recreation/aesthetics, agriculture, and industrial. Water quality encompasses the physical, chemical and biological quality of the water, sediment and biota. Among other quality criteria the guide provides maximum approved concentrations for nitrogen, aluminum, copper, cyanide, lead, mercury, and molybdenum. 30 tabs.

  9. Representativeness of air quality monitoring networks

    NARCIS (Netherlands)

    Duyzer, J.; Hout, D. van den; Zandveld, P.; Ratingen, S. van

    2015-01-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in

  10. Putting people into water quality modelling.

    Science.gov (United States)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real

  11. Heavy Water Quality Management in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Chul; Lee, Mun; Kim, Hi Gon; Park, Chan Young; Choi, Ho Young; Hur, Soon Ock; Ahn, Guk Hoon

    2008-12-15

    Heavy water quality management in the reflector tank is a very important element to maintain the good thermal neutron flux and to ensure the performance of reflector cooling system. This report is written to provide a guidance for the future by describing the history of the heavy water quality management during HANARO operation. The heavy water quality in the reflector tank has been managed by measuring the electrical conductivity at the inlet and outlet of the ion exchanger and by measuring pH of the heavy water. In this report, the heavy water quality management activities performed in HANARO from 1996 to 2007 ere described including a basic theory of the heavy water quality management, exchanging history of used resin in the reflector cooling system, measurement data of the pH and the electrical conductivity, and operation history of the reflector cooling system.

  12. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  13. Detection of water-quality contamination events based on multi-sensor fusion using an extented Dempster–Shafer method

    International Nuclear Information System (INIS)

    Hou, Dibo; He, Huimei; Huang, Pingjie; Zhang, Guangxin; Loaiciga, Hugo

    2013-01-01

    This study presents a method for detecting contamination events of sources of drinking water based on the Dempster–Shafer (D-S) evidence theory. The detection method has the purpose of protecting water supply systems against accidental and intentional contamination events. This purpose is achieved by first predicting future water-quality parameters using an autoregressive (AR) model. The AR model predicts future water-quality parameters using recent measurements of these parameters made with automated (on-line) water-quality sensors. Next, a probabilistic method assigns probabilities to the time series of residuals formed by comparing predicted water-quality parameters with threshold values. Finally, the D-S fusion method searches for anomalous probabilities of the residuals and uses the result of that search to determine whether the current water quality is normal (that is, free of pollution) or contaminated. The D-S fusion method is extended and improved in this paper by weighted averaging of water-contamination evidence and by the analysis of the persistence of anomalous probabilities of water-quality parameters. The extended D-S fusion method makes determinations that have a high probability of being correct concerning whether or not a source of drinking water has been contaminated. This paper's method for detecting water-contamination events was tested with water-quality time series from automated (on-line) water quality sensors. In addition, a small-scale, experimental, water-pipe network was tested to detect water-contamination events. The two tests demonstrated that the extended D-S fusion method achieves a low false alarm rate and high probabilities of detecting water contamination events. (paper)

  14. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  15. Development of specific water quality index for water supply in Thailand

    Directory of Open Access Journals (Sweden)

    Chaiwat Prakirake

    2009-01-01

    Full Text Available In this study, the specific water quality index for assessing water quality in terms of water supply (WSI usage has been developed by using Delphi technique and its application in Thai rivers is proposed. The thirteen parameters including turbidity, DO, pH, NO3-N, TDS, FCB, Fe, color, BOD, Mn, NH3-N, hardness, and total PO4-P are employed for the estimation of water quality. The sub-index transformation curves are established for each variable to assess the variation in water quality level. An appropriate function to aggregate overall sub-indices was weighted Solway function that provided reasonableresults for reducing ambiguous and eclipsing effects for high and slightly polluted samples. The developed WSI couldbe applied to measure water quality into 5 levels - very good (85-100; good (80-<85; average (65-<80; poor (40-<65and very poor (<40. The proposed WSI could be used for evaluating water quality in terms of water supply. In addition, it could be used for analyzing long-term trait analysis and comparing water quality among different reaches of rivers or between different watersheds.

  16. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  17. Hydraulic Network Modelling of Small Community Water Distribution ...

    African Journals Online (AJOL)

    Prof Anyata

    ... design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using ..... self cleansing drinking water distribution system is set at 0.4m/s, .... distribution network offers advantages over manual ...

  18. Groundwater-quality characteristics for the Wyoming Groundwater-Quality Monitoring Network, November 2009 through September 2012

    Science.gov (United States)

    Boughton, Gregory K.

    2014-01-01

    Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron

  19. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    HOSSAIN M. ANAWAR

    2012-06-01

    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  20. 3D Printing-Based Integrated Water Quality Sensing System

    Directory of Open Access Journals (Sweden)

    Muinul Banna

    2017-06-01

    Full Text Available The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS, both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology—material extrusion (Trade Name: fused deposition modeling, FDM and material jetting—to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage, despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm and high flowrates (30 mL/min, and a very high conductivity (460 µS/cm, respectively.

  1. The assessment of khorramabad River water quality with National Sanitation Foundation Water Quality Index and Zoning by GIS

    Directory of Open Access Journals (Sweden)

    abdolrahim Yusefzadeh

    2014-03-01

    Full Text Available Background : Rivers are a fraction of flowing waters in the worlds and one of the important sources of water for different consumptions such as agricultural, drinking and industrial uses. The aim of this study was to assess water quality of the Khorramrood River in Khorramabad by NSFWQI index. Materials and Methods: In this cross-sectional study, quality parameters needed for NASWQI index calculation such as BOD5, dissolved oxygen (DO, total nitrate, fecal coliform, pH, total phosphate, temperature, turbidity and total suspended solids content were measured for six months (from July to December 2012using standard methods at six selected stations. The river zoning conducted by GIS software. Results: According to the results obtained through this study, the highest and the lowest water quality value was observed in stations 1 and 6 with NSFWQI indexes 82 water with good quality, 42 water with bad quality, respectively. With moving toward last station (from 1 to 6 station water pollution increased. Conclusion: Results of the study indicated that water quality index NSFWQI is a good index to identify the effect of polluter sources on the river water. Based on the average of the index NSFWQI, water quality in station one was good, in the second, third and fourth stations were mediocre and the fifth and sixth stations had bad quality. These results allow to make decisions about monitoring and controlling water pollution sources, as well as provide different efficient uses of it by relevant authorities.

  2. The concentration-discharge slope as a tool for water quality management.

    Science.gov (United States)

    Bieroza, M Z; Heathwaite, A L; Bechmann, M; Kyllmar, K; Jordan, P

    2018-07-15

    Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to

  3. Resilience-based optimal design of water distribution network

    Science.gov (United States)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  4. River water quality assessment using environmentric techniques: case study of Jakara River Basin.

    Science.gov (United States)

    Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar

    2013-08-01

    Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future

  5. Geospatial Data Quality of the Servir CORS Network

    Science.gov (United States)

    Santos, J.; Teodoro, R.; Mira, N.; Mendes, V. B.

    2015-08-01

    The SERVIR Continuous Operation Reference Stations (CORS) network was implemented in 2006 to facilitate land surveying with Global Navigation Satellite Systems (GNSS) positioning techniques. Nowadays, the network covers all Portuguese mainland. The SERVIR data is provided to many users, such as surveyors, universities (for education and research purposes) and companies that deal with geographic information. By middle 2012, there was a significant change in the network accessing paradigm, the most important of all being the increase in the responsibility of managing the network to guarantee a permanent availability and the highest quality of the geospatial data. In addition, the software that is used to manage the network and to compute the differential corrections was replaced by a new software package. These facts were decisive to perform the quality control of the SERVIR network and evaluate positional accuracy. In order to perform such quality control, a significant number of geodetic monuments spread throughout the country were chosen. Some of these monuments are located in the worst location regarding the network geometry in order to evaluate the accuracy of positions for the worst case scenarios. Data collection was carried out using different GNSS positioning modes and were compared against the benchmark positions that were determined using data acquired in static mode in 3-hour sessions. We conclude the geospatial data calculated and provided to the users community by the network is, within the surveying purposes, accurate, precise and fits the needs of those users.

  6. A conceptual methodology to design a decision support system to leak detection programs in water networks

    International Nuclear Information System (INIS)

    Di Federico, V.; Bottarelli, M.; Di Federico, I.

    2005-01-01

    The paper outlines a conceptual methodology to develop a decision support system to assist technicians managing water networks in selecting the appropriate leak detection method(s). First, the necessary knowledge about the network is recapitulated: location and characteristics of its physical components, but also water demand, breaks in pipes, and water quality data. Second, the water balance in a typical Italian Agency is discussed, suggesting method and procedures to evacuate and/or estimate each term in the mass balance equation. Then the available methods for leak detection are described in detail, from those useful in the pre-localization phase to those commonly adopted to pinpoint pipe failures and allow a rapid repair. Criteria to estimate costs associated with each of these methods are provided. Finally, the proposed structure of the DSS is described [it

  7. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  8. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  9. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  10. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  11. Application of Hotelling’s T2 charts in monitoring quality parameters in a drinking water supply system

    International Nuclear Information System (INIS)

    Costa, Mafalda T.; Carolino, Elisabete; Oliveira, Teresa A.

    2015-01-01

    In water supply systems with distribution networkthe most critical aspects of control and Monitoring of water quality, which generates crises system, are the effects of cross-contamination originated by the network typology. The classics of control of quality systems through the application of Shewhart charts are generally difficult to manage in real time due to the high number of charts that must be completed and evaluated. As an alternative to the traditional control systems with Shewhart charts, this study aimed to apply a simplified methodology of a monitoring plan quality parameters in a drinking water distribution, by applying Hotelling’s T 2 charts and supplemented with Shewhart charts with Bonferroni limits system, whenever instabilities with processes were detected

  12. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  13. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  14. Water-quality data for the ground-water network in eastern Broward County, Florida, 1983-84

    Science.gov (United States)

    Waller, B.G.; Cannon, F.L.

    1986-01-01

    During 1983-84, groundwater from 63 wells located at 31 sites throughout eastern Broward County, Florida, was sampled and analyzed to determine baseline water quality conditions. The physical and chemical parameters analyzed included field measurements (pH and temperature), physical characteristics (color, turbidity, and specific conductance), major inorganic ions, nutrients, (nitrogen, phosphorus and carbon), selected metals, and total phenolic compounds. Groundwater samples were collected at the end of the dry season (April) and during the wet season (July and September). These data are tabulated, by well, in this report. (USGS)

  15. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  16. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    Science.gov (United States)

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  17. Natural organic matter characterization by HPSEC and its contribution to trihalomethane formation in Athens water supply network.

    Science.gov (United States)

    Samios, Stelios A; Golfinopoulos, Spyros K; Andrzejewski, Przemyslaw; Świetlik, Joanna

    2017-08-24

    Samples from the two main watersheds that provide Athens Water Supply and Sewerage Company (AWSSC) with raw water were examined for Dissolved Organic Carbon (DOC) and for their molecular weight distribution (MWD). In addition, water samples from water treatment plants (WTPs) and from the water supply network were examined for trihalomethane (THMs) levels. The main purpose of this study was to reveal the molecular composition of natural organic matter (NOM) and identify the individual differences between NOM from the two main Athens watersheds. High-performance size exclusion chromatography (HPSEC), a relatively simple technique, was applied to determine different NOM fractions' composition according to molecular weight. Various THM levels in the supply network of Athens are illustrated as a result of the different reservoirs' water qualities, and a suggestion for a limited application of chlorine dioxide is made in order to minimize THM formation.

  18. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  19. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  20. Possible negative consequences of the secondary air contamination on the quality of accumulated drinking water

    International Nuclear Information System (INIS)

    Rihova Ambrozova, J.; Hubackova, J.; Cihakova, I.

    2008-01-01

    At the present time when requirements on quality of drinking water are increased, it is necessary not only to put stress on technological processes used in its preparation, but also there is a need to secure that water is distributed even to the consumer in that quality as it leaves a water station. Through a systematic surveillance of water-supply companies within the framework of biological audits it has been found out that the important points in a distribution network where the quality of water is deteriorated are the water reservoirs. Deterioration in quality of accumulated water is jointly caused by elements of technological, constructional and biological nature. The secondary air contamination has a substantial influence on the creation of bio-films on walls and the presence of microorganisms in accumulated drinking water. To this end, a water twin-compartment reservoir has been systematically evaluated during operation, cleaning meantime and before cleaning. The results of hydro-biological and microbiological analysis have confirmed the input of particles and microorganisms through air, their presence in surface level of accumulated water as well as scrapings from accumulation walls. The surveillance considered also the situation without a fixed filter unit, without door lining etc. On fixing a tested filter system into ventilation duct the risk of air contamination was lowered to minimum. (authors)

  1. Synthesis and Design of Integrated Process and Water Networks

    DEFF Research Database (Denmark)

    Handani, Zainatul B.; Quaglia, Alberto; Gani, Rafiqul

    2015-01-01

    This work presents the development of a systematic framework for a simultaneous synthesis and design of process and water networks using the superstructure-based optimization approach. In this framework, a new superstructure combining both networks is developed by attempting to consider all...... possible options with respect to the topology of the process and water networks, leading to Mixed Integer Non Linear Programming (MINLP) problem. A solution strategy to solve the multi-network problem accounts explicitly the interactions between the networks by selecting suitable technologies in order...... to transform raw materials into products and produce clean water to be reused in the process at the early stage of design. Since the connection between the process network and the wastewater treatment network is not a straight forward connection, a new converter interval is introduced in order to convert...

  2. 9 CFR 108.11 - Water quality requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  3. Management of speech and video telephony quality in heterogeneous wireless networks

    CERN Document Server

    Lewcio, Błażej

    2014-01-01

    This book shows how networking research and quality engineering can be combined to successfully manage the transmission quality when speech and video telephony is delivered in heterogeneous wireless networks. Nomadic use of services requires intelligent management of ongoing transmission, and to make the best of available resources many fundamental trade-offs must be considered. Network coverage versus throughput and reliability of a connection is one key aspect, efficiency versus robustness of signal compression is another. However, to successfully manage services, user-perceived Quality of Experience (QoE) in heterogeneous networks must be known, and the perception of quality changes must be understood.  These issues are addressed in this book, in particular focusing on the perception of quality changes due to switching between diverse networks, speech and video codecs, and encoding bit rates during active calls.

  4. Mass imbalances in EPANET water-quality simulations

    Science.gov (United States)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  5. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): a semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model.

    Science.gov (United States)

    Hamm, V; Collon-Drouaillet, P; Fabriol, R

    2008-02-19

    The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more

  6. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...; developing and reviewing water quality standards, total maximum daily loads, wasteload allocations and load... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4...

  7. Dam water quality study. Report to Congress

    International Nuclear Information System (INIS)

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A

  8. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  9. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  10. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  11. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection

    Science.gov (United States)

    Pellerin, Brian; Stauffer, Beth A; Young, Dwane A; Sullivan, Daniel J.; Bricker, Suzanne B.; Walbridge, Mark R; Clyde, Gerard A; Shaw, Denice M

    2016-01-01

    Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well-known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as an example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real-time nutrient data. The concurrent emergence of new tools to integrate, manage and share large data sets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous nutrient monitoring to rapidly move forward. We highlight several near-term opportunities for Federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large-scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation’s water resources.

  12. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    Science.gov (United States)

    1986-02-01

    espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...and to the establishment and habitat differentiation of biological populations within reservoirs. Reservoir operatirn, esp- cially the timing...8217 % - - % properties of bottom sediments, as well as specific habitat associations of biological populations of reservoirs. Thus, such heterogeneities

  13. 7 CFR 634.23 - Water quality plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  14. Propagation of crises in the virtual water trade network

    Science.gov (United States)

    Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2015-04-01

    The international trade of agricultural goods is associated to the displacement of the water used to produce such goods and embedded in trade as a factor of production. Water virtually exchanged from producing to consuming countries, named virtual water, defines flows across an international network of 'virtual water trade' which enable the assessment of environmental forcings and implications of trade, such as global water savings or country dependencies on foreign water resources. Given the recent expansion of commodity (and virtual water) trade, in both displaced volumes and network structure, concerns have been raised about the exposure to crises of individuals and societies. In fact, if one country had to markedly decrease its export following a socio-economical or environmental crisis, such as a war or a drought, many -if not all- countries would be affected due to a cascade effect within the trade network. The present contribution proposes a mechanistic model describing the propagation of a local crisis into the virtual water trade network, accounting for the network structure and the virtual water balance of all countries. The model, built on data-based assumptions, is tested on the real case study of the Argentinean crisis in 2008-09, when the internal agricultural production (measured as virtual water volume) decreased by 26% and the virtual water export of Argentina dropped accordingly. Crisis propagation and effects on the virtual water trade are correctly captured, showing the way forward to investigations of crises impact and country vulnerability based on the results of the model proposed.

  15. Assessment of drinking water quality at the tap using fluorescence spectroscopy.

    Science.gov (United States)

    Heibati, Masoumeh; Stedmon, Colin A; Stenroth, Karolina; Rauch, Sebastien; Toljander, Jonas; Säve-Söderbergh, Melle; Murphy, Kathleen R

    2017-11-15

    Treated drinking water may become contaminated while travelling in the distribution system on the way to consumers. Elevated dissolved organic matter (DOM) at the tap relative to the water leaving the treatment plant is a potential indicator of contamination, and can be measured sensitively, inexpensively and potentially on-line via fluorescence and absorbance spectroscopy. Detecting elevated DOM requires potential contamination events to be distinguished from natural fluctuations in the system, but how much natural variation to expect in a stable distribution system is unknown. In this study, relationships between DOM optical properties, microbial indicator organisms and trace elements were investigated for households connected to a biologically-stable drinking water distribution system. Across the network, humic-like fluorescence intensities showed limited variation (RSD = 3.5-4.4%), with half of measured variation explained by interactions with copper. After accounting for quenching by copper, fluorescence provided a very stable background signal (RSD infiltration of soil water would be detectable. Smaller infiltrations would be detectable in the case of contamination by sewage with a strong tryptophan-like fluorescence signal. These findings indicate that DOM fluorescence is a sensitive indicator of water quality changes in drinking water networks, as long as potential interferents are taken into account. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Assessing water quality of rural water supply schemes as a measure ...

    African Journals Online (AJOL)

    Assessing water quality of rural water supply schemes as a measure of service ... drinking water quality parameters were within the World Health Organization ... Besides, disinfection of water at the household level can be an added advantage.

  17. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  18. Spatial prediction of water quality variables along a main river channel, in presence of pollution hotspots.

    Science.gov (United States)

    Rizo-Decelis, L D; Pardo-Igúzquiza, E; Andreo, B

    2017-12-15

    In order to treat and evaluate the available data of water quality and fully exploit monitoring results (e.g. characterize regional patterns, optimize monitoring networks, infer conditions at unmonitored locations, etc.), it is crucial to develop improved and efficient methodologies. Accordingly, estimation of water quality along fluvial ecosystems is a frequent task in environment studies. In this work, a particular case of this problem is examined, namely, the estimation of water quality along a main stem of a large basin (where most anthropic activity takes place), from observational data measured along this river channel. We adapted topological kriging to this case, where each watershed contains all the watersheds of the upstream observed data ("nested support effect"). Data analysis was additionally extended by taking into account the upstream distance to the closest contamination hotspot as an external drift. We propose choosing the best estimation method by cross-validation. The methodological approach in spatial variability modeling may be used for optimizing the water quality monitoring of a given watercourse. The methodology presented is applied to 28 water quality variables measured along the Santiago River in Western Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 40 CFR 130.8 - Water quality report.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section... QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to the Regional Administrator a water quality report in accordance with section 305(b) of the Act...

  20. Energy Recovery in Existing Water Networks: Towards Greater Sustainability

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-02-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.

  1. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  2. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  3. Mass imbalances in EPANET water-quality simulations

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-06

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.

  4. National water summary 1990-91: Hydrologic events and stream water quality

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    National Water Summary 1990-91 Hydrologic Events and Stream Water Quality was planned to complement existing Federal-State water-quality reporting to the U.S. Congress that is required by the Clean Water Act of 1972. This act, formally known as the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), and its amendments in 1977,1979,1980,1981,1983, and 1987, is the principal basis for Federal-State cooperation on maintaining and reporting on water quality in the United States. Under section 305(b) of the Clean Water Act, the States must designate uses for waterbodies, biennially assess whether the waterbodies meet designated uses, and report to the U.S. Environmental Protection Agency (EPA), which in turn summarizes the findings of the State assessments in a biennial National Water Quality Inventory report to the Congress.

  5. Improving mine-mill water network design by reducing water and energy requirements

    Energy Technology Data Exchange (ETDEWEB)

    Gunson, A.J.; Klein, B.; Veiga, M. [British Columbia Univ., Vancouver, BC (Canada). Norman B. Keevil Inst. of Mining Engineering

    2010-07-01

    Mining is an energy-intensive industry, and most processing mills use wet processes to separate minerals from ore. This paper discussed water reduction, reuse and recycling options for a mining and mill operation network. A mine water network design was then proposed in order to identify and reduce water and system energy requirements. This included (1) a description of site water balance, (2) a description of potential water sources, (3) a description of water consumers, (4) the construction of energy requirement matrices, and (5) the use of linear programming to reduce energy requirements. The design was used to determine a site water balance as well as to specify major water consumers during mining and mill processes. Potential water supply combinations, water metering technologies, and recycling options were evaluated in order to identify the most efficient energy and water use combinations. The method was used to highlight potential energy savings from the integration of heating and cooling systems with plant water systems. 43 refs., 4 tabs., 3 figs.

  6. The maladies of water and war: addressing poor water quality in Iraq.

    Science.gov (United States)

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  7. Indices of quality surface water bodies in the planning of water resources

    Directory of Open Access Journals (Sweden)

    Rodríguez-Miranda, Juan Pablo

    2016-12-01

    Full Text Available This paper considers a review of the literature major and significant methods of quality indices of water applied in surface water bodies, used and proposed for assessing the significance of parameters of water quality in the assessment of surface water currents and they are usually used in making decisions for intervention and strategic prevention measures for those responsible for the conservation and preservation of watersheds where these water bodies belong. An exploratory methodology was applied to realize the conceptualization of each water quality index. As a result, it is observed that there are several important methods for determining the water quality index applied in surface water bodies.

  8. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    DEFF Research Database (Denmark)

    Rygaard, Martin

    2011-01-01

    economic assessment of water quality effects, production costs and environmental costs (water abstraction and CO2-emissions). Considered water quality issues include: health (dental caries, cardiovascular diseases, eczema), corrosion (lifetime of appliances, pipes), consumption of soap, and bottled water...

  9. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... Surface water, groundwater quality assessment and environ- .... Urbanisation influences the water cycle through changes in flow and water ..... tion of aquatic life, CCME water quality Index 1, 0. User`s ... Water, Air Soil Pollut.

  10. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  11. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...

  12. Water Quality Analysis Simulation Program (WASP)

    Science.gov (United States)

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  13. Quality Assurance for Iraqi Bottled Water Specifications

    Directory of Open Access Journals (Sweden)

    May George Kassir

    2015-10-01

    Full Text Available In this research the specifications of Iraqi drinking bottled water brands are investigated throughout the comparison between local brands, Saudi Arabia and the World Health Organization (WHO for bottled water standard specifications. These specifications were also compared to that of Iraqi Tap Water standards. To reveal variations in the specifications for Iraqi bottled water, and above mentioned standards some quality control tools are conducted for more than 33% of different bottled water brands (of different origins such as spring, purified,..etc in Iraq by investigating the selected quality parameters registered on their marketing labels. Results employing Minitab software (ver. 16 to generate X bar, and Pareto chart. It was found from X bar charts that the quality parameters of some drinking bottled water brands are not within Iraqi standards set by the “Central Agency for Standardization and Quality Control” such as pH values, Fe, Na, and Mg concentrations. While the comparison of previously mentioned standard specifications through radar chart many important issues are detected such as the absence of lower limits the whole bottled water quality parameters such as for Na and Mg also the radar chart shows that Iraqi bottled and tap water specifications are almost equal in their quality values. Also the same chart pictured the limited range of Iraqi specifications compared to that of Saudi Arabia, and WHO and the need to introduce other water specifications such as K, Na, etc. This confirms the need to improve Iraqi bottled water specifications since it was introduced on 2000. These results also highlighted the weakness of quality assurance activities since only 33 % of the investigated companies registered the whole water quality specifications as shown in Pareto chart. Other companies do not register any quality characteristics. Also certain companies should be stopped due to non-conforming specifications, yet these companies are

  14. Application of Hotelling’s T{sup 2} charts in monitoring quality parameters in a drinking water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Mafalda T., E-mail: mafaldatcosta@gmail.com [UAberta, Portugal and Ministry of Economy, Portuguese Government (Canada); Carolino, Elisabete, E-mail: lizcarolino@gmail.com [ESTeSL-IPL, Research Group Environment and Health of ESTeSL-IPL (Portugal); Oliveira, Teresa A., E-mail: teresa.oliveira@uab.pt [DCeT - Universidade Aberta, and Center of Statistics and Applications of University of Lisbon (Portugal)

    2015-03-10

    In water supply systems with distribution networkthe most critical aspects of control and Monitoring of water quality, which generates crises system, are the effects of cross-contamination originated by the network typology. The classics of control of quality systems through the application of Shewhart charts are generally difficult to manage in real time due to the high number of charts that must be completed and evaluated. As an alternative to the traditional control systems with Shewhart charts, this study aimed to apply a simplified methodology of a monitoring plan quality parameters in a drinking water distribution, by applying Hotelling’s T{sup 2} charts and supplemented with Shewhart charts with Bonferroni limits system, whenever instabilities with processes were detected.

  15. Data Quality Control: Challenges, Methods, and Solutions from an Eco-Hydrologic Instrumentation Network

    Science.gov (United States)

    Eiriksson, D.; Jones, A. S.; Horsburgh, J. S.; Cox, C.; Dastrup, D.

    2017-12-01

    Over the past few decades, advances in electronic dataloggers and in situ sensor technology have revolutionized our ability to monitor air, soil, and water to address questions in the environmental sciences. The increased spatial and temporal resolution of in situ data is alluring. However, an often overlooked aspect of these advances are the challenges data managers and technicians face in performing quality control on millions of data points collected every year. While there is general agreement that high quantities of data offer little value unless the data are of high quality, it is commonly understood that despite efforts toward quality assurance, environmental data collection occasionally goes wrong. After identifying erroneous data, data managers and technicians must determine whether to flag, delete, leave unaltered, or retroactively correct suspect data. While individual instrumentation networks often develop their own QA/QC procedures, there is a scarcity of consensus and literature regarding specific solutions and methods for correcting data. This may be because back correction efforts are time consuming, so suspect data are often simply abandoned. Correction techniques are also rarely reported in the literature, likely because corrections are often performed by technicians rather than the researchers who write the scientific papers. Details of correction procedures are often glossed over as a minor component of data collection and processing. To help address this disconnect, we present case studies of quality control challenges, solutions, and lessons learned from a large scale, multi-watershed environmental observatory in Northern Utah that monitors Gradients Along Mountain to Urban Transitions (GAMUT). The GAMUT network consists of over 40 individual climate, water quality, and storm drain monitoring stations that have collected more than 200 million unique data points in four years of operation. In all of our examples, we emphasize that scientists

  16. Ground-water flow and water quality in the Upper Floridan aquifer, southwestern Albany area, Georgia, 1998-2001

    Science.gov (United States)

    Warner, Debbie; Lawrence, Stephen J.

    2005-01-01

    During 1997, the Dougherty County Health Department sampled more than 700 wells completed in the Upper Floridan aquifer in Dougherty County, Georgia, and determined that nitrate as nitrogen (hereinafter called nitrate) concentrations were above 10 milligrams per liter (mg/L) in 12 percent of the wells. Ten mg/L is the Georgia primary drinking-water standard. The ground-water flow system is complex and poorly understood in this predominantly agricultural area. Therefore, the U.S. Geological Survey (USGS) - in cooperation with Albany Water, Gas and Light Commission - conducted a study to better define ground-water flow and water quality in the Upper Florida aquifer in the southwestern Albany area, Georgia. Ground-water levels were measured in the southwestern Albany area, Georgia, during May 1998 and March 1999 (spring), and October 1998 and September 1999 (fall). Groundwater levels measured in 75 wells open only to the Upper Floridan aquifer were used to construct potentiometric-surface maps for those four time periods. These maps show that ground water generally flows from northwest to southeast at gradients ranging from about 2 to greater than 10 feet per mile. During spring and fall 1998, ground-water levels were high and mounding of the potentiometric surface occurred in the central part of the study area, indicating a local recharge area. Water levels declined from December through February, and by March 1999 the mound in the potentiometric surface had dissipated. Of the 75 wells in the potentiometric network, 24 were selected for a water-quality network. These 24 wells and 1 spring were sampled during fall 1998 and spring 1999. Samples were analyzed for major chemical constituents, selected minor constituents, selected nutrients, and chlorofluorocarbons (CFC). Water-quality field measurements - such as water temperature, pH, specific conductance (SC), and dissolved oxygen (DO) - were taken at each well. During August 2000, a ground-water sample was collected

  17. Temporal variability in groundwater and surface water quality in humid agricultural catchments; Driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, Joachim; Van Der Velde, Ype

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  18. Temporal variability in groundwater and surface water quality in humid agricultural catchments; driving processes and consequences for regional water quality monitoring

    NARCIS (Netherlands)

    Rozemeijer, J.; Velde, van der Y.

    2014-01-01

    Considering the large temporal variability in surface water quality is essential for adequate water quality policy and management. Neglecting these dynamics may easily lead to decreased effectiveness of measures to improve water quality and to inefficient water quality monitoring. The objective of

  19. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  20. Project W.A.T.E.R.

    Science.gov (United States)

    EnviroTeach, 1992

    1992-01-01

    Introduces networking projects for studying rivers and water quality. Describes two projects in South Africa (Project W.A.T.E.R and SWAP) associated with the international network, Global Rivers Environmental Education Network. Discusses water test kits and educational material developed through Project W.A.T.E.R. (Water Awareness through…

  1. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    OpenAIRE

    Marais, Jaco; Malekian, Reza; Ye, Ning; Wang, Ruchuan

    2016-01-01

    This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh) to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This thr...

  2. Industry disagrees with water quality recommendations

    International Nuclear Information System (INIS)

    Begley, R.

    1992-01-01

    Industry groups are distancing themselves from recommendations on cleaning up the nation's waters issued by Water Quality 2000, a coalition of more than 80 organizations representing industry, environmental groups, government, academia, and professional and scientific societies. The report, open-quotes A National Water Agenda for the 21st Centuryclose quotes, is a result of work begun in 1989. It recommends an approach to water quality that emphasizes pollution prevention, increased individual and collective responsibility for protecting water resources, and reorienting water resource programs and institutions along natural, rather than political, watershed boundaries. It includes 85 specific recommendations, many of which are to be implemented locally. The Natural Resources Defense Council (NRDC; Washington) open-quotes wholeheartedly endorses not only the specific solutions offered today but the process by which these proposals were reached,close quotes says Robert W. Adler, NRDC senior attorney and vice chairman of Water Quality 2000. John B. Coleman, corporate environmental affairs manager for Du Pont and a member of the groups's steering committee, says open-quotes Du Pont and the other industry members of Water Quality 2000 are committedclose quotes to working to make continuous improvements

  3. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  4. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  5. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  6. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Science.gov (United States)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  7. NQAR: Network Quality Aware Routing in Error-Prone Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jaewon Choi

    2010-01-01

    Full Text Available We propose a network quality aware routing (NQAR mechanism to provide an enabling method of the delay-sensitive data delivery over error-prone wireless sensor networks. Unlike the existing routing methods that select routes with the shortest arrival latency or the minimum hop count, the proposed scheme adaptively selects the route based on the network qualities including link errors and collisions with minimum additional complexity. It is designed to avoid the paths with potential noise and collision that may cause many non-deterministic backoffs and retransmissions. We propose a generic framework to select a minimum cost route that takes the packet loss rate and collision history into account. NQAR uses a data centric approach to estimate a single-hop delay based on processing time, propagation delay, packet loss rate, number of backoffs, and the retransmission timeout between two neighboring nodes. This enables a source node to choose the shortest expected end-to-end delay path to send a delay-sensitive data. The experiment results show that NQAR reduces the end-to-end transfer delay up to approximately 50% in comparison with the latency-based directed diffusion and the hop count-based directed diffusion under the error-prone network environments. Moreover, NQAR shows better performance than those routing methods in terms of jitter, reachability, and network lifetime.

  8. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Simultaneous optimization of water and heat exchange networks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)

    2014-04-15

    This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.

  10. water quality assessment of underground and surface water ...

    African Journals Online (AJOL)

    Dr Osondu

    Water quality assessment in the Ethiopian highlands is crucial owing to increasing ... and provide information for formulating appropriate framework for an integrated ... with four seasons (rainy, dry period, small rains ..... treatment. Annual conference proceedings, American Water Works ... Towns' water supply and sanitation.

  11. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  12. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Science.gov (United States)

    2011-03-23

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware... or ``Commission'') approved amendments to its Water Quality Regulations, Water Code and Comprehensive...

  13. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  14. E-Services quality assessment framework for collaborative networks

    Science.gov (United States)

    Stegaru, Georgiana; Danila, Cristian; Sacala, Ioan Stefan; Moisescu, Mihnea; Mihai Stanescu, Aurelian

    2015-08-01

    In a globalised networked economy, collaborative networks (CNs) are formed to take advantage of new business opportunities. Collaboration involves shared resources and capabilities, such as e-Services that can be dynamically composed to automate CN participants' business processes. Quality is essential for the success of business process automation. Current approaches mostly focus on quality of service (QoS)-based service selection and ranking algorithms, overlooking the process of service composition which requires interoperable, adaptable and secure e-Services to ensure seamless collaboration, data confidentiality and integrity. Lack of assessment of these quality attributes can result in e-Service composition failure. The quality of e-Service composition relies on the quality of each e-Service and on the quality of the composition process. Therefore, there is the need for a framework that addresses quality from both views: product and process. We propose a quality of e-Service composition (QoESC) framework for quality assessment of e-Service composition for CNs which comprises of a quality model for e-Service evaluation and guidelines for quality of e-Service composition process. We implemented a prototype considering a simplified telemedicine use case which involves a CN in e-Healthcare domain. To validate the proposed quality-driven framework, we analysed service composition reliability with and without using the proposed framework.

  15. Low-flow water-quality characterization of the Gore Creek watershed, upper Colorado River basin, Colorado, August 1996

    Science.gov (United States)

    Wynn, Kirby H.; Spahr, Norman E.

    1998-01-01

    The Upper Colorado River Basin (UCOL) is one of 59 National Water-Quality Assessment (NAWQA) study units designed to assess the status and trends of the Nation?s water quality (Leahy and others, 1990). The UCOL study unit began operation in 1994, and surface-water-quality data collection at a network of 14 sites began in October 1995 (Apodaca and others, 1996; Spahr and others, 1996). Gore Creek, which flows through Vail, Colorado, originates in pristine alpine headwaters and is designated a gold-medal trout fishery. The creek drains an area of about 102 square miles and is a tributary to the Eagle River. Gore Creek at the mouth near Minturn (site 13 in fig. 1) is one of the 14 sites in the UCOL network. This site was selected to evaluate water quality resulting from urban development and recreational land use. The Gore Creek watershed has undergone rapid land-use changes since the 1960?s as the Vail area shifted from traditional mountain ranchlands to a four-season resort community. Residential, recreational, commercial, and transportation development continues near Gore Creek and its tributaries to support the increasing permanent and tourist population of the area. Interstate 70 runs through the watershed from Vail Pass near site 14, along the eastern side of Black Gore Creek, and along the northern side of the main stem of Gore Creek to the mouth of the watershed (fig. 1). A major local concern is how increasing urbanization/recreation affects the water quality, gold-medal trout fishery, and aesthetic values of Gore Creek. An evaluation of the spatial characteristics of water quality in the watershed upstream from site 13 at the mouth of Gore Creek (fig. 1) can provide local water and land managers with information necessary to establish water policy and make land-use planning decisions to maintain or improve water quality. Historical data collected at the mouth of Gore Creek provide information about water quality resulting from land use, but a synoptic

  16. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  17. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks.

    Science.gov (United States)

    Montoya-Pachongo, Carolina; Douterelo, Isabel; Noakes, Catherine; Camargo-Valero, Miller Alonso; Sleigh, Andrew; Escobar-Rivera, Juan-Carlos; Torres-Lozada, Patricia

    2018-03-01

    Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  19. Columbia River water quality monitoring

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Waste water from Hanford activities is discharged at eight points along the Hanford reach of the Columbia River. These discharges consist of backwash water from water intake screens, cooling water, river bank springs, water storage tank overflow, and fish laboratory waste water. Each discharge point is identified in an existing National Pollutant Discharge Elimination System (NPDES) permit issued by the EPA. Effluents from each of these outfalls are routinely monitored and reported by the operating contractors as required by their NPDES permits. Measurements of several Columbia River water quality parameters were conducted routinely during 1982 both upstream and downstream of the Hanford Site to monitor any effects on the river that may be attributable to Hanford discharges and to determine compliance with the Class A designation requirements. The measurements indicated that Hanford operations had a minimal, if any, impact on the quality of the Columbia River water

  20. Bottled Water: United States Consumers and Their Perceptions of Water Quality

    OpenAIRE

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L.

    2011-01-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report...

  1. Biofilm in drinking water networks

    International Nuclear Information System (INIS)

    Cristiani, Pietrangela

    2005-01-01

    Bacterial growth in drinking waters is today controlled adding small and non toxic quantities of sanitising products. An innovative electrochemical biofilm monitoring system, already successfully applied in industrial waters, could be confirmed as an effective diagnostic tool of water quality also for drinking distributions systems [it

  2. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  3. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  4. Application of Water Quality and Ecology Indices of Benthic Macroinvertebrate to Evaluate Water Quality of Tertiary Irrigation in Malang District

    Directory of Open Access Journals (Sweden)

    Desi Kartikasari

    2013-12-01

    Full Text Available This research aims to determine the water quality of tertiary irrigation in several subdistricts in Malang, namely Kepanjen, Karangploso, and Tumpang. The water quality depends on the water quality indices (National Sanitation Foundation’s-NSF Indices and O’Connor’s Indices based on variables TSS, TDS, pH, DO, and Nitrate concentrate and ecological indices of benthic macroinvertebrate (Diversity Indices Shannon-Wiener, Hilsenhof Biotic Indices-HBI, Average Score per Taxon-ASPT which is calculated by Biological Monitoring Working Party-BMWP, Ephemeroptera Indices, Plecoptera, Trichoptera-EPT. Observation of the physico-chemical water quality and benthic macroinvertebrate on May 2012 to April 2013. The sampling in each subdistrict was done at two selected stations in tertiary irrigation channel with three plot at each station. The data of physico-chemical quality of water were used to calculate the water quality indices, while the benthic macroinvertebrate data were used to calculate the ecological indices. The research findings showed that 27 taxa of benthic macroinvertebrates belong 10 classes were found in the three subdistrict. The pH, DO, Nitrate, TSS and TDS in six tertiary irrigation channels in Malang still met the water quality standards based on Government Regulation No. 82 of 2001 on Management of Water Quality and Water Pollution Control Class III. Based on NSF-WQI indices and O'Connor's Indices, water qualities in these irrigation channels were categorized into medium or moderate (yellow to good (green category. However, based on benthic macroinvertebrate communities which was used to determine the HBI, the water quality in the irrigation channels were categorized into the fair category (fairly significant organic pollution to fairly poor (significant organic pollution, while based on the value of ASPT, the water were categorized into probable moderate pollution to probable severe pollution. The irrigation water which was

  5. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    Full Text Available Introduction: Evaluations show the necessity of using optimization models in order to determine optimal allocation of water in different water conditions. Its use can be proposed according to developed model abilities in this study in order to optimize water productivity and provide sustainable management and development of water resources over irrigation and drainage networks. Basic needs of the earth growing population and limitation of water and soil resources remindnecessity of optimal use of resources. World’s more than 280 million hectare lands are covered by irrigation networks (Khalkhali et al., 2006. The efficiency of most projects is between 30-50 percent and studies show that performance of most irrigation and drainage networks is not desirable and they have not achieved their aims. Hirich et al. (2014 Used deficit irrigation to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season 2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of a crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of the full irrigation during the vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity. Moghaddasi et al. (2010 worked examines and compares this approach with that based on the optimization method to manage agricultural water demand during drought to minimize damage. The results show that the optimization method resulted in 42% more income for the agricultural sector using the

  6. Water Quality Management of Beijing in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At present, Beijing's water resources are insufficient and will become the limiting factor for sustainable development for the city in the near future. Although efforts have been made to control pollution, water quality degradation has occurred in some of the important surface water supplies, aggravating the water resource shortage. At present, approximately three quarters of the city's wastewater is discharged untreated into the urban river system, resulting in serious pollution and negatively influencing the urban landscape and quality of daily life. To counteract these measures, the city has implemented a comprehensive "Water Quality Management Plan" for the region, encompassing water pollution control, prevention of water body degradation, and improved water quality.The construction of municipal wastewater treatment plants is recognised as fundamental to controlling water pollution, and full secondary treatment is planned to be in place by the year 2015. Significant work is also required to expand the service area of the municipal sewage system and to upgrade and renovate the older sewer systems. The limitation on available water resources has also seen the emphasis shift to low water using industries and improved water conservation. Whilst industrial output has increased steadily over the past 10-15 years at around 10% per annum, industrial water usage has remained relatively constant. Part of the city's water quality management plan has been to introduce a strict discharge permit system, encouraging many industries to install on-site treatment facilities.

  7. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Science.gov (United States)

    2012-11-29

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-OW-2011-0466; FRL 9756-2] 2012 Recreational Water Quality... Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304(a) of the Clean Water Act (CWA), the Environmental Protection Agency (EPA) is announcing the availability of the 2012 Recreational Water Quality...

  8. Evolution of the global virtual water trade network.

    Science.gov (United States)

    Dalin, Carole; Konar, Megan; Hanasaki, Naota; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-04-17

    Global freshwater resources are under increasing pressure from economic development, population growth, and climate change. The international trade of water-intensive products (e.g., agricultural commodities) or virtual water trade has been suggested as a way to save water globally. We focus on the virtual water trade network associated with international food trade built with annual trade data and annual modeled virtual water content. The evolution of this network from 1986 to 2007 is analyzed and linked to trade policies, socioeconomic circumstances, and agricultural efficiency. We find that the number of trade connections and the volume of water associated with global food trade more than doubled in 22 years. Despite this growth, constant organizational features were observed in the network. However, both regional and national virtual water trade patterns significantly changed. Indeed, Asia increased its virtual water imports by more than 170%, switching from North America to South America as its main partner, whereas North America oriented to a growing intraregional trade. A dramatic rise in China's virtual water imports is associated with its increased soy imports after a domestic policy shift in 2000. Significantly, this shift has led the global soy market to save water on a global scale, but it also relies on expanding soy production in Brazil, which contributes to deforestation in the Amazon. We find that the international food trade has led to enhanced savings in global water resources over time, indicating its growing efficiency in terms of global water use.

  9. SATWG networked quality function deployment

    Science.gov (United States)

    Brown, Don

    1992-01-01

    The initiative of this work is to develop a cooperative process for continual evolution of an integrated, time phased avionics technology plan that involves customers, technologists, developers, and managers. This will be accomplished by demonstrating a computer network technology to augment the Quality Function Deployment (QFD). All results are presented in viewgraph format.

  10. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  11. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  12. Evaluating the electricity intensity of evolving water supply mixes: the case of California’s water network

    Science.gov (United States)

    Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad

    2017-11-01

    Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water-energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m-3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water-energy parameters.

  13. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  14. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  15. Hydraulic Network Modelling of Small Community Water Distribution ...

    African Journals Online (AJOL)

    Prof Anyata

    community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using. WaterCAD ..... Table 1: Criteria Relating Population to Water Demand (NWSP, 2000) ..... timely manner ... Department, Middle East Technical.

  16. Agricultural drainage water quality

    International Nuclear Information System (INIS)

    Madani, A.; Gordon, R.

    2002-01-01

    'Full text:' Agricultural drainage systems have been identified as potential contributors of non-point source pollution. Two of the major concerns have been with nitrate-nitrogen (NO3 - -N) concentrations and bacteria levels exceeding the Maximum Acceptable Concentration in drainage water. Heightened public awareness of environmental issues has led to greater pressure to maintain the environmental quality of water systems. In an ongoing field study, three experiment sites, each with own soil properties and characteristics, are divided into drainage plots and being monitored for NO3 - -N and fecal coliforms contamination. The first site is being used to determine the impact of the rate of manure application on subsurface drainage water quality. The second site is being used to determine the difference between hog manure and inorganic fertilizer in relation to fecal coliforms and NO3-N leaching losses under a carrot rotation system. The third site examines the effect of timing of manure application on water quality, and is the only site equipped with a surface drainage system, as well as a subsurface drainage system. Each of the drains from these fields lead to heated outflow buildings to allow for year-round measurements of flow rates and water samples. Tipping buckets wired to data-loggers record the outflow from each outlet pipe on an hourly basis. Water samples, collected from the flowing drains, are analyzed for NO3 - -N concentrations using the colorimetric method, and fecal coliforms using the Most Probable Number (MPN) method. Based on this information, we will be able better positioned to assess agricultural impacts on water resources which will help towards the development on industry accepted farming practices. (author)

  17. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    Science.gov (United States)

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  18. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Directory of Open Access Journals (Sweden)

    Jessica C. Wedgworth

    2014-07-01

    Full Text Available Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure and general aesthetic characteristics (taste, odor and color, providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets and as-delivered from the distribution network (from outside flame-sterilized taps, if available, where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color. Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts.

  19. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Science.gov (United States)

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  20. Experiences and recommendations in deploying a real-time, water quality monitoring system

    Science.gov (United States)

    O'Flynn, B.; Regan, F.; Lawlor, A.; Wallace, J.; Torres, J.; O'Mathuna, C.

    2010-12-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems--these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data points

  1. Experiences and recommendations in deploying a real-time, water quality monitoring system

    International Nuclear Information System (INIS)

    O'Flynn, B; O'Mathuna, C; Regan, F; Lawlor, A; Wallace, J; Torres, J

    2010-01-01

    Monitoring of water quality at a river basin level to meet the requirements of the Water Framework Directive (WFD) using conventional sampling and laboratory-based techniques poses a significant financial burden. Wireless sensing systems offer the potential to reduce these costs considerably, as well as provide more useful, continuous monitoring capabilities by giving an accurate idea of the changing environmental and water quality in real time. It is unlikely that the traditional spot/grab sampling will provide a reasonable estimate of the true maximum and/or mean concentration for a particular physicochemical variable in a water body with marked temporal variability. When persistent fluctuations occur, it is likely only to be detected through continuous measurements, which have the capability of detecting sporadic peaks of concentration. Thus, in situ sensors capable of continuous sampling of parameters required under the WFD would therefore provide more up-to-date information, cut monitoring costs and provide better coverage representing long-term trends in fluctuations of pollutant concentrations. DEPLOY is a technology demonstration project, which began planning and station selection and design in August 2008 aiming to show how state-of-the-art technology could be implemented for cost-effective, continuous and real-time monitoring of a river catchment. The DEPLOY project is seen as an important building block in the realization of a wide area autonomous network of sensors capable of monitoring the spatial and temporal distribution of important water quality and environmental target parameters. The demonstration sites chosen are based in the River Lee, which flows through Ireland's second largest city, Cork, and were designed to include monitoring stations in five zones considered typical of significant river systems-–these monitor water quality parameters such as pH, temperature, depth, conductivity, turbidity and dissolved oxygen. Over one million data

  2. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Science.gov (United States)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  3. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  4. Water quality for the year 2000

    International Nuclear Information System (INIS)

    Newman, A.

    1991-01-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings

  5. Quality status of bottled water brands in Pakistan

    International Nuclear Information System (INIS)

    Kahlown, M. A.; Tahir, M.A.

    2005-01-01

    The (PCRWR) has carried out a study to evaluate the quality of mineral water brands available in the market owing to demand of general public and consumer associations. Twenty one brands of bottled water were collected from Islamabad and Rawalpindi. Each water sample was analyzed for 24 aesthetic, physico-chemical and bacteriological water quality parameters by adopting standard analytical methods. It was observed that only 10 out of 21 brands (47.62%) were fit for drinking purpose. The remaining eleven brands (52.38%), including one imported brand, were found unsafe for human consumption. It was also concluded that present situation of water quality of bottled water is due to lack of legislation for water quality control. Hence there is a dire need for a legal organization to monitor and regulate the quality issues of bottled water industry. (author)

  6. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Science.gov (United States)

    2010-07-15

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware... hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality...

  7. GKI water quality studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  8. Water and water quality management in the cholistan desert

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Chaudhry, M.A.

    2005-01-01

    Water scarcity is the main problem in Cholistan desert. Rainfall is scanty and sporadic and groundwater is saline in most of the area. Rainwater is collected in man made small storages, locally called tobas during rainy season for human and livestock consumption. These tobas usually retain rainwater for three to four months at the maximum, due to small storage capacity and unfavorable location. After the tobas become dry, people use saline groundwater for human and livestock consumption where marginal quality groundwater is available. In complete absence of water they migrate towards canal irrigated areas till the next rains. During migration humans and livestock suffer from hunger, thirst and diseases. In order to overcome this problem Pakistan Council of Research in Water Resources (PCRWR) has introduced improved designs of tobas. The PCRWR is collecting more than 13.0 million cubic meter rainwater annually from only ninety hectare catchment area. As a result, water is available for drinking of human and livestock population as well as to wild life through out the year for the village of Dingarh in Cholistan desert. However, water collected in these tobas is usually muddy and full of impurities. To provide good quality drinking water to the residents of Cholistan, PCRWR has launched a Project under which required quantity of drinkable water will be provided at more than seventy locations by rainwater harvesting, pumping of good and marginal quality groundwater and desalination of moderately saline water through Reverse Osmosis Plants. After the completion of project, more then 380 million gallons of fresh rainwater and more than 1300 million gallons of good and marginal quality groundwater will be available annually. Intervention to collect the silt before reaching to the tobas are also introduced, low cost filter plants are designed and constructed on the tobas for purification of water. (author)

  9. Hydrological and Water Quality Characteristics of Rivers Feeding ...

    African Journals Online (AJOL)

    FDC analysis showed that over 80% of the time, all rivers in the study area would not meet the target community's water demand, without the dams in place. Water quality assessments show biological contamination as the major water quality problem. Significant seasonal variation in water quality is evident, with the dry ...

  10. The Economic Value of Changes in Water Quality

    DEFF Research Database (Denmark)

    Jensen, Anne Kejser

    Water quality is from both a European and Danish perspective challenged by private use of the resource. The public good characteristics of the resource require that regulation should internalize the non-market values of water quality, in order to reach an optimal level from a welfare economic...... perspective. Valuation using stated preference techniques to value changes in ecosystem services has been widely used to estimate values of water quality. However, heterogeneity in values exists across different groups in the population. The objective of this PhD-thesis is to explore two different kinds...... of preference heterogeneity, when valuing changes in water quality. The PhD thesis consists of four papers all related to heterogeneity in the public preferences for water quality improvements. Papers referred to as 1, 2 and 3 are based on a discrete choice experiment (DCE) on water quality improvements...

  11. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  12. Water Pollution Detection Based on Hypothesis Testing in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xu Luo

    2017-01-01

    Full Text Available Water pollution detection is of great importance in water conservation. In this paper, the water pollution detection problems of the network and of the node in sensor networks are discussed. The detection problems in both cases of the distribution of the monitoring noise being normal and nonnormal are considered. The pollution detection problems are analyzed based on hypothesis testing theory firstly; then, the specific detection algorithms are given. Finally, two implementation examples are given to illustrate how the proposed detection methods are used in the water pollution detection in sensor networks and prove the effectiveness of the proposed detection methods.

  13. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    Science.gov (United States)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  15. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  16. Mechanisms affecting water quality in an intermittent piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (water was delivered with a chlorine residual and at pressures >17 psi.

  17. Scaling-Laws of Flow Entropy with Topological Metrics of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Giovanni Francesco Santonastaso

    2018-01-01

    Full Text Available Robustness of water distribution networks is related to their connectivity and topological structure, which also affect their reliability. Flow entropy, based on Shannon’s informational entropy, has been proposed as a measure of network redundancy and adopted as a proxy of reliability in optimal network design procedures. In this paper, the scaling properties of flow entropy of water distribution networks with their size and other topological metrics are studied. To such aim, flow entropy, maximum flow entropy, link density and average path length have been evaluated for a set of 22 networks, both real and synthetic, with different size and topology. The obtained results led to identify suitable scaling laws of flow entropy and maximum flow entropy with water distribution network size, in the form of power–laws. The obtained relationships allow comparing the flow entropy of water distribution networks with different size, and provide an easy tool to define the maximum achievable entropy of a specific water distribution network. An example of application of the obtained relationships to the design of a water distribution network is provided, showing how, with a constrained multi-objective optimization procedure, a tradeoff between network cost and robustness is easily identified.

  18. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  19. 40 CFR 240.204 - Water quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  20. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  1. Water-quality assessment of the Cambrian-Ordovician aquifer system in the northern Midwest, United States

    Science.gov (United States)

    Wilson, John T.

    2012-01-01

    This report provides a regional assessment of groundwater quality of the Cambrian-Ordovician aquifer system, based primarily on raw water samples collected by the NAWQA Program during 1995 through 2007. The NAWQA Program has published findings in local study-unit reports encompassing parts of the Cambrian-Ordovician aquifer system. Data collected from the aquifer system were used in national synthesis reports on selected topics such as specific water-quality constituent classes, well type, or aquifer material; however, a synthesis of groundwater quality at the principal aquifer scale has not been completed and is therefore the major purpose of this report. Water samples collected by the NAWQA Program were analyzed for various classes of characteristics including physical properties, major ions, trace elements, nutrients and dissolved organic carbon, radionuclides (tritium, radon, and radium), pesticides, and volatile organic compounds. Subsequent sections of this report provide discussions on these classes of characteristics. The assessment objectives of this report are to (1) summarize constituent concentrations and compare them to human-health benchmarks and non-health guidelines; (2) determine the geographic distribution of constituent concentrations and relate them to various factors such as confining conditions, well type, land use, and groundwater age; and (3) evaluate near-decadal-scale changes in nitrate concentrations and pesticide detections. The most recent sample collected from each well by the NAWQA Program was used for most analyses. Near-decadal-scale changes in nitrate concentrations and pesticide detections were evaluated for selected well networks by using the most recent sample from each well and comparing it to the results from a sample collected 7 or 11 years earlier. Because some of the NAWQA well networks provide a limited areal coverage of the aquifer system, data for raw water samples from other USGS sources and state agencies were included

  2. Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks

    CERN Document Server

    Gao, Zhong-Ke; Wang, Wen-Xu

    2014-01-01

    Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...

  3. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  4. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  5. Nonintrusive Method Based on Neural Networks for Video Quality of Experience Assessment

    Directory of Open Access Journals (Sweden)

    Diego José Luis Botia Valderrama

    2016-01-01

    Full Text Available The measurement and evaluation of the QoE (Quality of Experience have become one of the main focuses in the telecommunications to provide services with the expected quality for their users. However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks and the RNNs (Random Neural Networks is applied to evaluate the subjective quality metrics MOS (Mean Opinion Score and the PSNR (Peak Signal Noise Ratio, SSIM (Structural Similarity Index Metric, VQM (Video Quality Metric, and QIBF (Quality Index Based Frame. The proposed model allows establishing the QoS (Quality of Service based in the strategy Diffserv. The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error, and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.

  6. Marine water-quality management in South- Africa

    CSIR Research Space (South Africa)

    Taljaard, Susan

    1995-01-01

    Full Text Available In South Africa the ultimate goal in water quality management is to keep the water resources suitable for all ''beneficial uses''. Beneficial uses provide a basis for the derivation of water quality guidelines, which, for South Africa, are defined...

  7. Overview of the National Water-Quality Assessment Program

    Science.gov (United States)

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  8. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    Science.gov (United States)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  9. Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China.

    Science.gov (United States)

    Wang, Yi; Zheng, Tong; Zhao, Ying; Jiang, Jiping; Wang, Yuanyuan; Guo, Liang; Wang, Peng

    2013-12-01

    In this paper, bootstrapped wavelet neural network (BWNN) was developed for predicting monthly ammonia nitrogen (NH(4+)-N) and dissolved oxygen (DO) in Harbin region, northeast of China. The Morlet wavelet basis function (WBF) was employed as a nonlinear activation function of traditional three-layer artificial neural network (ANN) structure. Prediction intervals (PI) were constructed according to the calculated uncertainties from the model structure and data noise. Performance of BWNN model was also compared with four different models: traditional ANN, WNN, bootstrapped ANN, and autoregressive integrated moving average model. The results showed that BWNN could handle the severely fluctuating and non-seasonal time series data of water quality, and it produced better performance than the other four models. The uncertainty from data noise was smaller than that from the model structure for NH(4+)-N; conversely, the uncertainty from data noise was larger for DO series. Besides, total uncertainties in the low-flow period were the biggest due to complicated processes during the freeze-up period of the Songhua River. Further, a data missing-refilling scheme was designed, and better performances of BWNNs for structural data missing (SD) were observed than incidental data missing (ID). For both ID and SD, temporal method was satisfactory for filling NH(4+)-N series, whereas spatial imputation was fit for DO series. This filling BWNN forecasting method was applied to other areas suffering "real" data missing, and the results demonstrated its efficiency. Thus, the methods introduced here will help managers to obtain informed decisions.

  10. COMPARISON OF WATER RATES IAP RISK INDICES AND THE QUALITY OF DRINKING WATER IRCA USED FOR DETERMINING THE QUALITY OF DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Javier Mauricio González Díaz

    2010-05-01

    Full Text Available This work discusses the results of a technical and operative diagnosis of the urban system of aqueduct of the municipality of Villapinzón. Water quality and public service characteristics were determined assessed against the legal principles of continuity, quality and coverage of the domiciliary public service law. Drinking water quality was evaluated according to the methodology established by Resolution 2115 de 2007 of the Ministerial de la Protection Social de Colombia. In addition, a new methodology is suggested and the calculated indexes are compared to those determined by resolution 2115 de 2007. An analysis of the results indicates the proposed methodology is more reliable than the current methodology for determining water quality criteria.

  11. High-Quality Ultra-Compact Grid Layout of Grouped Networks.

    Science.gov (United States)

    Yoghourdjian, Vahan; Dwyer, Tim; Gange, Graeme; Kieffer, Steve; Klein, Karsten; Marriott, Kim

    2016-01-01

    Prior research into network layout has focused on fast heuristic techniques for layout of large networks, or complex multi-stage pipelines for higher quality layout of small graphs. Improvements to these pipeline techniques, especially for orthogonal-style layout, are difficult and practical results have been slight in recent years. Yet, as discussed in this paper, there remain significant issues in the quality of the layouts produced by these techniques, even for quite small networks. This is especially true when layout with additional grouping constraints is required. The first contribution of this paper is to investigate an ultra-compact, grid-like network layout aesthetic that is motivated by the grid arrangements that are used almost universally by designers in typographical layout. Since the time when these heuristic and pipeline-based graph-layout methods were conceived, generic technologies (MIP, CP and SAT) for solving combinatorial and mixed-integer optimization problems have improved massively. The second contribution of this paper is to reassess whether these techniques can be used for high-quality layout of small graphs. While they are fast enough for graphs of up to 50 nodes we found these methods do not scale up. Our third contribution is a large-neighborhood search meta-heuristic approach that is scalable to larger networks.

  12. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    Science.gov (United States)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  13. Encryption for confidentiality of the network and influence of this to the quality of streaming video through network

    Science.gov (United States)

    Sevcik, L.; Uhrin, D.; Frnda, J.; Voznak, M.; Toral-Cruz, Homer; Mikulec, M.; Jakovlev, Sergej

    2015-05-01

    Nowadays, the interest in real-time services, like audio and video, is growing. These services are mostly transmitted over packet networks, which are based on IP protocol. It leads to analyses of these services and their behavior in such networks which are becoming more frequent. Video has become the significant part of all data traffic sent via IP networks. In general, a video service is one-way service (except e.g. video calls) and network delay is not such an important factor as in a voice service. Dominant network factors that influence the final video quality are especially packet loss, delay variation and the capacity of the transmission links. Analysis of video quality concentrates on the resistance of video codecs to packet loss in the network, which causes artefacts in the video. IPsec provides confidentiality in terms of safety, integrity and non-repudiation (using HMAC-SHA1 and 3DES encryption for confidentiality and AES in CBC mode) with an authentication header and ESP (Encapsulating Security Payload). The paper brings a detailed view of the performance of video streaming over an IP-based network. We compared quality of video with packet loss and encryption as well. The measured results demonstrated the relation between the video codec type and bitrate to the final video quality.

  14. Differentiating Agar wood Oil Quality Using Artificial Neural Network

    International Nuclear Information System (INIS)

    Nurlaila Ismail; Nor Azah Mohd Ali; Mailina Jamil; Saiful Nizam Tajuddin; Mohd Nasir Taib

    2013-01-01

    Agar wood oil is well known as expensive oil extracted from the resinous of fragrant heartwood. The oil is getting high demand in the market especially from the Middle East countries, China and Japan because of its unique odor. As part of an on-going research in grading the agar wood oil quality, the application of Artificial Neural Network (ANN) is proposed in this study to analyze agar wood oil quality using its chemical profiles. The work involves of selected agar wood oil from low and high quality, the extraction of chemical compounds using GC-MS and Z-score to identify of the significant compounds as input to the network. The ANN programming algorithm was developed and computed automatically via Matlab software version R2010a. Back-propagation training algorithm and sigmoid transfer function were used to optimize the parameters in the training network. The result obtained showed the capability of ANN in analyzing the agar wood oil quality hence beneficial for the further application such as grading and classification for agar wood oil. (author)

  15. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Science.gov (United States)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  16. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    Directory of Open Access Journals (Sweden)

    Kordach A.

    2018-01-01

    Full Text Available The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS, and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  17. Monitoring and Assessment of Youshui River Water Quality in Youyang

    Science.gov (United States)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  18. 40 CFR 227.31 - Applicable marine water quality criteria.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  19. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  20. MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control

    Science.gov (United States)

    Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming

    2017-09-01

    Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.

  1. Social representations of drinking water: subsidies for water quality surveillance programmes.

    Science.gov (United States)

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  2. Recognition of power quality events by using multiwavelet-based neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kaewarsa, Suriya; Attakitmongcol, Kitti; Kulworawanichpong, Thanatchai [School of Electrical Engineering, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima 30000 (Thailand)

    2008-05-15

    Recognition of power quality events by analyzing the voltage and current waveform disturbances is a very important task for the power system monitoring. This paper presents a novel approach for the recognition of power quality disturbances using multiwavelet transform and neural networks. The proposed method employs the multiwavelet transform using multiresolution signal decomposition techniques working together with multiple neural networks using a learning vector quantization network as a powerful classifier. Various transient events are tested, such as voltage sag, swell, interruption, notching, impulsive transient, and harmonic distortion show that the classifier can detect and classify different power quality signal types efficiency. (author)

  3. Optimizing the Energy and Throughput of a Water-Quality Monitoring System.

    Science.gov (United States)

    Olatinwo, Segun O; Joubert, Trudi-H

    2018-04-13

    This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  4. Guide to federal water quality programs and information: A guide with computer software developed by the interagency work group on water quality

    International Nuclear Information System (INIS)

    1993-02-01

    The publication makes key Federal information on water quality available to environmental analysts. The Guide includes information on (1) underlying demographic pressures; (2) the use of land, water, and resources; (3) pollutant loadings; (4) ambient water quality; (5) other effects of water pollution; and (6) a listing of programs established to preserve, protect and restore water quality

  5. Kaolin Quality Prediction from Samples: A Bayesian Network Approach

    International Nuclear Information System (INIS)

    Rivas, T.; Taboada, J.; Ordonez, C.; Matias, J. M.

    2009-01-01

    We describe the results of an expert system applied to the evaluation of samples of kaolin for industrial use in paper or ceramic manufacture. Different machine learning techniques - classification trees, support vector machines and Bayesian networks - were applied with the aim of evaluating and comparing their interpretability and prediction capacities. The predictive capacity of these models for the samples analyzed was highly satisfactory, both for ceramic quality and paper quality. However, Bayesian networks generally proved to be the most useful technique for our study, as this approach combines good predictive capacity with excellent interpretability of the kaolin quality structure, as it graphically represents relationships between variables and facilitates what-if analyses.

  6. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Science.gov (United States)

    2013-09-04

    ... 131 Water Quality Standards Regulatory Clarifications; Proposed Rule #0;#0;Federal Register / Vol. 78... AGENCY 40 CFR Part 131 [EPA-HQ-OW-2010-0606; FRL-9839-7] RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards (WQS...

  7. 40 CFR 35.2023 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  8. Network-based production quality control

    Science.gov (United States)

    Kwon, Yongjin; Tseng, Bill; Chiou, Richard

    2007-09-01

    This study investigates the feasibility of remote quality control using a host of advanced automation equipment with Internet accessibility. Recent emphasis on product quality and reduction of waste stems from the dynamic, globalized and customer-driven market, which brings opportunities and threats to companies, depending on the response speed and production strategies. The current trends in industry also include a wide spread of distributed manufacturing systems, where design, production, and management facilities are geographically dispersed. This situation mandates not only the accessibility to remotely located production equipment for monitoring and control, but efficient means of responding to changing environment to counter process variations and diverse customer demands. To compete under such an environment, companies are striving to achieve 100%, sensor-based, automated inspection for zero-defect manufacturing. In this study, the Internet-based quality control scheme is referred to as "E-Quality for Manufacturing" or "EQM" for short. By its definition, EQM refers to a holistic approach to design and to embed efficient quality control functions in the context of network integrated manufacturing systems. Such system let designers located far away from the production facility to monitor, control and adjust the quality inspection processes as production design evolves.

  9. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  10. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  11. Resource modelling for control: how hydrogeological modelling can support a water quality monitoring infrastructure

    Science.gov (United States)

    Scozzari, Andrea; Doveri, Marco

    2015-04-01

    The knowledge of the physical/chemical processes implied with the exploitation of water bodies for human consumption is an essential tool for the optimisation of the monitoring infrastructure. Due to their increasing importance in the context of human consumption (at least in the EU), this work focuses on groundwater resources. In the framework of drinkable water networks, the physical and data-driven modelling of transport phenomena in groundwater can help optimising the sensor network and validating the acquired data. This work proposes the combined usage of physical and data-driven modelling as a support to the design and maximisation of results from a network of distributed sensors. In particular, the validation of physico-chemical measurements and the detection of eventual anomalies by a set of continuous measurements take benefit from the knowledge of the domain from which water is abstracted, and its expected characteristics. Change-detection techniques based on non-specific sensors (presented by quite a large literature during the last two decades) have to deal with the classical issues of maximising correct detections and minimising false alarms, the latter of the two being the most typical problem to be faced, in the view of designing truly applicable monitoring systems. In this context, the definition of "anomaly" in terms of distance from an expected value or feature characterising the quality of water implies the definition of a suitable metric and the knowledge of the physical and chemical peculiarities of the natural domain from which water is exploited, with its implications in terms of characteristics of the water resource.

  12. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    Science.gov (United States)

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  13. Strategic Evaluation Tool for Surface Water Quality Management Remedies in Drinking Water Catchments

    Directory of Open Access Journals (Sweden)

    Huda Almaaofi

    2017-09-01

    Full Text Available Drinking water catchments (DWC are under pressure from point and nonpoint source pollution due to the growing human activities. This worldwide challenge is causing number of adverse effects, such as degradation in water quality, ecosystem health, and other economic and social pressures. Different evaluation tools have been developed to achieve sustainable and healthy drinking water catchments. However, a holistic and strategic framework is still required to adequately consider the uncertainty associated with feasible management remedies of surface water quality in drinking water catchments. A strategic framework was developed to adequately consider the uncertainty associated with management remedies for surface water quality in drinking water catchments. A Fuzzy Multiple Criteria Decision Analysis (FMCDA approach was embedded into a strategic decision support framework to evaluate and rank water quality remediation options within a typical fixed budget constraint faced by bulk water providers. The evaluation framework consists of four core aspects; namely, water quality, environmental, economic and social, and number of associated quantitative and qualitative criteria and sub-criteria. Final remediation strategy ranking was achieved through the application of the Euclidean Distance by the In-center of Centroids (EDIC.

  14. Sanitary risks related to the installation of hydroelectric turbines on drinking water networks; Hydroelectricite: les risques sanitaires pour l'adduction d'eau

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, A. [Agence Francaise de Securite Sanitaire des Aliments - AFSSA, DERNS - Unite d' Evaluation des Risques Lies a l' Eau - UERE, 94 - Maisons Alfort (France); Montiel, A.; Cabillic, P.J.; Fourrier, P.; Levi, Y.; Potelon, J.L.; Welte, B. [Comite d' Experts Specialise Eaux de l' AFSSA, 94 - Maisons Alfort (France); Fourrier, P. [Autorite de Surete Nucleaire 75 - Paris (France); Levi, Y. [Paris-11 Univ., Faculte de Pharmacie, Lab. Sante Publique Environnement, 91 - Orsay (France); Potelon, J.L. [Ecole des Hautes Etudes de Sante Publique - EHESP, 35 - Rennes (France); Welte, B. [Eau de Paris, 75 (France)

    2010-11-15

    With the notion of sustainable development gaining ground, practices aimed at saving water and energy are more and more frequent, particularly the installation of hydroelectric turbine on drinking water networks. It is essential in this case that the water quality should not be deteriorated, and the water supply for consumption and fire protection has to be prioritized over energy production. Thus, a sanitary risk assessment must be done and actions to control the described critical points have to be taken. The installation of a turbine is an additional risk whereas it is not necessary for drinking water production and distribution. As a consequence, a quality management system including the turbine and additional quality water monitoring should be carried out. (authors)

  15. Quality of Service Metrics in Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Snigdh, Itu; Gupta, Nisha

    2016-03-01

    Wireless ad hoc network is characterized by autonomous nodes communicating with each other by forming a multi hop radio network and maintaining connectivity in a decentralized manner. This paper presents a systematic approach to the interdependencies and the analogy of the various factors that affect and constrain the wireless sensor network. This article elaborates the quality of service parameters in terms of methods of deployment, coverage and connectivity which affect the lifetime of the network that have been addressed, till date by the different literatures. The analogy of the indispensable rudiments was discussed that are important factors to determine the varied quality of service achieved, yet have not been duly focused upon.

  16. Design and Optimization of Capacitated Supply Chain Networks Including Quality Measures

    Directory of Open Access Journals (Sweden)

    Krystel K. Castillo-Villar

    2014-01-01

    Full Text Available This paper presents (1 a novel capacitated model for supply chain network design which considers manufacturing, distribution, and quality costs (named SCND-COQ model and (2 five combinatorial optimization methods, based on nonlinear optimization, heuristic, and metaheuristic approaches, which are used to solve realistic instances of practical size. The SCND-COQ model is a mixed-integer nonlinear problem which can be used at a strategic planning level to design a supply chain network that maximizes the total profit subject to meeting an overall quality level of the final product at minimum costs. The SCND-COQ model computes the quality-related costs for the whole supply chain network considering the interdependencies among business entities. The effectiveness of the proposed solution approaches is shown using numerical experiments. These methods allow solving more realistic (capacitated supply chain network design problems including quality-related costs (inspections, rework, opportunity costs, and others within a reasonable computational time.

  17. Assessment of water quality of the Tisa River (Vojvodina, North Serbia for ten year period using Serbian water quality index (SWQI

    Directory of Open Access Journals (Sweden)

    Leščešen Igor

    2014-01-01

    Full Text Available The WQI method is most frequently used in expert and scientific research and basically it provides a mechanism for cumulative representation, numeric expression and defining a certain level of water quality. This paper aims to assess water quality of the Tisa River in Vojvodina (North Serbia for the 2003 - 2012 period. Serbian Water Quality Index (SWQI was used for assessment of the river water quality. WQI is expressed as a single value ranging from 0 to 100 (best quality derived from numerous physical, chemical, biological and microbiological parameters. The results of SWQI for the Tisa River were mainly rated as good. Also, in this study it is noticed a clear decrease in water quality during warmer period of the year. Also, this study shows that water quality along the Tisa River decreases slightly but steadily down- stream, from Martonoš to Titel station and all along the length of the river provides values that according to SWQI descriptive quality indicator has been defined as good (72-83. The main problem of SWQI used in this paper is that it does not involve parameters of heavy metals concentration.

  18. 40 CFR 35.2111 - Revised water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator has...

  19. A new tool for quality of multimedia estimation based on network behaviour

    Directory of Open Access Journals (Sweden)

    Jaroslav Frnda

    2016-03-01

    Full Text Available In this paper, we present a software tool capable of predicting the final quality of triple play services by using the most common assessment metrics. The quality of speech and video in network environment is a growing concern of all the internet service providers to carry the multimedia traffic without the excessive delays and losses, which degrade the quality of multimedia as it is perceived by the end users. Prediction mathematical model is based on results obtained from many performed testing scenarios simulating real behavior in the network. Based on the proposed model, speech or video quality is calculated with regard to policies applied for packet processing by routers and to the level of total network utilization. The application cannot only predict QoS parameters but also generate the source code of particular QoS policy setting according to the user interaction and apply the policy to the routers in the network. Contribution of the work consists of a new software tool enables network administrators and designers to improve and optimize network traffic efficiently.

  20. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  1. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  2. Voice Quality Estimation in Combined Radio-VoIP Networks for Dispatching Systems

    Directory of Open Access Journals (Sweden)

    Jiri Vodrazka

    2016-01-01

    Full Text Available The voice quality modelling assessment and planning field is deeply and widely theoretically and practically mastered for common voice communication systems, especially for the public fixed and mobile telephone networks including Next Generation Networks (NGN - internet protocol based networks. This article seeks to contribute voice quality modelling assessment and planning for dispatching communication systems based on Internet Protocol (IP and private radio networks. The network plan, correction in E-model calculation and default values for the model are presented and discussed.

  3. Water quality estimation method for primary coolant circuit

    International Nuclear Information System (INIS)

    Wada, Yoichi; Ibe, Hidefumi.

    1994-01-01

    The present invention is suitable to water quality diagnosis at each of the portions in a reactor upon hydrogen injection for preventing stress corrosion crackings (SCC) of a BWR type reactor. That is, a plurality of simulations are conducted how the water quality at each of the portions in the reactor is changed when hydrogen injection amount is changed depending on the design and operation conditions of the plant. The result of the calculation is stored in a memory device. A water quality distribution in a pressure vessel having a solution which agrees with a value actually measured by a water quality measuring device disposed at the outside of a reactor core is retrieved from the results of the calculation. If no agreeing solution can be found, water quality distribution containing the actually measured value is determined based on the result of the calculation by using interpolation. In the present invention, the result of the calculation obtained by the simulation and the actually measured value at the outside of the reactor core can be utilized, to map the distribution of reactor water ingredients on a screen, which can accurately estimate the water quality at the periphery of the reactor core on real time. As a result, an operational efficiency of a reactor which can control water quality upon hydrogen injection at an optimum condition. (I.S.)

  4. Water Quality Monitoring by Satellite

    Science.gov (United States)

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  5. Applications of Graph Spectral Techniques to Water Distribution Network Management

    Directory of Open Access Journals (Sweden)

    Armando di Nardo

    2018-01-01

    Full Text Available Cities depend on multiple heterogeneous, interconnected infrastructures to provide safe water to consumers. Given this complexity, efficient numerical techniques are needed to support optimal control and management of a water distribution network (WDN. This paper introduces a holistic analysis framework to support water utilities on the decision making process for an efficient supply management. The proposal is based on graph spectral techniques that take advantage of eigenvalues and eigenvectors properties of matrices that are associated with graphs. Instances of these matrices are the adjacency matrix and the Laplacian, among others. The interest for this application is to work on a graph that specifically represents a WDN. This is a complex network that is made by nodes corresponding to water sources and consumption points and links corresponding to pipes and valves. The aim is to face new challenges on urban water supply, ranging from computing approximations for network performance assessment to setting device positioning for efficient and automatic WDN division into district metered areas. It is consequently created a novel tool-set of graph spectral techniques adapted to improve main water management tasks and to simplify the identification of water losses through the definition of an optimal network partitioning. Two WDNs are used to analyze the proposed methodology. Firstly, the well-known network of C-Town is investigated for benchmarking of the proposed graph spectral framework. This allows for comparing the obtained results with others coming from previously proposed approaches in literature. The second case-study corresponds to an operational network. It shows the usefulness and optimality of the proposal to effectively manage a WDN.

  6. Real-Time Water Quality Management in the Grassland Water District

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanna, W. Mark; Hanlon, Jeremy S.; Burns, Josphine R.; Taylor, Christophe M.; Marciochi, Don; Lower, Scott; Woodruff, Veronica; Wright, Diane; Poole, Tim

    2004-12-10

    The purpose of the research project was to advance the concept of real-time water quality management in the San Joaquin Basin by developing an application to drainage of seasonal wetlands in the Grassland Water District. Real-time water quality management is defined as the coordination of reservoir releases, return flows and river diversions to improve water quality conditions in the San Joaquin River and ensure compliance with State water quality objectives. Real-time water quality management is achieved through information exchange and cooperation between shakeholders who contribute or withdraw flow and salt load to or from the San Joaquin River. This project complements a larger scale project that was undertaken by members of the Water Quality Subcommittee of the San Joaquin River Management Program (SJRMP) and which produced forecasts of flow, salt load and San Joaquin River assimilative capacity between 1999 and 2003. These forecasts can help those entities exporting salt load to the River to develop salt load targets as a mechanism for improving compliance with salinity objectives. The mass balance model developed by this project is the decision support tool that helps to establish these salt load targets. A second important outcome of this project was the development and application of a methodology for assessing potential impacts of real-time wetland salinity management. Drawdown schedules are typically tied to weather conditions and are optimized in traditional practices to maximize food sources for over-wintering wildfowl as well as providing a biological control (through germination temperature) of undesirable weeds that compete with the more proteinaceous moist soil plants such as swamp timothy, watergrass and smartweed. This methodology combines high resolution remote sensing, ground-truthing vegetation surveys using established survey protocols and soil salinity mapping using rapid, automated electromagnetic sensor technology. This survey methodology

  7. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  8. Water quality in the surficial aquifer near agricultural areas in the Delaware Coastal Plain, 2014

    Science.gov (United States)

    Fleming, Brandon J.; Mensch, Laura L.; Denver, Judith M.; Cruz, Roberto M.; Nardi, Mark R.

    2017-07-27

    The U.S. Geological Survey, in cooperation with the Delaware Department of Agriculture, developed a network of wells to monitor groundwater quality in the surficial aquifer of the Delaware Coastal Plain. Well-drained soils, a flat landscape, and accessible water in the Delaware Coastal Plain make for a productive agricultural setting. As such, agriculture is one of the largest industries in the State of Delaware. This setting enables the transport of chemicals from agriculture and other land uses to shallow groundwater. Efforts to mitigate nutrient transport to groundwater by the implementation of agricultural best management practices (BMPs) have been ongoing for several decades. To measure the effectiveness of BMPs on a regional scale, a network of 48 wells was designed to measure shallow groundwater quality (particularly nitrate) over time near agricultural land in the Delaware Coastal Plain. Water characteristics, major ions, nutrients, and dissolved gases were measured in groundwater samples collected from network wells during fall 2014. Wells were organized into three groups based on their geochemical similarity and these groups were used to describe nitrate and chloride concentrations and factors that affect the variability among the groups. The results from this study are intended to establish waterquality conditions in 2014 to enable comparison of future conditions and evaluate the effectiveness of agricultural BMPs on a regional scale.

  9. Purified water quality study

    International Nuclear Information System (INIS)

    Spinka, H.; Jackowski, P.

    2000-01-01

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals

  10. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    Science.gov (United States)

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  11. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  12. Water Pollution and Water Quality Assessment of Major Transboundary Rivers from Banat (Romania

    Directory of Open Access Journals (Sweden)

    Andreea-Mihaela Dunca

    2018-01-01

    Full Text Available This study focuses on water resources management and shows the need to enforce the existing international bilateral agreements and to implement the Water Framework Directive of the European Union in order to improve the water quantity and quality received by a downstream country of a common watershed, like Timiş-Bega hydrographical basin, shared by two countries (Romania and Serbia. The spatial trend of water quality index (WQI and its subindexes are important for determining the locations of major pollutant sources that contribute to water quality depletion in this basin. We compared the values of WQI obtained for 10 sections of the two most important rivers from Banat, which have a great importance for socioeconomic life in southwestern part of Romania and in northeastern part of Serbia. In order to assess the water quality, we calculated the WQI for a long period of time (2004–2014, taking into account the maximum, minimum, and the mean annual values of physical, chemical, and biological parameters (DO, pH, BOD5, temperature, total P, N-NO2−, and turbidity. This article highlights the importance of using the water quality index which has not been sufficiently explored in Romania and for transboundary rivers and which is very useful in improving rivers water quality.

  13. Geohydrology and water quality of the North Platte River alluvial aquifer, Garden County, Western Nebraska

    Science.gov (United States)

    Steele, Gregory V.; Cannia, James C.

    1995-01-01

    In 1993, a 3-year study was begun to describe the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The study's objectives are to evaluate the geohydrologic characteristics of the alluvial aquifer and to establish a network of observation wells for long-term monitoring of temporal variations and spatial distributions of nitrate and major-ion concentrations. Monitor wells were installed at 11 sites near Oshkosh. The geohydrology of the aquifer was characterized based on water-level measurements and two short-term aquifer tests. Bimonthly water samples were collected and analyzed for pH, specific conductivity, water temperature, dissolved oxygen, and nutrients that included dissolved nitrate. Concentrations of major ions were defined from analyses of semiannual water samples. Analyses of the geohydrologic and water-quality data indicate that the aquifer is vulnerable to nitrate contamination. These data also show that nitrate concentrations in ground water flowing into and out of the study area are less than the U.S. Environmental Protection Agency's Maximum Concentration Level of 10 milligrams per liter for drinking water. Ground water from Lost Creek Valley may be mixing with ground water in the North Platte River Valley, somewhat moderating nitrate concentrations near Oshkosh.

  14. Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen

    2013-09-01

    Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.

  15. Development of a Ground Water Data Portal for Interoperable Data Exchange within the U.S. National Ground Water Monitoring Network and Beyond

    Science.gov (United States)

    Booth, N. L.; Brodaric, B.; Lucido, J. M.; Kuo, I.; Boisvert, E.; Cunningham, W. L.

    2011-12-01

    The need for a national groundwater monitoring network within the United States is profound and has been recognized by organizations outside government as a major data gap for managing ground-water resources. Our country's communities, industries, agriculture, energy production and critical ecosystems rely on water being available in adequate quantity and suitable quality. To meet this need the Subcommittee on Ground Water, established by the Federal Advisory Committee on Water Information, created a National Ground Water Monitoring Network (NGWMN) envisioned as a voluntary, integrated system of data collection, management and reporting that will provide the data needed to address present and future ground-water management questions raised by Congress, Federal, State and Tribal agencies and the public. The NGWMN Data Portal is the means by which policy makers, academics and the public will be able to access ground water data through one seamless web-based application from disparate data sources. Data systems in the United States exist at many organizational and geographic levels and differing vocabulary and data structures have prevented data sharing and reuse. The data portal will facilitate the retrieval of and access to groundwater data on an as-needed basis from multiple, dispersed data repositories allowing the data to continue to be housed and managed by the data provider while being accessible for the purposes of the national monitoring network. This work leverages Open Geospatial Consortium (OGC) data exchange standards and information models. To advance these standards for supporting the exchange of ground water information, an OGC Interoperability Experiment was organized among international participants from government, academia and the private sector. The experiment focused on ground water data exchange across the U.S. / Canadian border. WaterML2.0, an evolving international standard for water observations, encodes ground water levels and is exchanged

  16. MANAGING MANURE TO IMPROVE AIR AND WATER QUALITY

    OpenAIRE

    Aillery, Marcel P.; Gollehon, Noel R.; Johansson, Robert C.; Kaplan, Jonathan D.; Key, Nigel D.; Ribaudo, Marc

    2005-01-01

    Animal waste from confined animal feeding operations is a potential source of air and water quality degradation from evaporation of gases, runoff to surface water, and leaching to ground water. This report assesses the potential economic and environmental tradeoffs between water quality policies and air quality policies that require the animal agriculture sector to take potentially costly measures to abate pollution. A farm-level analysis of hog farms estimates the economic and environmental ...

  17. Can water quality of tubewells be assessed without chemical testing?

    Science.gov (United States)

    Hoque, Mohammad A.; Butler, Adrian P.

    2016-04-01

    Arsenic is one of the major pollutants found in aquifers on a global scale. The screening of tubewells for arsenic has helped many people to avoid drinking from highly polluted wells in the Bengal Delta (West Bengal and Bangladesh). However, there are still many millions of tubewells in Bangladesh yet to be tested, and a substantial proportion of these are likely to contain excessive arsenic. Due to the level of poverty and lack of infrastructure, it is unlikely that the rest of the tubewells will be tested quickly. However, water quality assessment without needing a chemical testing may be helpful in this case. Studies have found that qualitative factors, such as staining in the tubewell basement and/or on utensils, can indicate subsurface geology and water quality. The science behind this staining is well established, red staining is associated with iron reduction leading to release of arsenic whilst black staining is associated with manganese reduction (any release of arsenic due to manganese reduction is sorbed back on the, yet to be reduced, iron), whereas mixed staining may indicate overlapping manganese and iron reduction at the tubewell screen. Reduction is not uniform everywhere and hence chemical water quality including dissolved arsenic varies from place to place. This is why coupling existing tubewell arsenic information with user derived staining data could be useful in predicting the arsenic status at a particular site. Using well location, depth, along with colour of staining, an assessment of both good (nutrients) and bad (toxins and pathogens) substances in the tubewell could be provided. Social-network technology, combined with increasing use of smartphones, provides a powerful opportunity for both sharing and providing feedback to the user. Here we outline how a simple digital application can couple the reception both qualitative and quantitative tubewell data into a centralised interactive database and provide manipulated feedback to an

  18. Forecasting Water Levels Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Shreenivas N. Londhe

    2011-06-01

    Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.

  19. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  20. Minerals Policy Monitoring Programme : : results for 2006 on water quality and fertilisation practices : within the framework of the derogation monitoring network

    NARCIS (Netherlands)

    Fraters, B.; Reijs, J.W.; Leeuwen, van T.C.; Bouwmans, L.J.M.

    2008-01-01

    This report provides an overview of fertilisation practices and water quality in 2006 on grassland farms using more animal manure than the limit set in European legislation. Water quality measured in 2006 is related to agricultural practices in previous years, and the reported values do not reveal

  1. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-10-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. Most of these systems must provide large volumes of high quality cooling water at reasonable cost and comply with local and state government orders and EPA mandated national pretreatment standards and regulations. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  2. Household's willingness to pay for heterogeneous attributes of drinking water quality and services improvement: an application of choice experiment

    Science.gov (United States)

    Dauda, Suleiman Alhaji; Yacob, Mohd Rusli; Radam, Alias

    2015-09-01

    The service of providing good quality of drinking water can greatly improve the lives of the community and maintain a normal health standard. For a large number of population in the world, specifically in the developing countries, the availability of safe water for daily sustenance is none. Damaturu is the capital of Yobe State, Nigeria. It hosts a population of more than two hundred thousand, yet only 45 % of the households are connected to the network of Yobe State Water Corporation's pipe borne water services; this has led people to source for water from any available source and thus, exposed them to the danger of contracting waterborne diseases. In order to address the problem, Yobe State Government has embarked on the construction of a water treatment plant with a capacity and facility to improve the water quality and connect the town with water services network. The objectives of this study are to assess the households' demand preferences of the heterogeneous water attributes in Damaturu, and to estimate their marginal willingness to pay, using mixed logit model in comparison with conditional logit model. A survey of 300 households randomly sampled indicated that higher education greatly influenced the households' WTP decisions. The most significant variable from both of the models is TWQ, which is MRS that rates the water quality from the level of satisfactory to very good. 219 % in simple model is CLM, while 126 % is for the interaction model. As for MLM, 685 % is for the simple model and 572 % is for the interaction model. Estimate of MLM has more explanatory powers than CLM. Essentially, this finding can help the government in designing cost-effective management and efficient tariff structure.

  3. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    Science.gov (United States)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  4. NETWORKS AND QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Miodrag Hadžistević

    2009-12-01

    Full Text Available Tools used in the past to analyze business value creation, such as value chain and process models, are simply too slow, inadequate, or inappropriate to address this new level of business complexity. In stead of that, company has to find way to create quality management system in a multi-layered supply chain. The problem can be solved by networking in the cluster. Cluster can be known as a competitive cooperation in the purpose to gain higher level of competitiveness and success. Bat there is another problem: Organization of the production process in a company is extremely complex process itself, and when we transfer it to the cluster level, we get a complex task which is difficult to solve. For that purpose, this paper analyses the conditions and possibilities that would enable those structures to adapt to changes in the surroundings - flexibility and management adequacy of production and organizational structures - by creating network value system.

  5. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    OpenAIRE

    Kazeem B. Adedeji; Yskandar Hamam; Bolanle T. Abe; Adnan M. Abu-Mahfouz

    2017-01-01

    Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exa...

  6. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  7. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  8. Forecasting Models for Some Water Quality Parameters of Shatt Al-Hilla River, Iraq

    Directory of Open Access Journals (Sweden)

    Rafa H. Al-Suhili

    2017-07-01

    Full Text Available This paper provides Artificial Neural Networks model versions for forecasting the monthly averages of some chemical water quality parameters of Shatt Al-Hilla River, which is located at Hilla City, south of Iraq. The water quality parameters investigated were Sulphate, Magnesium, Calcium, Alkalinity, and Total Hardness. Results indicate that for Sulphate and Calcium high correlation coefficients models were observed to be (0.9 and 0.88, while for Magnesium, Alkalinity and Hardness low correlation coefficients model were observed to be (0.48,0.58, and 0.51 respectively. Serial correlation behavior of these variables indicate at that high lag time correlations sequences are observed for the first two variables and low ones for the last three water quality parameters. A serial correlation coefficient analysis was done and indicates that as the variable exhibited weak lag correlation structure, then a successful ANN forecasting model could not be obtained even if many trials were done to enhance it's performance, such as increasing the number of nodes, the lagged input variables, and/or changing the learning rate and the momentum term values, or the use of different types of activation functions. On the other hand, those variables that have a strong lag correlation structure can easily fit successful ANN forecasting models

  9. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  10. Part 2: Surface water quality

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996 the surface water quality measurements were performed, according to the Agreement, at 8 profiles on the Hungarian territory and at 15 profiles on the Slovak territory. Basic physical and chemical parameters (as water temperature, pH values, conductivity, suspended solids, cations and anions (nitrates, ammonium ion, nitrites, total nitrogen, phosphates, total phosphorus, oxygen and organic carbon regime parameters), metals (iron, manganese and heavy metals), biological and microbiological parameters (coliform bacteria, chlorophyll-a, saprobity index and other biological parameters) and quality of sediment were measured

  11. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  12. San Francisco Bay Water Quality Improvement Fund

    Science.gov (United States)

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  13. Network Capacity Assessment and Increase in Systems with Intermittent Water Supply

    Directory of Open Access Journals (Sweden)

    Amilkar E. Ilaya-Ayza

    2016-03-01

    Full Text Available Water supply systems have been facing many challenges in recent decades due to the potential effects of climate change and rapid population growth. Water systems need to expand because of demographic growth. Therefore, evaluating and increasing system capacity is crucial. Specifically, we analyze network capacity as one of the main features of a system. When the network capacity starts to decrease, there is a risk that continuous supply will become intermittent. This paper discusses how network expansion carried out throughout the network life span typically reduces network capacity, thus transforming a system originally designed to work with continuous supply into a system with intermittent supply. A method is proposed to expand the network capacity in an environment of economic scarcity through a greedy algorithm that enables the definition of a schedule for pipe modification stages, and thus efficiently expands the network capacity. This method is, at the same time, an important step in the process of changing a water system from intermittent back to continuous supply—an achievement that remains one of the main challenges related to water and health in developing countries.

  14. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  15. A review of hydrological/water-quality models

    Directory of Open Access Journals (Sweden)

    Liangliang GAO,Daoliang LI

    2014-12-01

    Full Text Available Water quality models are important in predicting the changes in surface water quality for environmental management. A range of water quality models are wildly used, but every model has its advantages and limitations for specific situations. The aim of this review is to provide a guide to researcher for selecting a suitable water quality model. Eight well known water quality models were selected for this review: SWAT, WASP, QUALs, MIKE 11, HSPF, CE-QUAL-W2, ELCOM-CAEDYM and EFDC. Each model is described according to its intended use, development, simulation elements, basic principles and applicability (e.g., for rivers, lakes, and reservoirs and estuaries. Currently, the most important trends for future model development are: (1 combination models─individual models cannot completely solve the complex situations so combined models are needed to obtain the most appropriate results, (2 application of artificial intelligence and mechanistic models combined with non-mechanistic models will provide more accurate results because of the realistic parameters derived from non-mechanistic models, and (3 integration with remote sensing, geographical information and global position systems (3S ─3S can solve problems requiring large amounts of data.

  16. Quality management status of national radiation environmental monitoring network and strategy for development

    International Nuclear Information System (INIS)

    Huang Renjie; Zhang Rongsuo; Ni Shiying; Shen Gang

    2009-01-01

    During the period of 10th five-year plan, MEP has constructed a national radiation environmental monitoring network. In the running of the network, quality management on monitoring data is of vital importance. So all the members of the radiation environmental monitoring network are required to ensure the quality of monitoring method, equipment, reagent,quality of personnel, data processing and information management and so on. Thus the monitoring result would be typical and accuracy in science. The article introduced in detail the quality management status of the National Radiation Environmental Monitoring Network and put forward the strategy for development from the institutionalized and large-scale point of view of radioactive environmental monitoring work. (authors)

  17. Agricultural practice and water quality on farms registered for derogation : results for 2007 in the derogation monitoring network

    NARCIS (Netherlands)

    Zwart, M.H.; Doornewaard, G.J.; Boumans, L.J.M.; Leeuwen, van T.C.; Fraters, B.; Reijs, J.W.

    2009-01-01

    This report provides an overview of fertilisation practices and water quality in 2007 on grassland farms that are allowed to use more livestock manure than the limit set in European legislation (derogation). Data in this report can be used to study the consequences of this derogation on the water

  18. Water quality in okara and its suburbs

    International Nuclear Information System (INIS)

    Butt, M.T.; Imtiaz, N.; Athar, M.

    2007-01-01

    Ground water samples (70), collected from Okara and its sburbs were studied. Thirty samples were collected from municipal supply of urban areas while forty from deep water pumps of non-urban areas. The samples were investigated for various physiochemical parameters. Outcome of the study is that ground water of municipal supply area is suitable for human consumption while the water quality of non supply area is slightly brackish to saline and nitrate content is high above the acceptable levels of drinking water quality. (author)

  19. Water Pipeline Network Analysis Using Simultaneous Loop Flow ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... *Department of Mechanical Engineering, Michael Okpara University of Agriculture, Umudike, Nigeria ... significant fluid acceleration, the behavior of a network can be ... world water day centers on water and food security as.

  20. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  1. Statistical Framework for Recreational Water Quality Criteria and Monitoring

    DEFF Research Database (Denmark)

    Halekoh, Ulrich

    2008-01-01

    recreational governmental authorities controlling water quality. The book opens with a historical account of water quality criteria in the USA between 1922 and 2003. Five chapters are related to sampling strategies and decision rules. Chapter 2 discusses the dependence of decision-making rules on short...... modeling exploiting additional information like meteorological data can support the decision process as shown in Chapter 10. The question of which information to extract from water sample analyses is closely related to the task of risk assessment for human health. Beach-water quality is often measured......Administrators of recreational waters face the basic tasks of surveillance of water quality and decisions on beach closure in case of unacceptable quality. Monitoring and subsequent decisions are based on sampled water probes and fundamental questions are which type of data to extract from...

  2. Leakage detection and estimation algorithm for loss reduction in water piping networks

    CSIR Research Space (South Africa)

    Adedeji, KB

    2017-10-01

    Full Text Available the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exact...

  3. A neural network approach to burst detection.

    Science.gov (United States)

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  4. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    Science.gov (United States)

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  5. Drinking water quality concerns and water vending machines

    International Nuclear Information System (INIS)

    McSwane, D.Z.; Oleckno, W.A.; Eils, L.M.

    1994-01-01

    Drinking water quality is a vital public health concern to consumers and regulators alike. This article describes some of the current microbiological, chemical, and radiological concerns about drinking water and the evolution of water vending machines. Also addressed are the typical treatment processes used in water vending machines and their effectiveness, as well as a brief examination of a certification program sponsored by the National Automatic Merchandising Association (NAMA), which provides a uniform standard for the design and construction of food and beverage vending machines. For some consumers, the water dispensed from vending machines is an attractive alternative to residential tap water which may be objectionable for aesthetic or other reasons

  6. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  7. Automated monitoring of recovered water quality

    Science.gov (United States)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  8. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  9. Optimizing the Energy and Throughput of a Water-Quality Monitoring System

    Directory of Open Access Journals (Sweden)

    Segun O. Olatinwo

    2018-04-01

    Full Text Available This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN, with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.

  10. Topological Taxonomy of Water Distribution Networks

    Directory of Open Access Journals (Sweden)

    Carlo Giudicianni

    2018-04-01

    Full Text Available Water Distribution Networks (WDNs can be regarded as complex networks and modeled as graphs. In this paper, Complex Network Theory is applied to characterize the behavior of WDNs from a topological point of view, reviewing some basic metrics, exploring their fundamental properties and the relationship between them. The crucial aim is to understand and describe the topology of WDNs and their structural organization to provide a novel tool of analysis which could help to find new solutions to several arduous problems of WDNs. The aim is to understand the role of the topological structure in the WDNs functioning. The methodology is applied to 21 existing networks and 13 literature networks. The comparison highlights some topological peculiarities and the possibility to define a set of best design parameters for ex-novo WDNs that could also be used to build hypothetical benchmark networks retaining the typical structure of real WDNs. Two well-known types of network ((a square grid; and (b random graph are used for comparison, aiming at defining a possible mathematical model for WDNs. Finally, the interplay between topology and some performance requirements of WDNs is discussed.

  11. Water quality in vicinity of Fenton Hill Site, 1974

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Adams, W.H.; Owens, J.W.

    1975-09-01

    The water quality at nine surface water stations, eight ground water stations, and the drilling operations at the Fenton Hill Site have been studied as a measure of the environmental impact of the Los Alamos Scientific Laboratory geothermal experimental studies in the Jemez Mountains. Surface water quality in the Jemez River drainage area is affected by the quality of the inflow from thermal and mineral springs. Ground water discharges from the Cenozoic Volcanics are similar in chemical quality. Water in the main zone of saturation penetrated by test hole GT-2 is highly mineralized, whereas water in the lower section of the hole, which is in granite, contains a higher concentration of uranium

  12. A Review of the Topologies Used in Smart Water Meter Networks: A Wireless Sensor Network Application

    Directory of Open Access Journals (Sweden)

    Jaco Marais

    2016-01-01

    Full Text Available This paper presents several proposed and existing smart utility meter systems as well as their communication networks to identify the challenges of creating scalable smart water meter networks. Network simulations are performed on 3 network topologies (star, tree, and mesh to determine their suitability for smart water meter networks. The simulations found that once a number of nodes threshold is exceeded the network’s delay increases dramatically regardless of implemented topology. This threshold is at a relatively low number of nodes (50 and the use of network topologies such as tree or mesh helps alleviate this problem and results in lower network delays. Further simulations found that the successful transmission of application layer packets in a 70-end node tree network can be improved by 212% when end nodes only transmit data to their nearest router node. The relationship between packet success rate and different packet sizes was also investigated and reducing the packet size with a factor of 16 resulted in either 156% or 300% increases in the amount of successfully received packets depending on the network setup.

  13. Trophic state categorisation and assessment of water quality in ...

    African Journals Online (AJOL)

    Thus, water quality information is crucial in setting up guidelines for freshwater ... water quality in the Manjirenji Dam was generally fair, with a CCME value averaging 78.1, ... The current water quality data set for the Manjirenji Dam is vital for ...

  14. Assessment of Groundwater Quality of Ilorin Metropolis using Water Quality Index Approach

    Directory of Open Access Journals (Sweden)

    J. A. Olatunji

    2015-06-01

    Full Text Available Groundwater as a source of potable water is becoming more important in Nigeria. Therefore, the need to ascertain the continuing potability of the sources cannot be over emphasised. This study is aimed at assessing the quality of selected groundwater samples from Ilorin metropolis, Nigeria, using the water quality index (WQI method. Twenty two water samples were collected, 10 samples from boreholes and 12 samples from hand dug wells. All these were analysed for their physico – chemical properties. The parameters used for calculating the water quality index include the following: pH, total hardness, total dissolved solid, calcium, fluoride, iron, potassium, sulphate, nitrate and carbonate. The water quality index for the twenty two samples ranged from 0.66 to 756.02 with an average of 80.77. Two of the samples exceeded 100, which is the upper limit for safe drinking water. The high values of WQI from the sampling locations are observed to be due to higher values of iron and fluoride. This study reveals that the investigated groundwaters are mostly potable and can be consumed without treatment. Nonetheless, the sources identified to be unsafe should be treated before consumption.

  15. Drinking water quality in Indigenous communities in Canada and health outcomes: a scoping review.

    Science.gov (United States)

    Bradford, Lori E A; Okpalauwaekwe, Udoka; Waldner, Cheryl L; Bharadwaj, Lalita A

    2016-01-01

    Many Indigenous communities in Canada live with high-risk drinking water systems and drinking water advisories and experience health status and water quality below that of the general population. A scoping review of research examining drinking water quality and its relationship to Indigenous health was conducted. The study was undertaken to identify the extent of the literature, summarize current reports and identify research needs. A scoping review was designed to identify peer-reviewed literature that examined challenges related to drinking water and health in Indigenous communities in Canada. Key search terms were developed and mapped on five bibliographic databases (MEDLINE/PubMED, Web of Knowledge, SciVerse Scopus, Taylor and Francis online journal and Google Scholar). Online searches for grey literature using relevant government websites were completed. Sixteen articles (of 518; 156 bibliographic search engines, 362 grey literature) met criteria for inclusion (contained keywords; publication year 2000-2015; peer-reviewed and from Canada). Studies were quantitative (8), qualitative (5) or mixed (3) and included case, cohort, cross-sectional and participatory designs. In most articles, no definition of "health" was given (14/16), and the primary health issue described was gastrointestinal illness (12/16). Challenges to the study of health and well-being with respect to drinking water in Indigenous communities included irregular funding, remote locations, ethical approval processes, small sample sizes and missing data. Research on drinking water and health outcomes in Indigenous communities in Canada is limited and occurs on an opportunistic basis. There is a need for more research funding, and inquiry to inform policy decisions for improvements of water quality and health-related outcomes in Indigenous communities. A coordinated network looking at First Nations water and health outcomes, a database to store and create access to research findings, increased

  16. Drinking water quality in Indigenous communities in Canada and health outcomes: a scoping review

    Directory of Open Access Journals (Sweden)

    Lori E. A. Bradford

    2016-07-01

    Full Text Available Background: Many Indigenous communities in Canada live with high-risk drinking water systems and drinking water advisories and experience health status and water quality below that of the general population. A scoping review of research examining drinking water quality and its relationship to Indigenous health was conducted. Objective: The study was undertaken to identify the extent of the literature, summarize current reports and identify research needs. Design: A scoping review was designed to identify peer-reviewed literature that examined challenges related to drinking water and health in Indigenous communities in Canada. Key search terms were developed and mapped on five bibliographic databases (MEDLINE/PubMED, Web of Knowledge, SciVerse Scopus, Taylor and Francis online journal and Google Scholar. Online searches for grey literature using relevant government websites were completed. Results: Sixteen articles (of 518; 156 bibliographic search engines, 362 grey literature met criteria for inclusion (contained keywords; publication year 2000–2015; peer-reviewed and from Canada. Studies were quantitative (8, qualitative (5 or mixed (3 and included case, cohort, cross-sectional and participatory designs. In most articles, no definition of “health” was given (14/16, and the primary health issue described was gastrointestinal illness (12/16. Challenges to the study of health and well-being with respect to drinking water in Indigenous communities included irregular funding, remote locations, ethical approval processes, small sample sizes and missing data. Conclusions: Research on drinking water and health outcomes in Indigenous communities in Canada is limited and occurs on an opportunistic basis. There is a need for more research funding, and inquiry to inform policy decisions for improvements of water quality and health-related outcomes in Indigenous communities. A coordinated network looking at First Nations water and health outcomes, a

  17. Shale Gas Development and Drinking Water Quality.

    Science.gov (United States)

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  18. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  19. Drinking Water Quality in Hospitals and Other Buildings ...

    Science.gov (United States)

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  20. Post-fire Water Quality Response and Associated Physical Drivers

    Science.gov (United States)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  1. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Science.gov (United States)

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  2. Comparative Assessment of Physical and Social Determinants of Water Quantity and Water Quality Concerns

    Science.gov (United States)

    Gunda, T.; Hornberger, G. M.

    2017-12-01

    Concerns over water resources have evolved over time, from physical availability to economic access and recently, to a more comprehensive study of "water security," which is inherently interdisciplinary because a secure water system is influenced by and affects both physical and social components. The concept of water security carries connotations of both an adequate supply of water as well as water that meets certain quality standards. Although the term "water security" has many interpretations in the literature, the research field has not yet developed a synthetic analysis of water security as both a quantity (availability) and quality (contamination) issue. Using qualitative comparative and multi-regression analyses, we evaluate the primary physical and social factors influencing U.S. states' water security from a quantity perspective and from a quality perspective. Water system characteristics are collated from academic and government sources and include access/use, governance, and sociodemographic, and ecosystem metrics. Our analysis indicates differences in variables driving availability and contamination concerns; for example, climate is a more significant determinant in water quantity-based security analyses than in water quality-based security analyses. We will also discuss coevolution of system traits and the merits of constructing a robust water security index based on the relative importance of metrics from our analyses. These insights will improve understanding of the complex interactions between quantity and quality aspects and thus, overall security of water systems.

  3. Aquatic macroinvertebrates and water quality in Sandia Canyon

    International Nuclear Information System (INIS)

    Bennett, K.

    1994-05-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities

  4. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  5. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  6. Cooling water conditioning and quality control for tokamaks

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1995-01-01

    Designers and operators of Tokamaks and all associated water cooled, peripheral equipment, are faced with the task of providing and maintaining closed-loop, low conductivity, low impurity, cooling water systems. The primary reason for supplying low conductivity water to the DIII-D vacuum vessel coils, power supplies and auxiliary heating components is to assure, along with the use of a non-conducting break in the supply piping, sufficient electrical resistance and thus an acceptable current-leakage path to ground at operating voltage potentials. As important, good quality cooling water significantly reduces the likelihood of scaling and fouling of flow passages and heat transfer surfaces. Dissolved oxygen gas removal is also required in one major DIII-D cooling water system to minimize corrosion in the ion sources of the neutral beam injectors. Currently, the combined pumping capacity of the high quality cooling water systems at DIII-D is ∼5,000 gpm. Another area that receives close attention at DIII-D is the chemical treatment of the water used in the cooling towers. This paper discusses the DIII-D water quality requirements, the means used to obtain the necessary quality and the instrumentation used for control and monitoring. Costs to mechanically and chemically condition and maintain water quality are discussed as well as the various aspects of complying with government standards and regulations

  7. Data quality assurance in monitoring of wastewater quality: Univariate on-line and off-line methods

    DEFF Research Database (Denmark)

    Alferes, J.; Poirier, P.; Lamaire-Chad, C.

    To make water quality monitoring networks useful for practice, the automation of data collection and data validation still represents an important challenge. Efficient monitoring depends on careful quality control and quality assessment. With a practical orientation a data quality assurance proce...

  8. Water Quality Vocabulary Development and Deployment

    Science.gov (United States)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  9. Optimization of turbine positioning in water distribution networks. A Sicilian case study

    Science.gov (United States)

    Milici, Barbara; Messineo, Simona; Messineo, Antonio

    2017-11-01

    The potential energy of water in Water Distribution Networks (WDNs), is usually dissipated by Pressure Reduction Valves (PRVs), thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs), to produce energy in a small network with the aim to avoid dissipation in favour of renewable energy production. The proposed study is applied to a WDN located in a town close to Palermo (Sicily), where users often install private tanks, to collect water during the period of water scarcity conditions. As expected, the economic benefit of PATs installation in WDNs is affected by the presence of private tanks, whose presence deeply modifies the network from designed condition. The analysis is carried out by means of a mathematical model, which is able to simulate dynamically water distribution networks with private tanks and PATs. As expected, the advantage of PATs' installation in terms of renewable energy recovery is strictly conditioned by their placement in the WDN.

  10. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    Science.gov (United States)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  11. Facing a Problem of Electrical Energy Quality in Ship Networks-measurements, Estimation, Control

    Institute of Scientific and Technical Information of China (English)

    Tomasz Tarasiuk; Janusz Mindykowski; Xiaoyan Xu

    2003-01-01

    In this paper, electrical energy quality and its indices in ship electric networks are introduced, especially the meaning of electrical energy quality terms in voltage and active and reactive power distribution indices. Then methods of measurement of marine electrical energy indices are introduced in details and a microprocessor measurement-diagnosis system with the function of measurement and control is designed. Afterwards, estimation and control of electrical power quality of marine electrical power networks are introduced. And finally, according to the existing method of measurement and control of electrical power quality in ship power networks, the improvement of relative method is proposed.

  12. The influence of the mining activity in the Oltenia region on the underground water resources and their quality

    International Nuclear Information System (INIS)

    Baican, G.; Fodor, D.; Rotunjanu, I.

    1998-01-01

    The mining activity in Oltenia's area has affected both the hydro-geographical network and underground water resources, the regime and their quality. Due to mining and dewatering works resulted depression areas with negative effects on environment and water feeding for localities as well as for economic-social objectives in area. The measures that have been taken in order to decrease negative effects as well as results obtained, can be found in the paper

  13. Coupling of ground biosensor networks for water monitoring with satellite observations in assessing Leptospirosis

    Science.gov (United States)

    Skouloudis, A. N.; Rickerby, D. G.

    2012-12-01

    Leptospirosis became recently a major public-health problem that is closely related with the environment (Nature review Oct 2009, Vol 7, pp 736-747). This disease originates from zoonotic pathogens associated with asymptomatic rodent carriers. Unfortunately, it effects human populations via various direct and indirect routes. This disease can claim many victims with large outbreaks during natural disasters or floods occurring during seasonal conditions. The severity of the illness ranges from subclinical infection to a fulminating fatal disease. Improved water quality monitoring techniques based on biosensor, optical, micro-fluidic and information technologies are leading to radical changes in our ability to perceive and monitor the aquatic environment. Biosensors are capable of providing specific, high spatial resolution information and allow unattended operation that will be particularly useful for water borne related diseases. Current research on biosensors is leading to solutions to problems for several contaminants that were previously irresolvable due to their high degree of complexity. Networking of the sensors enables sensitive monitoring systems allowing real-time monitoring of pollutants and facilitates data transmission between the measurement points and central control stations for continuous surveillance and to provide an early warning capability. The application of intelligent biosensor networks for water quality monitoring and detection of localized sources of pollution are discussed together with the setting up of a methodology that utilizes images from satellite coupled with in-situ sensors for anticipating the zones of potential evolution of this disease and assessing the population at risk. Environmental and climatic conditions that are associated the outbreaks are described and the rational of combining earth observations coupled with advanced in-situ biosensors is explained. The implementation of sensor networks for data collection and exposure

  14. The Effects of Intermittent Drinking Water Supply in Arraiján, Panama

    OpenAIRE

    Erickson, John Joseph

    2016-01-01

    Over three hundred million people throughout the world receive supply from piped drinking water distribution networks that operate intermittently. This dissertation evaluates the effects of intermittent supply on water quality, pipe damage and service reliability in four study zones (one continuous and three intermittent) in a peri-urban drinking water distribution network in Arraiján, Panama. Normal water quality in all zones was good, with 97% of routine water quality grab samples from the ...

  15. Monitoring drinking water quality in South Africa: Designing ...

    African Journals Online (AJOL)

    In South Africa, the management and monitoring of drinking water quality is governed by policies and regulations based on international standards. Water Service Authorities, which are either municipalities or district municipalities, are required to submit information regarding water quality and the management thereof ...

  16. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  17. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

    Directory of Open Access Journals (Sweden)

    Kazeem B. Adedeji

    2017-10-01

    Full Text Available Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s of the network and the exact leaking pipelines connected to this segment(s where higher background leakage outflow occurs is a challenging task. Background leakage concerns the outflow from small cracks or deteriorated joints. In addition, because they are diffuse flow, they are not characterised by quick pressure drop and are not detectable by measuring instruments. Consequently, they go unreported for a long period of time posing a threat to water loss volume. Most of the existing research focuses on the detection and localisation of burst type leakages which are characterised by a sudden pressure drop. In this work, an algorithm for detecting and estimating background leakage in water distribution networks is presented. The algorithm integrates a leakage model into a classical WDN hydraulic model for solving the network leakage flows. The applicability of the developed algorithm is demonstrated on two different water networks. The results of the tested networks are discussed and the solutions obtained show the benefits of the proposed algorithm. A noteworthy evidence is that the algorithm permits the detection of critical segments or pipes of the network experiencing higher leakage outflow and indicates the probable pipes of the network where pressure control can be performed. However, the possible position of pressure control elements along such critical pipes will be addressed in future work.

  18. Mapping of spatial and temporal variations of' water quality in an industrial area: a remote sensing and GIS approach

    International Nuclear Information System (INIS)

    Lakshmi, T.V.; Reddy, M.A.; Anjaneyulu, Y.

    2005-01-01

    This paper illustrate the impact of industrialization on water quality in and around Nakkavagu Watershed, due to unplanted industrial development. The study area falls between 78 deg. 05' - 78 deg. 25'E. longitude and 17 deg. 25'-17 deg. 45'N latitude, the catchment area extends 734 sq. km in Medak district, Andhra Predesh, India. The study area lies in the Godavari Basin. Remote sensing and GIS techniques are used to map the spatial and temporal distribution of water quality with respect to land use / land cover (Lu /Lc) changes for a period of three decades. Spatial database consisting of drainage network and geomorphology and land use / land cover change detection maps (1970-2004) have been generated for the entire watershed using remote sensing satellite data. Attribute database consisting of (water quality analysis is carried out and corresponding water quality index is calculated on a five point scale: 0- 25 Excellent, 26 -50 Good, 51 -75 Poor, 76 -100 Very poor, and> 100 Unfit for Drinking. Integrated study to establish the impact of Lu / Lc on water quality is carried out using GIS Analysis. Maps showing Lu / Lc changes and corresponding spatial distribution of water quality index were generated for the years 1979, 1989,2004. The results indicate that the water quality index in the entire Nakkavagu watershed during 1979 is excellent and good and by 2004, the entire watershed is rated in to poor, very poor and unfit for drinking. Best environmental management plans were suggested for restoration of the Nakkavagu watershed. (author)

  19. Water resources data for Virginia, water year 1991. Volume 2. Ground-water-level and ground-water-quality records. Water-data report (Annual), 1 October 1991-30 September 1992

    International Nuclear Information System (INIS)

    Prugh, B.J.; Powell, E.D.

    1993-01-01

    Water-resources data for the 1992 water year for Virginia consist of records of water levels and water quality of ground-water wells. The report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 356 observation wells and water quality at 2 wells. Locations of these wells are given in the report

  20. Landsat Thematic Mapper monitoring of turbid inland water quality

    Science.gov (United States)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  1. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false EPA promulgation of water quality... PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality standards. (a) If the State does not adopt the changes specified by the Regional...

  2. A Two-Year Water Quality Monitoring Curriculum.

    Science.gov (United States)

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  3. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  4. Estimating the cost of improving service quality in water supply: A shadow price approach for England and wales.

    Science.gov (United States)

    Molinos-Senante, María; Maziotis, Alexandros; Sala-Garrido, Ramón

    2016-01-01

    Service quality to customers is an aspect that cannot be ignored in the performance assessment of water companies. Nowadays water regulators introduce awards or penalties to incentivize companies to improve service quality to customers when setting prices. In this study, the directional distance function is employed to estimate the shadow prices of variables indicating the lack of service quality to customers in the water industry i.e., written complaints, unplanned interruptions and properties below the reference level. To calculate the shadow price of each undesirable output for each water company, it is needed to ascribe a reference price for the desirable output which is the volume of water delivered. An empirical application is carried out for water companies in England and Wales. Hence, the shadow price of each undesirable output is expressed both as a percentage of the price of the desirable output and in pence per cubic meter of water delivered The estimated results indicate that on average, each additional written complaint that needs to be dealt with by the water company includes a service quality cost of 0.399p/m(3). As expected, when looking at the other service quality variables which involve network repair or replacement, these values are considerably higher. On average, the water company must spend an extra 0.622p/m(3) to prevent one unplanned interruption and 0.702p/m(3) to avoid one water pressure below the reference level. The findings of this study are of great importance for regulated companies and regulators as it has been illustrated that improvements in the service quality in terms of customer service could be challenging and therefore ongoing investments will be required to address these issues. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  6. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    Science.gov (United States)

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Modelling a water purification process for quality monitoring

    NARCIS (Netherlands)

    Meulen, van der F.H.; Luca, S.; Overal, G.; Dubbeldam, J.L.A.; Di Bucchianico, A.; Jongbloed, G.; Dubbeldam, J.; Groenevelt, W.; Heemink, A.W.; Lahaye, D.; Meerman, C.; Meulen, van der F.

    2014-01-01

    This paper deals with a quality engineering problem introduced by ‘Waterlaboratorium Noord’ (WLN) situated at the Netherlands. In-terest lies in determining an optimal sampling frequency that provides suÿcient information on the water quality in a drinking water purifica-tion plant. The water

  8. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  9. Leakage detection algorithm integrating water distribution networks hydraulic model

    CSIR Research Space (South Africa)

    Adedeji, K

    2017-06-01

    Full Text Available Water loss through leaking pipes is inexorable in water distribution networks (WDNs) and has been recognized as a major challenge facing the operation of municipal water services. This is strongly linked with financial costs due to economic loss...

  10. Water Quality Degradation and Management Strategies for Swine and Rice Farming Wastewater in the Tha Chin River Basin

    Directory of Open Access Journals (Sweden)

    Abigail Henderson

    2017-11-01

    Full Text Available Water quality in the Tha Chin River regularly exceeds biological oxygen demand (BOD standards of Thailand’s Enhancement and Conservation of National Environmental Quality Act. This study quantified the BOD loading from rice cultivation and swine farming to the Tha Chin River using effluent data and procedures from the Pollution Control Department (PCD, geospatial land-use maps from the Land Development Department, and water quality data from the Ministry of Natural Resources and the Environment. It was determined that the BOD loading was 12 tons/day from swine farming in 2015 and 52 tons/day, on average, from rice farming between 2002 and 2011. Technology-specific, community-scale wastewater management strategies were recommended for both industries: feasibility studies revealed 66 potential sites for constructed wetland implementation and 7 subdistricts suitable for biogas network pipelines. It was determined that if these projects are implemented in conjunction, the BOD would be reduced by 6% (0.3 mg/L in the entire river or 11% (0.5 mg/L at the three water quality monitoring stations proximate to swine farms. These reductions would have a substantial effect on the water quality of the Tha Chin River, and governmental agencies such as the PCD should strongly consider subsidization and implementation of these projects.

  11. The quality of drinking water in Poland

    Directory of Open Access Journals (Sweden)

    L. Kłos

    2015-05-01

    Full Text Available Introduction. An analysis of the drinking water quality and the degree of access to water supply and sewerage system in Poland was conducted. Materials and methods. Method of analysis of secondary statistical data was applied, mostly based on data available in the materials of the Central Statistical Office in Warsaw, the Waterworks Polish Chamber of Commerce in Bydgoszcz and the National Water Management in Warsaw. Result and discussion. 60 % of Poles do not trust to drink water without prior boiling. Water flowing from the taps, although widely available, is judged to be polluted, with too much fluorine or not having the appropriate consumer values (colour, smell and taste. The current water treatment systems can however improve them, although such a treatment, i.e. mainly through chlorination of water, deteriorates its quality in relation to pure natural water. The result is that fewer and fewer Poles drink water directly from the tap. They also less and less use tap water to cook food for which the bottled water is trusted more. Reason for that is that society does not trust the safety of the water supplied by the municipal water companies. The question thus is: Are they right? Tap water in Poland meets all standards since it is constantly monitored by the water companies and all relevant health services. Tap water supplied through the water supply system can be used without prior boiling. Studies have shown that only the operating parameters of water, suc h as taste, odour and hardness, are not satisfactory everywhere, different in each city, and sometimes in different districts of cities, often waking thoughts among users about its inappropriateness. The lowered water value can be easily improved at home through the use of filters. In conclusion, due to constant monitoring and investment in upgrading treatment processes, the quality of tap water has improved significantly in the last years. Conclusion. The results first allow assessing the

  12. Water You Engineering? An Activity to Develop Water-Quality Awareness

    Science.gov (United States)

    Riskowski, Jody; Todd, Carrie Davis

    2009-01-01

    Water is one of our most precious resources. However, for many in the United States, having fresh, safe drinking water is taken for granted, and due to this perceived lack of relevance, students may not fully appreciate the luxury of having safe running water--in the home. One approach to resolving water-quality issues in the United States may…

  13. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  14. Network Analysis Reveals Putative Genes Affecting Meat Quality in Angus Cattle.

    Science.gov (United States)

    Mateescu, Raluca G; Garrick, Dorian J; Reecy, James M

    2017-01-01

    Improvements in eating satisfaction will benefit consumers and should increase beef demand which is of interest to the beef industry. Tenderness, juiciness, and flavor are major determinants of the palatability of beef and are often used to reflect eating satisfaction. Carcass qualities are used as indicator traits for meat quality, with higher quality grade carcasses expected to relate to more tender and palatable meat. However, meat quality is a complex concept determined by many component traits making interpretation of genome-wide association studies (GWAS) on any one component challenging to interpret. Recent approaches combining traditional GWAS with gene network interactions theory could be more efficient in dissecting the genetic architecture of complex traits. Phenotypic measures of 23 traits reflecting carcass characteristics, components of meat quality, along with mineral and peptide concentrations were used along with Illumina 54k bovine SNP genotypes to derive an annotated gene network associated with meat quality in 2,110 Angus beef cattle. The efficient mixed model association (EMMAX) approach in combination with a genomic relationship matrix was used to directly estimate the associations between 54k SNP genotypes and each of the 23 component traits. Genomic correlated regions were identified by partial correlations which were further used along with an information theory algorithm to derive gene network clusters. Correlated SNP across 23 component traits were subjected to network scoring and visualization software to identify significant SNP. Significant pathways implicated in the meat quality complex through GO term enrichment analysis included angiogenesis, inflammation, transmembrane transporter activity, and receptor activity. These results suggest that network analysis using partial correlations and annotation of significant SNP can reveal the genetic architecture of complex traits and provide novel information regarding biological mechanisms

  15. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  16. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  17. Enhancement of digital radiography image quality using a convolutional neural network.

    Science.gov (United States)

    Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing

    2017-01-01

    Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.

  18. Examining Water Quality Variations of Tidal Pond System

    Science.gov (United States)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  19. Evaluation of U.S. Geological Survey Monitoring-well network and potential effects of changes in water use, Newlands Project, Churchill County, Nevada

    Science.gov (United States)

    Maurer, Douglas K.; Seiler, Ralph L.; Watkins, Sharon A.

    2004-01-01

    Domestic wells tapping shallow ground water are an important source of potable water for rural residents of Lahontan Valley. For this reason, the public has expressed concern over the acquisition of water rights directed by Public Law 101-618. The acquisition has resulted in removal of land from irrigation, which could cause shallow domestic wells to go dry and adversely affect shallow ground-water quality. Periodic water-level measurements and water-quality sampling at a monitoring-well network developed by the U.S. Geological Survey (USGS) provided data to evaluate the potential effects of changes in water use. The USGS, in cooperation with Churchill County, analyzed these data and the monitoring-well network to determine if the network provides an adequate means to measure the response of the shallow aquifer to changes in water use, and to determine if measurable changes have taken place. To evaluate the USGS monitoring-well network, wells were characterized by their distance from active canals or ditches, and from currently (2003) or formerly irrigated land. An analysis of historical data showed that about 9,800 acres of land have been removed from irrigation, generally from the late 1990's to 2003. Twenty-five wells in the network are within about 1 mile of fields removed from irrigation. Of the 25 wells, 13 are within 300 feet of canals or ditches where seepage maintains stable water levels. The 13 wells likely are not useful for detecting changes caused by reductions in irrigation. The remaining 12 wells range from about 400 to 3,800 feet from the nearest canal and are useful for detecting continued changes from current reductions in irrigation. The evaluation showed that of the 75 wells in the network, only 8 wells are likely to be useful for detecting the effects of future (after 2003) reductions in irrigation. Water levels at most of the monitoring wells near irrigated land have declined from 1998 to 2003 because of drought conditions and below normal

  20. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting.

    Science.gov (United States)

    Xu, Liang; Jiang, Tao; Lin, Pei; Shao, Jia Jia; He, Chuan; Zhong, Wei; Chen, Xiang Yu; Wang, Zhong Lin

    2018-02-27

    Water wave energy is a promising clean energy source, which is abundant but hard to scavenge economically. Triboelectric nanogenerator (TENG) networks provide an effective approach toward massive harvesting of water wave energy in oceans. In this work, a coupling design in TENG networks for such purposes is reported. The charge output of the rationally linked units is over 10 times of that without linkage. TENG networks of three different connecting methods are fabricated and show better performance for the ones with flexible connections. The network is based on an optimized ball-shell structured TENG unit with high responsivity to small agitations. The dynamic behavior of single and multiple TENG units is also investigated comprehensively to fully understand their performance in water. The study shows that a rational design on the linkage among the units could be an effective strategy for TENG clusters to operate collaboratively for reaching a higher performance.