WorldWideScience

Sample records for network water quality

  1. Progress and lessons learned from water-quality monitoring networks

    Science.gov (United States)

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  2. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Science.gov (United States)

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  3. DISCRETE VOLUME-ELEMENT METHOD FOR NETWORK WATER- QUALITY MODELS

    Science.gov (United States)

    An explicit dynamic water-quality modeling algorithm is developed for tracking dissolved substances in water-distribution networks. The algorithm is based on a mass-balance relation within pipes that considers both advective transport and reaction kinetics. Complete mixing of m...

  4. Energy Efficient Networks for Monitoring Water Quality in Subterranean Rivers

    Directory of Open Access Journals (Sweden)

    Fei Ge

    2016-05-01

    Full Text Available The fresh water in rivers beneath the Earth’s surface is as significant to humans as that on the surface. However, the water quality is difficult to monitor due to its unapproachable nature. In this work, we consider building networks to monitor water quality in subterranean rivers. The network node is designed to have limited functions of floating and staying in these rivers when necessary. We provide the necessary conditions to set up such networks and a topology building method, as well as the communication process between nodes. Furthermore, we provide every an node’s energy consumption model in the network building stage, the data acquiring and transmission stage. The numerical results show that the energy consumption in every node is different, and the node number should be moderate to ensure energy efficiency.

  5. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems.

    Science.gov (United States)

    Zhu, Xiaohui; Yue, Yong; Wong, Prudence W H; Zhang, Yixin; Tan, Jianhong

    2018-01-24

    Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM) is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time.

  6. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhu

    2018-01-01

    Full Text Available Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time.

  7. Wireless sensor networks: A survey on monitoring water quality

    Directory of Open Access Journals (Sweden)

    Mompoloki Pule

    2017-12-01

    Full Text Available Diseases related to poor water and sanitation conditions have over 200 million cases reported annually, causing 5–10 million deaths world-wide. Water quality monitoring has thus become essential to the supply of clean and safe water. Conventional monitoring processes involve manual collection of samples from various points in the distribution network, followed by laboratory testing and analysis. This process has proved to be ineffective since it is laborious, time consuming and lacks real-time results to promote proactive response to water contamination. Wireless sensor networks (WSN have since been considered a promising alternative to complement conventional monitoring processes. These networks are relatively affordable and allow measurements to be taken remotely, in real-time and with minimal human intervention. This work surveys the application of WSN in environmental monitoring, with particular emphasis on water quality. Various WSN based water quality monitoring methods suggested by other authors are studied and analyzed, taking into account their coverage, energy and security concerns. The work also compares and evaluates sensor node architectures proposed the various authors in terms of monitored parameters, microcontroller/microprocessor units (MCU and wireless communication standards adopted, localization, data security implementation, power supply architectures, autonomy and potential application scenarios.

  8. Coordinating standards and applications for optical water quality sensor networks

    Science.gov (United States)

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  9. Applications of artificial neural networks for microbial water quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brion, G.M.; Lingireddy, S. [Univ. of Kentucky, Dept. of Civil Engineering, Lexington, Kentucky (United States)]. E-mail: gbrion@engr.uky.edu

    2002-06-15

    There has been a significant shift in the recent past towards protecting chemical and microbial quality of source waters rather than developing advanced methods to treat heavily polluted water. The key to successful best management practices in protecting the source waters is to identify sources of non-point pollution and their collective impact on the quality of water at the intake. This article presents a few successful applications where artificial neural networks (ANN) have proven to be the useful mathematical tools in correlating the nonlinear relationships between routinely measured parameters (such as rainfall, turbidity, fecal coliforms etc.) and quality of source waters and/or nature of fecal sources. These applications include, prediction of peak concentrations of Giardia and Cryptosporidium, sorting of fecal sources (e.g. agricultural animals vs. urban animals), predicting relative ages of the runoff sources, identifying the potential for sewage contamination. The ability of ANNs to work with complex, inter-related multiparameter databases, and provide superior predictive power in non-linear relationships has been the key for their successful application to microbial water quality studies. (author)

  10. Better understanding of water quality evolution in water distribution networks using data clustering.

    Science.gov (United States)

    Mandel, Pierre; Maurel, Marie; Chenu, Damien

    2015-12-15

    The complexity of water distribution networks raises challenges in managing, monitoring and understanding their behavior. This article proposes a novel methodology applying data clustering to the results of hydraulic simulation to define quality zones, i.e. zones with the same dynamic water origin. The methodology is presented on an existing Water Distribution Network; a large dataset of conductivity measurements measured by 32 probes validates the definition of the quality zones. The results show how quality zones help better understanding the network operation and how they can be used to analyze water quality events. Moreover, a statistical comparison with 158,230 conductivity measurements validates the definition of the quality zones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  12. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks -journal article

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  13. [Effect of a water-pipe network on the sensory quality of drinking water].

    Science.gov (United States)

    Gatarska, Anna; Smoczyński, Stefan; Wypyska, Marta

    2010-01-01

    Object of studies was aimed at determining the effect of a water-pipe system on the sensory quality of drinking water originating from various intakes. The aim was to be achieved through analyses of the sensory quality (odor and flavor) of drinking water originating from various reception points within the water-pipe system. Based on the analyses carried out in the research, it may be stated that, transport of water through the water-pipe system in Olsztyn in the winter season does not affect deterioration of odor or flavor of water supplied to consumers. Besides worse sensory quality of drinking water at consumers' reception points may be determined by its worse quality immediately after treatment. As a result of water transport through a water-pipe network, it is possible to reduce the intensity of some odor and flavor attributes to an undetectable level.

  14. Topological clustering as a tool for planning water quality monitoring in water distribution networks

    DEFF Research Database (Denmark)

    Kirstein, Jonas Kjeld; Albrechtsen, Hans-Jørgen; Rygaard, Martin

    2015-01-01

    ) identify steady clusters for a part of the network where an actual contamination has occurred; (2) analyze this event by the use of mesh diagrams; and (3) analyze the use of mesh diagrams as a decision support tool for planning water quality monitoring. Initially, the network model was divided...... into strongly and weakly connected clusters for selected time periods and mesh diagrams were used for analysing cluster connections in the Nørrebro district. Here, areas of particular interest for water quality monitoring were identified by including user-information about consumption rates and consumers...... particular sensitive towards water quality deterioration. The analysis revealed sampling locations within steady clusters, which increased samples' comparability over time. Furthermore, the method provided a simplified overview of water movement in complex distribution networks, and could assist...

  15. Importance of demand modelling in network water quality models : A review

    NARCIS (Netherlands)

    Blokker, E.J.M.; Vreeburg, J.H.G.; Buchberger, S.G.; Van Dijk, J.C.

    2008-01-01

    Today, there is a growing interest in network water quality modelling. The water quality issues of interest relate to both dissolved and particulate substances. For dissolved substances the main interest is in residual chlorine and (microbiological) contaminant propagation; for particulate

  16. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  17. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1980-2015

    Science.gov (United States)

    Deacon, Jeffrey R.; Lee, Casey; Norman, Julia E.; Reutter, David C.

    2016-01-01

    The National Water Quality Network (NWQN) for Rivers and Streams includes 113 surface-water river and stream sites monitored by the U.S. Geological Survey (USGS) National Water Quality Program, National Water-Quality Assessment (NAWQA) Project. The NWQN includes 19 large river coastal sites, 44 large river inland sites, 30 wadeable stream reference sites, 10 wadeable stream urban sites, and 10 wadeable stream agricultural sites. In addition to the 113 NWQN sites, 3 large inland river monitoring sites from the USGS Cooperative Water Program are also included in this annual water-quality reporting Web site to be consistent with previous USGS studies of nutrient transport in the Mississippi-Atchafalaya River Basin. This data release provides streamflow, nutrient, pesticide and sediment data collected and analyzed by NWQN and other historical water-quality networks from 1980-2015. Data from this release are presented at the USGS Tracking Water Quality page: http://cida.usgs.gov/quality/rivers/home.

  18. Assessment of water quality in distribution networks through the lens ...

    African Journals Online (AJOL)

    2016-04-02

    Apr 2, 2016 ... method, which identifies the regions with relatively poor water quality and highlights the potential locations for re-chlorination points. .... *USEPA (2009a) states 1 NTU when the system uses conventional or direct filtration and 5NTU when the system uses filtration other than the conven- tional or direct ...

  19. Water quality modeling in the dead end sections of drinking water distribution networks.

    Science.gov (United States)

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-02-01

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated

  20. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages.

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  1. Social Perception of Public Water Supply Network and Groundwater Quality in an Urban Setting Facing Saltwater Intrusion and Water Shortages

    Science.gov (United States)

    Alameddine, Ibrahim; Jawhari, Gheeda; El-Fadel, Mutasem

    2017-04-01

    Perceptions developed by consumers regarding the quality of water reaching their household can affect the ultimate use of the water. This study identified key factors influencing consumers' perception of water quality in a highly urbanized coastal city, experiencing chronic water shortages, overexploitation of groundwater, and accelerated saltwater intrusion. Household surveys were administered to residents to capture views and perceptions of consumed water. Concomitantly, groundwater and tap water samples were collected and analyzed at each residence for comparison with perceptions. People's rating of groundwater quality was found to correlate to the measured water quality both in the dry and wet seasons. In contrast, perceptions regarding the water quality of the public water supply network did not show any correlation with the measured tap water quality indicators. Logistic regression models developed to predict perception based on salient variables indicated that age, apartment ownership, and levels of total dissolved solids play a significant role in shaping perceptions regarding groundwater quality. Perceptions concerning the water quality of the public water supply network appeared to be independent of the measured total dissolved solids levels at the tap but correlated to those measured in the wells. The study highlights misconceptions that can arise as a result of uncontrolled cross-connections of groundwater to the public supply network water and the development of misaligned perceptions based on prior consumption patterns, water shortages, and a rapidly salinizing groundwater aquifer.

  2. Identifying uncertainty of the mean of some water quality variables along water quality monitoring network of Bahr El Baqar drain

    Directory of Open Access Journals (Sweden)

    Hussein G. Karaman

    2013-10-01

    Full Text Available Assigning objectives to the environmental monitoring network is the pillar of the design to these kinds of networks. Conflicting network objectives may affect the adequacy of the design in terms of sampling frequency and the spatial distribution of the monitoring stations which in turn affect the accuracy of the data and the information extracted. The first step in resolving this problem is to identify the uncertainty inherent in the network as the result of the vagueness of the design objective. Entropy has been utilized and adopted over the past decades to identify uncertainty in similar water data sets. Therefore it is used to identify the uncertainties inherent in the water quality monitoring network of Bahr El-Baqar drain located in the Eastern Delta. Toward investigating the applicability of the Entropy methodology, comprehensive analysis at the selected drain as well as their data sets is carried out. Furthermore, the uncertainty calculated by the entropy function will be presented by the means of the geographical information system to give the decision maker a global view to these uncertainties and to open the door to other researchers to find out innovative approaches to lower these uncertainties reaching optimal monitoring network in terms of the spatial distribution of the monitoring stations.

  3. Importance of demand modelling in network water quality models: a review

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2008-09-01

    Full Text Available Today, there is a growing interest in network water quality modelling. The water quality issues of interest relate to both dissolved and particulate substances. For dissolved substances the main interest is in residual chlorine and (microbiological contaminant propagation; for particulate substances it is in sediment leading to discolouration. There is a strong influence of flows and velocities on transport, mixing, production and decay of these substances in the network. This imposes a different approach to demand modelling which is reviewed in this article.

    For the large diameter lines that comprise the transport portion of a typical municipal pipe system, a skeletonised network model with a top-down approach of demand pattern allocation, a hydraulic time step of 1 h, and a pure advection-reaction water quality model will usually suffice. For the smaller diameter lines that comprise the distribution portion of a municipal pipe system, an all-pipes network model with a bottom-up approach of demand pattern allocation, a hydraulic time step of 1 min or less, and a water quality model that considers dispersion and transients may be needed.

    Demand models that provide stochastic residential demands per individual home and on a one-second time scale are available. A stochastic demands based network water quality model needs to be developed and validated with field measurements. Such a model will be probabilistic in nature and will offer a new perspective for assessing water quality in the drinking water distribution system.

  4. Design of water quality monitoring networks with two information scenarios in tropical Andean basins.

    Science.gov (United States)

    Bastidas, Juan Carlos; Vélez, Jorge Julián; Zambrano, Jeannette; Londoño, Adela

    2017-09-01

    Design and redesign of water quality monitoring networks were evaluated for two similarly sized watersheds in the tropical Andes via optimization techniques using geographic information system technology (GIS) and a matter-element analysis of 5-day biological oxygen demand (BOD 5 ) and total suspended solids (TSS). This resulted in a flexible, objectively based design for a 1128-km 2 watershed without prior water quality data (La Miel River), and a network redesign of a 1052-km 2 watershed with historical water quality monitoring (Chinchiná River). Monitoring design for the undocumented basin incorporated mathematical expressions for physical, anthropological, and historical factors-and was based on clear objectives for diagnosis and intervention of water pollution. Network redesign identified network redundancy, which resulted in a 64% reduction in the number of water quality monitoring stations along the channel, and a 78% reduction of stations throughout the basin. Most tropical drainage basins throughout the world have little to no prior water quality data. But even in well-studied drainage basins like the Chinchiná River, which is among the most thoroughly studied basins in Colombia, redesign of historical and existing monitoring networks will become a standard tool to advance the restoration of polluted surface waters, not only in Colombia, but also throughout the world.

  5. Water Quality Monitoring and Control for Aquaculture Based on Wireless Sensor Networks

    OpenAIRE

    Daudi S. Simbeye; Shi Feng Yang

    2014-01-01

    We have designed and presented a wireless sensor network monitoring and control system for aquaculture. The system can detect and control water quality parameters of temperature, dissolved oxygen content, pH value, and water level in real-time. The sensor nodes collect the water quality parameters and transmit them to the base station host computer through ZigBee wireless communication standard. The host computer is used for data analysis, processing and presentation using LabVIEW software pl...

  6. Artificial neural networks for defining the water quality determinants of groundwater abstraction in coastal aquifer

    Science.gov (United States)

    Lallahem, S.; Hani, A.

    2017-02-01

    Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.

  7. Abnormal quality detection and isolation in water distribution networks using simulation models

    Directory of Open Access Journals (Sweden)

    F. Nejjari

    2012-11-01

    Full Text Available This paper proposes a model based detection and localisation method to deal with abnormal quality levels based on the chlorine measurements and chlorine sensitivity analysis in a water distribution network. A fault isolation algorithm which correlates on line the residuals (generated by comparing the available chlorine measurements with their estimations using a model with the fault sensitivity matrix is used. The proposed methodology has been applied to a District Metered Area (DMA in the Barcelona network.

  8. Assessment of water quality in distribution networks through the lens ...

    African Journals Online (AJOL)

    Disinfection with chlorine is a common practice to ensure secured drinking water, but results in potentially harmful disinfection by-products (DBPs), when excess chlorination is done. The US Environmental Protection Agency (US EPA) has established Stage 1 and Stage 2 disinfection by-product Rules (DBP rules) to control ...

  9. Modelling water quality in drinking water distribution networks from real-time direction data

    OpenAIRE

    Nazarovs, S.; Dejus, S.; Juhna, T.

    2012-01-01

    Modelling of contamination spread and location of a contamination source in a water distribution network is an important task. There are several simulation tools developed, however the significant part of them is based on hydraulic models that need node demands as input data that sometimes may result in false negative results and put users at risk. The paper considers applicability of a real-time flow direction data based model for contaminant transport in a distribution network of a city and...

  10. A neural network approach to smarter sensor networks for water quality monitoring.

    Science.gov (United States)

    O'Connor, Edel; Smeaton, Alan F; O'Connor, Noel E; Regan, Fiona

    2012-01-01

    Environmental monitoring is evolving towards large-scale and low-cost sensor networks operating reliability and autonomously over extended periods of time. Sophisticated analytical instrumentation such as chemo-bio sensors present inherent limitations because of the number of samples that they can take. In order to maximize their deployment lifetime, we propose the coordination of multiple heterogeneous information sources. We use rainfall radar images and information from a water depth sensor as input to a neural network (NN) to dictate the sampling frequency of a phosphate analyzer at the River Lee in Cork, Ireland. This approach shows varied performance for different times of the year but overall produces output that is very satisfactory for the application context in question. Our study demonstrates that even with limited training data, a system for controlling the sampling rate of the nutrient sensor can be set up and can improve the efficiency of the more sophisticated nodes of the sensor network.

  11. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality

    Directory of Open Access Journals (Sweden)

    Xiaoci Huang

    2015-11-01

    Full Text Available Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN. Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  12. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    Science.gov (United States)

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  13. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  14. Data from selected U.S. Geological Survey national stream water quality monitoring networks

    Science.gov (United States)

    Alexander, R.B.; Slack, J.R.; Ludtke, A.S.; Fitzgerald, K.K.; Schertz, T.L.

    1998-01-01

    A nationally consistent and well-documented collection of water quality and quantity data compiled during the past 30 years for streams and rivers in the United States is now available on CD-ROM and accessible over the World Wide Web. The data include measurements from two U.S. Geological Survey (USGS) national networks for 122 physical, chemical, and biological properties of water collected at 680 monitoring stations from 1962 to 1995, quality assurance information that describes the sample collection agencies, laboratories, analytical methods, and estimates of laboratory measurement error (bias and variance), and information on selected cultural and natural characteristics of the station watersheds. The data are easily accessed via user-supplied software including Web browser, spreadsheet, and word processor, or may be queried and printed according to user-specified criteria using the supplied retrieval software on CD-ROM. The water quality data serve a variety of scientific uses including research and educational applications related to trend detection, flux estimation, investigations of the effects of the natural environment and cultural sources on water quality, and the development of statistical methods for designing efficient monitoring networks and interpreting water resources data.

  15. Controls of catchments` sub-storage contributions to dynamic water quality patterns in the stream network

    Science.gov (United States)

    Schuetz, Tobias; Maike Hegenauer, Anja

    2016-04-01

    Water quality is usually observed either continuously at a few stations within a catchment or with few snapshot sampling campaigns throughout the whole stream network. Although we know that the depletion of catchment sub-storages can vary throughout the stream network according to their actual water content (spatial variability of actual storage conditions can be caused amongst others by unevenly distributed rainfall, storage size or spatial differences in soil characteristics and land use), we know little about the impact of this process on spatial water quality patterns. For summer low flow recession periods, when stream water composition can be crucial for aquatic ecosystem conditions and the exceedance of water quality thresholds, knowledge on the controls of the dynamic interplay of catchment storages and stream water composition might improve water quality management and the implementation of corresponding mitigation measures. We studied this process throughout the stream network of a first-order agricultural headwater catchment in south-western Germany during two summer low flow recession periods. The underlying geology of the study area is a deep layer of aeolian loess, whilst the dominating soil is a silty calcaric regosol with gleizations in the colluvium. The land use in the catchment is dominated by viniculture (63 %) and arable crops (18 %). Due to the dense drainpipe network within the catchment we could identify 12 sub-catchments contributing during summer low flow recession periods to total stream discharge. We continuously observed discharge, electrical conductivity and water temperatures for 8 of the sub-catchments and at the catchment outlet. This data set was accomplished by 10 snapshot campaigns where we sampled for water temperatures, electrical conductivity, major ions, pH and O2 throughout the stream network. Using either discharge concentration relationships or time dependent functions, we derived continuous export rates for all measures in

  16. Development of a decision-making methodology to design a water quality monitoring network.

    Science.gov (United States)

    Keum, Jongho; Kaluarachchi, Jagath J

    2015-07-01

    The number of water quality monitoring stations in the USA has decreased over the past few decades. Scarcity of observations can easily produce prediction uncertainty due to unreliable model calibration. An effective water quality monitoring network is important not only for model calibration and water quality prediction but also for resources management. Redundant or improperly located monitoring stations may cause increased monitoring costs without improvement to the understanding of water quality in watersheds. In this work, a decision-making methodology is proposed to design a water quality monitoring network by providing an adequate number of monitoring stations and their approximate locations at the eight-digit hydrologic unit codes (HUC8) scale. The proposed methodology is demonstrated for an example at the Upper Colorado River Basin (UCRB), where salinity is a serious concern. The level of monitoring redundancy or scarcity is defined by an index, station ratio (SR), which represents a monitoring density based on water quality load originated within a subbasin. By comparing the number of stations from a selected target SR with the available number of stations including the actual and the potential stations, the suggested number of stations in each subbasin was decided. If monitoring stations are primarily located in the low salinity loading subbasins, the average actual SR tends to increase, and vice versa. Results indicate that the spatial distribution of monitoring locations in 2011 is concentrated on low salinity loading subbasins, and therefore, additional monitoring is required for the high salinity loading subbasins. The proposed methodology shows that the SR is a simple and a practical indicator for monitoring density.

  17. Design and Development of Water Quality Monitoring System Based on Wireless Sensor Network in Aquaculture

    OpenAIRE

    Zhang, Mingfei; Li, Daoliang; Wang, Lianzhi; Ma, Daokun; Ding, Qisheng

    2010-01-01

    International audience; This paper presents a system framework taking the advantages of the WSN for the real-time monitoring on the water quality in aquaculture. We design the structure of the wireless sensor network to collect and continuously transmit data to the monitoring software. Then we accomplish the configuration model in the software that enhances the reuse and facility of the monitoring project. Moreover, the monitoring software developed to represent the monitoring hardware and da...

  18. Assessment for water quality by artificial neural network in Daya Bay, South China Sea.

    Science.gov (United States)

    Wu, Mei-Lin; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.

  19. System-Aware Smart Network Management for Nano-Enriched Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    B. Mokhtar

    2016-01-01

    Full Text Available This paper presents a comprehensive water quality monitoring system that employs a smart network management, nano-enriched sensing framework, and intelligent and efficient data analysis and forwarding protocols for smart and system-aware decision making. The presented system comprises two main subsystems, a data sensing and forwarding subsystem (DSFS, and Operation Management Subsystem (OMS. The OMS operates based on real-time learned patterns and rules of system operations projected from the DSFS to manage the entire network of sensors. The main tasks of OMS are to enable real-time data visualization, managed system control, and secure system operation. The DSFS employs a Hybrid Intelligence (HI scheme which is proposed through integrating an association rule learning algorithm with fuzzy logic and weighted decision trees. The DSFS operation is based on profiling and registering raw data readings, generated from a set of optical nanosensors, as profiles of attribute-value pairs. As a case study, we evaluate our implemented test bed via simulation scenarios in a water quality monitoring framework. The monitoring processes are simulated based on measuring the percentage of dissolved oxygen and potential hydrogen (PH in fresh water. Simulation results show the efficiency of the proposed HI-based methodology at learning different water quality classes.

  20. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    Science.gov (United States)

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  1. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.

    Science.gov (United States)

    Oliker, Nurit; Ostfeld, Avi

    2015-09-01

    Event detection is one of the current most challenging topics in water distribution systems analysis: how regular on-line hydraulic (e.g., pressure, flow) and water quality (e.g., pH, residual chlorine, turbidity) measurements at different network locations can be efficiently utilized to detect water quality contamination events. This study describes an integrated event detection model which combines multiple sensor stations data with network hydraulics. To date event detection modelling is likely limited to single sensor station location and dataset. Single sensor station models are detached from network hydraulics insights and as a result might be significantly exposed to false positive alarms. This work is aimed at decreasing this limitation through integrating local and spatial hydraulic data understanding into an event detection model. The spatial analysis complements the local event detection effort through discovering events with lower signatures by exploring the sensors mutual hydraulic influences. The unique contribution of this study is in incorporating hydraulic simulation information into the overall event detection process of spatially distributed sensors. The methodology is demonstrated on two example applications using base runs and sensitivity analyses. Results show a clear advantage of the suggested model over single-sensor event detection schemes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  3. Emission Control in River Network System of the Taihu Basin for Water Quality Assurance of Water Environmentally Sensitive Areas

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2017-02-01

    Full Text Available As pollution incidents frequently occurred in the functional water areas of the Taihu Basin, Yangtze Delta, effective emission control to guarantee water quality in the Taihu Basin became the priority for environmental management. In this study, a new total emission control (TEC method was proposed with an emphasis on the concept of water environmentally sensitive areas (WESAs. This method was verified in Wujiang District and the techniques can be concluded in three steps: (1 a 1-D mathematical model for the study area was established and the model was calibrated using field measurement data; (2 based on an analysis of administrative planning and regulations, WESAs were identified as the main controlling objectives for emission control calculations. The weighting coefficient of local pollution sources was investigated to discuss the effectiveness of TEC on water quality improvement at WESAs; and (3 applying the river network mathematical model, water quality along the river segments was simulated under different pollution control plans. The results proved the effectiveness of TEC in the study area and indicated that a 14.6% reduction in the total amount of ammonia-nitrogen (NH3-N, as well as a 31.1% reduction in the total amount of chemical oxygen demand (CODcr, was essential in order to meet the water quality standard in the WESAs.

  4. Assessment of the water quality monitoring network of the Piabanha River experimental watersheds in Rio de Janeiro, Brazil, using autoassociative neural networks.

    Science.gov (United States)

    Villas-Boas, Mariana D; Olivera, Francisco; de Azevedo, Jose Paulo S

    2017-09-01

    Water quality monitoring is a complex issue that requires support tools in order to provide information for water resource management. Budget constraints as well as an inadequate water quality network design call for the development of evaluation tools to provide efficient water quality monitoring. For this purpose, a nonlinear principal component analysis (NLPCA) based on an autoassociative neural network was performed to assess the redundancy of the parameters and monitoring locations of the water quality network in the Piabanha River watershed. Oftentimes, a small number of variables contain the most relevant information, while the others add little or no interpretation to the variability of water quality. Principal component analysis (PCA) is widely used for this purpose. However, conventional PCA is not able to capture the nonlinearities of water quality data, while neural networks can represent those nonlinear relationships. The results presented in this work demonstrate that NLPCA performs better than PCA in the reconstruction of the water quality data of Piabanha watershed, explaining most of data variance. From the results of NLPCA, the most relevant water quality parameter is fecal coliforms (FCs) and the least relevant is chemical oxygen demand (COD). Regarding the monitoring locations, the most relevant is Poço Tarzan (PT) and the least is Parque Petrópolis (PP).

  5. Risk assessment of water quality using Monte Carlo simulation and artificial neural network method.

    Science.gov (United States)

    Jiang, Yunchao; Nan, Zhongren; Yang, Sucai

    2013-06-15

    There is always uncertainty in any water quality risk assessment. A Monte Carlo simulation (MCS) is regarded as a flexible, efficient method for characterizing such uncertainties. However, the required computational effort for MCS-based risk assessment is great, particularly when the number of random variables is large and the complicated water quality models have to be calculated by a computationally expensive numerical method, such as the finite element method (FEM). To address this issue, this paper presents an improved method that incorporates an artificial neural network (ANN) into the MCS to enhance the computational efficiency of conventional risk assessment. The conventional risk assessment uses the FEM to create multiple water quality models, which can be time consuming or cumbersome. In this paper, an ANN model was used as a substitute for the iterative FEM runs, and thus, the number of water quality models that must be calculated can be dramatically reduced. A case study on the chemical oxygen demand (COD) pollution risks in the Lanzhou section of the Yellow River in China was taken as a reference. Compared with the conventional risk assessment method, the ANN-MCS-based method can save much computational effort without a loss of accuracy. The results show that the proposed method in this paper is more applicable to assess water quality risks. Because the characteristics of this ANN-MCS-based technique are quite general, it is hoped that the technique can also be applied to other MCS-based uncertainty analysis in the environmental field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Multiscale River Hydraulic and Water Quality Observations Combining Stationary and Mobile Sensor Network Nodes

    Science.gov (United States)

    Harmon, T. C.; Fisher, J. C.; Kaiser, W. J.

    2006-05-01

    Increasing demands on water supplies, non-point source pollution, and water quality-based ecological concerns all point to the need for observing stream flow perturbations and pollutant discharges at higher resolution than was practical in the past. This work presents the results from a test of a rapidly deployable river observational approach consisting of four components: (1) existing geospatial data and federal, state, and private river gauging infrastructure for identifying key river reaches and critical sampling times, (2) human- actuated sensor deployments for broad spatial characterization of the targeted river reach, (3) stationary sensors embedded in the river and its sediments for longer term spatiotemporal observations within the targeted reach, and (4) the robotic Networked Infomechanical System (NIMS RD) for high resolution scanning of spatiotemporal hydraulic and chemical properties at specific points along the reach. The approach is demonstrated for a test bed deployment at the confluence of the Merced and San Joaquin Rivers in Central California. After identifying a suitable reach for the test deployment, a network of on-line gauging stations, accessed through the California Data Exchange Center (CDEC), is used to coordinate the timing of the subsequent three deployment aspects based on flow and river stage forecasts. Kayak-mounted sonar and water quality sensors are used to rapidly survey the test zone bathymetry and basic water quality parameters (temperature, salinity). Results from the rapid survey are then used to guide locations of the sediment- anchored sensor arrays (javelins) which include temperature, water pressure (depth) and water quality sensors distributed vertically at screened intervals. The NIMS RD is comprised of two supporting towers and a suspension cable delivering power and Internet connectivity for controlling and actuating the tram-like NIMS unit. The NIMS unit is capable of raising and lowering a payload of sensors

  7. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    Science.gov (United States)

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network and constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of water resources in the State. Six sites from the Ambient Water-Quality Monitoring Network, with data available from the 1993 through 2008 water years, were chosen to compare water-quality conditions and long-term trends of dissolved oxygen, selected physical properties, total suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorous, fecal indicator bacteria, and selected trace elements. The six sites used in the study were classified in groups corresponding to the physiography, main land use, and drainage basin size, and represent most stream types in Missouri. Long-term trends in this study were analyzed using flow-adjusted and non-flow adjusted models. Highly censored datasets (greater than 5 percent but less than 50 percent censored values) were not flow-adjusted. Trends that were detected can possibly be related to changes in agriculture or urban development within the drainage basins. Trends in nutrients were the most prevalent. Upward flow-adjusted trends in dissolved nitrate plus nitrite (as nitrogen) concentrations were identified at the Elk River site, and in total phosphorus concentrations at the South Fabius and Grand River sites. A downward flow-adjusted trend was identified in total phosphorus concentrations from Wilson Creek, the only urban site in the study. The downward trend in phosphorus possibly was related to a phosphorus reduction system that began operation in 2001 at a wastewater treatment plant upstream from the sampling site. Total suspended solids concentrations indicated an upward non-flow adjusted trend at the two northern sites (South Fabius

  8. A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2012-01-01

    Full Text Available This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions.

  9. Agricultural pesticide use estimates for the USGS National Water Quality Network, 1992-2014

    Science.gov (United States)

    Baker, Nancy T.

    2016-01-01

    The National Water Quality Network (NWQN) for Rivers and Streams includes 113 surface-water river and stream sites monitored by the U.S. Geological Survey (USGS) National Water Quality Program (NWQP). The NWQN represents the consolidation of four historical national networks: the USGS National Water-Quality Assessment (NAWQA) Project, the USGS National Stream Quality Accounting Network (NASQAN), the National Monitoring Network (NMN), and the Hydrologic Benchmark Network (HBN). The NWQN includes 22 large river coastal sites, 41 large river inland sites, 30 wadeable stream reference sites, 10 wadeable stream urban sites, and 10 wadeable stream agricultural sites. In addition to the 113 NWQN sites, 3 large inland river monitoring sites from the USGS Cooperative Matching Funds program are also included in this annual water-quality reporting Web site to be consistent with previous USGS studies of nutrient transport in the Mississippi-Atchafalaya River Basin. This data release provides estimated agricultural pesticide use for 83 NWQN watersheds for 110 pesticide compounds from 1992-2014. Pesticide use was not estimated for the 30 wadeable stream reference sites, or from 3 large river coastal sites (07381590, "Wax Lake Outlet at Calumet, LA3"; 07381600, "Lower Atchafalaya River at Morgan City, LA2"; or 15565477, "Yukon River at Pilot Station, AK"). Use was not estimated for reference sites because pesticides are not monitored at reference water-quality sampling sites. Pesticide use data are not available for Alaska and thus no data is available for the Yukon River site. The other two coastal sites (07381590 and 07381600) where use was not estimated are outflow distributaries into the Gulf of Mexico. This data release provides use estimates for the same pesticide parent compounds sampled in water and analyzed by USGS, National Water Quality Laboratory (NWQL), Schedule 2437: http://wwwnwql.cr.usgs.gov/USGS/catalog/index.cfm. Pesticide use data are not available for

  10. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2015-01-01

    Full Text Available In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS and a multilinear regression (MLR model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical errors, including the mean absolute error, the root mean square error, and the correlation coefficient, computed from the measured and the model-simulated DO, TP, Chl a, and SD values. The results indicate that the performance of the ANFIS model is superior to those of the MLR and RBFN models. The study results show that the neural network using the ANFIS model is suitable for simulating the water quality variables with reasonable accuracy, suggesting that the ANFIS model can be used as a valuable tool for reservoir management in Taiwan.

  11. Water quality modelling and optimisation of wastewater treatment network using mixed integer programming

    CSIR Research Space (South Africa)

    Mahlathi, Christopher

    2016-10-01

    Full Text Available Instream water quality management encompasses field monitoring and utilisation of mathematical models. These models can be coupled with optimisation techniques to determine more efficient water quality management alternatives. Among these activities...

  12. Watershed boundaries for the U.S. Geological Survey National Water Quality Network

    Science.gov (United States)

    Baker, Nancy T.

    2016-01-01

    The National Water Quality Network (NWQN) for Rivers and Streams includes 113 surface-water river and stream sites monitored by the U.S. Geological Survey (USGS) National Water Quality Program (NWQP). The NWQN represents the consolidation of four historical national networks: the USGS National Water-Quality Assessment (NAWQA) Project, the USGS National Stream Quality Accounting Network (NASQAN), the National Monitoring Network (NMN), and the Hydrologic Benchmark Network (HBN). The NWQN includes 22 large river coastal sites, 41 large river inland sites, 30 wadeable stream reference sites, 10 wadeable stream urban sites, and 10 wadeable stream agricultural sites. In addition to the 113 NWQN sites, 3 large inland river monitoring sites from the USGS Cooperative Matching Funds (Co-op) program are also included in this annual water-quality reporting Web site to be consistent with previous USGS studies of nutrient transport in the Mississippi-Atchafalaya River Basin. This data release contains geo-referenced digital data and associated attributes of watershed boundaries for 113 NWQN and 3 Co-op sites. Two sites, "Wax Lake Outlet at Calumet, LA"; 07381590, and "Lower Atchafalaya River at Morgan City, LA"; 07381600, are outflow distributaries into the Gulf of Mexico. Watershed boundaries were delineated for the portion of the watersheds between "Red River near Alexandria, LA"; 07355500 and "Atchafalaya River at Melville, LA"; 07381495 to the two distributary sites respectively. Drainage area was undetermined for these two distributary sites because the main stream channel outflows into many smaller channels so that streamflow is no longer relative to the watershed area. NWQN watershed boundaries were derived from the Watershed Boundary Dataset-12-digit hydrologic units (WBD-12). The development of the WBD-12 was a coordinated effort between the United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS), the USGS, and the Environmental

  13. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  14. In situ optical water-quality sensor networks - Workshop summary report

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Horsburgh, Jeffery S.

    2012-01-01

    Advanced in situ optical water-quality sensors and new techniques for data analysis hold enormous promise for furthering scientific understanding of aquatic systems. These sensors measure important biogeochemical parameters for long deployments, enabling the capture of data at time scales over which they vary most meaningfully. The high-frequency, real-time water-quality data they generate provide opportunities for early warning of water-quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U. S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) convened a joint 3-day workshop (June 8-10, 2011) at the National Conservation Training Center in Shepardstown, West Virginia, to explore ways to coordinate development of standards and applications for optical sensors, and improve handling, storing, and analyzing the continuous data they produce. The workshop brought together more than 60 scientists, program managers, and vendors from universities, government agencies, and the private sector. Several important outcomes emerged from the presentations and breakout sessions. There was general consensus that making intercalibrated measurements requires that both manufacturers and users better characterize and calibrate the sensors under field conditions. For example, the influence of suspended particles, highly colored water, and temperature on optical sensors remains poorly understood, but consistently accounting for these factors is critical to successful deployment and for interpreting results in different settings. This, in turn, highlights the lack of appropriate standards for sensor calibrations, field checks, and characterizing interferences, as well as methods for

  15. Designing Groundwater Monitoring Networks for Regional-Scale Water Quality Assessment: A Bayesian Approach

    Science.gov (United States)

    Pinto, M. J.; Wagner, B. J.

    2002-12-01

    The design of groundwater monitoring networks is an important concern of regional-scale water-quality assessment programs because of the high cost of data collection. The work presented here addresses regional-scale design issues using ground-water simulation and optimization set within a Bayesian framework. The regional-scale design approach focuses on reducing the uncertainty associated with a fundamental quantity: the proportion of a subsurface water resource which exceeds a specified threshold concentration, such as a mandated maximum contaminant level. This proportion is hereafter referred to as the threshold proportion. The goal is to identify optimal or near-optimal sampling designs that reduce the threshold proportion uncertainty to an acceptable level. In the Bayesian approach, there is a probability density function (pdf) associated with the unknown threshold proportion before sampling. This function is known as the prior pdf. The form of the prior pdf, which is dependent on the information available regarding the distribution of water quality within the aquifer system, controls the amount of sampling needed. In the absence of information, the form of the prior pdf is uniform; however, if a ground-water flow and transport model is available, a Monte Carlo analysis of ground-water flow and transport simulations can be used to generate a prior pdf which is non-uniform and which contains the information available regarding solute sources, pathways and transport. After sampling, the prior pdf is conditioned on the sampling data. The conditional distribution is known as the posterior pdf. In most cases there is a reduction in uncertainty associated with conditioning. The reduction in uncertainty achieved after collecting samples can be explored for different combinations of prior pdf distribution and sampling method. Three scenarios are considered: (i) uniform prior pdf with random sampling; (ii) non-uniform prior pdf with random sampling; and (iii) non

  16. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters.

    Science.gov (United States)

    Zare Abyaneh, Hamid

    2014-01-23

    This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD.

  17. The spatial structure and temporal synchrony of water quality in stream networks

    Science.gov (United States)

    Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles

    2017-04-01

    To feed nine billion people in 2050 while maintaining viable aquatic ecosystems will require an understanding of nutrient pollution dynamics throughout stream networks. Most regulatory frameworks such as the European Water Framework Directive and U.S. Clean Water Act, focus on nutrient concentrations in medium to large rivers. This strategy is appealing because large rivers integrate many small catchments and total nutrient loads drive eutrophication in estuarine and oceanic ecosystems. However, there is growing evidence that to understand and reduce downstream nutrient fluxes we need to look upstream. While headwater streams receive the bulk of nutrients in river networks, the relationship between land cover and nutrient flux often breaks down for small catchments, representing an important ecological unknown since 90% of global stream length occurs in catchments smaller than 15 km2. Though continuous monitoring of thousands of small streams is not feasible, what if we could learn what we needed about where and when to implement monitoring and conservation efforts with periodic sampling of headwater catchments? To address this question we performed repeat synoptic sampling of 56 nested catchments ranging in size from 1 to 370 km2 in western France. Spatial variability in carbon and nutrient concentrations decreased non-linearly as catchment size increased, with thresholds in variance for organic carbon and nutrients occurring between 36 and 68 km2. While it is widely held that temporal variance is higher in smaller streams, we observed consistent temporal variance across spatial scales and the ranking of catchments based on water quality showed strong synchrony in the water chemistry response to seasonal variation and hydrological events. We used these observations to develop two simple management frameworks. The subcatchment leverage concept proposes that mitigation and restoration efforts are more likely to succeed when implemented at spatial scales expressing

  18. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  19. Sensor & Model Enabled Water Quality & Security Assessment System for Situational Awareness of Water Distribution Networks

    Science.gov (United States)

    2010-06-01

    Distribution Networks NDIA Environment , Energy Security & Sustainability Symposium & Exhibition June 14-17,2010 Denver, Colorado Mark Ginsberg...for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the NDIA Environment , Energy Security & Sustainability (E2S2...Chlorfenvinphos, Formetanate Hydrochloride, Acrolein, Chloropicrin, Sodium chloroacetate, Thyoglycolate medium, Crotoxyphos, Glyphosate , Jimsonweed, Methanol

  20. Trends in surface-water quality at selected National Stream Quality Accounting Network (NASQAN) stations, in Michigan

    Science.gov (United States)

    Syed, Atiq U.; Fogarty, Lisa R.

    2005-01-01

    To demonstrate the value of long-term, water-quality monitoring, the Michigan Department of Environmental Quality (MDEQ), in cooperation with the U.S. Geological Survey (USGS), initiated a study to evaluate potential trends in water-quality constituents for selected National Stream Quality Accounting Network (NASQAN) stations in Michigan. The goal of this study is to assist the MDEQ in evaluating the effectiveness of water-pollution control efforts and the identification of water-quality concerns. The study included a total of nine NASQAN stations in Michigan. Approximately 28 constituents were analyzed for trend tests. Station selection was based on data availability, land-use characteristics, and station priority for the MDEQ Water Chemistry Monitoring Project. Trend analyses were completed using the uncensored Seasonal Kendall Test in the computer program Estimate Trend (ESTREND), a software program for the detection of trends in water-quality data. The parameters chosen for the trend test had (1) at least a 5-year period of record (2) about 5 percent of the observations censored at a single reporting limit, and (3) 40 percent of the values within the beginning one-fifth and ending one-fifth of the selected period. In this study, a negative trend indicates a decrease in concentration of a particular constituent, which generally means an improvement in water quality; whereas a positive trend means an increase in concentration and possible degradation of water quality. The results of the study show an overall improvement in water quality at the Clinton River at Mount Clemens, Manistee River at Manistee, and Pigeon River near Caseville. The detected trend for these stations show decreases in concentrations of various constituents such as nitrogen compounds, conductance, sulfate, fecal coliform bacteria, and fecal streptococci bacteria. The negative trend may indicate an overall improvement in agricultural practices, municipal and industrial wastewater

  1. Using additional external inputs to forecast water quality with an artificial neural network for contamination event detection in source water

    Science.gov (United States)

    Schmidt, F.; Liu, S.

    2016-12-01

    Source water quality plays an important role for the safety of drinking water and early detection of its contamination is vital to taking appropriate countermeasures. However, compared to drinking water, it is more difficult to detect contamination events because its environment is less controlled and numerous natural causes contribute to a high variability of the background values. In this project, Artificial Neural Networks (ANNs) and a Contamination Event Detection Process (CED Process) were used to identify events in river water. The ANN models the response of basic water quality sensors obtained in laboratory experiments in an off-line learning stage and continuously forecasts future values of the time line in an on-line forecasting step. During this second stage, the CED Process compares the forecast to the measured value and classifies it as regular background or event value, which modifies the ANN's continuous learning and influences its forecasts. In addition to this basic setup, external information is fed to the CED Process: A so-called Operator Input (OI) is provided to inform about unusual water quality levels that are unrelated to the presence of contamination, for example due to cooling water discharge from a nearby power plant. This study's primary goal is to evaluate how well the OI fits into the design of the combined forecasting ANN and CED Process and to understand its effects on the online forecasting stage. To test this, data from laboratory experiments conducted previously at the School of Environment, Tsinghua University, have been used to perform simulations highlighting features and drawbacks of this method. Applying the OI has been shown to have a positive influence on the ANN's ability to handle a sudden change in background values, which is unrelated to contamination. However, it might also mask the presence of an event, an issue that underlines the necessity to have several instances of the algorithm run in parallel. Other difficulties

  2. An integrated model for simulating and diagnosing the water quality based on the system dynamics and Bayesian network.

    Science.gov (United States)

    Wang, Gengzhe; Wang, Shuo; Kang, Qiao; Duan, Haiyan; Wang, Xian'En

    2016-12-01

    An integrated model for simulating and diagnosing water quality based on the system dynamics and Bayesian network (BN) is presented in the paper. The research aims to connect water monitoring downstream with outlet management upstream in order to present an efficiency outlet management strategy. The integrated model was built from two components: the system dynamics were used to simulate the water quality and the BN was applied to diagnose the reason for water quality deterioration according to the water quality simulation. The integrated model was applied in a case study of the Songhua River from the Baiqi section to the Songlin section to prove its reasonability and accuracy. The results showed that the simulation fit to the variation trend of monitoring data, and the average relative error was less than 10%. The water quality deterioration in the Songlin section was mainly found to be caused by the water quality in the upper reach and Hadashan Reservoir drain by using the diagnosis function of the integrated model based on BN. The relevant result revealed that the integrated model could provide reasonable and quantitative support for the basin manager to make a reasonable outlet control strategy to avoid more serious water quality deterioration.

  3. Trends in Surface-Water Quality at Selected Ambient-Monitoring Network Stations in Kentucky, 1979-2004

    Science.gov (United States)

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among

  4. Survey of chemical quality and corrosion and scaling potential of drinking water distribution network of Bushehr city

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2015-05-01

    Full Text Available Background: Determination of water corrosion indexes is one of the affecting approaches on drinking water management. Corrosion can causes economical problems, reduce the useful life of water facilities, and health damages to consumers. The aim of this study was to survey of chemical quality and determination of the corrosion potential of the water distribution system in Bushehr city. Materials and Methods: In this cross sectional study, the sampling was carried out during one year from 7 stations. Values of Langelier, Ryznar, corrosivity and Puckorius indexes were calculated by using such parameters as pH, total dissolved solids, temperature, permanent and temporary hardness, and alkalinity. Results: The average values for pH, total dissolved solids, temperature, and alkalinity was obtained 7.5, 586.82 mg/L, 66.92 mg/L CaCO3. The corrosion indexes were calculated Langelier 0.28, Ryznar 7.24, corrosivity 12.02, and Puckorius 7.81. Conclusion: Bushehr city water is tends to be slightly scaling based on Ryznar index and corrosive based on other studied indexes. Overall, the water quality was tending to corrosive and, therefore, recommended to use corrosion resistance pipes in water transmission and network or lining the inner wall of pipes or correction the water quality.

  5. Prediction and assessment of drought effects on surface water quality using artificial neural networks: case study of Zayandehrud River, Iran.

    Science.gov (United States)

    Safavi, Hamid R; Malek Ahmadi, Kian

    2015-01-01

    Although drought impacts on water quantity are widely recognized, the impacts on water quality are less known. The Zayandehrud River basin in the west-central part of Iran plateau witnessed an increased contamination during the recent droughts and low flows. The river has been receiving wastewater and effluents from the villages, a number of small and large industries, and irrigation drainage systems along its course. What makes the situation even worse is the drought period the river basin has been going through over the last decade. Therefore, a river quality management model is required to include the adverse effects of industrial development in the region and the destructive effects of droughts which affect the river's water quality and its surrounding environment. Developing such a model naturally presupposes investigations into pollution effects in terms of both quality and quantity to be used in such management tools as mathematical models to predict the water quality of the river and to prevent pollution escalation in the environment. The present study aims to investigate electrical conductivity of the Zayandehrud River as a water quality parameter and to evaluate the effect of this parameter under drought conditions. For this purpose, artificial neural networks are used as a modeling tool to derive the relationship between electrical conductivity and the hydrological parameters of the Zayandehrud River. The models used in this research include multi-layer perceptron and radial basis function. Finally, these two models are compared in terms of their performance using the time series of electrical conductivity at eight monitoring-hydrometric stations during drought periods between the years 1997-2012. Results show that artificial neural networks can be used for modeling the relationship between electrical conductivity and hydrological parameters under drought conditions. It is further shown that radial basis function works better for the upstream stretches

  6. Power analysis and trend detection for water quality monitoring data. An application for the Greater Yellowstone Inventory and Monitoring Network

    Science.gov (United States)

    Irvine, Kathryn M.; Manlove, Kezia; Hollimon, Cynthia

    2012-01-01

    An important consideration for long term monitoring programs is determining the required sampling effort to detect trends in specific ecological indicators of interest. To enhance the Greater Yellowstone Inventory and Monitoring Network’s water resources protocol(s) (O’Ney 2006 and O’Ney et al. 2009 [under review]), we developed a set of tools to: (1) determine the statistical power for detecting trends of varying magnitude in a specified water quality parameter over different lengths of sampling (years) and different within-year collection frequencies (monthly or seasonal sampling) at particular locations using historical data, and (2) perform periodic trend analyses for water quality parameters while addressing seasonality and flow weighting. A power analysis for trend detection is a statistical procedure used to estimate the probability of rejecting the hypothesis of no trend when in fact there is a trend, within a specific modeling framework. In this report, we base our power estimates on using the seasonal Kendall test (Helsel and Hirsch 2002) for detecting trend in water quality parameters measured at fixed locations over multiple years. We also present procedures (R-scripts) for conducting a periodic trend analysis using the seasonal Kendall test with and without flow adjustment. This report provides the R-scripts developed for power and trend analysis, tutorials, and the associated tables and graphs. The purpose of this report is to provide practical information for monitoring network staff on how to use these statistical tools for water quality monitoring data sets.

  7. The aquatic real-time monitoring network; in-situ optical sensors for monitoring the nation's water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.; Murdoch, Peter S.; Downing, Bryan D.; Saraceno, John Franco; Aiken, George R.; Striegl, Robert G.

    2011-01-01

    Floods, hurricanes, and longer-term changes in climate and land use can have profound effects on water quality due to shifts in hydrologic flow paths, water residence time, precipitation patterns, connectivity between rivers and uplands, and many other factors. In order to understand and respond to changes in hydrology and water quality, resource managers and policy makers have a need for accurate and early indicators, as well as the ability to assess possible mechanisms and likely outcomes. In-situ optical sensors-those making continuous measurements of constituents by absorbance or fluorescence properties in the environment at timescales of minutes to years-have a long history in oceanography for developing highly resolved concentrations and fluxes, but are not commonly used in freshwater systems. The United States Geological Survey (USGS) has developed the Aquatic Real-Time Monitoring Network, with high-resolution optical data collection for organic carbon, nutrients, and sediment in large coastal rivers, along with continuous measurements of discharge, water temperature, and dissolved inorganic carbon. The collecting of continuous water-quality data in the Nation?s waterways has revealed temporal trends and spatial patterns in constituents that traditional sampling approaches fail to capture, and will serve a critical role in monitoring, assessment and decision-making in a rapidly changing landscape.

  8. A Modified Hopfield Neural Network Algorithm (MHNNA Using ALOS Image for Water Quality Mapping

    Directory of Open Access Journals (Sweden)

    Ahmed Asal Kzar

    2015-12-01

    Full Text Available Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA was used with remote sensing imagery to classify the total suspended solids (TSS concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS. The TSS concentration measurements were conducted in a lab and used for validation (real data, classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R and root mean square error (RMSE were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977 and lower RMSE (2.887. In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis. Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the

  9. Water Quality Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Our water quality sampling program is to determine the quality of Moosehorn's lakes and a limited number of streams. Water quality is a measure of the body of water,...

  10. NETWORKS OF QUALITY IMPROVEMENT

    OpenAIRE

    Cevallos A., Juan; Universidad Nacional Mayor de San Marcos

    2014-01-01

    This article deals about the need of better highly-powered tools for quality improvement. A creative combination of Continuous Improvement Philosophy, Systems General Theory and Network General Theory is used, with the purpose of developing a Quality Improvement Network allowing an optimization of systems and processes within organizations. El artículo trata sobre la necesidad de herramientas con mayor potencia para la mejora de la calidad. Se utiliza la combinación, de manera creativa, de...

  11. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    Science.gov (United States)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  12. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring.

    Science.gov (United States)

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de

    2017-11-05

    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  13. Survey the Current State of Quality Potable Water Clearing Supplied to the Distribution System and the Role of Water & Wastewater Company And the Distribution of Network and Improve Its Quality Case Study in Shahrood City

    Directory of Open Access Journals (Sweden)

    Sakineh Molaei Tvani

    2016-09-01

    Full Text Available  Background and Purpose: Supply of high-quality water (drinking water quality, is a critical component for sustainable socioeconomic development. This study aimed to assess the current state of water quality supplied to the distribution system and importance of participating water and sewer its distribution network to improve the quality selected. Materials and Methods: This cross-sectional study in 1394 in both spring and summer, during a systematic search, local information on the quality (microbiological, physical and chemical drinking water distribution systems were evaluated using a questionnaire. The samples for the presence of CL, PH, TDS, sulfates, total hardness, nitrite, nitrate, fluoride, chloride, turbidity and total coliform were analyzed by standard methods and 1053 were compared with the national standard. Results: The average parameters studied a total of 303 water samples collected from amount CL, PH, TDS, sulfates, total hardness, magnesium, calcium, nitrite, nitrate, fluoride, chloride, turbidity and total coliform respectively equal Was reported 0/1 mg/L, 7/66 mg/L, 773/39 mg/L,108/15 mg/L, 287/84 mg/L, 31/59 mg/L, 50/05 mg/L, 0/02 mg/L, 19/56 mg/L, 1/08 mg/L, 80/57 mg/L, 0/6 mg/L, 24/5 MPN/100ML. The role of water and sewage company as well as the effect of the drinking water distribution network respectively physicochemical and microbiological quality of drinking water in the utility had a significant relationship (p <0/005, (p <0/0001. And significant relationship between the quality of water supplied by the technical infrastructure and health, fatigue and corrosion, leakage and pressure was high hydro Leakey (p <0/000. According to the results of the statistical test Pearson and Spearman correlation coefficient also showed a strong correlation between the leak with water quality. Conclusion: The results showed that the water samples tested for microbial and physico-chemical parameters were within the range of Iran

  14. Prediction ofWater Quality Parameters (NO3, CL in Karaj Riverby Usinga Combinationof Wavelet Neural Network, ANN and MLRModels

    Directory of Open Access Journals (Sweden)

    T. Rajaee

    2016-10-01

    Full Text Available IntroductionThe water quality is an issue of ongoing concern. Evaluation of the quantity and quality of running waters is considerable in hydro-environmental management.The prediction and control of the quality of Karaj river water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, Performance of Artificial Neural Network (ANN, Wavelet Neural Network combination (WANN and multi linear regression (MLR models, to predict next month the Nitrate (NO3 and Chloride (CL ions of "gate ofBylaqan sluice" station located in Karaj River has been evaluated. Materials and MethodsIn this research two separate ANN models for prediction of NO3 and CL has been expanded. Each one of the parameters for prediction (NO3 / CL has been put related to the past amounts of the same time series (NO3 / CL and its amounts of Q in past months.From astatisticalperiod of10yearswas usedforthe input of the models. Hence 80% of entire data from (96 initial months of data as training set, next 10% of data (12 months and 10% of the end of time series (terminal 12 months were considered as for validation and test of the models, respectively. In WANNcombination model, the real monthly observed time series of river discharge (Q and mentioned qualityparameters(NO3 / CL were decomposed to some sub-time series at different levels by wavelet analysis.Then the decomposed quality parameters to predict and Q time series were used at different levels as inputs to the ANN technique for predicting one-step-ahead Nitrate and Chloride. These time series play various roles in the original time series and the behavior of each is distinct, so the contribution to the original time series varies from each other. In addition, prediction of high NO3 and CL values greater than mean of data that have great importancewere investigated by the models. The capability of the models was evaluated by Coefficient of Efficiency (E and the Root Mean Square

  15. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    OpenAIRE

    Wei-Bo Chen; Wen-Cheng Liu

    2015-01-01

    In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical ...

  16. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  17. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  18. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  19. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  20. Tsunamis: Water Quality

    Science.gov (United States)

    ... Transmission in Pet Shelters Protect Your Pets Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  1. Water quality monitoring protocol for wadeable streams and rivers in the Northern Great Plains Network

    Science.gov (United States)

    Marcia H. Wilson,; Rowe, Barbara L.; Robert A. Gitzen,; Stephen K. Wilson,; Kara J. Paintner-Green,

    2014-01-01

    Preserving the national parks unimpaired for the enjoyment of future generations is a fundamental purpose of the National Park Service (NPS). To address growing concerns regarding the overall physical, chemical, and biological elements and processes of park ecosystems, the NPS implemented science-based management through “Vital Signs” monitoring in 270 national parks (NPS 2007). The Northern Great Plains Network (NGPN) is among the 32 National Park Service Networks participating in this monitoring effort. The NGPN will develop protocols over the next several years to determine the overall health or condition of resources within 13 parks located in Nebraska, North Dakota, South Dakota, and Wyoming.

  2. BACTERIOLOGICAL QUALITY OF TAP WATER

    Directory of Open Access Journals (Sweden)

    Justyna Zamorska

    2016-06-01

    Full Text Available The most sensitive method of detecting contamination in water supply networks is microbiological testing. Microbiological water safety is evaluated mainly based on the results of traditional tests that rely on bacteria culturing on the so called bacterial growth mediums. Flow cytometry is a modern technology that has been used in microbiology only recently. The diagnostic method based on flow cytometry is much faster and more versatile. Microbiological quality testing was conducted in rzeszowski district, in the area of water network supplied by surface waters, and in the area of water network supplied by underground waters. The scope of the analysis of the microbiological quality of tap water was based on the determination of selected indicators of the sanitary condition of water ie; the total number of psychrophilic and mesophilic bacteria on nutrient agar (reference called Agar A and additionally called agar supplemented with R, the number of coliforms and faecal streptococci. Determination of the total number of microorganisms by flow cytometry was performed using two dyes SYBR Green and iodide pyridine. Water from underground water intakes, not under the permanent control of microbial had worse microbiological parameters. Used new methods of microbiological assays showed greater amounts of microbiological contamination.

  3. The Contribution of GIS to Display and Analyze the Water Quality Data Collected by a Wireless Sensor Network: Case of Bouregreg Catchment, Morocco

    Science.gov (United States)

    Boubakri, S.; Rhinane, H.

    2017-11-01

    The monitoring of water quality is, in most cases, managed in the laboratory and not on real time bases. Besides this process being lengthy, it doesn't provide the required specifications to describe the evolution of the quality parameters that are of interest. This study presents the integration of Geographic Information Systems (GIS) with wireless sensor networks (WSN) aiming to create a system able to detect the parameters like temperature, salinity and conductivity in a Moroccan catchment scale and transmit information to the support station. This Information is displayed and evaluated in a GIS using maps and spatial dashboard to monitor the water quality in real time.

  4. Forecast Surface Quality of Abrasive Water Jet Cutting Based on Neural Network and Verified by Experiments

    National Research Council Canada - National Science Library

    Gui-Lin Yang

    2013-01-01

      In this study, firstly, the YL12 aluminum alloy is used as experimental materials, then in the following experiments it is cut in JJ-I-type water jet machines, and 1,000 group data are gotten by measurement...

  5. NETWORKS AND QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    Miodrag Hadžistević

    2009-12-01

    Full Text Available Tools used in the past to analyze business value creation, such as value chain and process models, are simply too slow, inadequate, or inappropriate to address this new level of business complexity. In stead of that, company has to find way to create quality management system in a multi-layered supply chain. The problem can be solved by networking in the cluster. Cluster can be known as a competitive cooperation in the purpose to gain higher level of competitiveness and success. Bat there is another problem: Organization of the production process in a company is extremely complex process itself, and when we transfer it to the cluster level, we get a complex task which is difficult to solve. For that purpose, this paper analyses the conditions and possibilities that would enable those structures to adapt to changes in the surroundings - flexibility and management adequacy of production and organizational structures - by creating network value system.

  6. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  7. Stochastic water demand modelling for a better understanding of hydraulics in water distribution networks

    NARCIS (Netherlands)

    Blokker, E.J.M.

    2010-01-01

    In the water distribution network water quality process take place influenced by de flow velocity and residence time of the water in the network. In order to understand how the water quality changes in the water distribution network, a good understanding of hydraulics is required. Specifically in

  8. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  9. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  10. An interdisciplinary political ecology of drinking water quality. Exploring socio-ecological inequalities in Lilongwe's water supply network

    NARCIS (Netherlands)

    Rusca, Maria; Boakye-Ansah, Akosua Sarpong; Loftus, Alex; Ferrero, Giuliana; van der Zaag, P.

    2017-01-01

    Urban political ecology attempts to unravel and politicize the socio-ecological processes that produce uneven waterscapes. At the core of this analysis are the choreographies of power that influence how much water flows through urban infrastructure as well as where it flows, thereby shaping

  11. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  12. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    Science.gov (United States)

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  13. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  14. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  15. Development of communication networks and water quality early warning detection systems at drinking water utilities in the Ohio River Valley Basin.

    Science.gov (United States)

    Schulte, J G; Vicory, A H

    2005-01-01

    Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.

  16. Water Quality Data (WQX)

    Science.gov (United States)

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  17. Maui Citizen Science Coastal Water Quality Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A network of citizen science volunteers periodically monitors water quality at several beaches across the island of Maui in the State of Hawaii. This community-based...

  18. Water Quality Index Assessment of Pogradec Water- Supply, in Albania

    OpenAIRE

    , P. Icka; , R. Damo

    2016-01-01

    In this paper is applied for the first time in Albania Water Quality Index (WQI) of the Canadian Council of Ministries of the Environment (CCME) for assessment of water quality of water supply network on Pogradec city. CCME WQI, a technique of rating water quality, is an effective tool to assess spatial and temporal changes on the quality of any water body. Calculations of the index are based on a combination of three factors: scope - the number of variables whose objectives are not met; freq...

  19. Purified water quality study

    Energy Technology Data Exchange (ETDEWEB)

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  20. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  1. Use of surrogate indicators for the evaluation of potential health risks due to poor urban water quality: A Bayesian Network approach.

    Science.gov (United States)

    Wijesiri, Buddhi; Deilami, Kaveh; McGree, James; Goonetilleke, Ashantha

    2018-02-01

    Urban water pollution poses risks of waterborne infectious diseases. Therefore, in order to improve urban liveability, effective pollution mitigation strategies are required underpinned by predictions generated using water quality models. However, the lack of reliability in current modelling practices detrimentally impacts planning and management decision making. This research study adopted a novel approach in the form of Bayesian Networks to model urban water quality to better investigate the factors that influence risks to human health. The application of Bayesian Networks was found to enhance the integration of quantitative and qualitative spatially distributed data for analysing the influence of environmental and anthropogenic factors using three surrogate indicators of human health risk, namely, turbidity, total nitrogen and fats/oils. Expert knowledge was found to be of critical importance in assessing the interdependent relationships between health risk indicators and influential factors. The spatial variability maps of health risk indicators developed enabled the initial identification of high risk areas in which flooding was found to be the most significant influential factor in relation to human health risk. Surprisingly, population density was found to be less significant in influencing health risk indicators. These high risk areas in turn can be subjected to more in-depth investigations instead of the entire region, saving time and resources. It was evident that decision making in relation to the design of pollution mitigation strategies needs to account for the impact of landscape characteristics on water quality, which can be related to risk to human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks

    Science.gov (United States)

    Elhatip, Hatim; Kömür, M. Aydin

    2008-01-01

    Sustaining the human ecological benefits of surface water requires carefully planned strategies for reducing the cumulative risks posed by diverse human activities. The municipality of Aksaray city plays a key role in developing solutions to surface water management and protection in the central Anatolian part of Turkey. The responsibility to provide drinking water and sewage works, regulate the use of private land and protect public health provides the mandate and authority to take action. The present approach discusses the main sources of contamination and the result of direct wastewater discharges into the Melendiz and Karasu rivers, which recharge the Mamasın dam sites by the use of artificial neural network (ANN) modeling techniques. The present study illustrates the ability to predict and/or approve the output values of previously measured water quality parameters of the recharge and discharge areas at the Mamasin dam site by means of ANN techniques. Using the ANN model is appreciated in such environmental research. Here, the ANN is used for estimating if the field parameters are agreeable to the results of this model or not. The present study simulates a situation in the past by means of ANN. But in case any field measurements of some relative parameters at the outlet point “discharge area” have been missed, it could be possible to predict the approximate output values from the detailed periodical water quality parameters. Because of the high variance and the inherent non-linear relationship of the water quality parameters in time series, it is difficult to produce a reliable model with conventional modeling approaches. In this paper, the ANN modeling technique is used to establish a model for evaluating the change in electrical conductivity (EC) and dissolved oxygen (DO) values in recharge (input) and discharge (output) areas of the dam water under pollution risks. A general ANN modeling scheme is also recommended for the water parameters. The modeling

  3. Nutrient and pesticide contamination bias estimated from field blanks collected at surface-water sites in U.S. Geological Survey Water-Quality Networks, 2002–12

    Science.gov (United States)

    Medalie, Laura; Martin, Jeffrey D.

    2017-08-14

    Potential contamination bias was estimated for 8 nutrient analytes and 40 pesticides in stream water collected by the U.S. Geological Survey at 147 stream sites from across the United States, and representing a variety of hydrologic conditions and site types, for water years 2002–12. This study updates previous U.S. Geological Survey evaluations of potential contamination bias for nutrients and pesticides. Contamination is potentially introduced to water samples by exposure to airborne gases and particulates, from inadequate cleaning of sampling or analytic equipment, and from inadvertent sources during sample collection, field processing, shipment, and laboratory analysis. Potential contamination bias, based on frequency and magnitude of detections in field blanks, is used to determine whether or under what conditions environmental data might need to be qualified for the interpretation of results in the context of comparisons with background levels, drinking-water standards, aquatic-life criteria or benchmarks, or human-health benchmarks. Environmental samples for which contamination bias as determined in this report applies are those from historical U.S. Geological Survey water-quality networks or programs that were collected during the same time frame and according to the same protocols and that were analyzed in the same laboratory as field blanks described in this report.Results from field blanks for ammonia, nitrite, nitrite plus nitrate, orthophosphate, and total phosphorus were partitioned by analytical method; results from the most commonly used analytical method for total phosphorus were further partitioned by date. Depending on the analytical method, 3.8, 9.2, or 26.9 percent of environmental samples, the last of these percentages pertaining to all results from 2007 through 2012, were potentially affected by ammonia contamination. Nitrite contamination potentially affected up to 2.6 percent of environmental samples collected between 2002 and 2006 and

  4. Reliability based rehabilitation of water distribution networks by means of Bayesian networks

    National Research Council Canada - National Science Library

    Abdelaziz Lakehal; Fares Laouacheria

    2017-01-01

    Water plays an essential role in the everyday lives of the people. To supply subscribers with good quality of water and to ensure continuity of service, the operators use water distribution networks (WDN...

  5. Stream Water Quality Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987).

  6. Quality and food network configuration

    DEFF Research Database (Denmark)

    Kjeldsen, Chris; Noe, Egon

    The aim of the paper is to analyze how the emergence of distinct quality conventions relates to particular network relations within two selected Danish organic dairy enterprises. The paper starts out from the assumption that the distinct qualities, which distinguish organic food, can be viewed...... is thus extremely important and even more so if the product chain in question is a ‘high-quality’ food chain of a relatively high level of complexity, such as an organic food network. Analytically, our main focus is on the relation between network structure and the qualities mediated from cow to cup....... The paper is based on case studies of two Danish dairy enterprises (Thise Dairy and Arla Foods), which all operate within the Danish 'high-quality' and organic food market....

  7. Estuarine water quality in parks of the Northeast Coastal and Barrier Network: vital signs estuarine nutrient-enrichment monitoring, 2006-11

    Science.gov (United States)

    Caldwell, James M.; Nixon, Matthew E.; Neckles, Hilary A.; Pooler, Penelope S.

    2015-01-01

    This report summarizes results of water-quality monitoring within estuaries of the National Park Service Northeast Coastal and Barrier Network (NCBN) from 2006 through 2011. Data collection formed part of the NCBN Vital Signs Monitoring Program implemented to detect threats of estuarine nutrient enrichment. Data included here were collected from six parks at predetermined intervals: Cape Cod National Seashore, Massachusetts (2007, 2008, 2009, 2010, 2011); Fire Island National Seashore, New York (2009, 2011); Gateway National Recreation Area, New York and New Jersey (2010); Assateague Island National Seashore, Maryland and Virginia (2006, 2008, 2010); George Washington Birthplace National Monument, Virginia (2009, 2011); and Colonial National Historic Park, Virginia (2008, 2010). Monitoring variables consisted of dissolved-oxygen concentration, chlorophyll a concentration, attenuation of downwelling photosynthetically available radiation (PAR), turbidity, water temperature, and salinity. All monitoring was conducted during four-week summer index periods. The monitoring design incorporated data collection at multiple, complementary spatial and temporal scales. Within each park, a spatial survey was conducted once during the index period following a probability design using a grid of tessellated hexagons as the basis for sample site selection. The spatial survey was supplemented with weekly measurements at a subset of sites and continuous monitoring at a single reference site. Within parks, data were reported as area-weighted water-quality conditions during each index period, the location and extent of estuarine area within condition categories, and spatial and temporal trends. In addition, we used a repeated measures analysis of variance to determine the extent to which variability in three water quality metrics (chlorophyll a in surface water, dissolved oxygen in bottom water, and water clarity expressed by PAR attenuation) was explained by year to year changes in

  8. Quality matters for water scarcity

    Science.gov (United States)

    van Vliet, Michelle T. H.; Flörke, Martina; Wada, Yoshihide

    2017-11-01

    Quality requirements for water differ by intended use. Sustainable management of water resources for different uses will not only need to account for demand in water quantity, but also for water temperature and salinity, nutrient levels and other pollutants.

  9. Reliability based rehabilitation of water distribution networks by means of Bayesian networks

    OpenAIRE

    Lakehal Abdelaziz; Laouacheria Fares

    2017-01-01

    Water plays an essential role in the everyday lives of the people. To supply subscribers with good quality of water and to ensure continuity of service, the operators use water distribution networks (WDN). The main elements of water distribution network (WDN) are: pipes and valves. The work developed in this paper focuses on a water distribution network rehabilitation in the short and long term. Priorities for rehabilitation actions were defined and the information system consolidated, as wel...

  10. Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Ortega, R.; Rahilly, P.J.A,; Royer, C.W.

    2009-10-01

    Successful management of river salt loads in complex and highly regulated river basins such as the San Joaquin of California presents significant challenges to Information Technology. Models are used as means of simulating major hydrologic processes in the basin which affect water quality and can be useful as tools for organizing basin information in a structured and readily accessible manner. Models can also be used to extrapolate the results of system monitoring since it is impossible to collect data for every point and non-point source of a pollutant in the Basin. Fundamental to every model is the concept of mass balance. This paper describes the use of state-of-the-art sensor technologies deployed in concert to obtain the first water and salinity budgets for a 60,000 hectare tract of seasonally managed wetlands in the San Joaquin Basin of California.

  11. Real-time remote monitoring system for aquaculture water quality

    National Research Council Canada - National Science Library

    Luo Hongpin; Li Guanglin; Peng Weifeng; Song Jie; Bai Qiuwei

    2015-01-01

      A multi-parameters monitoring system based on wireless network was set up to achieve remote real-time monitoring of aquaculture water quality, in order to improve the quality of aquaculture products...

  12. Synthesis of Industrial Water Networks

    DEFF Research Database (Denmark)

    Pennati, A.; Quaglia, Alberto; Gani, Rafiqul

    as a MINLP optimization problem, which is solved in GAMS. In order to demonstrate and highlight the features of the tool, a case study dealing with refinery wastewater purification is presented. A superstructure containing technological alternatives for water purification is built, and the optimization......Water is a valuable resource of great relevance for industrial activities. As water will become scarcer, optimization of its use is of key importance. The issue of water allocation and reuse through mathematical optimization has been addressed in various literature works [1, 2]. However most...... of the water networks proposed comprise few contaminants and do not consider critical parameters for wastewater treatment equipment, such as limiting inlet concentrations, flow rates, and other specific design constraints. Thus, these networks are arguably not fit to manage the complexity of a real industrial...

  13. Results of Geoenvironmental Studies (2013-2014) Applied to a Monitoring Water Quality Network in Real Time in the Atoyac River (upstream) Puebla, Mexico.

    Science.gov (United States)

    Rodriguez-Espinosa, P. F.; Tavera, E. M.; Morales-Garcia, S. S.; Muñoz-Sevilla, N. P.

    2014-12-01

    Results of geoenvironment studies, referents to geochemistry, weathering, size, mineral composition, and metals contained in sediments and physicochemical parameters of water in urban rivers associated with dam are presented. Emphasis on the interpretation of these results, was detect environmental susceptibility areas associated at the water quality in Upper basin of Atoyac River, Puebla, Mexico. The environmental sub secretary of the state government of Puebla, Mexico has initiated actions to clean up the urban Atoyac River, with measurements of physicochemical parameters associated of the water quality in real-time monitoring and sampling network along the river. The results identified an important role in the rivers, not only to receive and transport the contaminants associated with sedimentological and geochemical conditions, but magnified the effects of pollutant discharges. A significant concentration of hazardous metals in sediments of the dam, reflecting the geo-environmental conditions of anthropogenic Valsequillo Dam induction was determined. For example, a moderately contaminated Pb contaminated extreme class, and Cu and Zn contaminated with moderate to heavy contaminated under geoenvironment class index. Large concentration of clay minerals with larger surface areas was found there in the study, the minerals are definitely the fittest in nature to accept on their surfaces constitution of metals, metalloids and other contaminants which were reflected in the Geoenvironmental index. The results of the studies performed here enable us to locate monitoring stations and sampling network to physicochemical parameters in real time, in the areas of higher contamination found in geoenvironmental studies Atoyac High River Basin. Similarly, we can elucidate the origin of pollutants and monitoring agents reflected in BOD5 (223 mg / l) and COD (610 mg / l), suspended solids totals (136 mg / l) and dissolved solids totals (840 mg / l), in others. Recent hydrometric

  14. Water Quality Assessment Tool 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Quality Assessment Tool project was developed to assess the potential for water-borne contaminants to adversely affect biota and habitats on Service lands.

  15. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  16. Valuing Water Quality As a Functionof Water Quality Measures

    OpenAIRE

    Egan, Kevin J.; Joseph A. Herriges; Catherine L. Kling; Downing, John A.

    2004-01-01

    This paper incorporates a rich set of physical water quality attributes, as well as site and household characteristics, into a model of recreational lake usage in Iowa. Our analysis shows individuals are responsive to physical water quality measures. Willingness-to-pay estimates are reported based on improvements in these measures.

  17. Fertilizer Use and Water Quality.

    Science.gov (United States)

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  18. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    the basins cause an acceleration of the. Water Quality Assessment of Densu, Birim and Ayensu. Rivers in the Okyeman Area. 1. 2. O. D. Ansa-Asare * and C. ... The aim of this paper is to develop an understanding of the spatial water quality throughout the basins and also identify the main sources of contaminants within the ...

  19. Water quality modeling in the dead end sections of drinking water (Supplement)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to...

  20. Space Station Water Quality

    Science.gov (United States)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  1. Reliability based rehabilitation of water distribution networks by means of Bayesian networks

    Directory of Open Access Journals (Sweden)

    Lakehal Abdelaziz

    2017-09-01

    Full Text Available Water plays an essential role in the everyday lives of the people. To supply subscribers with good quality of water and to ensure continuity of service, the operators use water distribution networks (WDN. The main elements of water distribution network (WDN are: pipes and valves. The work developed in this paper focuses on a water distribution network rehabilitation in the short and long term. Priorities for rehabilitation actions were defined and the information system consolidated, as well as decision-making. The reliability data were conjugated in decision making tools on water distribution network rehabilitation in a forecasting context. As the pipes are static elements and the valves are dynamic elements, a Bayesian network (static-dynamic has been developed, which can help to predict the failure scenario regarding water distribution. A relationship between reliability and prioritization of rehabilitation actions has been investigated. Modelling based on a Static Bayesian Network (SBN is implemented to analyse qualitatively and quantitatively the availability of water in the different segments of the network. Dynamic Bayesian networks (DBN are then used to assess the valves reliability as function of time, which allows management of water distribution based on water availability assessment in different segments. Before finishing the paper by giving some conclusions, a case study of a network supplying a city was presented. The results show the importance and effectiveness of the proposed Bayesian approach in the anticipatory management and for prioritizing rehabilitation of water distribution networks.

  2. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  3. Voice Quality Estimation in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Petr Zach

    2015-01-01

    Full Text Available This article deals with the impact of Wireless (Wi-Fi networks on the perceived quality of voice services. The Quality of Service (QoS metrics must be monitored in the computer network during the voice data transmission to ensure proper voice service quality the end-user has paid for, especially in the wireless networks. In addition to the QoS, research area called Quality of Experience (QoE provides metrics and methods for quality evaluation from the end-user’s perspective. This article focuses on a QoE estimation of Voice over IP (VoIP calls in the wireless networks using network simulator. Results contribute to voice quality estimation based on characteristics of the wireless network and location of a wireless client.

  4. The Application of Wireless Sensor in Aquaculture Water Quality Monitoring

    OpenAIRE

    Ding, Wen; Ma, Yinchi

    2011-01-01

    Part 1: Simulation, Optimization, Monitoring and Control Technology; International audience; The current means for aquaculture water quality monitoring have a weak infrastructure. We research to use wireless sensor technology, embedded computing technology, MEMS technology, distributing information processing technology and wireless communication technology to build the wireless network sensor network system. This system is a digital, networked, intelligent real-time dynamic for monitoring th...

  5. Drinking Water and Wastewater Laboratory Networks

    Science.gov (United States)

    This website provides the drinking water sector with an integrated nationwide network of laboratories with the analytical capability to respond to intentional and unintentional drinking water incidents.

  6. Primer on Water Quality

    Science.gov (United States)

    ... such as roots and leaves, and react with algae, bacteria, and other microscopic organisms. Water may also carry plant debris and sand, silt, ... in a few locations. Pathogens can enter our water from leaking septic tanks, wastewater-treatment discharge, and animal wastes. How can I find ...

  7. Ground Water Quality

    African Journals Online (AJOL)

    Water is the next to air as a major support substance to life. Water therefore is important in that it is essential .... potassium (K ), zinc (Zn ), cadmium (Cd ), lead. 2+. 2+. 2+. (Pb ), iron (Fe ) and manganese (Mn ) and .... used storage batteries dumped indiscriminately into the environment as observed in parts of the study area.

  8. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  9. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Groundwater quality data from the National Water Quality Assessment Project, May 2012 through December 2013

    Science.gov (United States)

    Arnold, Terri L.; DeSimone, Leslie; Bexfield, Laura M.; Lindsey, Bruce; Barlow, Jeannie R.; Kulongoski, Justin; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-01-01

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in a U.S. Geological Survey Data Series Report DS-997 which is available at http://dx.doi.org/10.3133/ds997 and in this data release. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in the related report (DS-997) and this data release. This compressed file contains 28 files of groundwater-quality data in ASCII text tab-delimited format and 28 corresponding metadata in xml format for wells sampled for the U.S. Geological Survey National Water-Quality Assessment Project, May 2012 through December 2013.

  11. Water Quality and Sedimentation Data of the Coastal Intensive Site Network (CISNet) Long Term Monitoring Sites in Kaneohe Bay, Oahu, Hawaii from 1998 to 2001 (NODC Accession 0001473)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A long term project to monitor water quality and sediment processes in Kaneohe Bay was initiated in November 1998 and continued through July 2001. Four primary sites...

  12. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  13. Recreational Water Quality Criteria Limits

    Science.gov (United States)

    This set of Frequently Asked Questions (FAQ) provides an overview of NPDES permitting applicable to continuous dischargers (such as POTWs) based on water quality standards for pathogens and pathogen indicators associated with fecal contamination.

  14. Estimation of Expectable Network Quality in Wireless Mesh Networks

    OpenAIRE

    Wollenberg, Till

    2012-01-01

    Part 3: Computing in Networks; International audience; Our work aims to improve the usability of wireless mesh networks as communication layer of smart office environments. While wireless mesh networks are well-suited for this task in general, the negative impact of interference, fading, and saturation makes the communication basically opportunistic. Our goal is to develop a system which allows a short-term estimation of network quality in terms of throughput, packet loss and latency. The est...

  15. Preimpoundment Water Quality Study

    Science.gov (United States)

    1981-12-01

    Passiflora incarnara No Camin N,-tn P. lutea Crossvixe Anisosticus capreolata Climbing hydrangea Decumaria barbara PJapanese Honeysuckle Lonicera japonica...Impatiens, Balsam Impatiens balsandina Curly Dock Rumex Plantain Plantago virginica Water Hemlock Cicuta maculata Violet Viola floridana Ironweied Sida acuta

  16. Improving the Accuracy of Extracting Surface Water Quality Levels (SWQLs) Using Remote Sensing and Artificial Neural Network: a Case Study in the Saint John River, Canada

    Science.gov (United States)

    Sammartano, G.; Spanò, A.

    2017-09-01

    Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 (Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach in surface water quality management.

  17. Water Quality Control, Curriculum Guide.

    Science.gov (United States)

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  18. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  19. Chesapeake Bay Program Water Quality Database

    Science.gov (United States)

    The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

  20. Development of inferential sensors for real-time quality control of water-level data for the Everglades Depth Estimation Network

    Science.gov (United States)

    Daamen, Ruby C.; Edwin A. Roehl, Jr.; Conrads, Paul

    2010-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and watersurface models designed to provide scientists, engineers, and water-resource managers with current (2000-present) water-depth information for the entire freshwater portion of the greater Everglades. The generation of EDEN waterlevel surfaces is derived from real-time data. Real-time data are automatically checked for outliers using minimum, maximum, and rate-of-change thresholds for each station. Smaller errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the gages. Correcting smaller errors in the data often is time consuming and water-level data may not be finalized for several months. To provide water-level surfaces on a daily basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous waterlevel data.

  1. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  2. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    degraded forested area from the developing world where agricultural-derived revenue ... The water quality assessment conducted in the Densu, Birim and Ayensu Basins of Ghana in the Okyeman area between August 2005 and June 2006 .... Akwadun (Bridge-down) and. Kukurantumi. • Birim River Stations: Bunso Cocoa.

  3. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  4. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  5. Saline waters and soil quality

    Directory of Open Access Journals (Sweden)

    Carmelo Dazzi

    Full Text Available The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of the soil quality. If on one hand the presence of salts can benefit the soils mainly improving soil structure, on the other high levels of salts produce negative effects on soils and crops.When sodium prevails problems of soil quality can rise such as structure degradation, low hydraulic conductivity, soil sealing. The processes of secondary soil salinization due to the use of saline waters for irrigation are particularly evident in our Country among others. In Italy, saline soils are mainly distributed in long strips of the coastal belt of the Tyrrhenian sea and Adriatic sea, in the coastal belt of Apulia, Basilicata and Sardinia and in wide areas of Sicily. It is not possible to suggest general actions to combat soil salinization because we must take into consideration that in the relationship soil-water two different quality concept interact: one linked to the soils, the other to the waters.

  6. Saline waters and soil quality

    Directory of Open Access Journals (Sweden)

    Carmelo Dazzi

    2011-02-01

    Full Text Available The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of the soil quality. If on one hand the presence of salts can benefit the soils mainly improving soil structure, on the other high levels of salts produce negative effects on soils and crops.When sodium prevails problems of soil quality can rise such as structure degradation, low hydraulic conductivity, soil sealing. The processes of secondary soil salinization due to the use of saline waters for irrigation are particularly evident in our Country among others. In Italy, saline soils are mainly distributed in long strips of the coastal belt of the Tyrrhenian sea and Adriatic sea, in the coastal belt of Apulia, Basilicata and Sardinia and in wide areas of Sicily. It is not possible to suggest general actions to combat soil salinization because we must take into consideration that in the relationship soil-water two different quality concept interact: one linked to the soils, the other to the waters.

  7. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  8. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  9. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    OpenAIRE

    Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and tem...

  10. Impact of Water Quality on Chlorine Demand of Corroding Copper

    Science.gov (United States)

    Copper is the most widely used material in drinking water premise plumbing systems. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect ag...

  11. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry......The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... weather, while the overflow from the combined sewer system plays a minor role. Oxygen depletion in urban rivers is caused by intermittent discharges from both sewer system and wastewater treatment plant. Neglecting one of them in the evaluation of the environmental impact gives a wrong impression of total...

  12. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    Mycoflora and Water quality index assessment studies of hand-dug wells and a river in Oproama Community, Niger Delta were studied. Water samples was taken from the ten sampling stations (7 wells and 3 river points) and water quality index using water quality index calculator given by National Sanitation Foundation ...

  13. Application of a Weighted Regression Model for Reporting Nutrient and Sediment Concentrations, Fluxes, and Trends in Concentration and Flux for the Chesapeake Bay Nontidal Water-Quality Monitoring Network, Results Through Water Year 2012

    Science.gov (United States)

    Chanat, Jeffrey G.; Moyer, Douglas L.; Blomquist, Joel D.; Hyer, Kenneth E.; Langland, Michael J.

    2016-01-13

    In the Chesapeake Bay watershed, estimated fluxes of nutrients and sediment from the bay’s nontidal tributaries into the estuary are the foundation of decision making to meet reductions prescribed by the Chesapeake Bay Total Maximum Daily Load (TMDL) and are often the basis for refining scientific understanding of the watershed-scale processes that influence the delivery of these constituents to the bay. Two regression-based flux and trend estimation models, ESTIMATOR and Weighted Regressions on Time, Discharge, and Season (WRTDS), were compared using data from 80 watersheds in the Chesapeake Bay Nontidal Water-Quality Monitoring Network (CBNTN). The watersheds range in size from 62 to 70,189 square kilometers and record lengths range from 6 to 28 years. ESTIMATOR is a constant-parameter model that estimates trends only in concentration; WRTDS uses variable parameters estimated with weighted regression, and estimates trends in both concentration and flux. WRTDS had greater explanatory power than ESTIMATOR, with the greatest degree of improvement evident for records longer than 25 years (30 stations; improvement in median model R2= 0.06 for total nitrogen, 0.08 for total phosphorus, and 0.05 for sediment) and the least degree of improvement for records of less than 10 years, for which the two models performed nearly equally. Flux bias statistics were comparable or lower (more favorable) for WRTDS for any record length; for 30 stations with records longer than 25 years, the greatest degree of improvement was evident for sediment (decrease of 0.17 in median statistic) and total phosphorus (decrease of 0.05). The overall between-station pattern in concentration trend direction and magnitude for all constituents was roughly similar for both models. A detailed case study revealed that trends in concentration estimated by WRTDS can operationally be viewed as a less-constrained equivalent to trends in concentration estimated by ESTIMATOR. Estimates of annual mean flow

  14. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... AGENCY 40 CFR Part 131 RIN 2040-AF33 Water Quality Standards; Withdrawal of Certain Federal Water Quality... certain human health and aquatic life water quality criteria applicable to waters of New Jersey, Puerto... establish numeric water quality criteria for 12 states and two Territories, including New Jersey, Puerto...

  15. Organization and scaling in water supply networks

    Science.gov (United States)

    Cheng, Likwan; Karney, Bryan W.

    2017-12-01

    Public water supply is one of the society's most vital resources and most costly infrastructures. Traditional concepts of these networks capture their engineering identity as isolated, deterministic hydraulic units, but overlook their physics identity as related entities in a probabilistic, geographic ensemble, characterized by size organization and property scaling. Although discoveries of allometric scaling in natural supply networks (organisms and rivers) raised the prospect for similar findings in anthropogenic supplies, so far such a finding has not been reported in public water or related civic resource supplies. Examining an empirical ensemble of large number and wide size range, we show that water supply networks possess self-organized size abundance and theory-explained allometric scaling in spatial, infrastructural, and resource- and emission-flow properties. These discoveries establish scaling physics for water supply networks and may lead to novel applications in resource- and jurisdiction-scale water governance.

  16. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  17. HAWQS (Hydrologic and Water Quality System)

    Science.gov (United States)

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  18. Water Quality Trading Toolkit for Permit Writers

    Science.gov (United States)

    The Water Quality Trading Toolkit for Permit Writers is EPA’s first “how-to” manual on designing and implementing water quality trading programs. It helps NPDES permitting authorities incorporate trading provisions into permits.

  19. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  20. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  1. water demand prediction using artificial neural network

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... estimate water quantity and to make decisions that can prevent water scarcity. Timely implementation of such decisions lead to the improvement of network reliability and to the reduced occurrence of pipe burst and plant breakdown. On the other hand long- term forecasting helps to know the water demand ...

  2. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  3. MPC control of water supply networks

    DEFF Research Database (Denmark)

    Baunsgaard, Kenneth Marx Hoe; Ravn, Ole; Kallesoe, Carsten Skovmose

    2016-01-01

    This paper investigates the modelling and predictive control of a drinking water supply network with the aim of minimising the energy and economic cost. A model predictive controller, MPC, is applied to a nonlinear model of a drinking water network that follows certain constraints to maintain......, controlling the drinking water supply network with the MPC showed reduction of the energy and the economic cost of running the system. This has been achieved by minimising actuator control effort and by shifting the actuator use towards the night time, where energy prices are lower. Along with energy cost...

  4. Diversification of the resources of the Parisian water network : contribution to sustainable management of water resources

    OpenAIRE

    Trinh, Bich-Thuy

    2017-01-01

    At the scale of a city, a sustainable water management raises questions about the links between uses and resources: what water quality is needed for what purpose? The Parisian context is a favourable ground for conducting such type of reflection thanks to the existence of a non-potable water network (RENP) dating from the late nineteenth century. The network is currently supplied by summarily filtrated water from the Seine river (20%) and the canal de l’Ourcql (80%). It is mainly used for mun...

  5. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): a semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model.

    Science.gov (United States)

    Hamm, V; Collon-Drouaillet, P; Fabriol, R

    2008-02-19

    The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more

  6. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Image quality assessment using deep convolutional networks

    Science.gov (United States)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  8. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  9. Quality-Aware SCTP in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Pan Jen-Yi

    2010-01-01

    Full Text Available SCTP (Stream control transmission protocol is a new transport layer protocol that was published as RFC2960 by IETF (the Internet Engineering Task Force in October 2000 and amended in RFC4960 in September 2007. SCTP provides reliable ordered and unordered transport services. The congestion control and flow control mechanisms for SCTP are very similar to those for TCP (transmission control protocol. SCTP can apply more than one IP address when establishing associations. SCTP multihoming can support multiple paths in association. These features provide SCTP with some network-level fault tolerance through network address redundancy. SCTP multihoming has tremendous transmission potential. However, SCTP path management is very simple in RFC4960 and therefore cannot effectively distinguish path conditions; it also has no path switch strategy appropriate for wireless networking. These factors all degrade SCTP performance. This study proposes a new path management (quality-aware SCTP for wireless networks; this includes a new path failure detection method and ICE (idle path congestion window size estimation mechanism. An experiment using NS2 was performed, showing that quality-aware SCTP can effectively improve the network performance. Quality-aware SCTP is simple and provides a more effective performance than SCTP alone.

  10. Comparison of multivariate methods to predict the quality of drinking water in Norway

    OpenAIRE

    Dhungana, Siddhartha

    2015-01-01

    Water quality in the Water Distribution System (WDS) varies over time. The quality of water in the Water Distribution System (WDS) is measured through Heterotrophic Plate Count (HPC) as an indicator organisms. Parameters such as color, pH, turbidity, conductivity, temperature, organic matters as well as the components of water distribution network system such as generic pipes and their ages, lubricants and storage tanks are linked with water quality. For multivariate modelling of these parame...

  11. Quality guaranteed media delivery over advanced network

    NARCIS (Netherlands)

    Zhao, Z.; Grosso, P.; van der Ham, J.; de Laat, C.; Fortino, G.; Palau, C.E.

    2012-01-01

    Moving large quantities of data between distributed parties is a frequently invoked process in data intensive applications, such as collaborative digital media development. These transfers often have high quality requirements on the network services, especially when they involve user interactions or

  12. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system

    NARCIS (Netherlands)

    Zlatanović, L.; van der Hoek, J.P.; Vreeburg, J.H.G.

    2017-01-01

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the

  13. Water quality problems associated with intermittent water supply.

    Science.gov (United States)

    Tokajian, S; Hashwa, F

    2003-01-01

    A controlled study was conducted in Lebanon over a period of 12 months to determine bacterial regrowth in a small network supplying the Beirut suburb of Naccache that had a population of about 3,000. The residential area, which is fed by gravity, is supplied twice a week with chlorinated water from two artesian wells of a confined aquifer. A significant correlation was detected between the turbidity and the levels of heterotrophic plate count bacteria (HPC) in the samples from the distribution network as well as from the artesian wells. However, a negative significant correlation was found between the temperature and the HPC count in the samples collected from the source. A statistically significant increase in counts, possibly due to regrowth, was repeatedly established between two sampling points lying on a straight distribution line but 1 km apart. Faecal coliforms were detected in the source water but none in the network except during a pipe breakage incident with confirmed Escherichia coli reaching 40 CFU/100 mL. However, coliforms such as Citrobacter freundii, Enterobacter agglomerans, E. cloacae and E. skazakii were repeatedly isolated from the network, mainly due to inadequate chlorination. A second controlled study was conducted to determine the effect of storage on the microbial quality of household storage tanks (500 L), which were of two main types - galvanized cast iron and black polyethylene. The mean bacterial count increased significantly after 7 d storage in both tank types. A significant difference was found in the mean HPC/mL between the winter and the summer. Highest counts were found April-June although the maximum temperature was reported later in the summer. A positive correlation was established between the HPC/mL and pH, temperature and storage time.

  14. The Role of Transnational Municipal Networks in Transboundary Water Governance

    Directory of Open Access Journals (Sweden)

    Savitri Jetoo

    2017-01-01

    Full Text Available The transboundary nature of stressors impacting shared water bodies has been traditionally recognized in agreements between nation states. Several developments have led to new layers of cross border environmental actors, including regional and city level interactions. This proliferation of non-state actors is witnessed in two large water bodies, the Baltic Sea and the North American Great Lakes. In both regions, transboundary water governance was led by nation states in agreements to improve heavily contaminated waters, the Helsinki Convention (1974 and the North American Great Lakes Water Quality Agreement (1972, respectively. Whilst there has been much research on transnational regional networks, especially in Europe, there has been less theoretical work done on transnational municipal transboundary water networks due to the delay of recognition of the legitimacy of these local government actors. This paper aims to examine the role of the transnational municipal networks in transboundary water governance by looking at the case studies of the Union of Baltic cities in the Baltic Sea region and the Great Lakes and St. Lawrence Cities Initiative in the North American Great Lakes Basin. It does this by assessing the role of these transnational municipal networks in bridging water governance gaps in these regions.

  15. Water quality (chapter 11). Book chapter

    Energy Technology Data Exchange (ETDEWEB)

    McCutcheon, S.C.; Martin, J.L.; Barnwell, T.O.

    1993-01-01

    Water quality is important not only because of its linkage to the availability of water for various uses and its impact on public health, but also because water quality has an intrinsic value. The quality of life is often judged on the availability of pristine water. Contamination of water deprives present and future generations of a birthright. There is also the need to preserve the aquatic habitats of fish, birds, and mammals. To assist the practicing hydrologist in planning for and adapting to limitations on the use of water and to aid in the protection of valuable water resources, the chapter covers the basic concepts of water chemistry, the physical properties of water, and the constituents or impurities of water. To aid in the interpretation of measurements, water quality standards and criteria for various uses are presented.

  16. Characterization (environmental Signature) and Function of the Main Instrumented (monitoring Water Quality Network in Real Time) Rivers Atoyac and Zahuapan in High Atoyac Basin; in Dry, Rain and Winter Season 2013-2014; Puebla-Tlaxcala Mexico

    Science.gov (United States)

    Tavera, E. M.; Rodriguez-Espinosa, P. F.; Morales-Garcia, S. S.; Muñoz-Sevilla, N. P.

    2014-12-01

    The Zahuapan and Atoyac rivers were characterized in the Upper Atoyac through the integration of physical and chemical parameters (environmental firm) determining the behavior and function of the basin as a tool for measuring and monitoring the quality and management of water resources of the water in one of the most polluted rivers in Mexico. For the determination of the environmental signature proceeded to characterize the water through 11 physicochemical parameters: temperature (T), potential hydrogen (pH), dissolved oxygen (DO), spectral absorption coefficient (SAC), the reduction of oxide potential (ORP), turbidity (Turb), conductivity (l), biochemical oxygen demand in 5 days (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and total dissolved solids (TDS ), which were evaluated in 49 sites in the dry season, 47 for the rainy season and 23 for the winter season in the basin and Atoyac Zahuapan Alto Atoyac, Puebla-Tlaxcala, Mexico river; finding a mathematical algorithm to assimilate and better represent the information obtained. The algorithm allows us to estimate correlation greater than 0.85. The results allow us to propose the algorithm used in the monitoring stations for purposes of processing information assimilated form.This measurement and monitoring of water quality supports the project, the monitoring network in real time and the actions to clean up Atoyac River, in the urban area of the city of Puebla.

  17. Phosphorus and Water Quality Paradox

    Science.gov (United States)

    Pant, H. K.

    2008-12-01

    Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.

  18. Network compression as a quality measure for protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Loic Royer

    Full Text Available With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients.

  19. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  20. Dynamic simulation of water resources in an urban wetland based on coupled water quantity and water quality models.

    Science.gov (United States)

    Zeng, Weibo; Xu, Youpeng; Deng, Xiaojun; Han, Longfei; Zhang, Qianyu

    2015-01-01

    Water quality in wetlands plays a huge role in maintaining the health of the wetland ecosystem. Water quality should be controlled by an appropriate water allocation policy for the protection of the wetlands. In this paper, models of rainfall/runoff, non-point source pollution load, water quantity/quality, and dynamic pollutant-carrying capacity were established to simulate the water quantity/quality of Xixi-wetland river network (in the Taihu basin, China). The simulation results showed a satisfactory agreement with field observations. Furthermore, a 'node-river-node' algorithm that adjusts to the 'Three Steps Method' was adopted to improve the dynamic pollutant-carrying capacity model and simulate the pollutant-carrying capacity in benchmark years. The simulation result shows that the water quality of the river network could reach class III stably all year round if the anthropogenic pollution is reduced to one-third of the current annual amount. Further investigation estimated the minimum amount of water diversion in benchmark years under the reasonable water quantity-regulating rule to keep water quality as class III. With comparison of the designed scale, the water diversion can be reduced by 184 million m3 for a dry year, 191 million m3 for a normal year, and 198 million m3 for a wet year.

  1. Hydrologic and Water Quality System (HAWQS)

    Science.gov (United States)

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  2. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... surface water by rain and stormwater. On the other hand, run- off water increases pollutant concentrations, thereby decreases quality. To assess the water quality of the Buyuk Menderes. River under high-flow conditions, factor analysis was applied to data sets obtained from 21 monitoring stations between ...

  3. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  4. WATGIS: A GIS-Based Lumped Parameter Water Quality Model

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2002-01-01

    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  5. Biological Instability in a Chlorinated Drinking Water Distribution Network

    Science.gov (United States)

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  6. Quality of service in optical packet switched networks

    CERN Document Server

    Rahbar, Akbar G

    2015-01-01

    This book is a comprehensive study on OPS networks, its architectures, and developed techniques for improving its quality of switching and managing quality of service.  The book includes: Introduction to OPS networks, OOFDM networks, GMPLS-enabled optical networks, QoS in OPS networks Hybrid contention avoidance/resolution schemes in both long-haul and metro optical networks Hybrid optical switching schemes

  7. Michigan lakes: An assessment of water quality

    Science.gov (United States)

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  8. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    ... as a tool in comparing the water quality of different sources. It gives the public a general idea of the possible problems with water in a particular region. The indices are among the most effective ways to communicate the information on water quality trends to the public or to the policy makers and water quality management.

  9. Ground Water Quality of Selected Wells

    OpenAIRE

    Mosher R. Ahmed

    2013-01-01

    In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the mea...

  10. Policy Instruments for Water Quality Protection

    OpenAIRE

    James Shortle; Horan, Richard D.

    2013-01-01

    We examine policy instruments for ambient water quality protection. One objective is to illustrate the unique and complex informational challenges that must be addressed in constructing instruments that are effective and efficient for point and nonpoint sources. A second objective is to describe developments in real-world policies. Crucial to solving contemporary water quality challenges and improving the efficiency of water quality protection are reducing nonpoint pollution and efficiently i...

  11. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  12. ORD Studies of Water Quality in Hospitals

    Science.gov (United States)

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  13. Polymer microcantilevers for water quality monitoring

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2012-10-01

    Full Text Available The microcantilever project aims to develop novel polymer based microcantilevers able to detect E.coli in water samples for use as a rapid diagnostic for on-site water quality monitoring....

  14. West Knox Pond water budget and water quality

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to analyze the water budget and water quality for West Knox Pond for the May through September period of 2002 and 2003. The...

  15. Water quality modelling of Jadro spring.

    Science.gov (United States)

    Margeta, J; Fistanic, I

    2004-01-01

    Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.

  16. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  17. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    strong. Quality of water in the discharge zone deteriorated considerably after March (DO decreasing to about 1 mg/litre). High acid content of the effluent lowered pH of water. The discharge in the fresh water zone, presently did not affect the water...

  18. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    on this planet. We use water for various purposes and for each purpose we require water of appropriate quality. Consumption of water which has not met internationally acceptable standards could lead to an attack by water-borne such as cholera, typhoid fever and others (Udom et al., 2002). There is increasing awareness ...

  19. Hazardous water: an assessment of water quality and accessibility ...

    African Journals Online (AJOL)

    Access to potable water supply remains a serious challenge to the local communities in the Likangala River catchment in southern Malawi. The quality of water resources is generally poor and the supply is inadequate. This paper discusses the results of laboratory analysis of water samples collected from selected water ...

  20. A black carbon air quality network

    Science.gov (United States)

    Kirchstetter, T.; Caubel, J.; Cados, T.; Preble, C.; Rosen, A.

    2016-12-01

    We developed a portable, power efficient black carbon sensor for deployment in an air quality network in West Oakland, California. West Oakland is a San Francisco Bay Area residential/industrial community adjacent to regional port and rail yard facilities, and is surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we are collaborating with community members to build and operate a 100-sensor black carbon measurement network for a period of several months. The sensor employs the filter-based light transmission method to measure black carbon. Each sensor node in the network transmits data hourly via SMS text messages. Cost, power consumption, and performance are considered in choosing components (e.g., pump) and operating conditions (e.g., sample flow rate). In field evaluation trials over several weeks at three monitoring locations, the sensor nodes provided black carbon concentrations comparable to commercial instruments and ran autonomously for a week before sample filters and rechargeable batteries needed to be replaced. Buildup to the 100-sensor network is taking place during Fall 2016 and will overlap with other ongoing air monitoring projects and monitoring platforms in West Oakland. Sensors will be placed along commercial corridors, adjacent to freeways, upwind of and within the Port, and throughout the residential community. Spatial and temporal black carbon concentration patterns will help characterize pollution sources and demonstrate the value of sensing networks for characterizing intra-urban air pollution concentrations and exposure to air pollution.

  1. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  2. Flood impacts on a water distribution network

    Directory of Open Access Journals (Sweden)

    C. Arrighi

    2017-12-01

    Full Text Available Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood, 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  3. Comparing microbial water quality in an intermittent and continuous piped water supply.

    Science.gov (United States)

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Assess water scarcity integrating water quantity and quality

    Science.gov (United States)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  5. Parents' perceptions of water safety and quality.

    Science.gov (United States)

    Merkel, Lori; Bicking, Cara; Sekhar, Deepa

    2012-02-01

    Every day parents make choices about the source of water their families consume. There are many contributing factors which could affect decisions about water consumption including taste, smell, color, safety, cost, and convenience. However, few studies have investigated what parents with young children think about water quality and safety in the US and how this affects the choices they are making. This study aimed to describe the perceptions of parents with regard to water quality and safety and to compare bottled water and tap water use, as well as to examine motivation for water choices. We conducted an online questionnaire to survey parents living in Pennsylvania about water quality and safety, and preference for bottled versus tap water. Parents were recruited through child care centers, and 143 surveys were returned. The survey results showed high overall scores for perception of tap water quality and safety, and a preference for tap water over bottled water. We found that parents were concerned for the environmental impact that buying bottled water may have but were also concerned about potential contamination of tap water by natural gas drilling processes and nuclear power plants. These findings regarding parental concerns are critical to inform pediatric health care providers, water sellers, and suppliers in order that they may provide parents with the necessary information to make educated choices for their families.

  6. Water quality status and trends in agriculture-dominated headwaters; a national monitoring network for assessing the effectiveness of national and European manure legislation in The Netherlands

    NARCIS (Netherlands)

    Rozemeijer, J.C.; Klein, J.; Broers, H.P.; Van Tol-Leenders, T.P.; Van Der Grift, B.

    2014-01-01

    Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication

  7. Water Quality Modeling in the Dead End Sections of Drinking ...

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of a distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations

  8. Water quality effects of intermittent water supply in Arraiján, Panama.

    Science.gov (United States)

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Water quality assessment of Australian ports using water quality evaluation indices

    OpenAIRE

    Jahan, Sayka; Strezov, Vladimir

    2017-01-01

    Australian ports serve diverse and extensive activities, such as shipping, tourism and fisheries, which may all impact the quality of port water. In this work water quality monitoring at different ports using a range of water quality evaluation indices was applied to assess the port water quality. Seawater samples at 30 stations in the year 2016-2017 from six ports in NSW, Australia, namely Port Jackson, Botany, Kembla, Newcastle, Yamba and Eden, were investigated to determine the physicochem...

  10. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... In this study, the factor analysis technique is applied to surface water quality data sets obtained from the Buyuk Menderes. River Basin, Turkey, during two different hydrological periods. Results show that the indices which changed the quality of water in two seasons and locations differed. During low-flow ...

  11. Professional Development for Water Quality Control Personnel.

    Science.gov (United States)

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  12. Principles and Practices of Water Quality Monitoring

    Science.gov (United States)

    J.L. Michael

    2001-01-01

    There are many activities in forest management that may affect water quality, i.e., timber harvestine, road building,mechanical and chemical site preparation, release operations, fuel reduction,wildlife opening maintenance, etc. How severely they affect water quality depends on how well the person in charge of the operation understands the activity itself, the...

  13. 40 CFR 240.204 - Water quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  14. Great Lakes Water Quality Agreement (GLWQA)

    Science.gov (United States)

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  15. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    Science.gov (United States)

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  16. FACTORS AFFECTING WATER QUALITY BEFORE TREATMENT

    Directory of Open Access Journals (Sweden)

    Artur Jachimowski

    2017-02-01

    Full Text Available The article assesses the impact of natural and anthropogenic factors on the quality of surface water grasped by Krakow's water treatment plants. We analyzed the indicators chosen in the physicochemical marked in the raw water in the years 2007–2014. The study shows that the water prior to treatment differed in the number and share of separate factors. These components, in turn, explained 63% to 71% of analyzed chemical composition of water.

  17. FACTORS AFFECTING WATER QUALITY BEFORE TREATMENT

    OpenAIRE

    Artur Jachimowski

    2017-01-01

    The article assesses the impact of natural and anthropogenic factors on the quality of surface water grasped by Krakow's water treatment plants. We analyzed the indicators chosen in the physicochemical marked in the raw water in the years 2007–2014. The study shows that the water prior to treatment differed in the number and share of separate factors. These components, in turn, explained 63% to 71% of analyzed chemical composition of water.

  18. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  19. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    evaluate the quality of a given water body in such a way that it is easily understood by managers. ... the problem of 'eclipsing' which arises during aggregation process. ... to improve the Water Quality index, mainly to stress on the importance of the ... Thus, since the water quality indexing method yields a single value, it is.

  20. Water quality indicators: bacteria, coliphages, enteric viruses.

    Science.gov (United States)

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  1. Quality comparison of tap water vs. bottled water in the industrial city of Yanbu (Saudi Arabia).

    Science.gov (United States)

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2009-12-01

    This study was conducted to compare the quality of bottled water with potabilized desalinated tap water. Fourteen brands of local and imported bottled water samples were collected from the local market and analyzed for physicochemical parameters in the Royal Commission Environmental Laboratory. Results were compared with 5-year continuous monitoring data of tap water from different locations in Madinat Yanbu Al-Sinaiyah (MYAS) including storage tanks of desalination plant. Results show that there was no significant difference in the quality of tap water and bottled water. Bacteriological test was never found positive in the 5-year data in tap water. Similarly, physicochemical analysis shows the persistent quality of tap water. Based on hardness analysis, bottled and tap water are categorized as soft water. Trihalomethanes (THMs) study also indicates that traces of disinfection by products (DBPs) are present in both tap and bottled water and are much less than the World Health Organization and Environmental Protection Agency maximum permissible limits. It is also important to note that the tap water distribution network in MAYS is a high-pressure recirculation network and there is no chance to grow bacteria in stagnant water in pipe lines or houses. Recently, the Royal Commission has replaced the whole drinking water network, which was made of asbestos-cemented pipes with glass-reinforced plastic (GRP) pipes, to avoid any asbestos contaminations. Based on these results, it is concluded that drinking water distributed in the city is of very good and persistent quality, comparable with bottled water. Continuous monitoring also guarantees the safe drinking water to the community. Hence, it is the responsibility of the Royal Commission to encourage the peoples in the city to drink tap water as it is as good as bottled water even better than some of the brands and is monitored regularly. It is also much cheaper compared to bottled water and is available round the clock

  2. National Water Quality Laboratory, 1994 services catalog

    Science.gov (United States)

    Timme, P.J.

    1994-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey's Water Resources Division. To assist personnel in the selection of analytical services, this catalog lists sample volume, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples. (USGS)

  3. Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management

    Science.gov (United States)

    Carluer, Nadia; Marsily, Ghislain De

    2004-01-01

    Up to now, most watershed models have been focused on the representation of 'natural' flow and transport processes. In this paper, we discuss the role of man-made networks, such as ditches, roads, hedge rows and hedges, underground drainage by buried pipes, etc. The influence of such features on the hydrology of a watershed may be of particular importance if the aim of the modelling is to predict the effect of landscape management or the fate of contaminants, e.g. pesticides, when a rain event occurs very soon after their spreading on the soil surface. It is likely that such artificial networks may act as conduits or short-circuits for the transport of contaminants, either dissolved or sorbed on soil particles, by-passing some of the retardation mechanisms such as sorption in the soil, retention of surface runoff by grass verges, biodegradation in the unsaturated zone, etc. We first present a small watershed on which the study was conducted, the Kervidy, which is a 5 km 2 'bocage ' catchment in Brittany, France. The man-made networks were observed and their extent and functioning described. We then included the potential hydraulic role of these networks in a distributed watershed model (TOPOG, [J. Hydrol. 150 (1993) 665]). This modified model, ANTHROPOG, was run, for comparison, with and without the man-made network; sensitivity tests were also made to assess the hydrologic importance of these networks. It was shown that they can have a very significant effect on the functioning of a watershed. We conclude on the relevance of the improved distributed model for the management of rural landscapes, and on the type of additional data needed to calibrate the model with parameters representative of the true processes. Bocage is a landscape with grassland, hedges, and occasional trees—often apple trees—typical of Brittany and Normandy.

  4. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  5. Alternative technologies for water quality management

    Science.gov (United States)

    Mandla A. Tshabalala

    2002-01-01

    Cranberry growers are concerned about the quality of water discharged from cranberry bogs into receiving surface waters. These water discharges may contain traces of pesticides arising from herbicide, insecticide or fungicide applications. They may also contain excess phosphorus from fertilizer application. Some cranberry farms have holding ponds to reduce the amount...

  6. Evaluating benefits and costs of changes in water quality.

    Science.gov (United States)

    Jessica Koteen; Susan J. Alexander; John B. Loomis

    2002-01-01

    Water quality affects a variety of uses, such as municipal water consumption and recreation. Changes in water quality can influence the benefits water users receive. The problem is how to define water quality for specific uses. It is not possible to come up with one formal definition of water quality that fits all water uses. There are many parameters that influence...

  7. Chemical quality and regulatory compliance of drinking water in Iceland.

    Science.gov (United States)

    Gunnarsdottir, Maria J; Gardarsson, Sigurdur M; Jonsson, Gunnar St; Bartram, Jamie

    2016-11-01

    Assuring sufficient quality of drinking water is of great importance for public wellbeing and prosperity. Nations have developed regulatory system with the aim of providing drinking water of sufficient quality and to minimize the risk of contamination of the water supply in the first place. In this study the chemical quality of Icelandic drinking water was evaluated by systematically analyzing results from audit monitoring where 53 parameters were assessed for 345 samples from 79 aquifers, serving 74 water supply systems. Compliance to the Icelandic Drinking Water Regulation (IDWR) was evaluated with regard to parametric values, minimum requirement of sampling, and limit of detection. Water quality compliance was divided according to health-related chemicals and indicators, and analyzed according to size. Samples from few individual locations were benchmarked against natural background levels (NBLs) in order to identify potential pollution sources. The results show that drinking compliance was 99.97% in health-related chemicals and 99.44% in indicator parameters indicating that Icelandic groundwater abstracted for drinking water supply is generally of high quality with no expected health risks. In 10 water supply systems, of the 74 tested, there was an indication of anthropogenic chemical pollution, either at the source or in the network, and in another 6 water supplies there was a need to improve the water intake to prevent surface water intrusion. Benchmarking against the NBLs proved to be useful in tracing potential pollution sources, providing a useful tool for identifying pollution at an early stage. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Habitat quality, water quality and otter distribution

    Directory of Open Access Journals (Sweden)

    Christopher Mason

    1995-12-01

    Full Text Available Abstract In recent decades the otter (Lutra lutra has declined over much of Europe. Good habitat has been shown to be essential to otters. Specific elements of cover have been identified in some studies but the minimum cover requirements to support otter populations are not known. These are likely to vary in relation to other factors, such as disturbance. Habitat destruction has been severe in many areas of Europe. Water quantity is important to otters, especially where low flows destroy the food base, namely fish. However the minimum food requirements to support populations are not known. The main cause of the decline in otter populations is almost certainly bioaccumulating pollutants, especially PCBs. These are likely to be inhibiting recolonization in many areas. In Britain, catchment distribution of otters within regions is negatively correlated to mean PCB levels in otter spraints, and these are indicative of tissue levels. PCBs have been found in all samples studied. Current EC statutory monitoring is inadequate to protect otter populations from bioaccumulating contaminants. Standards are presented here for otter protection. More fundamental research is required to refine our understanding of the requirements of the otter. Riassunto Qualità ambientale, qualità dell'acqua e distribuzione della lontra - Negli ultimi decenni la lontra (Lutra lutra è diminuita su buona parte del suo areale europeo, dove particolarmente pesante è stata la distruzione di ambienti favorevoli. Habitat qualitativamente idonei sono essenziali per la sopravvivenza della specie. In alcuni studi, specifici parametri di copertura vegetale dei corpi idrici sono stati ritenuti importanti per la specie, ma quale sia il valore minimo di copertura riparia in grado di supportare una popolazione resta sconosciuto. I parametri di copertura variano probabilmente in relazione ad altri fattori, quali, ad

  9. Forecasting Water Levels Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Shreenivas N. Londhe

    2011-06-01

    Full Text Available For all Ocean related activities it is necessary to predict the actual water levels as accurate as possible. The present work aims at predicting the water levels with a lead time of few hours to a day using the technique of artificial neural networks. Instead of using the previous and current values of observed water level time series directly as input and output the water level anomaly (difference between the observed water level and harmonically predicted tidal level is calculated for each hour and the ANN model is developed using this time series. The network predicted anomaly is then added to harmonic tidal level to predict the water levels. The exercise is carried out at six locations, two in The Gulf of Mexico, two in The Gulf of Maine and two in The Gulf of Alaska along the USA coastline. The ANN models performed reasonably well for all forecasting intervals at all the locations. The ANN models were also run in real time mode for a period of eight months. Considering the hurricane season in Gulf of Mexico the models were also tested particularly during hurricanes.

  10. Principles of Water Quality Control.

    Science.gov (United States)

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  11. Water Availability--The Connection Between Water Use and Quality

    Science.gov (United States)

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  12. Microelectrode array sensor for water quality monitoring.

    Science.gov (United States)

    Gobet, J; Rychen, Ph; Cardot, F; Santoli, E

    2003-01-01

    A versatile microelectrode array sensor for water quality monitoring has been developed. The array fabrication, based on batch microelectronic processes, results in a highly stable passivation of the silicon chip surface and provides the possibility to use a backside contact. Packaging was optimized for on-line water operation at high pressures. Examples of applications include chlorine monitoring in drinking water, ozone monitoring in deionized water, dissolved oxygen in activated sludge and preliminary measurements of trace arsenic.

  13. Groundwater-quality data from the National Water-Quality Assessment Project, January through December 2014 and select quality-control data from May 2012 through December 2014

    Science.gov (United States)

    Arnold, Terri L.; Bexfield, Laura M.; Musgrove, MaryLynn; Lindsey, Bruce D.; Stackelberg, Paul E.; Barlow, Jeannie R.; DeSimone, Leslie A.; Kulongoski, Justin T.; Kingsbury, James A.; Ayotte, Joseph D.; Fleming, Brandon J.; Belitz, Kenneth

    2017-10-05

    Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-use study networks, which are used to assess land-use effects on shallow groundwater quality; major aquifer study networks, which are used to assess the quality of groundwater used for domestic supply; and enhanced trends networks, which are used to evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, radionuclides, and some constituents of special interest (arsenic speciation, chromium [VI] and perchlorate). These groundwater-quality data, along with data from quality-control samples, are tabulated in this report and in an associated data release.

  14. GKI water quality studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  15. Impact of pipes networks simplification on water hammer phenomenon

    Indian Academy of Sciences (India)

    Abstract. Simplification of water supply networks is an indispensible design step to make the original network easier to be analysed. The impact of networks' sim- plification on water hammer phenomenon is investigated. This study uses two loops network with different diameters, thicknesses, and roughness coefficients.

  16. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  17. 40 CFR 130.3 - Water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made...

  18. Relating Water Quality and Age in Drinking Water Distribution Systems Using Self-Organising Maps

    Directory of Open Access Journals (Sweden)

    E.J. Mirjam Blokker

    2016-04-01

    Full Text Available Understanding and managing water quality in drinking water distribution system is essential for public health and wellbeing, but is challenging due to the number and complexity of interacting physical, chemical and biological processes occurring within vast, deteriorating pipe networks. In this paper we explore the application of Self Organising Map techniques to derive such understanding from international data sets, demonstrating how multivariate, non-linear techniques can be used to identify relationships that are not discernible using univariate and/or linear analysis methods for drinking water quality. The paper reports on how various microbial parameters correlated with modelled water ages and were influenced by water temperatures in three drinking water distribution systems.

  19. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  20. Development of a iron pipe corrosion simulation model for a water supply network

    OpenAIRE

    Bernats, M.; Osterhus, S. W.; Dzelzitis, K.; Juhna, T.

    2012-01-01

    Corrosion in water supply networks is unwanted process that causes pipe material loss and subsequent pipe failures. Nowadays pipe replacing strategy most often is based on pipe age, which is not always the most important factor in pipe burst rate. In this study a methodology for developing a mathematical model to predict the decrease of pipe thickness in a large cast iron networks is presented. The quality of water, the temperature and the water flow regime were the main factors taken into ac...

  1. Ground Water Quality of Selected Wells

    Directory of Open Access Journals (Sweden)

    Mosher R. Ahmed

    2013-05-01

    Full Text Available In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the measured parameters. Ground water quality of Zaweta district has high dissolved ions due to the nature of studied area rocks. Total dissolved solids of more than 1000 mg/l made the wells Gre-Qassroka, Kora and Swaratoka need to be treated to make taste palatable. Additionally high electrical conductivity and TDS made Zaweta ground water have a slight to moderate restriction to crop growth. The high alkalinity of Zaweta ground water indicated stabilized pH. The water quality of all the wells is found excessively hard. The nitrate concentration of Zaweta ground water ranged between 0.19-42.4 mg/l below the guidelines for WHO and the maximum nitrate concentration is recorded in Kora well .

  2. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  3. Microbial (Pathogen)/Recreational Water Quality Criteria

    Science.gov (United States)

    Documents pertaining to Recreational Human Health Ambient Water Quality Criteria for Microbial Organisms (Pathogens). These documents include safe levels for cyanotoxins microcystin and cylindrospermopsin, and Coliphage to protect human health.

  4. Mobile Water Quality Information Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Water quality remote sensing has grown to allow for operational monitoring of trophic status, assessment of cyanobacteria blooms, and historical and trend analysis...

  5. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    STREAMFLOW AND WATER QUALITY REGRESSION MODELING OF IMO RIVER SYSTEM: A CASE STUDY. ... Journal of Modeling, Design and Management of Engineering Systems ... Possible sources of contamination of Imo-river system within Nekede and Obigbo hydrological stations watershed were traced.

  6. National Water Quality Laboratory, 1995 services catalog

    Science.gov (United States)

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  7. Water quality assessment of Kavvayi Lake of northern Kerala, India using CCME water quality index and biological water quality criteria.

    Science.gov (United States)

    Shiji, M; Sabitha, A R; Prabhakar, Kavya; Harikumar, P S

    2016-11-01

    Assessment of water quality status of 7 sites of Kavvayi Wetland in northern Kerala (India) was carried out. The physico-chemical, bacteriological and biological parameters were monitored during pre-monsoon, monsoon and post-monsoon seasons. Canadian Council of Ministers of the Environment (CCME) water quality index of the Kavvayi Lake samples ranged from 43.99-44.77; indicating that water quality was threatened or impaired. The poor water quality status might be due to dumping of wastes from municipal and domestic sources and agricultural runoff. Biological water quality criteria (BWQC) determined for wetland revealed that stations such as mixing point of Kariangode River into Kavvayi Lake and Kottikkadavu was moderately polluted in pre-monsoon and post- monsoon seasons. Mixing point of Nileswar River into Kavvayi Lake was moderately polluted in pre-monsoon season. Both calculated indices suggest that quality of lake was found to be influenced by anthropogenic activities such as unscientific tourism and infrastructure development, land encroachment, sand mining, pollution etc. The study was carried out as part of a programme, which aimed to conserve Kavvayi wetland because of its unique ecological and environmental characteristics.

  8. Material procedure quality forecast based on genetic BP neural network

    Science.gov (United States)

    Zheng, Bao-Hua

    2017-07-01

    Material procedure quality forecast plays an important role in quality control. This paper proposes a prediction model based on genetic algorithm (GA) and back propagation (BP) neural network. It can obtain the initial weights and thresholds of optimized BP neural network with the GA global search ability. A material process quality prediction model with the optimized BP neural network is adopted to predict the error of future process to measure the accuracy of process quality. The results show that the proposed method has the advantages of high accuracy and fast convergence rate compared with BP neural network.

  9. Coralville Reservoir Water Quality Project

    Science.gov (United States)

    2006-05-01

    calcium carbonate saturation and stability. Many limnological studies require water temperature as a function of depth to be reported. Discharges of...groundwater, which frequently come into contact with geological formations of limestone or dolomite leading to high concentrations of calcium and magnesium...Location Date Water Diss. pH Carbon Sky Previous Day Temp. Oxygen Dioxide Phenolth. Total Calcium Total Precipitation ○C mg/L mg/L mg/L mg/L mg/L mg/L

  10. Water quality modeling in the dead end sections of drinking water (Supplement)

    Science.gov (United States)

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used tocalibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variation

  11. Environmental and Water Quality Operational Studies. General Guidelines for Monitoring Contaminants in Reservoirs

    Science.gov (United States)

    1986-02-01

    90 Data Summarization and Preliminary Analysis ..... . . . • 93 PART VIII: DATA INTERPRETATION ...... ................ .... 95... espacially trte for the topics of sampling and analytical methods, statistical considerations, and the design of general water quality monitoring networks. For...contaminant monitoring program; and Part VIII considers the analysis and interpretation of contaminants data in relation to water quality criteria and

  12. Hydrology and heterogeneneous distribution of water quality ...

    African Journals Online (AJOL)

    A study was carried out on the hydrology and heterogeneous distribution of water quality characteristics in the Lagoon of Porto-Novo between July 2014 and June 2015. The water body was stratified into 12 strata for sampling. Data and samples were collected based on season and stations. The results were analyzed in the ...

  13. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    The upper reaches of Imo-river system between Nekede and Obigbo hydrological stations (a stretch of 24km) have been studied for the purpose of water quality and streamflow modeling. Model's applications on water supply to Nekede and Obigbo communities were equally explored with the development of mass curves.

  14. Water quality in the Okavango Delta

    African Journals Online (AJOL)

    2010-03-12

    Mar 12, 2010 ... This review will discuss levels of water quality parameters, such as .... have a cascading negative impact on species at higher trophic levels, such as fish, ... into water through photosynthesis by plants and phytoplankton or via diffusion ...... Delta, Botswana, and its contribution to the structure and function.

  15. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  16. Drinking water quality monitoring using trend analysis.

    Science.gov (United States)

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control.

  17. Assesment of the water quality and prevalence of water borne ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-03

    Sep 3, 2008 ... 1Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Bayelsa State, Nigeria. 2Department of .... on water quality. Chemical intoxication in drinking water may either be acute or chronic in nature. The acute health effect may be in form of skin irritation, skin rash, nausea ...

  18. Bacteriological quality of water and water borne diseases in ...

    African Journals Online (AJOL)

    Monthly water samples were assessed for bacteriological quality from main supply, household storage and morbidity reported houses. The difference in proportion of potable and non potable water at storage points was statistically significant. The overall incidence rate of target diseases was 3.58%,majority were diaarrhoel ...

  19. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  20. Surface water quality deterioration during low-flow

    Science.gov (United States)

    Hellwig, Jost; Stahl, Kerstin; Lange, Jens

    2017-04-01

    Water quality deterioration during low streamflow has mostly been linked to a lower dilution potential for pollutants. Some studies have also found spatial heterogeneities and a different behavior of different water quality parameters. Even though the general mechanisms that cause water quality changes during low-flow are well understood, only a few efforts have been made to explain the differences in the magnitudes of observed deteriorations. We investigated 72 catchments across the federal state of Baden-Wuerttemberg, Germany, for changes in water quality during low-flow events. Data from the state's water quality monitoring network provided seven water quality parameters (water temperature, electrical conductivity, concentrations of chloride, sodium, sulfate, nitrate and phosphate), which we statistically related to streamflow variability. Water temperatures increased during low flow in summer but decreased during low flow in winter. Nitrate concentrations revealed high spatial heterogeneity with about one third of the stations showing decreasing values during drought. For all other parameters concentrations rose during low-flow with only a few exceptions. Despite consistent trend directions, the magnitudes of changes with streamflow differed markedly across the state. Both multiple linear regression and a multiple analysis of variances were applied to explain these differences with the help of catchment characteristics. Results indicated that for sulfate and conductivity geology of the catchments was the most important control whereas for chloride, sodium and nitrate sewage treatment plants had largest influence. For phosphate no clear control could be identified. Independent from the applied method, land use was a less important control on river water quality during drought than geology or inflow from sewage treatment plants. These results show that the effects of diffuse and point sources, as well as those of natural and anthropogenic sources differ for

  1. Water Quality in Madura Strait, Indonesia

    OpenAIRE

    Nugrahadi, M. Saleh; Yanagi, Tetsuo; 柳, 哲雄

    2003-01-01

    Observations on water quality based on physical、chemical and biological properties of sea surface water were conducted on 13-14 September 2000 and on 14-15 May 2001 in Madura Strait, Indonesia. Particular emphasis has been placed on Surabaya and Porong estuaries and its surrounding coastal water, where rivers carry contaminated load from land and debouch. The observation showed that Madura Strait received a lot of pollutant from the rivers.

  2. Remote sensing of water quality

    Science.gov (United States)

    Hovis, W. A.

    1978-01-01

    Remote sensing from aircraft has been used to determine water content in areas such as the New York Bight. Extension of the techniques developed to satellite sensing of the Chesapeake Bay will begin in 1978 with the launch of Nimbus-G. Remote sensing offers a number of interesting possibilities for investigating a reasonably large body of water, such as the Chesapeake Bay, coupled with some disadvantages. The chief advantage of remote sensing is that it offers the opportunity to cover large areas in relatively short periods of time. Low altitude satellites traveling at about 7 km/s can cover the Chesapeake Bay in about 1 minute so that the entire Bay can be studied under almost identical conditions of solar illumination.

  3. Research on Building Technology of Aquaculture Water Quality Real-Time Monitoring Software Platform

    OpenAIRE

    Ma, Yinchi; Ding, Wen; Li, Wentong

    2014-01-01

    International audience; At present, the information level of the aquaculture water quality monitoring is relatively backward in China. Building a digital, networked, intelligent real-time dynamic aquaculture water quality monitoring system by the modern electronic information technology, communications technology and wireless sensor network technology will have an important significance for the factory aquaculture technological innovation. The system is not only able to detect the main indica...

  4. Water quality in rural Australia.

    Science.gov (United States)

    Thurman, R; Faulkner, B; Veal, D; Cramer, G; Meiklejohn, M

    1998-04-01

    Grab samples of drinking water collected from reservoirs and from creeks flowing over pristine land, farmland or land having mixed use were analysed for their physicochemical and microbiological characteristics. A significant difference between sites for conductivity and sites for pH was noted using a two-way ANOVA. No significant interactions were detected between any of the other parameters: Giardia, Cryptosporidium, Escherichia coli, coliforms, plate count, turbidity or rainfall.

  5. Resilience Simulation for Water, Power & Road Networks

    Science.gov (United States)

    Clark, S. S.; Seager, T. P.; Chester, M.; Eisenberg, D. A.; Sweet, D.; Linkov, I.

    2014-12-01

    The increasing frequency, scale, and damages associated with recent catastrophic events has called for a shift in focus from evading losses through risk analysis to improving threat preparation, planning, absorption, recovery, and adaptation through resilience. However, neither underlying theory nor analytic tools have kept pace with resilience rhetoric. As a consequence, current approaches to engineering resilience analysis often conflate resilience and robustness or collapse into a deeper commitment to the risk analytic paradigm proven problematic in the first place. This research seeks a generalizable understanding of resilience that is applicable in multiple disciplinary contexts. We adopt a unique investigative perspective by coupling social and technical analysis with human subjects research to discover the adaptive actions, ideas and decisions that contribute to resilience in three socio-technical infrastructure systems: electric power, water, and roadways. Our research integrates physical models representing network objects with examination of the knowledge systems and social interactions revealed by human subjects making decisions in a simulated crisis environment. To ensure a diversity of contexts, we model electric power, water, roadway and knowledge networks for Phoenix AZ and Indianapolis IN. We synthesize this in a new computer-based Resilient Infrastructure Simulation Environment (RISE) to allow individuals, groups (including students) and experts to test different network design configurations and crisis response approaches. By observing simulated failures and best performances, we expect a generalizable understanding of resilience may emerge that yields a measureable understanding of the sensing, anticipating, adapting, and learning processes that are essential to resilient organizations.

  6. Water quality management for Lake Mariout

    Directory of Open Access Journals (Sweden)

    N. Donia

    2016-06-01

    Full Text Available A hydrodynamic and water quality model was used to study the current status of the Lake Mariout subject to the pollution loadings from the agricultural drains and the point sources discharging directly to the Lake. The basic water quality modelling component simulates the main water quality parameters including the oxygen compounds (BOD, COD, DO, nutrients compounds (NH4, TN, TP, and finally the temperature, salinity and inorganic matter. Many scenarios have been conducted to improve the circulation and the water quality in the lake and to assess the spreading and mixing of the discharge effluents and its impact on the water quality of the main basin. Several pilot interventions were applied through the model in the Lake Mariout together with the upgrades of the East and West Waste Water Treatment Plants in order to achieve at least 5% reduction in the pollution loads entering the Mediterranean Sea through Lake Mariout in order to improve the institutional mechanisms for sustainable coastal zone management in Alexandria in particular to reduce land-based pollution to the Mediterranean Sea.

  7. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  8. 40 CFR 130.6 - Water quality management plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  9. quality assessment of sachet and bottled water soldin gboko, benue ...

    African Journals Online (AJOL)

    HOD

    microorganisms in food and other microbial environments. The need to define the quality of water has developed with the increasing demand for water which is suitable for specific uses and conforms to desired quality [2]. Although water quality and water quantity are inextricably linked, water quality deserves special.

  10. Water Relationships in the U.S. Southwest: Characterizing Water Management Networks Using Natural Language Processing

    Directory of Open Access Journals (Sweden)

    John T. Murphy

    2014-06-01

    Full Text Available Natural language processing (NLP and named entity recognition (NER techniques are applied to collections of newspaper articles from four cities in the U.S. Southwest. The results are used to generate a network of water management institutions that reflect public perceptions of water management and the structure of water management in these areas. This structure can be highly centralized or fragmented; in the latter case, multiple peer institutions exist that may cooperate or be in conflict. This is reflected in the public discourse of the water consumers in these areas and can, we contend, impact the potential responses of management agencies to challenges of water supply and quality and, in some cases, limit their effectiveness. Flagstaff, AZ, Tucson, AZ, Las Vegas, NV, and the Grand Valley, CO, are examined, including more than 110,000 articles from 2004–2012. Documents are scored by association with water topics, and phrases likely to be institutions are extracted via custom NLP and NER algorithms; those institutions associated with water-related documents are used to form networks via document co-location. The Grand Valley is shown to have a markedly different structure, which we contend reflects the different historical trajectory of its development and its current state, which includes multiple institutions of roughly equal scope and size. These results demonstrate the utility of using NLP and NER methods to understanding the structure and variation of water management systems.

  11. Robust Meter Network for Water Distribution Pipe Burst Detection

    Directory of Open Access Journals (Sweden)

    Donghwi Jung

    2017-10-01

    Full Text Available A meter network is a set of meters installed throughout a water distribution system to measure system variables, such as the pipe flow rate and pressure. In the current hyper-connected world, meter networks are being exposed to meter failure conditions, such as malfunction of the meter’s physical system and communication system failure. Therefore, a meter network’s robustness should be secured for reliable provision of informative meter data. This paper introduces a multi-objective optimal meter placement model that maximizes the detection probability, minimizes false alarms, and maximizes the robustness of a meter network given a predefined number of meters. A meter network’s robustness is defined as its ability to consistently provide quality data in the event of meter failure. Based on a single-meter failure simulation, a robustness indicator for the meter network is introduced and maximized as the third objective of the proposed model. The proposed model was applied to the Austin network to determine the independent placement of pipe flow and pressure meters with three or five available meters. The results showed that the proposed model is a useful tool for determining meter locations to secure high detectability and robustness.

  12. Water Quality and Sustainable Environmental Health

    Science.gov (United States)

    Setegn, S. G.

    2014-12-01

    Lack of adequate safe water, the pollution of the aquatic environment and the mismanagement of resources are major causes of ill-health and mortality, particularly in the developing countries. In order to accommodate more growth, sustainable fresh water resource management will need to be included in future development plans. One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality. The main challenge for the sustainability of water resources is the control of water pollution. To understand the sustainability of the water resources, one needs to understand the impact of future land use and climate changes on the natural resources. Providing safe water and basic sanitation to meet the Millennium Development Goals will require substantial economic resources, sustainable technological solutions and courageous political will. A balanced approach to water resources exploitation for development, on the one hand, and controls for the protection of health, on the other, is required if the benefits of both are to be realized without avoidable detrimental effects manifesting themselves. Meeting the millennium development goals for water and sanitation in the next decade will require substantial economic resources, sustainable technological solutions and courageous political will. In addition to providing "improved" water and "basic" sanitation services, we must ensure that these services provide: safe drinking water, adequate quantities of water for health, hygiene, agriculture and development and sustainable sanitation approaches to protect health and the environment.

  13. Impact of pipes networks simplification on water hammer phenomenon

    Indian Academy of Sciences (India)

    Simplification of water supply networks is an indispensible design step to make the original network easier to be analysed. The impact of networks' simplification on water hammer phenomenon is investigated. ... WHAMO software is used for simulation. All scenarios showed that both hydraulic equivalence and demands' ...

  14. Long Term Resource Monitoring Program Water Quality Component Review

    National Research Council Canada - National Science Library

    Soballe, David M; Houser, Jeffrey N

    2006-01-01

    ...) adequacy and suitability of the water quality procedures manual, (4) adequacy and efficiency of procedures for quality assurance and quality control in data collection and laboratory analyses, (5...

  15. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  16. Observations on a Montana water quality proposal.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

  17. A versatile and interoperable network sensors for water resources monitoring

    Science.gov (United States)

    Ortolani, Alberto; Brandini, Carlo; Costantini, Roberto; Costanza, Letizia; Innocenti, Lucia; Sabatini, Francesco; Gozzini, Bernardo

    2010-05-01

    Monitoring systems to assess water resources quantity and quality require extensive use of in-situ measurements, that have great limitations like difficulties to access and share data, and to customise and easy reconfigure sensors network to fulfil end-users needs during monitoring or crisis phases. In order to address such limitations Sensor Web Enablement technologies for sensors management have been developed and applied to different environmental context under the EU-funded OSIRIS project (Open architecture for Smart and Interoperable networks in Risk management based on In-situ Sensors, www.osiris-fp6.eu). The main objective of OSIRIS was to create a monitoring system to manage different environmental crisis situations, through an efficient data processing chain where in-situ sensors are connected via an intelligent and versatile network infrastructure (based on web technologies) that enables end-users to remotely access multi-domain sensors information. Among the project application, one was focused on underground fresh-water monitoring and management. With this aim a monitoring system to continuously and automatically check water quality and quantity has been designed and built in a pilot test, identified as a portion of the Amiata aquifer feeding the Santa Fiora springs (Grosseto, Italy). This aquifer present some characteristics that make it greatly vulnerable under some conditions. It is a volcanic aquifer with a fractured structure. The volcanic nature in Santa Fiora causes levels of arsenic concentrations that normally are very close to the threshold stated by law, but that sometimes overpass such threshold for reasons still not fully understood. The presence of fractures makes the infiltration rate very inhomogeneous from place to place and very high in correspondence of big fractures. In case of liquid-pollutant spills (typically hydrocarbons spills from tanker accidents or leakage from house tanks containing fuel for heating), these fractures can act

  18. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    Science.gov (United States)

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended.

  19. Urban Runoff and Water Quality Models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae [Kyonggi University, Suwon (Korea)

    1998-12-31

    The characteristics of storm and water quality are investigated based on the measuring data of the test river, the Hongje. The water quality of the test river is generally good comparing to other urban rivers in Seoul, because of the interception of sewer flow. But this system makes the river dry up for 3-4 months in winter. On the other hand, in rainy period the storm from the combined sewer system causes rapid increasing pollutants loads. In order to simulate the urban storm and water quality of the test basin, the models such as SWMM, ILLUDAS, STORM, HEC-1 were applied and the results are compared in its applicability and accuracy aspects. All models discussed here have shown good results and it seems that SWMM is the most effective model in simulating both quantity and quality. Also, regression relations between the water quantity and quality were derived and their applicabilities were discussed. This regression model is a simple effective tool for estimating the pollutant loads in the rainy period, but if the amount of discharge is bigger than measuring range of raw data, the accuracy becomes poor. This model could be supplemented by expanding the range of collecting data and introducing the river characteristics. The HEC-1 would be another effective model to simulate storm runoff of a river basin including urban area. (author). 15 refs., 13 tabs., 13 figs.

  20. Monitoring water quality by remote sensing

    Science.gov (United States)

    Brown, R. L. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.

  1. Monitoring water quality and quantity of national watersheds in Turkey.

    Science.gov (United States)

    Odemis, Berkant; Evrendilek, Fatih

    2007-10-01

    National data from the hydrological network for 38 rivers out of 25 watersheds were used to detect spatial and temporal trends in water quality and quantity characteristics between 1995 and 2002. Assessment of water quality and quantity included flow rate, water temperature, pH, electrical conductivity, sodium adsorption rate, Na, K, Ca+Mg, CO(3), HCO(3), Cl, SO(4), and boron. Among the major ions assessed on a watershed basis, Turkish river waters are relatively high in Ca+Mg, Na and HCO(3), and low in K and CO(3). The watersheds in Turkey experienced a general trend of 16% decrease in flow rates between 1995 and 2002 at a mean annual rate of about 4 m(3) s(-1), with a considerable spatial variation. Similarly, there appeared to be an increasing trend in river water temperature, at a mean annual rate of about 0.2 degrees C. A substantial proportion of watersheds experienced an increase in pH, in particular, after 1997, with a maximum increase from 8.1 to 8.4 observed in Euphrates (P Big Menderes watersheds where intensive agricultural activities take place. Such continued levels may threaten biotic integrity and both drinking and irrigation water quality of rivers. Best multiple linear regression (MLR) models constructed both annually and monthly differed in R (2) values in accounting for variations of pH and water temperature only. The findings of the study can provide a useful assessment of controls over water quality and quantity and assist in devising integrated and sustainable management practices for watersheds at the regional scale in Turkey.

  2. Water Quality Management Survey Columbus AFB, Mississippi.

    Science.gov (United States)

    1984-05-01

    existing outfall provides chlorine contact time, since the WTP does not have a chlorine contact tank. 2. The base anaerobic digestor is operated by... digestor may be sourin;. but the pH and solids may not indicate the impending upset. C. Surface Water 1. According to the State of Mississippi Water Quality...acids to alkalinity ratio should be added as a control indicator for the anaerobic digestor . Changes in the ratio can indicate hydraulic overload, organic

  3. Climate change influence on drinking water quality

    Science.gov (United States)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  4. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-01-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water quality was analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes (LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro- invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  5. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    DR OKE

    Keywords: Artificial neural network; Leakage detection technique; Water distribution; Leakages ... techniques, artificial neural networks (ANNs), genetic algorithms (GA), and probabilistic and evidential reasoning. ANNs are mimicry of ..... Implementation of an online artificial intelligence district meter area flow meter data.

  6. Water Network Tool for Resilience (WNTR) User Manual -

    Science.gov (United States)

    The Water Network Tool for Resilience (WNTR) is a new Python package designed to simulate and analyze resilience of water distribution networks to a variety of disaster scenarios. WNTR can help water utilities to explore the capacity of their systems to handle disasters and gui...

  7. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  8. 40 CFR 227.31 - Applicable marine water quality criteria.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  9. Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea, India.

    Science.gov (United States)

    Jha, Dilip Kumar; Devi, Marimuthu Prashanthi; Vidyalakshmi, Rajendran; Brindha, Balan; Vinithkumar, Nambali Valsalan; Kirubagaran, Ramalingam

    2015-11-15

    Seawater samples at 54 stations in the year 2011-2012 from Chidiyatappu, Port Blair, Rangat and Aerial Bays of Andaman Sea, have been investigated in the present study. Datasets obtained have been converted into simple maps using coastal water quality index (CWQI) and Geographical Information System (GIS) based overlay mapping technique to demarcate healthy and polluted areas. Analysis of multiple parameters revealed poor water quality in Port Blair and Rangat Bays. The anthropogenic activities may be the likely cause for poor water quality. Whereas, good water quality was witnessed at Chidiyatappu Bay. Higher CWQI scores were perceived in the open sea. However, less exploitation of coastal resources owing to minimal anthropogenic activity indicated good water quality index at Chidiyatappu Bay. This study is an attempt to integrate CWQI and GIS based mapping technique to derive a reliable, simple and useful output for water quality monitoring in coastal environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A combined geostatistical-optimization model for the optimal design of a groundwater quality monitoring network

    Science.gov (United States)

    Kolosionis, Konstantinos; Papadopoulou, Maria P.

    2017-04-01

    Monitoring networks provide essential information for water resources management especially in areas with significant groundwater exploitation due to extensive agricultural activities. In this work, a simulation-optimization framework is developed based on heuristic optimization methodologies and geostatistical modeling approaches to obtain an optimal design for a groundwater quality monitoring network. Groundwater quantity and quality data obtained from 43 existing observation locations at 3 different hydrological periods in Mires basin in Crete, Greece will be used in the proposed framework in terms of Regression Kriging to develop the spatial distribution of nitrates concentration in the aquifer of interest. Based on the existing groundwater quality mapping, the proposed optimization tool will determine a cost-effective observation wells network that contributes significant information to water managers and authorities. The elimination of observation wells that add little or no beneficial information to groundwater level and quality mapping of the area can be obtain using estimations uncertainty and statistical error metrics without effecting the assessment of the groundwater quality. Given the high maintenance cost of groundwater monitoring networks, the proposed tool could used by water regulators in the decision-making process to obtain a efficient network design that is essential.

  11. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  12. Assessing river water quality using water quality index in Lake Taihu Basin, China.

    Science.gov (United States)

    Wu, Zhaoshi; Wang, Xiaolong; Chen, Yuwei; Cai, Yongjiu; Deng, Jiancai

    2018-01-15

    Lake Taihu Basin, one of the most developed regions in China, has received considerable attention due to its severe pollution. Our study provides a clear understanding of the water quality in the rivers of Lake Taihu Basin based on basin-scale monitoring and a water quality index (WQI) method. From September 2014 to January 2016, four samplings across four seasons were conducted at 96 sites along main rivers. Fifteen parameters, including water temperature, pH, dissolved oxygen (DO), conductivity, turbidity (tur), permanganate index (CODMn), total nitrogen, total phosphorus, ammonium (NH4-N), nitrite, nitrate (NO3-N), calcium, magnesium, chloride, and sulfate, were measured to calculate the WQI. The average WQI value during our study period was 59.33; consequently, the water quality was considered as generally "moderate". Significant differences in WQI values were detected among the 6 river systems, with better water quality in the Tiaoxi and Nanhe systems. The water quality presented distinct seasonal variation, with the highest WQI values in autumn, followed by spring and summer, and the lowest values in winter. The minimum WQI (WQImin), which was developed based on a stepwise linear regression analysis, consisted of five parameters: NH4-N, CODMn, NO3-N, DO, and tur. The model exhibited excellent performance in representing the water quality in Lake Taihu Basin, especially when weights were fully considered. Our results are beneficial for water quality management and could be used for rapid and low-cost water quality evaluation in Lake Taihu Basin. Additionally, we suggest that weights of environmental parameters should be fully considered in water quality assessments when using the WQImin method. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. South Asia transboundary water quality monitoring workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification

  14. Sustainable River Water Quality Management in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Mamun

    2013-04-01

    Full Text Available Ecological status of Malaysia is not as bad as many other developing nations in the world. However, despite the enforcement of the Environmental Quality Act (EQA in 1974, the water quality of Malaysian inland water (especially rivers is following deteriorating trend. The rivers are mainly polluted due to the point and non-point pollution sources. Point sources are monitored and controlled by the Department of Environment (DOE, whereas a significant amount of pollutants is contributed by untreated sullage and storm runoff. Nevertheless, it is not too late to take some bold steps for the effective control of non-point source pollution and untreated sullage discharge, which play significant roles on the status of the rivers. This paper reviews the existing procedures and guidelines related to protection of the river water quality in Malaysia.  There is a good possibility that the sewage and effluent discharge limits in the Environmental Quality Act (EQA may pose hindrance against achieving good quality water in the rivers as required by the National Water Quality Standards (NWQS. For instance, Ammoniacal Nitrogen (NH3-N is identified as one of the main pollutants to render many of the rivers polluted but it was not considered in the EQA as a monitoring parameter until the new regulations published in 2009.  Surprisingly, the new regulation for sewage and industrial effluent limits set allowable NH3-N concentration quite high (5 mg/L, which may result in low Water Quality Index (WQI values for the river water. The water environment is a dynamic system. Periodical review of the monitoring requirements, detecting emerging pollutants in sewage, effluent and runoff, and proper revision of water quality standards are necessary for the management of sustainable water resources in the country. ABSTRAK: Satus ekologi Malaysia tidak seburuk kebanyakan negara membangun lain di dunia. Walaupun Akta Kualiti Alam Sekitar (EQA dikuatkuasakan pada tahun 1974

  15. Nursing Home Care Quality: Insights from a Bayesian Network Approach

    Science.gov (United States)

    Goodson, Justin; Jang, Wooseung; Rantz, Marilyn

    2008-01-01

    Purpose: The purpose of this research is twofold. The first purpose is to utilize a new methodology (Bayesian networks) for aggregating various quality indicators to measure the overall quality of care in nursing homes. The second is to provide new insight into the relationships that exist among various measures of quality and how such measures…

  16. Water Quality Considerations and Related Dishwashing Problems.

    Science.gov (United States)

    McClelland, Nina I.

    A number of the chemical and physical factors which cause dishwashing problems are presented in a series of charts. Water quality considerations are vital, but the importance of good housekeeping and proper operating practices cannot and must not be minimized. Topics discussed include--(1) dissolved minerals, (2) dissolved gases, (3) detergents,…

  17. Water Quality Response to Forest Biomass Utilization

    Science.gov (United States)

    Benjamin Rau; Augustine Muwamba; Carl Trettin; Sudhanshu Panda; Devendra Amatya; Ernest Tollner

    2017-01-01

    Forested watersheds provide approximately 80% of freshwater drinking resources in the United States (Fox et al. 2007). The water originating from forested watersheds is typically of high quality when compared to agricul¬tural watersheds, and concentrations of nitrogen and phosphorus are nine times higher, on average, in agricultur¬al watersheds when compared to...

  18. Water quality assessment and hydrochemical characteristics of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 123; Issue 1. Water quality assessment and hydrochemical characteristics of groundwater on the aspect of metals in an old town, Foshan, south China. Guanxing Huang Zongyu Chen Jichao Sun. Volume 123 Issue 1 February 2014 pp 91-100 ...

  19. surface water quality in addis ababa, ethiopia

    African Journals Online (AJOL)

    ABSTRACT: The main threat to the surface water quality in Addis Ababa is environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants, people are forced to discharge wastes both on open surface and within.

  20. Water quality issues and energy assessments

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.J.; Chiu, S.

    1980-11-01

    This report identifies and evaluates the significant water quality issues related to regional and national energy development. In addition, it recommends improvements in the Office assessment capability. Handbook-style formating, which includes a system of cross-references and prioritization, is designed to help the reader use the material.

  1. Water quality of the Modder River

    Directory of Open Access Journals (Sweden)

    N. Koning

    1999-07-01

    Full Text Available Seasonal and spatial patterns in the Modder River system, the influence of Botshabelo's sewage outflow’ on the water quality of the river, as well as the presence of any toxic compounds were determined. The Modder and Klein Modder Rivers do not follow distinctive seasonal patterns in terms of chemical parameters.

  2. Robustness of river basin water quality models

    NARCIS (Netherlands)

    de Blois, Chris; Wind, H.G.; de Kok, Jean-Luc; Koppeschaar, K.

    2003-01-01

    In this paper the concept of robustness is introduced and applied to a model for the analysis of the impacts of spatially distributed policy measures on the surface water quality on a river basin scale. In this model the influence of precipitation on emissions and resuspension of pollutants in the

  3. New challenges in integrated water quality modelling

    NARCIS (Netherlands)

    Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Griensven, A.; Zee, van der S.E.A.T.M.

    2010-01-01

    There is an increasing pressure for development of integrated water quality models that effectively couple catchment and in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related to contemporary climate and land use changes. Modelling

  4. Compost improves urban soil and water quality

    Science.gov (United States)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  5. Evaluating Water Quality in a Suburban Environment

    Science.gov (United States)

    Thomas, S. M.; Garza, N.

    2008-12-01

    A water quality analysis and modeling study is currently being conducted on the Martinez Creek, a small catchment within Cibolo watershed, a sub-basin of the San Antonio River, Texas. Several other major creeks, such as Salatrillo, Escondido, and Woman Hollering merge with Martinez Creek. Land use and land cover analysis shows that the major portion of the watershed is dominated by residential development with average impervious cover percentage of approximately 40% along with a some of agricultural areas and brushlands. This catchment is characterized by the presence of three small wastewater treatment plants. Previous site visits and sampling of water quality indicate the presence of algae and fecal coliform bacteria at levels well above state standards at several locations in the catchment throughout the year. Due to the presence of livestock, residential development and wastewater treatment plants, a comprehensive understanding of water quality is important to evaluate the sources and find means to control pollution. As part of the study, a spatial and temporal water quality analyses of conventional parameters as well as emerging contaminants, such as veterinary pharmaceuticals and microbial pathogens is being conducted to identify critical locations and sources. Additionally, the Hydrologic Simulation Program FORTRAN (HSPF) will be used to identify best management practices that can be incorporated given the projected growth and development and feasibility.

  6. CORRELATION STUDY AMONG WATER QUALITY PARAMETERS ...

    African Journals Online (AJOL)

    2015-09-01

    Sep 1, 2015 ... CORRELATION STUDY AMONG WATER QUALITY PARAMETERS OF. GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT (INDIA). P. Shroff. 1. , R. T. Vashi. 1,*. , V. A. Champaneri. 2 and K. K. Patel. 1. 1Department of Chemistry, Navyug Science College, Surat-395009, (Gujarat), India. 2.

  7. TEMPORAL AND SPATIAL PHYSICOCHEMICAL WATER QUALITY ...

    African Journals Online (AJOL)

    biochemical oxygen demand (BOD), suspended solids (SS), pH, oil and grease, and electroconductivity. (EC). The samples were collected in both dry and rainy seasons of 2006 and analysed using standard methods. Results showed that the impairment of water quality in a stream depended on the type of industry in its ...

  8. Water quality criteria for hexachloroethane: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-03-01

    The available data regarding the environmental fate, aquatic toxicity, and mammalian toxicity of hexachloroethane, which is used in military screening smokes, were reviewed. The USEPA guidelines were used to generate water quality criteria for the protection of aquatic life and its uses and of human health. 16 tabs.

  9. FISH PHYSIOLOGY, TOXICOLOGY, AND WATER QUALITY:

    Science.gov (United States)

    Twenty-one participants from Europe, North America and China convened in Chongqing, China, October 12-14, 2005, for the Eighth International Symposium in Fish Physiology, Toxicology and Water Quality. The subject of the meeting was "Hypoxia in vertebrates: Comparisons of terrestr...

  10. Information Product Quality in Network Centric Operations

    National Research Council Canada - National Science Library

    Driscoll, Patrick J; Tortorella, Michael; Pohl, Edward

    2005-01-01

    This study introduces a pragmatic methodology for examining the effectiveness of decision support information systems for Network Centric Operations based on the concept of manufacturing information products...

  11. Drainage water management effects on tile discharge and water quality

    Science.gov (United States)

    Nitrogen (N) fluxes from tile drained watersheds have been implicated in water quality studies of the Mississippi River Basin, but the contribution of tile drains to N export in headwater watersheds is not well understood. The objective of this study was to ascertain seasonal and annual contribution...

  12. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    Science.gov (United States)

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  13. Specific Water Quality Sites for Cache County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  14. Specific Water Quality Sites for Summit County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  15. Specific Water Quality Sites for Iron County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  16. Specific Water Quality Sites for Tooele County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  17. Monitoring and modeling of microbial and biological water quality

    Science.gov (United States)

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  18. Specific Water Quality Sites for Morgan County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  19. Specific Water Quality Sites for Weber County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  20. Specific Water Quality Sites for Uintah County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  1. Specific Water Quality Sites for Sanpete County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  2. Specific Water Quality Sites for Wasatch County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  3. Specific Water Quality Sites for Carbon County, Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System)....

  4. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-06-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water samples were analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes(LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro-invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  5. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  6. THE WATER QUALITY FROM SAINT ANA LAKE

    Directory of Open Access Journals (Sweden)

    M.VIGH

    2013-03-01

    Full Text Available Inside the Ciomad Massive appears a unique lake in Romania, with an exclusive precipitations alimentation regime. The lake’s origin and the morphometric elements, together with the touristic activity, determine the water’s quality and characteristics. Water status evaluation was realized using random samples taken between the years 2005 and 2010. Qualitative parameters indicate the existence of a clear water lake, belonging to ultra-oligotrophic faze. This is because the crater is covered with forest and the surface erosion is very poor. Also the aquatic vegetation is rare. From all analyzed indicators, only ammonium and total mineral nitrogen have higher values during last years. In the future, the lake needs a higher protection against water quality degradation.

  7. 3D Printing-Based Integrated Water Quality Sensing System.

    Science.gov (United States)

    Banna, Muinul; Bera, Kaustav; Sochol, Ryan; Lin, Liwei; Najjaran, Homayoun; Sadiq, Rehan; Hoorfar, Mina

    2017-06-08

    The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS), both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology-material extrusion (Trade Name: fused deposition modeling, FDM) and material jetting-to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage), despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm) and high flowrates (30 mL/min), and a very high conductivity (460 µS/cm), respectively.

  8. 3D Printing-Based Integrated Water Quality Sensing System

    Directory of Open Access Journals (Sweden)

    Muinul Banna

    2017-06-01

    Full Text Available The online and accurate monitoring of drinking water supply networks is critically in demand to rapidly detect the accidental or deliberate contamination of drinking water. At present, miniaturized water quality monitoring sensors developed in the laboratories are usually tested under ambient pressure and steady-state flow conditions; however, in Water Distribution Systems (WDS, both the pressure and the flowrate fluctuate. In this paper, an interface is designed and fabricated using additive manufacturing or 3D printing technology—material extrusion (Trade Name: fused deposition modeling, FDM and material jetting—to provide a conduit for miniaturized sensors for continuous online water quality monitoring. The interface is designed to meet two main criteria: low pressure at the inlet of the sensors and a low flowrate to minimize the water bled (i.e., leakage, despite varying pressure from WDS. To meet the above criteria, a two-dimensional computational fluid dynamics model was used to optimize the geometry of the channel. The 3D printed interface, with the embedded miniaturized pH and conductivity sensors, was then tested at different temperatures and flowrates. The results show that the response of the pH sensor is independent of the flowrate and temperature. As for the conductivity sensor, the flowrate and temperature affect only the readings at a very low conductivity (4 µS/cm and high flowrates (30 mL/min, and a very high conductivity (460 µS/cm, respectively.

  9. On quality issues in networked value constellations

    NARCIS (Netherlands)

    Zarvic, N.; Wieringa, Roelf J.; van Eck, Pascal; Camarinha-Matos, L.M.; Picard, W.

    2008-01-01

    One of the main purposes of collaborative networks is to satisfy specific consumer needs, which one company cannot satisfy alone. With the opening of the internet in the 1990s the number of companies that collaborate by means of computer networks increased rapidly. As far as one of our main foci is

  10. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  11. A Cascade-Based Emergency Model for Water Distribution Network

    Directory of Open Access Journals (Sweden)

    Qing Shuang

    2015-01-01

    Full Text Available Water distribution network is important in the critical physical infrastructure systems. The paper studies the emergency resource strategies on water distribution network with the approach of complex network and cascading failures. The model of cascade-based emergency for water distribution network is built. The cascade-based model considers the network topology analysis and hydraulic analysis to provide a more realistic result. A load redistribution function with emergency recovery mechanisms is established. From the aspects of uniform distribution, node betweenness, and node pressure, six recovery strategies are given to reflect the network topology and the failure information, respectively. The recovery strategies are evaluated with the complex network indicators to describe the failure scale and failure velocity. The proposed method is applied by an illustrative example. The results showed that the recovery strategy considering the node pressure can enhance the network robustness effectively. Besides, this strategy can reduce the failure nodes and generate the least failure nodes per time.

  12. Chapter 5: Surface water quality sampling in streams and canals

    Science.gov (United States)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  13. Acoustic monitoring of terrorist intrusion in a drinking water network

    NARCIS (Netherlands)

    Quesson, B.A.J.; Sheldon-Robert, M.K.; Vloerbergh, I.N.; Vreeburg, J.H.G.

    2009-01-01

    In collaboration with Kiwa Water Research, TNO (Netherlands Organisation for Applied Scientific Research) has investigated the possibilities to detect and classify aberrant sounds in water networks, using acoustic sensors. Amongst the sources of such sounds are pumps, drills, mechanical impacts,

  14. [Cytotoxicity and genotoxicity of drinking water of two networks supplied by surface water].

    Science.gov (United States)

    Pellacani, Claudia; Branchi, Elisa; Buschini, Annamaria; Furlini, Mariangela; Poli, Paola; Rossi, Carlo

    2005-01-01

    Evaluation of cytotoxic and genotoxic load of drinking water in relationship to the source of supplies, the disinfection process, and the piping system. Two treatment/distribution networks of drinking water, the first (#1) located near the source, the second (#2) located near the mouth of a river supplying the plants. Water samples were collected before (F) and after (A) the disinfection process and in two points (R1 and R2) of the piping system. The samples, concentrated on C18, were tested for DNA damage in human leukocytes by the Comet assay and for gene conversion, reversion and mitochondrial mutability in Saccharomyces cerevisiae D7 strain. The approach used in this study is able to identify genotoxic compounds at low concentration and evaluate their antagonism/synergism in complex mixtures. Comet assay results show that the raw water quality depends on the sampling point, suggesting that a high input of environmental pollutants occurred during river flowing; they also show that the disinfection process can both detoxify or enhance biological activity of raw water according to its quality and that the piping systems do not affect tap water cytotoxic/genotoxic load. The yeast tests indicate the presence of some disinfection by-products effective on mitochondrial DNA. The biological assays used in this study are proven to be able to detect the presence of low concentrations of toxic/genotoxic compounds and assess the sources of their origin/production.

  15. Enhancing Sensor Network Data Quality via Collaborated Circuit and Network Operations

    Directory of Open Access Journals (Sweden)

    Lucas Vespa

    2013-04-01

    Full Text Available In many applications, the quality of data gathered by sensor networks is directly related to the signal-to-noise ratio (SNR of the sensor data being transmitted in the networks. Different from the SNR that is often used in measuring the quality of communication links, the SNR used in this work measures how accurately the data in the network packets represent the physical parameters being sensed. Hence, the signal here refers to the physical parameters that are being monitored by sensor networks; the noise is due to environmental interference and circuit noises at sensor nodes, and packet loss during network transmission. While issues affecting SNR at sensor nodes have been intensively investigated, the impact of network packet loss on data SNR has not attracted significant attention in sensor network design. This paper investigates the impact of packet loss on sensor network data SNR and shows that data SNR is dramatically affected by network packet loss. A data quality metric, based on data SNR, is developed and a cross-layer adaptive scheme is presented to minimize data quality degradation in congested sensor networks. The proposed scheme consists of adaptive downsampling and bit truncation at sensor nodes and intelligent traffic management techniques at the network level. Simulation results are presented to demonstrate the validity and effectiveness of the proposed techniques.

  16. Water quality monitoring using remote sensing technique

    Science.gov (United States)

    Adsavakulchai, Suwannee; Panichayapichet, Paweena

    2003-03-01

    There has been a rapid growth of shrimp farm around Kung Krabaen Bay in the past decade. This has caused enormous rise in generation of domestic and industrial wastes. Most of these wastes are disposed in the Kung Krabaen Bay. There is a serious need to retain this glory by better water quality management of this river. Conventional methods of monitoring of water quality have limitations in collecting information about water quality parameters for a large region in detailed manner due to high cost and time. Satellite based technologies have offered an alternate approach for many environmental monitoring needs. In this study, the high-resolution satellite data (LANDSAT TM) was utilized to develop mathematical models for monitoring of chlorophyll-a. Comparison between empirical relationship of spectral reflectance with chl-a and band ratio between the near infrared (NIR) and red was suggested to detect chlorophyll in water. This concept has been successfully employed for marine zones and big lakes but not for narrow rivers due to constraints of spatial resolution of satellite data. This information will be very useful in locating point and non-point sources of pollution and will help in designing and implementing controlling structures.

  17. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  18. Water quality management in shrimp aquaculture ponds using remote water quality logging system

    Digital Repository Service at National Institute of Oceanography (India)

    Sreepada, R.A.; Kulkarni, S.; Suryavanshi, U.; Ingole, B.S.; Drensgstig, A.; Braaten, B.

    Currently an institutional co-operation project funded by NORAD is evaluating different environmental management strategies for sustainable aquaculture in India. A brief description of a remote water quality logging system installed in shrimp ponds...

  19. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  20. Collaborative Network Management for Enhancing Quality Education of Primary Schools

    Science.gov (United States)

    Chaikoed, Wisithsak; Sirisuthi, Chaiyuth; Numnaphol, Kochaporn

    2017-01-01

    This research aims to study the network and collaborative factors that enhance quality education of primary schools. Different methods were used in this research work: (1) Related approaches, theories, and research literatures and (2) Scholars were interviewed on 871 issues in the form of questionnaire, and the collaborative network factors were…

  1. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    Science.gov (United States)

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  2. Water Quality Vocabulary Development and Deployment

    Science.gov (United States)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  3. 76 FR 6727 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Science.gov (United States)

    2011-02-08

    ... COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive... and locations for public hearings on proposed amendments to its Water Quality Regulations, Water Code... amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan relating to the...

  4. Power Quality Improvement in Electrical Distribution Network

    OpenAIRE

    Oladepo Olatunde; Awofolaju Tolulope Tola

    2016-01-01

    The introduction of Distributed Generation (DG) in a distribution system offers several benefits to utilities, customers and society. However, the integration of these sources into the networks can cause some challenges regarding their expected impacts on the security and the dynamic behaviour of the entire network. This paper presents the Modified Particle Swarm Optimization algorithm (MPSOA) to determine the optimal location and size of Distributed Generation and Capacitor banks to maximizi...

  5. Water quality and bed sediment quality in the Albemarle Sound, North Carolina, 2012–14

    Science.gov (United States)

    Moorman, Michelle C.; Fitzgerald, Sharon A.; Gurley, Laura N.; Rhoni-Aref, Ahmed; Loftin, Keith A.

    2017-01-23

    The Albemarle Sound region was selected in 2012 as one of two demonstration sites in the Nation to test and improve the design of the National Water Quality Monitoring Council’s National Monitoring Network (NMN) for U.S. Coastal Waters and Tributaries. The goal of the NMN for U.S. Coastal Waters and Tributaries is to provide information about the health of our oceans, coastal ecosystems, and inland influences on coastal waters for improved resource management. The NMN is an integrated, multidisciplinary, and multi-organizational program using multiple sources of data and information to augment current monitoring programs.This report presents and summarizes selected water-quality and bed sediment-quality data collected as part of the demonstration project conducted in two phases. The first phase was an occurrence and distribution study to assess nutrients, metals, pesticides, cyanotoxins, and phytoplankton communities in the Albemarle Sound during the summer of 2012 at 34 sites in Albemarle Sound, nearby sounds, and various tributaries. The second phase consisted of monthly sampling over a year (March 2013 through February 2014) to assess seasonality in a more limited set of constituents including nutrients, cyanotoxins, and phytoplankton communities at a subset (eight) of the sites sampled in the first phase. During the summer of 2012, few constituent concentrations exceeded published water-quality thresholds; however, elevated levels of chlorophyll a and pH were observed in the northern embayments and in Currituck Sound. Chlorophyll a, and metals (copper, iron, and zinc) were detected above a water-quality threshold. The World Health Organization provisional guideline based on cyanobacterial density for high recreational risk was exceeded in approximately 50 percent of water samples collected during the summer of 2012. Cyanobacteria capable of producing toxins were present, but only low levels of cyanotoxins below human health benchmarks were detected. Finally

  6. Microbial water quality of treated water and raw water sources in the ...

    African Journals Online (AJOL)

    Microbial water quality is an essential aspect in the provision of potable water for domestic use. The provision of adequate amounts of safe water for domestic purposes has become difficult for most municipalities mandated to do so in Zimbabwe. Morton-Jaffray Treatment Plant supplies potable water to Harare City and ...

  7. Ecosystem-specific water quality indices | Rangeti | African Journal ...

    African Journals Online (AJOL)

    The water quality index (WQI) has emerged as a central tool for analysing and reporting quality trends since 1965. It provides a better overview of water quality variability in a catchment than conventional monitoring programmes that use individual variables. Since water quality is not static, due to point and non-point ...

  8. 40 CFR 130.8 - Water quality report.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality report. 130.8 Section... QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to the Regional Administrator a water quality report in accordance with section 305(b) of the Act...

  9. 40 CFR 130.4 - Water quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1.../quality control guidance. (b) The State's water monitoring program shall include collection and analysis...

  10. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  11. Water Diagnosis in Shrimp Aquaculture based on Neural Network

    Science.gov (United States)

    Carbajal Hernández, J. J.; Sánchez Fernández, L. P.

    2007-05-01

    In many countries, the shrimp aquaculture has not advanced computational systems to supervise the artificial habitat of the farms and laboratories. A computational system of this type helps significantly to improve the environmental conditions and to elevate the production and its quality. The main idea of this study is the creation of a system using an artificial neural network (ANN), which can help to recognize patterns of problems and their evolution in shrimp aquaculture, and thus to respond with greater rapidity against the negative effects. Bad control on the shrimp artificial habitat produces organisms with high stress and as consequence losses in their defenses. It generate low nutrition, low reproduction or worse still, they prearrange to acquire lethal diseases. The proposed system helps to control this problem. Environmental variables as pH, temperature, salinity, dissolved oxygen and turbidity have an important effect in the suitable growth of the shrimps and influence in their health. However, the exact mathematical model of this relationship is unspecified; an ANN is useful for establishing a relationship between these variables and to classify a status that describes a problem into the farm. The data classification is made to recognize and to quantify two states within the pool: a) Normal: Everything is well. b) Risk: One, some or all environmental variables are outside of the allowed interval, which generates problems. The neural network will have to recognize the state and to quantify it, in others words, how normal or risky it is, which allows finding trend of the water quality. A study was developed for designing a software tool that allows recognizing the status of the water quality and control problems for the environment into the pond.

  12. Networks and Water Policy: Conclusions and Implications for Research

    NARCIS (Netherlands)

    Bressers, Johannes T.A.; O'Toole, Laurence J.

    1994-01-01

    Network models for analysing public policy have become widely used in recent years. This symposium assesses the network idea by applying a common perspective on network analysis to the constellations involved in water policy formation and implementation in several countries and the European Union.

  13. 9 CFR 108.11 - Water quality requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  14. 7 CFR 634.23 - Water quality plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  15. Microbiological Quality of Drinking Water Sources in Rural ...

    African Journals Online (AJOL)

    Microbiological Quality of Drinking Water Sources in Rural Communities of Dire Dawa Administrative Council. ... the membrane filtration method. Water analysis demonstrated that all water sources in the ... The majority of the drinking water sources is either of unacceptable quality or grossly polluted. Regular quality control ...

  16. A multivariate analysis of water quality in lake Naivasha, Kenya

    NARCIS (Netherlands)

    Ndungu, J.N.; Augustijn, Dionysius C.M.; Hulscher, Suzanne J.M.H.; Fulanda, B.; Kitaka, N.; Mathooko, J.M.

    2014-01-01

    Water quality information in aquatic ecosystems is crucial in setting up guidelines for resource management. This study explores the water quality status and pollution sources in Lake Naivasha, Kenya. Analysis of water quality parameters at seven sampling sites was carried out from water samples

  17. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  18. Development of a water quality index based on a European ...

    African Journals Online (AJOL)

    ... water supply rather than general supply, and has been developed by studying the supranational standard, i.e. the European Community Standard. Three classification schemes for water quality are proposed for surface water quality assessment. Water quality determinants of the new index are cadmium, cyanide, mercury, ...

  19. Pollution induced tidal variability in water quality of Mahim Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Sabnis, M.M.

    Variability of water quality due to release of wastewater in Mahim Estuary (Maharashtra, India) and associated nearshore waters is discussed. The mixing of low salinity contaminated estuary water with high salinity bay water was considerably...

  20. [Microbial indicators and fresh water quality assessment].

    Science.gov (United States)

    Briancesco, Rossella

    2005-01-01

    Traditionally, the microbiological quality of waters has been measured by the analysis of indicator microorganisms. The article reviews the sanitary significance of traditional indicators of faecal contamination (total coliforms, faecal coliforms and faecal streptococci) and points out their limits. For some characteristics Escherichia coli may be considered a more useful indicator then faecal coliforms and recently it has been included in all recent laws regarding fresh, marine and drinking water. A clearer taxonomic definition of faecal streptococci evidenced the difficulty into defining a specific standard methodology of enumeration and suggested the more suitable role of enterococci as indicator microorganisms. Several current laws require the detection of enterococci. The resistance of Clostridium perfringens spores may mean that they would serve as a useful indicator of the sanitary quality of sea sediments.

  1. Synthesis and Design of Integrated Process and Water Networks

    DEFF Research Database (Denmark)

    Handani, Zainatul B.; Quaglia, Alberto; Gani, Rafiqul

    2015-01-01

    possible options with respect to the topology of the process and water networks, leading to Mixed Integer Non Linear Programming (MINLP) problem. A solution strategy to solve the multi-network problem accounts explicitly the interactions between the networks by selecting suitable technologies in order...... to transform raw materials into products and produce clean water to be reused in the process at the early stage of design. Since the connection between the process network and the wastewater treatment network is not a straight forward connection, a new converter interval is introduced in order to convert......This work presents the development of a systematic framework for a simultaneous synthesis and design of process and water networks using the superstructure-based optimization approach. In this framework, a new superstructure combining both networks is developed by attempting to consider all...

  2. Water quality objectives as a management tool for sustainability

    OpenAIRE

    Everard, Mark

    1994-01-01

    The aim of this paper is to explore the potential role that quality objectives, particularly when backed by statutory force, may play in the sustainable management of river water quality. Economic valuation techniques are discussed, as well as the theory of "critical natural capital". A brief history of water quality legislation includes the implementation of the National Water Council classification in 1979, and the statutory water quality objectives introduced under the Water Resources Act ...

  3. Water distribution network modelling of a small community using ...

    African Journals Online (AJOL)

    In this study a network model was constructed for the hydraulic analysis and design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using WaterCAD simulator. The analysis included a review of pressures, velocities and head loss gradients under steady state average ...

  4. Artificial neural networks for prediction of percentage of water ...

    Indian Academy of Sciences (India)

    According to these input parameters, in the neural networks model, the percentage of water absorption of each specimen was predicted. The training and testing results in the neural networks model have shown a strong potential for predicting the percentage of water absorption of the geopolymer specimens.

  5. Water Quality Criteria for Disperse Red 9

    Science.gov (United States)

    1987-07-01

    mixture were identified as azobenzene , azoxybenzene, aminobiphenyl, and phenyldiazo- benzene. The second fraction, 73.6 percent of the mixture...antagonistic effects; and genotoxicity, teratogenicity, and carcinogenicity. The data are derived primarily from animal studies, but clinical case histories ...on can be used for calculating a water quality criterion (using the uncertainty factor approach). Also the history of each TLV should be examined to

  6. Attenuation coefficients for water quality trading

    OpenAIRE

    Keller, AA; Chen, X.; Fox, J; Fulda, M; Dorsey, R.; Seapy, B; Glenday, J; E Bray

    2014-01-01

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction t...

  7. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    Science.gov (United States)

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  8. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  9. Water quality data for national-scale aquatic research: The Water Quality Portal

    Science.gov (United States)

    Read, Emily K.; Carr, Lindsay; De Cicco, Laura; Dugan, Hilary A.; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke A.

    2017-02-01

    xml:id="wrcr22485-sec-1001" numbered="no">Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  10. Health Provider Networks, Quality and Costs

    NARCIS (Netherlands)

    Boone, J.; Schottmuller, C.

    2015-01-01

    We provide a modeling framework to think about selective contracting in the health care sector. Two health care providers differ in quality and costs. When buying health insurance, consumers observe neither provider quality nor costs. We derive an equilibrium where health insurers signal provider

  11. Health provider networks, quality and costs

    NARCIS (Netherlands)

    Boone, Jan; Schottmuller, C.

    2015-01-01

    We provide a modeling framework to think about selective contracting in the health care sector. Two health care providers differ in quality and costs. When buying health insurance, consumers observe neither provider quality nor costs. We derive an equilibrium where health insurers signal provider

  12. Water Quality, Mitigation Measures of Arsenic Contamination and Sustainable Rural Water Supply Options in Bangladesh

    Directory of Open Access Journals (Sweden)

    HOSSAIN M. ANAWAR

    2012-06-01

    Full Text Available Arsenic contamination of groundwater has created a serious public health issue in Bangladesh and West Bengal (India, because groundwater is widely used for drinking, household and agriculture purposes. Given the magnitude of the problem of groundwater contamination facing Bangladesh, effective, acceptable and sustainable solutions are urgently required. Different NGOs (Non-government organizations and research organizations are using their extensive rural networks to raise awareness and conduct pilot projects. The implication of the results from the previous studies is robust, but coastly arsenic reduction technologies such as activated alumina technology, and As and Fe removal filters may find little social acceptance, unless heavily subsidized. This review paper analysed the quality of surface water and ground water, all mitigation measures and the most acceptable options to provide sustainable access to safe- water supply in the rural ares of Bangladesh. Although there are abundant and different sources of surface water, they can not be used for drinking and hosehold purposes due to lack of sanitation, high faecal coliform concentration, turibidity and deterioration of quality of surface water sources. There are a few safe surface water options; and also there are several methods available for removal of arsenic and iron from groundwater in large conventional treatments plants. This review paper presented a short description of the currently available and most sustainable technologies for arsenic and iron removal, and alternative water supply options in the rural areas.

  13. Modelling raw water quality: development of a drinking water management tool.

    Science.gov (United States)

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  14. Geospatial Data Quality of the Servir CORS Network

    Science.gov (United States)

    Santos, J.; Teodoro, R.; Mira, N.; Mendes, V. B.

    2015-08-01

    The SERVIR Continuous Operation Reference Stations (CORS) network was implemented in 2006 to facilitate land surveying with Global Navigation Satellite Systems (GNSS) positioning techniques. Nowadays, the network covers all Portuguese mainland. The SERVIR data is provided to many users, such as surveyors, universities (for education and research purposes) and companies that deal with geographic information. By middle 2012, there was a significant change in the network accessing paradigm, the most important of all being the increase in the responsibility of managing the network to guarantee a permanent availability and the highest quality of the geospatial data. In addition, the software that is used to manage the network and to compute the differential corrections was replaced by a new software package. These facts were decisive to perform the quality control of the SERVIR network and evaluate positional accuracy. In order to perform such quality control, a significant number of geodetic monuments spread throughout the country were chosen. Some of these monuments are located in the worst location regarding the network geometry in order to evaluate the accuracy of positions for the worst case scenarios. Data collection was carried out using different GNSS positioning modes and were compared against the benchmark positions that were determined using data acquired in static mode in 3-hour sessions. We conclude the geospatial data calculated and provided to the users community by the network is, within the surveying purposes, accurate, precise and fits the needs of those users.

  15. Offset Trace-Based Video Quality Evaluation Network Transport

    DEFF Research Database (Denmark)

    Seeling, P.; Reisslein, M.; Fitzek, Frank

    2006-01-01

    Video traces contain information about encoded video frames, such as frame sizes and qualities, and provide a convenient method to conduct multimedia networking research. Although wiedely used in networking research, these traces do not allow to determine the video qaulityin an accurate manner...... after networking transport that includes losses and delays. In this work, we provide (i) an overview of frame dependencies that have to be taken into consideration when working with video traces, (ii) an algorithmic approach to combine traditional video traces and offset distortion traces to determine...... the video quality or distortion after lossy network transport, (iii) offset distortion and quality characteristics and (iv) the offset distortion trace format and tools to create offset distortion traces....

  16. A Neural Network Model for Prediction of Sound Quality

    DEFF Research Database (Denmark)

    Nielsen,, Lars Bramsløw

    An artificial neural network structure has been specified, implemented and optimized for the purpose of predicting the perceived sound quality for normal-hearing and hearing-impaired subjects. The network was implemented by means of commercially available software and optimized to predict results...... error on the test set. The overall concept proved functional, but further testing with data obtained from a new rating experiment is necessary to better assess the utility of this measure. The weights in the trained neural networks were analyzed to qualitatively interpret the relation between...... obtained in subjective sound quality rating experiments based on input data from an auditory model. Various types of input data and data representations from the auditory model were used as input data for the chosen network structure, which was a three-layer perceptron. This network was trained by means...

  17. 30 CFR 71.601 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  18. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Groundtank households had better quality drinking water than households using storage containers filled from communal tankers. Uncovered storage containers had the poorest microbial water quality among all storage containers. All stored water did not meet drinking water standards, although mains water did.

  19. Evaluating the relationship between temporal changes in land use and resulting water quality.

    Science.gov (United States)

    Wijesiri, Buddhi; Deilami, Kaveh; Goonetilleke, Ashantha

    2017-12-02

    Changes in land use have a direct impact on receiving water quality. Effective mitigation strategies require the accurate prediction of water quality in order to enhance community well-being and ecosystem health. The research study employed Bayesian Network modelling to investigate the validity of using cross-sectional and longitudinal data on water quality and land use for predicting water quality in a mixed use catchment and the role it plays in the generation of blue-green algae in the receiving marine environment. Bayesian Network modelling showed that cross-sectional and longitudinal data analyses generate contrasting information about the influence of different land uses on surface water pollution. The modelling outcomes highlighted the lack of reliability in cross-sectional data analysis, based on the indication of spurious relationships between water quality and land use. On the other hand, the longitudinal data analysis, which accounted for changes in water quality and land use over a ten-year period, informed how catchment water quality varies in response to temporal changes in land use. The longitudinal data analysis further revealed that the types of anthropogenic activities have a more significant influence on pollutant generation than the change in the area extent of different land uses over time. Therefore, the careful interpretation of the findings derived solely from cross-sectional data analysis is important in the design of long-term strategies for pollution mitigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Propagation of crises in the virtual water trade network

    Science.gov (United States)

    Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2015-04-01

    The international trade of agricultural goods is associated to the displacement of the water used to produce such goods and embedded in trade as a factor of production. Water virtually exchanged from producing to consuming countries, named virtual water, defines flows across an international network of 'virtual water trade' which enable the assessment of environmental forcings and implications of trade, such as global water savings or country dependencies on foreign water resources. Given the recent expansion of commodity (and virtual water) trade, in both displaced volumes and network structure, concerns have been raised about the exposure to crises of individuals and societies. In fact, if one country had to markedly decrease its export following a socio-economical or environmental crisis, such as a war or a drought, many -if not all- countries would be affected due to a cascade effect within the trade network. The present contribution proposes a mechanistic model describing the propagation of a local crisis into the virtual water trade network, accounting for the network structure and the virtual water balance of all countries. The model, built on data-based assumptions, is tested on the real case study of the Argentinean crisis in 2008-09, when the internal agricultural production (measured as virtual water volume) decreased by 26% and the virtual water export of Argentina dropped accordingly. Crisis propagation and effects on the virtual water trade are correctly captured, showing the way forward to investigations of crises impact and country vulnerability based on the results of the model proposed.

  1. Quality assessment of drinking water in Temeke District (part II ...

    African Journals Online (AJOL)

    ... parameters of drinking water samples from different drinking water sources. The drinking water sources examined included tap water, river water and well water (deep and shallow wells). Water quality studied includes pH, chloride, nitrate and total hardness levels. The concentrations of total hardness in mg CaCO3/L and ...

  2. Towards semen quality assessment using neural networks

    DEFF Research Database (Denmark)

    Linneberg, Christian; Salamon, P.; Svarer, C.

    1994-01-01

    The paper presents the methodology and results from a neural net based classification of human sperm head morphology. The methodology uses a preprocessing scheme in which invariant Fourier descriptors are lumped into “energy” bands. The resulting networks are pruned using optimal brain damage...

  3. Seasonal variations of ground water quality and its agglomerates by water quality index

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2016-01-01

    Full Text Available Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70, Lalawas (362.74,396.67, Jaisinghpura area (286.00,273.78 were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00, Naila (120.25, 239.86, Galta (160.9, 204.1 were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.

  4. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  5. 1990 National Water Quality Laboratory Services Catalog

    Science.gov (United States)

    Pritt, Jeffrey; Jones, Berwyn E.

    1989-01-01

    PREFACE This catalog provides information about analytical services available from the National Water Quality Laboratory (NWQL) to support programs of the Water Resources Division of the U.S. Geological Survey. To assist personnel in the selection of analytical services, the catalog lists cost, sample volume, applicable concentration range, detection level, precision of analysis, and preservation techniques for samples to be submitted for analysis. Prices for services reflect operationa1 costs, the complexity of each analytical procedure, and the costs to ensure analytical quality control. The catalog consists of five parts. Part 1 is a glossary of terminology; Part 2 lists the bottles, containers, solutions, and other materials that are available through the NWQL; Part 3 describes the field processing of samples to be submitted for analysis; Part 4 describes analytical services that are available; and Part 5 contains indices of analytical methodology and Chemical Abstract Services (CAS) numbers. Nomenclature used in the catalog is consistent with WATSTORE and STORET. The user is provided with laboratory codes and schedules that consist of groupings of parameters which are measured together in the NWQL. In cases where more than one analytical range is offered for a single element or compound, different laboratory codes are given. Book 5 of the series 'Techniques of Water Resources Investigations of the U.S. Geological Survey' should be consulted for more information about the analytical procedures included in the tabulations. This catalog supersedes U.S. Geological Survey Open-File Report 86-232 '1986-87-88 National Water Quality Laboratory Services Catalog', October 1985.

  6. Associations between perceptions of drinking water service delivery and measured drinking water quality in rural Alabama.

    Science.gov (United States)

    Wedgworth, Jessica C; Brown, Joe; Johnson, Pauline; Olson, Julie B; Elliott, Mark; Forehand, Rick; Stauber, Christine E

    2014-07-18

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure-a risk factor for contamination-may be relatively reliable and therefore useful in future monitoring efforts.

  7. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    Directory of Open Access Journals (Sweden)

    Jessica C. Wedgworth

    2014-07-01

    Full Text Available Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure and general aesthetic characteristics (taste, odor and color, providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets and as-delivered from the distribution network (from outside flame-sterilized taps, if available, where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color. Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts.

  8. Barriers to adopting satellite remote sensing for water quality management

    Science.gov (United States)

    Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...

  9. Initial Survey Instructions for Spring Water Monitoring : Quality

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Initial survey instructions for 1.04 spring water monitoring (quality) and 1.06 management unit water monitoring (quality) at Fish Springs National Wildlife Refuge....

  10. Marine water-quality management in South- Africa

    CSIR Research Space (South Africa)

    Taljaard, Susan

    1995-01-01

    Full Text Available development with potential influence on water quality. The management plan is divided into three logical components, i.e. site-specific statutory requirements and environmental objectives; system design with specific reference to influences on water quality...

  11. Water Quality Assessment and Total Maximum Daily Loads Information (ATTAINS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Assessment TMDL Tracking And Implementation System (ATTAINS) stores and tracks state water quality assessment decisions, Total Maximum Daily Loads...

  12. Structure and Controls of the Global Virtual Water Trade Network

    Science.gov (United States)

    Suweis, S. S.

    2011-12-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model, the fitness model, that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened. Our results show the importance of incorporating a network framework in the study of virtual water trades and provide a model to study the structure and resilience of the GVWTN under future scenarios for social, economic and climate change.

  13. A Global Observatory of Lake Water Quality

    Science.gov (United States)

    Tyler, Andrew N.; Hunter, Peter D.; Spyrakos, Evangelos; Neil, Claire; Simis, Stephen; Groom, Steve; Merchant, Chris J.; Miller, Claire A.; O'Donnell, Ruth; Scott, E. Marian

    2017-04-01

    Our planet's surface waters are a fundamental resource encompassing a broad range of ecosystems that are core to global biogeochemical cycling, biodiversity and food and energy security. Despite this, these same waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and this often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Recent developments in the availability of satellite platforms for Earth observation (including ESA's Copernicus Programme) offers an unprecedented opportunity to deliver measures of water quality at a global scale. The UK NERC-funded GloboLakes project is a five-year research programme investigating the state of lakes and their response to climatic and other environmental drivers of change through the realization of a near-real time satellite based observatory (Sentinel-3) and archive data processing (MERIS, SeaWiFS) to produce a 20-year time-series of observed ecological parameters and lake temperature for more than 1000 lakes globally. However, the diverse and complex optical properties of lakes mean that algorithm performance often varies markedly between different water types. The GloboLakes project is overcoming this challenge by developing a processing chain whereby algorithms are dynamically selected according to the optical properties of the lake under observation. The development and validation of the GloboLakes processing chain has been supported by access to extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned data repository developed under the auspices of GloboLakes. This approach has resulted in a step-change in our ability to produce regional and

  14. Fuzzy Logic Water Quality Index and Importance of Water Quality Parameters

    Directory of Open Access Journals (Sweden)

    Raman Bai. V

    2009-01-01

    Full Text Available Determination of status of water quality of a river or any other water sources is highly indeterminate. It is necessary to have a competent model to predict the status of water quality and to advice for type of water treatment for meeting different demands. One such model (UNIQ2007 is developed as an application software in water quality engineering. The unit operates in a fuzzy logic mode including a fuzzification engine receiving a plurality of input variables on its input and being adapted to compute membership function parameters. A processor engine connected downstream of the fuzzification unit will produce fuzzy set, based on fuzzy variable viz. DO, BOD, COD, AN, SS and pH. It has a defuzzification unit operative to translate the inference results into a discrete crisp value of WQI. The UNIQ2007 contains a first memory device connected to the fuzzification unit and containing the set of membership functions, a secondary memory device connected to the defuzzification unit and containing the set of crisp value which appear in the THEN part of the fuzzy rules and an additional memory device connected to the defuzzification unit. More advantageously, UINQ2007 is constructed with control elements having dynamic fuzzy logic properties wherein target non-linearity can be input to result in a perfect evaluation of water quality. The development of the fuzzy model with one river system is explained in this paper. Further the model has been evaluated with the data from few rivers in Malaysia, India and Thailand. This water quality assessor probe can provide better quality index or identify the status of river with 90% perfection. Presently, WQI in most of the countries is referring to physic-chemical parameters only due to great efforts needed to quantify the biological parameters. This study ensures a better method to include pathogens into WQI due to superior capabilities of fuzzy logic in dealing with non-linear, complex and uncertain systems.

  15. Estimation of missing water-level data for the Everglades Depth Estimation Network (EDEN), 2013 update

    Science.gov (United States)

    Petkewich, Matthew D.; Conrads, Paul

    2013-01-01

    The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.

  16. Simultaneous optimization of water and heat exchange networks

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiyou; Hou, Yanlong; Li, Xiaoduan; Wang, Jingtao [Tianjin University, Tianjin (China)

    2014-04-15

    This paper focuses on the simultaneous optimization of the heat-integrated water allocation networks. A mathematic model is established to illustrate the modified state-space representation of this problem. An easy logical method is employed to help identify the streams of hot or cold ones. In this model, the water exchange networks (WEN), heat exchange networks (HEN), and the interactions between the WEN and HEN combine together as one unity. Thus, the whole network can be solved at one time, which enhances the possibility to get a global optimal result. Examples from the literature and a PVC plant are analyzed to illustrate the accuracy and applicability of this method.

  17. Assessment of Anthropogenic Activities on Water Quality of Benin ...

    African Journals Online (AJOL)

    Principal Component Analysis (PCA) and Water Quality Index (WQI) were used to establish relationship among water quality parameters and determine the water quality status. First six components of PCA accounted for 90.96% of observed variations and showed similarity between the sampling stations indicating different ...

  18. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Science.gov (United States)

    2013-09-04

    ... September 4, 2013 Part II Environmental Protection Agency 40 CFR Part 131 Water Quality Standards Regulatory... Rules#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 131 RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards (WQS...

  19. 77 FR 71191 - 2012 Recreational Water Quality Criteria

    Science.gov (United States)

    2012-11-29

    ... AGENCY 2012 Recreational Water Quality Criteria AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability of the 2012 Recreational Water Quality Criteria. SUMMARY: Pursuant to section 304... availability of the 2012 Recreational Water Quality Criteria (RWQC). The document contains the EPA's...

  20. Nationwide assessment of nonpoint source threats to water quality

    Science.gov (United States)

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  1. 40 CFR 35.2111 - Revised water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator has...

  2. Water Quality Conditions at Tributary Projects in the Omaha District

    Science.gov (United States)

    2012-02-01

    biodiversity . Managing sediment loading will typically enhance water quality and aquatic 6 habitat and prolong the recreational use of a reservoir...in reservoirs and can have a significant affect on water quality. DOC and POC are decomposed by microbial organisms. This decomposition exerts an... Water Quality Conditions at Tributary Projects in the Omaha District U.S. Army Corps of

  3. 40 CFR 35.2102 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  4. 40 CFR 35.2023 - Water quality management planning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  5. Studying Drinking Water Quality and its Change During Transportation through Samara Water-Supply Facilities

    Science.gov (United States)

    Kichigin, V. I.; Egorova, Y. A.; Nesterenko, O. I.

    2017-11-01

    The paper investigates changes in water physico-chemical composition and its physical indicators through ζ-potential in residential buildings in eight administrative districts of Samara. The results are processed by the methods of mathematical statistics and presented at the 0.05 level of importance. The sampling points for water in the city districts were chosen with the aid of random numbers tables. It was determined that the quality of drinking water was stable and consistent with the existing standards in Zheleznodorozhniy, Samarskiy, Leninskiy, Octyabrskiy, Kirovsliy, Sovetskiy and Promyshlenniy districts of Samara. The following indicators were taken into account: pH, colour, turbidity, alkalinity, general rigidity, content of ions Ca2 +, Mg2 +. It was also established that drinking water in Kuibyshevskiy district (with all other excellent indicators) had increased mineralization due to the natural hydrological conditions of the water inlet. Some change in the size of zeta-potential of the water was detected during its transportation through the existing water-supplying networks of the city. It was shown that the link between zeta-potential and various kinds of contamination in drinking water is underexplored and requires further detailed study.

  6. Water Quality of Emet Stream Basin

    Directory of Open Access Journals (Sweden)

    Cem TOKATLI

    2016-08-01

    Full Text Available Emet Stream Basin is one of Turkey's most important river systems and one of the two most important branches of Uluabat Lake (Ramsar Area. The system is under an intensive pressure of agricultural and industrial activities and domestic wastes. In this study, water samples were collected seasonally from eight stations (one of them is on the Kınık Stream, one of them is on the Dursunbey Stream and six of them on the Emet Stream on the Emet Stream Basin. Some lymnological parameters (nitrate nitrogen, nitrite nitrogen, ammonium nitrogen, sulfate, orthophosphate, and BOD5 were determined to evaluate the water quality. The data obtained were evaluated statistically and compared with the limit values reported by various national and international organizations. It was determined that, Emet Stream Basin is exposed to a significant organic pollution. 

  7. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype using ECHERP

    OpenAIRE

    Fredrick Romanus Ishengoma

    2014-01-01

    The recently advancement in Wireless Sensor Network (WSN) technology has brought new distributed sensing applications such as water quality monitoring. With sensing capabilities and using parameters like pH, conductivity and temperature, the quality of water can be known. This paper proposes a novel design based on IEEE 802.15.4 (Zig-Bee protocol) and solar energy called Autonomous Water Quality Monitoring Prototype (AWQMP). The prototype is designed to use ECHERP routing protocol and Adruino...

  9. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties....

  10. Cyanobacteria Assessment Network (CyAN) - 2017 NASA Water Resources PI Presentation

    Science.gov (United States)

    Presentation on the Cyanobacteria Assessment Network (CYAN) and how is supports the environmental management and public use of the U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.

  11. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Science.gov (United States)

    2011-03-23

    ... COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware Estuary and Extend These Criteria to... amendments to its Water Quality Regulations, Water Code and Comprehensive Plan to update the Commission's...

  12. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Science.gov (United States)

    2010-07-15

    ... COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water Quality Criteria for Toxic Pollutants in the Delaware Estuary and Extend These Criteria to... proposed amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan to...

  13. Hydrogeology and water quality of the Leetown area, West Virginia

    Science.gov (United States)

    Kozar, Mark D.; McCoy, Kurt J.; Weary, David J.; Field, Malcolm S.; Pierce, Herbert A.; Schill, William Bane; Young, John A.

    2008-01-01

    The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to

  14. A Hybrid Prediction Model for Monitoring of River Water Quality in the USN System

    OpenAIRE

    Hoontae Kim; Minsoo Kim

    2015-01-01

    River water quality is directly related to the wellness of its neighbors. Because the West Nakdong River has long suffered both from the infiltration of sea water and from the inflow of turbid wastewater, inconsiderate use of this water can cause disastrous result to nearby agricultural areas and neighbors. Busan city in Korea had deployed a pilot USN (ubiquitous sensor network) system that monitors this river and nearby tube wells to properly react to those situations. In this paper, we have...

  15. Assessing the Bacteriological Quality of Drinking Water from ...

    African Journals Online (AJOL)

    A total of 90 water samples from different water sources (-protected and unprotected well; protected and unprotected spring; and tap water) and bacteriological water quality parameters were analyzed using the membrane filtration method. Water analysis demonstrated that all water sources in the study areas were ...

  16. Implications of organic carbon in the deterioration of water quality in reclaimed water distribution systems.

    Science.gov (United States)

    Weinrich, Lauren A; Jjemba, Patrick K; Giraldo, Eugenio; LeChevallier, Mark W

    2010-10-01

    Changes in water quality in reclaimed water distribution systems are a major concern especially when considering the potential for growth of pathogenic microbes. A survey of 21 wastewater process configurations confirmed the high quality effluent produced using membrane bioreactor (MBR) technology, but suggests that other technologies can be operated to produce similar quality. Data from an intensive twelve-month sampling campaign in four reclaimed water utilities revealed the important trends for various organic carbon parameters including total organic carbon (TOC), biodegradable dissolved organic carbon (BDOC), and assimilable organic carbon (AOC). Of the four utilities, two were conventional wastewater treatment with open reservoir storage and two employed MBR technology with additional treatment including UV, ozone, and/or chlorine disinfection. Very high BDOC concentrations occurred in conventional systems, accounting for up to 50% of the TOC loading into the system. BDOC concentrations in two conventional plants averaged 1.4 and 6.3 mg/L and MBR plants averaged less than 0.6 mg/L BDOC. Although AOC showed wide variations, ranging from 100 to 2000 μg/L, the AOC concentrations in the conventional plants were typically 3-10 times higher than in the MBR systems. Pipe-loop studies designed to understand the impact of disinfection on the microbiology of reclaimed water in the distribution system revealed that chlorination will increase the level of biodegradable organic matter, thereby increasing the potential for microbial growth in the pipe network. This study concludes that biodegradable organic carbon is an important factor in the microbial quality and stability of reclaimed water and could impact the public health risk of reclaimed water at the point of use. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Speech Quality Monitoring in Czech National Research Network

    Directory of Open Access Journals (Sweden)

    Miroslav Voznak

    2010-01-01

    Full Text Available This paper deals with techniques of measuring and assessment of the voice transmitted in IP networks and describes design of quality measurement, which can be used for Cisco Gateways. Cisco gateways send Calculated Planning Impairment Factor in every CDR (Call Detail Record. Our design is based on collection of CDR's, their storing into SQL database and their visualization through web page. This design was implemented and successfully tested in CESNET network.

  18. The quality of water in small community supplies of Kingolwira ...

    African Journals Online (AJOL)

    Water quality is an important aspect in human health, as the majority of infectious diseases that cause morbidity and mortality in population are water related. The present study was undertaken to assess the quality of water in Kingolwira, Morogoro Rural District, Tanzania. Water was collected from different sites in the village ...

  19. Effects of urbanization on water quality variables along urban ...

    African Journals Online (AJOL)

    This study focuses on water quality of permanent and temporary water bodies along the urban and suburban gradients of Chennai City, South India. Water samples were analyzed for their major elements and nutrients. The results indicated that the response of water quality variables was different when compared to urban ...

  20. Variability of Rain Water Quality due to Roof Characteristics | Utsev ...

    African Journals Online (AJOL)

    ... varying effects on the characteristics of rainwater. From the experimental result, the roof drainage water quality in Gboko can be used as grey water for domestic purposes but requires treatment to be used as drinking water. KEYWORDS: Rainwater quality, Water availability, Rainwater harvesting, Variability, Roof drainage ...

  1. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    2013-09-23

    Sep 23, 2013 ... Drinking water quality was investigated at source and corresponding point-of-use in 2 peri-urban areas receiving drink- ing water either by communal water tanker or by delivery directly from the distribution system to household-based groundtanks with taps. Water quality variables measured were ...

  2. Bacteriological quality of water samples in Osogbo Metropolis ...

    African Journals Online (AJOL)

    The bacteriological qualities of samples of some sachet water, tap water and well water were examined. Some physicochemical parameters (pH and suspended solids) indicative of water quality as well as the total bacterial and total coliform counts were examined. The pH of the samples range between 6.5 and 7.2.

  3. An Iterated Local Search Algorithm for Multi-Period Water Distribution Network Design Optimization

    Directory of Open Access Journals (Sweden)

    Annelies De Corte

    2016-08-01

    Full Text Available Water distribution networks consist of different components, such as reservoirs and pipes, and exist to provide users (households, agriculture, industry with high-quality water at adequate pressure and flow. Water distribution network design optimization aims to find optimal diameters for every pipe, chosen from a limited set of commercially available diameters. This combinatorial optimization problem has received a lot of attention over the past forty years. In this paper, the well-studied single-period problem is extended to a multi-period setting in which time varying demand patterns occur. Moreover, an additional constraint—which sets a maximum water velocity—is imposed. A metaheuristic technique called iterated local search is applied to tackle this challenging optimization problem. A full-factorial experiment is conducted to validate the added value of the algorithm components and to configure optimal parameter settings. The algorithm is tested on a broad range of 150 different (freely available test networks.

  4. National Water-Quality Assessment Program: Island of Oahu, Hawaii

    Science.gov (United States)

    Anthony, Stephen S.

    1998-01-01

    During the past 25 years, our Nation has sought to improve its water quality; however, many water-quality issues remain unresolved. To address the need for consistent and scientifically sound information for managing the Nation's water resources, the U.S. Geological Survey began a full-scale National Water-Quality Assessment (NAWQA) Program in 1991. This program is unique compared with other national water-quality assessment studies in that it integrates the monitoring of the quality of surface and ground waters with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location of the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units. These study units represent the diverse geography, water resources, and land and water uses of the Nation. The island of Oahu, Hawaii, is one such study unit designed to supplement water-quality information collected in other study units across the Nation while addressing issues relevant to the island of Oahu.

  5. FIRESTORM: Modelling the water quality risk of wildfire.

    Science.gov (United States)

    Mason, C. I.; Sheridan, G. J.; Smith, H. G.; Jones, O.; Chong, D.; Tolhurst, K.

    2012-04-01

    ,000 pre-processed spatially distributed fire intensity and flame height maps, generated by a fire behaviour simulator. This part of the model predicts the annual risk of the water supply catchment burning and the spatial extent and severity of the burn. These spatial fire severity maps may be combined with vegetation maps and information on soils to determine initial conditions for modelling of sediment and associated contaminant loads delivered to reservoirs. Erosion and water quality models that form part of the overall model framework include a catchment-scale constituent load model to represent widespread rainfall events and a semi-distributed runoff and erosion connectivity model applied at the small catchment scale for convective storm events. Recent work has shown that localised, intense convective storms may also generate debris flows after fire in south-eastern Australia. Therefore, for the application of the model framework to reservoirs supplying Melbourne, an empirical debris flow erosion model is included. For the localised event models, sediment is routed from sub-catchments through the main channel network to the reservoir boundary. These erosion models are modular so that FIRESTORM may be adapted for use in a region of the world that experiences different dominant erosion processes. FIRESTORM will enable water supply managers to estimate the current water quality risk of wildfire and allow scenario testing to explore the effect of mitigation strategies (e.g. planned burning, post-fire erosion control measures) designed to reduce fire impacts and the magnitude of loads entering reservoirs. This model will be a valuable new tool for better decision making to protect future water supplies.

  6. Optimizing intermittent water supply in urban pipe distribution networks

    CERN Document Server

    Lieb, Anna M; Wilkening, Jon

    2015-01-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. Here, we develop a computational model of transition, transient pipe flow in a network, accounting for a wide variety of realistic boundary conditions. We validate the model against several published data sets, and demonstrate its use on a real pipe network. The model is extended to consider several optimization problems motivated by realistic scenarios. We demonstrate how to infer water flow in a small pipe network from a single pressure sensor, and show how to control water inflow to minimize damaging pressure gradients.

  7. Literature relevant to remote sensing of water quality

    Science.gov (United States)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  8. Quality in Family Child Care Networks: An Evaluation of All Our Kin Provider Quality

    Science.gov (United States)

    Porter, Toni; Reiman, Kayla; Nelson, Christina; Sager, Jessica; Wagner, Janna

    2016-01-01

    This article presents findings from a quasi-experimental evaluation of quality with a sample of 28 family child care providers in the All Our Kin Family Child Care Network, a staffed family child care network which offers a range of services including relationship-based intensive consultation, and 20 family child care providers who had no…

  9. Water Quality Modeling System for Coastal Archipelagos

    Science.gov (United States)

    Tuomi, L.; Miettunen, E.; Lukkari, K.; Puttonen, I.; Ropponen, J.; Tikka, K.; Piiparinen, J.; Lignell, R.

    2016-02-01

    Coastal seas are encountering pressures from eutrophication, fishing, ship emissions and coastal construction. Sustainable development and use of these areas require science-based guidance with high quality data and efficient tools. Our study area, the Archipelago Sea, is located in the northern part of the semi-enclosed and brackish water Baltic Sea. It is a shallow, topographically heterogeneous and eutrophic sub-basin, covered with thousands of small islands and islets. The catchment area is 8950 km2and has ca. 500 000 inhabitants. We are developing a modeling system that can be used by local authorities and in ministry level decision making to evaluate the environmental impacts that may result from decisions and changes made both in the watershed and in the coastal areas. The modeling system consists of 3D hydrodynamic model COHERENS and water quality model FICOS, both applied to the area with high spatial resolution. Models use river discharge and nutrient loading data supplied by watershed model VEMALA and include loading from multiple point sources located in the Archipelago Sea. An easy-to-use interface made specifically to answer the end-user needs, includes possibility to modify the nutrient loadings and perform model simulations to selected areas and time periods. To ensure the quality and performance of the modeling system, comprehensive measurement dataset including hydrographic, nutrient, chlorophyll-a and bottom sediment data, was gathered based on monitoring and research campaigns previously carried out in the Archipelago Sea. Verification showed that hydrodynamic model was able to simulate surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. However, the dynamics of the deeper layers need to be improved, especially in areas that have sharp bathymetric gradients. The preliminary analysis of the water quality model results showed that the model was able to reproduce the basic characteristics of

  10. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement V.

    Science.gov (United States)

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    Presented are abstracts and indexes to selected materials related to wastewater treatment and water quality education and instruction. In addition, some materials related to pesticides, hazardous wastes, and public participation are included. Also included are procedures to illustrate how instructors and curriculum developers in the water quality…

  11. Effectiveness of the stormwater quality devices to improve water quality at Putrajaya

    Science.gov (United States)

    Sidek, L. M.; Basri, H.; Noh, M. N. Md; Ainan, A.; Mohd Puad, A. H.

    2013-06-01

    Development of Putrajaya has changed the character of the natural landform by covering the land with impervious surfaces. Houses, office buildings, commercial place and shopping centres have provided places to live and work. The route between buildings is facilitated and encouraged by a complex network of roads and car parks. However, this change from natural landforms and vegetative cover to impervious surfaces has major effect on stormwater which are water quality (non-point source pollution). This paper describes the effectiveness of the stormwater quality devices to improve water quality at selected Putrajaya for demonstration in order to evaluate low cost storm inlet type devices in the Putrajaya Catchment. Five stormwater quality devices were installed and monitored during the study. The devices include Ultra Drain Guard Recycle model, Ultra Curb Guard Plus, Ultra Grate Guard, Absorbent Tarp and Ultra Passive Skimmer. This paper will provide information on the benefits and costs of these devices, including operations and maintenance requirements. Applicability of these devices in gas stations, small convenience stores, residential and small parking lots in the catchment are possible due to their low cost.

  12. 75 FR 4173 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2010-01-26

    ... Protection Agency 40 CFR Part 131 Water Quality Standards for the State of Florida's Lakes and Flowing Waters...; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 131 RIN 2040-AF11 Water Quality Standards for the State of Florida's...: The Environmental Protection Agency (EPA) is proposing numeric nutrient water quality criteria to...

  13. 75 FR 75761 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters

    Science.gov (United States)

    2010-12-06

    ... Protection Agency 40 CFR Part 131 Water Quality Standards for the State of Florida's Lakes and Flowing Waters...#0;#0; ] ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 131 RIN 2040-AF11 Water Quality Standards for... Regulatory Background C. Water Quality Criteria D. EPA Determination Regarding Florida and EPA's Rulemaking...

  14. Water distribution network modelling of a small community using ...

    African Journals Online (AJOL)

    Water distribution network modelling of a small community using watercad simulator. ... Global Journal of Engineering Research ... Pipes P-6, P-12, P-15 and P-19 expectedly have relatively low flow velocities due to the low average day ...

  15. Maryland Ground-Water Observation Well Network, 2001

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — MDNET is a point coverage that represents the locations and names of a network of observation wells for the State of Maryland. Additional information on water...

  16. Architectural approach for quality and safety aware healthcare social networks.

    Science.gov (United States)

    López, Diego M; Blobel, Bernd; González, Carolina

    2012-01-01

    Quality of information and privacy and safety issues are frequently identified as main limitations to make most benefit from social media in healthcare. The objective of the paper is to contribute to the analysis of healthcare social networks (SN), and online healthcare social network services (SNS) by proposing a formal architectural analysis of healthcare SN and SNS, considering the complexity of both systems, but stressing on quality, safety and usability aspects. Quality policies are necessary to control the quality of content published by experts and consumers. Privacy and safety policies protect against inappropriate use of information and users responsibility for sharing information. After the policies are established and documented, a proof of concept online SNS supporting primary healthcare promotion is presented in the paper.

  17. Sensor and Video Monitoring of Water Quality at Bristol Floating Harbour

    Science.gov (United States)

    Chen, Yiheng; Han, Dawei

    2017-04-01

    Water system is an essential component in a smart city for its sustainability and resilience. The harbourside is a focal area of​ ​Bristol with new buildings and features redeveloped in the last ten years, attracting numerous visitors by the diversity of attractions and beautiful views. There is a strong​ ​relationship between the satisfactory of the visitors and local people with the water quality in the Harbour. The freshness and beauty of the water body would please people as well as benefit the aquatic ecosystems. As we are entering a data-rich era, this pilot project aims to explore the concept of using​ ​ video cameras and smart sensors to collect and monitor water quality condition at the Bristol harbourside. The video cameras and smart sensors are connected to the Bristol Is Open network, an open programmable city platform. This will be the​ first​ attempt to collect water quality data in real time in the​ ​Bristol urban area with the wireless network. The videos and images of the water body collected by the cameras will be correlated with the in-situ water quality parameters for research​ ​purposes. The successful implementation of the sensors can attract more academic researchers and industrial partners to expand the sensor network to multiple locations​ ​around the city covering the other parts of the Harbour and River Avon, leading to a new generation of urban system infrastructure model.

  18. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    OpenAIRE

    Changjun Zhu; Qinag Liang; Feng Yan; Wenlong Hao

    2013-01-01

    In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the m...

  19. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    Computational approaches can be used to detect leakages in water distribution networks. One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can ...

  20. Water Pipeline Network Analysis Using Simultaneous Loop Flow ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... solving for the unknown in water network analysis. It is based on a loop iterative computation. Newton-Raphson method is a better technique for solving the network problems; however, the method adopted here computes simultaneous flow corrections for all loops, hence, the best since the computational.

  1. Water Distribution Network Modelling of a Small Community using ...

    African Journals Online (AJOL)

    Water Distribution Network Modelling of a Small Community using Watercad Simulator. ... Global Journal of Engineering Research ... with respect to pressure or available fire flow for the proposed service area and also that flow velocities are not excessive while head loss gradients in the network are within acceptable limits.

  2. Pattern Recognition for Reliability Assessment of Water Distribution Networks

    NARCIS (Netherlands)

    Trifunović, N.

    2012-01-01

    The study presented in this manuscript investigates the patterns that describe reliability of water distribution networks focusing to the node connectivity, energy balance, and economics of construction, operation and maintenance. A number of measures to evaluate the network resilience has been

  3. Optimizing intermittent water supply in urban pipe distribution networks

    OpenAIRE

    Lieb, Anna M.; Rycroft, Chris H.; Wilkening, Jon

    2015-01-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. Here, we develop a computational model of transition, transient pipe flow in a network, accounting for a wide variety of realistic bo...

  4. Resilience-based optimal design of water distribution network

    Science.gov (United States)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  5. Resilience-based optimal design of water distribution network

    Science.gov (United States)

    Suribabu, C. R.

    2017-04-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  6. Evaluation of global water quality - the potential of a data- and model-driven analysis

    Science.gov (United States)

    Bärlund, Ilona; Flörke, Martina; Alcamo, Joseph; Völker, Jeanette; Malsy, Marcus; Kaus, Andrew; Reder, Klara; Büttner, Olaf; Katterfeld, Christiane; Dietrich, Désirée; Borchardt, Dietrich

    2016-04-01

    The ongoing socio-economic development presents a new challenge for water quality worldwide, especially in developing and emerging countries. It is estimated that due to population growth and the extension of water supply networks, the amount of waste water will rise sharply. This can lead to an increased risk of surface water quality degradation, if the wastewater is not sufficiently treated. This development has impacts on ecosystems and human health, as well as food security. The United Nations Member States have adopted targets for sustainable development. They include, inter alia, sustainable protection of water quality and sustainable use of water resources. To achieve these goals, appropriate monitoring strategies and the development of indicators for water quality are required. Within the pre-study for a 'World Water Quality Assessment' (WWQA) led by United Nations Environment Programme (UNEP), a methodology for assessing water quality, taking into account the above-mentioned objectives has been developed. The novelty of this methodology is the linked model- and data-driven approach. The focus is on parameters reflecting the key water quality issues, such as increased waste water pollution, salinization or eutrophication. The results from the pre-study show, for example, that already about one seventh of all watercourses in Latin America, Africa and Asia show high organic pollution. This is of central importance for inland fisheries and associated food security. In addition, it could be demonstrated that global water quality databases have large gaps. These must be closed in the future in order to obtain an overall picture of global water quality and to target measures more efficiently. The aim of this presentation is to introduce the methodology developed within the WWQA pre-study and to show selected examples of application in Latin America, Africa and Asia.

  7. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  8. Bottled Water: United States Consumers and Their Perceptions of Water Quality

    OpenAIRE

    Hu, Zhihua; Morton, Lois Wright; Mahler, Robert L.

    2011-01-01

    Consumption of bottled water is increasing worldwide. Prior research shows many consumers believe bottled water is convenient and has better taste than tap water, despite reports of a number of water quality incidents with bottled water. The authors explore the demographic and social factors associated with bottled water users in the U.S. and the relationship between bottled water use and perceptions of the quality of local water supply. They find that U.S. consumers are more likely to report...

  9. Long Term Resource Monitoring Program Water Quality Component Review

    Science.gov (United States)

    2006-06-01

    Water Adequacy and Suitability of the Water Quality Laboratory. The panel also agreed that Quality Procedures Manual the potential for obtaining formal ... formally recognize the high level of work being performed 5 in LTRMP water quality and increase the national from the LTRMP field stations. However...transmission as the primary method for obtaining findings to external peer review is the final steptranmision s te prmar metod or otaiing in quality

  10. Multiple Transcoding Impact on Speech Quality in Ideal Network Conditions

    Directory of Open Access Journals (Sweden)

    Martin Mikulec

    2015-01-01

    Full Text Available This paper deals with the impact of transcoding on the speech quality. We have focused mainly on the transcoding between codecs without the negative influence of the network parameters such as packet loss and delay. It has ensured objective and repeatable results from our measurement. The measurement was performed on the Transcoding Measuring System developed especially for this purpose. The system is based on the open source projects and is useful as a design tool for VoIP system administrators. The paper compares the most used codecs from the transcoding perspective. The multiple transcoding between G711, GSM and G729 codecs were performed and the speech quality of these calls was evaluated. The speech quality was measured by Perceptual Evaluation of Speech Quality method, which provides results in Mean Opinion Score used to describe the speech quality on a scale from 1 to 5. The obtained results indicate periodical speech quality degradation on every transcoding between two codecs.

  11. Quality in Supply in Project Configured Networks

    DEFF Research Database (Denmark)

    Koch, Christian; Larsen, Casper Schultz

    2006-01-01

    The paper argues that in the AEC-industry the material and knowledge supply chains are increasingly intertwined and moreover characterised by configuration by project. In such a setting creating value for the customers and the enterprises becomes dependent of the ability to organise and coordinat...... collaborative design and quality control in operations.......The paper argues that in the AEC-industry the material and knowledge supply chains are increasingly intertwined and moreover characterised by configuration by project. In such a setting creating value for the customers and the enterprises becomes dependent of the ability to organise and coordinate...... in the supply chains. That the configuration is not always successful can be demonstrated by studying the emergence of failures occurring in the supply chain. The paper presents case study work done in Danish construction where actors and causes of failures were examined upstream and downstream in the supply...

  12. Monitoring air quality in mountains: Designing an effective network

    Science.gov (United States)

    Peterson, D.L.

    2000-01-01

    A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.

  13. Quality of Service in Networks Supporting Cultural Multimedia Applications

    Science.gov (United States)

    Kanellopoulos, Dimitris N.

    2011-01-01

    Purpose: This paper aims to provide an overview of representative multimedia applications in the cultural heritage sector, as well as research results on quality of service (QoS) mechanisms in internet protocol (IP) networks that support such applications. Design/methodology/approach: The paper's approach is a literature review. Findings: Cultural…

  14. Voice Quality Improvement with Error Concealment in Audio Sensor Networks

    NARCIS (Netherlands)

    Türkes, Okan; Baydere, Sebnem

    2012-01-01

    Multi-dimensional properties of audio data and resource-poor nodes make voice processing and transmission a challenging task for Wireless Sensor Networks (WSN). This study analyzes voice quality distortions caused by packet losses occurring over a multi-hop WSN testbed: A comprehensive analysis of

  15. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  16. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    Science.gov (United States)

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  17. The maladies of water and war: addressing poor water quality in Iraq.

    Science.gov (United States)

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  18. Hydrologic and water quality modeling: spatial and temporal considerations

    Science.gov (United States)

    Hydrologic and water quality models are used to help manage water resources by investigating the effects of climate, land use, land management, and water management on water resources. Each water-related issue is better investigated at a specific scale, which can vary spatially from point to watersh...

  19. Microbial quality of Jimma water supply Sofonias Kifle Tsegaye Gadisa

    African Journals Online (AJOL)

    dell

    Microbial Quality of Jimma Water Supply. Sofonias Kifle et. al 25 made. For treated water, sample was taken only once but, for untreated water, samples were taken twice according to the guidelines for unchlorinated water. Sample collection procedures. A. Collecting sample from pipe water and protected springs. 1. The out ...

  20. Tailoring groundwater quality monitoring to vulnerability: a GIS procedure for network design.

    Science.gov (United States)

    Preziosi, E; Petrangeli, A B; Giuliano, G

    2013-05-01

    Monitoring networks aiming to assess the state of groundwater quality and detect or predict changes could increase in efficiency when fitted to vulnerability and pollution risk assessment. The main purpose of this paper is to describe a methodology aiming at integrating aquifers vulnerability and actual levels of groundwater pollution in the monitoring network design. In this study carried out in a pilot area in central Italy, several factors such as hydrogeological setting, groundwater vulnerability, and natural and anthropogenic contamination levels were analyzed and used in designing a network tailored to the monitoring objectives, namely, surveying the evolution of groundwater quality relating to natural conditions as well as to polluting processes active in the area. Due to the absence of an aquifer vulnerability map for the whole area, a proxi evaluation of it was performed through a geographic information system (GIS) methodology, leading to the so called "susceptibility to groundwater quality degradation". The latter was used as a basis for the network density assessment, while water points were ranked by several factors including discharge, actual contamination levels, maintenance conditions, and accessibility for periodical sampling in order to select the most appropriate to the network. Two different GIS procedures were implemented which combine vulnerability conditions and water points suitability, producing two slightly different networks of 50 monitoring points selected out of the 121 candidate wells and springs. The results are compared with a "manual" selection of the points. The applied GIS procedures resulted capable to select the requested number of water points from the initial set, evaluating the most confident ones and an appropriate density. Moreover, it is worth underlining that the second procedure (point distance analysis [PDA]) is technically faster and simpler to be performed than the first one (GRID + PDA).

  1. Environmental Quality Standards in the EC-Water Framework Directive

    DEFF Research Database (Denmark)

    Jirka, Gerhard H.; Burrows, Richard; Larsen, Torben

    2004-01-01

    The "combined approach" in the new EC-Water Framework Directive(WFD) consisting of environmental quality standards in addition to emission limit values promises improvements in the quality characteristics of surface water. However, the specification of where in the water body the environmental...... waters, respectively. Furthermore, water authorities will have to make increased use of predictive modeling techniques for the implementation of the "combined appraoch"....

  2. EPA Office of Water (OW): Water Quality Assessment Information

    Science.gov (United States)

    Data layer mashup in a kmz format using Census data: U.S. States (Generalized) represents the 50 states and the District of Columbia of the United State. This polygonal data was enhanced with outline boundaries for the Virgin Islands, Northern Mariana Islands, and Guam from TIGER data: TIGER/Line Shapefile, 2008, nation, U.S., State and Equivalent (http://www.census.gov/geo/www/tiger). Attribute data from the Assessment Total Maximum Daily Load Tracking and Implementation System (ATTAINS) database was joined to this boundary layer to summarize the latest available data for each state. ATTAINS presents information about water quality assessments, impairments and restorative actions using Total Maximum Daily Loads.

  3. Where to Find Water Pipes and Sewers?—On the Correlation of Infrastructure Networks in the Urban Environment

    Directory of Open Access Journals (Sweden)

    Michael Mair

    2017-02-01

    Full Text Available Urban water infrastructure, i.e., water supply and sewer networks, are underground structures, implying that detailed information on their location and features is not directly accessible, frequently erroneous, or missing. For public use, data is also not made available due to security concerns. This lack of quality data, especially for research purposes, requires substantial effort when such data is sought for both statistical and model‐based analyses. An alternative to gathering data from archives and observations is to extract the information from surrogate data sources (e.g., the street network. The key for such an undertaking is to identify the common characteristics of all urban infrastructure network types and to quantify them. In this work, the network correlations of the street, water supply, and sewer networks are systematically analyzed. The results showed a strong correlation between the street networks and urban water infrastructure networks, in general. For the investigated cases, on average, 50% of the street network length correlates with 80%-85% of the total water supply/sewer network. A correlation between street types and water infrastructure properties (e.g., pipe diameter cannot be found. All analyses are quantified in the form of different geometric‐ and graph‐based indicators. The obtained results improve the understanding of urban network infrastructure from an integrated point of view. Moreover, the method can be fundamental for different research purposes, such as data verification, data completion, or even the entire generation of feasible datasets.

  4. Dynamics of the global virtual water trade network

    Science.gov (United States)

    Dalin, C.; Konar, M.; Hanasaki, N.; Rodriguez-Iturbe, I.

    2011-12-01

    Water resources are under increasing pressure from population growth, socio-economic development and climate change. Since agriculture is by far the most freshwater-consuming process, the international food trade may be a way of transferring water resources to water-scarce countries, and of saving water globally by encouraging trade from water-efficient countries to less water-efficient countries. We applied complex network theory to analyze the dynamics of the global virtual water trade network. Our goal was to assess how the properties of the virtual water trade network changed in time, and how these changes are related to national policies, economic and weather conditions or events. We found that, on average, the number of trade partners of each country in the network doubled from 1986 to 2007, while the volume of water associated with food trade tripled. Despite this growth of the network, we found that the shape of the network properties distributions remained similar: for all years studied, the degree distribution is well fitted by an exponential distribution and the strength distribution compares well with a stretched exponential distribution, indicating high heterogeneity of flows between nations. Other global network structure characteristics, such as the power law relationship between node strength and node degree, dissasortative behavior and weighted rich club phenomenon were also stable through the 22 year-period. However, there are significant changes at the country and link scale of analysis. The USA has remained the world's top exporter of virtual water, while, since 2001, China has been the world's largest virtual water importer, a position formerly occupied by Russia and Japan. The sharp increase in China's virtual water imports is mostly due to its increased soybean imports, following a domestic policy shift regarding the soy trade in 2000 and 2001. Importantly, the food trade has led to enhanced savings in global water resources over the last few

  5. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    The parameters that most influenced the WQI as depicted by quality rating values include pH, Mn, Ni, Cd and Pb. Application of WQI in this study has been found functional in assessing the water quality of this stream based on the selected parameters. Key words: Water quality index, physicochemical parameters, Iguedo ...

  6. Improving Water Quality With Conservation Buffers

    Science.gov (United States)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  7. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water......-economic optimiza-tion model can be used to assess costs of meeting additional constraints such as minimum water qual-ity or to economically prioritize investments in waste water treatment facilities based on economic criteria....

  8. investigation of factors affecting drinking water quality from source

    African Journals Online (AJOL)

    user

    condition (6). The quality of protected water sources can be deteriorated due to poor site selection, in adequate protection and unhygienic management of facilities (7). The result of sanitary and quality monitoring in a pilot water surveillance study in Yogyarkarata, Jaua demonstrated that 65.0-85.0% of public water supplies;.

  9. The case for regime-based water quality standards

    Science.gov (United States)

    G.C. Poole; J.B. Dunham; D.M. Keenan; S.T. Sauter; D.A. McCullough; C. Mebane; J.C. Lockwood; D.A. Essig; M.P. Hicks; D.J. Sturdevant; E.J. Materna; S.A. Spalding; J. Risley; M. Deppman

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type...

  10. Assessment of changes in drinking water quality during distribution ...

    African Journals Online (AJOL)

    The quality of drinking water at the point of delivery to the consumer is crucial in safeguarding people's health. This study assesses changes in drinking water quality during distribution at Area 25 Township in Lilongwe, Malawi. Water samples were collected from the exit point of the treatment plant, storage tank and taps at ...

  11. Assessment of the water quality parameters in relation to fish ...

    African Journals Online (AJOL)

    Physicochemical indices of water body changed seasonally and this necessitated an investigation to assess the water quality parameters of Osinmo reservoir in relation to its fish species. The water quality parameters were measured using standard methods. Results obtained show that the reservoir is alkaline in nature with ...

  12. 30 CFR 75.1718-1 - Drinking water; quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  13. A drinking water quality framework for South Africa | Hodgson ...

    African Journals Online (AJOL)

    In recognition of the importance of safe drinking water to public health, DWAF initiated a project to draft a Drinking Water Quality Framework for South Africa to enable effective management of drinking water quality and the protection of public health. The Framework is based on a preventative risk management approach, ...

  14. Surface water quality assessment using factor analysis | Boyacioglu ...

    African Journals Online (AJOL)

    In this study, the factor analysis technique is applied to surface water quality data sets obtained from the Buyuk Menderes River Basin, Turkey, during two different hydrological periods. Results show that the indices which changed the quality of water in two seasons and locations differed. During low-flow conditions, water ...

  15. Investigation of potential water quality and quantity impacts ...

    African Journals Online (AJOL)

    A scoping level study was performed to consolidate the existing information on the geohydrology and pre-mining water quantity and quality of water resources associated with the Waterberg coal reserves. New data regarding water quality and acid-base potential for the different geological areas (through field investigations) ...

  16. Households willingness to pay for improved water quality and ...

    African Journals Online (AJOL)

    This survey investigated the willingness to pay for an improved water quality and reliability in Chobe ward in Maun. On average, 54% of the households are willing to pay for improved water quality. It is therefore apparent that Chobe Ward, Maun residents in general regard water as an economic good as they are willing to ...

  17. Water Balance and Groundwater Quality of Koraro Area, Tigray ...

    African Journals Online (AJOL)

    This paper focuses Koraro Tabia (or Station), one of the millennium villages where shortage and bad quality water is a challenge. Water balance and the hydro chemical characteristics of groundwater have been investigated in order to assess the water potential and quality in the area. Hydrometeorological information has ...

  18. THE WATER QUALITY DEGRADATION OF UPPER AWASH RIVER ...

    African Journals Online (AJOL)

    Osondu

    2013-01-11

    Jan 11, 2013 ... faunal diversity was observed in Koka Bridge (7 families) indicating the effect of water quality class differences among the sampling sites. Key words: Macroinvertebrates, organic pollution, heavy metals, water quality, anthropogenic impact, upper Awash River. Introduction. Water is critical for sustainable ...

  19. Assessment of water quality of Obueyinomo River, Ovia North East ...

    African Journals Online (AJOL)

    This study was carried out to assess the water quality of Obueyinomo River using water quality index. Ambient and water temperatures were determined in-situ while total dissolved solids (TDS), total suspended solids (TSS), total solids (TS), turbidity, pH, conductivity, hardness, alkalinity, dissolved Oxygen (DO), ...

  20. Analysis of Water Quality of the Commercial Borehols Along River ...

    African Journals Online (AJOL)

    ArcGIS 9.3 was used to map, create database and analyze the laboratory results through the use of SQL queries. It was recommended that the government should provide portable water, establish water quality control board and make use of GIS techniques for creation of database and analysis of water quality for easy ...

  1. Assessment of Irrigation Water Quality and Suitability for Irrigation in ...

    African Journals Online (AJOL)

    A number of factors like geology, soil, effluents, sewage disposal and other environmental conditions in which the water stays or moves and interacts are among the factors that affect the quality of irrigation water. This study was conducted to determine the quality and suitability of different water sources for irrigation purpose ...

  2. EPA Office of Water (OW): STORET Water Quality Monitoring Stations Source Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  3. EPA Office of Water (OW): STORET Water Quality Monitoring Stations NHDPlus Indexed Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — Storage and Retrieval for Water Quality Data (STORET and the Water Quality Exchange, WQX) defines the methods and the data systems by which EPA compiles monitoring...

  4. Predicting Water Levels at Kainji Dam Using Artificial Neural Networks

    African Journals Online (AJOL)

    Poor electricity generation in Nigeria is a very serious problem. Accurate prediction of water levels in dams is very important in power planning. Effective power planning helps in ensuring steady supply of electric power to consumers. The aim of this study is to develop artificial neural network models for predicting water ...

  5. Operational optimisation of water supply networks using a fuzzy ...

    African Journals Online (AJOL)

    2011-06-16

    Jun 16, 2011 ... 1 Department of Technology, Centre of Agreste Region, Federal University of Pernambuco, ... consumption of water and electricity, as well as to reduce the maintenance costs. ... the energy cost of pumping surpasses the investment costs ... consumption of water distribution network pumping systems is.

  6. The effect of the earthquake on the water distribution network ...

    African Journals Online (AJOL)

    ... and in some areas they pass necessarily from areas with fault lines. Thus studying the pipelines in earthquake-prone areas is of utmost importance. In this paper, the effect of the earthquake on the water distribution network has been discussed. Keywords: Water Foundations, Earthquake, Vibrations, Connections, Pipes ...

  7. An Optimal Design Model for New Water Distribution Networks in ...

    African Journals Online (AJOL)

    This paper is concerned with the problem of optimizing the distribution of water in Kigali City at a minimum cost. The mathematical formulation is a Linear Programming Problem (LPP) which involves the design of a new network of water distribution considering the cost in the form of unit price of pipes, the hydraulic gradient ...

  8. Polysemous Qualities and Universal Networks, Invariance and Diversity

    Directory of Open Access Journals (Sweden)

    Loïc-Michel Perrin

    2010-01-01

    Full Text Available The topic of this paper is the conceptual organization of polysemous prototypical qualities. This study, based on data collected in 24 languages, makes use of a single notional space composed of 110 notions. This space enables us to separately represent the polysemies observed in each language as well as polysemous patterns observable in several languages in order to contrast the variability specific to each language with the linguistic invariance. The results show that what is common in the language sample is based on recurring polysemies organized in networks. This method will also be useful in explaining how the linguistic variability is built up. Indeed, some of the qualities involved in these networks always take part in polysemous associations specific to only one language. Such qualities, called federative notions, are characterized by the fact that they are regularly involved in polyse?mous patterns, and across numerous languages.

  9. A qualitative ecological model to support mariculture pond water quality management.

    Science.gov (United States)

    Brown, D J

    1995-12-01

    A qualitative model of the ecology of a mariculture pond is described. The model represents ecological relationships in the form of a network of tableaux of inference rules which are scanned by a deductive reasoning mechanism to compute the values of pond water quality indicators, make forecasts and determine appropriate corrective and/or preventative maintenance actions.

  10. DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model

    Science.gov (United States)

    G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya

    2006-01-01

    A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...

  11. Adaptive Reference Control for Pressure Management in Water Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Jensen, Tom Nørgaard; Wisniewski, Rafal

    2015-01-01

    Water scarcity is an increasing problem worldwide and at the same time a huge amount of water is lost through leakages in the distribution network. It is well known that improved pressure control can lower the leakage problems. In this work water networks with a single pressure actuator and several....... Subsequently, these relations are exploited in an adaptive reference control scheme for the actuator pressure that ensures constant pressure at the critical points. Numerical experiments underpin the results. © Copyright IEEE - All rights reserved....

  12. Stability of drinking water distribution network

    DEFF Research Database (Denmark)

    Leth, Tobias; Kallesøe, Carsten Skovmose; Sloth, Christoffer

    2016-01-01

    We strive to prove stability of a hydraulic network, where the pressure at the end user is controlled with PI control. The non-polynomial model is represented by numerous polynomial systems defined on sub-sets of Rn. The sub-sets are defined by compact basic semi-algebraic sets. The stability...

  13. drinking water treatment using artificial neural network

    African Journals Online (AJOL)

    ogwueleka

    synaptic weights are used to store the knowledge.” The neural network approach is a branch of artificial intelligence. The ANN is based on a model of the human neurological system that consists of basic computing elements (called neurons) interconnected together (Figure 1). The model used for all classification attempts.

  14. A Structural Equation Modeling approach to water quality perceptions.

    Science.gov (United States)

    Levêque, Jonas G; Burns, Robert C

    2017-07-15

    Researches on water quality perceptions have used various techniques and models to explain relationships between specific variables. Surprisingly, Structural Equation Modeling (SEM) has received little attention in water quality perceptions studies, and reporting has been inconsistent among existing studies. One objective of this article is to provide readers with a methodological example for conducting and reporting SEM. Another objective is to build a model that explains the different relationships among the diverse factors highlighted by previous studies on water quality perceptions. Our study focuses on the factors influencing people's perceptions of water quality in the Appalachian region. As such, researchers have conducted a survey in a mid-sized city in northcentral West Virginia to assess residents' perceptions of water quality for drinking and recreational purposes. Specifically, we aimed to understand the relationships between perceived water quality, health risk perceptions, organoleptic perceptions, environmental concern, area satisfaction and perceptions of surface water quality. Our model provided a good fit that explained about 50% of the variance in health risk perceptions and 43% of the variance in organoleptic perceptions. Environmental concern, area satisfaction and perceived surface water quality are important factors in explaining these variances. Perceived water quality was dismissed in our analysis due to multicollinearity. Our study demonstrates that risk communication needs to be better addressed by local decision-makers and water managers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  16. The Economic Value of Changes in Water Quality

    DEFF Research Database (Denmark)

    Jensen, Anne Kejser

    Water quality is from both a European and Danish perspective challenged by private use of the resource. The public good characteristics of the resource require that regulation should internalize the non-market values of water quality, in order to reach an optimal level from a welfare economic...... perspective. Valuation using stated preference techniques to value changes in ecosystem services has been widely used to estimate values of water quality. However, heterogeneity in values exists across different groups in the population. The objective of this PhD-thesis is to explore two different kinds...... of preference heterogeneity, when valuing changes in water quality. The PhD thesis consists of four papers all related to heterogeneity in the public preferences for water quality improvements. Papers referred to as 1, 2 and 3 are based on a discrete choice experiment (DCE) on water quality improvements...

  17. Development of Pseudo Autonomous Wireless Sensor Monitoring System for Water Distribution Network

    OpenAIRE

    Kondratjevs, K; Zabašta, A; Kuņicina, N; Ribickis, L

    2014-01-01

    Water distribution networks require long term autonomous monitoring solutions, integrated, reliable and cost effective data transfer methods. This paper investigates the data delivery infrastructure of water distribution network sensor equipment used for network monitoring and billing of the subscribers. Water distribution network usually apply sensors to measure water flow, pressure and temperature. The main goal is to offer a wireless sensor system architecture comprisi...

  18. A multiobjective optimization framework for multicontaminant industrial water network design.

    Science.gov (United States)

    Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge

    2011-07-01

    The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    Science.gov (United States)

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  20. Image aesthetic quality evaluation using convolution neural network embedded learning

    Science.gov (United States)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.