WorldWideScience

Sample records for network systems based

  1. Autonomous power networks based power system

    International Nuclear Information System (INIS)

    Jokic, A.; Van den Bosch, P.P.J.

    2006-01-01

    This paper presented the concept of autonomous networks to cope with this increased complexity in power systems while enhancing market-based operation. The operation of future power systems will be more challenging and demanding than present systems because of increased uncertainties, less inertia in the system, replacement of centralized coordinating activities by decentralized parties and the reliance on dynamic markets for both power balancing and system reliability. An autonomous network includes the aggregation of networked producers and consumers in a relatively small area with respect to the overall system. The operation of an autonomous network is coordinated and controlled with one central unit acting as an interface between internal producers/consumers and the rest of the power system. In this study, the power balance problem and system reliability through provision of ancillary services was formulated as an optimization problem for the overall autonomous networks based power system. This paper described the simulation of an optimal autonomous network dispatching in day ahead markets, based on predicted spot prices for real power, and two ancillary services. It was concluded that large changes occur in a power systems structure and operation, most of them adding to the uncertainty and complexity of the system. The introduced concept of an autonomous power network-based power system was shown to be a realistic and consistent approach to formulate and operate a market-based dispatch of both power and ancillary services. 9 refs., 4 figs

  2. NASDA knowledge-based network planning system

    Science.gov (United States)

    Yamaya, K.; Fujiwara, M.; Kosugi, S.; Yambe, M.; Ohmori, M.

    1993-01-01

    One of the SODS (space operation and data system) sub-systems, NP (network planning) was the first expert system used by NASDA (national space development agency of Japan) for tracking and control of satellite. The major responsibilities of the NP system are: first, the allocation of network and satellite control resources and, second, the generation of the network operation plan data (NOP) used in automated control of the stations and control center facilities. Up to now, the first task of network resource scheduling was done by network operators. NP system automatically generates schedules using its knowledge base, which contains information on satellite orbits, station availability, which computer is dedicated to which satellite, and how many stations must be available for a particular satellite pass or a certain time period. The NP system is introduced.

  3. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  4. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  5. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  6. Smart Home System Based on GSM Network

    Directory of Open Access Journals (Sweden)

    Bakhtiar Ali Karim

    2018-04-01

    Full Text Available Due to increasing robbery and intrusion, establishing home-security system has become a correlated part of the modern houses, buildings, and offices. As the family members are not at home all the time, the traditional home security system, which makes alarm sound only, may not be efficient enough. Alternatively, Global System for Mobile communications (GSM based security system can provide higher level of security and convenience compared to the traditionally used systems. The main objective of the current paper is to design and implement cost-efficient and reliable security, safety and home automation system for protection and occupants’ convenience. If any undesired events, such as intrusion, gas leakage and fire occurs in the house, our system warns the homeowner in real-time using Short Message Service (SMS. With the proposed system home appliances can also be controlled in three ways, namely sending SMS from the authorized numbers to the system through GSM network, smartphone app using Bluetooth module and infrared (IR control using IR module

  7. Network-Aware DHT-Based P2P Systems

    Science.gov (United States)

    Fayçal, Marguerite; Serhrouchni, Ahmed

    P2P networks lay over existing IP networks and infrastructure. This chapter investigates the relation between both layers, details the motivations for network awareness in P2P systems, and elucidates the requirements P2P systems have to meet for efficient network awareness. Since new P2P systems are mostly based on DHTs, we also present and analyse DHT-based architectures. And after a brief presentation of different existing network-awareness solutions, the chapter goes on effective cooperation between P2P traffic and network providers' business agreements, and introduces emerging DHT-based P2P systems that are network aware through a semantic defined for resource sharing. These new systems ensure also a certain context-awareness. So, they are analyzed and compared before an open end on prospects of network awareness in P2P systems.

  8. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  9. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  10. Stabilization of model-based networked control systems

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Francisco [CIDMA, Universidade de Aveiro, Aveiro (Portugal); Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); Abreu, Carlos [Instituto Politécnico de Viana do Castelo, Viana do Castelo (Portugal); CMEMS-UMINHO, Universidade do Minho, Braga (Portugal); Mendes, Paulo M. [CMEMS-UMINHO, Universidade do Minho, Braga (Portugal)

    2016-06-08

    A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtain an optimal feedback control is also presented.

  11. FIPA agent based network distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  12. FIPA agent based network distributed control system

    International Nuclear Information System (INIS)

    Abbott, D.; Gyurjyan, V.; Heyes, G.; Jastrzembski, E.; Timmer, C.; Wolin, E.

    2003-01-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed

  13. A network-based dynamical ranking system for competitive sports

    Science.gov (United States)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  14. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  15. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  16. Virtualized Network Function Orchestration System and Experimental Network Based QR Recognition for a 5G Mobile Access Network

    Directory of Open Access Journals (Sweden)

    Misun Ahn

    2017-12-01

    Full Text Available This paper proposes a virtualized network function orchestration system based on Network Function Virtualization (NFV, one of the main technologies in 5G mobile networks. This system should provide connectivity between network devices and be able to create flexible network function and distribution. This system focuses more on access networks. By experimenting with various scenarios of user service established and activated in a network, we examine whether rapid adoption of new service is possible and whether network resources can be managed efficiently. The proposed method is based on Bluetooth transfer technology and mesh networking to provide automatic connections between network machines and on a Docker flat form, which is a container virtualization technology for setting and managing key functions. Additionally, the system includes a clustering and recovery measure regarding network function based on the Docker platform. We will briefly introduce the QR code perceived service as a user service to examine the proposal and based on this given service, we evaluate the function of the proposal and present analysis. Through the proposed approach, container relocation has been implemented according to a network device’s CPU usage and we confirm successful service through function evaluation on a real test bed. We estimate QR code recognition speed as the amount of network equipment is gradually increased, improving user service and confirm that the speed of recognition is increased as the assigned number of network devices is increased by the user service.

  17. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  18. Formal Specification Based Automatic Test Generation for Embedded Network Systems

    Directory of Open Access Journals (Sweden)

    Eun Hye Choi

    2014-01-01

    Full Text Available Embedded systems have become increasingly connected and communicate with each other, forming large-scaled and complicated network systems. To make their design and testing more reliable and robust, this paper proposes a formal specification language called SENS and a SENS-based automatic test generation tool called TGSENS. Our approach is summarized as follows: (1 A user describes requirements of target embedded network systems by logical property-based constraints using SENS. (2 Given SENS specifications, test cases are automatically generated using a SAT-based solver. Filtering mechanisms to select efficient test cases are also available in our tool. (3 In addition, given a testing goal by the user, test sequences are automatically extracted from exhaustive test cases. We’ve implemented our approach and conducted several experiments on practical case studies. Through the experiments, we confirmed the efficiency of our approach in design and test generation of real embedded air-conditioning network systems.

  19. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  20. Approaches in anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Di Pietro, R.; Mancini, L.V.

    2008-01-01

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  1. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  2. Combining Host-based and network-based intrusion detection system

    African Journals Online (AJOL)

    These attacks were simulated using hping. The proposed system is implemented in Java. The results show that the proposed system is able to detect attacks both from within (host-based) and outside sources (network-based). Key Words: Intrusion Detection System (IDS), Host-based, Network-based, Signature, Security log.

  3. Neural network-based model reference adaptive control system.

    Science.gov (United States)

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  4. Group Recommendation Systems Based on External Social-Trust Networks

    Directory of Open Access Journals (Sweden)

    Guang Fang

    2018-01-01

    Full Text Available With the development of social networks and online mobile communities, group recommendation systems support users’ interaction with similar interests or purposes with others. We often provide some advices to the close friends, such as listening to favorite music and sharing favorite dishes. However, users’ personalities have been ignored by the traditional group recommendation systems while the majority is satisfied. In this paper, a method of group recommendation based on external social-trust networks is proposed, which builds a group profile by analyzing not only users’ preferences, but also the social relationships between members inside and outside of the group. We employ the users’ degree of disagreement to adjust group preference rating by external information of social-trust network. Moreover, having a discussion about different social network utilization ratio, we proposed a method to work for smaller group size. The experimental results show that the proposed method has consistently higher precision and leads to satisfactory recommendations for groups.

  5. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  6. Arrester Resistive Current Measuring System Based on Heterogeneous Network

    Science.gov (United States)

    Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue

    2018-03-01

    Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.

  7. Social network based dynamic transit service through the OMITS system.

    Science.gov (United States)

    2014-02-01

    The Open Mode Integrated Transportation System (OMITS) forms a sustainable information infrastructure for communication within and between the mobile/Internet network, the roadway : network, and the users social network. It manipulates the speed g...

  8. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2015-03-01

    Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

  9. Neural network based system for script identification in Indian ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... The paper describes a neural network-based script identification system which can be used in the machine reading of documents written in English, Hindi and Kannada language scripts. Script identification is a basic requirement in automation of document processing, in multi-script, multi-lingual ...

  10. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  11. SNMS: an intelligent transportation system network architecture based on WSN and P2P network

    Institute of Scientific and Technical Information of China (English)

    LI Li; LIU Yuan-an; TANG Bi-hua

    2007-01-01

    With the development of city road networks, the question of how to obtain information about the roads is becoming more and more important. In this article, sensor network with mobile station (SNMS), a novel two-tiered intelligent transportation system (ITS) network architecture based on wireless sensor network (WSN) and peer-to-peer (P2P) network, is proposed to provide significant traffic information about the road and thereby, assist travelers to take optimum decisions when they are driving. A detailed explanation with regard to the strategy of each level as well as the design of two main components in the network, sensor unit (SU) and mobile station (MS), is presented. Finally, a representative scenario is described to display the operation of the system.

  12. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  13. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  14. A Study on Recommendation Systems in Location Based Social Networking

    Directory of Open Access Journals (Sweden)

    Ranganath Ashok Kumar

    2017-01-01

    Full Text Available Smart devices in the hands of people are revolutionizing the social lifestyle of one's self. Everyone across the world are using smart devices linked to their social networking activities one such activity is to share location data by uploading the tagged media content like photos, videos. The data is of surroundings, events attended/attending and travel experiences. Users share their experiences at a given location through localization techniques. Using such data from social networks an attempt is made to analyse tagged media content to acquire information on user context, individual’s interests, tastes, behaviours and derive meaningful relationships amongst them are referred to as Location Based Social Networks (LBSNs. The resulting information can be used to market a product and to improve business, as well recommend a travel and plan an itinerary. This paper presents a comprehensive survey of recommended systems for LBSNs covering the concepts of LBSNs, terminologies of LBSN and various recommendation systems.

  15. CLIPS based decision support system for water distribution networks

    Directory of Open Access Journals (Sweden)

    K. Sandeep

    2011-10-01

    Full Text Available The difficulty in knowledge representation of a water distribution network (WDN problem has contributed to the limited use of artificial intelligence (AI based expert systems (ES in the management of these networks. This paper presents a design of a Decision Support System (DSS that facilitates "on-demand'' knowledge generation by utilizing results of simulation runs of a suitably calibrated and validated hydraulic model of an existing aged WDN corresponding to emergent or even hypothetical but likely scenarios. The DSS augments the capability of a conventional expert system by integrating together the hydraulic modelling features with heuristics based knowledge of experts under a common, rules based, expert shell named CLIPS (C Language Integrated Production System. In contrast to previous ES, the knowledge base of the DSS has been designed to be dynamic by superimposing CLIPS on Structured Query Language (SQL. The proposed ES has an inbuilt calibration module that enables calibration of an existing (aged WDN for the unknown, and unobservable, Hazen-Williams C-values. In addition, the daily run and simulation modules of the proposed ES further enable the CLIPS inference engine to evaluate the network performance for any emergent or suggested test scenarios. An additional feature of the proposed design is that the DSS integrates computational platforms such as MATLAB, open source Geographical Information System (GIS, and a relational database management system (RDBMS working under the umbrella of the Microsoft Visual Studio based common user interface. The paper also discusses implementation of the proposed framework on a case study and clearly demonstrates the utility of the application as an able aide for effective management of the study network.

  16. A local-area-network based radiation oncology microcomputer system

    International Nuclear Information System (INIS)

    Chu, W.K.; Taylor, T.K.; Kumar, P.P.; Imray, T.J.

    1985-01-01

    The application of computerized technology in the medical specialty of radiation oncology has gained wide acceptance in the past decade. Recognizing that most radiation oncology department personnel are familiar with computer operations and terminology, it appears reasonable to attempt to expand the computer's applications to other departmental activities, such as scheduling, record keeping, billing, treatment regimen and status, etc. Instead of sharing the processing capability available on the existent treatment minicomputer, the radiation oncology computer system is based upon a microcomputer local area network (LAN). The system was conceptualized in 1984 and completed in March 1985. This article outlines the LAN-based radiation oncology computer system

  17. COLLABORATIVE NETWORK SECURITY MANAGEMENT SYSTEM BASED ON ASSOCIATION MINING RULE

    Directory of Open Access Journals (Sweden)

    Nisha Mariam Varughese

    2014-07-01

    Full Text Available Security is one of the major challenges in open network. There are so many types of attacks which follow fixed patterns or frequently change their patterns. It is difficult to find the malicious attack which does not have any fixed patterns. The Distributed Denial of Service (DDoS attacks like Botnets are used to slow down the system performance. To address such problems Collaborative Network Security Management System (CNSMS is proposed along with the association mining rule. CNSMS system is consists of collaborative Unified Threat Management (UTM, cloud based security centre and traffic prober. The traffic prober captures the internet traffic and given to the collaborative UTM. Traffic is analysed by the Collaborative UTM, to determine whether it contains any malicious attack or not. If any security event occurs, it will reports to the cloud based security centre. The security centre generates security rules based on association mining rule and distributes to the network. The cloud based security centre is used to store the huge amount of tragic, their logs and the security rule generated. The feedback is evaluated and the invalid rules are eliminated to improve the system efficiency.

  18. Implementation of medical monitor system based on networks

    Science.gov (United States)

    Yu, Hui; Cao, Yuzhen; Zhang, Lixin; Ding, Mingshi

    2006-11-01

    In this paper, the development trend of medical monitor system is analyzed and portable trend and network function become more and more popular among all kinds of medical monitor devices. The architecture of medical network monitor system solution is provided and design and implementation details of medical monitor terminal, monitor center software, distributed medical database and two kind of medical information terminal are especially discussed. Rabbit3000 system is used in medical monitor terminal to implement security administration of data transfer on network, human-machine interface, power management and DSP interface while DSP chip TMS5402 is used in signal analysis and data compression. Distributed medical database is designed for hospital center according to DICOM information model and HL7 standard. Pocket medical information terminal based on ARM9 embedded platform is also developed to interactive with center database on networks. Two kernels based on WINCE are customized and corresponding terminal software are developed for nurse's routine care and doctor's auxiliary diagnosis. Now invention patent of the monitor terminal is approved and manufacture and clinic test plans are scheduled. Applications for invention patent are also arranged for two medical information terminals.

  19. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  20. Recommender systems for location-based social networks

    CERN Document Server

    Symeonidis, Panagiotis; Manolopoulos, Yannis

    2014-01-01

    Online social networks collect information from users' social contacts and their daily interactions (co-tagging of photos, co-rating of products etc.) to provide them with recommendations of new products or friends. Lately, technological progressions in mobile devices (i.e. smart phones) enabled the incorporation of geo-location data in the traditional web-based online social networks, bringing the new era of Social and Mobile Web. The goal of this book is to bring together important research in a new family of recommender systems aimed at serving Location-based Social Networks (LBSNs). The chapters introduce a wide variety of recent approaches, from the most basic to the state-of-the-art, for providing recommendations in LBSNs. The book is organized into three parts. Part 1 provides introductory material on recommender systems, online social networks and LBSNs. Part 2 presents a wide variety of recommendation algorithms, ranging from basic to cutting edge, as well as a comparison of the characteristics of t...

  1. A distributed data base management system. [for Deep Space Network

    Science.gov (United States)

    Bryan, A. I.

    1975-01-01

    Major system design features of a distributed data management system for the NASA Deep Space Network (DSN) designed for continuous two-way deep space communications are described. The reasons for which the distributed data base utilizing third-generation minicomputers is selected as the optimum approach for the DSN are threefold: (1) with a distributed master data base, valid data is available in real-time to support DSN management activities at each location; (2) data base integrity is the responsibility of local management; and (3) the data acquisition/distribution and processing power of a third-generation computer enables the computer to function successfully as a data handler or as an on-line process controller. The concept of the distributed data base is discussed along with the software, data base integrity, and hardware used. The data analysis/update constraint is examined.

  2. Hydropower systems planning in distribution networks based on GIS

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, I.J.; Zorzano-Santamaria, P.; Fernandez-Jiminez, L.A.; Garcia-Garrido, E.; Zorzano-Alba, E.; Lara-Santillan, P.M.; Mendoza-Villena, M. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering

    2005-07-01

    Planning models for hydraulic energy systems developed with a new computational geographic information system (GIS) tool were presented. The GIS tool was used to identify sections of rivers that are suitable for small-scale run-of-river hydropower generation in the La Rioja region of Spain. The tool was also used to evaluate economic data related to financing grants, technological costs, installation costs, and forecast demands for various consumption scenarios. Case studies of 2 hydropower systems were used to test the tool. The planning models were based on levelized electric costs (LEC) of run-of-river hydropower systems, and enabled the systems to be analyzed in isolation as well as when connected to an existing electricity network. Results of the modelling studies showed that the tool is capable of analyzing the LEC of potential hydropower systems in a range of different scenarios while maintaining the geographic characteristics and requirements of individual regions. 7 refs., 4 figs.

  3. Distributed Ship Navigation Control System Based on Dual Network

    Science.gov (United States)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  4. Research on Web-Based Networked Virtual Instrument System

    International Nuclear Information System (INIS)

    Tang, B P; Xu, C; He, Q Y; Lu, D

    2006-01-01

    The web-based networked virtual instrument (NVI) system is designed by using the object oriented methodology (OOM). The architecture of the NVI system consists of two major parts: client-web server interaction and instrument server-virtual instrument (VI) communication. The web server communicates with the instrument server and the clients connected to it over the Internet, and it handles identifying the user's name, managing the connection between the user and the instrument server, adding, removing and configuring VI's information. The instrument server handles setting the parameters of VI, confirming the condition of VI and saving the VI's condition information into the database. The NVI system is required to be a general-purpose measurement system that is easy to maintain, adapt and extend. Virtual instruments are connected to the instrument server and clients can remotely configure and operate these virtual instruments. An application of The NVI system is given in the end of the paper

  5. Symptom based diagnostic system using artificial neural networks

    International Nuclear Information System (INIS)

    Santosh; Vinod, Gopika; Saraf, R.K.

    2003-01-01

    Nuclear power plant experiences a number of transients during its operations. In case of such an undesired plant condition generally known as an initiating event, the operator has to carry out diagnostic and corrective actions. The operator's response may be too late to mitigate or minimize the negative consequences in such scenarios. The objective of this work is to develop an operator support system based on artificial neural networks that will assist the operator to identify the initiating events at the earliest stages of their developments. A symptom based diagnostic system has been developed to investigate the initiating events. Neutral networks are utilized for carrying out the event identification by continuously monitoring process parameters. Whenever an event is detected, the system will display the necessary operator actions along with the initiating event. The system will also show the graphical trend of process parameters that are relevant to the event. This paper describes the features of the software that is used to monitor the reactor. (author)

  6. Construct mine environment monitoring system based on wireless mesh network

    Science.gov (United States)

    Chen, Xin; Ge, Gengyu; Liu, Yinmei; Cheng, Aimin; Wu, Jun; Fu, Jun

    2018-04-01

    The system uses wireless Mesh network as a network transmission medium, and strive to establish an effective and reliable underground environment monitoring system. The system combines wireless network technology and embedded technology to monitor the internal data collected in the mine and send it to the processing center for analysis and environmental assessment. The system can be divided into two parts: the main control network module and the data acquisition terminal, and the SPI bus technology is used for mutual communication between them. Multi-channel acquisition and control interface design Data acquisition and control terminal in the analog signal acquisition module, digital signal acquisition module, and digital signal output module. The main control network module running Linux operating system, in which the transplant SPI driver, USB card driver and AODV routing protocol. As a result, the internal data collection and reporting of the mine are realized.

  7. Design of Early Warning System Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Gan Bo

    2018-01-01

    Full Text Available In order to solve the shortcomings of the landslide monitoring technology method, a set of landslides monitoring and early warning system is designed. It can achieve real-time sensor data acquisition, remote transmission and query display. In addition, aiming at the harsh environment of landslide monitoring and the performance requirements of the monitoring system, an improved minimum hop routing protocol is proposed. It can reduce network energy consumption, enhance network robustness, and improve node layout and networking flexibility. In order to realize the remote transmission of data, GPRS wireless communication is used to transmit monitoring data. Combined with remote monitoring center, real-time data display, query, preservation and landslide warning and prediction are realized. The results show that the sensor data acquisition system is accurate, the system is stable, and the node network is flexible. Therefore, the monitoring system has a good use value.

  8. COAP BASED ACUTE PARKING LOT MONITORING SYSTEM USING SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    R. Aarthi

    2014-06-01

    Full Text Available Vehicle parking is the act of temporarily maneuvering a vehicle in to a certain location. To deal with parking monitoring system issue such as traffic, this paper proposes a vision of improvements in monitoring the vehicles in parking lots based on sensor networks. Most of the existing paper deals with that of the automated parking which is of cluster based and each has its own overheads like high power, less energy efficiency, incompatible size of lots, space. The novel idea in this work is usage of CoAP (Constrained Application Protocol which is recently created by IETF (draft-ietf-core-coap-18, June 28, 2013, CoRE group to develop RESTful application layer protocol for communications within embedded wireless networks. This paper deals with the enhanced CoAP protocol using multi hop flat topology, which makes the acuters feel soothe towards parking vehicles. We aim to minimize the time consumed for finding free parking lot as well as increase the energy efficiency

  9. Stabilization of Networked Control Systems Under Feedback-based Communication

    National Research Council Canada - National Science Library

    Zhang, Lei; Hristu-Varsakelis, Dimitrios

    2004-01-01

    We study the stabilization of a networked control system (NSC) in which multiple sensors and actuators of a physical plant share a communication medium to exchange information with a remote controller...

  10. A super base station based centralized network architecture for 5G mobile communication systems

    Directory of Open Access Journals (Sweden)

    Manli Qian

    2015-04-01

    Full Text Available To meet the ever increasing mobile data traffic demand, the mobile operators are deploying a heterogeneous network with multiple access technologies and more and more base stations to increase the network coverage and capacity. However, the base stations are isolated from each other, so different types of radio resources and hardware resources cannot be shared and allocated within the overall network in a cooperative way. The mobile operators are thus facing increasing network operational expenses and a high system power consumption. In this paper, a centralized radio access network architecture, referred to as the super base station (super BS, is proposed, as a possible solution for an energy-efficient fifth-generation (5G mobile system. The super base station decouples the logical functions and physical entities of traditional base stations, so different types of system resources can be horizontally shared and statistically multiplexed among all the virtual base stations throughout the entire system. The system framework and main functionalities of the super BS are described. Some key technologies for system implementation, i.e., the resource pooling, real-time virtualization, adaptive hardware resource allocation are also highlighted.

  11. Three neural network based sensor systems for environmental monitoring

    International Nuclear Information System (INIS)

    Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1994-05-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. One of the missions of the Pacific Northwest Laboratory is to examine and develop new technologies for environmental restoration and waste management at the Hanford Site. In this paper, three prototype sensing systems are discussed. These prototypes are composed of sensing elements, data acquisition system, computer, and neural network implemented in software, and are capable of automatically identifying contaminants. The first system employs an array of tin-oxide gas sensors and is used to identify chemical vapors. The second system employs an array of optical sensors and is used to identify the composition of chemical dyes in liquids. The third system contains a portable gamma-ray spectrometer and is used to identify radioactive isotopes. In these systems, the neural network is used to identify the composition of the sensed contaminant. With a neural network, the intense computation takes place during the training process. Once the network is trained, operation consists of propagating the data through the network. Since the computation involved during operation consists of vector-matrix multiplication and application of look-up tables unknown samples can be rapidly identified in the field

  12. Adaptive mechanism-based congestion control for networked systems

    Science.gov (United States)

    Liu, Zhi; Zhang, Yun; Chen, C. L. Philip

    2013-03-01

    In order to assure the communication quality in network systems with heavy traffic and limited bandwidth, a new ATRED (adaptive thresholds random early detection) congestion control algorithm is proposed for the congestion avoidance and resource management of network systems. Different to the traditional AQM (active queue management) algorithms, the control parameters of ATRED are not configured statically, but dynamically adjusted by the adaptive mechanism. By integrating with the adaptive strategy, ATRED alleviates the tuning difficulty of RED (random early detection) and shows a better control on the queue management, and achieve a more robust performance than RED under varying network conditions. Furthermore, a dynamic transmission control protocol-AQM control system using ATRED controller is introduced for the systematic analysis. It is proved that the stability of the network system can be guaranteed when the adaptive mechanism is finely designed. Simulation studies show the proposed ATRED algorithm achieves a good performance in varying network environments, which is superior to the RED and Gentle-RED algorithm, and providing more reliable service under varying network conditions.

  13. Cooperative wireless network control based health and activity monitoring system.

    Science.gov (United States)

    Prakash, R; Ganesh, A Balaji; Girish, Siva V

    2016-10-01

    A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.

  14. Lattice Based Mix Network for Location Privacy in Mobile System

    Directory of Open Access Journals (Sweden)

    Kunwar Singh

    2015-01-01

    Full Text Available In 1981, David Chaum proposed a cryptographic primitive for privacy called mix network (Mixnet. A mixnet is cryptographic construction that establishes anonymous communication channel through a set of servers. In 2004, Golle et al. proposed a new cryptographic primitive called universal reencryption which takes the input as encrypted messages under the public key of the recipients not the public key of the universal mixnet. In Eurocrypt 2010, Gentry, Halevi, and Vaikunthanathan presented a cryptosystem which is an additive homomorphic and a multiplicative homomorphic for only one multiplication. In MIST 2013, Singh et al. presented a lattice based universal reencryption scheme under learning with error (LWE assumption. In this paper, we have improved Singh et al.’s scheme using Fairbrother’s idea. LWE is a lattice hard problem for which till now there is no polynomial time quantum algorithm. Wiangsripanawan et al. proposed a protocol for location privacy in mobile system using universal reencryption whose security is reducible to Decision Diffie-Hellman assumption. Once quantum computer becomes a reality, universal reencryption can be broken in polynomial time by Shor’s algorithm. In postquantum cryptography, our scheme can replace universal reencryption scheme used in Wiangsripanawan et al. scheme for location privacy in mobile system.

  15. Patients’ Heart Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Sollu, T. S.; Alamsyah; Bachtiar, M.; Sooai, A. G.

    2018-04-01

    Wireless sensor network (WSN) has been utilized to support the health field such as monitoring the patient’s heartbeat. Heart health monitoring is essential in maintaining health, especially in the elderly. Such an arrangement is needed to understand the patient’s heart characteristics. The increasing number of patients certainly will enhance the burdens of doctors or nurses in dealing with the condition of the patients. Therefore, required a solution that could help doctors or nurses in monitoring the progress of patients’ health at a real time. This research proposes a design and application of a patient heart monitoring system based on WSN. This system with using electrocardiograph (ECG) mounted on the patients’ body and sent to the server through the ZigBee. The results indicated that the retrieval of data for 15 seconds in male patients, with the age of 25 years was 17 times rate or equal to 68 bpm. For 884 data packets sent for 15 minutes using ZigBee produce a data as much as 4488 bytes, throughput of 2.39 Kbps, and 0.24486 seconds of average delay. The measurement of the communication coverage based on the open space conditions within 15 seconds through ZigBee resulting throughput value of 4.19 Kbps, packet loss of 0 %, and 6.667 seconds of average delay. While, the measurement of communication range based on closed space condition through ZigBee resulting throughput of 4.27 Kbps, packet loss of 0 %, and 6.55 seconds of average delay.

  16. Model-based Compositional Design of Networked Control Systems

    Science.gov (United States)

    2013-12-01

    with event scheduling. In particular, the C++ source code for the ns-2 simulator scheduler is modi - fied to implement the time synchronization mechanism...pump: Security attacks and defenses for a diabetes therapy system. In: 2011 13th IEEE International Conference In e-Health Networking Applications and

  17. A gossip-based distributed social networking system

    NARCIS (Netherlands)

    Abbas, S.M.A.; Pouwelse, J.A.; Epema, D.H.J.; Sips, H.J.

    2009-01-01

    Social networking Web sites, which allow users to create identities and link them to friends who have also created identities, are highly popular. Systems such as Facebook and MySpace utilize a traditional client-server approach to achieve this, which means that all identities and their social links

  18. Combine harvester monitor system based on wireless sensor network

    Science.gov (United States)

    A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...

  19. Multi-agent system based active distribution networks

    OpenAIRE

    Nguyen, H.P.

    2010-01-01

    This thesis gives a particular vision of the future power delivery system with its main requirements. An investigation of suitable concepts and technologies which creates a road map forward the smart grid has been carried out. They should meet the requirements on sustainability, efficiency, flexibility and intelligence. The so called Active Distribution Network (ADN) is introduced as an important element of the future power delivery system. With an open architecture, the ADN is designed to in...

  20. Security Concerns and Countermeasures in Network Coding Based Communications Systems

    DEFF Research Database (Denmark)

    Talooki, Vahid; Bassoli, Riccardo; Roetter, Daniel Enrique Lucani

    2015-01-01

    key protocol types, namely, state-aware and stateless protocols, specifying the benefits and disadvantages of each one of them. We also present the key security assumptions of network coding (NC) systems as well as a detailed analysis of the security goals and threats, both passive and active......This survey paper shows the state of the art in security mechanisms, where a deep review of the current research and the status of this topic is carried out. We start by introducing network coding and its variety applications in enhancing current traditional networks. In particular, we analyze two....... This paper also presents a detailed taxonomy and a timeline of the different NC security mechanisms and schemes reported in the literature. Current proposed security mechanisms and schemes for NC in the literature are classified later. Finally a timeline of these mechanism and schemes is presented....

  1. Artificial Neural Network-Based System for PET Volume Segmentation

    Directory of Open Access Journals (Sweden)

    Mhd Saeed Sharif

    2010-01-01

    Full Text Available Tumour detection, classification, and quantification in positron emission tomography (PET imaging at early stage of disease are important issues for clinical diagnosis, assessment of response to treatment, and radiotherapy planning. Many techniques have been proposed for segmenting medical imaging data; however, some of the approaches have poor performance, large inaccuracy, and require substantial computation time for analysing large medical volumes. Artificial intelligence (AI approaches can provide improved accuracy and save decent amount of time. Artificial neural networks (ANNs, as one of the best AI techniques, have the capability to classify and quantify precisely lesions and model the clinical evaluation for a specific problem. This paper presents a novel application of ANNs in the wavelet domain for PET volume segmentation. ANN performance evaluation using different training algorithms in both spatial and wavelet domains with a different number of neurons in the hidden layer is also presented. The best number of neurons in the hidden layer is determined according to the experimental results, which is also stated Levenberg-Marquardt backpropagation training algorithm as the best training approach for the proposed application. The proposed intelligent system results are compared with those obtained using conventional techniques including thresholding and clustering based approaches. Experimental and Monte Carlo simulated PET phantom data sets and clinical PET volumes of nonsmall cell lung cancer patients were utilised to validate the proposed algorithm which has demonstrated promising results.

  2. New neural-networks-based 3D object recognition system

    Science.gov (United States)

    Abolmaesumi, Purang; Jahed, M.

    1997-09-01

    Three-dimensional object recognition has always been one of the challenging fields in computer vision. In recent years, Ulman and Basri (1991) have proposed that this task can be done by using a database of 2-D views of the objects. The main problem in their proposed system is that the correspondent points should be known to interpolate the views. On the other hand, their system should have a supervisor to decide which class does the represented view belong to. In this paper, we propose a new momentum-Fourier descriptor that is invariant to scale, translation, and rotation. This descriptor provides the input feature vectors to our proposed system. By using the Dystal network, we show that the objects can be classified with over 95% precision. We have used this system to classify the objects like cube, cone, sphere, torus, and cylinder. Because of the nature of the Dystal network, this system reaches to its stable point by a single representation of the view to the system. This system can also classify the similar views to a single class (e.g., for the cube, the system generated 9 different classes for 50 different input views), which can be used to select an optimum database of training views. The system is also very flexible to the noise and deformed views.

  3. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Science.gov (United States)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  4. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2018-01-01

    Full Text Available This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  5. Neural network-based expert system for severe accident management

    International Nuclear Information System (INIS)

    Klopp, G.T.; Silverman, E.B.

    1992-01-01

    This paper presents the results of the second phase of a three-phase Severe Accident Management expert system program underway at Commonwealth Edison Company (CECo). Phase I successfully demonstrated the feasibility of Artificial Neural Networks to support several of the objectives of severe accident management. Simulated accident scenarios were generated by the Modular Accident Analysis Program (MAAP) code currently in use by CECo as part of their Individual Plant Evaluations (IPE)/Accident Management Program. The primary objectives of the second phase were to develop and demonstrate four capabilities of neural networks with respect to nuclear power plant severe accident monitoring and prediction. The results of this work would form the foundation of a demonstration system which included expert system performance features. These capabilities included the ability to: (1) Predict the time available prior to support plate (and reactor vessel) failure; (2) Calculate the time remaining until recovery actions were too late to prevent core damage; (3) Predict future parameter values of each of the MAAP parameter variables; and (4) Detect simulated sensor failure and provide best-value estimates for further processing in the presence of a sensor failure. A variety of accident scenarios for the Zion and Dresden plants were used to train and test the neural network expert system. These included large and small break LOCAs as well as a range of transient events. 3 refs., 1 fig., 1 tab

  6. Scheduling of network access for feedback-based embedded systems

    Science.gov (United States)

    Liberatore, Vincenzo

    2002-07-01

    nd communication capabilities. Examples range from smart dust embedded in building materials to networks of appliances in the home. Embedded devices will be deployed in unprecedented numbers, will enable pervasive distributed computing, and will radically change the way people interact with the surrounding environment [EGH00a]. The paper targets embedded systems and their real-time (RT) communication requirements. RT requirements arise from the

  7. Network-based Fingerprint Authentication System Using a Mobile Device

    OpenAIRE

    Zhang, Qihu

    2016-01-01

    Abstract— Fingerprint-based user authentication is highly effective in networked services such as electronic payment, but conventional authentication solutions have problems in cost, usability and security. To resolve these problems, we propose a touch-less fingerprint authentication solution, in which a mobile device's built-in camera is used to capture fingerprint image, and then it is sent to the server to determine the identity of the user. We designed and implemented a prototype as an a...

  8. Study on shielded pump system failure analysis method based on Bayesian network

    International Nuclear Information System (INIS)

    Bao Yilan; Huang Gaofeng; Tong Lili; Cao Xuewu

    2012-01-01

    This paper applies Bayesian network to the system failure analysis, with an aim to improve knowledge representation of the uncertainty logic and multi-fault states in system failure analysis. A Bayesian network for shielded pump failure analysis is presented, conducting fault parameter learning, updating Bayesian network parameter based on new samples. Finally, through the Bayesian network inference, vulnerability in this system, the largest possible failure modes, and the fault probability are obtained. The powerful ability of Bayesian network to analyze system fault is illustrated by examples. (authors)

  9. Development of a Software Based Firewall System for Computer Network Traffic Control

    Directory of Open Access Journals (Sweden)

    Ikhajamgbe OYAKHILOME

    2009-12-01

    Full Text Available The connection of an internal network to an external network such as Internet has made it vulnerable to attacks. One class of network attack is unauthorized penetration into network due to the openness of networks. It is possible for hackers to sum access to an internal network, this pose great danger to the network and network resources. Our objective and major concern of network design was to build a secured network, based on software firewall that ensured the integrity and confidentiality of information on the network. We studied several mechanisms to achieve this; one of such mechanism is the implementation of firewall system as a network defence. Our developed firewall has the ability to determine which network traffic should be allowed in or out of the network. Part of our studied work was also channelled towards a comprehensive study of hardware firewall security system with the aim of developing this software based firewall system. Our software firewall goes a long way in protecting an internal network from external unauthorized traffic penetration. We included an anti virus software which is lacking in most firewalls.

  10. The network-based energy management system for convenience stores

    Energy Technology Data Exchange (ETDEWEB)

    Wang, An-Ping; Hsu, Pau-Lo [Department of Electrical and Control Engineering, National Chiao-Tung University, 1001 Ta-Hsiue Road, Hsinchu City 310 (China)

    2008-07-01

    Convenience stores generally consume energy higher than other retailing merchants. As the problem of energy shortage becomes more serious during summer, almost all convenience stores sign a contract with power plants, which provides for fines if demand limiting occurs in Taiwan and many other countries. Therefore, a reliable and effective method to reduce their utility consumption is required for modern business and industry. This research integrates the remote sensors, the control network, and the embedded system technologies to construct a distributed energy management control system for dedicated convenience stores. Energy consumption can thus be reasonably managed with demand limits by measuring and analyzing the power consumption sources in four major subsystems of convenience stores, namely, (1) air-conditioning, (2) lighting, (3) heating, and (4) refrigeration. By applying the proposed demand prediction and control method, the demand limiting condition can be properly predicted, and the possible peak load can thus be eliminated via the network control mechanism. Moreover, by integrating the LonWork fieldbus and the WinCE operating system (OS), the proposed system has been successfully applied to a convenience store. The experimental results indicate that the proposed distributed energy management system suitably predicts the peak loading condition and successfully prevents its occurrence by switching the air-conditioning system without affecting the indoor temperature regulation. (author)

  11. E-commerce System Security Assessment based on Bayesian Network Algorithm Research

    OpenAIRE

    Ting Li; Xin Li

    2013-01-01

    Evaluation of e-commerce network security is based on assessment method Bayesian networks, and it first defines the vulnerability status of e-commerce system evaluation index and the vulnerability of the state model of e-commerce systems, and after the principle of the Bayesian network reliability of e-commerce system and the criticality of the vulnerabilities were analyzed, experiments show that the change method is a good evaluation of the security of e-commerce systems.

  12. Decoupling control of vehicle chassis system based on neural network inverse system

    Science.gov (United States)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  13. Study on the complex network characteristics of urban road system based on GIS

    Science.gov (United States)

    Gao, Zhonghua; Chen, Zhenjie; Liu, Yongxue; Huang, Kang

    2007-06-01

    Urban road system is the basic bone of urban transportation and one of the most important factors that influent and controls the urban configuration. In this paper, an approach of modeling, analyzing and optimizing urban road system is described based on complex network theory and GIS technology. The urban road system is studied on three focuses: building the urban road network, modeling the computational procedures based on urban road networks and analyzing the urban road system of Changzhou City as the study case. The conclusion is that the urban road network is a scale-free network with small-world characteristic, and there is still space for development of the whole network as a small-world network, also the key road crosses should be kept expedite.

  14. Study of Personalized Network Tutoring System Based on Emotional-cognitive Interaction

    Science.gov (United States)

    Qi, Manfei; Ma, Ding; Wang, Wansen

    Aiming at emotion deficiency in present Network tutoring system, a lot of negative effects is analyzed and corresponding countermeasures are proposed. The model of Personalized Network tutoring system based on Emotional-cognitive interaction is constructed in the paper. The key techniques of realizing the system such as constructing emotional model and adjusting teaching strategies are also introduced.

  15. A Sliding Mode Control-based on a RBF Neural Network for Deburring Industry Robotic Systems

    OpenAIRE

    Tao, Yong; Zheng, Jiaqi; Lin, Yuanchang

    2016-01-01

    A sliding mode control method based on radial basis function (RBF) neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC) has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network par...

  16. Stability Analysis of Neural Networks-Based System Identification

    Directory of Open Access Journals (Sweden)

    Talel Korkobi

    2008-01-01

    Full Text Available This paper treats some problems related to nonlinear systems identification. A stability analysis neural network model for identifying nonlinear dynamic systems is presented. A constrained adaptive stable backpropagation updating law is presented and used in the proposed identification approach. The proposed backpropagation training algorithm is modified to obtain an adaptive learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena during the learning process are avoided. A Lyapunov analysis leads to the computation of the expression of a convenient adaptive learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations. The results confirm the effectiveness of the CSBP algorithm.

  17. Reliability analysis of a consecutive r-out-of-n: F system based on neural networks

    International Nuclear Information System (INIS)

    Habib, Aziz; Alsieidi, Ragab; Youssef, Ghada

    2009-01-01

    In this paper, we present a generalized Markov reliability and fault-tolerant model, which includes the effects of permanent fault and intermittent fault for reliability evaluations based on neural network techniques. The reliability of a consecutive r-out-of-n: F system was obtained with a three-layer connected neural network represents a discrete time state reliability Markov model of the system. Such that we fed the neural network with the desired reliability of the system under design. Then we extracted the parameters of the system from the neural weights at the convergence of the neural network to the desired reliability. Finally, we obtain simulation results.

  18. A network identity authentication system based on Fingerprint identification technology

    Science.gov (United States)

    Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan

    2005-10-01

    Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.

  19. Dynamic market behaviour of autonomous network based power systems

    NARCIS (Netherlands)

    Jokic, A.; Wittebol, E.H.M.; Bosch, van den P.P.J.

    2006-01-01

    Dynamic models of real-time markets are important since they lead to additional insights of the behavior and stability of power system markets. The main topic of this paper is the analysis of real-time market dynamics in a novel power system structure that is based on the concept of autonomous

  20. Research of negotiation in network trade system based on multi-agent

    Science.gov (United States)

    Cai, Jun; Wang, Guozheng; Wu, Haiyan

    2009-07-01

    A construction and implementation technology of network trade based on multi-agent is described in this paper. First, we researched the technology of multi-agent, then we discussed the consumer's behaviors and the negotiation between purchaser and bargainer which emerges in the traditional business mode and analysed the key technology to implement the network trade system. Finally, we implement the system.

  1. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...

  2. Anomaly Detection in SCADA Systems - A Network Based Approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  3. Anomaly detection in SCADA systems: a network based approach

    NARCIS (Netherlands)

    Barbosa, R.R.R.

    2014-01-01

    Supervisory Control and Data Acquisition (SCADA) networks are commonly deployed to aid the operation of large industrial facilities, such as water treatment facilities. Historically, these networks were composed by special-purpose embedded devices communicating through proprietary protocols.

  4. SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach

    Science.gov (United States)

    Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore

    The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.

  5. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  6. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  7. The ARAC client system: network-based access to ARAC

    International Nuclear Information System (INIS)

    Leach, M J; Sumikawa, D; Webster, C

    1999-01-01

    The ARAC Client System allows users (such as emergency managers and first responders) with commonly available desktop and laptop computers to utilize the central ARAC system over the Internet or any other communications link using Internet protocols. Providing cost-effective fast access to the central ARAC system greatly expands the availability of the ARAC capability. The ARAC Client system consists of (1) local client applications running on the remote user's computer, and (2) ''site servers'' that provide secure access to selected central ARAC system capabilities and run on a scalable number of dedicated workstations residing at the central facility. The remote client applications allow users to describe a real or potential them-bio event, electronically sends this information to the central ARAC system which performs model calculations, and quickly receive and visualize the resulting graphical products. The site servers will support simultaneous access to ARAC capabilities by multiple users. The ARAC Client system is based on object-oriented client/server and distributed computing technologies using CORBA and Java, and consists of a large number of interacting components

  8. Intelligent IPv6 based iot network monitoring and altering system on ...

    African Journals Online (AJOL)

    Intelligent IPv6 based iot network monitoring and altering system on Cooja framework. ... Journal of Fundamental and Applied Sciences. Journal Home · ABOUT THIS ... Keywords: IoT; Cooja framework; Contiki OS; packet monitoring.

  9. VISUAL UAV TRAJECTORY PLAN SYSTEM BASED ON NETWORK MAP

    Directory of Open Access Journals (Sweden)

    X. L. Li

    2012-07-01

    Full Text Available The base map of the current software UP-30 using in trajectory plan for Unmanned Aircraft Vehicle is vector diagram. UP-30 draws navigation points manually. But in the field of operation process, the efficiency and the quality of work is influenced because of insufficient information, screen reflection, calculate inconveniently and other factors. If we do this work in indoor, the effect of external factors on the results would be eliminated, the network earth users can browse the free world high definition satellite images through downloading a client software, and can export the high resolution image by standard file format. This brings unprecedented convenient of trajectory plan. But the images must be disposed by coordinate transformation, geometric correction. In addition, according to the requirement of mapping scale ,camera parameters and overlap degree we can calculate exposure hole interval and trajectory distance between the adjacent trajectory automatically . This will improve the degree of automation of data collection. Software will judge the position of next point according to the intersection of the trajectory and the survey area and ensure the position of point according to trajectory distance. We can undertake the points artificially. So the trajectory plan is automatic and flexible. Considering safety, the date can be used in flying after simulating flight. Finally we can export all of the date using a key

  10. Visual Uav Trajectory Plan System Based on Network Map

    Science.gov (United States)

    Li, X. L.; Lin, Z. J.; Su, G. Z.; Wu, B. Y.

    2012-07-01

    The base map of the current software UP-30 using in trajectory plan for Unmanned Aircraft Vehicle is vector diagram. UP-30 draws navigation points manually. But in the field of operation process, the efficiency and the quality of work is influenced because of insufficient information, screen reflection, calculate inconveniently and other factors. If we do this work in indoor, the effect of external factors on the results would be eliminated, the network earth users can browse the free world high definition satellite images through downloading a client software, and can export the high resolution image by standard file format. This brings unprecedented convenient of trajectory plan. But the images must be disposed by coordinate transformation, geometric correction. In addition, according to the requirement of mapping scale ,camera parameters and overlap degree we can calculate exposure hole interval and trajectory distance between the adjacent trajectory automatically . This will improve the degree of automation of data collection. Software will judge the position of next point according to the intersection of the trajectory and the survey area and ensure the position of point according to trajectory distance. We can undertake the points artificially. So the trajectory plan is automatic and flexible. Considering safety, the date can be used in flying after simulating flight. Finally we can export all of the date using a key

  11. Enhancing Lifelong Competence Development and Management Systems with Social Network-based Concepts and Tools

    NARCIS (Netherlands)

    Cheak, Alicia; Angehrn, Albert; Sloep, Peter

    2006-01-01

    This paper addresses the challenge of enhancing the social dimension of lifelong Competence Development and Management Systems with social network-based concepts and tools. Our premise is that through a combination of social network visualization tools, simulations, stimulus agents and management

  12. Service for fault tolerance in the Ad Hoc Networks based on Multi Agent Systems

    Directory of Open Access Journals (Sweden)

    Ghalem Belalem

    2011-02-01

    Full Text Available The Ad hoc networks are distributed networks, self-organized and does not require infrastructure. In such network, mobile infrastructures are subject of disconnections. This situation may concern a voluntary or involuntary disconnection of nodes caused by the high mobility in the Ad hoc network. In these problems we are trying through this work to contribute to solving these problems in order to ensure continuous service by proposing our service for faults tolerance based on Multi Agent Systems (MAS, which predict a problem and decision making in relation to critical nodes. Our work contributes to study the prediction of voluntary and involuntary disconnections in the Ad hoc network; therefore we propose our service for faults tolerance that allows for effective distribution of information in the Network by selecting some objects of the network to be duplicates of information.

  13. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  14. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  15. A web-based system for neural network based classification in temporomandibular joint osteoarthritis.

    Science.gov (United States)

    de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos

    2018-07-01

    The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this

  16. Network reliability analysis of complex systems using a non-simulation-based method

    International Nuclear Information System (INIS)

    Kim, Youngsuk; Kang, Won-Hee

    2013-01-01

    Civil infrastructures such as transportation, water supply, sewers, telecommunications, and electrical and gas networks often establish highly complex networks, due to their multiple source and distribution nodes, complex topology, and functional interdependence between network components. To understand the reliability of such complex network system under catastrophic events such as earthquakes and to provide proper emergency management actions under such situation, efficient and accurate reliability analysis methods are necessary. In this paper, a non-simulation-based network reliability analysis method is developed based on the Recursive Decomposition Algorithm (RDA) for risk assessment of generic networks whose operation is defined by the connections of multiple initial and terminal node pairs. The proposed method has two separate decomposition processes for two logical functions, intersection and union, and combinations of these processes are used for the decomposition of any general system event with multiple node pairs. The proposed method is illustrated through numerical network examples with a variety of system definitions, and is applied to a benchmark gas transmission pipe network in Memphis TN to estimate the seismic performance and functional degradation of the network under a set of earthquake scenarios.

  17. Convolutional neural network-based classification system design with compressed wireless sensor network images.

    Science.gov (United States)

    Ahn, Jungmo; Park, JaeYeon; Park, Donghwan; Paek, Jeongyeup; Ko, JeongGil

    2018-01-01

    With the introduction of various advanced deep learning algorithms, initiatives for image classification systems have transitioned over from traditional machine learning algorithms (e.g., SVM) to Convolutional Neural Networks (CNNs) using deep learning software tools. A prerequisite in applying CNN to real world applications is a system that collects meaningful and useful data. For such purposes, Wireless Image Sensor Networks (WISNs), that are capable of monitoring natural environment phenomena using tiny and low-power cameras on resource-limited embedded devices, can be considered as an effective means of data collection. However, with limited battery resources, sending high-resolution raw images to the backend server is a burdensome task that has direct impact on network lifetime. To address this problem, we propose an energy-efficient pre- and post- processing mechanism using image resizing and color quantization that can significantly reduce the amount of data transferred while maintaining the classification accuracy in the CNN at the backend server. We show that, if well designed, an image in its highly compressed form can be well-classified with a CNN model trained in advance using adequately compressed data. Our evaluation using a real image dataset shows that an embedded device can reduce the amount of transmitted data by ∼71% while maintaining a classification accuracy of ∼98%. Under the same conditions, this process naturally reduces energy consumption by ∼71% compared to a WISN that sends the original uncompressed images.

  18. System for Malicious Node Detection in IPv6-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kresimir Grgic

    2016-01-01

    Full Text Available The trend of implementing the IPv6 into wireless sensor networks (WSNs has recently occurred as a consequence of a tendency of their integration with other types of IP-based networks. The paper deals with the security aspects of these IPv6-based WSNs. A brief analysis of security threats and attacks which are present in the IPv6-based WSN is given. The solution to an adaptive distributed system for malicious node detection in the IPv6-based WSN is proposed. The proposed intrusion detection system is based on distributed algorithms and a collective decision-making process. It introduces an innovative concept of probability estimation for malicious behaviour of sensor nodes. The proposed system is implemented and tested through several different scenarios in three different network topologies. Finally, the performed analysis showed that the proposed system is energy efficient and has a good capability to detect malicious nodes.

  19. Urban Traffic Signal System Control Structural Optimization Based on Network Analysis

    Directory of Open Access Journals (Sweden)

    Li Wang

    2013-01-01

    Full Text Available Advanced urban traffic signal control systems such as SCOOT and SCATS normally coordinate traffic network using multilevel hierarchical control mechanism. In this mechanism, several key intersections will be selected from traffic signal network and the network will be divided into different control subareas. Traditionally, key intersection selection and control subareas division are executed according to dynamic traffic counts and link length between intersections, which largely rely on traffic engineers’ experience. However, it omits important inherent characteristics of traffic network topology. In this paper, we will apply network analysis approach into these two aspects for traffic system control structure optimization. Firstly, the modified C-means clustering algorithm will be proposed to assess the importance of intersections in traffic network and furthermore determine the key intersections based on three indexes instead of merely on traffic counts in traditional methods. Secondly, the improved network community discovery method will be used to give more reasonable evidence in traffic control subarea division. Finally, to test the effectiveness of network analysis approach, a hardware-in-loop simulation environment composed of regional traffic control system, microsimulation software and signal controller hardware, will be built. Both traditional method and proposed approach will be implemented on simulation test bed to evaluate traffic operation performance indexes, for example, travel time, stop times, delay and average vehicle speed. Simulation results show that the proposed network analysis approach can improve the traffic control system operation performance effectively.

  20. Large-scale computer networks and the future of legal knowledge-based systems

    NARCIS (Netherlands)

    Leenes, R.E.; Svensson, Jorgen S.; Hage, J.C.; Bench-Capon, T.J.M.; Cohen, M.J.; van den Herik, H.J.

    1995-01-01

    In this paper we investigate the relation between legal knowledge-based systems and large-scale computer networks such as the Internet. On the one hand, researchers of legal knowledge-based systems have claimed huge possibilities, but despite the efforts over the last twenty years, the number of

  1. Web of Things-Based Remote Monitoring System for Coal Mine Safety Using Wireless Sensor Network

    OpenAIRE

    Bo, Cheng; Xin, Cheng; Zhongyi, Zhai; Chengwen, Zhang; Junliang, Chen

    2014-01-01

    Frequent accidents have occurred in coal mine enterprises; therefore, raising the technological level of coal mine safety monitoring systems is an urgent problem. Wireless sensor networks (WSN), as a new field of research, have broad application prospects. This paper proposes a Web of Things- (WoT-) based remote monitoring system that takes full advantage of wireless sensor networks in combination with the CAN bus communication technique that abstracts the underground sensor data and capabili...

  2. Resilient Coordination of Networked Multiagent Systems Based on Distributed State Emulators

    OpenAIRE

    Yucelen, Tansel; De La Torre, Gerardo

    2014-01-01

    This note studies resilient coordination of networked multiagent systems in the presence of misbehaving agents, i.e., agents that are subject to adversaries modeled as exogenous disturbances. Apart from the existing relevant literature that make specific assumptions on the graph topology and/or the fraction of misbehaving agents, we present an adaptive control architecture based on distributed state emulators and show that the nominal networked multiagent system behavior can be retrieved even...

  3. Design of Networked Home Automation System Based on μCOS-II and AMAZON

    Directory of Open Access Journals (Sweden)

    Liu Jianfeng

    2015-01-01

    Full Text Available In recent years, with the popularity of computers and smart phones and the development of intelligent building in electronics industry, people’s requirement of living environment is gradually changing. The intelligent home furnishing building has become the new focus of people purchasing. And the networked home automation system which relies on the advanced network technology to connect with air conditioning, lighting, security, curtains, TV, water heater and other home furnishing systems into a local area network becomes a networked control system. μC /OS is a real-time operating system with the free open-source code, the compact structure and the preemptive real-time kernel. In this paper, the author focuses on the design of home furnishing total controller based on AMAZON multimedia processor and μC/OS-II real-time operating system, and achieves the remote access connection and control through the Ethernet.

  4. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2015-01-01

    Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

  5. A Sliding Mode Control-Based on a RBF Neural Network for Deburring Industry Robotic Systems

    Directory of Open Access Journals (Sweden)

    Yong Tao

    2016-01-01

    Full Text Available A sliding mode control method based on radial basis function (RBF neural network is proposed for the deburring of industry robotic systems. First, a dynamic model for deburring the robot system is established. Then, a conventional SMC scheme is introduced for the joint position tracking of robot manipulators. The RBF neural network based sliding mode control (RBFNN-SMC has the ability to learn uncertain control actions. In the RBFNN-SMC scheme, the adaptive tuning algorithms for network parameters are derived by a Koski function algorithm to ensure the network convergences and enacts stable control. The simulations and experimental results of the deburring robot system are provided to illustrate the effectiveness of the proposed RBFNN-SMC control method. The advantages of the proposed RBFNN-SMC method are also evaluated by comparing it to existing control schemes.

  6. A distributed predictive control approach for periodic flow-based networks: application to drinking water systems

    Science.gov (United States)

    Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç

    2017-10-01

    This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.

  7. Integrated Multimedia Based Intelligent Group Decision Support System for Electrical Power Network

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Saxena

    2002-05-01

    Full Text Available Electrical Power Network in recent time requires an intelligent, virtual environment based decision process for the coordination of all its individual elements and the interrelated tasks. Its ultimate goal is to achieve maximum productivity and efficiency through the efficient and effective application of generation, transmission, distribution, pricing and regulatory systems. However, the complexity of electrical power network and the presence of conflicting multiple goals and objectives postulated by various groups emphasized the need of an intelligent group decision support system approach in this field. In this paper, an Integrated Multimedia based Intelligent Group Decision Support System (IM1GDSS is presented, and its main components are analyzed and discussed. In particular attention is focused on the Data Base, Model Base, Central Black Board (CBB and Multicriteria Futuristic Decision Process (MFDP module. The model base interacts with Electrical Power Network Load Forecasting and Planning (EPNLFP Module; Resource Optimization, Modeling and Simulation (ROMAS Module; Electrical Power Network Control and Evaluation Process (EPNCAEP Module, and MFDP Module through CBB for strategic planning, management control, operational planning and transaction processing. The richness of multimedia channels adds a totally new dimension in a group decision making for Electrical Power Network. The proposed IMIGDSS is a user friendly, highly interactive group decision making system, based on efficient intelligent and multimedia communication support for group discussions, retrieval of content and multi criteria decision analysis.

  8. A web-based information system for a regional public mental healthcare service network in Brazil.

    Science.gov (United States)

    Yoshiura, Vinicius Tohoru; de Azevedo-Marques, João Mazzoncini; Rzewuska, Magdalena; Vinci, André Luiz Teixeira; Sasso, Ariane Morassi; Miyoshi, Newton Shydeo Brandão; Furegato, Antonia Regina Ferreira; Rijo, Rui Pedro Charters Lopes; Del-Ben, Cristina Marta; Alves, Domingos

    2017-01-01

    Regional networking between services that provide mental health care in Brazil's decentralized public health system is challenging, partly due to the simultaneous existence of services managed by municipal and state authorities and a lack of efficient and transparent mechanisms for continuous and updated communication between them. Since 2011, the Ribeirao Preto Medical School and the XIII Regional Health Department of the Sao Paulo state, Brazil, have been developing and implementing a web-based information system to facilitate an integrated care throughout a public regional mental health care network. After a profound on-site analysis, the structure of the network was identified and a web-based information system for psychiatric admissions and discharges was developed and implemented using a socio-technical approach. An information technology team liaised with mental health professionals, health-service managers, municipal and state health secretariats and judicial authorities. Primary care, specialized community services, general emergency and psychiatric wards services, that comprise the regional mental healthcare network, were identified and the system flow was delineated. The web-based system overcame the fragmentation of the healthcare system and addressed service specific needs, enabling: detailed patient information sharing; active coordination of the processes of psychiatric admissions and discharges; real-time monitoring; the patients' status reports; the evaluation of the performance of each service and the whole network. During a 2-year period of operation, it registered 137 services, 480 health care professionals and 4271 patients, with a mean number of 2835 accesses per month. To date the system is successfully operating and further expanding. We have successfully developed and implemented an acceptable, useful and transparent web-based information system for a regional mental healthcare service network in a medium-income country with a decentralized

  9. Model-based engineering of runtime reconfigurable networked embedded systems

    NARCIS (Netherlands)

    Leeuwen, C. van; Rieter-Barrell, Y.; Papp, Z.; Pruteanu, A.; Vogel, T.

    2016-01-01

    Today’s societal challenges, such as sustainable urban living and public safety and security require monitoring and control solutions for large-scale complex and dynamical systems. The distinguishing features of these systems are serious resource constraints, demanding non-functional requirements

  10. Research on continuous environmental radiation monitoring system for NPP based on wireless sensor network

    International Nuclear Information System (INIS)

    Fu Hailong; Jia Mingchun; Peng Guichu

    2010-01-01

    According to the characteristics of environmental gamma radiation monitoring and the requirement of nuclear power plant (NPP) developing, a new continuous environmental radiation monitoring system based on wireless sensor network (WSN) was presented. The basic concepts and application of WSN were introduced firstly. And then the characteristics of the new system were analyzed. At the same time the configuration of the WSN and the whole structure of the system were built. Finally, the crucial techniques used in system designing, such as the design of sensor node, the choice of communication mode and protocol, the time synchronization and space location, the security of the network and the faults tolerance were introduced. (authors)

  11. An FPGA bridge preserving traffing quality of service for on-chip network-based systems

    NARCIS (Netherlands)

    Nejad, A.B.; Escudero Martinez, M.; Goossens, K.G.W.

    2011-01-01

    FPGA prototyping of recent large Systems on Chip (SoCs) is very challenging due to the resource limitation of a single FPGA. Moreover, having external access to SoCs for verification and debug purposes is essential. In this paper, we suggest to partition a network-on-chip (NoC) based system into

  12. A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Ozlem; Starly, Binil [School of Industrial Engineering, University of Oklahoma, Norman, OK 73019 (United States); Lan, S-F [University of Oklahoma Bioengineering Center, University of Oklahoma, Norman, OK 73019 (United States)

    2009-12-15

    Large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. Without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design of complex networks within a tissue construct is challenging. In this paper, we present the Lindenmayer system, an elegant fractal-based language algorithm framework, to generate conduit networks in two- and three-dimensional architecture with several degrees of complexity. The conduit network maintains a parent-child relationship between each branch of the network. Several L-system parameters have been studied-branching angle, branch length, ratio of parent to child branch diameter, etc-to simulate several architectures under a given L-system notation. We have also presented a layered manufacturing-based UV-photopolymerization process using the Texas Instruments DLP(TM) system to fabricate the branched structures. This preliminary work showcases the applicability of L-system-based construct designs to drive scaffold fabrication systems.

  13. A Lindenmayer system-based approach for the design of nutrient delivery networks in tissue constructs

    International Nuclear Information System (INIS)

    Yasar, Ozlem; Starly, Binil; Lan, S-F

    2009-01-01

    Large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. Without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design of complex networks within a tissue construct is challenging. In this paper, we present the Lindenmayer system, an elegant fractal-based language algorithm framework, to generate conduit networks in two- and three-dimensional architecture with several degrees of complexity. The conduit network maintains a parent-child relationship between each branch of the network. Several L-system parameters have been studied-branching angle, branch length, ratio of parent to child branch diameter, etc-to simulate several architectures under a given L-system notation. We have also presented a layered manufacturing-based UV-photopolymerization process using the Texas Instruments DLP(TM) system to fabricate the branched structures. This preliminary work showcases the applicability of L-system-based construct designs to drive scaffold fabrication systems.

  14. In-House Communication Support System Based on the Information Propagation Model Utilizes Social Network

    Science.gov (United States)

    Takeuchi, Susumu; Teranishi, Yuuichi; Harumoto, Kaname; Shimojo, Shinji

    Almost all companies are now utilizing computer networks to support speedier and more effective in-house information-sharing and communication. However, existing systems are designed to support communications only within the same department. Therefore, in our research, we propose an in-house communication support system which is based on the “Information Propagation Model (IPM).” The IPM is proposed to realize word-of-mouth communication in a social network, and to support information-sharing on the network. By applying the system in a real company, we found that information could be exchanged between different and unrelated departments, and such exchanges of information could help to build new relationships between the users who are apart on the social network.

  15. Integrated Multimedia Based Intelligent Group Decision Support System for Electrical Power Network

    OpenAIRE

    Ajay Kumar Saxena; S. 0. Bhatnagar; P. K Saxena

    2002-01-01

    Electrical Power Network in recent time requires an intelligent, virtual environment based decision process for the coordination of all its individual elements and the interrelated tasks. Its ultimate goal is to achieve maximum productivity and efficiency through the efficient and effective application of generation, transmission, distribution, pricing and regulatory systems. However, the complexity of electrical power network and the presence of conflicting multiple goals and objectives p...

  16. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  17. Feature-based automatic color calibration for networked camera system

    Science.gov (United States)

    Yamamoto, Shoji; Taki, Keisuke; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2011-01-01

    In this paper, we have developed a feature-based automatic color calibration by using an area-based detection and adaptive nonlinear regression method. Simple color matching of chartless is achieved by using the characteristic of overlapping image area with each camera. Accurate detection of common object is achieved by the area-based detection that combines MSER with SIFT. Adaptive color calibration by using the color of detected object is calculated by nonlinear regression method. This method can indicate the contribution of object's color for color calibration, and automatic selection notification for user is performed by this function. Experimental result show that the accuracy of the calibration improves gradually. It is clear that this method can endure practical use of multi-camera color calibration if an enough sample is obtained.

  18. Design and Implementation of Behavior Recognition System Based on Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Yu Bo

    2017-01-01

    Full Text Available We build a set of human behavior recognition system based on the convolution neural network constructed for the specific human behavior in public places. Firstly, video of human behavior data set will be segmented into images, then we process the images by the method of background subtraction to extract moving foreground characters of body. Secondly, the training data sets are trained into the designed convolution neural network, and the depth learning network is constructed by stochastic gradient descent. Finally, the various behaviors of samples are classified and identified with the obtained network model, and the recognition results are compared with the current mainstream methods. The result show that the convolution neural network can study human behavior model automatically and identify human’s behaviors without any manually annotated trainings.

  19. Multi-agent system based active distribution networks

    NARCIS (Netherlands)

    Nguyen, H.P.

    2010-01-01

    This thesis gives a particular vision of the future power delivery system with its main requirements. An investigation of suitable concepts and technologies which creates a road map forward the smart grid has been carried out. They should meet the requirements on sustainability, efficiency,

  20. Support for Programming Models in Network-on-Chip-based Many-core Systems

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth

    This thesis addresses aspects of support for programming models in Network-on- Chip-based many-core architectures. The main focus is to consider architectural support for a plethora of programming models in a single system. The thesis has three main parts. The first part considers parallelization...... models to be supported by a single architecture. The architecture features a specialized network interface processor which allows extensive configurability of the memory system. Based on this architecture, a detailed implementation of the cache coherent shared memory programming model is presented...

  1. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    Science.gov (United States)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  2. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L [School of Aeronautics and Astronautics, Tongji University, Shanghai (China); Zhang, Y Y [Chinese-German School of Postgraduate Studies, Tongji University (China); Ding, L [Chinese-German School of Postgraduate Studies, Tongji University (China)

    2006-10-15

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  3. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    Science.gov (United States)

    Wang, L.; Zhang, Y. Y.; Ding, L.

    2006-10-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module.

  4. Development of Novel Gas Brand Anti-Piracy System based on BP Neural Networks

    International Nuclear Information System (INIS)

    Wang, L; Zhang, Y Y; Ding, L

    2006-01-01

    The Wireless-net Close-loop gas brand anti-piracy system introduced in this paper is a new type of brand piracy technical product based on BP neural network. It is composed by gas brand piracy label possessing gas exhalation resource, ARM embedded gas-detector, GPRS wireless module and data base of merchandise information. First, the system obtains the information on the special label through gas sensor array ,then the attained signals are transferred into ARM Embedded board and identified by artificial neural network, and finally turns back the outcome of data collection and identification to the manufactures with the help of GPRS module

  5. Power Electronic Systems for Switched Reluctance Generator based Wind Farms and DC Networks

    DEFF Research Database (Denmark)

    Park, Kiwoo

    enable various renewable energy sources, such as Photovoltaic (PV) and wind, to produce dc power directly. In addition, battery-based energy storage systems inherently operate with dc power. Hence, dc network (dc-grid) systems which connect these dc sources and storages directly using dc networks...... are gaining much attention again. The dc network system has a great potential to outdo the traditional ac systems in many technical challenges and could be highly profitable especially for offshore wind farm applications, where the size and weight of the components are crucial to the entire system costs......Wind power technology, as the most competitive renewable energy technology, is quickly developing. The wind turbine size is growing and the grid penetration of wind power is increasing rapidly. Recently, the developments on wind power technology pay more attentions on efficiency and reliability...

  6. Proposed Network Intrusion Detection System ‎In Cloud Environment Based on Back ‎Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Shawq Malik Mehibs

    2017-12-01

    Full Text Available Cloud computing is distributed architecture, providing computing facilities and storage resource as a service over the internet. This low-cost service fulfills the basic requirements of users. Because of the open nature and services introduced by cloud computing intruders impersonate legitimate users and misuse cloud resource and services. To detect intruders and suspicious activities in and around the cloud computing environment, intrusion detection system used to discover the illegitimate users and suspicious action by monitors different user activities on the network .this work proposed based back propagation artificial neural network to construct t network intrusion detection in the cloud environment. The proposed module evaluated with kdd99 dataset the experimental results shows promising approach to detect attack with high detection rate and low false alarm rate

  7. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  8. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  9. New elastomeric silicone based networks applicable as electroactive systems

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Boll, Mads; Lotz, Mikkel Rønne

    2011-01-01

    . In this study we focus on optimization of the mechanical properties of the elastomer and show that it is possible to lower the elastic modulus and still not compromise the other required mechanical properties such as fast response, stability, low degree of viscous dissipation and high extensibility....... The elastomers are prepared from a vinyl-terminated polydimethyl siloxane (PDMS) and a 4-functional crosslinker by a platinum-catalyzed hydrosilylation reaction between the two reactants. Traditionally, elastomers based on hydrosilylation are prepared via a ‘one-step two-pot’ procedure (with a mix A and a mix B...

  10. Research on a Banknote Printing Wastewater Monitoring System based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Li, B B; Yuan, Z F

    2006-01-01

    In this paper, a banknote printing wastewater monitoring system based on WSN is presented in line with the system demands and actual condition of the worksite for a banknote printing factory. In Physical Layer, the network node is a nRF9e5-centric embedded instrument, which can realize the multi-function such as data collecting, status monitoring, wireless data transmission and so on. Limited by the computing capability, memory capability, communicating energy and others factors, it is impossible for the node to get every detail information of the network, so the communication protocol on WSN couldn't be very complicated. The competitive-based MACA (Multiple Access with Collision Avoidance) Protocol is introduced in MAC, which can decide the communication process and working mode of the nodes, avoid the collision of data transmission, hidden and exposed station problem of nodes. On networks layer, the routing protocol in charge of the transmitting path of the data, the networks topology structure is arranged based on address assignation. Accompanied with some redundant nodes, the network performances stabile and expandable. The wastewater monitoring system is a tentative practice of WSN theory in engineering. Now, the system has passed test and proved efficiently

  11. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  12. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    Energy Technology Data Exchange (ETDEWEB)

    Olyaee, Saeed; Hamedi, Samaneh, E-mail: s_olyaee@srttu.edu [Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical and Computer Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan, 16788, Tehran (Iran, Islamic Republic of)

    2011-02-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  13. Neural network approximation of nonlinearity in laser nano-metrology system based on TLMI

    International Nuclear Information System (INIS)

    Olyaee, Saeed; Hamedi, Samaneh

    2011-01-01

    In this paper, an approach based on neural network (NN) for nonlinearity modeling in a nano-metrology system using three-longitudinal-mode laser heterodyne interferometer (TLMI) for length and displacement measurements is presented. We model nonlinearity errors that arise from elliptically and non-orthogonally polarized laser beams, rotational error in the alignment of laser head with respect to the polarizing beam splitter, rotational error in the alignment of the mixing polarizer, and unequal transmission coefficients in the polarizing beam splitter. Here we use a neural network algorithm based on the multi-layer perceptron (MLP) network. The simulation results show that multi-layer feed forward perceptron network is successfully applicable to real noisy interferometer signals.

  14. Novel Modified Elman Neural Network Control for PMSG System Based on Wind Turbine Emulator

    OpenAIRE

    Lin, Chih-Hong

    2013-01-01

    The novel modified Elman neural network (NN) controlled permanent magnet synchronous generator (PMSG) system, which is directly driven by a permanent magnet synchronous motor (PMSM) based on wind turbine emulator, is proposed to control output of rectifier (AC/DC power converter) and inverter (DC/AC power converter) in this study. First, a closed loop PMSM drive control based on wind turbine emulator is designed to generate power for the PMSG system according to different wind speeds. Then, t...

  15. Social Network Analysis of the Caste-Based Reservation System in India

    OpenAIRE

    Iyengar, S. R. S.; Parasuram, Aishwarya; Saini, Jaspal Singh

    2015-01-01

    It has been argued that the reservation system in India, which has existed since the time of Indian Independence (1947), has caused more havoc and degradation than progress. This being a popular public opinion, these notions have not been based on any rigorous scientific study or research. In this paper, we revisit the cultural divide among the Indian population from a purely social networks based approach. We study the reservation system in detail, starting from its past and observing its ef...

  16. Construction of Network Management Information System of Agricultural Products Supply Chain Based on 3PLs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The necessity to construct the network management information system of 3PLs agricultural supply chain is analyzed,showing that 3PLs can improve the overall competitive advantage of agricultural supply chain.3PLs changes the homogeneity management into specialized management of logistics service and achieves the alliance of the subjects at different nodes of agricultural products supply chain.Network management information system structure of agricultural products supply chain based on 3PLs is constructed,including the four layers (the network communication layer,the hardware and software environment layer,the database layer,and the application layer) and 7 function modules (centralized control,transportation process management,material and vehicle scheduling,customer relationship,storage management,customer inquiry,and financial management).Framework for the network management information system of agricultural products supply chain based on 3PLs is put forward.The management of 3PLs mainly includes purchasing management,supplier relationship management,planning management,customer relationship management,storage management and distribution management.Thus,a management system of internal and external integrated agricultural enterprises is obtained.The network management information system of agricultural products supply chain based on 3PLs has realized the effective sharing of enterprise information of agricultural products supply chain at different nodes,establishing a long-term partnership revolving around the 3PLs core enterprise,as well as a supply chain with stable relationship based on the supply chain network system,so as to improve the circulation efficiency of agricultural products,and to explore the sales market for agricultural products.

  17. The Construction of Higher Education Entrepreneur Services Network System a Research Based on Ecological Systems Theory

    Science.gov (United States)

    Xue, Jingxin

    The article aims to completely, systematically and objectively analyze the current situation of Entrepreneurship Education in China with Ecological Systems Theory. From this perspective, the author discusses the structure, function and its basic features of higher education entrepreneur services network system, and puts forward the opinion that every entrepreneurship organization in higher education institution does not limited to only one platform. Different functional supporting platforms should be combined closed through composite functional organization to form an integrated network system, in which each unit would impels others' development.

  18. A Neural Networks Based Operation Guidance System for Procedure Presentation and Validation

    International Nuclear Information System (INIS)

    Seung, Kun Mo; Lee, Seung Jun; Seong, Poong Hyun

    2006-01-01

    In this paper, a neural network based operator support system is proposed to reduce operator's errors in abnormal situations in nuclear power plants (NPPs). There are many complicated situations, in which regular and suitable operations should be done by operators accordingly. In order to regulate and validate operators' operations, it is necessary to develop an operator support system which includes computer based procedures with the functions for operation validation. Many computerized procedures systems (CPS) have been recently developed. Focusing on the human machine interface (HMI) design and procedures' computerization, most of CPSs used various methodologies to enhance system's convenience, reliability and accessibility. Other than only showing procedures, the proposed system integrates a simple CPS and an operation validation system (OVS) by using artificial neural network (ANN) for operational permission and quantitative evaluation

  19. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  20. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    Science.gov (United States)

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  1. Development of network-based multichannel neuromuscular electrical stimulation system for stroke rehabilitation.

    Science.gov (United States)

    Qu, Hongen; Xie, Yongji; Liu, Xiaoxuan; He, Xin; Hao, Manzhao; Bao, Yong; Xie, Qing; Lan, Ning

    2016-01-01

    Neuromuscular electrical stimulation (NMES) is a promising assistive technology for stroke rehabilitation. Here we present the design and development of a multimuscle stimulation system as an emerging therapy for people with paretic stroke. A network-based multichannel NMES system was integrated based on dual bus architecture of communication and an H-bridge current regulator with a power booster. The structure of the system was a body area network embedded with multiple stimulators and a communication protocol of controlled area network to transmit muscle stimulation parameter information to individual stimulators. A graphical user interface was designed to allow clinicians to specify temporal patterns and muscle stimulation parameters. We completed and tested a prototype of the hardware and communication software modules of the multichannel NMES system. The prototype system was first verified in nondisabled subjects for safety, and then tested in subjects with stroke for feasibility with assisting multijoint movements. Results showed that synergistic stimulation of multiple muscles in subjects with stroke improved performance of multijoint movements with more natural velocity profiles at elbow and shoulder and reduced acromion excursion due to compensatory trunk rotation. The network-based NMES system may provide an innovative solution that allows more physiological activation of multiple muscles in multijoint task training for patients with stroke.

  2. Design and development of the network based system for the supervision of radioactive sources

    International Nuclear Information System (INIS)

    Yang Yaoyun; Su Genghua; Zhang Hui; Li Junli; Zhu Li

    2010-01-01

    Objective: To help the environmental protection authorities to upgrade the management of the related organizations and radioactive sources and improve the information level of nuclear technology utilization's supervision. Methods: On the basis of investigation of requirements, the network based system for the supervision of radioactive sources was divided into application system and supervision system, based on MYSQL and SQL Server2005 respectively. Results: The system satisfied the current requirements of the nuclear technology utilization's supervision and is in nationwide operation. Conclusion: The system achieved the dynamic tracking management of radioactive sources and improved the efficiency and level of radiation safety supervision in nuclear technology utilizations. (authors)

  3. Reliability estimation of safety-critical software-based systems using Bayesian networks

    International Nuclear Information System (INIS)

    Helminen, A.

    2001-06-01

    Due to the nature of software faults and the way they cause system failures new methods are needed for the safety and reliability evaluation of software-based safety-critical automation systems in nuclear power plants. In the research project 'Programmable automation system safety integrity assessment (PASSI)', belonging to the Finnish Nuclear Safety Research Programme (FINNUS, 1999-2002), various safety assessment methods and tools for software based systems are developed and evaluated. The project is financed together by the Radiation and Nuclear Safety Authority (STUK), the Ministry of Trade and Industry (KTM) and the Technical Research Centre of Finland (VTT). In this report the applicability of Bayesian networks to the reliability estimation of software-based systems is studied. The applicability is evaluated by building Bayesian network models for the systems of interest and performing simulations for these models. In the simulations hypothetical evidence is used for defining the parameter relations and for determining the ability to compensate disparate evidence in the models. Based on the experiences from modelling and simulations we are able to conclude that Bayesian networks provide a good method for the reliability estimation of software-based systems. (orig.)

  4. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    Science.gov (United States)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  5. The Design of Wireless Sensor Network System Based on ZigBee Technology for Greenhouse

    International Nuclear Information System (INIS)

    Zhu, Y W; Zhong, X X; Shi, J F

    2006-01-01

    Wireless sensor network is a new research field. It can be used in some special situation for signal collection, processing and transmitting. Zigbee is a new Wireless sensor network technology characteristic of less distance and low speed. It is a new wireless network protocol stack of IEEE 802.15.4. Lately traditional system to collects parameters for Greenhouse is widely used in agriculture. The traditional system adopts wired way wiring, which makes the system complex and expensive. Generally modern Greenhouse has hundreds of square meters and they may plant variety of plants depending on different seasons. So we need to adjust the sensors which collect parameters for Greenhouse to a better place to work more efficient. Adopting wireless way wiring is convenient and economical. This paper developed a wireless sensor network system based on ZigBee technology for greenhouse. It offers flexibility and mobility to save cost and energy spent on wiring. The framework hardware and software structure, related programming are also discussed in this paper. Comparing the system which uses ZigBee technology with traditional wired network system for greenhouse, it has advantage of low cost..low power and wider coverage. Additionally it complies with IEEE802.15.4 protocol, which makes it convenient to communicate with other products that comply with the protocol too

  6. Speech Intelligibility Potential of General and Specialized Deep Neural Network Based Speech Enhancement Systems

    DEFF Research Database (Denmark)

    Kolbæk, Morten; Tan, Zheng-Hua; Jensen, Jesper

    2017-01-01

    In this paper, we study aspects of single microphone speech enhancement (SE) based on deep neural networks (DNNs). Specifically, we explore the generalizability capabilities of state-of-the-art DNN-based SE systems with respect to the background noise type, the gender of the target speaker...... general. Finally, we compare how a DNN-based SE system trained to be noise type general, speaker general, and SNR general performs relative to a state-of-the-art short-time spectral amplitude minimum mean square error (STSA-MMSE) based SE algorithm. We show that DNN-based SE systems, when trained...... a state-of-the-art STSA-MMSE based SE method, when tested using a range of unseen speakers and noise types. Finally, a listening test using several DNN-based SE systems tested in unseen speaker conditions show that these systems can improve SI for some SNR and noise type configurations but degrade SI...

  7. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  8. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system

    NARCIS (Netherlands)

    Miao, W.; Luo, J.; Di Lucente, S.; Dorren, H.J.S.; Calabretta, N.

    2013-01-01

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. 4×4 dynamic switch operation at 40 Gb/s reported 300ns minimum end-to-end latency (including 25m transmission link) and

  9. A New Method for Studying the Periodic System Based on a Kohonen Neural Network

    Science.gov (United States)

    Chen, David Zhekai

    2010-01-01

    A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…

  10. A network identity authentication protocol of bank account system based on fingerprint identification and mixed encryption

    Science.gov (United States)

    Zhu, Lijuan; Liu, Jingao

    2013-07-01

    This paper describes a network identity authentication protocol of bank account system based on fingerprint identification and mixed encryption. This protocol can provide every bank user a safe and effective way to manage his own bank account, and also can effectively prevent the hacker attacks and bank clerk crime, so that it is absolute to guarantee the legitimate rights and interests of bank users.

  11. Real-time camera-based face detection using a modified LAMSTAR neural network system

    Science.gov (United States)

    Girado, Javier I.; Sandin, Daniel J.; DeFanti, Thomas A.; Wolf, Laura K.

    2003-03-01

    This paper describes a cost-effective, real-time (640x480 at 30Hz) upright frontal face detector as part of an ongoing project to develop a video-based, tetherless 3D head position and orientation tracking system. The work is specifically targeted for auto-stereoscopic displays and projection-based virtual reality systems. The proposed face detector is based on a modified LAMSTAR neural network system. At the input stage, after achieving image normalization and equalization, a sub-window analyzes facial features using a neural network. The sub-window is segmented, and each part is fed to a neural network layer consisting of a Kohonen Self-Organizing Map (SOM). The output of the SOM neural networks are interconnected and related by correlation-links, and can hence determine the presence of a face with enough redundancy to provide a high detection rate. To avoid tracking multiple faces simultaneously, the system is initially trained to track only the face centered in a box superimposed on the display. The system is also rotationally and size invariant to a certain degree.

  12. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

    Directory of Open Access Journals (Sweden)

    Sachidananda Prasad

    2017-06-01

    Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

  13. Prioritization Assessment for Capability Gaps in Weapon System of Systems Based on the Conditional Evidential Network

    Directory of Open Access Journals (Sweden)

    Dong Pei

    2018-02-01

    Full Text Available The prioritization of capability gaps for weapon system of systems is the basis for design and capability planning in the system of systems development process. In order to address input information uncertainties, the prioritization of capability gaps is computed in two steps using the conditional evidential network method. First, we evaluated the belief distribution of degree of required satisfaction for capabilities, and then calculated the reverse conditional belief function between capability hierarchies. We also provided verification for the feasibility and effectiveness of the proposed method through a prioritization of capability gaps calculation using an example of a spatial-navigation-and-positioning system of systems.

  14. All-optical virtual private network and ONUs communication in optical OFDM-based PON system.

    Science.gov (United States)

    Zhang, Chongfu; Huang, Jian; Chen, Chen; Qiu, Kun

    2011-11-21

    We propose and demonstrate a novel scheme, which enables all-optical virtual private network (VPN) and all-optical optical network units (ONUs) inter-communications in optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system using the subcarrier bands allocation for the first time (to our knowledge). We consider the intra-VPN and inter-VPN communications which correspond to two different cases: VPN communication among ONUs in one group and in different groups. The proposed scheme can provide the enhanced security and a more flexible configuration for VPN users compared to the VPN in WDM-PON or TDM-PON systems. The all-optical VPN and inter-ONU communications at 10-Gbit/s with 16 quadrature amplitude modulation (16 QAM) for the proposed optical OFDM-PON system are demonstrated. These results verify that the proposed scheme is feasible. © 2011 Optical Society of America

  15. Advanced model for expansion of natural gas distribution networks based on geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A.; Garcia-Garrido, E.; Zorzano-Santamaria, P.; Zorzano-Alba, E. [La Rioja Univ., La Rioja (Spain). Dept. of Electrical Engineering; Miranda, V.; Montneiro, C. [Porto Univ., Porto (Portugal). Faculty of Engineering]|[Inst. de Engenharia de Sistemas e Computadores do Porto, Porto (Portugal)

    2005-07-01

    An advanced geographic information system (GIS) model of natural gas distribution networks was presented. The raster-based model was developed to evaluate costs associated with the expansion of electrical networks due to increased demand in the La Rioja region of Spain. The model was also used to evaluate costs associated with maintenance and amortization of the already existing distribution network. Expansion costs of the distribution network were modelled in various demand scenarios. The model also considered a variety of technical factors associated with pipeline length and topography. Soil and slope data from previous pipeline projects were used to estimate real costs per unit length of pipeline. It was concluded that results obtained by the model will be used by planners to select zones where expansion is economically feasible. 4 refs., 5 figs.

  16. A neural network based artificial vision system for licence plate recognition.

    Science.gov (United States)

    Draghici, S

    1997-02-01

    This paper presents a neural network based artificial vision system able to analyze the image of a car given by a camera, locate the registration plate and recognize the registration number of the car. The paper describes in detail various practical problems encountered in implementing this particular application and the solutions used to solve them. The main features of the system presented are: controlled stability-plasticity behavior, controlled reliability threshold, both off-line and on-line learning, self assessment of the output reliability and high reliability based on high level multiple feedback. The system has been designed using a modular approach. Sub-modules can be upgraded and/or substituted independently, thus making the system potentially suitable in a large variety of vision applications. The OCR engine was designed as an interchangeable plug-in module. This allows the user to choose an OCR engine which is suited to the particular application and to upgrade it easily in the future. At present, there are several versions of this OCR engine. One of them is based on a fully connected feedforward artificial neural network with sigmoidal activation functions. This network can be trained with various training algorithms such as error backpropagation. An alternative OCR engine is based on the constraint based decomposition (CBD) training architecture. The system has showed the following performances (on average) on real-world data: successful plate location and segmentation about 99%, successful character recognition about 98% and successful recognition of complete registration plates about 80%.

  17. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  18. Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.

    Science.gov (United States)

    Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza

    2015-11-01

    In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Container-code recognition system based on computer vision and deep neural networks

    Science.gov (United States)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  20. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  1. Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity

    International Nuclear Information System (INIS)

    Stern, R.E.; Song, J.; Work, D.B.

    2017-01-01

    The two-terminal reliability problem in system reliability analysis is known to be computationally intractable for large infrastructure graphs. Monte Carlo techniques can estimate the probability of a disconnection between two points in a network by selecting a representative sample of network component failure realizations and determining the source-terminal connectivity of each realization. To reduce the runtime required for the Monte Carlo approximation, this article proposes an approximate framework in which the connectivity check of each sample is estimated using a machine-learning-based classifier. The framework is implemented using both a support vector machine (SVM) and a logistic regression based surrogate model. Numerical experiments are performed on the California gas distribution network using the epicenter and magnitude of the 1989 Loma Prieta earthquake as well as randomly-generated earthquakes. It is shown that the SVM and logistic regression surrogate models are able to predict network connectivity with accuracies of 99% for both methods, and are 1–2 orders of magnitude faster than using a Monte Carlo method with an exact connectivity check. - Highlights: • Surrogate models of network connectivity are developed by machine-learning algorithms. • Developed surrogate models can reduce the runtime required for Monte Carlo simulations. • Support vector machine and logistic regressions are employed to develop surrogate models. • Numerical example of California gas distribution network demonstrate the proposed approach. • The developed models have accuracies 99%, and are 1–2 orders of magnitude faster than MCS.

  2. Control Method of Single-phase Inverter Based Grounding System in Distribution Networks

    DEFF Research Database (Denmark)

    Wang, Wen; Yan, L.; Zeng, X.

    2016-01-01

    of neutral-to-ground voltage is critical for the safety of distribution networks. An active grounding system based on single-phase inverter is proposed to achieve this objective. Relationship between output current of the system and neutral-to-ground voltage is derived to explain the principle of neutral......The asymmetry of the inherent distributed capacitances causes the rise of neutral-to-ground voltage in ungrounded system or high resistance grounded system. Overvoltage may occur in resonant grounded system if Petersen coil is resonant with the distributed capacitances. Thus, the restraint...

  3. Review of Data Preprocessing Methods for Sign Language Recognition Systems based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Zorins Aleksejs

    2016-12-01

    Full Text Available The article presents an introductory analysis of relevant research topic for Latvian deaf society, which is the development of the Latvian Sign Language Recognition System. More specifically the data preprocessing methods are discussed in the paper and several approaches are shown with a focus on systems based on artificial neural networks, which are one of the most successful solutions for sign language recognition task.

  4. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    Directory of Open Access Journals (Sweden)

    Pengfei Li

    2014-01-01

    Full Text Available The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  5. A red-light running prevention system based on artificial neural network and vehicle trajectory data.

    Science.gov (United States)

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems.

  6. A Red-Light Running Prevention System Based on Artificial Neural Network and Vehicle Trajectory Data

    Science.gov (United States)

    Li, Pengfei; Li, Yan; Guo, Xiucheng

    2014-01-01

    The high frequency of red-light running and complex driving behaviors at the yellow onset at intersections cannot be explained solely by the dilemma zone and vehicle kinematics. In this paper, the author presented a red-light running prevention system which was based on artificial neural networks (ANNs) to approximate the complex driver behaviors during yellow and all-red clearance and serve as the basis of an innovative red-light running prevention system. The artificial neural network and vehicle trajectory are applied to identify the potential red-light runners. The ANN training time was also acceptable and its predicting accurate rate was over 80%. Lastly, a prototype red-light running prevention system with the trained ANN model was described. This new system can be directly retrofitted into the existing traffic signal systems. PMID:25435870

  7. Wearable computing from modeling to implementation of wearable systems based on body sensor networks

    CERN Document Server

    Fortino, Giancarlo; Galzarano, Stefano

    2018-01-01

    This book provides the most up-to-date research and development on wearable computing, wireless body sensor networks, wearable systems integrated with mobile computing, wireless networking and cloud computing. This book has a specific focus on advanced methods for programming Body Sensor Networks (BSNs) based on the reference SPINE project. It features an on-line website (http://spine.deis.unical.it) to support readers in developing their own BSN application/systems and covers new emerging topics on BSNs such as collaborative BSNs, BSN design methods, autonomic BSNs, integration of BSNs and pervasive environments, and integration of BSNs with cloud computing. The book provides a description of real BSN prototypes with the possibility to see on-line demos and download the software to test them on specific sensor platforms and includes case studies for more practical applications. * Provides a future roadmap by learning advanced technology and open research issues * Gathers the background knowledge to tackl...

  8. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    Science.gov (United States)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  9. Neural Network-Based Receiver in Band-Limited Communication System with MPPSK Modulation

    Directory of Open Access Journals (Sweden)

    Wang Zixin

    2018-01-01

    Full Text Available As a type of the spectrally efficient modulation, the m-ary phase position shift keying (MPPSK has been considered to meet the increasing spectrum requirement in the future wireless system. To limit the signal bandwidth and cancel the out-band interference the band-pass filters are used, which introduce the waveform distortion and inter-symbol interference (ISI. Therefore, a single hidden-layer neural network (NN-based receiver is proposed to jointly equalize and demodulate the received signal. The impulse response of the system is static and the network parameters can be obtained after off-line training. The number of the hidden nodes is also determined through simulations. Simulation results show that the NN-based receiver works well in the communication system with different allocated bandwidths. By observing the modified confusion matrix, the false symbol decision is relevant to modulation index, waveform distortions and the ISI.

  10. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  11. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  12. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    International Nuclear Information System (INIS)

    Fu Sheng; Song Haiqiang

    2012-01-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  13. Design of Mine Ventilators Monitoring System Based on Wireless Sensor Network

    Science.gov (United States)

    Fu, Sheng; Song, Haiqiang

    2012-05-01

    A monitoring system for a mine ventilator is designed based on ZigBee wireless sensor network technology in the paper. The system consists of a sink node, sensor nodes, industrial personal computer and several sensors. Sensor nodes communicate with the sink node through the ZigBee wireless sensor network. The sink node connects with the configuration software on the pc via serial port. The system can collect or calculate vibration, temperature, negative pressure, air volume and other information of the mine ventilator. Meanwhile the system accurately monitors operating condition of the ventilator through these parameters. Especially it provides the most original information for potential faults of the ventilator. Therefore, there is no doubt that it improves the efficiency of fault diagnosis.

  14. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  15. An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation

    Directory of Open Access Journals (Sweden)

    Shuli Sun

    2013-01-01

    Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.

  16. Deployment strategy for battery energy storage system in distribution network based on voltage violation regulation

    Science.gov (United States)

    Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.

    2017-11-01

    In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.

  17. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  18. Alerts Analysis and Visualization in Network-based Intrusion Detection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee

    2010-08-01

    The alerts produced by network-based intrusion detection systems, e.g. Snort, can be difficult for network administrators to efficiently review and respond to due to the enormous number of alerts generated in a short time frame. This work describes how the visualization of raw IDS alert data assists network administrators in understanding the current state of a network and quickens the process of reviewing and responding to intrusion attempts. The project presented in this work consists of three primary components. The first component provides a visual mapping of the network topology that allows the end-user to easily browse clustered alerts. The second component is based on the flocking behavior of birds such that birds tend to follow other birds with similar behaviors. This component allows the end-user to see the clustering process and provides an efficient means for reviewing alert data. The third component discovers and visualizes patterns of multistage attacks by profiling the attacker s behaviors.

  19. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    Science.gov (United States)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  20. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  1. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  2. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    International Nuclear Information System (INIS)

    Ying, L.-C.; Pan, M.-C.

    2008-01-01

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads

  3. Using adaptive network based fuzzy inference system to forecast regional electricity loads

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Li-Chih [Department of Marketing Management, Central Taiwan University of Science and Technology, 11, Pu-tzu Lane, Peitun, Taichung City 406 (China); Pan, Mei-Chiu [Graduate Institute of Management Sciences, Nanhua University, 32, Chung Keng Li, Dalin, Chiayi 622 (China)

    2008-02-15

    Since accurate regional load forecasting is very important for improvement of the management performance of the electric industry, various regional load forecasting methods have been developed. The purpose of this study is to apply the adaptive network based fuzzy inference system (ANFIS) model to forecast the regional electricity loads in Taiwan and demonstrate the forecasting performance of this model. Based on the mean absolute percentage errors and statistical results, we can see that the ANFIS model has better forecasting performance than the regression model, artificial neural network (ANN) model, support vector machines with genetic algorithms (SVMG) model, recurrent support vector machines with genetic algorithms (RSVMG) model and hybrid ellipsoidal fuzzy systems for time series forecasting (HEFST) model. Thus, the ANFIS model is a promising alternative for forecasting regional electricity loads. (author)

  4. Image/video understanding systems based on network-symbolic models

    Science.gov (United States)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  5. Neural network based expert system for fault diagnosis of particle accelerators

    International Nuclear Information System (INIS)

    Dewidar, M.M.

    1997-01-01

    Particle accelerators are generators that produce beams of charged particles, acquiring different energies, depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Its applications include isotope production, nuclear reaction, and mass spectroscopy studies. It is a complicated machine, it consists of five main parts, the ion source, the deflector, the beam transport system, the concentric and harmonic coils, and the radio frequency system. The diagnosis of this device is a very complex task. it depends on the conditions of 27 indicators of the control panel of the device. The accurate diagnosis can lead to a high system reliability and save maintenance costs. so an expert system for the cyclotron fault diagnosis is necessary to be built. In this thesis , a hybrid expert system was developed for the fault diagnosis of the MGC-20 cyclotron. Two intelligent techniques, multilayer feed forward back propagation neural network and the rule based expert system, are integrated as a pre-processor loosely coupled model to build the proposed hybrid expert system. The architecture of the developed hybrid expert system consists of two levels. The first level is two feed forward back propagation neural networks, used for isolating the faulty part of the cyclotron. The second level is the rule based expert system, used for troubleshooting the faults inside the isolated faulty part. 4-6 tabs., 4-5 figs., 36 refs

  6. Control Strategy Based on Wavelet Transform and Neural Network for Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Y. D. Song

    2013-01-01

    Full Text Available This paper deals with an energy management of a hybrid power generation system. The proposed control strategy for the energy management is based on the combination of wavelet transform and neural network arithmetic. The hybrid system in this paper consists of an emulated wind turbine generator, PV panels, DC and AC loads, lithium ion battery, and super capacitor, which are all connected on a DC bus with unified DC voltage. The control strategy is responsible for compensating the difference between the generated power from the wind and solar generators and the demanded power by the loads. Wavelet transform decomposes the power difference into smoothed component and fast fluctuated component. In consideration of battery protection, the neural network is introduced to calculate the reference power of battery. Super capacitor (SC is controlled to regulate the DC bus voltage. The model of the hybrid system is developed in detail under Matlab/Simulink software environment.

  7. An Energy-Efficient Underground Localization System Based on Heterogeneous Wireless Networks

    Science.gov (United States)

    Yuan, Yazhou; Chen, Cailian; Guan, Xinping; Yang, Qiuling

    2015-01-01

    A precision positioning system with energy efficiency is of great necessity for guaranteeing personnel safety in underground mines. The location information of the miners' should be transmitted to the control center timely and reliably; therefore, a heterogeneous network with the backbone based on high speed Industrial Ethernet is deployed. Since the mobile wireless nodes are working in an irregular tunnel, a specific wireless propagation model cannot fit all situations. In this paper, an underground localization system is designed to enable the adaptation to kinds of harsh tunnel environments, but also to reduce the energy consumption and thus prolong the lifetime of the network. Three key techniques are developed and implemented to improve the system performance, including a step counting algorithm with accelerometers, a power control algorithm and an adaptive packets scheduling scheme. The simulation study and experimental results show the effectiveness of the proposed algorithms and the implementation. PMID:26016918

  8. Study on Network Error Analysis and Locating based on Integrated Information Decision System

    Science.gov (United States)

    Yang, F.; Dong, Z. H.

    2017-10-01

    Integrated information decision system (IIDS) integrates multiple sub-system developed by many facilities, including almost hundred kinds of software, which provides with various services, such as email, short messages, drawing and sharing. Because the under-layer protocols are different, user standards are not unified, many errors are occurred during the stages of setup, configuration, and operation, which seriously affect the usage. Because the errors are various, which may be happened in different operation phases, stages, TCP/IP communication protocol layers, sub-system software, it is necessary to design a network error analysis and locating tool for IIDS to solve the above problems. This paper studies on network error analysis and locating based on IIDS, which provides strong theory and technology supports for the running and communicating of IIDS.

  9. Human Detection System by Fusing Depth Map-Based Method and Convolutional Neural Network-Based Method

    Directory of Open Access Journals (Sweden)

    Anh Vu Le

    2017-01-01

    Full Text Available In this paper, the depth images and the colour images provided by Kinect sensors are used to enhance the accuracy of human detection. The depth-based human detection method is fast but less accurate. On the other hand, the faster region convolutional neural network-based human detection method is accurate but requires a rather complex hardware configuration. To simultaneously leverage the advantages and relieve the drawbacks of each method, one master and one client system is proposed. The final goal is to make a novel Robot Operation System (ROS-based Perception Sensor Network (PSN system, which is more accurate and ready for the real time application. The experimental results demonstrate the outperforming of the proposed method compared with other conventional methods in the challenging scenarios.

  10. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Directory of Open Access Journals (Sweden)

    Shaat Musbah

    2010-01-01

    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  11. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks.

    Science.gov (United States)

    Hernández Díaz, Vicente; Martínez, José-Fernán; Lucas Martínez, Néstor; del Toro, Raúl M

    2015-09-18

    The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  12. Self-Adaptive Strategy Based on Fuzzy Control Systems for Improving Performance in Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Vicente Hernández Díaz

    2015-09-01

    Full Text Available The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT and Cyber-Physical Systems (CPS are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container, and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.

  13. Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming

    Science.gov (United States)

    Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai

    2013-09-01

    In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.

  14. A network-based system of simulation, control and online assistance for HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shutang [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)], E-mail: zhust@tsinghua.edu.cn; Luo Shaojie; Shi Lei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2008-07-15

    A network-based computer system has been developed for HTR-10. This system integrates three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four functional elements: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. It is intended to analyze and calculate physical processes of the reactor core, the main loop system and the steam generator, etc., as well as to simulate the normal operational and transient accidents. The result data can be dynamically displayed through the RGDC. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameters, which are difficult to measure. This integrated system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online support for operators in the main control room, or as a convenient powerful tool for the control system design.

  15. A network-based system of simulation, control and online assistance for HTR-10

    International Nuclear Information System (INIS)

    Zhu Shutang; Luo Shaojie; Shi Lei

    2008-01-01

    A network-based computer system has been developed for HTR-10. This system integrates three subsystems: the simulation subsystem (SIMUSUB), the visualized control designed subsystem (VCDSUB) and the online assistance subsystem (OASUB). The SIMUSUB consists of four functional elements: the simulation calculating server (SCS), the main control client (MCC), the data disposal client (DDC) and the results graphic display client (RGDC), all of which can communicate with each other via network. It is intended to analyze and calculate physical processes of the reactor core, the main loop system and the steam generator, etc., as well as to simulate the normal operational and transient accidents. The result data can be dynamically displayed through the RGDC. The VCDSUB provides a platform for control system modeling where the control flow systems can be automatically generated and graphically simulated. Based on the data from the field bus, the OASUB provides some of the reactor core parameters, which are difficult to measure. This integrated system can be used as an educational tool to understand the design and operational characteristics of the HTR-10, and can also provide online support for operators in the main control room, or as a convenient powerful tool for the control system design

  16. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  17. Logic-based models in systems biology: a predictive and parameter-free network analysis method.

    Science.gov (United States)

    Wynn, Michelle L; Consul, Nikita; Merajver, Sofia D; Schnell, Santiago

    2012-11-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network's dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples.

  18. Adaptive sampling rate control for networked systems based on statistical characteristics of packet disordering.

    Science.gov (United States)

    Li, Jin-Na; Er, Meng-Joo; Tan, Yen-Kheng; Yu, Hai-Bin; Zeng, Peng

    2015-09-01

    This paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design. Then, a sufficient condition for stochastic stability in terms of Linear Matrix Inequalities (LMIs) is given. Moreover, an adaptive tracking controller is designed such that the sampling period tracks a desired sampling period, which represents a significant contribution. Finally, experimental results are given to illustrate the effectiveness and advantages of the proposed scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Nonlinear Robust Observer-Based Fault Detection for Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Yun Li

    2013-01-01

    Full Text Available A fault detection approach based on nonlinear robust observer is designed for the networked suspension control system of Maglev train with random induced time delay. First, considering random bounded time-delay and external disturbance, the nonlinear model of the networked suspension control system is established. Then, a nonlinear robust observer is designed using the input of the suspension gap. And the estimate error is proved to be bounded with arbitrary precision by adopting an appropriate parameter. When sensor faults happen, the residual between the real states and the observer outputs indicates which kind of sensor failures occurs. Finally, simulation results using the actual parameters of CMS-04 maglev train indicate that the proposed method is effective for maglev train.

  20. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    Science.gov (United States)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  1. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks

    Directory of Open Access Journals (Sweden)

    Juan J. Pérez-Solano

    2017-07-01

    Full Text Available Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.

  2. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.

    Science.gov (United States)

    Pérez-Solano, Juan J; Claver, Jose M; Ezpeleta, Santiago

    2017-07-06

    Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.

  3. Design of on-board Bluetooth wireless network system based on fault-tolerant technology

    Science.gov (United States)

    You, Zheng; Zhang, Xiangqi; Yu, Shijie; Tian, Hexiang

    2007-11-01

    In this paper, the Bluetooth wireless data transmission technology is applied in on-board computer system, to realize wireless data transmission between peripherals of the micro-satellite integrating electronic system, and in view of the high demand of reliability of a micro-satellite, a design of Bluetooth wireless network based on fault-tolerant technology is introduced. The reliability of two fault-tolerant systems is estimated firstly using Markov model, then the structural design of this fault-tolerant system is introduced; several protocols are established to make the system operate correctly, some related problems are listed and analyzed, with emphasis on Fault Auto-diagnosis System, Active-standby switch design and Data-Integrity process.

  4. A Parallel Strategy for Convolutional Neural Network Based on Heterogeneous Cluster for Mobile Information System

    Directory of Open Access Journals (Sweden)

    Jilin Zhang

    2017-01-01

    Full Text Available With the development of the mobile systems, we gain a lot of benefits and convenience by leveraging mobile devices; at the same time, the information gathered by smartphones, such as location and environment, is also valuable for business to provide more intelligent services for customers. More and more machine learning methods have been used in the field of mobile information systems to study user behavior and classify usage patterns, especially convolutional neural network. With the increasing of model training parameters and data scale, the traditional single machine training method cannot meet the requirements of time complexity in practical application scenarios. The current training framework often uses simple data parallel or model parallel method to speed up the training process, which is why heterogeneous computing resources have not been fully utilized. To solve these problems, our paper proposes a delay synchronization convolutional neural network parallel strategy, which leverages the heterogeneous system. The strategy is based on both synchronous parallel and asynchronous parallel approaches; the model training process can reduce the dependence on the heterogeneous architecture in the premise of ensuring the model convergence, so the convolution neural network framework is more adaptive to different heterogeneous system environments. The experimental results show that the proposed delay synchronization strategy can achieve at least three times the speedup compared to the traditional data parallelism.

  5. Overview of DFIG-based Wind Power System Resonances under Weak Networks

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    The wind power generation techniques are continuing to develop and increasing numbers of Doubly Fed Induction Generator (DFIG)-based wind power systems are connecting to the on-shore and off-shore grids, local standalone weak networks, and also micro grid applications. The impedances of the weak...... scale of DFIG system with different parameters; 3) L or LCL filter adopted in the Grid Side Converter (GSC); 4) rotor speed; 5) current closed-loop controller parameters and 6) digital control delay will be discussed in this paper. On the basis of the analysis, active damping strategies for HFR using...

  6. Novel Modified Elman Neural Network Control for PMSG System Based on Wind Turbine Emulator

    Directory of Open Access Journals (Sweden)

    Chih-Hong Lin

    2013-01-01

    Full Text Available The novel modified Elman neural network (NN controlled permanent magnet synchronous generator (PMSG system, which is directly driven by a permanent magnet synchronous motor (PMSM based on wind turbine emulator, is proposed to control output of rectifier (AC/DC power converter and inverter (DC/AC power converter in this study. First, a closed loop PMSM drive control based on wind turbine emulator is designed to generate power for the PMSG system according to different wind speeds. Then, the rotor speed of the PMSG, the voltage, and current of the power converter are detected simultaneously to yield better power output of the converter. Because the PMSG system is the nonlinear and time-varying system, two sets online trained modified Elman NN controllers are developed for the tracking controllers of DC bus power and AC power to improve output performance of rectifier and inverter. Finally, experimental results are verified to show the effectiveness of the proposed control scheme.

  7. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention.

    Science.gov (United States)

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop's surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control.

  8. Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System for Dew Condensation Prevention

    Science.gov (United States)

    Park, Dae-Heon; Park, Jang-Woo

    2011-01-01

    Dew condensation on the leaf surface of greenhouse crops can promote diseases caused by fungus and bacteria, affecting the growth of the crops. In this paper, we present a WSN (Wireless Sensor Network)-based automatic monitoring system to prevent dew condensation in a greenhouse environment. The system is composed of sensor nodes for collecting data, base nodes for processing collected data, relay nodes for driving devices for adjusting the environment inside greenhouse and an environment server for data storage and processing. Using the Barenbrug formula for calculating the dew point on the leaves, this system is realized to prevent dew condensation phenomena on the crop’s surface acting as an important element for prevention of diseases infections. We also constructed a physical model resembling the typical greenhouse in order to verify the performance of our system with regard to dew condensation control. PMID:22163813

  9. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks.

    Science.gov (United States)

    Taniguchi, Yoshiaki; Tsutsumi, Hiroaki; Iguchi, Nobukazu; Watanabe, Kenzi

    2016-01-01

    Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  10. Design and Evaluation of a Proxy-Based Monitoring System for OpenFlow Networks

    Directory of Open Access Journals (Sweden)

    Yoshiaki Taniguchi

    2016-01-01

    Full Text Available Software-Defined Networking (SDN has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator’s configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

  11. An eConsent-based System Architecture Supporting Cooperation in Integrated Healthcare Networks.

    Science.gov (United States)

    Bergmann, Joachim; Bott, Oliver J; Hoffmann, Ina; Pretschner, Dietrich P

    2005-01-01

    The economical need for efficient healthcare leads to cooperative shared care networks. A virtual electronic health record is required, which integrates patient related information but reflects the distributed infrastructure and restricts access only to those health professionals involved into the care process. Our work aims on specification and development of a system architecture fulfilling these requirements to be used in concrete regional pilot studies. Methodical analysis and specification have been performed in a healthcare network using the formal method and modelling tool MOSAIK-M. The complexity of the application field was reduced by focusing on the scenario of thyroid disease care, which still includes various interdisciplinary cooperation. Result is an architecture for a secure distributed electronic health record for integrated care networks, specified in terms of a MOSAIK-M-based system model. The architecture proposes business processes, application services, and a sophisticated security concept, providing a platform for distributed document-based, patient-centred, and secure cooperation. A corresponding system prototype has been developed for pilot studies, using advanced application server technologies. The architecture combines a consolidated patient-centred document management with a decentralized system structure without needs for replication management. An eConsent-based approach assures, that access to the distributed health record remains under control of the patient. The proposed architecture replaces message-based communication approaches, because it implements a virtual health record providing complete and current information. Acceptance of the new communication services depends on compatibility with the clinical routine. Unique and cross-institutional identification of a patient is also a challenge, but will loose significance with establishing common patient cards.

  12. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  13. FPGA and optical-network-based LLRF distributed control system for TESLA-XFEL linear accelerator

    Science.gov (United States)

    Pozniak, Krzysztof T.; Romaniuk, Ryszard S.; Czarski, Tomasz; Giergusiewicz, Wojciech; Jalmuzna, Wojciech; Olowski, Krysztof; Perkuszewski, Karol; Zielinski, Jerzy; Simrock, Stefan

    2005-02-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control system for the TESLA-XFEL accelerator. The design of a system basing on the FPGA chips and multi-gigabit optical network was debated. The system design approach was fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of the, DSP enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. Initial parameters of the system model under the design are presented.

  14. A new approach for sizing stand alone photovoltaic systems based in neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hontoria, L.; Aguilera, J. [Universidad de Jaen, Dept. de Electronica, Jaen (Spain); Zufiria, P. [UPM Ciudad Universitaria, Dept. de Matematica Aplicada a las Tecnologias de la Informacion, Madrid (Spain)

    2005-02-01

    Several methods for sizing stand alone photovoltaic (pv) systems has been developed. The more simplistic are called intuitive methods. They are a useful tool for a first approach in sizing stand alone photovoltaic systems. Nevertheless they are very inaccurate. Analytical methods use equations to describe the pv system size as a function of reliability. These ones are more accurate than the previous ones but they are also not accurate enough for sizing of high reliability. In a third group there are methods which use system simulations. These ones are called numerical methods. Many of the analytical methods employ the concept of reliability of the system or the complementary term: loss of load probability (LOLP). In this paper an improvement for obtaining LOLP curves based on the neural network called Multilayer Perceptron (MLP) is presented. A unique MLP for many locations of Spain has been trained and after the training, the MLP is able to generate LOLP curves for any value and location. (Author)

  15. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  16. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2016-12-01

    Full Text Available Wireless sensor networks (WSNs provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP to develop the Internet of Things (IoT for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  17. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  18. Portable pulsed X-ray digital radiographic system based on network transmission

    International Nuclear Information System (INIS)

    Tang Le; Li Yuanjing; Wang Yi; Cheng Jianping

    2004-01-01

    Network communication technology of TCP/IP protocol serves as application in pulse X-ray digital radiography system. The system radiographs synchronously with pulse X-ray and converts image signals to digital data, which are transmitted to computer for displaying and processing in network. The system composing structures are present and portable and other characteristics are introduced. (authors)

  19. Neural Network based Control of SG based Standalone Generating System with Energy Storage for Power Quality Enhancement

    Science.gov (United States)

    Nayar, Priya; Singh, Bhim; Mishra, Sukumar

    2017-08-01

    An artificial intelligence based control algorithm is used in solving power quality problems of a diesel engine driven synchronous generator with automatic voltage regulator and governor based standalone system. A voltage source converter integrated with a battery energy storage system is employed to mitigate the power quality problems. An adaptive neural network based signed regressor control algorithm is used for the estimation of the fundamental component of load currents for control of a standalone system with load leveling as an integral feature. The developed model of the system performs accurately under varying load conditions and provides good dynamic response to the step changes in loads. The real time performance is achieved using MATLAB along with simulink/simpower system toolboxes and results adhere to an IEEE-519 standard for power quality enhancement.

  20. Accident Management System Based on Vehicular Network for an Intelligent Transportation System in Urban Environments

    Directory of Open Access Journals (Sweden)

    Yusor Rafid Bahar Al-Mayouf

    2018-01-01

    Full Text Available As cities across the world grow and the mobility of populations increases, there has also been a corresponding increase in the number of vehicles on roads. The result of this has been a proliferation of challenges for authorities with regard to road traffic management. A consequence of this has been congestion of traffic, more accidents, and pollution. Accidents are a still major cause of death, despite the development of sophisticated systems for traffic management and other technologies linked with vehicles. Hence, it is necessary that a common system for accident management is developed. For instance, traffic congestion in most urban areas can be alleviated by the real-time planning of routes. However, the designing of an efficient route planning algorithm to attain a globally optimal vehicle control is still a challenge that needs to be solved, especially when the unique preferences of drivers are considered. The aim of this paper is to establish an accident management system that makes use of vehicular ad hoc networks coupled with systems that employ cellular technology in public transport. This system ensures the possibility of real-time communication among vehicles, ambulances, hospitals, roadside units, and central servers. In addition, the accident management system is able to lessen the amount of time required to alert an ambulance that it is required at an accident scene by using a multihop optimal forwarding algorithm. Moreover, an optimal route planning algorithm (ORPA is proposed in this system to improve the aggregate spatial use of a road network, at the same time bringing down the travel cost of operating a vehicle. This can reduce the incidence of vehicles being stuck on congested roads. Simulations are performed to evaluate ORPA, and the results are compared with existing algorithms. The evaluation results provided evidence that ORPA outperformed others in terms of average ambulance speed and travelling time. Finally, our

  1. Implementation of body area networks based on MICS/WMTS medical bands for healthcare systems.

    Science.gov (United States)

    Yuce, Mehmet R; Ho, Chee Keong

    2008-01-01

    A multi-hoping sensor network system has been implemented to monitor physiological parameters from multiple patient bodies by means of medical communication standards MICS (Medical Implant Communication Service) and WMTS (Wireless Medical Telemetry Service). Unlike the other medical sensor networks (they usually use 2.4 GHz ISM band), we used the two medical standards occupying the frequency bands that are mainly assigned to medical applications. The prototype system uses the MICS band (402-405 MHz) between the sensor nodes and a remote central control unit (CCU). And WMTS frequencies (608-614MHz) are used between the CCUs and the remote base stations allowing for a much larger range acting as an intermediate node. The sensor nodes in the prototype can measure up to four body signals (i.e. 4-channel) where one is dedicated to a continuous physiological signal such as ECC/EEG. The system includes firmware and software designs that can provide a long distance data transfer through the internet or a mobile network.

  2. Enhancing Network Data Obliviousness in Trusted Execution Environment-based Stream Processing Systems

    KAUST Repository

    Alsibyani, Hassan M.

    2018-05-15

    Cloud computing usage is increasing and a common concern is the privacy and security of the data and computation. Third party cloud environments are not considered fit for processing private information because the data will be revealed to the cloud provider. However, Trusted Execution Environments (TEEs), such as Intel SGX, provide a way for applications to run privately and securely on untrusted platforms. Nonetheless, using a TEE by itself for stream processing systems is not sufficient since network communication patterns may leak properties of the data under processing. This work addresses leaky topology structures and suggests mitigation techniques for each of these. We create specific metrics to evaluate leaks occurring from the network patterns; the metrics measure information leaked when the stream processing system is running. We consider routing techniques for inter-stage communication in a streaming application to mitigate this data leakage. We consider a dynamic policy to change the mitigation technique depending on how much information is currently leaking. Additionally, we consider techniques to hide irregularities resulting from a filtering stage in a topology. We also consider leakages resulting from applications containing cycles. For each of the techniques, we explore their effectiveness in terms of the advantage they provide in overcoming the network leakage. The techniques are tested partly using simulations and some were implemented in a prototype SGX-based stream processing system.

  3. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    Directory of Open Access Journals (Sweden)

    Wenquan Jin

    2018-02-01

    Full Text Available Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  4. Networked Estimation for Event-Based Sampling Systems with Packet Dropouts

    Directory of Open Access Journals (Sweden)

    Young Soo Suh

    2009-04-01

    Full Text Available This paper is concerned with a networked estimation problem in which sensor data are transmitted over the network. In the event-based sampling scheme known as level-crossing or send-on-delta (SOD, sensor data are transmitted to the estimator node if the difference between the current sensor value and the last transmitted one is greater than a given threshold. Event-based sampling has been shown to be more efficient than the time-triggered one in some situations, especially in network bandwidth improvement. However, it cannot detect packet dropout situations because data transmission and reception do not use a periodical time-stamp mechanism as found in time-triggered sampling systems. Motivated by this issue, we propose a modified event-based sampling scheme called modified SOD in which sensor data are sent when either the change of sensor output exceeds a given threshold or the time elapses more than a given interval. Through simulation results, we show that the proposed modified SOD sampling significantly improves estimation performance when packet dropouts happen.

  5. A fully automated entanglement-based quantum cryptography system for telecom fiber networks

    International Nuclear Information System (INIS)

    Treiber, Alexander; Ferrini, Daniele; Huebel, Hannes; Zeilinger, Anton; Poppe, Andreas; Loruenser, Thomas; Querasser, Edwin; Matyus, Thomas; Hentschel, Michael

    2009-01-01

    We present in this paper a quantum key distribution (QKD) system based on polarization entanglement for use in telecom fibers. A QKD exchange up to 50 km was demonstrated in the laboratory with a secure key rate of 550 bits s -1 . The system is compact and portable with a fully automated start-up, and stabilization modules for polarization, synchronization and photon coupling allow hands-off operation. Stable and reliable key exchange in a deployed optical fiber of 16 km length was demonstrated. In this fiber network, we achieved over 2 weeks an automatic key generation with an average key rate of 2000 bits s -1 without manual intervention. During this period, the system had an average entanglement visibility of 93%, highlighting the technical level and stability achieved for entanglement-based quantum cryptography.

  6. Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network

    International Nuclear Information System (INIS)

    Kohda, Takehisa; Cui Weimin

    2007-01-01

    To prevent an abnormal event from leading to an accident, the role of its safety monitoring system is very important. The safety monitoring system detects symptoms of an abnormal event to mitigate its effect at its early stage. As the operation time passes by, the sensor reliability decreases, which implies that the decision criteria of the safety monitoring system should be modified depending on the sensor reliability as well as the system reliability. This paper presents a framework for the decision criteria (or diagnosis logic) of the safety monitoring system. The logic can be dynamically modified based on sensor output data monitored at regular intervals to minimize the expected loss caused by two types of safety monitoring system failure events: failed-dangerous (FD) and failed-safe (FS). The former corresponds to no response under an abnormal system condition, while the latter implies a spurious activation under a normal system condition. Dynamic Bayesian network theory can be applied to modeling the entire system behavior composed of the system and its safety monitoring system. Using the estimated state probabilities, the optimal decision criterion is given to obtain the optimal diagnosis logic. An illustrative example of a three-sensor system shows the merits and characteristics of the proposed method, where the reasonable interpretation of sensor data can be obtained

  7. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo

    2011-04-01

    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  8. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    Science.gov (United States)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  9. Optical network and FPGA/DSP based control system for free electron laser

    International Nuclear Information System (INIS)

    Romaniuk, R.S.; Pozniak, K.T.; Czarski, T.; Czuba, K.; Giergusiewicz, W.; Kasprowicz, G.; Koprek, W.

    2005-01-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast A/C and C/A multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to

  10. Networks as systems.

    Science.gov (United States)

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership

  11. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  12. TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

    DEFF Research Database (Denmark)

    Yao, Wei; Fang, Jiakun; Zhao, Ping

    2013-01-01

    the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power...... system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency......In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have...

  13. Supervisory Adaptive Network-Based Fuzzy Inference System (SANFIS Design for Empirical Test of Mobile Robot

    Directory of Open Access Journals (Sweden)

    Yi-Jen Mon

    2012-10-01

    Full Text Available A supervisory Adaptive Network-based Fuzzy Inference System (SANFIS is proposed for the empirical control of a mobile robot. This controller includes an ANFIS controller and a supervisory controller. The ANFIS controller is off-line tuned by an adaptive fuzzy inference system, the supervisory controller is designed to compensate for the approximation error between the ANFIS controller and the ideal controller, and drive the trajectory of the system onto a specified surface (called the sliding surface or switching surface while maintaining the trajectory onto this switching surface continuously to guarantee the system stability. This SANFIS controller can achieve favourable empirical control performance of the mobile robot in the empirical tests of driving the mobile robot with a square path. Practical experimental results demonstrate that the proposed SANFIS can achieve better control performance than that achieved using an ANFIS controller for empirical control of the mobile robot.

  14. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    Science.gov (United States)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  15. Matrix-based system reliability method and applications to bridge networks

    International Nuclear Information System (INIS)

    Kang, W.-H.; Song Junho; Gardoni, Paolo

    2008-01-01

    Using a matrix-based system reliability (MSR) method, one can estimate the probabilities of complex system events by simple matrix calculations. Unlike existing system reliability methods whose complexity depends highly on that of the system event, the MSR method describes any general system event in a simple matrix form and therefore provides a more convenient way of handling the system event and estimating its probability. Even in the case where one has incomplete information on the component probabilities and/or the statistical dependence thereof, the matrix-based framework enables us to estimate the narrowest bounds on the system failure probability by linear programming. This paper presents the MSR method and applies it to a transportation network consisting of bridge structures. The seismic failure probabilities of bridges are estimated by use of the predictive fragility curves developed by a Bayesian methodology based on experimental data and existing deterministic models of the seismic capacity and demand. Using the MSR method, the probability of disconnection between each city/county and a critical facility is estimated. The probability mass function of the number of failed bridges is computed as well. In order to quantify the relative importance of bridges, the MSR method is used to compute the conditional probabilities of bridge failures given that there is at least one city disconnected from the critical facility. The bounds on the probability of disconnection are also obtained for cases with incomplete information

  16. Next Generation RFID-Based Medical Service Management System Architecture in Wireless Sensor Network

    Science.gov (United States)

    Tolentino, Randy S.; Lee, Kijeong; Kim, Yong-Tae; Park, Gil-Cheol

    Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN) are two important wireless technologies that have wide variety of applications and provide unlimited future potentials most especially in healthcare systems. RFID is used to detect presence and location of objects while WSN is used to sense and monitor the environment. Integrating RFID with WSN not only provides identity and location of an object but also provides information regarding the condition of the object carrying the sensors enabled RFID tag. However, there isn't any flexible and robust communication infrastructure to integrate these devices into an emergency care setting. An efficient wireless communication substrate for medical devices that addresses ad hoc or fixed network formation, naming and discovery, transmission efficiency of data, data security and authentication, as well as filtration and aggregation of vital sign data need to be study and analyze. This paper proposed an efficient next generation architecture for RFID-based medical service management system in WSN that possesses the essential elements of each future medical application that are integrated with existing medical practices and technologies in real-time, remote monitoring, in giving medication, and patient status tracking assisted by embedded wearable wireless sensors which are integrated in wireless sensor network.

  17. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    Science.gov (United States)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  18. Evaluation of a "Smart" Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    Poigné Axel

    2009-01-01

    Full Text Available Abstract We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  19. Evaluation of a “Smart” Pedestrian Counting System Based on Echo State Networks

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We have designed an inexpensive intelligent pedestrian counting system. The pedestrian counting system consists of several counters that can be connected together in a distributed fashion and communicate over the wireless channel. The motion pattern is recorded using a set of passive infrared (PIR sensors. Each counter has one wireless sensor node that processes the PIR sensor data and transmits it to a base station. Then echo state network, a special kind of recurrent neural network, is used to predict the pedestrian count from the input pattern. The evaluation of the performance of such networks in a novel kind of application is one focus of this work. The counter gave a performance of 80.4% which is better than the commercially available low-priced pedestrian counters. The article reports the experiments we did for analyzing the counterperformance and lists the strengths and limitations of the current implementation. It will also report the preliminary test results obtained by substituting the PIR sensors with low-cost active IR distance sensors which can improve the counter performance further.

  20. POINT-CLOUD COMPRESSION FOR VEHICLE-BASED MOBILE MAPPING SYSTEMS USING PORTABLE NETWORK GRAPHICS

    Directory of Open Access Journals (Sweden)

    K. Kohira

    2017-09-01

    Full Text Available A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects.Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  1. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  2. VA Suicide Prevention Applications Network: A National Health Care System-Based Suicide Event Tracking System.

    Science.gov (United States)

    Hoffmire, Claire; Stephens, Brady; Morley, Sybil; Thompson, Caitlin; Kemp, Janet; Bossarte, Robert M

    2016-11-01

    The US Department of Veterans Affairs' Suicide Prevention Applications Network (SPAN) is a national system for suicide event tracking and case management. The objective of this study was to assess data on suicide attempts among people using Veterans Health Administration (VHA) services. We assessed the degree of data overlap on suicide attempters reported in SPAN and the VHA's medical records from October 1, 2010, to September 30, 2014-overall, by year, and by region. Data on suicide attempters in the VHA's medical records consisted of diagnoses documented with E95 codes from the International Classification of Diseases, Ninth Revision . Of 50 518 VHA patients who attempted suicide during the 4-year study period, data on fewer than half (41%) were reported in both SPAN and the medical records; nearly 65% of patients whose suicide attempt was recorded in SPAN had no data on attempted suicide in the VHA's medical records. Evaluation of administrative data suggests that use of SPAN substantially increases the collection of data on suicide attempters as compared with the use of medical records alone, but neither SPAN nor the VHA's medical records identify all suicide attempters. Further research is needed to better understand the strengths and limitations of both systems and how to best combine information across systems.

  3. Network Security Risk Assessment System Based on Attack Graph and Markov Chain

    Science.gov (United States)

    Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian

    2017-10-01

    Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.

  4. A Multiobjective Fuzzy Inference System based Deployment Strategy for a Distributed Mobile Sensor Network

    Directory of Open Access Journals (Sweden)

    Amol P. Bhondekar

    2010-03-01

    Full Text Available Sensor deployment scheme highly governs the effectiveness of distributed wireless sensor network. Issues such as energy conservation and clustering make the deployment problem much more complex. A multiobjective Fuzzy Inference System based strategy for mobile sensor deployment is presented in this paper. This strategy gives a synergistic combination of energy capacity, clustering and peer-to-peer deployment. Performance of our strategy is evaluated in terms of coverage, uniformity, speed and clustering. Our algorithm is compared against a modified distributed self-spreading algorithm to exhibit better performance.

  5. Neural network modeling of nonlinear systems based on Volterra series extension of a linear model

    Science.gov (United States)

    Soloway, Donald I.; Bialasiewicz, Jan T.

    1992-01-01

    A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.

  6. Planning Optimization of the Distributed Antenna System in High-Speed Railway Communication Network Based on Improved Cuckoo Search

    Directory of Open Access Journals (Sweden)

    Zhaoyu Chen

    2018-01-01

    Full Text Available The network planning is a key factor that directly affects the performance of the wireless networks. Distributed antenna system (DAS is an effective strategy for the network planning. This paper investigates the antenna deployment in a DAS for the high-speed railway communication networks and formulates an optimization problem which is NP-hard for achieving the optimal deployment of the antennas in the DAS. To solve this problem, a scheme based on an improved cuckoo search based on dimension cells (ICSDC algorithm is proposed. ICSDC introduces the dimension cell mechanism to avoid the internal dimension interferences in order to improve the performance of the algorithm. Simulation results show that the proposed ICSDC-based scheme obtains a lower network cost compared with the uniform network planning method. Moreover, ICSDC algorithm has better performance in terms of the convergence rate and accuracy compared with the conventional cuckoo search algorithm, the particle swarm optimization, and the firefly algorithm.

  7. Logic-based models in systems biology: a predictive and parameter-free network analysis method†

    Science.gov (United States)

    Wynn, Michelle L.; Consul, Nikita; Merajver, Sofia D.

    2012-01-01

    Highly complex molecular networks, which play fundamental roles in almost all cellular processes, are known to be dysregulated in a number of diseases, most notably in cancer. As a consequence, there is a critical need to develop practical methodologies for constructing and analysing molecular networks at a systems level. Mathematical models built with continuous differential equations are an ideal methodology because they can provide a detailed picture of a network’s dynamics. To be predictive, however, differential equation models require that numerous parameters be known a priori and this information is almost never available. An alternative dynamical approach is the use of discrete logic-based models that can provide a good approximation of the qualitative behaviour of a biochemical system without the burden of a large parameter space. Despite their advantages, there remains significant resistance to the use of logic-based models in biology. Here, we address some common concerns and provide a brief tutorial on the use of logic-based models, which we motivate with biological examples. PMID:23072820

  8. Computer network defense system

    Science.gov (United States)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    2017-08-22

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves network connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.

  9. Delay Tolerant Networking with Data Triage Method based on Emergent User Policies for Disaster Information Network System

    Directory of Open Access Journals (Sweden)

    Noriki Uchida

    2014-01-01

    Full Text Available When Disaster Information Network System is considered in local areas that were heavy damaged by the East Japan Great Earthquake in 2011, the resiliency of the network system is one of significant subjects for the restoration of the areas. DTN (Delay Tolerant Network has been focused for the effective methods for such inoperable network circumstances. However, when DTN is applied for the local areas, there are some problems such as message delivery rate and latency because there are fewer roads, cars, and pedestrians than in urban areas. In this paper, we propose the Enhanced Media Coordinate System for its architecture, and Data Triage method by emergent user policies is introduced to improve the QoS in Disaster Information Network System in local areas. In the proposed method, every message is tagged with the priority levels by data types with considering emergent user policies, and the high priority messages are firstly duplicated to transmittable nodes. Then, the experimental results by the GIS map of a Japanese coastal town and the future studies are discussed.

  10. WiSPH: A Wireless Sensor Network-Based Home Care Monitoring System

    Directory of Open Access Journals (Sweden)

    Pedro Magaña-Espinoza

    2014-04-01

    Full Text Available This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup’s WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.

  11. WiSPH: a wireless sensor network-based home care monitoring system.

    Science.gov (United States)

    Magaña-Espinoza, Pedro; Aquino-Santos, Raúl; Cárdenas-Benítez, Néstor; Aguilar-Velasco, José; Buenrostro-Segura, César; Edwards-Block, Arthur; Medina-Cass, Aldo

    2014-04-22

    This paper presents a system based on WSN technology capable of monitoring heart rate and the rate of motion of seniors within their homes. The system is capable of remotely alerting specialists, caretakers or family members via a smartphone of rapid physiological changes due to falls, tachycardia or bradycardia. This work was carried out using our workgroup's WiSe platform, which we previously developed for use in WSNs. The proposed WSN architecture is flexible, allowing for greater scalability to better allow event-based monitoring. The architecture also provides security mechanisms to assure that the monitored and/or stored data can only be accessed by authorized individuals or devices. The aforementioned characteristics provide the network versatility and solidity required for use in health applications.

  12. Novel flat datacenter network architecture based on scalable and flow-controlled optical switch system.

    Science.gov (United States)

    Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola

    2014-02-10

    We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.

  13. The tracking and locating system of the mining personnel based on the Zigbee wireless network platform

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-jia, Xie; Li-jun, Cheng; Yong, Wang [Chongqing University, Chongqing (China). College of Resources and Environmental Science

    2007-08-15

    By comparing the advanced Zigbee wireless network system with active RFID, the Zigbee wireless network technology was introduced into the system for tracking and locating of coal miners. The system structure and function characteristics were also introduced. This system makes it convenient to mine administrators, control room personnel and security inspectors to obtain information on the working hours and location of mine workers in the mine. 6 refs., 2 figs., 3 tabs.

  14. A Lego Mindstorms NXT based test bench for multiagent exploratory systems and distributed network partitioning

    Science.gov (United States)

    Patil, Riya Raghuvir

    Networks of communicating agents require distributed algorithms for a variety of tasks in the field of network analysis and control. For applications such as swarms of autonomous vehicles, ad hoc and wireless sensor networks, and such military and civilian applications as exploring and patrolling a robust autonomous system that uses a distributed algorithm for selfpartitioning can be significantly helpful. A single team of autonomous vehicles in a field may need to self-dissemble into multiple teams, conducive to completing multiple control tasks. Moreover, because communicating agents are subject to changes, namely, addition or failure of an agent or link, a distributed or decentralized algorithm is favorable over having a central agent. A framework to help with the study of self-partitioning of such multi agent systems that have most basic mobility model not only saves our time in conception but also gives us a cost effective prototype without negotiating the physical realization of the proposed idea. In this thesis I present my work on the implementation of a flexible and distributed stochastic partitioning algorithm on the LegoRTM Mindstorms' NXT on a graphical programming platform using National Instruments' LabVIEW(TM) forming a team of communicating agents via NXT-Bee radio module. We single out mobility, communication and self-partition as the core elements of the work. The goal is to randomly explore a precinct for reference sites. Agents who have discovered the reference sites announce their target acquisition to form a network formed based upon the distance of each agent with the other wherein the self-partitioning begins to find an optimal partition. Further, to illustrate the work, an experimental test-bench of five Lego NXT robots is presented.

  15. A mobile network-based multimedia teleconference system for homecare services.

    Science.gov (United States)

    Zhang, Zhaomin; He, Aiguo; Wei, Daming

    2008-03-01

    Because most research and development for homecare services have focused on providing connections between home and service centers, the goal of the present work is to develop techniques and create realtime communications to connect service centers and homecare workers in mobile environments. A key technical issue for this research is how to overcome the limitation of bandwidth in mobile media and networks. An effort has been made to balance performance of communication and basic demands in telehealth through optimized system design and technical implementation. Implementations using third generation (3G) Freedom Of Mobile multimedia Access (FOMA) and Personal Handyphone System (PHS) were developed and evaluated. We conclude that the system we developed based on 3G FOMA provides sufficient and satisfactory functions for use in homecare services.

  16. Artificial Neural Network-Based Clutter Reduction Systems for Ship Size Estimation in Maritime Radars

    Directory of Open Access Journals (Sweden)

    M. P. Jarabo-Amores

    2010-01-01

    Full Text Available The existence of clutter in maritime radars deteriorates the estimation of some physical parameters of the objects detected over the sea surface. For that reason, maritime radars should incorporate efficient clutter reduction techniques. Due to the intrinsic nonlinear dynamic of sea clutter, nonlinear signal processing is needed, what can be achieved by artificial neural networks (ANNs. In this paper, an estimation of the ship size using an ANN-based clutter reduction system followed by a fixed threshold is proposed. High clutter reduction rates are achieved using 1-dimensional (horizontal or vertical integration modes, although inaccurate ship width estimations are achieved. These estimations are improved using a 2-dimensional (rhombus integration mode. The proposed system is compared with a CA-CFAR system, denoting a great performance improvement and a great robustness against changes in sea clutter conditions and ship parameters, independently of the direction of movement of the ocean waves and ships.

  17. A novel image block cryptosystem based on a spatiotemporal chaotic system and a chaotic neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Bao Xue-Mei

    2013-01-01

    In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)

  18. MSD-MAP: A Network-Based Systems Biology Platform for Predicting Disease-Metabolite Links.

    Science.gov (United States)

    Wathieu, Henri; Issa, Naiem T; Mohandoss, Manisha; Byers, Stephen W; Dakshanamurthy, Sivanesan

    2017-01-01

    Cancer-associated metabolites result from cell-wide mechanisms of dysregulation. The field of metabolomics has sought to identify these aberrant metabolites as disease biomarkers, clues to understanding disease mechanisms, or even as therapeutic agents. This study was undertaken to reliably predict metabolites associated with colorectal, esophageal, and prostate cancers. Metabolite and disease biological action networks were compared in a computational platform called MSD-MAP (Multi Scale Disease-Metabolite Association Platform). Using differential gene expression analysis with patient-based RNAseq data from The Cancer Genome Atlas, genes up- or down-regulated in cancer compared to normal tissue were identified. Relational databases were used to map biological entities including pathways, functions, and interacting proteins, to those differential disease genes. Similar relational maps were built for metabolites, stemming from known and in silico predicted metabolite-protein associations. The hypergeometric test was used to find statistically significant relationships between disease and metabolite biological signatures at each tier, and metabolites were assessed for multi-scale association with each cancer. Metabolite networks were also directly associated with various other diseases using a disease functional perturbation database. Our platform recapitulated metabolite-disease links that have been empirically verified in the scientific literature, with network-based mapping of jointly-associated biological activity also matching known disease mechanisms. This was true for colorectal, esophageal, and prostate cancers, using metabolite action networks stemming from both predicted and known functional protein associations. By employing systems biology concepts, MSD-MAP reliably predicted known cancermetabolite links, and may serve as a predictive tool to streamline conventional metabolomic profiling methodologies. Copyright© Bentham Science Publishers; For any

  19. Model-based design of self-Adapting networked signal processing systems

    NARCIS (Netherlands)

    Oliveira Filho, J.A. de; Papp, Z.; Djapic, R.; Oostveen, J.C.

    2013-01-01

    The paper describes a model based approach for architecture design of runtime reconfigurable, large-scale, networked signal processing applications. A graph based modeling formalism is introduced to describe all relevant aspects of the design (functional, concurrency, hardware, communication,

  20. Large Scale Proteomic Data and Network-Based Systems Biology Approaches to Explore the Plant World.

    Science.gov (United States)

    Di Silvestre, Dario; Bergamaschi, Andrea; Bellini, Edoardo; Mauri, PierLuigi

    2018-06-03

    The investigation of plant organisms by means of data-derived systems biology approaches based on network modeling is mainly characterized by genomic data, while the potential of proteomics is largely unexplored. This delay is mainly caused by the paucity of plant genomic/proteomic sequences and annotations which are fundamental to perform mass-spectrometry (MS) data interpretation. However, Next Generation Sequencing (NGS) techniques are contributing to filling this gap and an increasing number of studies are focusing on plant proteome profiling and protein-protein interactions (PPIs) identification. Interesting results were obtained by evaluating the topology of PPI networks in the context of organ-associated biological processes as well as plant-pathogen relationships. These examples foreshadow well the benefits that these approaches may provide to plant research. Thus, in addition to providing an overview of the main-omic technologies recently used on plant organisms, we will focus on studies that rely on concepts of module, hub and shortest path, and how they can contribute to the plant discovery processes. In this scenario, we will also consider gene co-expression networks, and some examples of integration with metabolomic data and genome-wide association studies (GWAS) to select candidate genes will be mentioned.

  1. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  2. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ...) to increase competitive advantage, innovation, and mission effectiveness. Network-based effectiveness occurs due to the influence of various factors such as people, procedures, technology, and organizations...

  3. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    Directory of Open Access Journals (Sweden)

    Y.-M. Chiang

    2011-01-01

    Full Text Available Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  4. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    International Nuclear Information System (INIS)

    Ammendola, R; Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2012-01-01

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative — the QUonG project — whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k€/T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  5. APEnet+: a 3D Torus network optimized for GPU-based HPC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R [INFN Tor Vergata (Italy); Biagioni, A; Frezza, O; Lo Cicero, F; Lonardo, A; Paolucci, P S; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P [INFN Roma (Italy)

    2012-12-13

    In the supercomputing arena, the strong rise of GPU-accelerated clusters is a matter of fact. Within INFN, we proposed an initiative - the QUonG project - whose aim is to deploy a high performance computing system dedicated to scientific computations leveraging on commodity multi-core processors coupled with latest generation GPUs. The inter-node interconnection system is based on a point-to-point, high performance, low latency 3D torus network which is built in the framework of the APEnet+ project. It takes the form of an FPGA-based PCIe network card exposing six full bidirectional links running at 34 Gbps each that implements the RDMA protocol. In order to enable significant access latency reduction for inter-node data transfer, a direct network-to-GPU interface was built. The specialized hardware blocks, integrated in the APEnet+ board, provide support for GPU-initiated communications using the so called PCIe peer-to-peer (P2P) transactions. This development is made in close collaboration with the GPU vendor NVIDIA. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 80 TFLOPS/rack of peak performance, at a cost of 5 k Euro-Sign /T F LOPS and for an estimated power consumption of 25 kW/rack. In this paper we report on the status of final rack deployment and on the R and D activities for 2012 that will focus on performance enhancement of the APEnet+ hardware through the adoption of new generation 28 nm FPGAs allowing the implementation of PCIe Gen3 host interface and the addition of new fault tolerance-oriented capabilities.

  6. A Hypergraph and Arithmetic Residue-based Probabilistic Neural Network for classification in Intrusion Detection Systems.

    Science.gov (United States)

    Raman, M R Gauthama; Somu, Nivethitha; Kirthivasan, Kannan; Sriram, V S Shankar

    2017-08-01

    Over the past few decades, the design of an intelligent Intrusion Detection System (IDS) remains an open challenge to the research community. Continuous efforts by the researchers have resulted in the development of several learning models based on Artificial Neural Network (ANN) to improve the performance of the IDSs. However, there exists a tradeoff with respect to the stability of ANN architecture and the detection rate for less frequent attacks. This paper presents a novel approach based on Helly property of Hypergraph and Arithmetic Residue-based Probabilistic Neural Network (HG AR-PNN) to address the classification problem in IDS. The Helly property of Hypergraph was exploited for the identification of the optimal feature subset and the arithmetic residue of the optimal feature subset was used to train the PNN. The performance of HG AR-PNN was evaluated using KDD CUP 1999 intrusion dataset. Experimental results prove the dominance of HG AR-PNN classifier over the existing classifiers with respect to the stability and improved detection rate for less frequent attacks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An Unobtrusive Fall Detection and Alerting System Based on Kalman Filter and Bayes Network Classifier.

    Science.gov (United States)

    He, Jian; Bai, Shuang; Wang, Xiaoyi

    2017-06-16

    Falls are one of the main health risks among the elderly. A fall detection system based on inertial sensors can automatically detect fall event and alert a caregiver for immediate assistance, so as to reduce injuries causing by falls. Nevertheless, most inertial sensor-based fall detection technologies have focused on the accuracy of detection while neglecting quantization noise caused by inertial sensor. In this paper, an activity model based on tri-axial acceleration and gyroscope is proposed, and the difference between activities of daily living (ADLs) and falls is analyzed. Meanwhile, a Kalman filter is proposed to preprocess the raw data so as to reduce noise. A sliding window and Bayes network classifier are introduced to develop a wearable fall detection system, which is composed of a wearable motion sensor and a smart phone. The experiment shows that the proposed system distinguishes simulated falls from ADLs with a high accuracy of 95.67%, while sensitivity and specificity are 99.0% and 95.0%, respectively. Furthermore, the smart phone can issue an alarm to caregivers so as to provide timely and accurate help for the elderly, as soon as the system detects a fall.

  8. Wireless network system based multi-non-invasive sensors for smart home

    Science.gov (United States)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  9. Avoiding Message-Dependent Deadlock in Network-Based Systems on Chip

    NARCIS (Netherlands)

    Hansson, A.; Goossens, K.; Rãdulescu, A.

    2007-01-01

    Networks on chip (NoCs) are an essential component of systems on chip (SoCs) and much research is devoted to deadlock avoidance in NoCs. Prior work focuses on the router network while protocol interactions between NoC and intellectual property (IP) modules are not considered. These interactions

  10. PM2.5 monitoring system based on ZigBee wireless sensor network

    Science.gov (United States)

    Lin, Lukai; Li, Xiangshun; Gu, Weiying

    2017-06-01

    In the view of the haze problem, aiming at improving the deficiency of the traditional PM2.5 monitoring methods, such as the insufficient real-time monitoring, limited transmission distance, high cost and the difficulty to maintain, the atmosphere PM2.5 monitoring system based on ZigBee technology is designed. The system combines the advantages of ZigBee’s low cost, low power consumption, high reliability and GPRS/Internet’s capability of remote transmission of data. Furthermore, it adopts TI’s Z-Stack protocol stack, and selects CC2530 chip and TI’s MSP430 microcontroller as the core, which establishes the air pollution monitoring network that is helpful for the early prediction of major air pollution disasters.

  11. The nuclear fuel rod character recognition system based on neural network technique

    International Nuclear Information System (INIS)

    Kim, Woong-Ki; Park, Soon-Yong; Lee, Yong-Bum; Kim, Seung-Ho; Lee, Jong-Min; Chien, Sung-Il.

    1994-01-01

    The nuclear fuel rods should be discriminated and managed systematically by numeric characters which are printed at the end part of each rod in the process of producing fuel assembly. The characters are used to examine manufacturing process of the fuel rods in the inspection process of irradiated fuel rod. Therefore automatic character recognition is one of the most important technologies to establish automatic manufacturing process of fuel assembly. In the developed character recognition system, mesh feature set extracted from each character written in the fuel rod is employed to train a neural network based on back-propagation algorithm as a classifier for character recognition system. Performance evaluation has been achieved on a test set which is not included in a training character set. (author)

  12. A Wearable Respiratory Biofeedback System Based on Generalized Body Sensor Network

    Science.gov (United States)

    Liu, Guan-Zheng; Huang, Bang-Yu

    2011-01-01

    Abstract Wearable medical devices have enabled unobtrusive monitoring of vital signs and emerging biofeedback services in a pervasive manner. This article describes a wearable respiratory biofeedback system based on a generalized body sensor network (BSN) platform. The compact BSN platform was tailored for the strong requirements of overall system optimizations. A waist-worn biofeedback device was designed using the BSN. Extensive bench tests have shown that the generalized BSN worked as intended. In-situ experiments with 22 subjects indicated that the biofeedback device was discreet, easy to wear, and capable of offering wearable respiratory trainings. Pilot studies on wearable training patterns and resultant heart rate variability suggested that paced respirations at abdominal level and with identical inhaling/exhaling ratio were more appropriate for decreasing sympathetic arousal and increasing parasympathetic activities. PMID:21545293

  13. Domain management OSSs: bridging the gap between legacy and standards-based network management systems

    Science.gov (United States)

    Lemley, Todd A.

    1996-11-01

    The rapid change in the telecommunications environment is forcing carriers to re-assess not only their service offering, but also their network management philosophy. The competitive carrier environment has taken away the luxury of throwing technology at a problem by using legacy and proprietary systems and architectures. A more flexible management environment is necessary to effectively gain, and maintain operating margins in the new market era. Competitive forces are driving change which gives carriers more choices than those that are available in legacy and standards-based solutions alone. However, creating an operational support system (OSS) with this gap between legacy and standards has become as dynamic as the services which it supports. A philosophy which helps to integrate the legacy and standards systems is domain management. Domain management relates to a specific service or market 'domain,'and its associated operational support requirements. It supports a companies definition of its business model, which drives the definition of each domain. It also attempts to maximize current investment while injecting new technology available in a practical approach. The following paragraphs offer an overview of legacy systems, standards-based philosophy, and the potential of domain management to help bridge the gap between the two types of systems.

  14. First Steps Toward Incorporating Image Based Diagnostics Into Particle Accelerator Control Systems Using Convolutional Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.; Edelen, J. P.

    2016-12-16

    At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.

  15. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  16. Impedance-Based Harmonic Instability Assessment in Multiple Electric Trains and Traction Network Interaction System

    DEFF Research Database (Denmark)

    Tao, Haidong; Hu, Haitao; Wang, Xiongfei

    2018-01-01

    This paper presents an impedance-based method to systematically investigate the interaction between multi-train and traction networks, focusing on evaluating the harmonic instability problems. Firstly, the interaction mechanism of multi-train and the traction network is represented as a feedback ...

  17. Study on key technologies of vehicle networking system platform for electric automobiles based on micro-service

    Science.gov (United States)

    Ye, Fei

    2018-04-01

    With the rapid increase of electric automobiles and charging piles, the elastic expansion and online rapid upgrade were required for the vehicle networking system platform (system platform for short). At present, it is difficult to meet the operation needs due to the traditional huge rock architecture used by the system platform. This paper studied the system platform technology architecture based on "cloud platform +micro-service" to obtain a new generation of vehicle networking system platform with the combination of elastic expansion and application, thus significantly improving the service operation ability of system.

  18. Energy Efficient Clustering Based Network Protocol Stack for 3D Airborne Monitoring System

    Directory of Open Access Journals (Sweden)

    Abhishek Joshi

    2017-01-01

    Full Text Available Wireless Sensor Network consists of large number of nodes densely deployed in ad hoc manner. Usually, most of the application areas of WSNs require two-dimensional (2D topology. Various emerging application areas such as airborne networks and underwater wireless sensor networks are usually deployed using three-dimensional (3D network topology. In this paper, a static 3D cluster-based network topology has been proposed for airborne networks. A network protocol stack consisting of various protocols such as TDMA MAC and dynamic routing along with services such as time synchronization, Cluster Head rotation, and power level management has been proposed for this airborne network. The proposed protocol stack has been implemented on the hardware platform consisting of number of TelosB nodes. This 3D airborne network architecture can be used to measure Air Quality Index (AQI in an area. Various parameters of network such as energy consumption, Cluster Head rotation, time synchronization, and Packet Delivery Ratio (PDR have been analyzed. Detailed description of the implementation of the protocol stack along with results of implementation has been provided in this paper.

  19. Network operating system

    Science.gov (United States)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  20. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming

    2015-10-01

    In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network.

  1. Network SCADA System

    International Nuclear Information System (INIS)

    Milivojevic, Dragan R.; Tasic, Visa; Karabasevic, Dejan

    2003-01-01

    Copper Institute, Industrial Informatics department, is developing and applying network real time process monitoring and control systems. Some of these systems are already in use. The paper presents some hardware and software general remarks and performances, with special regard to communication sub-systems and network possibilities. (Author)

  2. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network.

    Science.gov (United States)

    Taboun, Mohammed S; Brennan, Robert W

    2017-09-14

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network.

  3. An Embedded Multi-Agent Systems Based Industrial Wireless Sensor Network

    Science.gov (United States)

    Brennan, Robert W.

    2017-01-01

    With the emergence of cyber-physical systems, there has been a growing interest in network-connected devices. One of the key requirements of a cyber-physical device is the ability to sense its environment. Wireless sensor networks are a widely-accepted solution for this requirement. In this study, an embedded multi-agent systems-managed wireless sensor network is presented. A novel architecture is proposed, along with a novel wireless sensor network architecture. Active and passive wireless sensor node types are defined, along with their communication protocols, and two application-specific examples are presented. A series of three experiments is conducted to evaluate the performance of the agent-embedded wireless sensor network. PMID:28906452

  4. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Directory of Open Access Journals (Sweden)

    Dengying Jiang

    Full Text Available To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  5. Design of the smart home system based on the optimal routing algorithm and ZigBee network.

    Science.gov (United States)

    Jiang, Dengying; Yu, Ling; Wang, Fei; Xie, Xiaoxia; Yu, Yongsheng

    2017-01-01

    To improve the traditional smart home system, its electric wiring, networking technology, information transmission and facility control are studied. In this paper, we study the electric wiring, networking technology, information transmission and facility control to improve the traditional smart home system. First, ZigBee is used to replace the traditional electric wiring. Second, a network is built to connect lots of wireless sensors and facilities, thanks to the capability of ZigBee self-organized network and Genetic Algorithm-Particle Swarm Optimization Algorithm (GA-PSOA) to search for the optimal route. Finally, when the smart home system is connected to the internet based on the remote server technology, home environment and facilities could be remote real-time controlled. The experiments show that the GA-PSOA reduce the system delay and decrease the energy consumption of the wireless system.

  6. A Fault Detection Filtering for Networked Control Systems Based on Balanced Reduced-Order

    Directory of Open Access Journals (Sweden)

    Da-Meng Dai

    2015-01-01

    Full Text Available Due to the probability of the packet dropout in the networked control systems, a balanced reduced-order fault detection filter is proposed. In this paper, we first analyze the packet dropout effects in the networked control systems. Then, in order to obtain a robust fault detector for the packet dropout, we use the balanced structure to construct a reduced-order model for residual dynamics. Simulation results are provided to testify the proposed method.

  7. Asynchronous control for networked systems

    CERN Document Server

    Rubio, Francisco; Bencomo, Sebastián

    2015-01-01

    This book sheds light on networked control systems; it describes different techniques for asynchronous control, moving away from the periodic actions of classical control, replacing them with state-based decisions and reducing the frequency with which communication between subsystems is required. The text focuses specially on event-based control. Split into two parts, Asynchronous Control for Networked Systems begins by addressing the problems of single-loop networked control systems, laying out various solutions which include two alternative model-based control schemes (anticipatory and predictive) and the use of H2/H∞ robust control to deal with network delays and packet losses. Results on self-triggering and send-on-delta sampling are presented to reduce the need for feedback in the loop. In Part II, the authors present solutions for distributed estimation and control. They deal first with reliable networks and then extend their results to scenarios in which delays and packet losses may occur. The novel ...

  8. Enhancing Network Data Obliviousness in Trusted Execution Environment-based Stream Processing Systems

    KAUST Repository

    Alsibyani, Hassan M.

    2018-01-01

    . For each of the techniques, we explore their effectiveness in terms of the advantage they provide in overcoming the network leakage. The techniques are tested partly using simulations and some were implemented in a prototype SGX-based stream processing

  9. Data systems and computer science: Neural networks base R/T program overview

    Science.gov (United States)

    Gulati, Sandeep

    1991-01-01

    The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.

  10. Network-based Type-2 Fuzzy System with Water Flow Like Algorithm for System Identification and Signal Processing

    Directory of Open Access Journals (Sweden)

    Che-Ting Kuo

    2015-02-01

    Full Text Available This paper introduces a network-based interval type-2 fuzzy inference system (NT2FIS with a dynamic solution agent algorithm water flow like algorithm (WFA, for nonlinear system identification and blind source separation (BSS problem. The NT2FIS consists of interval type-2 asymmetric fuzzy membership functions and TSK-type consequent parts to enhance the performance. The proposed scheme is optimized by a new heuristic learning algorithm, WFA, with dynamic solution agents. The proposed WFA is inspired by the natural behavior of water flow. Splitting, moving, merging, evaporation, and precipitation have all been introduced for optimization. Some modifications, including new moving strategies, such as the application of tabu searching and gradient-descent techniques, are proposed to enhance the performance of the WFA in training the NT2FIS systems. Simulation and comparison results for nonlinear system identification and blind signal separation are presented to illustrate the performance and effectiveness of the proposed approach.

  11. Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices

    Directory of Open Access Journals (Sweden)

    Fuchun Ren

    2015-01-01

    Full Text Available Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS small-world network and Barabási and Albert (BA scale-free network, respectively. Then, to achieve an effective and robust system and provide guidance in countering the cascading failure, a modified CML model with recovery strategy factor is proposed. Numerical simulations are put forward based on small-world CML and scale-free CML. The simulation results reveal that appropriate recovery strategies would significantly improve the resilience of networks.

  12. Delay-Dependent Exponential Optimal Synchronization for Nonidentical Chaotic Systems via Neural-Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Feng-Hsiag Hsiao

    2013-01-01

    Full Text Available A novel approach is presented to realize the optimal exponential synchronization of nonidentical multiple time-delay chaotic (MTDC systems via fuzzy control scheme. A neural-network (NN model is first constructed for the MTDC system. Then, a linear differential inclusion (LDI state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov's direct method is proposed to guarantee that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI. According to the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal performance by minimizing the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach.

  13. Neural feedback linearization adaptive control for affine nonlinear systems based on neural network estimator

    Directory of Open Access Journals (Sweden)

    Bahita Mohamed

    2011-01-01

    Full Text Available In this work, we introduce an adaptive neural network controller for a class of nonlinear systems. The approach uses two Radial Basis Functions, RBF networks. The first RBF network is used to approximate the ideal control law which cannot be implemented since the dynamics of the system are unknown. The second RBF network is used for on-line estimating the control gain which is a nonlinear and unknown function of the states. The updating laws for the combined estimator and controller are derived through Lyapunov analysis. Asymptotic stability is established with the tracking errors converging to a neighborhood of the origin. Finally, the proposed method is applied to control and stabilize the inverted pendulum system.

  14. Toward a multipoint optical fibre sensor system for use in process water systems based on artificial neural network pattern recognition

    International Nuclear Information System (INIS)

    King, D; Lyons, W B; Flanagan, C; Lewis, E

    2005-01-01

    An optical fibre sensor capable of detecting various concentrations of ethanol in water supplies is reported. The sensor is based on a U-bend sensor configuration and is incorporated into a 170-metre length of silica cladding silica core optical fibre. The sensor is interrogated using Optical Time Domain Reflectometry (OTDR) and it is proposed to apply artificial neural network (ANN) pattern recognition techniques to the resulting OTDR signals to accurately classify the sensor test conditions. It is also proposed that additional U-bend configuration sensors will be added to the fibre measurement length, in order to implement a multipoint optical fibre sensor system

  15. Development of an ultrasonic weld inspection system based on image processing and neural networks

    Science.gov (United States)

    Roca Barceló, Fernando; Jaén del Hierro, Pedro; Ribes Llario, Fran; Real Herráiz, Julia

    2018-04-01

    Several types of discontinuities and defects may be present on a weld, thus leading to a considerable reduction of its resistance. Therefore, ensuring a high welding quality and reliability has become a matter of key importance for many construction and industrial activities. Among the non-destructive weld testing and inspection techniques, the time-of-flight diffraction (TOFD) arises as a very safe (no ionising radiation), precise, reliable and versatile practice. However, this technique presents a relevant drawback, associated to the appearance of speckle noise that should be addressed. In this regard, this paper presents a new, intelligent and automatic method for weld inspection and analysis, based on TOFD, image processing and neural networks. The developed system is capable of detecting weld defects and imperfections with accuracy, and classify them into different categories.

  16. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  17. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  18. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    Science.gov (United States)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  19. Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound.

    Science.gov (United States)

    Virmani, Jitendra; Kumar, Vinod; Kalra, Naveen; Khandelwal, Niranjan

    2014-08-01

    A neural network ensemble (NNE) based computer-aided diagnostic (CAD) system to assist radiologists in differential diagnosis between focal liver lesions (FLLs), including (1) typical and atypical cases of Cyst, hemangioma (HEM) and metastatic carcinoma (MET) lesions, (2) small and large hepatocellular carcinoma (HCC) lesions, along with (3) normal (NOR) liver tissue is proposed in the present work. Expert radiologists, visualize the textural characteristics of regions inside and outside the lesions to differentiate between different FLLs, accordingly texture features computed from inside lesion regions of interest (IROIs) and texture ratio features computed from IROIs and surrounding lesion regions of interests (SROIs) are taken as input. Principal component analysis (PCA) is used for reducing the dimensionality of the feature space before classifier design. The first step of classification module consists of a five class PCA-NN based primary classifier which yields probability outputs for five liver image classes. The second step of classification module consists of ten binary PCA-NN based secondary classifiers for NOR/Cyst, NOR/HEM, NOR/HCC, NOR/MET, Cyst/HEM, Cyst/HCC, Cyst/MET, HEM/HCC, HEM/MET and HCC/MET classes. The probability outputs of five class PCA-NN based primary classifier is used to determine the first two most probable classes for a test instance, based on which it is directed to the corresponding binary PCA-NN based secondary classifier for crisp classification between two classes. By including the second step of the classification module, classification accuracy increases from 88.7 % to 95 %. The promising results obtained by the proposed system indicate its usefulness to assist radiologists in differential diagnosis of FLLs.

  20. Towards an Irritable Bowel Syndrome Control System Based on Artificial Neural Networks

    Science.gov (United States)

    Podolski, Ina; Rettberg, Achim

    To solve health problems with medical applications that use complex algorithms is a trend nowadays. It could also be a chance to help patients with critical problems caused from nerve irritations to overcome them and provide a better living situation. In this paper a system for monitoring and controlling the nerves from the intestine is described on a theoretical basis. The presented system could be applied to the irritable bowel syndrome. For control a neural network is used. The advantages for using a neural network for the control of irritable bowel syndrome are the adaptation and learning. These two aspects are important because the syndrome behavior varies from patient to patient and have also concerning the time a lot of variations with respect to each patient. The developed neural network is implemented and can be simulated. Therefore, it can be shown how the network monitor and control the nerves for individual input parameters.

  1. An Interactive Real-Time Locating System Based on Bluetooth Low-Energy Beacon Network †.

    Science.gov (United States)

    Lin, You-Wei; Lin, Chi-Yi

    2018-05-21

    The ubiquity of Bluetooth-enabled smartphones and peripherals has brought tremendous convenience to our daily life. In recent years, Bluetooth beacons have also been gaining popularity in implementing a variety of innovative location-based services such as self-guided systems in exhibition centers. However, the broadcast-based beacon technology can only provide unidirectional communication. In case smartphone users would like to respond to the beacon messages, they have to rely on their own mobile Internet connections to send the information back to the backend system. Nevertheless, mobile Internet services may not be always available or too costly. In this work, we develop a real-time locating system based only on the Bluetooth low energy (BLE) technology to support interactive communications by combining the broadcast and mesh topology options to extend the applicability of beacon solutions. Specifically, we turn the smartphone into a beacon device and augment the beacon devices with the capability of forming a mesh network. The implementation result shows that our beacon devices can detect the presence of specific users at specific locations, and then the presence state can be sent to the application server via the relay of beacon devices. Moreover, the application server can send personalized location-based messages to the users, again via the relay of beacon devices. With the capability of relaying messages between the beacon devices, it would be convenient for developers to implement a variety of interactive applications such as tracking VIP customers at the airport, or tracking an elder with Alzheimer’s disease in the neighborhood.

  2. An Interactive Real-Time Locating System Based on Bluetooth Low-Energy Beacon Network

    Directory of Open Access Journals (Sweden)

    You-Wei Lin

    2018-05-01

    Full Text Available The ubiquity of Bluetooth-enabled smartphones and peripherals has brought tremendous convenience to our daily life. In recent years, Bluetooth beacons have also been gaining popularity in implementing a variety of innovative location-based services such as self-guided systems in exhibition centers. However, the broadcast-based beacon technology can only provide unidirectional communication. In case smartphone users would like to respond to the beacon messages, they have to rely on their own mobile Internet connections to send the information back to the backend system. Nevertheless, mobile Internet services may not be always available or too costly. In this work, we develop a real-time locating system based only on the Bluetooth low energy (BLE technology to support interactive communications by combining the broadcast and mesh topology options to extend the applicability of beacon solutions. Specifically, we turn the smartphone into a beacon device and augment the beacon devices with the capability of forming a mesh network. The implementation result shows that our beacon devices can detect the presence of specific users at specific locations, and then the presence state can be sent to the application server via the relay of beacon devices. Moreover, the application server can send personalized location-based messages to the users, again via the relay of beacon devices. With the capability of relaying messages between the beacon devices, it would be convenient for developers to implement a variety of interactive applications such as tracking VIP customers at the airport, or tracking an elder with Alzheimer’s disease in the neighborhood.

  3. Network design consideration of a satellite-based mobile communications system

    Science.gov (United States)

    Yan, T.-Y.

    1986-01-01

    Technical considerations for the Mobile Satellite Experiment (MSAT-X), the ground segment testbed for the low-cost spectral efficient satellite-based mobile communications technologies being developed for the 1990's, are discussed. The Network Management Center contains a flexible resource sharing algorithm, the Demand Assigned Multiple Access scheme, which partitions the satellite transponder bandwidth among voice, data, and request channels. Satellite use of multiple UHF beams permits frequency reuse. The backhaul communications and the Telemetry, Tracking and Control traffic are provided through a single full-coverage SHF beam. Mobile Terminals communicate with the satellite using UHF. All communications including SHF-SHF between Base Stations and/or Gateways, are routed through the satellite. Because MSAT-X is an experimental network, higher level network protocols (which are service-specific) will be developed only to test the operation of the lowest three levels, the physical, data link, and network layers.

  4. Neural Network Based Maximum Power Point Tracking Control with Quadratic Boost Converter for PMSG—Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Ramji Tiwari

    2018-02-01

    Full Text Available This paper proposes an artificial neural network (ANN based maximum power point tracking (MPPT control strategy for wind energy conversion system (WECS implemented with a DC/DC converter. The proposed topology utilizes a radial basis function network (RBFN based neural network control strategy to extract the maximum available power from the wind velocity. The results are compared with a classical Perturb and Observe (P&O method and Back propagation network (BPN method. In order to achieve a high voltage rating, the system is implemented with a quadratic boost converter and the performance of the converter is validated with a boost and single ended primary inductance converter (SEPIC. The performance of the MPPT technique along with a DC/DC converter is demonstrated using MATLAB/Simulink.

  5. A cost-effective traffic data collection system based on the iDEN mobile telecommunication network.

    Science.gov (United States)

    2008-10-01

    This report describes a cost-effective data collection system for Caltrans 170 traffic signal : controller. The data collection system is based on TCP/IP communication over existing : low-cost mobile communication networks and Motorola iDEN1 mobile...

  6. Mitigation of the ground reflection effect in real-time locating systems based on wireless sensor networks by using artificial neural networks

    OpenAIRE

    de Paz Santana, Juan F.; Tapia Martínez, Dante I.; Alonso Rincón, Ricardo S.; Pinzón, Cristian; Bajo Pérez, Javier; Corchado Rodríguez, Juan M.

    2017-01-01

    Wireless sensor networks (WSNs) have become much more relevant in recent years, mainly because they can be used in a wide diversity of applications. Real-time locating systems (RTLSs) are one of the most promising applications based on WSNs and represent a currently growing market. Specifically, WSNs are an ideal alternative to develop RTLSs aimed at indoor environments where existing global navigation satellite systems, such as the global positioning system, do not work correctly due to the ...

  7. A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System

    Institute of Scientific and Technical Information of China (English)

    Siva S. Sivatha Sindhu; S. Geetha; M. Marikannan; A. Kannan

    2009-01-01

    work show that the system achieves improvement in terms of misclassification cost when compared with conventional IDS. The results of the experiments show that this system can be deployed based on a real network or database environment for effective prediction of both normal attacks and new attacks.

  8. A pervasive health monitoring service system based on ubiquitous network technology.

    Science.gov (United States)

    Lin, Chung-Chih; Lee, Ren-Guey; Hsiao, Chun-Chieh

    2008-07-01

    The phenomenon of aging society has derived problems such as shortage of medical resources and reduction of quality in healthcare services. This paper presents a system infrastructure for pervasive and long-term healthcare applications, i.e. a ubiquitous network composed of wireless local area network (WLAN) and cable television (CATV) network serving as a platform for monitoring physiological signals. Users can record vital signs including heart rate, blood pressure, and body temperature anytime either at home or at frequently visited public places in order to create a personal health file. The whole system was formally implemented in December 2004. Analysis of 2000 questionnaires indicates that 85% of users were satisfied with the provided community-wide healthcare services. Among the services provided by our system, health consultation services offered by family doctors was rated the most important service by 17.9% of respondents, and was followed by control of one's own health condition (16.4% of respondents). Convenience of data access was rated most important by roughly 14.3% of respondents. We proposed and implemented a long-term healthcare system integrating WLAN and CATV networks in the form of a ubiquitous network providing a service platform for physiological monitoring. This system can classify the health levels of the resident according to the variation tendency of his or her physiological signal for important reference of health management.

  9. Development and Evaluation of a Python Telecare System Based on a Bluetooth Body Area Network

    Directory of Open Access Journals (Sweden)

    Morón MJ

    2011-01-01

    Full Text Available This paper presents a prototype of a telemonitoring system, based on a BAN (Body Area Network that is integrated by a Bluetooth (BT pulse oximeter, a GPS (Global Positioning System unit, and a smartphone. The smartphone is the hardware platform for running a Python software that manages the Bluetooth piconet formed by the sensors. Thus the smartphone forwards the data received from the Bluetooth devices, encoded into JSON (JavaScript Object Notation, to a central server. This server provides universal access to the information of the patient's location and health status through a web application based on AJAX (Asynchronous JavaScript and XML technology. Additionally, for the described prototype, the study presents some performance analyses about several topics that are of great interest for the applicability of the prototype: (i the technique used to forward the patient's location and health status, (ii the power consumption of the smartphone (which is compared with the measurements of an equivalent software developed for Java Micro Edition platform, and (iii the web browser compatibility of the web application developed for the control and monitoring of the patients.

  10. A neural network-based exploratory learning and motor planning system for co-robots

    Directory of Open Access Journals (Sweden)

    Byron V Galbraith

    2015-07-01

    Full Text Available Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or learning by doing, an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  11. A neural network-based exploratory learning and motor planning system for co-robots.

    Science.gov (United States)

    Galbraith, Byron V; Guenther, Frank H; Versace, Massimiliano

    2015-01-01

    Collaborative robots, or co-robots, are semi-autonomous robotic agents designed to work alongside humans in shared workspaces. To be effective, co-robots require the ability to respond and adapt to dynamic scenarios encountered in natural environments. One way to achieve this is through exploratory learning, or "learning by doing," an unsupervised method in which co-robots are able to build an internal model for motor planning and coordination based on real-time sensory inputs. In this paper, we present an adaptive neural network-based system for co-robot control that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. To validate this system we used the 11-degrees-of-freedom RoPro Calliope mobile robot. Through motor babbling of its wheels and arm, the Calliope learned how to relate visual and proprioceptive information to achieve hand-eye-body coordination. By continually evaluating sensory inputs and externally provided goal directives, the Calliope was then able to autonomously select the appropriate wheel and joint velocities needed to perform its assigned task, such as following a moving target or retrieving an indicated object.

  12. An FPGA design flow for reconfigurable network-based multi-processor systems on chip

    NARCIS (Netherlands)

    Kumar, A.; Hansson, M.A; Huisken, J.; Corporaal, H.

    2007-01-01

    Multi-processor systems on chip (MPSoC) platforms are becoming increasingly more heterogeneous and are shifting towards a more communication-centric methodology. Networks on chip (NoC) have emerged as the design paradigm for scalable on-chip communication architectures. As the system complexity

  13. A Social Learning Management System Supporting Feedback for Incorrect Answers Based on Social Network Services

    Science.gov (United States)

    Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon

    2016-01-01

    In this research, we propose a Social Learning Management System (SLMS) enabling real-time and reliable feedback for incorrect answers by learners using a social network service (SNS). The proposed system increases the accuracy of learners' assessment results by using a confidence scale and a variety of social feedback that is created and shared…

  14. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  15. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Directory of Open Access Journals (Sweden)

    Jeonghwan Hwang

    2010-12-01

    Full Text Available Wireless Sensor Network (WSN technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system.

  16. A Wireless Sensor Network-Based Ubiquitous Paprika Growth Management System

    Science.gov (United States)

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    Wireless Sensor Network (WSN) technology can facilitate advances in productivity, safety and human quality of life through its applications in various industries. In particular, the application of WSN technology to the agricultural area, which is labor-intensive compared to other industries, and in addition is typically lacking in IT technology applications, adds value and can increase the agricultural productivity. This study attempts to establish a ubiquitous agricultural environment and improve the productivity of farms that grow paprika by suggesting a ‘Ubiquitous Paprika Greenhouse Management System’ using WSN technology. The proposed system can collect and monitor information related to the growth environment of crops outside and inside paprika greenhouses by installing WSN sensors and monitoring images captured by CCTV cameras. In addition, the system provides a paprika greenhouse environment control facility for manual and automatic control from a distance, improves the convenience and productivity of users, and facilitates an optimized environment to grow paprika based on the growth environment data acquired by operating the system. PMID:22163543

  17. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  18. A LIGHTNING CONDUCTOR MONITORING SYSTEM BASED ON A WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Jan Mikeš

    2013-12-01

    Full Text Available Automated heating, lighting and irrigation systems are nowadays standard features of industrial and commercial buildings, and are also increasingly found in ordinary housing. In addition to the benefits of user comfort, automated technology for buildings saves energy and, above all, it provides enhanced protection against leakage of water and hazardous gases, and against fire hazards. Lightning strikes are a natural phenomenon that poses a significant threat to the safety of buildings. The statistics of the Fire and Rescue Service of the Czech Republic show that buildings are in many cases inadequately protected against lightning strikes, or that systems have been damaged by previous strikes. A subsequent strike can occur within the period between regular inspections, which are normally made at intervals of 2–4 years. Over the whole of Europe, thousands of buildings are subjected to the effects of direct lightning strikes each year. This paper presents ways to carry out wireless monitoring of lightning strikes on buildings and to deal with their impact on lightning conductors. By intervening promptly (disconnecting the power supply, disconnecting the gas supply, sending an engineer to inspect the structure, submitting a report to ARC, etc. we can prevent many downstream effects of direct lightning strikes on buildings (fires, electric shocks, etc. This paper introduces a way to enhance contemporary home automation systems for monitoring lightning strikes based on wireless sensor networks technology.

  19. A survey of system architecture requirements for health care-based wireless sensor networks.

    Science.gov (United States)

    Egbogah, Emeka E; Fapojuwo, Abraham O

    2011-01-01

    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  20. A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abraham O. Fapojuwo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSNs have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera. However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  1. Promoting sustainable energy systems through networks. A framework for network design developed using the case of BASE (Basel Agency for Sustainable Energy)

    Energy Technology Data Exchange (ETDEWEB)

    Schlup, M.

    2001-09-01

    implementing such projects to increase efficiency of the processing and thus effectiveness of promotional efforts. The demands and needs of a number of potential BASE network partners were evaluated through interviews. The statements were analysed to define a suitable objective for the BASE network, that states as network purpose the facilitation of investments in sustainable energy projects that provide additional benefits, e.g. through contributing to Sustainable Development and generating social capital for investors. Furthermore, it was evaluated to what extent the networking approach for potential participants is attractive. Knowledge exchange and potential synergies were among the reasons stated for making such a network attractive, although motivation differed significantly among the interviewed organisations. Competitive barriers, dependencies of various kinds and high coordination and consensus costs were mentioned as potential drawbacks. Services offered involved access to existing networks and provision of financial knowledge and in general matched with services expected from the network. A multilevel network was suggested as most appropriate structure, with BASE coordinating a decentralised network dedicated in facilitating investments in sustainable energies and at the same time being part of a network of 'Centres of Excellence' of international agencies promoting the transition towards Sustainable Energy Systems. Access to affiliated networks of participating organisations thus would maximise the outreach. A number of potential performance indicators were also suggested. Confidentiality and neutrality were identified as crucial for the formation of trust in such a network. Personal contacts were mentioned as being decisive for the building of trust. Also, trust was seen as only emerging if the network could present a successful track record of pilot projects. Such a record would thus greatly increase the likeliness of network institutionalisation and

  2. Energy Efficiency and Network Performance: A Reality Check in SDN-Based 5G Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Ochoa-Aday

    2017-12-01

    Full Text Available The increasing power consumption and related environmental implications currently generated by large data networks have become a major concern over the last decade. Given the drastic traffic increase expected in 5G dense environments, the energy consumption problem becomes even more concerning and challenging. In this context, Software-Defined Networks (SDN, a key technology enabler for 5G systems, can be seen as an attractive solution. In these programmable networks, an energy-aware solution could be easily implemented leveraging the capabilities provided by control and data plane separation. This paper investigates the impact of energy-aware routing on network performance. To that end, we propose a novel energy-aware mechanism that reduces the number of active links in SDN with multiple controllers, considering in-band control traffic. The proposed strategy exploits knowledge of the network topology combined with traffic engineering techniques to reduce the overall power consumption. Therefore, two heuristic algorithms are designed: a static network configuration and a dynamic energy-aware routing. Significant values of switched-off links are reached in the simulations where real topologies and demands data are used. Moreover, the obtained results confirm that crucial network parameters such as control traffic delay, data path latency, link utilization and Ternary Content Addressable Memory (TCAM occupation are affected by the performance-agnostic energy-aware model.

  3. Network-Based Effectiveness

    National Research Council Canada - National Science Library

    Friman, Henrik

    2006-01-01

    ... (extended from Leavitt, 1965). This text identifies aspects of network-based effectiveness that can benefit from a better understanding of leadership and management development of people, procedures, technology, and organizations...

  4. Car-to-Pedestrian Communication Safety System Based on the Vehicular Ad-Hoc Network Environment: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Peng Jing

    2017-10-01

    Full Text Available With the unparalleled growth of motor vehicles, traffic accident between pedestrians and vehicles is one of the most serious issues in the word-wild. Plenty of injuries and fatalities are caused by the traffic accidents and crashes. The connected vehicular ad hoc network as an emerging approach which has the potential to reduce and even avoid accidents have been focused on by many researchers. A large number of car-to-pedestrian communication safety systems based on the vehicular ad hoc network are researching and developing. However, to our limited knowledge, a systematic review about the car-to-pedestrian communication safety system based on the vehicular ad-hoc network has not be written. The purpose and goal of this review is to systematically evaluate and access the reliability of car-to-pedestrian communication safety system based on the vehicular ad-hoc network environment and provide some recommendations for the future works according to throwing some light on the previous literatures. A quality evaluation was developed through established items and instruments tailored to this review. Future works are needed to focus on developing a valid as well as effective communication safety system based on the vehicular ad hoc network to protect the vulnerable road users.

  5. A study on efficient detection of network-based IP spoofing DDoS and malware-infected Systems.

    Science.gov (United States)

    Seo, Jung Woo; Lee, Sang Jin

    2016-01-01

    Large-scale network environments require effective detection and response methods against DDoS attacks. Depending on the advancement of IT infrastructure such as the server or network equipment, DDoS attack traffic arising from a few malware-infected systems capable of crippling the organization's internal network has become a significant threat. This study calculates the frequency of network-based packet attributes and analyzes the anomalies of the attributes in order to detect IP-spoofed DDoS attacks. Also, a method is proposed for the effective detection of malware infection systems triggering IP-spoofed DDoS attacks on an edge network. Detection accuracy and performance of the collected real-time traffic on a core network is analyzed thru the use of the proposed algorithm, and a prototype was developed to evaluate the performance of the algorithm. As a result, DDoS attacks on the internal network were detected in real-time and whether or not IP addresses were spoofed was confirmed. Detecting hosts infected by malware in real-time allowed the execution of intrusion responses before stoppage of the internal network caused by large-scale attack traffic.

  6. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  7. Improving Intrusion Detection System Based on Snort Rules for Network Probe Attacks Detection with Association Rules Technique of Data Mining

    Directory of Open Access Journals (Sweden)

    Nattawat Khamphakdee

    2015-07-01

    Full Text Available The intrusion detection system (IDS is an important network security tool for securing computer and network systems. It is able to detect and monitor network traffic data. Snort IDS is an open-source network security tool. It can search and match rules with network traffic data in order to detect attacks, and generate an alert. However, the Snort IDS  can detect only known attacks. Therefore, we have proposed a procedure for improving Snort IDS rules, based on the association rules data mining technique for detection of network probe attacks.  We employed the MIT-DARPA 1999 data set for the experimental evaluation. Since behavior pattern traffic data are both normal and abnormal, the abnormal behavior data is detected by way of the Snort IDS. The experimental results showed that the proposed Snort IDS rules, based on data mining detection of network probe attacks, proved more efficient than the original Snort IDS rules, as well as icmp.rules and icmp-info.rules of Snort IDS.  The suitable parameters for the proposed Snort IDS rules are defined as follows: Min_sup set to 10%, and Min_conf set to 100%, and through the application of eight variable attributes. As more suitable parameters are applied, higher accuracy is achieved.

  8. The APS control system network

    International Nuclear Information System (INIS)

    Sidorowicz, K.V.; McDowell, W.P.

    1995-01-01

    The APS accelerator control system is a distributed system consisting of operator interfaces, a network, and computer-controlled interfaces to hardware. This implementation of a control system has come to be called the open-quotes Standard Model.close quotes The operator interface is a UNDC-based workstation with an X-windows graphical user interface. The workstation may be located at any point on the facility network and maintain full functionality. The function of the network is to provide a generalized communication path between the host computers, operator workstations, input/output crates, and other hardware that comprise the control system. The crate or input/output controller (IOC) provides direct control and input/output interfaces for each accelerator subsystem. The network is an integral part of all modem control systems and network performance will determine many characteristics of a control system. This paper will describe the overall APS network and examine the APS control system network in detail. Metrics are provided on the performance of the system under various conditions

  9. Wavelet based artificial neural network applied for energy efficiency enhancement of decoupled HVAC system

    International Nuclear Information System (INIS)

    Jahedi, G.; Ardehali, M.M.

    2012-01-01

    Highlights: ► In HVAC systems, temperature and relative humidity are coupled and dynamic mathematical models are non-linear. ► A wavelet-based ANN is used in series with an infinite impulse response filter for self tuning of PD controller. ► Energy consumption is evaluated for a decoupled bi-linear HVAC system with variable air volume and variable water flow. ► Substantial enhancement in energy efficiency is realized, when the gain coefficients of PD controllers are tuned adaptively. - Abstract: Control methodologies could lower energy demand and consumption of heating, ventilating and air conditioning (HVAC) systems and, simultaneously, achieve better comfort conditions. However, the application of classical controllers is unsatisfactory as HVAC systems are non-linear and the control variables such as temperature and relative humidity (RH) inside the thermal zone are coupled. The objective of this study is to develop and simulate a wavelet-based artificial neural network (WNN) for self tuning of a proportional-derivative (PD) controller for a decoupled bi-linear HVAC system with variable air volume and variable water flow responsible for controlling temperature and RH of a thermal zone, where thermal comfort and energy consumption of the system are evaluated. To achieve the objective, a WNN is used in series with an infinite impulse response (IIR) filter for faster and more accurate identification of system dynamics, as needed for on-line use and off-line batch mode training. The WNN-IIR algorithm is used for self-tuning of two PD controllers for temperature and RH. The simulation results show that the WNN-IIR controller performance is superior, as compared with classical PD controller. The enhancement in efficiency of the HVAC system is accomplished due to substantially lower consumption of energy during the transient operation, when the gain coefficients of PD controllers are tuned in an adaptive manner, as the steady state setpoints for temperature and

  10. SIP-Based Single Neuron Stochastic Predictive Control for Non-Gaussian Networked Control Systems with Uncertain Metrology Delays

    Directory of Open Access Journals (Sweden)

    Xinying Xu

    2018-06-01

    Full Text Available In this paper, a novel data-driven single neuron predictive control strategy is proposed for non-Gaussian networked control systems with metrology delays in the information theory framework. Firstly, survival information potential (SIP, instead of minimum entropy, is used to formulate the performance index to characterize the randomness of the considered systems, which is calculated by oversampling method. Then the minimum values can be computed by optimizing the SIP-based performance index. Finally, the proposed strategy, minimum entropy method and mean square error (MSE are applied to a networked motor control system, and results demonstrated the effectiveness of the proposed strategy.

  11. Triangulation positioning system network

    Directory of Open Access Journals (Sweden)

    Sfendourakis Marios

    2017-01-01

    Full Text Available This paper presents ongoing work on localization and positioning through triangulation procedure for a Fixed Sensors Network - FSN.The FSN has to work as a system.As the triangulation problem becomes high complicated in a case with large numbers of sensors and transmitters, an adequate grid topology is needed in order to tackle the detection complexity.For that reason a Network grid topology is presented and areas that are problematic and need further analysis are analyzed.The Network System in order to deal with problems of saturation and False Triangulations - FTRNs will have to find adequate methods in every sub-area of the Area Of Interest - AOI.Also, concepts like Sensor blindness and overall Network blindness, are presented. All these concepts affect the Network detection rate and its performance and ought to be considered in a way that the network overall performance won’t be degraded.Network performance should be monitored contentiously, with right algorithms and methods.It is also shown that as the number of TRNs and FTRNs is increased Detection Complexity - DC is increased.It is hoped that with further research all the characteristics of a triangulation system network for positioning will be gained and the system will be able to perform autonomously with a high detection rate.

  12. Risk-based design of process systems using discrete-time Bayesian networks

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2013-01-01

    Temporal Bayesian networks have gained popularity as a robust technique to model dynamic systems in which the components' sequential dependency, as well as their functional dependency, cannot be ignored. In this regard, discrete-time Bayesian networks have been proposed as a viable alternative to solve dynamic fault trees without resort to Markov chains. This approach overcomes the drawbacks of Markov chains such as the state-space explosion and the error-prone conversion procedure from dynamic fault tree. It also benefits from the inherent advantages of Bayesian networks such as probability updating. However, effective mapping of the dynamic gates of dynamic fault trees into Bayesian networks while avoiding the consequent huge multi-dimensional probability tables has always been a matter of concern. In this paper, a new general formalism has been developed to model two important elements of dynamic fault tree, i.e., cold spare gate and sequential enforcing gate, with any arbitrary probability distribution functions. Also, an innovative Neutral Dependency algorithm has been introduced to model dynamic gates such as priority-AND gate, thus reducing the dimension of conditional probability tables by an order of magnitude. The second part of the paper is devoted to the application of discrete-time Bayesian networks in the risk assessment and safety analysis of complex process systems. It has been shown how dynamic techniques can effectively be applied for optimal allocation of safety systems to obtain maximum risk reduction.

  13. S3: School Zone Safety System Based on Wireless Sensor Network

    Science.gov (United States)

    Yoo, Seong-eun; Chong, Poh Kit; Kim, Daeyoung

    2009-01-01

    School zones are areas near schools that have lower speed limits and where illegally parked vehicles pose a threat to school children by obstructing them from the view of drivers. However, these laws are regularly flouted. Thus, we propose a novel wireless sensor network application called School zone Safety System (S3) to help regulate the speed limit and to prevent illegal parking in school zones. S3 detects illegally parked vehicles, and warns the driver and records the license plate number. To reduce the traveling speed of vehicles in a school zone, S3 measures the speed of vehicles and displays the speed to the driver via an LED display, and also captures the image of the speeding vehicle with a speed camera. We developed a state machine based vehicle detection algorithm for S3. From extensive experiments in our testbeds and data from a real school zone, it is shown that the system can detect all kinds of vehicles, and has an accuracy of over 95% for speed measurement. We modeled the battery life time of a sensor node and validated the model with a downscaled measurement; we estimate the battery life time to be over 2 years. We have deployed S3 in 15 school zones in 2007, and we have demonstrated the robustness of S3 by operating them for over 1 year. PMID:22454567

  14. An Automatic User Grouping Model for a Group Recommender System in Location-Based Social Networks

    Directory of Open Access Journals (Sweden)

    Elahe Khazaei

    2018-02-01

    Full Text Available Spatial group recommendation refers to suggesting places to a given set of users. In a group recommender system, members of a group should have similar preferences in order to increase the level of satisfaction. Location-based social networks (LBSNs provide rich content, such as user interactions and location/event descriptions, which can be leveraged for group recommendations. In this paper, an automatic user grouping model is introduced that obtains information about users and their preferences through an LBSN. The preferences of the users, proximity of the places the users have visited in terms of spatial range, users’ free days, and the social relationships among users are extracted automatically from location histories and users’ profiles in the LBSN. These factors are combined to determine the similarities among users. The users are partitioned into groups based on these similarities. Group size is the key to coordinating group members and enhancing their satisfaction. Therefore, a modified k-medoids method is developed to cluster users into groups with specific sizes. To evaluate the efficiency of the proposed method, its mean intra-cluster distance and its distribution of cluster sizes are compared to those of general clustering algorithms. The results reveal that the proposed method compares favourably with general clustering approaches, such as k-medoids and spectral clustering, in separating users into groups of a specific size with a lower mean intra-cluster distance.

  15. Implementation of a FPGA-Based Feature Detection and Networking System for Real-time Traffic Monitoring

    OpenAIRE

    Chen, Jieshi; Schafer, Benjamin Carrion; Ho, Ivan Wang-Hei

    2016-01-01

    With the growing demand of real-time traffic monitoring nowadays, software-based image processing can hardly meet the real-time data processing requirement due to the serial data processing nature. In this paper, the implementation of a hardware-based feature detection and networking system prototype for real-time traffic monitoring as well as data transmission is presented. The hardware architecture of the proposed system is mainly composed of three parts: data collection, feature detection,...

  16. Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network

    International Nuclear Information System (INIS)

    Xu Chuan-Ming; Yan Yan; Zhu Xiao-Wu; Li Xiao-Teng; Chen Xiao-Song

    2013-01-01

    The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007–2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance. (interdisciplinary physics and related areas of science and technology)

  17. Design of flood early warning system with wifi network based on smartphone

    Science.gov (United States)

    Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad

    2017-11-01

    Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.

  18. Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network

    Science.gov (United States)

    Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song

    2013-11-01

    The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.

  19. A Path-Based Gradient Projection Algorithm for the Cost-Based System Optimum Problem in Networks with Continuously Distributed Value of Time

    Directory of Open Access Journals (Sweden)

    Wen-Xiang Wu

    2014-01-01

    Full Text Available The cost-based system optimum problem in networks with continuously distributed value of time is formulated as a path-based form, which cannot be solved by the Frank-Wolfe algorithm. In light of magnitude improvement in the availability of computer memory in recent years, path-based algorithms have been regarded as a viable approach for traffic assignment problems with reasonably large network sizes. We develop a path-based gradient projection algorithm for solving the cost-based system optimum model, based on Goldstein-Levitin-Polyak method which has been successfully applied to solve standard user equilibrium and system optimum problems. The Sioux Falls network tested is used to verify the effectiveness of the algorithm.

  20. A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2014-01-01

    abnormal nodes from normal nodes by observing their abnormal behaviors, and we analyse parameter selection and error rate of the intrusion detection system. The paper elaborates on the design and implementation of the detection system. This system has achieved efficient, rapid intrusion detection by improving the wireless ad hoc on-demand distance vector routing protocol (Ad hoc On-Demand Distance the Vector Routing, AODV. Finally, the test results show that: the system has high detection accuracy and speed, in accordance with the requirement of wireless sensor network intrusion detection.

  1. Neural Network Based Finite-Time Stabilization for Discrete-Time Markov Jump Nonlinear Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2013-01-01

    Full Text Available This paper deals with the finite-time stabilization problem for discrete-time Markov jump nonlinear systems with time delays and norm-bounded exogenous disturbance. The nonlinearities in different jump modes are parameterized by neural networks. Subsequently, a linear difference inclusion state space representation for a class of neural networks is established. Based on this, sufficient conditions are derived in terms of linear matrix inequalities to guarantee stochastic finite-time boundedness and stochastic finite-time stabilization of the closed-loop system. A numerical example is illustrated to verify the efficiency of the proposed technique.

  2. Abstract computation in schizophrenia detection through artificial neural network based systems.

    Science.gov (United States)

    Cardoso, L; Marins, F; Magalhães, R; Marins, N; Oliveira, T; Vicente, H; Abelha, A; Machado, J; Neves, J

    2015-01-01

    Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.

  3. Abstract Computation in Schizophrenia Detection through Artificial Neural Network Based Systems

    Directory of Open Access Journals (Sweden)

    L. Cardoso

    2015-01-01

    Full Text Available Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason of defective information.

  4. Indoor location system based on discriminant-adaptive neural network in IEEE 802.11 environments.

    Science.gov (United States)

    Fang, Shih-Hau; Lin, Tsung-Nan

    2008-11-01

    This brief paper presents a novel localization algorithm, named discriminant-adaptive neural network (DANN), which takes the received signal strength (RSS) from the access points (APs) as inputs to infer the client position in the wireless local area network (LAN) environment. We extract the useful information into discriminative components (DCs) for network learning. The nonlinear relationship between RSS and the position is then accurately constructed by incrementally inserting the DCs and recursively updating the weightings in the network until no further improvement is required. Our localization system is developed in a real-world wireless LAN WLAN environment, where the realistic RSS measurement is collected. We implement the traditional approaches on the same test bed, including weighted kappa-nearest neighbor (WKNN), maximum likelihood (ML), and multilayer perceptron (MLP), and compare the results. The experimental results indicate that the proposed algorithm is much higher in accuracy compared with other examined techniques. The improvement can be attributed to that only the useful information is efficiently extracted for positioning while the redundant information is regarded as noise and discarded. Finally, the analysis shows that our network intelligently accomplishes learning while the inserted DCs provide sufficient information.

  5. Designing Dietary Recommendations Using System Level Interactomics Analysis and Network-Based Inference

    Directory of Open Access Journals (Sweden)

    Tingting Zheng

    2017-09-01

    diet in disease development. Due to the complexity of analyzing the food composition and eating patterns of individuals our in silico analysis, using large-scale gene expression datasets and network-based topological features, may serve as a proof-of-concept in nutritional systems biology for identifying diet-disease relationships and subsequently designing dietary recommendations.

  6. An automatic system for Turkish word recognition using Discrete Wavelet Neural Network based on adaptive entropy

    International Nuclear Information System (INIS)

    Avci, E.

    2007-01-01

    In this paper, an automatic system is presented for word recognition using real Turkish word signals. This paper especially deals with combination of the feature extraction and classification from real Turkish word signals. A Discrete Wavelet Neural Network (DWNN) model is used, which consists of two layers: discrete wavelet layer and multi-layer perceptron. The discrete wavelet layer is used for adaptive feature extraction in the time-frequency domain and is composed of Discrete Wavelet Transform (DWT) and wavelet entropy. The multi-layer perceptron used for classification is a feed-forward neural network. The performance of the used system is evaluated by using noisy Turkish word signals. Test results showing the effectiveness of the proposed automatic system are presented in this paper. The rate of correct recognition is about 92.5% for the sample speech signals. (author)

  7. T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

  8. A Novel Medium Access Control for Ad hoc Networks Based on OFDM System

    Institute of Scientific and Technical Information of China (English)

    YU Yi-fan; YIN Chang-chuan; YUE Guang-xin

    2005-01-01

    Recently, hosts of Medium Access Control (MAC) protocols for Ad hoc radio networks have been proposed to solve the hidden terminal problem and exposed terminal problem. However most of them take into no account the interactions between physical (PHY) system and MAC protocol. Therefore, the current MAC protocols are either inefficient in the networks with mobile nodes and fading channel or difficult in hardware implementation. In this paper, we present a novel media access control for Ad hoc networks that integrates a media access control protocol termed as Dual Busy Tone Multiple Access (DBTMA) into Orthogonal Frequency Division Multiplexing (OFDM) system proposed in IEEE 802.11a standard. The analysis presented in the paper indicates that the proposed MAC scheme achieves performance improvement over IEEE 802.11 protocol about 25%~80% especially in the environment with high mobility and deep fading. The complexity of the proposed scheme is also lower than other implementation of similar busy tone solution. Furthermore, it is compatible with IEEE 802.11a networks.

  9. A New Controller to Enhance PV System Performance Based on Neural Network

    Directory of Open Access Journals (Sweden)

    Roshdy A AbdelRassoul

    2017-06-01

    Full Text Available In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.In recent years, a radical increase of photovoltaic (PV power generators installation took place because of increased efficiency of solar cells, as well as the growth of manufacturing technology of solar panels. This paper shows the operation and modeling of photovoltaic systems, particularly designing neural controller to control the system. Neural controller is optimized using particle swarm optimization (PSO   leads to getting the best performance of the designed PV system. Using neural network the maximum overshoot and rise time obtained become 0.00001% and 0.1798 seconds, respectively also this paper introduce a comparison between some kind of controller for PV system.

  10. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches.

    Science.gov (United States)

    Oulas, Anastasis; Minadakis, George; Zachariou, Margarita; Sokratous, Kleitos; Bourdakou, Marilena M; Spyrou, George M

    2017-11-27

    Systems Bioinformatics is a relatively new approach, which lies in the intersection of systems biology and classical bioinformatics. It focuses on integrating information across different levels using a bottom-up approach as in systems biology with a data-driven top-down approach as in bioinformatics. The advent of omics technologies has provided the stepping-stone for the emergence of Systems Bioinformatics. These technologies provide a spectrum of information ranging from genomics, transcriptomics and proteomics to epigenomics, pharmacogenomics, metagenomics and metabolomics. Systems Bioinformatics is the framework in which systems approaches are applied to such data, setting the level of resolution as well as the boundary of the system of interest and studying the emerging properties of the system as a whole rather than the sum of the properties derived from the system's individual components. A key approach in Systems Bioinformatics is the construction of multiple networks representing each level of the omics spectrum and their integration in a layered network that exchanges information within and between layers. Here, we provide evidence on how Systems Bioinformatics enhances computational therapeutics and diagnostics, hence paving the way to precision medicine. The aim of this review is to familiarize the reader with the emerging field of Systems Bioinformatics and to provide a comprehensive overview of its current state-of-the-art methods and technologies. Moreover, we provide examples of success stories and case studies that utilize such methods and tools to significantly advance research in the fields of systems biology and systems medicine. © The Author 2017. Published by Oxford University Press.

  11. Kalman filter based fault diagnosis of networked control system with white noise

    Institute of Scientific and Technical Information of China (English)

    Yanwei WANG; Ying ZHENG

    2005-01-01

    The networked control system NCS is regarded as a sampled control system with output time-variant delay.White noise is considered in the model construction of NCS.By using the Kalman filter theory to compute the filter parameters,a Kalman filter is constructed for this NCS.By comparing the output of the filter and the practical system,a residual is generated to diagnose the sensor faults and the actuator faults.Finally,an example is given to show the feasibility of the approach.

  12. Research and Development of a Network-Based Intelligent Maintenance Information System

    Institute of Scientific and Technical Information of China (English)

    ZANG Tie-gang; YANG Ming-zhong; GUO Shun-sheng

    2003-01-01

    A maintenance information system is an important part of equipment management. An intelli gent maintenance information system ( IMIS) is a synthesis of network technology, information technology and intelligent technology. The IMIS is used to finish flexible maintenance decision-making and fast maintenance planning, which helps enterprises to effectively reduce maintenance cost and increase working efficiency. Because the IMIS integrates advanced technologies, its performance is better than a traditional one.The difference between an IMIS and a traditional maintenance information system, and the functions, structure, important realizations, and application of an IMIS are discussed in this paper.

  13. Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph

    Directory of Open Access Journals (Sweden)

    Jae-wook Jang

    2015-01-01

    Full Text Available As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that “influence-based” graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.

  14. Design and Implementation of a Web-based Greenhouse Remote Monitoring System with Zigbee Protocol and GSM Network

    Directory of Open Access Journals (Sweden)

    Abdolhamid Tabatabaeifar

    2014-10-01

    Full Text Available In modern and big greenhouses, it is necessary to measure several climate parameters to automate and control the greenhouse properly. Monitoring and transmitting by cable may lead to an expensive and stiff measurement system. Since, Wireless Sensor Network (WSN is a distributed system that consists of small-size wireless sensor nodes equipped with radio and one or several sensors; it is a low cost option to build the required monitoring system. In this paper, we introduce and implement an intelligent monitoring system based on WSN by using Xbee modules. The Xbee Series 2 hardware uses a microchip from Ember Networks that enables several different flavors of standards-based ZigBee mesh networking. All gathered information by sensors, are sent to a remote center in form of GPRS packets through a GSM network and viewed by monitoring software. The proposed system has low power consumption, low cost and simple driver circuits. Furthermore, it can support various types of digital and analog sensors.

  15. A novel prosodic-information synthesizer based on recurrent fuzzy neural network for the Chinese TTS system.

    Science.gov (United States)

    Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu

    2004-02-01

    In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.

  16. Health system tests CRM data base. Community Health Network uses direct mail to boost physicians.

    Science.gov (United States)

    Botvin, Judith D

    2003-01-01

    A six-month pilot patient retention project for Community Health Network (CHN), Indianapolis, ran from July 2002 to January 2003. It was a direct mail campaign on behalf of some members of the group practices owned by CHN, designed to test the use of the system's CRM database. Patients of the physicians received personal, dynamically-generated cards reminding them to schedule appointments and tests. Each mailing cost $1.76, including production and mailing.

  17. Services Recommendation System based on Heterogeneous Network Analysis in Cloud Computing

    OpenAIRE

    Junping Dong; Qingyu Xiong; Junhao Wen; Peng Li

    2014-01-01

    Resources are provided mainly in the form of services in cloud computing. In the distribute environment of cloud computing, how to find the needed services efficiently and accurately is the most urgent problem in cloud computing. In cloud computing, services are the intermediary of cloud platform, services are connected by lots of service providers and requesters and construct the complex heterogeneous network. The traditional recommendation systems only consider the functional and non-functi...

  18. MEDUSA - An overset grid flow solver for network-based parallel computer systems

    Science.gov (United States)

    Smith, Merritt H.; Pallis, Jani M.

    1993-01-01

    Continuing improvement in processing speed has made it feasible to solve the Reynolds-Averaged Navier-Stokes equations for simple three-dimensional flows on advanced workstations. Combining multiple workstations into a network-based heterogeneous parallel computer allows the application of programming principles learned on MIMD (Multiple Instruction Multiple Data) distributed memory parallel computers to the solution of larger problems. An overset-grid flow solution code has been developed which uses a cluster of workstations as a network-based parallel computer. Inter-process communication is provided by the Parallel Virtual Machine (PVM) software. Solution speed equivalent to one-third of a Cray-YMP processor has been achieved from a cluster of nine commonly used engineering workstation processors. Load imbalance and communication overhead are the principal impediments to parallel efficiency in this application.

  19. World Cities of Scientific Knowledge: Systems, Networks and Potential Dynamics. An Analysis Based on Bibliometric Indicators

    DEFF Research Database (Denmark)

    Matthiessen, Christian Wichmann; Schwarz, Annette Winkel; Find, Søren

    2010-01-01

    This paper is based on identification of the pattern of the upper level of the world city network of knowledge as published in a series of papers.It is our aim to update the findings and relate to the general world city discussion. The structure of the world cities of knowledge network has changed...... over the last decade in favour of south east Asian and south European cities and in disfavour of the traditional centres of North America and north-western Europe. The analysis is based on bibliometric data on the world’s 100 largest cities measured in terms of research output. Then level of co......-authorships between researchers in different cities is an indicators of links and respect, and the number of citations to papers produced by researchers located in each city is an indicator of respect. Finally, one research discipline is selected for an experiment in forecasting future hot spots of research....

  20. Pervasive surveillance-agent system based on wireless sensor networks: design and deployment

    International Nuclear Information System (INIS)

    Martínez, José F; Bravo, Sury; García, Ana B; Corredor, Iván; Familiar, Miguel S; López, Lourdes; Hernández, Vicente; Da Silva, Antonio

    2010-01-01

    Nowadays, proliferation of embedded systems is enhancing the possibilities of gathering information by using wireless sensor networks (WSNs). Flexibility and ease of installation make these kinds of pervasive networks suitable for security and surveillance environments. Moreover, the risk for humans to be exposed to these functions is minimized when using these networks. In this paper, a virtual perimeter surveillance agent, which has been designed to detect any person crossing an invisible barrier around a marked perimeter and send an alarm notification to the security staff, is presented. This agent works in a state of 'low power consumption' until there is a crossing on the perimeter. In our approach, the 'intelligence' of the agent has been distributed by using mobile nodes in order to discern the cause of the event of presence. This feature contributes to saving both processing resources and power consumption since the required code that detects presence is the only system installed. The research work described in this paper illustrates our experience in the development of a surveillance system using WNSs for a practical application as well as its evaluation in real-world deployments. This mechanism plays an important role in providing confidence in ensuring safety to our environment

  1. A Low-Cost Maximum Power Point Tracking System Based on Neural Network Inverse Model Controller

    Directory of Open Access Journals (Sweden)

    Carlos Robles Algarín

    2018-01-01

    Full Text Available This work presents the design, modeling, and implementation of a neural network inverse model controller for tracking the maximum power point of a photovoltaic (PV module. A nonlinear autoregressive network with exogenous inputs (NARX was implemented in a serial-parallel architecture. The PV module mathematical modeling was developed, a buck converter was designed to operate in the continuous conduction mode with a switching frequency of 20 KHz, and the dynamic neural controller was designed using the Neural Network Toolbox from Matlab/Simulink (MathWorks, Natick, MA, USA, and it was implemented on an open-hardware Arduino Mega board. To obtain the reference signals for the NARX and determine the 65 W PV module behavior, a system made of a 0.8 W PV cell, a temperature sensor, a voltage sensor and a static neural network, was used. To evaluate performance a comparison with the P&O traditional algorithm was done in terms of response time and oscillations around the operating point. Simulation results demonstrated the superiority of neural controller over the P&O. Implementation results showed that approximately the same power is obtained with both controllers, but the P&O controller presents oscillations between 7 W and 10 W, in contrast to the inverse controller, which had oscillations between 1 W and 2 W.

  2. Design of FPGA Based Neural Network Controller for Earth Station Power System

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Automation of generating hardware description language code from neural networks models can highly decrease time of implementation those networks into a digital devices, thus significant money savings. To implement the neural network into hardware designer, it is required to translate generated model into device structure. VHDL language is used to describe those networks into hardware. VHDL code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic of the earth station and the satellite power systems using ModelSim PE 6.6 simulator tool. Integration between MATLAB and VHDL is used to save execution time of computation. The results shows that a good agreement between MATLAB and VHDL and a fast/flexible feed forward NN which is capable of dealing with floating point arithmetic operations; minimum number of CLB slices; and good speed of performance. FPGA synthesis results are obtained with view RTL schematic and technology schematic from Xilinix tool. Minimum number of utilized resources is obtained by using Xilinix VERTIX5.

  3. Design of Seat Search System in the Classroom Based on Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jia Yu chen

    2018-01-01

    Full Text Available The purpose of this design is intended to statistics and publishes free seats information in classroom timely to students, and then save students’ time to looking for classroom. The system uses wireless sensor networks to monitor classroom vacancies. It consists of classroom monitoring system and information transmission system. The classroom monitoring system consists of a coordinator node for remote wireless communication and two collection nodes for local communications in the classroom, and that three nodes are star-connected. The tasks of the coordinator node are to collect information from the collection nodes and display and transmission. Set up two collection nodes for collecting information of the number who inter the classroom. The devices for counting include two units, signal acquisition unit is constituted with pyroelectric infrared sensor which contains RE200B probe and conditioning circuit, and the control unit is constituted with CC2530 for signal processing. LCD screen is used to real-time display in coordinator node for counting the number of coming in or out the classroom. Users who enter the teaching building check which classroom have seats available. The manner of local communication is using ZIGBEE. The entire system uses sensor technology and mobile network communication technology to achieve real-time acquisition and release of information. The ability to identify and stability of the experimental system currently implemented are strong.

  4. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network.

    Science.gov (United States)

    Qi, Jun; Liu, Guo-Ping

    2017-11-06

    This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS). The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN) node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF) module, which is only used for time synchronization between different nodes, with accuracy up to 1 μ s. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF) for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM). The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS) signal.

  5. A Robust High-Accuracy Ultrasound Indoor Positioning System Based on a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jun Qi

    2017-11-01

    Full Text Available This paper describes the development and implementation of a robust high-accuracy ultrasonic indoor positioning system (UIPS. The UIPS consists of several wireless ultrasonic beacons in the indoor environment. Each of them has a fixed and known position coordinate and can collect all the transmissions from the target node or emit ultrasonic signals. Every wireless sensor network (WSN node has two communication modules: one is WiFi, that transmits the data to the server, and the other is the radio frequency (RF module, which is only used for time synchronization between different nodes, with accuracy up to 1 μs. The distance between the beacon and the target node is calculated by measuring the time-of-flight (TOF for the ultrasonic signal, and then the position of the target is computed by some distances and the coordinate of the beacons. TOF estimation is the most important technique in the UIPS. A new time domain method to extract the envelope of the ultrasonic signals is presented in order to estimate the TOF. This method, with the envelope detection filter, estimates the value with the sampled values on both sides based on the least squares method (LSM. The simulation results show that the method can achieve envelope detection with a good filtering effect by means of the LSM. The highest precision and variance can reach 0.61 mm and 0.23 mm, respectively, in pseudo-range measurements with UIPS. A maximum location error of 10.2 mm is achieved in the positioning experiments for a moving robot, when UIPS works on the line-of-sight (LOS signal.

  6. Computer-assisted design for scaling up systems based on DNA reaction networks.

    Science.gov (United States)

    Aubert, Nathanaël; Mosca, Clément; Fujii, Teruo; Hagiya, Masami; Rondelez, Yannick

    2014-04-06

    In the past few years, there have been many exciting advances in the field of molecular programming, reaching a point where implementation of non-trivial systems, such as neural networks or switchable bistable networks, is a reality. Such systems require nonlinearity, be it through signal amplification, digitalization or the generation of autonomous dynamics such as oscillations. The biochemistry of DNA systems provides such mechanisms, but assembling them in a constructive manner is still a difficult and sometimes counterintuitive process. Moreover, realistic prediction of the actual evolution of concentrations over time requires a number of side reactions, such as leaks, cross-talks or competitive interactions, to be taken into account. In this case, the design of a system targeting a given function takes much trial and error before the correct architecture can be found. To speed up this process, we have created DNA Artificial Circuits Computer-Assisted Design (DACCAD), a computer-assisted design software that supports the construction of systems for the DNA toolbox. DACCAD is ultimately aimed to design actual in vitro implementations, which is made possible by building on the experimental knowledge available on the DNA toolbox. We illustrate its effectiveness by designing various systems, from Montagne et al.'s Oligator or Padirac et al.'s bistable system to new and complex networks, including a two-bit counter or a frequency divider as well as an example of very large system encoding the game Mastermind. In the process, we highlight a variety of behaviours, such as enzymatic saturation and load effect, which would be hard to handle or even predict with a simpler model. We also show that those mechanisms, while generally seen as detrimental, can be used in a positive way, as functional part of a design. Additionally, the number of parameters included in these simulations can be large, especially in the case of complex systems. For this reason, we included the

  7. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Science.gov (United States)

    Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.

  8. Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongrong; Li, Chunwen [Department of Automation, Tsinghua University, Beijing 100084 (China); Qi, Liang; Xie, Xiaofeng [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Ding, Qingqing [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Ma, ChenChi M. [National Tsing Hua University, Hsinchu 300 (China)

    2008-12-01

    The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system. (author)

  9. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    Science.gov (United States)

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  11. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    Science.gov (United States)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  12. Development of network based control and data acquisition systems for diagnostics using CCD detectors. Application to LHD experiments

    International Nuclear Information System (INIS)

    Kado, Shinichiro; Nakanishi, Hideya; Ida, Katsumi; Kojima, Mamoru

    2000-01-01

    The needs of CCD detectors as a plasma diagnostic tool have recently been increased. However, many CCD providers have developed their own controlling systems, and it is difficult to customized the usages in order to make them applicable to the network-based data acquisition clusters which consist of various sorts of diagnostics. This paper presents the development of systems in which CCD detectors are controlled and the data are acquired through networks. By making use of the Client/Server (C/S) model in the Windows NT operating system and block transfer method via shared memory relevant to the model, the dependence on the hardware is hidden by the server service, CCD list sequencer. The client program is designed for the LHD (Large Helical Device) discharge operation sequences and the data acquisition system. (author)

  13. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Directory of Open Access Journals (Sweden)

    Yongcheng Li

    Full Text Available We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning. Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  14. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    Science.gov (United States)

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  15. Real-time object tracking system based on field-programmable gate array and convolution neural network

    Directory of Open Access Journals (Sweden)

    Congyi Lyu

    2016-12-01

    Full Text Available Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.

  16. A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks.

    Science.gov (United States)

    Antoneli, Fernando; Ferreira, Renata C; Briones, Marcelo R S

    2016-06-01

    Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving the system; (iv) one may obtain the classical rate equations form the corresponding stochastic version by averaging the dynamic random variables (small noise limit). It is important to emphasize that unlike the deterministic case, where coupling two equations is a trivial matter, coupling two RDS is non-trivial, specially in our case, where the coupling is performed between a state variable of one gene and the switching stochastic process of another gene and, hence, it is not a priori true that the resulting coupled system will satisfy the definition of a random dynamical system. We shall provide the necessary arguments that ensure that our coupling prescription does indeed furnish a coupled regulatory network of random dynamical systems. Finally, the fact that classical rate equations are the small noise limit of our stochastic model ensures that any validation or prediction made on the basis of the classical theory is also a validation or prediction of our model. We illustrate our framework with some simple examples of single-gene system and network motifs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Forecasting building energy consumption with hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kangji [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China); School of Electricity Information Engineering, Jiangsu University, Zhenjiang 212013 (China); Su, Hongye [Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027 (China)

    2010-11-15

    There are several ways to forecast building energy consumption, varying from simple regression to models based on physical principles. In this paper, a new method, namely, the hybrid genetic algorithm-hierarchical adaptive network-based fuzzy inference system (GA-HANFIS) model is developed. In this model, hierarchical structure decreases the rule base dimension. Both clustering and rule base parameters are optimized by GAs and neural networks (NNs). The model is applied to predict a hotel's daily air conditioning consumption for a period over 3 months. The results obtained by the proposed model are presented and compared with regular method of NNs, which indicates that GA-HANFIS model possesses better performance than NNs in terms of their forecasting accuracy. (author)

  18. Time-varying causal network of the Korean financial system based on firm-specific risk premiums

    Science.gov (United States)

    Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin

    2016-09-01

    The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.

  19. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    Science.gov (United States)

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Fault Tolerant Ethernet Based Network for Time Sensitive Applications in Electrical Power Distribution Systems

    Directory of Open Access Journals (Sweden)

    Leos Bohac

    2013-01-01

    Full Text Available The paper analyses and experimentally verifies deployment of Ethernet based network technology to enable fault tolerant and timely exchange of data among a number of high voltage protective relays that use proprietary serial communication line to exchange data in real time on a state of its high voltage circuitry facilitating a fast protection switching in case of critical failures. The digital serial signal is first fetched into PCM multiplexer where it is mapped to the corresponding E1 (2 Mbit/s time division multiplexed signal. Subsequently, the resulting E1 frames are then packetized and sent through Ethernet control LAN to the opposite PCM demultiplexer where the same but reverse processing is done finally sending a signal into the opposite protective relay. The challenge of this setup is to assure very timely delivery of the control information between protective relays even in the cases of potential failures of Ethernet network itself. The tolerance of Ethernet network to faults is assured using widespread per VLAN Rapid Spanning Tree Protocol potentially extended by 1+1 PCM protection as a valuable option.

  1. Optimal Formation of Multirobot Systems Based on a Recurrent Neural Network.

    Science.gov (United States)

    Wang, Yunpeng; Cheng, Long; Hou, Zeng-Guang; Yu, Junzhi; Tan, Min

    2016-02-01

    The optimal formation problem of multirobot systems is solved by a recurrent neural network in this paper. The desired formation is described by the shape theory. This theory can generate a set of feasible formations that share the same relative relation among robots. An optimal formation means that finding one formation from the feasible formation set, which has the minimum distance to the initial formation of the multirobot system. Then, the formation problem is transformed into an optimization problem. In addition, the orientation, scale, and admissible range of the formation can also be considered as the constraints in the optimization problem. Furthermore, if all robots are identical, their positions in the system are exchangeable. Then, each robot does not necessarily move to one specific position in the formation. In this case, the optimal formation problem becomes a combinational optimization problem, whose optimal solution is very hard to obtain. Inspired by the penalty method, this combinational optimization problem can be approximately transformed into a convex optimization problem. Due to the involvement of the Euclidean norm in the distance, the objective function of these optimization problems are nonsmooth. To solve these nonsmooth optimization problems efficiently, a recurrent neural network approach is employed, owing to its parallel computation ability. Finally, some simulations and experiments are given to validate the effectiveness and efficiency of the proposed optimal formation approach.

  2. A network-based rating system and its resistance to bribery

    OpenAIRE

    Turrini, P; Grandi, U

    2016-01-01

    We study a rating system in which a set of individ- uals (e.g., the customers of a restaurant) evaluate a given service (e.g, the restaurant), with their ag- gregated opinion determining the probability of all individuals to use the service and thus its generated revenue. We explicitly model the influence relation by a social network, with individuals being influ- enced by the evaluation of their trusted peers. On top of that we allow a malicious service provider (e.g., the restaurant owne...

  3. Self-Adapting Routing Overlay Network for Frequently Changing Application Traffic in Content-Based Publish/Subscribe System

    Directory of Open Access Journals (Sweden)

    Meng Chi

    2014-01-01

    Full Text Available In the large-scale distributed simulation area, the topology of the overlay network cannot always rapidly adapt to frequently changing application traffic to reduce the overall traffic cost. In this paper, we propose a self-adapting routing strategy for frequently changing application traffic in content-based publish/subscribe system. The strategy firstly trains the traffic information and then uses this training information to predict the application traffic in the future. Finally, the strategy reconfigures the topology of the overlay network based on this predicting information to reduce the overall traffic cost. A predicting path is also introduced in this paper to reduce the reconfiguration numbers in the process of the reconfigurations. Compared to other strategies, the experimental results show that the strategy proposed in this paper could reduce the overall traffic cost of the publish/subscribe system in less reconfigurations.

  4. Networking of safeguards systems

    International Nuclear Information System (INIS)

    Chare, P.; Dutrannois, A.; Kloeckner, W.; Swinhoe, M.

    1995-01-01

    This paper discusses the design of a safeguards system that can be incorporated into a plant during the final phase of its construction to permit the acquisition and transmission of data during plant operation in the absence of an inspector. The system is an example of a networked data system of weighing, identity, and NDA information. It collects all of its non-surveillance data produced by safeguards equipment in a fuel fabrication plant. The data collection and transfer tasks are carried out by two software packages: NEGUS, a redundant data acquisition system designed to record neutron coincidence data, high-resolution gamma spectra, and sensor data for the NDA information and associated barcode identity information, and BRANCH, which deals with weighing and associated identity information. These processes collect data from local electronics using an ethernet network and provide information to the main review program

  5. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    Science.gov (United States)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    The currently developed and operational Earthquake Early warning, regional systems ground on the assumption of a point-like earthquake source model and 1-D ground motion prediction equations to estimate the earthquake impact. Here we propose a new network-based method which allows for issuing an alert based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The platform includes the most advanced techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The new software platform (QuakeUp) is under development at the Seismological Laboratory (RISSC-Lab) of the Department of Physics at the University of Naples Federico II, in collaboration with the academic spin-off company RISS s.r.l., recently gemmated by the research group. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. The signal quality is preliminary assessed by checking the signal-to-noise ratio both in acceleration, velocity and displacement and through dedicated filtering algorithms. For stations providing high quality data, the characteristic P-wave period (τ_c) and the P-wave displacement, velocity and acceleration amplitudes (P_d, Pv and P_a) are jointly measured on a progressively expanded P-wave time window. The evolutionary measurements of the early P-wave amplitude and characteristic period at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (I_MM) and by mapping the measured and

  6. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    Science.gov (United States)

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  7. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios.

    Science.gov (United States)

    Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leyre; Astrain, José Javier; Villadangos, Jesús; Santesteban, Daniel; Falcone, Francisco

    2016-08-30

    The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN). Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  8. Implementation and Analysis of a Wireless Sensor Network-Based Pet Location Monitoring System for Domestic Scenarios

    Directory of Open Access Journals (Sweden)

    Erik Aguirre

    2016-08-01

    Full Text Available The flexibility of new age wireless networks and the variety of sensors to measure a high number of variables, lead to new scenarios where anything can be monitored by small electronic devices, thereby implementing Wireless Sensor Networks (WSN. Thanks to ZigBee, RFID or WiFi networks the precise location of humans or animals as well as some biological parameters can be known in real-time. However, since wireless sensors must be attached to biological tissues and they are highly dispersive, propagation of electromagnetic waves must be studied to deploy an efficient and well-working network. The main goal of this work is to study the influence of wireless channel limitations in the operation of a specific pet monitoring system, validated at physical channel as well as at functional level. In this sense, radio wave propagation produced by ZigBee devices operating at the ISM 2.4 GHz band is studied through an in-house developed 3D Ray Launching simulation tool, in order to analyze coverage/capacity relations for the optimal system selection as well as deployment strategy in terms of number of transceivers and location. Furthermore, a simplified dog model is developed for simulation code, considering not only its morphology but also its dielectric properties. Relevant wireless channel information such as power distribution, power delay profile and delay spread graphs are obtained providing an extensive wireless channel analysis. A functional dog monitoring system is presented, operating over the implemented ZigBee network and providing real time information to Android based devices. The proposed system can be scaled in order to consider different types of domestic pets as well as new user based functionalities.

  9. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  10. A Priority-aware Frequency Domain Polling MAC Protocol for OFDMA-based Networks in Cyber-physical Systems

    Institute of Scientific and Technical Information of China (English)

    Meng Zheng; Junru Lin; Wei Liang; Haibin Yu

    2015-01-01

    Wireless networking in cyber-physical systems(CPSs) is characteristically different from traditional wireless systems due to the harsh radio frequency environment and applications that impose high real-time and reliability constraints.One of the fundamental considerations for enabling CPS networks is the medium access control protocol. To this end, this paper proposes a novel priority-aware frequency domain polling medium access control(MAC) protocol, which takes advantage of an orthogonal frequency-division multiple access(OFDMA)physical layer to achieve instantaneous priority-aware polling.Based on the polling result, the proposed work then optimizes the resource allocation of the OFDMA network to further improve the data reliability. Due to the non-polynomial-complete nature of the OFDMA resource allocation, we propose two heuristic rules,based on which an efficient solution algorithm to the OFDMA resource allocation problem is designed. Simulation results show that the reliability performance of CPS networks is significantly improved because of this work.

  11. Host Event Based Network Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Chugg

    2013-01-01

    The purpose of INL’s research on this project is to demonstrate the feasibility of a host event based network monitoring tool and the effects on host performance. Current host based network monitoring tools work on polling which can miss activity if it occurs between polls. Instead of polling, a tool could be developed that makes use of event APIs in the operating system to receive asynchronous notifications of network activity. Analysis and logging of these events will allow the tool to construct the complete real-time and historical network configuration of the host while the tool is running. This research focused on three major operating systems commonly used by SCADA systems: Linux, WindowsXP, and Windows7. Windows 7 offers two paths that have minimal impact on the system and should be seriously considered. First is the new Windows Event Logging API, and, second, Windows 7 offers the ALE API within WFP. Any future work should focus on these methods.

  12. An Agent-based Manufacturing Management System for Production and Logistics within Cross-Company Regional and National Production Networks

    Directory of Open Access Journals (Sweden)

    T. Hanel

    2008-11-01

    Full Text Available The goal is the development of a simultaneous, dynamic, technological as well as logistical real-time planning and an organizational control of the production by the production units themselves, working in the production network under the use of Multi-Agent-Technology. The design of the multi-agent-based manufacturing management system, the models of the single agents, algorithms for the agent-based, decentralized dispatching of orders, strategies and data management concepts as well as their integration into the SCM, basing on the solution described, will be explained in the following.

  13. An Agent-Based Manufacturing Management System for Production and Logistics within Cross-Company Regional and National Production Networks

    Directory of Open Access Journals (Sweden)

    S. Heinrich

    2005-03-01

    Full Text Available The goal is the development of a simultaneous, dynamic, technological as well as logistical real-time planning and an organizational control of the production by the production units themselves, working in the production network under the use of Multi-Agent-Technology. The design of the multi-agent-based manufacturing management system, the models of the single agents, algorithms for the agent-based, decentralized dispatching of orders, strategies and data management concepts as well as their integration into the SCM, basing on the solution described, will be explained in the following.

  14. Controlling Chaos and Voltage Collapse using Layered Recurrent Network-based PID-SVC in Power Systems

    Directory of Open Access Journals (Sweden)

    I Made Ginarsa

    2013-11-01

    Full Text Available Chaos and voltage collapse occurred in critical power systems due to disturbing of energy. PID-SVC layered reccurrent neural network-based (LRN-based PID-SVC was proposed to solve this problem. A PID was used to control chaos and voltage collapse. Then, an SVC LRN-based to maintan the load voltage. By using the proposed controller, chaos and voltage collapse were able to suppress and maintain the load voltage around the setting value. Furthemore, the proposed controller gives better response than PI-SVC controller.

  15. Natural gas demand forecast system based on the application of artificial neural networks

    International Nuclear Information System (INIS)

    Sanfeliu, J.M.; Doumanian, J.E.

    1997-01-01

    Gas Natural BAN, as a distribution gas company since 1993 in the north and west area of Buenos Aires Argentina, with 1,000,000 customers, had to develop a gas demand forecast system which should comply with the following basic requirements: Be able to do reliable forecasts with short historical information (2 years); Distinguish demands in areas of different characteristics, i.e. mainly residential, mainly industrial; Self-learning capability. To accomplish above goals, Gas Natural BAN chose in view of its own necessities, an artificial intelligence application (neural networks). 'SANDRA', the gas demand forecast system for gas distribution used by Gas Natural BAN, has the following features: Daily gas demand forecast, Hourly gas demand forecast and Breakdown of both forecast for each of the 3 basic zones in which the distribution area of Gas Natural BAN is divided. (au)

  16. On the delay effects of different channels in Internet-based networked control systems

    Science.gov (United States)

    Zhao, Yun-Bo; Kim, Jongrae; Sun, Xi-Ming; Liu, Guo-Ping

    2013-11-01

    The sensor-to-controller and the controller-to-actuator delays in networked control systems (NCSs) are investigated for the first time with respect to their different effects on the system performance. This study starts with identifying the delay-independent and delay-dependent control laws in NCSs, and confirms that only two delay-dependent control laws can cause different delay effects in different channels. The conditions under which the different delays in different channels can cause different effects are then given for both delay-dependent control laws. The results are verified by numerical examples. Potentially, these results can be regarded as important design principles in the practical implementation of NCSs.

  17. A wearable biofeedback control system based body area network for freestyle swimming.

    Science.gov (United States)

    Rui Li; Zibo Cai; WeeSit Lee; Lai, Daniel T H

    2016-08-01

    Wearable posture measurement units are capable of enabling real-time performance evaluation and providing feedback to end users. This paper presents a wearable feedback prototype designed for freestyle swimming with focus on trunk rotation measurement. The system consists of a nine-degree-of-freedom inertial sensor, which is built in a central data collection and processing unit, and two vibration motors for delivering real-time feedback. Theses devices form a fundamental body area network (BAN). In the experiment setup, four recreational swimmers were asked to do two sets of 4 x 25m freestyle swimming without and with feedback provided respectively. Results showed that real-time biofeedback mechanism improves swimmers kinematic performance by an average of 4.5% reduction in session time. Swimmers can gradually adapt to feedback signals, and the biofeedback control system can be employed in swimmers daily training for fitness maintenance.

  18. Air-Sense: indoor environment monitoring evaluation system based on ZigBee network

    Science.gov (United States)

    Huang, Yang; Hu, Liang; Yang, Disheng; Liu, Hengchang

    2017-08-01

    In the modern life, people spend most of their time indoors. However, indoor environmental quality problems have always been affecting people’s social activities. In general, indoor environmental quality is also related to our indoor activities. Since most of the organic irritants and volatile gases are colorless, odorless and too tiny to be seen, because we have been unconsciously overlooked indoor environment quality. Consequently, our body suffer a great health problem. In this work, we propose Air-Sense system which utilizes the platform of ZigBee Network to collect and detect the real-time indoor environment quality. What’s more, Air-Sense system can also provide data analysis, and visualizing the results of the indoor environment to the user.

  19. Event-Based Impulsive Control of Continuous-Time Dynamic Systems and Its Application to Synchronization of Memristive Neural Networks.

    Science.gov (United States)

    Zhu, Wei; Wang, Dandan; Liu, Lu; Feng, Gang

    2017-08-18

    This paper investigates exponential stabilization of continuous-time dynamic systems (CDSs) via event-based impulsive control (EIC) approaches, where the impulsive instants are determined by certain state-dependent triggering condition. The global exponential stability criteria via EIC are derived for nonlinear and linear CDSs, respectively. It is also shown that there is no Zeno-behavior for the concerned closed loop control system. In addition, the developed event-based impulsive scheme is applied to the synchronization problem of master and slave memristive neural networks. Furthermore, a self-triggered impulsive control scheme is developed to avoid continuous communication between the master system and slave system. Finally, two numerical simulation examples are presented to illustrate the effectiveness of the proposed event-based impulsive controllers.

  20. High performance SDN enabled flat data center network architecture based on scalable and flow-controlled optical switching system

    NARCIS (Netherlands)

    Calabretta, N.; Miao, W.; Dorren, H.J.S.

    2015-01-01

    We demonstrate a reconfigurable virtual datacenter network by utilizing statistical multiplexing offered by scalable and flow-controlled optical switching system. Results show QoS guarantees by the priority assignment and load balancing for applications in virtual networks.

  1. A Polynomial Subset-Based Efficient Multi-Party Key Management System for Lightweight Device Networks.

    Science.gov (United States)

    Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah

    2017-03-24

    Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.

  2. Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

    International Nuclear Information System (INIS)

    Jiang Zheng-Xian; Cui Bao-Tong; Lou Xu-Yang; Zhuang Bo

    2017-01-01

    In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches. (paper)

  3. A study and analysis of recommendation systems for location-based social network (LBSN with big data

    Directory of Open Access Journals (Sweden)

    Murale Narayanan

    2016-03-01

    Full Text Available Recommender systems play an important role in our day-to-day life. A recommender system automatically suggests an item to a user that he/she might be interested in. Small-scale datasets are used to provide recommendations based on location, but in real time, the volume of data is large. We have selected Foursquare dataset to study the need for big data in recommendation systems for location-based social network (LBSN. A few quality parameters like parallel processing and multimodal interface have been selected to study the need for big data in recommender systems. This paper provides a study and analysis of quality parameters of recommendation systems for LBSN with big data.

  4. New Smith Internal Model Control of Two-Motor Drive System Based on Neural Network Generalized Inverse

    Directory of Open Access Journals (Sweden)

    Guohai Liu

    2016-01-01

    Full Text Available Multimotor drive system is widely applied in industrial control system. Considering the characteristics of multi-input multioutput, nonlinear, strong-coupling, and time-varying delay in two-motor drive systems, this paper proposes a new Smith internal model (SIM control method, which is based on neural network generalized inverse (NNGI. This control strategy adopts the NNGI system to settle the decoupling issue and utilizes the SIM control structure to solve the delay problem. The NNGI method can decouple the original system into several composite pseudolinear subsystems and also complete the pole-zero allocation of subsystems. Furthermore, based on the precise model of pseudolinear system, the proposed SIM control structure is used to compensate the network delay and enhance the interference resisting the ability of the whole system. Both simulation and experimental results are given, verifying that the proposed control strategy can effectively solve the decoupling problem and exhibits the strong robustness to load impact disturbance at various operations.

  5. An intelligent switch with back-propagation neural network based hybrid power system

    Science.gov (United States)

    Perdana, R. H. Y.; Fibriana, F.

    2018-03-01

    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  6. Tracking Control Based on Recurrent Neural Networks for Nonlinear Systems with Multiple Inputs and Unknown Deadzone

    Directory of Open Access Journals (Sweden)

    J. Humberto Pérez-Cruz

    2012-01-01

    Full Text Available This paper deals with the problem of trajectory tracking for a broad class of uncertain nonlinear systems with multiple inputs each one subject to an unknown symmetric deadzone. On the basis of a model of the deadzone as a combination of a linear term and a disturbance-like term, a continuous-time recurrent neural network is directly employed in order to identify the uncertain dynamics. By using a Lyapunov analysis, the exponential convergence of the identification error to a bounded zone is demonstrated. Subsequently, by a proper control law, the state of the neural network is compelled to follow a bounded reference trajectory. This control law is designed in such a way that the singularity problem is conveniently avoided and the exponential convergence to a bounded zone of the difference between the state of the neural identifier and the reference trajectory can be proven. Thus, the exponential convergence of the tracking error to a bounded zone and the boundedness of all closed-loop signals can be guaranteed. One of the main advantages of the proposed strategy is that the controller can work satisfactorily without any specific knowledge of an upper bound for the unmodeled dynamics and/or the disturbance term.

  7. A Network Coverage Information-Based Sensor Registry System for IoT Environments.

    Science.gov (United States)

    Jung, Hyunjun; Jeong, Dongwon; Lee, Sukhoon; On, Byung-Won; Baik, Doo-Kwon

    2016-07-25

    The Internet of Things (IoT) is expected to provide better services through the interaction of physical objects via the Internet. However, its limitations cause an interoperability problem when the sensed data are exchanged between the sensor nodes in wireless sensor networks (WSNs), which constitute the core infrastructure of the IoT. To address this problem, a Sensor Registry System (SRS) is used. By using a SRS, the information of the heterogeneous sensed data remains pure. If users move along a road, their mobile devices predict their next positions and obtain the sensed data for that position from the SRS. If the WSNs in the location in which the users move are unstable, the sensed data will be lost. Consider a situation where the user passes through dangerous areas. If the user's mobile device cannot receive information, they cannot be warned about the dangerous situation. To avoid this, two novel SRSs that use network coverage information have been proposed: one uses OpenSignal and the other uses the probabilistic distribution of the users accessing SRS. The empirical study showed that the proposed method can seamlessly provide services related to sensing data under any abnormal circumstance.

  8. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    Science.gov (United States)

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  9. A Community-Based Event Delivery Protocol in Publish/Subscribe Systems for Delay Tolerant Sensor Networks

    Directory of Open Access Journals (Sweden)

    Haigang Gong

    2009-09-01

    Full Text Available The basic operation of a Delay Tolerant Sensor Network (DTSN is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  10. A community-based event delivery protocol in publish/subscribe systems for delay tolerant sensor networks.

    Science.gov (United States)

    Liu, Nianbo; Liu, Ming; Zhu, Jinqi; Gong, Haigang

    2009-01-01

    The basic operation of a Delay Tolerant Sensor Network (DTSN) is to finish pervasive data gathering in networks with intermittent connectivity, while the publish/subscribe (Pub/Sub for short) paradigm is used to deliver events from a source to interested clients in an asynchronous way. Recently, extension of Pub/Sub systems in DTSNs has become a promising research topic. However, due to the unique frequent partitioning characteristic of DTSNs, extension of a Pub/Sub system in a DTSN is a considerably difficult and challenging problem, and there are no good solutions to this problem in published works. To ad apt Pub/Sub systems to DTSNs, we propose CED, a community-based event delivery protocol. In our design, event delivery is based on several unchanged communities, which are formed by sensor nodes in the network according to their connectivity. CED consists of two components: event delivery and queue management. In event delivery, events in a community are delivered to mobile subscribers once a subscriber comes into the community, for improving the data delivery ratio. The queue management employs both the event successful delivery time and the event survival time to decide whether an event should be delivered or dropped for minimizing the transmission overhead. The effectiveness of CED is demonstrated through comprehensive simulation studies.

  11. Toward a Nationwide Mobile-Based Public Healthcare Service System with Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chien-wen Shen

    2016-01-01

    Full Text Available This paper describes the development of a nationwide public healthcare service system with the integration of cloud technology, wireless sensor networks, and mobile technology to provide citizens with convenient and professional healthcare services. The basic framework of the system includes the architectures for the user end of wireless physiological examinations, for the regional healthcare cloud, and for national public healthcare service system. Citizens with chronic conditions or elderly people who are living alone can use the wireless physiological sensing devices to keep track of their health conditions and get warning if the system detects abnormal signals. Through mobile devices, citizens are able to get real-time health advice, prompt warning, health information, feedback, personalized support, and intervention ubiquitously. With the long-term tracking data for physiological sensing, reliable prediction models for epidemic diseases and chronic diseases can be developed for the government to respond to and control diseases immediately. Besides, such a nationwide approach enables government to have a holistic understanding of the public health information in real time, which is helpful to establish effective policies or strategies to prevent epidemic diseases or chronic diseases.

  12. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    Directory of Open Access Journals (Sweden)

    Susel Fernandez

    2016-08-01

    Full Text Available Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  13. Immune system and zinc are associated with recurrent aphthous stomatitis. An assessment using a network-based approach.

    Directory of Open Access Journals (Sweden)

    César Rivera

    2017-09-01

    Full Text Available Objective: The aim of this research was to identify genes, proteins and processes from the biomedical information published on recurrent aphthous stomatitis (RAS using network-based foci. Methods: The clinical context was defined using MeSH terms for RAS and biomarkers, combined with words associated with risk. A set of protein coding genes was prioritized using the Génie web server and classified with PANTHER. For defining biologically relevant proteins, protein-protein interaction networks were constructed using Reactome database and Cytoscape. Top 20 proteins were then subjected to functional enrichment using STRING. Results: From 1,075,576 gene-abstract links, 1,491 genes were prioritized. Proteins were related to signaling molecule proteins (n=221, receptor proteins (n=221 and nucleic acid binding proteins (n=169. The network constructed with these proteins included 3,963 nodes and functional analysis showed that main processes involved immune system and zinc ion binding function. Conclusions: For the first time, bioinformatics tools were used for integrating pathways and networks associated with RAS. Molecules and processes associated with immune system recur robustly in all analyzed information. The molecular zinc ion binding function could be an area for exploring more specific and effective therapeutic interventions.

  14. Development of automated system based on neural network algorithm for detecting defects on molds installed on casting machines

    Science.gov (United States)

    Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.

    2018-05-01

    During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.

  15. A new and accurate fault location algorithm for combined transmission lines using Adaptive Network-Based Fuzzy Inference System

    Energy Technology Data Exchange (ETDEWEB)

    Sadeh, Javad; Afradi, Hamid [Electrical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box: 91775-1111, Mashhad (Iran)

    2009-11-15

    This paper presents a new and accurate algorithm for locating faults in a combined overhead transmission line with underground power cable using Adaptive Network-Based Fuzzy Inference System (ANFIS). The proposed method uses 10 ANFIS networks and consists of 3 stages, including fault type classification, faulty section detection and exact fault location. In the first part, an ANFIS is used to determine the fault type, applying four inputs, i.e., fundamental component of three phase currents and zero sequence current. Another ANFIS network is used to detect the faulty section, whether the fault is on the overhead line or on the underground cable. Other eight ANFIS networks are utilized to pinpoint the faults (two for each fault type). Four inputs, i.e., the dc component of the current, fundamental frequency of the voltage and current and the angle between them, are used to train the neuro-fuzzy inference systems in order to accurately locate the faults on each part of the combined line. The proposed method is evaluated under different fault conditions such as different fault locations, different fault inception angles and different fault resistances. Simulation results confirm that the proposed method can be used as an efficient means for accurate fault location on the combined transmission lines. (author)

  16. Neural Network Based Model of an Industrial Oil-Fired Boiler System ...

    African Journals Online (AJOL)

    A two-layer feed-forward neural network with Hyperbolic tangent sigmoid ... The neural network model when subjected to test, using the validation input data; ... Proportional Integral Derivative (PID) Controller is used to control the neural ...

  17. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    International Nuclear Information System (INIS)

    Metwally, N

    2014-01-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol. (paper)

  18. A distributed topology information system for optical networks based on the semantic web

    NARCIS (Netherlands)

    Ham, J.J. van der; Dijkstra, F.; Grosso, P.; Pol, R. van der; Toonk, A.; Laat, C. de

    2008-01-01

    The research networking community has embraced novel network architectures to provide e-Science applications with dedicated connections instead of shared links. IP and optical services converge in these new infrastructures to form hybrid networks. Lightpaths are the services offered to clients in

  19. Intelligent Control of Welding Gun Pose for Pipeline Welding Robot Based on Improved Radial Basis Function Network and Expert System

    Directory of Open Access Journals (Sweden)

    Jingwen Tian

    2013-02-01

    Full Text Available Since the control system of the welding gun pose in whole-position welding is complicated and nonlinear, an intelligent control system of welding gun pose for a pipeline welding robot based on an improved radial basis function neural network (IRBFNN and expert system (ES is presented in this paper. The structure of the IRBFNN is constructed and the improved genetic algorithm is adopted to optimize the network structure. This control system makes full use of the characteristics of the IRBFNN and the ES. The ADXRS300 micro-mechanical gyro is used as the welding gun position sensor in this system. When the welding gun position is obtained, an appropriate pitch angle can be obtained through expert knowledge and the numeric reasoning capacity of the IRBFNN. ARM is used as the controller to drive the welding gun pitch angle step motor in order to adjust the pitch angle of the welding gun in real-time. The experiment results show that the intelligent control system of the welding gun pose using the IRBFNN and expert system is feasible and it enhances the welding quality. This system has wide prospects for application.

  20. Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience.

    Science.gov (United States)

    Komeda, Yoriaki; Handa, Hisashi; Watanabe, Tomohiro; Nomura, Takanobu; Kitahashi, Misaki; Sakurai, Toshiharu; Okamoto, Ayana; Minami, Tomohiro; Kono, Masashi; Arizumi, Tadaaki; Takenaka, Mamoru; Hagiwara, Satoru; Matsui, Shigenaga; Nishida, Naoshi; Kashida, Hiroshi; Kudo, Masatoshi

    2017-01-01

    Computer-aided diagnosis (CAD) is becoming a next-generation tool for the diagnosis of human disease. CAD for colon polyps has been suggested as a particularly useful tool for trainee colonoscopists, as the use of a CAD system avoids the complications associated with endoscopic resections. In addition to conventional CAD, a convolutional neural network (CNN) system utilizing artificial intelligence (AI) has been developing rapidly over the past 5 years. We attempted to generate a unique CNN-CAD system with an AI function that studied endoscopic images extracted from movies obtained with colonoscopes used in routine examinations. Here, we report our preliminary results of this novel CNN-CAD system for the diagnosis of colon polyps. A total of 1,200 images from cases of colonoscopy performed between January 2010 and December 2016 at Kindai University Hospital were used. These images were extracted from the video of actual endoscopic examinations. Additional video images from 10 cases of unlearned processes were retrospectively assessed in a pilot study. They were simply diagnosed as either an adenomatous or nonadenomatous polyp. The number of images used by AI to learn to distinguish adenomatous from nonadenomatous was 1,200:600. These images were extracted from the videos of actual endoscopic examinations. The size of each image was adjusted to 256 × 256 pixels. A 10-hold cross-validation was carried out. The accuracy of the 10-hold cross-validation is 0.751, where the accuracy is the ratio of the number of correct answers over the number of all the answers produced by the CNN. The decisions by the CNN were correct in 7 of 10 cases. A CNN-CAD system using routine colonoscopy might be useful for the rapid diagnosis of colorectal polyp classification. Further prospective studies in an in vivo setting are required to confirm the effectiveness of a CNN-CAD system in routine colonoscopy. © 2017 S. Karger AG, Basel.

  1. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Directory of Open Access Journals (Sweden)

    Jordi Llosa

    2009-09-01

    Full Text Available In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports.

  2. REMOTE, a Wireless Sensor Network Based System to Monitor Rowing Performance

    Science.gov (United States)

    Llosa, Jordi; Vilajosana, Ignasi; Vilajosana, Xavier; Navarro, Nacho; Suriñach, Emma; Marquès, Joan Manuel

    2009-01-01

    In this paper, we take a hard look at the performance of REMOTE, a sensor network based application that provides a detailed picture of a boat movement, individual rower performance, or his/her performance compared with other crew members. The application analyzes data gathered with a WSN strategically deployed over a boat to obtain information on the boat and oar movements. Functionalities of REMOTE are compared to those of RowX [1] outdoor instrument, a commercial wired sensor instrument designed for similar purposes. This study demonstrates that with smart geometrical configuration of the sensors, rotation and translation of the oars and boat can be obtained. Three different tests are performed: laboratory calibration allows us to become familiar with the accelerometer readings and validate the theory, ergometer tests which help us to set the acquisition parameters, and on boat tests shows the application potential of this technologies in sports. PMID:22423204

  3. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  4. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Directory of Open Access Journals (Sweden)

    Murad Khan

    2017-02-01

    Full Text Available The Web of Things (WoT plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN, which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  5. TB-CA: A hybrid method based on trust and context-aware for recommender system in social networks

    Directory of Open Access Journals (Sweden)

    Fateme Keikha

    2015-05-01

    Full Text Available Recommender systems help users faced with the problem of information overflow and provide personalized recommendations. Social networks are used for providing variety of business or social activities, or sometimes a combination of both. In this paper, by considering social network of users and according to users’ context and items, a new method is introduced that is based on trust and context aware for recommender systems in social networks. The purpose of this paper is to create a recommender system which increases precision of predicted ratings for all users especially for cold start users. In the proposed method, walking on web of trust is done by neighbor users for finding rating of similar items and users’ preference is gotten of items’ context. The results show that suitable recommendation with user’s context is provided by using this method. Also, this system can increase precision of predicted rating for all users and cold starts too and however, do not decrease the rating’s coverage.

  6. The spatial decision-supporting system combination of RBR & CBR based on artificial neural network and association rules

    Science.gov (United States)

    Tian, Yangge; Bian, Fuling

    2007-06-01

    The technology of artificial intelligence should be imported on the basis of the geographic information system to bring up the spatial decision-supporting system (SDSS). The paper discusses the structure of SDSS, after comparing the characteristics of RBR and CBR, the paper brings up the frame of a spatial decisional system that combines RBR and CBR, which has combined the advantages of them both. And the paper discusses the CBR in agriculture spatial decisions, the application of ANN (Artificial Neural Network) in CBR, and enriching the inference rule base based on association rules, etc. And the paper tests and verifies the design of this system with the examples of the evaluation of the crops' adaptability.

  7. A Digital Architecture for a Network-Based Learning Health System: Integrating Chronic Care Management, Quality Improvement, and Research.

    Science.gov (United States)

    Marsolo, Keith; Margolis, Peter A; Forrest, Christopher B; Colletti, Richard B; Hutton, John J

    2015-01-01

    We collaborated with the ImproveCareNow Network to create a proof-of-concept architecture for a network-based Learning Health System. This collaboration involved transitioning an existing registry to one that is linked to the electronic health record (EHR), enabling a "data in once" strategy. We sought to automate a series of reports that support care improvement while also demonstrating the use of observational registry data for comparative effectiveness research. We worked with three leading EHR vendors to create EHR-based data collection forms. We automated many of ImproveCareNow's analytic reports and developed an application for storing protected health information and tracking patient consent. Finally, we deployed a cohort identification tool to support feasibility studies and hypothesis generation. There is ongoing uptake of the system. To date, 31 centers have adopted the EHR-based forms and 21 centers are uploading data to the registry. Usage of the automated reports remains high and investigators have used the cohort identification tools to respond to several clinical trial requests. The current process for creating EHR-based data collection forms requires groups to work individually with each vendor. A vendor-agnostic model would allow for more rapid uptake. We believe that interfacing network-based registries with the EHR would allow them to serve as a source of decision support. Additional standards are needed in order for this vision to be achieved, however. We have successfully implemented a proof-of-concept Learning Health System while providing a foundation on which others can build. We have also highlighted opportunities where sponsors could help accelerate progress.

  8. Computer-aided diagnosis workstation and telemedicine network system for chest diagnosis based on multislice CT images

    Science.gov (United States)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2009-02-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and

  9. Radar-based alert system to operate a sewerage network: relevance and operational effectiveness after several years of use.

    Science.gov (United States)

    Faure, D; Payrastre, O; Auchet, P

    2005-01-01

    Since January 2000, the sewerage network of a very urbanised catchment area in the Greater Nancy Urban Community has been operated according to the alarms generated in real time by a storm alert system using weather radar data. This alert system is based on an automatic identification of intense rain cells in the radar images. This paper presents the characteristics of this alert system and synthesises the main results of two complementary studies realised in 2002 in order to estimate the relevance and the operational effectiveness of the alert system. The first study consisted in an off-line analysis of almost 50,000 intense rain cells detected in four years of historical radar data. The second study was an analysis of the experience feedback after two years of operational use of this alert system. The results of these studies are discussed in function of the initial operational objectives.

  10. An Efficient Network Coding-Based Fault-Tolerant Mechanism in WBAN for Smart Healthcare Monitoring Systems

    Directory of Open Access Journals (Sweden)

    Yuhuai Peng

    2017-08-01

    Full Text Available As a key technology in smart healthcare monitoring systems, wireless body area networks (WBANs can pre-embed sensors and sinks on body surface or inside bodies for collecting different vital signs parameters, such as human Electrocardiograph (ECG, Electroencephalograph (EEG, Electromyogram (EMG, body temperature, blood pressure, blood sugar, blood oxygen, etc. Using real-time online healthcare, patients can be tracked and monitored in normal or emergency conditions at their homes, hospital rooms, and in Intensive Care Units (ICUs. In particular, the reliability and effectiveness of the packets transmission will be directly related to the timely rescue of critically ill patients with life-threatening injuries. However, traditional fault-tolerant schemes either have the deficiency of underutilised resources or react too slowly to failures. In future healthcare systems, the medical Internet of Things (IoT for real-time monitoring can integrate sensor networks, cloud computing, and big data techniques to address these problems. It can collect and send patient’s vital parameter signal and safety monitoring information to intelligent terminals and enhance transmission reliability and efficiency. Therefore, this paper presents a design in healthcare monitoring systems for a proactive reliable data transmission mechanism with resilience requirements in a many-to-one stream model. This Network Coding-based Fault-tolerant Mechanism (NCFM first proposes a greedy grouping algorithm to divide the topology into small logical units; it then constructs a spanning tree based on random linear network coding to generate linearly independent coding combinations. Numerical results indicate that this transmission scheme works better than traditional methods in reducing the probability of packet loss, the resource redundant rate, and average delay, and can increase the effective throughput rate.

  11. Design and implementation of a wireless sensor network-based remote water-level monitoring system.

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).

  12. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System

    Science.gov (United States)

    Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke

    2011-01-01

    The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377

  13. A spatiotemporal analysis of hydrological patterns based on a wireless sensor network system

    Science.gov (United States)

    Plaza, F.; Slater, T. A.; Zhong, X.; Li, Y.; Liang, Y.; Liang, X.

    2017-12-01

    Understanding complicated spatiotemporal patterns of eco-hydrological variables at a small scale plays a profound role in improving predictability of high resolution distributed hydrological models. However, accurate and continuous monitoring of these complex patterns has become one of the main challenges in the environmental sciences. Wireless sensor networks (WSNs) have emerged as one of the most widespread potential solutions to achieve this. This study presents a spatiotemporal analysis of hydrological patterns (e.g., soil moisture, soil water potential, soil temperature and transpiration) based on observational data collected from a dense multi-hop wireless sensor network (WSN) in a steep-forested testbed located in Southwestern Pennsylvania, USA. At this WSN testbed with an approximate area of 3000 m2, environmental variables are collected from over 240 sensors that are connected to more than 100 heterogeneous motes. The sensors include the soil moisture of EC-5, soil temperature and soil water potential of MPS-1 and MPS-2, and sap flow sensors constructed in house. The motes consist of MICAz, IRIS and TelosB. In addition, several data loggers have been installed along the site to provide a comparative reference to the WSN measurements for the purpose of checking the WSN data quality. The edaphic properties monitored by the WSN sensors show strong agreement with the data logger measurements. Moreover, sap flow measurements, scaled to tree stand transpiration, are found to be reasonable. This study also investigates the feasibility and roles that these sensor measurements play in improving the performance of high-resolution distributed hydrological models. In particular, we explore this using a modified version of the Distributed Hydrological Soil Vegetation Model (DHSVM).

  14. Internet-based reporting system for the US Department of Energy extended network of analytical laboratories

    International Nuclear Information System (INIS)

    Hembree, D.M. Jr.; Hanzelka, C.C.; Rose, L.J.; Price, A.; Holdren, G.R.

    1999-01-01

    The official implementation of environmental sampling under Programme 93+2 as a means to enhance nuclear safeguards for the International Atomic Energy Agency (IAEA) has led the U.S. Department of Energy (DOE) Extended Network of Analytical Laboratories (ENWAL) to reevaluate the effectiveness and efficiency of its support program in this area. One area of particular concern deals with the methods used for information transfer between the various DOE laboratories, the DOE coordination center in Oak Ridge, and IAEA headquarters in Vienna. This reevaluation has also been extended to included the type and structure of the database used to manage environmental sampling data generated within the DOE ENWAL. Efforts are currently underway to migrate to the same database used by the IAEA to manage environmental sampling data, and to develop a new database structure that allows easier use by the IAEA. The most important part of this upgrade program is the move to the internet to allow secure worldwide, dynamic access by all authorized users of the DOE system. As currently envisioned, a secure web browser and appropriate access privileges are all that will required to use the DOE data reporting and communication system. All transactions involving IAEA environmental samples, such as analysis requests, shipping notification, status information, and data reporting will be conducted over the internet under dynamic conditions. (author)

  15. A Review of Fuzzy Logic and Neural Network Based Intelligent Control Design for Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Yiming Jiang

    2016-01-01

    Full Text Available Over the last few decades, the intelligent control methods such as fuzzy logic control (FLC and neural network (NN control have been successfully used in various applications. The rapid development of digital computer based control systems requires control signals to be calculated in a digital or discrete-time form. In this background, the intelligent control methods developed for discrete-time systems have drawn great attentions. This survey aims to present a summary of the state of the art of the design of FLC and NN-based intelligent control for discrete-time systems. For discrete-time FLC systems, numerous remarkable design approaches are introduced and a series of efficient methods to deal with the robustness, stability, and time delay of FLC discrete-time systems are recommended. Techniques for NN-based intelligent control for discrete-time systems, such as adaptive methods and adaptive dynamic programming approaches, are also reviewed. Overall, this paper is devoted to make a brief summary for recent progresses in FLC and NN-based intelligent control design for discrete-time systems as well as to present our thoughts and considerations of recent trends and potential research directions in this area.

  16. A method of groundwater quality assessment based on fuzzy network-CANFIS and geographic information system (GIS)

    Science.gov (United States)

    Gholami, V.; Khaleghi, M. R.; Sebghati, M.

    2017-11-01

    The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.

  17. Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model

    International Nuclear Information System (INIS)

    Xu Long; Wang Junping; Chen Quanshi

    2012-01-01

    Highlights: ► A novel extended Kalman Filtering SOC estimation method based on a stochastic fuzzy neural network (SFNN) battery model is proposed. ► The SFNN which has filtering effect on noisy input can model the battery nonlinear dynamic with high accuracy. ► A robust parameter learning algorithm for SFNN is studied so that the parameters can converge to its true value with noisy data. ► The maximum SOC estimation error based on the proposed method is 0.6%. - Abstract: Extended Kalman filtering is an intelligent and optimal means for estimating the state of a dynamic system. In order to use extended Kalman filtering to estimate the state of charge (SOC), we require a mathematical model that can accurately capture the dynamics of battery pack. In this paper, we propose a stochastic fuzzy neural network (SFNN) instead of the traditional neural network that has filtering effect on noisy input to model the battery nonlinear dynamic. Then, the paper studies the extended Kalman filtering SOC estimation method based on a SFNN model. The modeling test is realized on an 80 Ah Ni/MH battery pack and the Federal Urban Driving Schedule (FUDS) cycle is used to verify the SOC estimation method. The maximum SOC estimation error is 0.6% compared with the real SOC obtained from the discharging test.

  18. Internet of Things (IoT Based Design of a Secure and Lightweight Body Area Network (BAN Healthcare System

    Directory of Open Access Journals (Sweden)

    Yong-Yuan Deng

    2017-12-01

    Full Text Available As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT. At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN. These personal wireless devices collect and integrate patients’ personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.

  19. Internet of Things (IoT) Based Design of a Secure and Lightweight Body Area Network (BAN) Healthcare System.

    Science.gov (United States)

    Deng, Yong-Yuan; Chen, Chin-Ling; Tsaur, Woei-Jiunn; Tang, Yung-Wen; Chen, Jung-Hsuan

    2017-12-15

    As sensor networks and cloud computation technologies have rapidly developed over recent years, many services and applications integrating these technologies into daily life have come together as an Internet of Things (IoT). At the same time, aging populations have increased the need for expanded and more efficient elderly care services. Fortunately, elderly people can now wear sensing devices which relay data to a personal wireless device, forming a body area network (BAN). These personal wireless devices collect and integrate patients' personal physiological data, and then transmit the data to the backend of the network for related diagnostics. However, a great deal of the information transmitted by such systems is sensitive data, and must therefore be subject to stringent security protocols. Protecting this data from unauthorized access is thus an important issue in IoT-related research. In regard to a cloud healthcare environment, scholars have proposed a secure mechanism to protect sensitive patient information. Their schemes provide a general architecture; however, these previous schemes still have some vulnerability, and thus cannot guarantee complete security. This paper proposes a secure and lightweight body-sensor network based on the Internet of Things for cloud healthcare environments, in order to address the vulnerabilities discovered in previous schemes. The proposed authentication mechanism is applied to a medical reader to provide a more comprehensive architecture while also providing mutual authentication, and guaranteeing data integrity, user untraceability, and forward and backward secrecy, in addition to being resistant to replay attack.

  20. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    Science.gov (United States)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  1. Directory Enabled Policy Based Networking; TOPICAL

    International Nuclear Information System (INIS)

    KELIIAA, CURTIS M.

    2001-01-01

    This report presents a discussion of directory-enabled policy-based networking with an emphasis on its role as the foundation for securely scalable enterprise networks. A directory service provides the object-oriented logical environment for interactive cyber-policy implementation. Cyber-policy implementation includes security, network management, operational process and quality of service policies. The leading network-technology vendors have invested in these technologies for secure universal connectivity that transverses Internet, extranet and intranet boundaries. Industry standards are established that provide the fundamental guidelines for directory deployment scalable to global networks. The integration of policy-based networking with directory-service technologies provides for intelligent management of the enterprise network environment as an end-to-end system of related clients, services and resources. This architecture allows logical policies to protect data, manage security and provision critical network services permitting a proactive defense-in-depth cyber-security posture. Enterprise networking imposes the consideration of supporting multiple computing platforms, sites and business-operation models. An industry-standards based approach combined with principled systems engineering in the deployment of these technologies allows these issues to be successfully addressed. This discussion is focused on a directory-based policy architecture for the heterogeneous enterprise network-computing environment and does not propose specific vendor solutions. This document is written to present practical design methodology and provide an understanding of the risks, complexities and most important, the benefits of directory-enabled policy-based networking

  2. Designing real-time systems based on mono-master Profibus-DP networks

    OpenAIRE

    Monforte, Salvatore; Alves, Mário; Vasques, Francisco; Tovar, Eduardo

    2000-01-01

    Profibus networks are widely used as the communication infrastructure for supporting distributed computer-controlled applications. Most of the times, these applications impose strict real-time requirements. Profibus-DP has gradually become the preferred Profibus application profile. It is usually implemented as a mono-master Profibus network, and is optimised for speed and efficiency. The aim of this paper is to analyse the real-time behaviour of this class of Profibus networks...

  3. Panacea: Automating Attack Classification for Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro; Hartel, Pieter H.; Kirda, E.; Jha, S.; Balzarotti, D.

    Anomaly-based intrusion detection systems are usually criticized because they lack a classication of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  4. Panacea : Automating attack classification for anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Hartel, P.H.; Kirda, E.; Jha, S.; Balzarotti, D.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attacks, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  5. Panacea : Automating attack classification for anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Hartel, P.H.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  6. Panacea: Automating Attack Classification for Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro; Hartel, Pieter H.

    2009-01-01

    Anomaly-based intrusion detection systems are usually criticized because they lack a classication of attack, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an

  7. Injecting a liquid bacteria-based repair system to make porous network conrete healed

    NARCIS (Netherlands)

    Sangadji, S.; Wiktor, V.A.C.; Jonkers, H.M.; Schlangen, H.E.J.G.

    2013-01-01

    Bacteria induced calcite precipitation has been proven to be effective in making concrete structure self-healing. In Microlab TU Delft, the concept has been enhanced by developing a liquid bacteria-based concrete repair system. The solution contains calcite precipitating bacteria, nutrients and

  8. An EEG-Based Biometric System Using Eigenvector Centrality in Resting State Brain Networks

    NARCIS (Netherlands)

    Fraschini, M.; Hillebrand, A.; Demuru, M.; Didaci, L.; Marcialis, G.L.

    2015-01-01

    Recently, there has been a growing interest in the use of brain activity for biometric systems. However, so far these studies have focused mainly on basic features of the Electroencephalography. In this study we propose an approach based on phase synchronization, to investigate personal distinctive

  9. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  10. A NEW DISCRETE HARTLEY TRANSFORM PRECODING BASED INTERLEAVED-OFDMA UPLINK SYSTEM WITH REDUCED PAPR FOR 4G CELLULAR NETWORKS

    Directory of Open Access Journals (Sweden)

    VARUN JEOTI

    2011-12-01

    Full Text Available High peak-to-average power ratio (PAPR reduction is one of the major challenges in orthogonal frequency division multiple access (OFDMA systems since last decades. High PAPR increases the complexity of analogue-to-digital (A/D and digital-to-analogue (D/A convertors and also reduces the efficiency of RF high-power-amplifier (HPA. In this paper, we present a new Discrete- Hartley transform (DHT precoding based interleaved-OFDMA uplink system for PAPR reduction in the upcoming 4G cellular networks. Extensive computer simulations have been performed to analyze the PAPR of the proposed system with root-raised-cosine (RRC pulse shaping. We also compare simulation results of the proposed system with the conventional interleaved-OFDMA uplink systems and the Walsh-Hadamard transform (WHT precoding based interleaved-OFDMA uplink systems. It is concluded from the computer simulations that the proposed system has low PAPR as compared to the conventional interleaved-OFDMA uplink systems and the WHT precoded interleaved-OFDMA uplink systems.

  11. Anomaly based intrusion detection for a biometric identification system using neural networks

    CSIR Research Space (South Africa)

    Mgabile, T

    2012-10-01

    Full Text Available detection technique that analyses the fingerprint biometric network traffic for evidence of intrusion. The neural network algorithm that imitates the way a human brain works is used in this study to classify normal traffic and learn the correct traffic...

  12. A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

    Science.gov (United States)

    Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian

    2018-06-01

    Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.

  13. A packet-based dual-rate PID control strategy for a slow-rate sensing Networked Control System.

    Science.gov (United States)

    Cuenca, A; Alcaina, J; Salt, J; Casanova, V; Pizá, R

    2018-05-01

    This paper introduces a packet-based dual-rate control strategy to face time-varying network-induced delays, packet dropouts and packet disorder in a Networked Control System. Slow-rate sensing enables to achieve energy saving and to avoid packet disorder. Fast-rate actuation makes reaching the desired control performance possible. The dual-rate PID controller is split into two parts: a slow-rate PI controller located at the remote side (with no permanent communication to the plant) and a fast-rate PD controller located at the local side. The remote side also includes a prediction stage in order to generate the packet of future, estimated slow-rate control actions. These actions are sent to the local side and converted to fast-rate ones to be used when a packet does not arrive at this side due to the network-induced delay or due to occurring dropouts. The proposed control solution is able to approximately reach the nominal (no-delay, no-dropout) performance despite the existence of time-varying delays and packet dropouts. Control system stability is ensured in terms of probabilistic Linear Matrix Inequalities (LMIs). Via real-time control for a Cartesian robot, results clearly reveal the superiority of the control solution compared to a previous proposal by authors. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  15. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Cicero, F. Lo; Lonardo, A; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Simula, F.; Tosoratto, L.; Vicini, P.; Rossetti, D.

    2015-01-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology.The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network.The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols.Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design. (paper)

  16. Hardware and Software Design of FPGA-based PCIe Gen3 interface for APEnet+ network interconnect system

    Science.gov (United States)

    Ammendola, R.; Biagioni, A.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.

    2015-12-01

    In the attempt to develop an interconnection architecture optimized for hybrid HPC systems dedicated to scientific computing, we designed APEnet+, a point-to-point, low-latency and high-performance network controller supporting 6 fully bidirectional off-board links over a 3D torus topology. The first release of APEnet+ (named V4) was a board based on a 40 nm Altera FPGA, integrating 6 channels at 34 Gbps of raw bandwidth per direction and a PCIe Gen2 x8 host interface. It has been the first-of-its-kind device to implement an RDMA protocol to directly read/write data from/to Fermi and Kepler NVIDIA GPUs using NVIDIA peer-to-peer and GPUDirect RDMA protocols, obtaining real zero-copy GPU-to-GPU transfers over the network. The latest generation of APEnet+ systems (now named V5) implements a PCIe Gen3 x8 host interface on a 28 nm Altera Stratix V FPGA, with multi-standard fast transceivers (up to 14.4 Gbps) and an increased amount of configurable internal resources and hardware IP cores to support main interconnection standard protocols. Herein we present the APEnet+ V5 architecture, the status of its hardware and its system software design. Both its Linux Device Driver and the low-level libraries have been redeveloped to support the PCIe Gen3 protocol, introducing optimizations and solutions based on hardware/software co-design.

  17. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangkeun (Matt) [ORNL; Chen, Liangzhe [ORNL; Duan, Sisi [ORNL; Chinthavali, Supriya [ORNL; Shankar, Mallikarjun (Arjun) [ORNL; Prakash, B. Aditya [Virginia Tech, Blacksburg, VA

    2016-01-01

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here a novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.

  18. A Cold Start Context-Aware Recommender System for Tour Planning Using Artificial Neural Network and Case Based Reasoning

    Directory of Open Access Journals (Sweden)

    Zahra Bahramian

    2017-01-01

    Full Text Available Nowadays, large amounts of tourism information and services are available over the Web. This makes it difficult for the user to search for some specific information such as selecting a tour in a given city as an ordered set of points of interest. Moreover, the user rarely knows all his needs upfront and his preferences may change during a recommendation process. The user may also have a limited number of initial ratings and most often the recommender system is likely to face the well-known cold start problem. The objective of the research presented in this paper is to introduce a hybrid interactive context-aware tourism recommender system that takes into account user’s feedbacks and additional contextual information. It offers personalized tours to the user based on his preferences thanks to the combination of a case based reasoning framework and an artificial neural network. The proposed method has been tried in the city of Tehran in Iran. The results show that the proposed method outperforms current artificial neural network methods and combinations of case based reasoning with k-nearest neighbor methods in terms of user effort, accuracy, and user satisfaction.

  19. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  20. Computer Networks A Systems Approach

    CERN Document Server

    Peterson, Larry L

    2011-01-01

    This best-selling and classic book teaches you the key principles of computer networks with examples drawn from the real world of network and protocol design. Using the Internet as the primary example, the authors explain various protocols and networking technologies. Their systems-oriented approach encourages you to think about how individual network components fit into a larger, complex system of interactions. Whatever your perspective, whether it be that of an application developer, network administrator, or a designer of network equipment or protocols, you will come away with a "big pictur

  1. The earthing system of the PRIMA Neutral Beam Test Facility based on the Mesh Common Bonding Network topology

    International Nuclear Information System (INIS)

    Pomaro, Nicola; Boldrin, Marco; Lazzaro, Gabriele

    2015-01-01

    Highlights: • We designed a high performance earthing system for the ITER Neutral Beam Test Facility. • The system is based on the Mesh Common Bonded Network topology. • Careful bonding of all metallic structures allowed to obtain a well meshed system. • Special care was dedicated to improve EMC performance of critical areas like control rooms. • The facility experimental results will be representative also of the ITER situation. - Abstract: PRIMA is a large experimental facility under realization in Padova, aimed at developing and testing the Neutral Beam Injectors for ITER. The operation of these devices involves high RF power and voltage up to 1 MV. Frequent and high voltage electrical breakdowns inside the beam sources occur regularly. The presence of a distributed carefully optimized earthing system is of paramount importance to achieve a satisfying disturbances immunity for equipment and diagnostics. The paper describes the design and the realization of the earthing system of the PRIMA facility, which is based on the MESH-Common Bonding Network (MESH-CBN) topology, as recommended by IEC and IEEE standards for installations with high levels of Electromagnetic Interferences (EMI). The principles of the MESH-CBN approach were adapted to the PRIMA layout, which is composed by several buildings, that are independent for seismic and architectural reasons, but are linked by many electrical conduits and hydraulic pipelines. The availability of huge foundations, with a large number of poles and pillars, was taken into account; building parts dedicated to host control rooms and sensitive equipment were treated with particular care. Moreover, the lightning protection system was integrated and harmonized with the earthing system.

  2. The earthing system of the PRIMA Neutral Beam Test Facility based on the Mesh Common Bonding Network topology

    Energy Technology Data Exchange (ETDEWEB)

    Pomaro, Nicola, E-mail: nicola.pomaro@igi.cnr.it; Boldrin, Marco; Lazzaro, Gabriele

    2015-10-15

    Highlights: • We designed a high performance earthing system for the ITER Neutral Beam Test Facility. • The system is based on the Mesh Common Bonded Network topology. • Careful bonding of all metallic structures allowed to obtain a well meshed system. • Special care was dedicated to improve EMC performance of critical areas like control rooms. • The facility experimental results will be representative also of the ITER situation. - Abstract: PRIMA is a large experimental facility under realization in Padova, aimed at developing and testing the Neutral Beam Injectors for ITER. The operation of these devices involves high RF power and voltage up to 1 MV. Frequent and high voltage electrical breakdowns inside the beam sources occur regularly. The presence of a distributed carefully optimized earthing system is of paramount importance to achieve a satisfying disturbances immunity for equipment and diagnostics. The paper describes the design and the realization of the earthing system of the PRIMA facility, which is based on the MESH-Common Bonding Network (MESH-CBN) topology, as recommended by IEC and IEEE standards for installations with high levels of Electromagnetic Interferences (EMI). The principles of the MESH-CBN approach were adapted to the PRIMA layout, which is composed by several buildings, that are independent for seismic and architectural reasons, but are linked by many electrical conduits and hydraulic pipelines. The availability of huge foundations, with a large number of poles and pillars, was taken into account; building parts dedicated to host control rooms and sensitive equipment were treated with particular care. Moreover, the lightning protection system was integrated and harmonized with the earthing system.

  3. Observer-based output feedback control of networked control systems with non-uniform sampling and time-varying delay

    Science.gov (United States)

    Meng, Su; Chen, Jie; Sun, Jian

    2017-10-01

    This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.

  4. Signal-regulated systems and networks

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2010-07-01

    Full Text Available The article presents the use of signal regulatory networks (SRNs), a biologically inspired model based on gene regulatory networks. SRNs are a way of understanding a class of self-organizing IT systems, signal-regulated systems (SRSs). This article...

  5. Neural Network Based Load Frequency Control for Restructuring ...

    African Journals Online (AJOL)

    Neural Network Based Load Frequency Control for Restructuring Power Industry. ... an artificial neural network (ANN) application of load frequency control (LFC) of a Multi-Area power system by using a neural network controller is presented.

  6. TinyMAPS : a lightweight Java-based mobile agent system for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Fortino, G.; Galzarano, S.; Vittorioso, A.; Brazier, F.M.T.; Nieuwenhuis, K.; Pavlin, G.; Warnier, M.; Badica, C.

    2012-01-01

    In the context of the development of wireless sensor network (WSN) applications, effective programming frameworks and middlewares for rapid and efficient prototyping of resource-constrained applications are highly required. Mobile agents are an effective distributed programming paradigm that is

  7. Examining the resilience of national energy systems: Measurements of diversity in production-based and consumption-based electricity in the globalization of trade networks

    International Nuclear Information System (INIS)

    Kharrazi, Ali; Sato, Masahiro; Yarime, Masaru; Nakayama, Hirofumi; Yu, Yadong; Kraines, Steven

    2015-01-01

    Energy is a critical component of achieving sustainable development. In addition to the three aspects of promoting access, renewables, and efficiency, the dimension of resilience in energy systems should also considered. The implementation of resilient energy systems requires a quantitative understanding of the socio-economic practices underlying such systems. Specifically, in line with the increasing globalization of trade, there remains a critical knowledge gap on the link between embodied energy in the production and consumption of traded goods. To bridge this knowledge gap, we investigate the resilience of global energy systems through an examination of a diversity measure of global embodied electricity trade based on multi-regional input-output (MRIO) networks. The significance of this research lies in its ability to utilize high resolution MRIO data sets in assessing the resilience of national energy systems. This research indicates that secure and responsible consumption requires the diversification of not only energy generation but also energy imports. This research will lay the ground for further research in the governance of resilience in global energy networks. - Highlights: • We examine the resilience of global embodied energy based on (MRIO) trade networks. • We propose a secure and responsible mode of thinking for national energy consumption. • Secure & responsible consumption requires diversity in energy generation and imports.

  8. DASH-based network performance-aware solution for personalised video delivery systems

    OpenAIRE

    Rovcanin, Lejla

    2016-01-01

    Video content is an increasingly prevalent contributor of Internet traffic. The proliferation of available video content has been fuelled by both Internet expansion and the growing power and affordability of viewing devices. Such content can be consumed anywhere and anytime, using a variety of technologies. The high data rates required for streaming video content and the large volume of requests for such content degrade network performance when devices compete for finite network bandwidth. Th...

  9. Research on Adaptive Neural Network Control System Based on Nonlinear U-Model with Time-Varying Delay

    Directory of Open Access Journals (Sweden)

    Fengxia Xu

    2014-01-01

    Full Text Available U-model can approximate a large class of smooth nonlinear time-varying delay system to any accuracy by using time-varying delay parameters polynomial. This paper proposes a new approach, namely, U-model approach, to solving the problems of analysis and synthesis for nonlinear systems. Based on the idea of discrete-time U-model with time-varying delay, the identification algorithm of adaptive neural network is given for the nonlinear model. Then, the controller is designed by using the Newton-Raphson formula and the stability analysis is given for the closed-loop nonlinear systems. Finally, illustrative examples are given to show the validity and applicability of the obtained results.

  10. Network Intrusion Detection System (NIDS in Cloud Environment based on Hidden Naïve Bayes Multiclass Classifier

    Directory of Open Access Journals (Sweden)

    Hafza A. Mahmood

    2018-04-01

    Full Text Available Cloud Environment is next generation internet based computing system that supplies customiza-ble services to the end user to work or access to the various cloud applications. In order to provide security and decrease the damage of information system, network and computer system it is im-portant to provide intrusion detection system (IDS. Now Cloud environment are under threads from network intrusions, as one of most prevalent and offensive means Denial of Service (DoS attacks that cause dangerous impact on cloud computing systems. This paper propose Hidden naïve Bayes (HNB Classifier to handle DoS attacks which is a data mining (DM model used to relaxes the conditional independence assumption of Naïve Bayes classifier (NB, proposed sys-tem used HNB Classifier supported with discretization and feature selection where select the best feature enhance the performance of the system and reduce consuming time. To evaluate the per-formance of proposal system, KDD 99 CUP and NSL KDD Datasets has been used. The experi-mental results show that the HNB classifier improves the performance of NIDS in terms of accu-racy and detecting DoS attacks, where the accuracy of detect DoS is 100% in three test KDD cup 99 dataset by used only 12 feature that selected by use gain ratio while in NSL KDD Dataset the accuracy of detect DoS attack is 90 % in three Experimental NSL KDD dataset by select 10 fea-ture only.

  11. Linear modeling of nonlinear systems using artificial neural networks based on I/O data and its application in power plant boiler modeling

    International Nuclear Information System (INIS)

    Ghaffari, A.; Nikkhah Bahrami, M.; Mohammadzaheri, M.

    2005-01-01

    In this paper a new method for linear modeling of nonlinear systems is presented. The method is based on the design of an artificial neural network with two layers. The network is trained only according to the input-output data of the system. The weights of connections in this network, represents the coefficients of the transfer function. For systems with linear behavior the method of least square error represents the best linear model of the system. However, for nonlinear systems, such as some subsystems in power plants boilers LSE does not represent the best linear approximation of the system, necessarily. In this paper a new linear modeling method is presented and applied to some subsystems in a power plant boiler. Comparison between the transfer function obtained in this way and by least square error method,shows that the neural network method gives better linear models for these nonlinear systems

  12. Network speech systems technology program

    Science.gov (United States)

    Weinstein, C. J.

    1981-09-01

    This report documents work performed during FY 1981 on the DCA-sponsored Network Speech Systems Technology Program. The two areas of work reported are: (1) communication system studies in support of the evolving Defense Switched Network (DSN) and (2) design and implementation of satellite/terrestrial interfaces for the Experimental Integrated Switched Network (EISN). The system studies focus on the development and evaluation of economical and endurable network routing procedures. Satellite/terrestrial interface development includes circuit-switched and packet-switched connections to the experimental wideband satellite network. Efforts in planning and coordination of EISN experiments are reported in detail in a separate EISN Experiment Plan.

  13. GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network

    Science.gov (United States)

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-09-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.

  14. GIS BASED SYSTEM FOR POST-EARTHQUAKE CRISIS MANAGMENT USING CELLULAR NETWORK

    Directory of Open Access Journals (Sweden)

    M. Raeesi

    2013-09-01

    Full Text Available Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post–earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post–earthquake crisis.

  15. Control theory of digitally networked dynamic systems

    CERN Document Server

    Lunze, Jan

    2013-01-01

    The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic

  16. Recurrent-Neural-Network-Based Multivariable Adaptive Control for a Class of Nonlinear Dynamic Systems With Time-Varying Delay.

    Science.gov (United States)

    Hwang, Chih-Lyang; Jan, Chau

    2016-02-01

    At the beginning, an approximate nonlinear autoregressive moving average (NARMA) model is employed to represent a class of multivariable nonlinear dynamic systems with time-varying delay. It is known that the disadvantages of robust control for the NARMA model are as follows: 1) suitable control parameters for larger time delay are more sensitive to achieving desirable performance; 2) it only deals with bounded uncertainty; and 3) the nominal NARMA model must be learned in advance. Due to the dynamic feature of the NARMA model, a recurrent neural network (RNN) is online applied to learn it. However, the system performance becomes deteriorated due to the poor learning of the larger variation of system vector functions. In this situation, a simple network is employed to compensate the upper bound of the residue caused by the linear parameterization of the approximation error of RNN. An e -modification learning law with a projection for weight matrix is applied to guarantee its boundedness without persistent excitation. Under suitable conditions, the semiglobally ultimately bounded tracking with the boundedness of estimated weight matrix is obtained by the proposed RNN-based multivariable adaptive control. Finally, simulations are presented to verify the effectiveness and robustness of the proposed control.

  17. An e-consent-based shared EHR system architecture for integrated healthcare networks.

    Science.gov (United States)

    Bergmann, Joachim; Bott, Oliver J; Pretschner, Dietrich P; Haux, Reinhold

    2007-01-01

    Virtual integration of distributed patient data promises advantages over a consolidated health record, but raises questions mainly about practicability and authorization concepts. Our work aims on specification and development of a virtual shared health record architecture using a patient-centred integration and authorization model. A literature survey summarizes considerations of current architectural approaches. Complemented by a methodical analysis in two regional settings, a formal architecture model was specified and implemented. Results presented in this paper are a survey of architectural approaches for shared health records and an architecture model for a virtual shared EHR, which combines a patient-centred integration policy with provider-oriented document management. An electronic consent system assures, that access to the shared record remains under control of the patient. A corresponding system prototype has been developed and is currently being introduced and evaluated in a regional setting. The proposed architecture is capable of partly replacing message-based communications. Operating highly available provider repositories for the virtual shared EHR requires advanced technology and probably means additional costs for care providers. Acceptance of the proposed architecture depends on transparently embedding document validation and digital signature into the work processes. The paradigm shift from paper-based messaging to a "pull model" needs further evaluation.

  18. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science.

    Science.gov (United States)

    Vincenot, Christian E

    2018-03-14

    Progress in understanding and managing complex systems comprised of decision-making agents, such as cells, organisms, ecosystems or societies, is-like many scientific endeavours-limited by disciplinary boundaries. These boundaries, however, are moving and can actively be made porous or even disappear. To study this process, I advanced an original bibliometric approach based on network analysis to track and understand the development of the model-based science of agent-based complex systems (ACS). I analysed research citations between the two communities devoted to ACS research, namely agent-based (ABM) and individual-based modelling (IBM). Both terms refer to the same approach, yet the former is preferred in engineering and social sciences, while the latter prevails in natural sciences. This situation provided a unique case study for grasping how a new concept evolves distinctly across scientific domains and how to foster convergence into a universal scientific approach. The present analysis based on novel hetero-citation metrics revealed the historical development of ABM and IBM, confirmed their past disjointedness, and detected their progressive merger. The separation between these synonymous disciplines had silently opposed the free flow of knowledge among ACS practitioners and thereby hindered the transfer of methodological advances and the emergence of general systems theories. A surprisingly small number of key publications sparked the ongoing fusion between ABM and IBM research. Beside reviews raising awareness of broad-spectrum issues, generic protocols for model formulation and boundary-transcending inference strategies were critical means of science integration. Accessible broad-spectrum software similarly contributed to this change. From the modelling viewpoint, the discovery of the unification of ABM and IBM demonstrates that a wide variety of systems substantiate the premise of ACS research that microscale behaviours of agents and system-level dynamics

  19. Cloud-based Networked Visual Servo Control

    OpenAIRE

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung; Hirche, Sandra; Kühnlenz, Kolja

    2013-01-01

    The performance of vision-based control systems, in particular of highly dynamic vision-based motion control systems, is often limited by the low sampling rate of the visual feedback caused by the long image processing time. In order to overcome this problem, the networked visual servo control, which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitti...

  20. A Novel Real-Time Coal Miner Localization and Tracking System Based on Self-Organized Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wang Yang

    2010-01-01

    Full Text Available With the development of information technology, we envision that the key of improving coal mine safety is how to get real-time positions of miners. In this paper, we propose a prototype system for real-time coal miner localization and tracking based on self-organized sensor networks. The system is composed of hardware and software platform. We develop a set of localization hardware devices with the Safety Certificate of Approval for Mining Products include miner node, wired fixed access station, and base with optical port. On the software side, we develop a layered software architecture of node application, server management, and information dissemination and broadcasting. We also develop three key localization technologies: an underground localization algorithm using received signal strength indication- (RSSI- verifying algorithm to reduce the influence of the severe environment in a coal mine; a robust fault-tolerant localization mechanism to improve the inherent defect of instability of RSSI localization; an accurate localization algorithm based on Monte Carlo localization (MCL to adapt to the underground tunnel structure. In addition, we conduct an experimental evaluation based on a real prototype implementation using MICA2 motes. The results show that our system is more accurate and more adaptive in general than traditional localization algorithms.

  1. Cognitive Radio-based Home Area Networks

    NARCIS (Netherlands)

    Sarijari, M.A.B.

    2016-01-01

    A future home area network (HAN) is envisaged to consist of a large number of devices that support various applications such as smart grid, security and safety systems, voice call, and video streaming. Most of these home devices are communicating based on various wireless networking technologies

  2. Computer networks ISE a systems approach

    CERN Document Server

    Peterson, Larry L

    2007-01-01

    Computer Networks, 4E is the only introductory computer networking book written by authors who have had first-hand experience with many of the protocols discussed in the book, who have actually designed some of them as well, and who are still actively designing the computer networks today. This newly revised edition continues to provide an enduring, practical understanding of networks and their building blocks through rich, example-based instruction. The authors' focus is on the why of network design, not just the specifications comprising today's systems but how key technologies and p

  3. Safety Assessment for Electrical Motor Drive System Based on SOM Neural Network

    Directory of Open Access Journals (Sweden)

    Linghui Meng

    2016-01-01

    Full Text Available With the development of the urban rail train, safety and reliability have become more and more important. In this paper, the fault degree and health degree of the system are put forward based on the analysis of electric motor drive system’s control principle. With the self-organizing neural network’s advantage of competitive learning and unsupervised clustering, the system’s health clustering and safety identification are worked out. With the switch devices’ faults data obtained from the dSPACE simulation platform, the health assessment algorithm is verified. And the results show that the algorithm can achieve the system’s fault diagnosis and health assessment, which has a point in the health assessment and maintenance for the train.

  4. Online Data Monitoring Framework Based on Histogram Packaging in Network Distributed Data Acquisition Systems

    International Nuclear Information System (INIS)

    Konno, T; Ishitsuka, M; Kuze, M; Cabarera, A; Sakamoto, Y

    2011-01-01

    O nline monitor frameworkis a new general software framework for online data monitoring, which provides a way to collect information from online systems, including data acquisition, and displays them to shifters far from experimental sites. 'Monitor Server', a core system in this framework gathers the monitoring information from the online subsystems and the information is handled as collections of histograms named H istogram Package . Monitor Server broadcasts the histogram packages to 'Monitor Viewers', graphical user interfaces in the framework. We developed two types of the viewers with different technologies: Java and web browser. We adapted XML based file for the configuration of GUI components on the windows and graphical objects on the canvases. Monitor Viewer creates its GUIs automatically with the configuration files.This monitoring framework has been developed for the Double Chooz reactor neutrino oscillation experiment in France, but can be extended for general application to be used in other experiments. This document reports the structure of the online monitor framework with some examples from the adaption to the Double Chooz experiment.

  5. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  6. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  7. Modelling of P2P-Based Video Sharing Performance for Content-Oriented Community-Based VoD Systems in Wireless Mobile Networks

    Directory of Open Access Journals (Sweden)

    Shijie Jia

    2016-01-01

    Full Text Available The video sharing performance is a key factor for scalability and quality of service of P2P VoD systems in wireless mobile networks. There are some impact factors for the video sharing performance, such as available upload bandwidth, resource distribution in overlay networks, and mobility of mobile nodes. In this paper, we firstly model user behaviors: joining, playback, and departure for the content-oriented community-based VoD systems in wireless mobile networks and construct a resource assignment model by the analysis of transition of node state: suspend, wait, and playback. We analyze the influence of the above three factors: upload bandwidth, startup delay, and resource distribution for the sharing performance and QoS of systems. We further propose the improved resource sharing strategies from the perspectives of community architecture, resource distribution, and data transmission for the systems. Extensive tests show how the improved strategies achieve much better performance results in comparison with original strategies.

  8. Location based Network Optimizations for Mobile Wireless Networks

    DEFF Research Database (Denmark)

    Nielsen, Jimmy Jessen

    selection in Wi-Fi networks and predictive handover optimization in heterogeneous wireless networks. The investigations in this work have indicated that location based network optimizations are beneficial compared to typical link measurement based approaches. Especially the knowledge of geographical...

  9. A novel optimization algorithm based on epsilon constraint-RBF neural network for tuning PID controller in decoupled HVAC system

    International Nuclear Information System (INIS)

    Attaran, Seyed Mohammad; Yusof, Rubiyah; Selamat, Hazlina

    2016-01-01

    Highlights: • Decoupling of a heating, ventilation, and air conditioning system is presented. • RBF models were identified by Epsilon constraint method for temperature and humidity. • Control settings derived from optimization of the decoupled model. • Epsilon constraint-RBF based on PID controller was implemented to keep thermal comfort and minimize energy. • Enhancements of controller parameters of the HVAC system are desired. - Abstract: The energy efficiency of a heating, ventilating and air conditioning (HVAC) system optimized using a radial basis function neural network (RBFNN) combined with the epsilon constraint (EC) method is reported. The new method adopts the advanced algorithm of RBFNN for the HVAC system to estimate the residual errors, increase the control signal and reduce the error results. The objective of this study is to develop and simulate the EC-RBFNN for a self tuning PID controller for a decoupled bilinear HVAC system to control the temperature and relative humidity (RH) produced by the system. A case study indicates that the EC-RBFNN algorithm has a much better accuracy than optimization PID itself and PID-RBFNN, respectively.

  10. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    Science.gov (United States)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  11. Optimal Design of the Feeder-Bus Network Based on the Transfer System

    Directory of Open Access Journals (Sweden)

    Lianbo Deng

    2013-01-01

    Full Text Available This paper studied the classic feeder-bus network design problem (FBNDP, which can be described as follows: for the passenger travel demand between rail stations and bus stops on a given urban transit network, it designs the optimal feeder bus routes and frequencies so as to minimize the passengers’ travel expense and the operator’s cost. We extended the demand pattern of M-to-1 in most existing researches to M-to-M. We comprehensively considered the passenger travel cost, which includes the waiting and riding cost on the bus, riding cost on rail, and transfer cost between these two transportation modes, and presented a new genetic algorithm that determines the optimal feeder-bus operating frequencies under strict constraint conditions. The numerical examples under different demand patterns have been experienced and analysed, which showed the robustness and efficiency of the presented algorithm. We also found that the distribution pattern of the travel demand has a significant influence on the feeder-bus network construction.

  12. Investigation of the network delay on Profibus-DP based network

    OpenAIRE

    Yılmaz, C.; Gürdal, O.; Sayan, H.H.

    2008-01-01

    The mathematical model of the network-induced delay control systems (NDCS) is given. Also the role of the NDCS’s components such as controller, sensor and network environment on the network-induced delay are included in the mathematical model of the system. The network delay is investigated on Profibus-DP based network application and experimental results obtained are presented graphically. The experimental results obtained show that the network induced delay is randomly changed according to ...

  13. Systemic risk on different interbank network topologies

    Science.gov (United States)

    Lenzu, Simone; Tedeschi, Gabriele

    2012-09-01

    In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.

  14. Distribution network topology identification based on synchrophasor

    Directory of Open Access Journals (Sweden)

    Stefania Conti

    2018-03-01

    Full Text Available A distribution system upgrade moving towards Smart Grid implementation is necessary to face the proliferation of distributed generators and electric vehicles, in order to satisfy the increasing demand for high quality, efficient, secure, reliable energy supply. This perspective requires taking into account system vulnerability to cyber attacks. An effective attack could destroy stored information about network structure, historical data and so on. Countermeasures and network applications could be made impracticable since most of them are based on the knowledge of network topology. Usually, the location of each link between nodes in a network is known. Therefore, the methods used for topology identification determine if a link is open or closed. When no information on the location of the network links is available, these methods become totally unfeasible. This paper presents a method to identify the network topology using only nodal measures obtained by means of phasor measurement units.

  15. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  16. Barriers to healthcare coordination in market-based and decentralized public health systems: a qualitative study in healthcare networks of Colombia and Brazil.

    Science.gov (United States)

    Vargas, Ingrid; Mogollón-Pérez, Amparo Susana; De Paepe, Pierre; Ferreira da Silva, Maria Rejane; Unger, Jean-Pierre; Vázquez, María-Luisa

    2016-07-01

    Although integrated healthcare networks (IHNs) are promoted in Latin America in response to health system fragmentation, few analyses on the coordination of care across levels in these networks have been conducted in the region. The aim is to analyse the existence of healthcare coordination across levels of care and the factors influencing it from the health personnel' perspective in healthcare networks of two countries with different health systems: Colombia, with a social security system based on managed competition and Brazil, with a decentralized national health system. A qualitative, exploratory and descriptive-interpretative study was conducted, based on a case study of healthcare networks in four municipalities. Individual semi-structured interviews were conducted with a three stage theoretical sample of (a) health (112) and administrative (66) professionals of different care levels, and (b) managers of providers (42) and insurers (14). A thematic content analysis was conducted, segmented by cases, informant groups and themes. The results reveal poor clinical information transfer between healthcare levels in all networks analysed, with added deficiencies in Brazil in the coordination of access and clinical management. The obstacles to care coordination are related to the organization of both the health system and the healthcare networks. In the health system, there is the existence of economic incentives to compete (exacerbated in Brazil by partisan political interests), the fragmentation and instability of networks in Colombia and weak planning and evaluation in Brazil. In the healthcare networks, there are inadequate working conditions (temporary and/or part-time contracts) which hinder the use of coordination mechanisms, and inadequate professional training for implementing a healthcare model in which primary care should act as coordinator in patient care. Reforms are needed in these health systems and networks in order to modify incentives, strengthen

  17. Design and Evaluation of the User-Adapted Program Scheduling system based on Bayesian Network and Constraint Satisfaction

    Science.gov (United States)

    Iwasaki, Hirotoshi; Sega, Shinichiro; Hiraishi, Hironori; Mizoguchi, Fumio

    In recent years, lots of music content can be stored in mobile computing devices, such as a portable digital music player and a car navigation system. Moreover, various information content like news or traffic information can be acquired always anywhere by a cellular communication and a wireless LAN. However, usability issues arise from the simple interfaces of mobile computing devices. Moreover, retrieving and selecting such content poses safety issues, especially while driving. Thus, it is important for the mobile system to recommend content automatically adapted to user's preference and situation. In this paper, we present the user-adapted program scheduling that generates sequences of content (Program) suiting user's preference and situation based on the Bayesian network and the Constraint Satisfaction Problem (CSP) technique. We also describe the design and evaluation of its realization system, the Personal Program Producer (P3). First, preference such as a genre ratio of content in a program is learned as a Bayesian network model using simple operations such as a skip behavior. A model including each content tends to become large-scale. In order to make it small, we present the model separation method that carries out losslessly compression of the model. Using the model, probabilistic distributions of preference to generate constraints are inferred. Finally satisfying the constraints, a program is produced. This kind of CSP has an issue of which the number of variables is not fixedness. In order to make it variable, we propose a method using metavariables. To evaluate the above methods, we applied them to P3 on a car navigation system. User evaluations helped us clarify that the P3 can produce the program that a user prefers and adapt it to the user.

  18. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Shau-Shiun Jan

    2010-03-01

    Full Text Available In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D geographic information system (GIS. A wireless sensor network (WSN is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN algorithm, the K-weighted nearest neighbors (KWNN algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD software and the virtual reality markup language (VRML to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system.

  19. Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network

    Science.gov (United States)

    Jan, Shau-Shiun; Hsu, Li-Ta; Tsai, Wen-Ming

    2010-01-01

    In order to provide the seamless navigation and positioning services for indoor environments, an indoor location based service (LBS) test bed is developed to integrate the indoor positioning system and the indoor three-dimensional (3D) geographic information system (GIS). A wireless sensor network (WSN) is used in the developed indoor positioning system. Considering the power consumption, in this paper the ZigBee radio is used as the wireless protocol, and the received signal strength (RSS) fingerprinting positioning method is applied as the primary indoor positioning algorithm. The matching processes of the user location include the nearest neighbor (NN) algorithm, the K-weighted nearest neighbors (KWNN) algorithm, and the probabilistic approach. To enhance the positioning accuracy for the dynamic user, the particle filter is used to improve the positioning performance. As part of this research, a 3D indoor GIS is developed to be used with the indoor positioning system. This involved using the computer-aided design (CAD) software and the virtual reality markup language (VRML) to implement a prototype indoor LBS test bed. Thus, a rapid and practical procedure for constructing a 3D indoor GIS is proposed, and this GIS is easy to update and maintenance for users. The building of the Department of Aeronautics and Astronautics at National Cheng Kung University in Taiwan is used as an example to assess the performance of various algorithms for the indoor positioning system. PMID:22319282

  20. Optimising TCP for cloud-based mobile networks

    DEFF Research Database (Denmark)

    Artuso, Matteo; Christiansen, Henrik Lehrmann

    2016-01-01

    Cloud-based mobile networks are foreseen to be a technological enabler for the next generation of mobile networks. Their design requires substantial research as they pose unique challenges, especially from the point of view of additional delays in the fronthaul network. Commonly used network...... implementations of 3 popular operating systems are investigated in our network model. The results on the most influential parameters are used to design an optimized TCP for cloud-based mobile networks....