WorldWideScience

Sample records for network superdarn radar

  1. SuperDARN scalar radar equations

    CERN Document Server

    Berngardt, O I; Potekhin, A P

    2016-01-01

    The quadratic scalar radar equations are obtained for SuperDARN radars that are suitable for the analysis and interpretation of experimental data. The paper is based on a unified approach to the obtaining radar equations for the monostatic and bistatic sounding with use of hamiltonian optics and ray representation of scalar Green's function and without taking into account the polarization effects. The radar equation obtained is the sum of several terms corresponding to the propagation and scattering over the different kinds of trajectories, depending on their smoothness and the possibility of reflection from the ionosphere. It is shown that the monostatic sounding in the media with significant refraction, unlike the case of refraction-free media, should be analyzed as a combination of monostatic and bistatic scattering. This leads to strong dependence of scattering amplitude on background ionospheric density due to focusing mechanism and appearance of new (bistatic) areas of effective scattering with signific...

  2. Automated Extraction of Gravity Wave Signatures from the Super Dual Auroral Radar Network (SuperDARN) Database Using Spatio-Temporal Process Discovery Algorithms

    Science.gov (United States)

    Baker, J. B.; Ramakrishnan, N.; Ruohoniemi, J. M.; Hossain, M.; Ribeiro, A.

    2011-12-01

    A major challenge in space physics research is the automated extraction of recurrent features from multi-dimensional datasets which tend to be irregularly gridded in both space and time. In many cases, the complexity of the datasets impedes their use by scientists who are often times most interested in extracting a simple time-series of higher level data product that can be easily compared with other measurements. As such, the collective archive of space physics measurements is vastly under-utilized at the present time. Application of cutting-edge computer-aided data mining and knowledge discovery techniques has the potential to improve this situation by making space physics datasets much more accessible to the scientific user community and accelerating the rate of research and collaboration. As a first step in this direction, we are applying the principles of feature extraction, sub-clustering and motif mining to the analysis of HF backscatter measurements from the Super Dual Auroral Radar Network (SuperDARN). The SuperDARN database is an ideal test-bed for development of space physics data mining algorithms because: (1) there is a richness of geophysical phenomena manifested in the data; (2) the data is multi-dimensional and exhibits a high degree of spatiotemporal sparseness; and (3) some of the radars have been operating continuously with infrequent outages for more than 25 years. In this presentation we discuss results obtained from the application of new data mining algorithms designed specifically to automate the extraction of gravity wave signatures from the SuperDARN database. In particular, we examine the occurrence statistics of gravity waves as a function of latitude, local time, and geomagnetic conditions.

  3. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 2: Assessing SuperDARN virtual height models

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    2008-05-01

    Full Text Available The Super Dual Auroral Radar Network (SuperDARN network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008 have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.

  4. Evidence of Polar Mesosphere Summer Echoes Observed by SuperDARN SANAE HF Radar in Antarctica

    OpenAIRE

    Olakunle Ogunjobi; Venkataraman Sivakumar; Judy Ann Elizabeth Stephenson; and William Tafon Sivla

    2015-01-01

    We report on the polar mesosphere summer echoes (PMSE) occurrence probability over SANAE (South African National Antarctic Expedition) IV, for the first time. A matching coincidence method is described and implemented for PMSE extraction from SuperDARN (Super Dual Auroral Radar Network) HF radar. Several SuperDARN-PMSE characteristics are studied during the summer period from years 2005 - 2007. The seasonal and interannual SuperDARN-PMSE variations in relation to the mesospheric neutral winds...

  5. A survey of plasma irregularities as seen by the midlatitude Blackstone SuperDARN radar

    Science.gov (United States)

    Ribeiro, A. J.; Ruohoniemi, J. M.; Baker, J. B. H.; Clausen, L. B. N.; Greenwald, R. A.; Lester, M.

    2012-02-01

    The Super Dual Auroral Radar Network (SuperDARN) is a chain of HF radars that monitor plasma dynamics in the ionosphere. In recent years, SuperDARN has expanded to midlatitudes in order to provide enhanced coverage during geomagnetically active periods. A new type of backscatter from F region plasma irregularities with low Doppler velocity has been frequently observed on the nightside during quiescent conditions. Using three years of data from the Blackstone, VA radar, we have implemented a method for extracting this new type of backscatter from routine observations. We have statistically characterized the occurrence properties of the Sub Auroral Ionospheric Scatter (SAIS) events, including the latitudinal relationships to the equatorward edge of the auroral oval and the ionospheric projection of the plasmapause. We find that the backscatter is confined to local night, occurs on ≈70% of nights, is fixed in geomagnetic latitude, and is equatorward of both the auroral region and the plasmapause boundary. We conclude that SAIS irregularities are observed within a range of latitudes that is conjugate to the inner magnetosphere (plasmasphere).

  6. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 1: A new empirical virtual height model

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2008-05-01

    Full Text Available Accurately mapping the location of ionospheric backscatter targets (density irregularities identified by the Super Dual Auroral Radar Network (SuperDARN HF radars can be a major problem, particularly at far ranges for which the radio propagation paths are longer and more uncertain. Assessing and increasing the accuracy of the mapping of scattering locations is crucial for the measurement of two-dimensional velocity structures on the small and meso-scale, for which overlapping velocity measurements from two radars need to be combined, and for studies in which SuperDARN data are used in conjunction with measurements from other instruments. The co-ordinates of scattering locations are presently estimated using a combination of the measured range and a model virtual height, assuming a straight line virtual propagation path. By studying elevation angle of arrival information of backscatterred signals from 5 years of data (1997–2001 from the Saskatoon SuperDARN radar we have determined the actual distribution of the backscatter target locations in range-virtual height space. This has allowed the derivation of a new empirical virtual height model that allows for a more accurate mapping of the locations of backscatter targets.

  7. PMSE long term observations using SuperDARN SANAE HF radar measurements

    Directory of Open Access Journals (Sweden)

    Olakunle Ogunjobi

    2017-01-01

    Full Text Available It is known that the presence of nanometre-scale ice particles and neutral air turbulence in the Polar summer mesosphere modify the D-region plasma, resulting in strong backscatter. These strong backscatters are referred to as Polar Mesosphere Summer Echoes (PMSE. Although studies on PMSE have been ongoing for over three decades, aspects revealed by various instruments are still the subject of discussion. As a sequel to the paper by Ogunjobi et al. (2015, we report on the long term trends and variations in PMSE occurrence probability from Super Dual Auroral Radar Network (SuperDARN high frequency (HF radar measurements over the South African National Antarctic Expedition IV (SANAE IV. In this current paper, a simple multiple-filter technique is employed to obtain the occurrence probability rate for SuperDARN-PMSE during the summer periods for the years 1998 - 2007. The SuperDARN-PMSE occurrence probability rate in relation to geomagnetic activity is examined. The mesospheric neutral winds and temperature trends during these periods, are further studied and presented in this paper. Both the monthly and diurnal variations in occurrence are consistent with previous reports, confirming the presence of PMSE from SuperDARN SANAE IV radar measurements and the influence of pole to pole mesospheric transport circulation. The special mesospheric mean flow observed prior to the year 2002 is ascribed to the influence of solar activity. The SuperDARN-PMSE occurrence probability peaks with lowered geomagnetic activity. These present results support the hypothesis that the particle precipitation also plays an important role in SuperDARN-PMSE occurrence.

  8. Evidence of Polar Mesosphere Summer Echoes Observed by SuperDARN SANAE HF Radar in Antarctica

    Directory of Open Access Journals (Sweden)

    Olakunle Ogunjobi

    2015-01-01

    Full Text Available We report on the polar mesosphere summer echoes (PMSE occurrence probability over SANAE (South African National Antarctic Expedition IV, for the first time. A matching coincidence method is described and implemented for PMSE extraction from SuperDARN (Super Dual Auroral Radar Network HF radar. Several SuperDARN-PMSE characteristics are studied during the summer period from years 2005 - 2007. The seasonal and interannual SuperDARN-PMSE variations in relation to the mesospheric neutral winds are studied and presented in this paper. The occurrence probability of SuperDARN-PMSE on the day-to-day scale show, predominantly, diurnal variation, with a broader peak between 12 - 14 LT and distinct minimum of 22 LT. The SuperDARN-PMSE occurrence probability rate is high in the summer solstice. Seasonal variations show a connection between the SuperDARN-PMSE occurrence probability rate and mesospheric temperature from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry. The seasonal trend for both meridional and zonal winds is very stable year-to-year. Analysis of the neutral wind variations indicates the importance of pole-to-pole circulations in SuperDARN-PMSE generation.

  9. The quasi-two-day wave studied using the Northern Hemisphere SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    S. B. Malinga

    2007-08-01

    Full Text Available Data from the Super Dual Radar Network (SuperDARN radars for 2002 were used to study the behaviour of the quasi-two-day wave (QTDW in the Northern Hemisphere auroral zone. The period of the QTDW is observed to vary in the range of ~42–56 h, with the most dominant period being ~48 h and secondary peaks at ~42- and ~52-h. The spectral power shows a seasonal variation with a peak power (max~70 in summer. The power shows variations of several days and there is also evidence of changes in wave strength with longitude. The 42-h and the 48-h components tend to be strongly correlated in summer. The onset of enhanced wave activity tends to coincide with the westward acceleration of the zonal mean flow and occurs at a time of strong southward meridional flow. The most frequent instantaneous hourly period is in the 40 to 50 h period band, in line with the simultaneous dominance of the 42-h and the 48-h components. The wave numbers are less variable and are around −2 to −4 during times of strong wave activity. For a period of ~48 h, the zonal wave number is about −3 to −4, using a negative value to indicate westward propagating waves. The 42-h and the 52-h components cover a wider band in the −4 to 1 range. The wide zonal wave number spectrum in our results may account for the observed longitudinal variation in the spectral power of the wave.

  10. Subauroral polarization streams: observations with the Hokkaido and King Salmon SuperDARN radars and modeling

    Directory of Open Access Journals (Sweden)

    A. Koustov

    2008-10-01

    Full Text Available The newly installed SuperDARN Hokkaido HF radar monitors ionospheric plasma flow between magnetic latitudes of 45° and 65° and thus has a great potential for studies of subauroral polarization streams (SAPS in combination with another SuperDARN radar located at King Salmon, Alaska as well as the DMSP satellites and ground-based instruments in the Alaskan sector of the Arctic. Preliminary survey shows that although SAPS are often detected with the Hokkaido radar, their velocities are rather low, to the order of 150 m/s in its most suitable central beams. In this study, observations of unusually fast Hokkaido flows of up to 800 m/s are presented. The event of 1 April 2007 is investigated in detail. It is shown that high-velocity echoes appear after substorm onsets over North America with a delay of ~30 min. In terms of latitude, the velocity peaks just outside the auroral oval; signatures of a detached polarization jet are occasional and not pronounced. The King Salmon radar operating concurrently detects SAPS signatures as well but at different times and locations. Simulation with the Comprehensive Ring Current Model for the 1 April event reasonably identifies the period of fast flow occurrence but the velocity is underestimated. The event studied suggests that substorm-injected particle populations may intensify the pre-existing SAPS flow and lead to a mismatch of the predictions and observations.

  11. First observations of polar mesosphere summer echoes by SuperDARN Zhongshan radar

    Science.gov (United States)

    Liu, E. X.; Hu, H. Q.; Hosokawa, K.; Liu, R. Y.; Wu, Z. S.; Xing, Z. Y.

    2013-11-01

    We report the first observations of PMSE by SuperDARN Zhongshan radar in Antarctica and present a statistical analysis of PMSE from 2010 to 2012. The seasonal variations of occurrence are consistent with those before, with an obvious enhancement at the beginning of summer and a maximum several days after summer solstice. The special features of diurnal variations were observed because of high geomagnetic latitude of Zhongshan Station, which is that the maximum is near local midnight and the secondary maximum appears 1-2 h after the local noon. The results proved that the auroral particle precipitation plays a fairly important role in the PMSE occurrence.

  12. Characterization of Nightside Mid-latitude Irregularities Observed with the Blackstone SuperDARN Radar

    Science.gov (United States)

    Ruohoniemi, J. M.; Ribeiro, A. J.; Baker, J. B.; Greenwald, R. A.; Newell, P. T.

    2009-12-01

    The new mid-latitude SuperDARN radars at Wallops Island and Blackstone observe strong coherent backscattering on an almost nightly basis from latitudes that appear to be subauroral. One study has demonstrated an excellent correlation with the occurrence of density and temperature gradients within the ionospheric projection of the plasmapause (Greenwald et al., Geophys. Res. Lett. [2006]). We have processed all the data collected with the Blackstone radar since its inception in February 2008 for a characterization of the occurrence and properties of ‘plasmapause’ scatter. We have determined the local time and Kp dependencies of the activity and the relation of the spatial distribution of the irregularities to magnetospheric boundaries and ionospheric density gradients. We establish that the irregularities are a feature of the quiet-time subauroral ionosphere and provide a valuable diagnostic of the electric fields in the inner magnetosphere.

  13. On determining the noon polar cap boundary from SuperDARN HF radar backscatter characteristics

    Directory of Open Access Journals (Sweden)

    M. Pinnock

    2000-12-01

    Full Text Available Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to ~2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.Key words: Ionosphere (ionosphere–magnetosphere interactions; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  14. Observations of convection vortices in the afternoon sector using the SuperDARN HF radars

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, W.A.; Greenwald, R.A.; Sibeck, D.G. [Johns Hopkins Univ., Laurel, MD (United States)] [and others

    1995-10-01

    Observations of convection vortices using the new SuperDARN HF radars are presented. The velocity field derived from the overlapping fields of view of the new HF radars at Kapuskasing, Ontario, and Saskatoon, Saskatchewan, Canada, often image the portion of the convection pattern near the convection reversal boundary. Observations from near the convection reversal boundary in the afternoon sector of October 22, 1993, showed two convection vortices evolving within the field of view of both radars. The first vortex appeared at about 2120 UT and the second at about 2145 UT: 1446 MLT and 1512 MLT, respectively. The vortices were roughly 900 km in diameter and moved tailward with a velocity of about 600 m/s. At the times the vortices were observed by the radars, ground-based magnetometers of the CANOPUS and MACCS chains show transient deflections of near 100 nT, and the GOES 6 and GOES 7 satellite magnetometers showed significant decreases in the magnetospheric magnetic field strength. Data from the Geotail satellite magnetometer lagged by an appropriate time interval indicated that there were southward turnings of the interplanetary magnetic field that coincided with the decreases of magnetospheric magnetic field strength. The observations differ in many respects from previously published vortex observations. It is theorized that the vortices were caused by the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. 48 refs.

  15. Effects on SuperDARN HF radar echoes of sudden impulses of solar wind dynamic pressure

    Directory of Open Access Journals (Sweden)

    I. Coco

    2005-07-01

    Full Text Available In this work we perform a statistical analysis of the ionospheric echo response observed by six radars of the SuperDARN network in the Northern Hemisphere, over 236 Sudden Impulses (SI of solar wind dynamic pressure events (from 1997 through 2000. For that purpose, we make use of MRS, the Mean Rate of Scattering, as a function of time during the SI event. We classify the events in sudden increases (I events, 144 cases and decreases (D events, 92 cases of the solar wind dynamic pressure. Moreover, we make use of the AE index to define two distinct conditions of the ionosphere under which each event may take place: Quiet and Disturbed. Regarding Quiet conditions, for both I and D events, we find that MRS displays an increase related to the SI time. On the contrary, for Disturbed conditions, D events display an increase in MRS, while I events show a clear dip. The similarity of response for I and D events under Quiet conditions is briefly discussed, but the smaller number of D events does not allow one to further analyse them. As for the I events, a latitudinal analysis shows that the MRS increase for Quiet conditions is seen both at low latitudes (60°–70° Λ and at high latitudes (70°–80° Λ; for Disturbed Is the MRS decrease is stronger at high latitudes. We suggest that the MRS increase for Quiet Is can be due to two different mechanisms: 1 a soft electron precipitation induced by Field Line Resonances (FLR or loss cone instability at lower latitudes; 2 an enlargement of the cusp at higher latitudes, which in turn may induce enhanced particle precipitation. For what concerns Disturbed Is, the MRS decrease can be produced by a higher energy electron precipitation (>1 keV, that enhances the electron density in the E and D regions. This provokes a strong absorbtion of the radio waves in the D region and a higher refraction in the E region, leading to a decrease in MRS, especially at higher latitudes. For I events a further classification

  16. A long-term comparison of wind and tide measurements in the upper mesosphere recorded with an imaging Doppler interferometer and SuperDARN radar at Halley, Antarctica

    Directory of Open Access Journals (Sweden)

    R. E. Hibbins

    2008-03-01

    Full Text Available Data from a near co-located imaging Doppler interferometer (IDI and SuperDARN radar recorded since 1996 have been analysed in a consistent manner to compare the derived mean winds and tides in the upper mesosphere. By comparing only days when both techniques were recording good quality meridional wind data it is shown that the SuperDARN radar winds and tides correlate best with the IDI height bin 90–95 km. On timescales of one hour the winds derived from the IDI have a much greater associated variance and correlate poorly with the SuperDARN winds. Regression analysis reveals that the observed SuperDARN daily mean meridional wind strength is approximately 65% that recorded by the IDI, in good quantitative agreement with previous studies which have shown contamination to SuperDARN derived winds due to the significant back lobe of the radar radiation pattern. Climatologically the two techniques observe similar monthly mean winds with the SuperDARN meridional winds suppressed compared to the IDI which tends to record winds more poleward than those derived by the SuperDARN radar during the summer months, and to be slightly more equatorward during the winter. The 12-h tidal amplitude and phase derived from both techniques are in good agreement, whereas the 24-h tides are seen much more strongly in the SuperDARN radar, especially in wintertime, with poor phase agreement. Long term comparison of the two techniques reveals a tendency for the IDI meridional winds to be more poleward during solar maximum especially during summer time; an effect which is not reproduced in the meridional winds derived from the SuperDARN radar. These results are discussed in the context of previous studies to independently determine the veracity of each technique, and to highlight the circumstances where data derived from these two techniques can be used to draw reliable conclusions from comparative studies based on geographically distributed pairs of instruments.

  17. Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by SuperDARN Radars in the North American Sector

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2015-12-01

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like perturbations of the F-region ionosphere with horizontal wavelengths on the order of several hundred kilometers, and periods between 15 - 60 min. In SuperDARN radar data, MSTID signatures are manifested as quasi-periodic enhancements of ground backscatter (i.e. skip focusing) which propagate through the radar field-of-view. At high latitudes, SuperDARN observations of MSTIDs have generally been attributed to atmospheric gravity waves (AGWs) launched by auroral sources (e.g. Joule heating). However, recent studies with newer mid-latitude radars have shown MSTIDs are routinely observed in the subauroral ionosphere as well. To develop a more complete picture of MSTID activity, we have surveyed observations from four high latitude and six mid latitude SuperDARN radars located in the North American sector collected between 2011 and 2015 during the months of November to May. Consistent with previous SuperDARN MSTID studies, all radars observed MSTIDs with horizontal wavelengths between ~250 - 500 km and horizontal velocities between ~100 - 250 m/s. The majority of the MSTIDs were observed to propagate in a predominantly southward direction, with bearings ranging from ~135 ̊ - 250 ̊ geographic azimuth. This is highly suggestive of high latitude auroral sources; however, no apparent correlation with geomagnetic or space weather activity could be identified. Rather, comparison of the SuperDARN MSTID time-series data with northern hemisphere geopotential data from the European Center for Medium Range Weather Forecasting (ECMWF) operational model reveals a strong correlation of MSTID activity with dynamics in the polar vortex structure on two primary time scales. First, a seasonal effect manifests as enhanced MSTID activity from November through January, followed by a depressed period from February to May. This appears to correspond with the seasonal development and later decay of the polar vortex. A

  18. Turbulence characteristics inside ionospheric small-scale expanding structures observed with SuperDARN HF radars

    Directory of Open Access Journals (Sweden)

    R. André

    2003-08-01

    Full Text Available Unusual structures characterized by a very high-velocity divergence have been observed in the high-latitude F-region with SuperDARN radars (André et al., 2000. These structures have been interpreted as due to local demagnetization of the plasma in the ionospheric F-region, during very specific geophysical conditions. In this study, the collective wave scattering theory is used to characterize the decameter-scale turbulence (l approx 15 m inside the structures. The distribution function of the diffusion coefficient is modified when the structures are generated, suggesting that two regimes of turbulence coexist. A temporal analysis decorrelates the two regimes and gives access to the dynamics associated with the structures. It is shown that a high turbulent regime precedes the plasma demagnetization and should be related to an energy deposition. Then a second regime appears when the plasma is demagnetized and disappears simultaneously with the structures. This study is the first application of the collective wave scattering theory to a specific geophysical event.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities – Space plasma physics (turbulence

  19. Studies of medium scale travelling ionospheric disturbances using TIGER SuperDARN radar sea echo observations

    Directory of Open Access Journals (Sweden)

    L.-S. He

    2004-12-01

    Full Text Available Seasonal and diurnal variations in the direction of propagation of medium-scale travelling ionospheric disturbances (MSTIDs have been investigated by analyzing sea echo returns detected by the TIGER SuperDARN radar located in Tasmania (43.4° S, 147.2° E geographic; –54.6°Λ. A strong dependency on local time was found, as well as significant seasonal variations. Generally, the propagation direction has a northward (i.e. equatorward component. In the early morning hours the direction of propagation is quite variable throughout the year. It then becomes predominantly northwest and changes to northeast around 09:00 LT. In late fall and winter it changes back to north/northwest around 15:00 LT. During the other seasons, northward propagation is very obvious near dawn and dusk, but no significant northward propagation is observed at noon. It is suggested that the variable propagation direction in the morning is related to irregular magnetic disturbances that occur at this local time. The changes in the MSTID propagation directions near dawn and dusk are generally consistent with changes in ionospheric electric fields occurring at these times and is consistent with dayside MSTIDs being generated by the Lorentz force. Key words. Ionosphere (ionospheric disturbances; wave propagation; ionospheric irregularities; signal processing

  20. Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar

    Science.gov (United States)

    Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Gerrard, A. J.; Miller, E. S.; Marini, J. P.; West, M. L.; Bristow, W. A.

    2014-09-01

    A climatology of daytime midlatitude medium-scale traveling ionospheric disturbances (MSTIDs) observed by the Blackstone Super Dual Auroral Radar Network (SuperDARN) radar is presented. MSTIDs were observed primarily from fall through spring. Two populations were observed: a dominant population heading southeast (centered at 147° geographic azimuth, ranging from 100° to 210°) and a secondary population heading northwest (centered at -50° azimuth, ranging from -75° to -25°). Horizontal velocities ranged from 50 to 250 m s-1 with a distribution maximum between 100 and 150 m s-1. Horizontal wavelengths ranged from 100 to 500 km with a distribution peak at 250 km, and periods between 23 and 60 min, suggesting that the MSTIDs may be consistent with thermospheric gravity waves. A local time (LT) dependence was observed such that the dominant (southeastward) population decreased in number as the day progressed until a late afternoon increase. The secondary (northwestward) population appeared only in the afternoon, possibly indicative of neutral wind effects or variability of sources. LT dependence was not observed in other parameters. Possible solar-geomagnetic and tropospheric MSTID sources were considered. The auroral electrojet (AE) index showed a correlation with MSTID statistics. Reverse ray tracing with the HINDGRATS model indicates that the dominant population has source regions over the Great Lakes and near the geomagnetic cusp, while the secondary population source region is 100 km above the Atlantic Ocean east of the Carolinas. This suggests that the dominant population may come from a region favorable to either tropospheric or geomagnetic sources, while the secondary population originates from a region favorable to secondary waves generated via lower atmospheric convection.

  1. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    H. Suzuki

    2013-10-01

    Full Text Available A Rayleigh–Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E. Polar mesospheric clouds (PMCs were detected by lidar at around 22:30 UTC (LT −3 h on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010–2011, since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere/CIPS (Cloud Imaging and Particle Size and AURA/MLS (Microwave Limb Sounder and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward. This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  2. Simultaneous PMC and PMSE observations with a ground-based lidar and SuperDARN HF radar at Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, H.; Nakamura, T.; Ejiri, M. K.; Ogawa, T.; Tsutsumi, M.; Abo, M.; Kawahara, T. D.; Tomikawa, Y.; Yukimatu, A. S.; Sato, N.

    2013-10-01

    A Rayleigh-Raman lidar system was installed in January 2011 at Syowa Station, Antarctica (69.0° S, 39.6° E). Polar mesospheric clouds (PMCs) were detected by lidar at around 22:30 UTC (LT -3 h) on 4 February 2011, which was the first day of observation. This was the first detection of PMCs over Syowa Station by lidar. On the same day, a Super Dual Auroral Radar Network (SuperDARN) HF radar with oblique-incidence beams detected polar mesospheric summer echoes (PMSE) between 21:30 and 23:00 UTC. This event is regarded as the last PMC activity around Syowa Station during the austral summer season (2010-2011), since no other PMC signals were detected by lidar in February 2011. This is consistent with results of PMC and mesopause temperature observations by satellite-born instruments of AIM (Aeronomy of Ice in the Mesosphere)/CIPS (Cloud Imaging and Particle Size) and AURA/MLS (Microwave Limb Sounder) and horizontal wind measurements taken by a separate MF radar. Doppler velocity of PMSE observed by the HF radar showed motion toward Syowa Station (westward). This westward motion is consistent with the wind velocities obtained by the MF radar. However, the PMSE region showed horizontal motion from a north-to-south direction during the PMC event. This event indicates that the apparent horizontal motion of the PMSE region can deviate from neutral wind directions and observed Doppler velocities.

  3. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    2002-11-01

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  4. A Statistical study of the Doppler spectral width of high-latitude ionospheric F-region echoes recorded with SuperDARN coherent HF radars

    Directory of Open Access Journals (Sweden)

    J.-P. Villain

    Full Text Available The HF radars of the Super Dual Auroral Radar Network (SuperDARN provide measurements of the E × B drift of ionospheric plasma over extended regions of the high-latitude ionosphere. We have conducted a statistical study of the associated Doppler spectral width of ionospheric F-region echoes. The study has been conducted with all available radars from the Northern Hemisphere for 2 specific periods of time. Period 1 corresponds to the winter months of 1994, while period 2 covers October 1996 to March 1997. The distributions of data points and average spectral width are presented as a function of Magnetic Latitude and Magnetic Local Time. The databases are very consistent and exhibit the same features. The most stringent features are: a region of very high spectral width, collocated with the ionospheric LLBL/cusp/mantle region; an oval shaped region of high spectral width, whose equator-ward boundary matches the poleward limit of the Holzworth and Meng auroral oval. A simulation has been conducted to evaluate the geometrical and instrumental effects on the spectral width. It shows that these effects cannot account for the observed spectral features. It is then concluded that these specific spectral width characteristics are the signature of ionospheric/magnetospheric coupling phenomena.

    Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; ionospheric irregularities

  5. A technique for accurately determining the cusp-region polar cap boundary using SuperDARN HF radar measurements

    Directory of Open Access Journals (Sweden)

    G. Chisham

    Full Text Available Accurately measuring the location and motion of the polar cap boundary (PCB in the high-latitude ionosphere can be crucial for studies concerned with the dynamics of the polar cap, e.g. the measurement of reconnection rates. The Doppler spectral width characteristics of backscatter received by the SuperDARN HF radars have been previously used for locating and tracking the PCB in the cusp region. The boundary is generally observed in meridional beams of the SuperDARN radars and appears as a distinct change between low spectral width values observed equatorward of the cusp region, and high, but variable spectral width values observed within the cusp region. To identify the spectral width boundary (SWB between these two regions, a simple algorithm employing a spectral width threshold has often been applied to the data. However, there is not, as yet, a standard algorithm, or spectral width threshold, which is universally applied. Nor has there been any rigorous assessment of the accuracy of this method of boundary determination. This study applies a series of threshold algorithms to a simulated cusp-region spectral width data set, to assess the accuracy of different algorithms. This shows that simple threshold algorithms correctly identify the boundary location in, at the most, 50% of the cases and that the average boundary error is at least ~ 1–2 range gates (~ 1° latitude. It transpires that spatial and temporal smoothing of the spectral width data (e.g. by median filtering, before application of a threshold algorithm can increase the boundary determination accuracy to over 95% and the average boundary error to much less than a range gate. However, this is sometimes at the cost of temporal resolution in the motion of the boundary location. The algorithms are also applied to a year’s worth of spectral width data from the cusp ionosphere, measured by the Halley SuperDARN radar in Antarctica. This analysis highlights the increased accuracy of

  6. A technique for accurately determining the cusp-region polar cap boundary using SuperDARN HF radar measurements

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2003-04-01

    Full Text Available Accurately measuring the location and motion of the polar cap boundary (PCB in the high-latitude ionosphere can be crucial for studies concerned with the dynamics of the polar cap, e.g. the measurement of reconnection rates. The Doppler spectral width characteristics of backscatter received by the SuperDARN HF radars have been previously used for locating and tracking the PCB in the cusp region. The boundary is generally observed in meridional beams of the SuperDARN radars and appears as a distinct change between low spectral width values observed equatorward of the cusp region, and high, but variable spectral width values observed within the cusp region. To identify the spectral width boundary (SWB between these two regions, a simple algorithm employing a spectral width threshold has often been applied to the data. However, there is not, as yet, a standard algorithm, or spectral width threshold, which is universally applied. Nor has there been any rigorous assessment of the accuracy of this method of boundary determination. This study applies a series of threshold algorithms to a simulated cusp-region spectral width data set, to assess the accuracy of different algorithms. This shows that simple threshold algorithms correctly identify the boundary location in, at the most, 50% of the cases and that the average boundary error is at least ~ 1–2 range gates (~ 1° latitude. It transpires that spatial and temporal smoothing of the spectral width data (e.g. by median filtering, before application of a threshold algorithm can increase the boundary determination accuracy to over 95% and the average boundary error to much less than a range gate. However, this is sometimes at the cost of temporal resolution in the motion of the boundary location. The algorithms are also applied to a year’s worth of spectral width data from the cusp ionosphere, measured by the Halley SuperDARN radar in Antarctica. This analysis highlights the increased accuracy of

  7. The sub-auroral electric field as observed by DMSP and the new SuperDARN mid-latitude radars

    Science.gov (United States)

    Talaat, E. R.; Sotirelis, T.; Hairston, M. R.; Ruohoniemi, J. M.; Greenwald, R. A.; Lester, M.

    2008-12-01

    In this paper we present analyses of the sub-auroral electric field environment as observed from both space and ground. We discuss the dependency of the configuration and strength of the sub-auroral electric field on IMF and geomagnetic activity, longitudinal, seasonal, and solar cycle variability. Primarily, e use ~20 years of electric field measurement dataset derived from the suite of DMSP ion drift meters. A major component of our analysis is correctly specifying the aurora boundary, as the behavior and magnitude of these fields will be drastically different away from the high-conductance auroral oval. As such, we use the coincident particle flux measurements from the DMSP SSJ4 monitors. We also present the solar minimum observations of the sub-auroral flow newly available from the mid-latitude SuperDARN radars at Wallops and Blackstone in Virginia. Preliminary comparisons between these flows and the DMSP climatology are discussed.

  8. High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF By

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2000-02-01

    Full Text Available We present data from conjugate SuperDARN radars describing the high-latitude ionosphere's response to changes in the direction of IMF By during a period of steady IMF Bz southward and Bx positive. During this interval, the radars were operating in a special mode which gave high-time resolution data (30 s sampling period on three adjacent beams with a full scan every 3 min. The location of the radars around magnetic local noon at the time of the event allowed detailed observations of the variations in the ionospheric convection patterns close to the cusp region as IMF By varied. A significant time delay was observed in the ionospheric response to the IMF By changes between the two hemispheres. This is explained as being partially a consequence of the location of the dominant merging region on the magnetopause, which is ~8-12RE closer to the northern ionosphere than to the southern ionosphere (along the magnetic field line due to the dipole tilt of the magnetosphere and the orientation of the IMF. This interpretation supports the anti-parallel merging hypothesis and highlights the importance of the IMF Bx component in solar wind-magnetosphere coupling.Key words: Ionosphere (plasma convection - Magnetospheric physics (magnetopause, cusp, and boundary layers; solar wind - magnetosphere interactions

  9. Simultaneous PMC and PMSE observations with a ground-basedlidar and SuperDARN HF radar over Syowa Station, Antarctica

    Science.gov (United States)

    Suzuki, Hidehiko; Nakamura, Takuji; Tsutsumi, Masaki; Kawahara, Takuya D.; Ogawa, Tadahiko; Tomikawa, Yoshihiro; Ejiri, Mitsumu K.; Sessai Yukimatu, Akira; Abo, Makoto

    2012-07-01

    A Rayleigh-Raman lidar system had been installed by the 52nd JapaneseAntarctic Research Expedition on February, 2011 at Syowa Station Antarctica(69.0°S, 39.5°E). Polar Mesospheric Cloud (PMC) was detected by the lidar at22:30UT (+3hr for LT) on Feb 4th, 2011, the first day of a routineoperation. This event is the first time to detect PMC over Syowa Station bya lidar. In the same night, SuperDARN HF radar with oblique incidence beamsalso detected Polar Mesosphere Summer Echoes (PMSEs) during 21:30UT to23:00UT. Although these signals were detected at different times andlocations, PMC motion estimated using horizontal wind velocities obtained bya collocated MF radar strongly suggests that they have a common origin (i.e.ice particle). We consider that this event occurred in the end of PMCactivity period at Syowa Station in the austral summer season (2010-2011),since the lidar did not detected any PMC signals on other days in February,2011. This is consistent with satellite-born PMC observations by AIM/CIPSand atmospheric temperature observations by AURA/MLS instruments.

  10. Direct determination of IMF B-Y-related cusp current systems, using SuperDARN radar and multiple ground magnetometer data: A link to theory on cusp current origin

    DEFF Research Database (Denmark)

    Amm, O.; Engebretson, M.J.; Greenwald, R.A.

    1999-01-01

    We analyze an ionospheric "enhanced convection event" in the cusp on November 13, 1996, at 1900 UT, by using data of the SuperDARN radar, and of the IMAGE, Greenland, MACCS and CANOPUS magnetometer arrays; and from other magnetometer stations. The event occurs similar to 20 minutes after a transi......We analyze an ionospheric "enhanced convection event" in the cusp on November 13, 1996, at 1900 UT, by using data of the SuperDARN radar, and of the IMAGE, Greenland, MACCS and CANOPUS magnetometer arrays; and from other magnetometer stations. The event occurs similar to 20 minutes after...

  11. Statistical characteristics of Doppler spectral width as observed by the conjugate SuperDARN radars

    Directory of Open Access Journals (Sweden)

    K. Hosokawa

    Full Text Available We performed a statistical analysis of the occurrence distribution of Doppler spectral width around the day-side high-latitude ionosphere using data from the conjugate radar pair composed of the CUTLASS Iceland-East radar in the Northern Hemisphere and the SENSU Syowa-East radar in the Southern Hemisphere. Three types of spectral width distribution were identified: (1 an exponential-like distribution in the lower magnetic latitudes (below 72°, (2 a Gaussian-like distribution around a few degrees magnetic latitude, centered on 78°, and (3 another type of distribution in the higher magnetic latitudes (above 80°. The first two are considered to represent the geophysical regimes such as the LLBL and the cusp, respectively, because they are similar to the spectral width distributions within the LLBL and the cusp, as classified by Baker et al. (1995. The distribution found above 80° magnetic latitude has been clarified for the first time in this study. This distribution has similarities to the exponential-like distribution in the lower latitude part, although clear differences also exist in their characteristics. These three spectral width distributions are commonly identified in conjugate hemispheres. The latitudinal transition from one distribution to another exhibits basically the same trend between two hemispheres. There is, however, an interhemispheric difference in the form of the distribution around the cusp latitudes, such that spectral width values obtained from Syowa-East are larger than those from Iceland-East. On the basis of the spectral width characteristics, the average locations of the cusp and the open/closed field line boundary are estimated statistically.

    Key words. Ionosphere (ionosphere-magnetosphere inter-actions; plasma convection – Magnetospheric physics (magnetopause, cusp, and boundary layers

  12. Winds and tides in the mid-latitude Southern Hemisphere upper mesosphere recorded with the Falkland Islands SuperDARN radar

    Directory of Open Access Journals (Sweden)

    R. E. Hibbins

    2011-11-01

    Full Text Available Meteor wind data from the first year of operation of the Falkland Islands SuperDARN radar (52° S, 59° W are used to characterize the atmospheric tides and background winds in the upper mesosphere above the South Atlantic. Strong (>40 m s−1 semidiurnal tides are observed in the winter time and large amplitude (>60 m s−1 bursts of quasi two-day wave activity are seen in January 2011. Data are in good agreement with those presented from the SAAMER meteor radar (54° S, 68° W. Comparison with SuperDARN meteor wind data from a geographically similar Northern Hemisphere site at Goose Bay (53° N 60° W reveal clear interhemispheric differences especially in the semidiurnal and terdiurnal components of the tides. The winter time amplitudes of the tides are much stronger in the Southern Hemisphere than in the north. Background winds are observed to be significantly more polewards and westwards throughout the year than those predicted by the empirical horizontal wind model HWM07.

  13. The accuracy of using the spectral width boundary measured in off-meridional SuperDARN HF radar beams as a proxy for the open-closed field line boundary

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2005-10-01

    Full Text Available Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB is crucial for making accurate measurements of magnetic reconnection. This study compares the latitudes of spectral width boundaries (SWBs measured by different beams of the Goose Bay radar of the Super Dual Auroral Radar Network (SuperDARN, with the latitudes of OCBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP spacecraft, in order to determine whether the accuracy of the SWB as a proxy for the ionospheric projection of the OCB depends on the line-of-sight direction of the radar beam. The latitudes of SWBs and OCBs were identified using automated algorithms applied to 5 years (1997–2001 of data measured in the 1000–1400 magnetic local time (MLT range. Six different Goose Bay radar beams were used, ranging from those aligned in the geomagnetic meridional direction to those aligned in an almost zonal direction. The results show that the SWB is a good proxy for the OCB in near-meridionally-aligned beams but becomes progressively more unreliable for beams greater than 4 beams away from the meridional direction. We propose that SWBs are identified at latitudes lower than the OCB in the off-meridional beams due to the presence of high spectral width values that result from changes in the orientation of the beams with respect to the gradient in the large-scale ionospheric convection pattern. Keywords. Ionosphere (Instruments and techniques; Plasma convection – Magnetospheric physics (Magnetopause, cusp and boundary layers

  14. Assessing the contamination of SuperDARN global convection maps by non-F-region backscatter

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2002-01-01

    Full Text Available Global convection mapping using line-of-sight Doppler velocity data from the Super Dual Auroral Radar Network (SuperDARN is now an accepted method of imaging high-latitude ionospheric convection. This mapping process requires that the flow measured by the radars is defined solely by the convection electric field. This is generally only true of radar backscatter from the ionospheric F-region. We investigate the extent to which the E-region and ground backscatter in the SuperDARN data set may be misidentified as F-region backscatter, and assess the contamination of global convection maps which results from the addition of this non-F-region backscatter. We present examples which highlight the importance of identifying this contamination, especially with regard to the mesoscale structure in the convection maps.Key words. Ionosphere (plasma convection – Radio science (radio wave propagation; instruments and techniques

  15. Spectral width of SuperDARN echoes: measurement, use and physical interpretation

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    2006-03-01

    Full Text Available The Doppler velocity and spectral width are two important parameters derived from coherent scatter radar systems. The Super Dual Auroral Radar Network (SuperDARN is capable of monitoring most of the high latitude region where different boundaries of the magnetosphere map to the ionosphere. In the past, the spectral width, calculated from SuperDARN data, has been used to identify the ionosphere footprints of various magnetosphere boundaries. In this paper we examine the way the spectral width is presently estimated from the radar data and describe several recommendations for improving the algorithm. Using the improved algorithm, we show that typical spectral width values reported in the literature are most probably overestimated. The physical interpretation of the cause of various magnitudes of the spectral width is explored in terms of the diffusion and dynamics of ionospheric plasma irregularities.

  16. Variations in the occurrence of SuperDARN F region echoes

    Directory of Open Access Journals (Sweden)

    M. Ghezelbash

    2014-02-01

    Full Text Available The occurrence of F region ionospheric echoes observed by a number of SuperDARN HF radars is analyzed statistically in order to infer solar cycle, seasonal, and diurnal trends. The major focus is on Saskatoon radar data for 1994–2012. The distribution of the echo occurrence rate is presented in terms of month of observation and magnetic local time. Clear repetitive patterns are identified during periods of solar maximum and solar minimum. For years near solar maximum, echoes are most frequent near midnight during winter. For years near solar minimum, echoes occur more frequently near noon during winter, near dusk and dawn during equinoxes and near midnight during summer. Similar features are identified for the Hankasalmi and Prince George radars in the northern hemisphere and the Bruny Island TIGER radar in the southern hemisphere. Echo occurrence for the entire SuperDARN network demonstrates patterns similar to patterns in the echo occurrence for the Saskatoon radar and for other radars considered individually. In terms of the solar cycle, the occurrence rate of nightside echoes is shown to increase by a factor of at least 3 toward solar maximum while occurrence of the near-noon echoes does not significantly change with the exception of a clear depression during the declining phase of the solar cycle.

  17. Coordinated Radar Resource Management for Networked Phased Array Radars

    Science.gov (United States)

    2014-12-01

    computed, and the detection of a target is determined based on a Monte Carlo test. For each successful target confirmation, a measurement report is...detection based on Monte Carlo test • add appropriate random perturbations to detec- tion measurements Radar Targets Environment Input Parameters... Fuente and J.R. Casar-Corredera. Optimal radar pulse scheduling using a neural network. In IEEE Int. Conf. Neural Networks, volume 7, pages 4558–4591

  18. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  19. Radar Target Classification Using Neural Network and Median Filter

    OpenAIRE

    J. Kurty; Matousek, Z.

    2001-01-01

    The paper deals with Radar Target Classification based on the use of a neural network. A radar signal was acquired from the output of a J frequency band noncoherent radar. We applied the three layer feed forward neural network using the backpropagation learning algorithm. We defined classes of radar targets and designated each of them by its number. Our classification process resulted in the number of a radar target class, which the radar target belongs to.

  20. Towards the azimuthal characteristics of ionospheric and seismic effects of "Chelyabinsk" meteorite fall according to the data from coherent radar, GPS and seismic networks

    CERN Document Server

    Berngardt, O I; Kutelev, K A; Zherebtsov, G A; Dobrynina, A A; Shestakov, N V; Zagretdinov, R V; Bakhtiyarov, V F; Kusonsky, O A

    2015-01-01

    We present the results of a study of the azimuthal characteristics of ionospheric and seismic effects of the meteorite 'Chelyabinsk', based on the data from the network of GPS receivers, coherent decameter radar EKB SuperDARN and network of seismic stations. It is shown, that 6-14 minutes after the bolide explosion, GPS network observed the cone-shaped wavefront of TIDs that is interpreted as a ballistic acoustic wave. The typical TIDs propagation velocity were observed 661+/-256m/s, which corresponds to the expected acoustic wave speed for 240km height. 14 minutes after the bolide explosion, at distances of 200km we observed the emergence and propagation of a TID with spherical wavefront, that is interpreted as gravitational mode of internal acoustic waves. The propagation velocity of this TID was 337+/-89m/s which corresponds to the propagation velocity of these waves in similar situations. At EKB SuperDARN radar, we observed TIDs in the sector of azimuthal angles close to the perpendicular to the meteorite...

  1. Relative O- and X-mode transmitted power from SuperDARN as it relates to the RRI instrument on ePOP

    Directory of Open Access Journals (Sweden)

    R. G. Gillies

    2010-03-01

    Full Text Available The Cascade Demonstrator Small-Sat and Ionospheric Polar Explorer (CASSIOPE satellite is scheduled to be launched in 2010. On board this satellite will be a suite of eight scientific instruments comprising the enhanced Polar Outflow Probe (ePOP. One instrument is the Radio Receiver Instrument (RRI which will be used to receive HF transmissions from various ground transmitters such as the Super Dual Auroral Radar Network (SuperDARN array. Magnetoionic polarization and propagation theory have been used to model the relative power that SuperDARN delivers to the Ordinary (O and Extraordinary (X modes of propagation. These calculations have been performed for various frequencies in the SuperDARN transmitting band and for all five Canadian based SuperDARN radars. The geometry of the radars with respect to the background magnetic field results in the X-mode dominating the transmitted signal when the modelled wave propagates northward and is nearly perpendicular to the magnetic field lines. Other propagation directions (i.e., above or southwards of the radar results in propagation which is anti-parallel to the magnetic field lines and an equal splitting of transmitted power between the O- and X-modes occurs. The modelling analysis shows that for either high transmitting frequencies or low ionospheric electron densities, the range of latitudes that signal will be received is quite large (up to ~90° of latitude. Also for these conditions, the range of elevations where the X-mode signal strongly dominates the O-mode signal will be apparent in the received signal. Conversely, for lower transmitting frequencies or higher ionospheric electron densities, the latitudinal range that signal will be received over is smaller. Here the X-mode-only band is not apparent in the received signal as both modes will be received with roughly equal power. These relative mode power calculations can be used to characterize the average electron density content in the

  2. Radar Target Classification Using Neural Network and Median Filter

    Directory of Open Access Journals (Sweden)

    J. Kurty

    2001-09-01

    Full Text Available The paper deals with Radar Target Classification based on the use ofa neural network. A radar signal was acquired from the output of a Jfrequency band noncoherent radar. We applied the three layer feedforward neural network using the backpropagation learning algorithm. Wedefined classes of radar targets and designated each of them by itsnumber. Our classification process resulted in the number of a radartarget class, which the radar target belongs to.

  3. First SuperDARN polar mesosphere summer echoes observed at SANAE IV, Antarctica

    Science.gov (United States)

    Ogunjobi, Olakunle; Sivakumar, Venkataraman; Judy; Stephenson, A. E.

    For over 3 decades studies on Polar mesosphere summer echo (PMSE) is ongoing. Its causative mechanism in the Antarctic and Arctic mesopause altitude is yet to be completely understood and is partly due to few observations from Antarctica. Also important were the varied influencing factors across the observable locations. For the first time, we report the PMSE occurrence probability rates over South African National Antarctic Expedition IV (SANAE IV). A comparison is made with observation from SANAE IV magnetic conjugate vicinity, Goose Bay in Arctic region. Here, a new matching coincidence method allowing filtration of possible contaminating echoes is described and implemented for extraction of PMSE during the 2005-2007 summers. In this method, Riometer and Super Dual Auroral Radar Network (SuperDARN) measurements from SANAE IV location are matched to obtain PMSE occurrence probability rate. Whereas the seasonal and diurnal variations followed the known features of PMSE, the percentage difference in probability occurrence rate is found to be remarkable. The SANAE IV probability rate is found to be high for the summer months reaching about 50% peak around the summer solstice. When the coincidence algorithm is relaxed, we found a substantial 30% increase in PMSE occurrence rate at SANAE IV. At this time, about 100% peak is found for Goose Bay. The contribution from the ionospheric D region electron density enhancements to SuperDARN PMSE occurrence rates at locations under auroral regions will be presented.

  4. Comparison of DMSP cross-track ion drifts and SuperDARN line-of-sight velocities

    Directory of Open Access Journals (Sweden)

    R. A. Drayton

    2005-10-01

    Full Text Available Cross-track ion drifts measured by the DMSP satellites are compared with line-of-sight SuperDARN HF velocities in approximately the same directions. Good overall agreement is found for a data set comprising of 209 satellite passes over the field of view of nine SuperDARN radars in both the Northern and Southern Hemispheres. The slope of the best linear fit line relating the SuperDARN and DMSP velocities is of the order of 0.7 with a tendency for SuperDARN velocities to be smaller. The agreement implies that the satellite and radar data can be merged into a common set provided that spatial and temporal variations of the velocity as measured by both instruments are smooth.

    Keywords. Ionosphere (Ionospheric irregularities; Plasma convection; Auroral ionosphere

  5. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  6. Toward resolving small-scale structures in ionospheric convection from SuperDARN

    Science.gov (United States)

    André, R.; Villain, J.-P.; Senior, C.; Barthes, L.; Hanuise, C.; Cerisier, J.-C.; Thorolfsson, A.

    1999-09-01

    The combination of radial velocities measured by a pair of Super Dual Auroral Radar Network (SuperDARN) HF coherent radars gives, in their common field of view, the velocity vectors in a plane perpendicular to the magnetic field. The standard merging is based on a natural grid defined by the beam intersections, which provides a resolution varying between 90 and 180 km (depending upon the distance to the radars). This allows the description of structures with a typical scale size (L) of the order of 500 km. The present study is devoted to a merging method which takes advantage of individual radar grids to enhance the resolution (L ≈ 200 km). After a brief description of the standard merging method, we define the high-resolution grid and discuss the potential problems which have to be overcome. The first problem concerns the localization of the scattering volume, whereas the second one deals with the independence of the velocity vectors. These two limitations have been addressed in previous studies [André et al., 1997; Barthes et al., 1998]. In the method proposed here, several velocity vectors are determined at each grid point, from which the selection is made by using the hypothesis of minimization of the divergence magnitude. The selected map is the one which minimizes the divergence. The performances are tested and compared to the standard merging algorithm through simulated double vortices. Finally, we apply this method to real data, and show, through two examples, its ability to describe small-scale structures (L ≈ 200 km).

  7. Radar Training Facility Local Area Network -

    Data.gov (United States)

    Department of Transportation — The RTF LAN system provides a progressive training environment for initial and refresher radar training qualification for new and re-hired FAA employees. Its purpose...

  8. A statistical approach for identifying the ionospheric footprint of magnetospheric boundaries from SuperDARN observations

    Directory of Open Access Journals (Sweden)

    G. Lointier

    2008-02-01

    Full Text Available Identifying and tracking the projection of magnetospheric regions on the high-latitude ionosphere is of primary importance for studying the Solar Wind-Magnetosphere-Ionosphere system and for space weather applications. By its unique spatial coverage and temporal resolution, the Super Dual Auroral Radar Network (SuperDARN provides key parameters, such as the Doppler spectral width, which allows the monitoring of the ionospheric footprint of some magnetospheric boundaries in near real-time. In this study, we present the first results of a statistical approach for monitoring these magnetospheric boundaries. The singular value decomposition is used as a data reduction tool to describe the backscattered echoes with a small set of parameters. One of these is strongly correlated with the Doppler spectral width, and can thus be used as a proxy for it. Based on this, we propose a Bayesian classifier for identifying the spectral width boundary, which is classically associated with the Polar Cap boundary. The results are in good agreement with previous studies. Two advantages of the method are: the possibility to apply it in near real-time, and its capacity to select the appropriate threshold level for the boundary detection.

  9. Road Network Conflation Based on Radar Tracks

    Science.gov (United States)

    2014-04-01

    by the National Imagery and Mapping Agency ( NIMA ) as well as the United States Geological Survey (USGS), the two most com- mon sources of such maps...Likelihood Estimator NIMA National Imagery and Mapping Agency SAR Synthetic Aperture Radar STAP Space-Time Adaptive Processing USGS United States Geological Survey 27 Approved for Public Release; Distribution Unlimited.

  10. A Fundamentally New SuperDARN Technique

    Science.gov (United States)

    Gjerloev, Jesper; Waters, Colin; Barnes, Robin

    2017-04-01

    All past SuperDARN models have been based on the idea that global convection pattern is controlled by the solar wind conditions. The implied causality raises a list of questions such as: What is the delay between the cause and effect, whether the magnetosphere-ionosphere (M-I) system has inertia and whether internal M-I processes can be ignored. In this talk we answer these question by presenting a new SuperDARN technique which is based on a fundamentally different approach. The method combines historical data from the SuperDARN data base, Principal Component Analysis and a spherical cap basis function expansion process in order to `fill-in' convection data where there are observations for any given time. Our model show significant differences from all past SuperDARN models but its behavior is in excellent agreement with both the SuperMAG and AMPERE. We outline the technique, validate the solutions and show the results from a typical substorm as well as a storm event.

  11. Interval algebra - an effective means of scheduling surveillance radar networks

    CSIR Research Space (South Africa)

    Focke, RW

    2015-05-01

    Full Text Available Interval Algebra provides an effective means to schedule surveillance radar networks, as it is a temporal ordering constraint language. Thus it provides a solution to a part of resource management, which is included in the revised Data Fusion...

  12. Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Science.gov (United States)

    2012-09-13

    imaging area. 24 Falcone and Colone recently presented passive radar work using the 802.11 OFDM WiFi signal [31]. The study demonstrates the practical...φR is 4.3 degrees at both aperture ends. The array is radiated with the generic OFDM pulse. The OFDM symbols use 112 Figure 67. PFA SAR image using a...OFDM WiFi -based passive bistatic radar”. Radar Conference, 2010 IEEE, 516–521. 2010. [32] Flood, J.E. Telecommunication Networks, 2ed. The

  13. Weather Radar Estimations Feeding an Artificial Neural Network Model Weather Radar Estimations Feeding an Artificial Neural Network Model

    Directory of Open Access Journals (Sweden)

    Dawei Han

    2012-02-01

    Full Text Available The application of ANNs (Artifi cial Neural Networks has been studied by many researchers in modelling rainfall runoff processes. However, the work so far has been focused on the rainfall data from traditional raingauges. Weather radar is a modern technology which could provide high resolution rainfall in time and space. In this study, a comparison in rainfall runoff modelling between the raingauge and weather radar has been carried out. The data were collected from Brue catchment in Southwest of England, with 49 raingauges covering 136 km2 and two C-band weather radars. This raingauge network is extremely dense (for research purposes and does not represent the usual raingauge density in operational flood forecasting systems. The ANN models were set up with both lumped and spatial rainfall input. The results showed that raingauge data outperformed radar data in all the events tested, regardless of the lumped and spatial input. La aplicación de Redes Neuronales Artificiales (RNA en el modelado de lluvia-flujo ha sido estudiada ampliamente. Sin embargo, hasta ahora se han utilizado datos provenientes de pluviómetros tradicionales. Los radares meteorológicos son una tecnología moderna que puede proveer datos de lluvia de alta resolución en tiempo y espacio. Este es un trabajo de comparación en el modelado lluvia-flujo entre pluviómetros y radares meteorológicos. Los datos provienen de la cuenca del río Brue en el suroeste de Inglaterra, con 49 pluviómetros cubriendo 136 km2 y dos radares meteorológicos en la banda C. Esta red de pluviómetros es extremadamente densa (para investigación y no representa la densidad usual en sistemas de predicción de inundaciones. Los modelos de RNA fueron implementados con datos de entrada de lluvia tanto espaciados como no distribuidos. Los resultados muestran que los datos de los pluviómetros fueron mejores que los datos de los radares en todos los eventos probados.

  14. Magnetic local time, substorm, and particle precipitation-related variations in the behaviour of SuperDARN Doppler spectral widths

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2004-12-01

    Full Text Available Super Dual Auroral Radar Network (DARN radars often detect a distinct transition in line-of-sight Doppler velocity spread, or spectral width, from <50ms–1 at lower latitude to >200ms–1 at higher latitude. They also detect a similar boundary, namely the range at which ionospheric scatter with large spectral width suddenly commences (i.e. without preceding scatter with low spectral width. The location and behaviour of the spectral width boundary (SWB (and scatter boundary and the open-closed magnetic field line boundary (OCB are thought to be closely related. The location of the nightside OCB can be inferred from the poleward edge of the auroral oval determined using energy spectra of precipitating particles measured on board Defence Meteorology Satellite Program (DMSP satellites. Observations made with the Halley SuperDARN radar (75.5° S, 26.6° W, geographic; –62.0°Λ and the Tasman International Geospace Environment Radar (TIGER (43.4° S, 147.2° E; –54.5°Λ are used to compare the location of the SWB with the DMSP-inferred OCB during 08:00 to 22:00 UT on 1 April 2000. This study interval was chosen because it includes several moderate substorms, whilst the Halley radar provided almost continuous high-time resolution measurements of the dayside SWB location and shape, and TIGER provided the same in the nightside ionosphere. The behaviour of the day- and nightside SWB can be understood in terms of the expanding/contracting polar cap model of high-latitude convection change, and the behaviour of the nightside SWB can also be organised according to substorm phase. Previous comparisons with DMSP OCBs have proven that the radar SWB is often a reasonable proxy for the OCB from dusk to just past midnight (Chisham et al., 2004. However, the present case study actually suggests that the nightside SWB is often a better proxy for the poleward edge of Pedersen conductance enhanced by hot particle precipitation in the auroral zone. Simple

  15. An investigation of latitudinal transitions in the SuperDARN Doppler spectral width parameter at different magnetic local times

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2004-04-01

    Full Text Available Latitudinal transitions from low to high Doppler spectral width in backscatter measured by the Super Dual Auroral Radar Network (SuperDARN are now routinely used as proxies for the polar cap boundary (PCB in the cusp-region ionosphere. In this paper we perform a statistical study of the nature of similar spectral width transitions at other magnetic local times (MLTs. This analysis illustrates that these latitudinal spectral width transitions exist at all magnetic local times, and that the latitude, gradient, and amplitude of the transitions vary systematically with MLT. In particular, the probability of a transition occurring at any latitude, identified independently in each MLT sector, is continuous with MLT from the cusp, through the morning sector, to the nightside. This suggests that the transition represents the PCB, as this is known to be what it represents in the cusp region. However, the picture in the afternoon sector (12:00-18:00 MLT is more complex with no clearly preferred transition latitudes. Key words. Ionosphere (ionosphere-magnetosphere interactions; instruments and techniques. Magnetospheric physics (magnetopause, cusp, and boundary layers.

  16. Long-term variations in the intensity of polar cap plasma flows inferred from SuperDARN

    Science.gov (United States)

    Koustov, A. V.; Fiori, R. A. D.; Abooali zadeh, Z.

    2015-11-01

    Multiyear (1995-2013) velocity data collected by the Super Dual Auroral Network (SuperDARN) HF radars are considered to investigate the diurnal, seasonal, and solar cycle variation of the polar cap plasma flow speed. By considering monthly data sets, we show that the flows are systematically faster in the dawn/prenoon sector. The effect is particularly strong for interplanetary magnetic field (IMF) Bz 0 and in summer months. For Bz Bt at a rate of 20-30 m/s/nT during near noon summer hours. The dependence is weaker for other seasons and away from noon. For IMF Bz > 0, the flow speed response to the increase in Bt is weak. Despite the general sensitivity of the flow speed to Bt intensity and season, the speed for specific IMF bins and seasons or the speed averaged over a year does not change much over the solar cycle. Overall, the velocity is reduced during years of lowest solar activity, but a progression of the effect throughout the solar cycle was not observed. Inferred diurnal and seasonal trends of the polar cap flow speed are generally consistent with variations in the occurrence of VHF echoes whose onset depends on the strength of the ionospheric electric field or equivalently the magnitude of the plasma flow speed.

  17. National High Frequency Radar Network (hfrnet) and Pacific Research Efforts

    Science.gov (United States)

    Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.

    2016-12-01

    The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research

  18. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  19. Travelling ionospheric disturbance properties deduced from Super Dual Auroral Radar measurements

    Directory of Open Access Journals (Sweden)

    J. W. MacDougall

    2000-12-01

    Full Text Available Based on modeling of the perturbations in power and elevation angle produced by travelling ionospheric disturbances (TIDs, and observed by the Super Dual Auroral Radar Network, procedures for determining the TID properties are suggested. These procedures are shown to produce reasonable agreement with those properties of the TIDs that can be measured from simultaneous ionosonde measurements. The modeling shows that measurements of angle-of-elevation perturbations by SuperDARN allows for better determination of the TID properties than using only the perturbations of power as is commonly done.Key words: Ionosphere (auroral ionosphere; ionosphere-atmosphere interactions

  20. Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and SuperDARN

    Directory of Open Access Journals (Sweden)

    A. Marchaudon

    2004-01-01

    Full Text Available Conjunctions in the cusp between the four Cluster spacecraft and SuperDARN ground-based radars offer unique opportunities to compare the signatures of transient plasma injections simultaneously in the high-altitude dayside magnetosphere and in the ionosphere. We report here on such observations on 17 March 2001, when the IMF initially northward and duskward, turns southward and dawnward for a short period. The changes in the convection direction at Cluster are well correlated with the interplanetary magnetic field (IMF By variations. Moreover, the changes in the ionosphere follow those in the magnetosphere, with a 2–3min delay. When mapped into the ionosphere, the convection velocity at Cluster is about 1.5 times larger than measured by SuperDARN. In the high-altitude cusp, field and particle observations by Cluster display the characteristic signatures of plasma injections into the magnetosphere suggestive of Flux Transfer Events (FTEs. Simultaneous impulsive and localized convection plasma flows are observed in the ionospheric cusp by the HF radars. A clear one-to-one correlation is observed for three successive injections, with a 2–3min delay between the magnetospheric and ionospheric observations. For each event, the drift velocity of reconnected flux tubes (phase velocity has been compared in the magnetosphere and in the ionosphere. The drift velocity measured at Cluster is of the order of 400–600ms–1 when mapped into the ionosphere, in qualitative agreement with SuperDARN observations. Finally, the reconnected flux tubes are elongated in the north-south direction, with an east-west dimension of 30–60km in the ionosphere from mapped Cluster observations, which is consistent with SuperDARN observations, although slightly smaller. Key words. Ionosphere (plasma convection – Magnetospheric physics (magnetopause, cusp, and boundary layers; magnetosphere-ionosphere interactions

  1. A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the afternoon sector ionosphere

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2005-12-01

    Full Text Available The open-closed magnetic field line boundary (OCB is best measured at the foot points of the boundary in the Earth's ionosphere where continuous and extensive spatiotemporal measurements can be made. The ability to make routine observations of this type is crucial if accurate global measurements of energy transfer processes occurring at the boundary, such as magnetic reconnection, are to become a reality. The spectral width boundary (SWB measured by the Super Dual Auroral Radar Network (SuperDARN has been shown to be a reliable ionospheric proxy for the OCB at certain magnetic local times (MLTs. However, the reliability of the SWB proxy in the afternoon sector ionosphere (12:00-18:00 MLT has been questionable. In this paper we undertake a statistical comparison of the latitudinal locations of SWBs measured by SuperDARN and particle precipitation boundaries (PPBs measured by the Defense Meteorological Satellite Program (DMSP spacecraft, concentrating on the PPB which best approximates the location of the OCB. The latitudes of SWBs and PPBs were identified using automated algorithms applied to 5 years (1997-2001 of data measured in the 12:00-18:00 MLT range. A latitudinal difference was measured between each PPB and the nearest SWB within a ±10 min universal time (UT window and within a ±1 h MLT window. The results show that when the SWB is identified at higher geomagnetic latitudes (poleward of ~74, it is a good proxy for the OCB, with 76% of SWBs lying within 3 of the OCB. At lower geomagnetic latitudes (equatorward of ~74, the correlation is poor and the results suggest that most of the SWBs being identified represent ionospheric variations unassociated with the OCB, with only 32% of SWBs lying within 3 of the OCB. We propose that the low level of precipitating electron energy flux, typical of latitudes well equatorward of the OCB in the afternoon sector, may be a factor in enhancing spectral width values at these lower latitudes. A

  2. Joint Optimization of Receiver Placement and Illuminator Selection for a Multiband Passive Radar Network.

    Science.gov (United States)

    Xie, Rui; Wan, Xianrong; Hong, Sheng; Yi, Jianxin

    2017-06-14

    The performance of a passive radar network can be greatly improved by an optimal radar network structure. Generally, radar network structure optimization consists of two aspects, namely the placement of receivers in suitable places and selection of appropriate illuminators. The present study investigates issues concerning the joint optimization of receiver placement and illuminator selection for a passive radar network. Firstly, the required radar cross section (RCS) for target detection is chosen as the performance metric, and the joint optimization model boils down to the partition p-center problem (PPCP). The PPCP is then solved by a proposed bisection algorithm. The key of the bisection algorithm lies in solving the partition set covering problem (PSCP), which can be solved by a hybrid algorithm developed by coupling the convex optimization with the greedy dropping algorithm. In the end, the performance of the proposed algorithm is validated via numerical simulations.

  3. Space Plasma Exploration by Active Radar (SPEAR: an overview of a future radar facility

    Directory of Open Access Journals (Sweden)

    D. M. Wright

    2000-09-01

    Full Text Available SPEAR is a new polar cap HF radar facility which is to be deployed on Svalbard. The principal capabilities of SPEAR will include the generation of artificial plasma irregularities, operation as an 'all-sky' HF radar, the excitation of ULF waves, and remote sounding of the magnetosphere. Operation of SPEAR in conjunction with the multitude of other instruments on Svalbard, including the EISCAT Svalbard radar, and the overlap of its extensive field-of-view with that of several of the HF radars in the SuperDARN network, will enable in-depth diagnosis of many geophysical and plasma phenomena associated with the cusp region and the substorm expansion phase. Moreover, its ability to produce artificial radar aurora will provide a means for the other instruments to undertake polar cap plasma physics experiments in a controlled manner. Another potential use of the facility is in 'field-line tagging' experiments, for coordinated ground-satellite experiments. Here the scientific objectives of SPEAR are detailed, along with the proposed technical specifications of the system.Key words: Ionosphere (active experiments – Radio science (instruments and techniques – Space plasma physics (instruments and techniques

  4. Polarimetric weather radar retrieval of raindrop size distribution by means of a regularized artificial neural network

    NARCIS (Netherlands)

    Vulpiani, G.; Marzano, F.S.; Chandrasekar, V.; Berne, A.D.; Uijlenhoet, R.

    2006-01-01

    The raindrop size distribution (RSD) is a critical factor in estimating rain intensity using advanced dual-polarized weather radars. A new neural-network algorithm to estimate the RSD from S-band dual-polarized radar measurements is presented. The corresponding rain rates are then computed assuming

  5. Coordinated observations of Pc5 pulsations in a field line; ground, SuperDARN, and a satellite

    Science.gov (United States)

    Sakaguchi, K.; Nagatsuma, T.; Obara, T.; Troshichev, O. A.

    2010-12-01

    Pc5 pulsations are electromagnetic wave at periods of 150-600 s in the ultra-low frequency (ULF) range, which are often observed and have been studied well by ground and satellite magnetometers. The most common mode of Pc5 pulsations is the field line resonance (FLR) of shear Alfvén waves standing along Earth’s magnetic field lines. The ionosphere in both hemisphere acts the reflection boundary of FLR and the ionospheric current generated by electromagnetic waves results in Pc5 pulsations of magnetic fields on the ground. In the magnetosphere, magnetometers and electric field instruments onboard satellites observe directly in situ amplitude of Pc5 pulsations. Previous studies identified Pc5 pulsations in the magnetosphere as one of the key mechanisms of transport and acceleration of energetic electrons in Earth’s outer radiation belt; wave power of Pc5 band is well correlated with radiation belt electron fluxes. In particular, waves in global mode (low-m) are likely more effective than localized mode (high-m). It is important for the space whether study to classify Pc5 effectiveness for radiation belt particles. However, it is difficult to know correct wave numbers from satellite nor ground observations, because satellites know only in situ signals and ground magnetometers integrate all neighbor signals. Thus, we investigated Pc5 pulsations using data from SuperDARN radars, which can observe two-dimensionally the Doppler velocity of ionospheric plasma due to electric-field pulsations of Pc5 along in the line of sight throughout the high latitude. First of all, we investigate the similarity and difference of Pc5 properties among on the ground at Pebek (PBK), Russia by the magnetometer, on the ionosphere in the Doppler velocity in the field-of-view of the SuperDARN rader at King Salmon (KSR), and in the magnetosphere at the geosynchronous ETS-8 satellite by the magnetometer; these align the almost same meridian. In this study, we focus on the toroidal mode

  6. Subsidence feature discrimination using deep convolutional neral networks in synthetic aperture radar imagery

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2017-07-01

    Full Text Available International Geoscience and Remote Sensing Symposium (IGARSS), 23-28 July 2017, Fort Worth, TX, USA SUBSIDENCE FEATURE DISCRIMINATION USING DEEP CONVOLUTIONAL NEURAL NETWORKS IN SYNTHETIC APERTURE RADAR IMAGERY Schwegmann, Colin P Kleynhans, Waldo...

  7. Distributed radar network for real-time tracking of bullet trajectory

    Science.gov (United States)

    Zhang, Yimin; Li, Xin; Jin, Yuanwei; Amin, Moeness G.; Eydgahi, Ali

    2009-05-01

    Gunshot detection, sniper localization, and bullet trajectory prediction are of significant importance in military and homeland security applications. While the majority of existing work is based on acoustic and electro-optical sensors, this paper develops a framework of networked radar systems that uses distributed radar sensor networks to achieve the aforementioned objectives. The use of radio frequency radar systems allows the achievement of subtime- of-flight tracking response, enabling to response before the bullet reaches its target and, as such, effectively leading to the reduction of injuries and casualties in military and homeland security operations. The focus of this paper is to examine the MIMO radar concept with concurrent transmission of low-correlation waveforms from multiple radar sets to ensure wide surveillance coverage and maintain a high waveform repetition frequency for long coherent time interval required to achieve return signal concentration.

  8. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2004-09-01

    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one

  9. High-latitude poynting flux from combined Iridium and SuperDARN data

    Directory of Open Access Journals (Sweden)

    C. L. Waters

    2004-09-01

    Full Text Available Field-aligned currents convey stress between the magnetosphere and ionosphere, and the associated low altitude magnetic and electric fields reflect the flow of electromagnetic energy to the polar ionosphere. We introduce a new technique to measure the global distribution of high latitude Poynting flux, S||, by combining electric field estimates from the Super Dual Auroral Radar Network (SuperDARN with magnetic perturbations derived using magnetometer data from the Iridium satellite constellation. Spherical harmonic methods are used to merge the data sets and calculate S|| for any magnetic local time (MLT from the pole to 60° magnetic latitude (MLAT. The effective spatial resolutions are 2° MLAT, 2h MLT, and the time resolution is about one hour due to the telemetry rate of the Iridium magnetometer data. The technique allows for the assessment of high-latitude net S|| and its spatial distribution on one hour time scales with two key advantages: (1 it yields the net S|| including the contribution of neutral winds; and (2 the results are obtained without recourse to estimates of ionosphere conductivity. We present two examples, 23 November 1999, 14:00-15:00 UT, and 11 March 2000, 16:00-17:00 UT, to test the accuracy of the technique and to illustrate the distributions of S|| that it gives. Comparisons with in-situ S|| estimates from DMSP satellites show agreement to a few mW/m2 and in the locations of S|| enhancements to within the technique's resolution. The total electromagnetic energy flux was 50GW for these events. At auroral latitudes, S|| tends to maximize in the morning and afternoon in regions less than 5° in MLAT by two hours in MLT having S||=10 to 20mW/m2 and total power up to 10GW. The power poleward of the Region 1 currents is about one-third of the total power, indicating significant energy flux over the polar cap.

  10. First results from the Blackstone HF radar in support of THEMIS

    Science.gov (United States)

    Lester, M.; Ruohoniemi, J. M.; Baker, J. B.; Barnes, R. J.; Clauer, C. R.; Greenwald, R. A.; Grocott, A.; Milan, S. E.; Yeoman, T. K.

    2008-12-01

    A new HF radar has been constructed and built in Blackstone, VA, as part of the SuperDARN/StormDARN programme specifically with the purpose of providing coverage over the Canadian ground sector in THEMIS. The new radar began operations in February 2008, an optimum time to support the first THEMIS tail campaign. This paper will discuss the importance of having radars at lower latitudes than the auroral zone locations of SuperDARN for substorm studies. Furthermore, the paper will also present the first results from this radar together with other SuperDARN observations during the THEMIS tail period.

  11. The RITMARE coastal radar network and applications to monitor marine transport infrastructures

    Science.gov (United States)

    Carrara, Paola; Corgnati, Lorenzo; Cosoli, Simone; Griffa, Annalisa; Kalampokis, Alkiviadis; Mantovani, Carlo; Oggioni, Alessandro; Pepe, Monica; Raffa, Francesco; Serafino, Francesco; Uttieri, Marco; Zambianchi, Enrico

    2014-05-01

    Coastal radars provide information on the environmental state of oceans, namely maps of surface currents at time intervals of the order of one hour with spatial coverage of the order of several km, depending on the transmission frequency. The observations are of crucial importance for monitoring ports and ship tracks close to the coast, providing support for safe navigation in densely operated areas and fast response in case of accidents at sea, such as oil spill or search and rescue. Besides these applications, coastal radar observations provide fundamental support in MPAs surveillance, connectivity and marine population circulation. In the framework of the Italian RITMARE flagship project coordinated by CNR (Consiglio Nazionale delle Ricerche), a coastal radar network has been designed and implemented with a number of innovative characteristics. The network includes both HF and X-band radars, allowing coverage of wide areas with different spatial and temporal resolutions. HF radars cover up to 80 km with a spatial resolution ranging between 1 and 5 km, while X-band radars provide 5 km coverage with a spatial resolution of 10 m. Joining these two capabilities, the RITMARE coastal radar network enables both a highly effective coverage of wide coastal areas and integrated monitoring of different phenomena, thus allowing the collection of current and wave parameters and detection of bathymetries of both open sea and coastal areas. A dedicated action to foster interoperability among data providers has been undertaken within RITMARE; an IT framework is under development to provide software tools for data collection and data sharing. It suggests standard, data format definitions, Quality Control strategies, data management and dissemination policies. In particular, the implementation of tools exploits both standards of OGC (Open Geospatial Consortium) and web services offered to manage, access and deliver geospatial data. Radar data produced in RITMARE by the coastal

  12. Flood Monitoring using X-band Dual-polarization Radar Network

    Science.gov (United States)

    Chandrasekar, V.; Wang, Y.; Maki, M.; Nakane, K.

    2009-09-01

    A dense weather radar network is an emerging concept advanced by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). Using multiple radars observing over a common will create different data outcomes depending on the characteristics of the radar units employed and the network topology. To define this a general framework is developed to describe the radar network space, and formulations are obtained that can be used for weather radar network characterization. Current weather radar surveillance networks are based upon conventional sensing paradigm of widely-separated, standalone sensing systems using long range radars that operate at wavelengths in 5-10 cm range. Such configuration has limited capability to observe close to the surface of the earth because of the earth's curvature but also has poorer resolution at far ranges. The dense network radar system, observes and measures weather phenomenon such as rainfall and severe weather close to the ground at higher spatial and temporal resolution compared to the current paradigm. In addition the dense network paradigm also is easily adaptable to complex terrain. Flooding is one of the most common natural hazards in the world. Especially, excessive development decreases the response time of urban watersheds and complex terrain to rainfall and increases the chance of localized flooding events over a small spatial domain. Successful monitoring of urban floods requires high spatiotemporal resolution, accurate precipitation estimation because of the rapid flood response as well as the complex hydrologic and hydraulic characteristics in an urban environment. This paper reviews various aspects in radar rainfall mapping in urban coverage using dense X-band dual-polarization radar networks. By reducing the maximum range and operating at X-band, one can ensure good azimuthal resolution with a small-size antenna and keep the radar beam closer to the ground. The networked topology helps to achieve satisfactory

  13. An Energy Consumption Optimized Clustering Algorithm for Radar Sensor Networks Based on an Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Jiang Ting

    2010-01-01

    Full Text Available We optimize the cluster structure to solve problems such as the uneven energy consumption of the radar sensor nodes and random cluster head selection in the traditional clustering routing algorithm. According to the defined cost function for clusters, we present the clustering algorithm which is based on radio-free space path loss. In addition, we propose the energy and distance pheromones based on the residual energy and aggregation of the radar sensor nodes. According to bionic heuristic algorithm, a new ant colony-based clustering algorithm for radar sensor networks is also proposed. Simulation results show that this algorithm can get a better balance of the energy consumption and then remarkably prolong the lifetime of the radar sensor network.

  14. Regional Attenuation Correction of Weather Radar Using a Distributed Microwave-Links Network

    Directory of Open Access Journals (Sweden)

    Yang Xue

    2017-01-01

    Full Text Available The complex temporal-spatial variation of raindrop size distribution will affect the precision of precipitation quantitative estimates (QPE produced from radar data, making it difficult to correct echo attenuation. Given the fact that microwave links can obtain the total path attenuation accurately, we introduce the concept of regional attenuation correction using a multiple-microwave-links network based on the tomographic reconstruction of attenuation coefficients. Derived from the radar-based equation, the effect of rainfall distribution on the propagation of radar and microwave link signals was analyzed. This article focuses on modeling of the tomographic reconstruction of attenuation coefficients and regional attenuation correction algorithms. Finally, a numerical simulation of regional attenuation correction was performed to verify the algorithms employed here. The results demonstrate that the correction coefficient (0.9175 falls between the corrected and initial field of radar reflectivity factor (root mean square error, 2.3476 dBz; average deviation, 0.0113 dBz. Compared with uncorrected data, the accuracy of the corrected radar reflectivity factor was improved by 26.12%, and the corrected rainfall intensity distribution was improved by 51.85% validating the region attenuation correction algorithm. This method can correct the regional attenuation of weather radar echo effectively and efficiently; it can be widely used for the radar attenuation correction and the promotion of quantitative precipitation estimation by weather radar.

  15. A metric for the Radial Basis Function Network - Application on Real Radar Data

    NARCIS (Netherlands)

    Heiden, R. van der; Groen, F.C.A.

    1996-01-01

    A Radial Basis Functions (RBF) network for pattern recognition is considered. Classification with such a network is based on distances between patterns, so a metric is always present. Using real radar data, the Euclidean metric is shown to perform poorly - a metric based on the so called Box-Cox

  16. Regional Attenuation Correction of Weather Radar Using a Distributed Microwave-Links Network

    OpenAIRE

    Yang Xue; Xi-chuan Liu; Tai-chang Gao; Chang-ye Yang; Kun Song

    2017-01-01

    The complex temporal-spatial variation of raindrop size distribution will affect the precision of precipitation quantitative estimates (QPE) produced from radar data, making it difficult to correct echo attenuation. Given the fact that microwave links can obtain the total path attenuation accurately, we introduce the concept of regional attenuation correction using a multiple-microwave-links network based on the tomographic reconstruction of attenuation coefficients. Derived from the radar-ba...

  17. LPI Optimization Framework for Target Tracking in Radar Network Architectures Using Information-Theoretic Criteria

    Directory of Open Access Journals (Sweden)

    Chenguang Shi

    2014-01-01

    Full Text Available Widely distributed radar network architectures can provide significant performance improvement for target detection and localization. For a fixed radar network, the achievable target detection performance may go beyond a predetermined threshold with full transmitted power allocation, which is extremely vulnerable in modern electronic warfare. In this paper, we study the problem of low probability of intercept (LPI design for radar network and propose two novel LPI optimization schemes based on information-theoretic criteria. For a predefined threshold of target detection, Schleher intercept factor is minimized by optimizing transmission power allocation among netted radars in the network. Due to the lack of analytical closed-form expression for receiver operation characteristics (ROC, we employ two information-theoretic criteria, namely, Bhattacharyya distance and J-divergence as the metrics for target detection performance. The resulting nonconvex and nonlinear LPI optimization problems associated with different information-theoretic criteria are cast under a unified framework, and the nonlinear programming based genetic algorithm (NPGA is used to tackle the optimization problems in the framework. Numerical simulations demonstrate that our proposed LPI strategies are effective in enhancing the LPI performance for radar network.

  18. Cross-evaluation of reflectivity from the space-borne precipitation radar and multi-type ground-based weather radar network in China

    Science.gov (United States)

    Zhong, Lingzhi; Yang, Rongfang; Wen, Yixin; Chen, Lin; Gou, Yabin; Li, Ruiyi; Zhou, Qing; Hong, Yang

    2017-11-01

    China operational weather radar network consists of more than 200 ground-based radars (GR(s)). The lack of unified calibrators often result in poor mosaic products as well as its limitation in radar data assimilation in numerical models. In this study, radar reflectivity and precipitation vertical structures observed from space-borne TRMM (Tropical Rainfall Measurement Mission) PR (precipitation radar) and GRs are volumetrically matched and cross-evaluated. It is found that observation of GRs is basically consistent with that of PR. For their overlapping scanning regions, the GRs are often affected by the beam blockage for complex terrain. The statistics show the better agreement among S band A type (SA) radars, S band B type (SB) radars and PR, as well as poor performance of S band C type (SC) radars. The reflectivity offsets between GRs and PR depend on the reflectivity magnitudes: They are positive for weak precipitation and negative for middle and heavy precipitation, respectively. Although the GRs are quite consistent with PR for large sample, an individual GR has its own fluctuated biases monthly. When the sample number is small, the bias statistics may be determined by a single bad GR in a group. Results from this study shed lights that the space-borne precipitation radars could be used to quantitatively calibrate systematic bias existing in different GRs in order to improve the consistency of ground-based weather radar network across China, and also bears the promise to provide a robust reference even form a space and ground constellation network for the dual-frequency precipitation radars onboard the satellites anticipated in the near future.

  19. On the Implementation of a Regional X-Band Weather Radar Network

    Directory of Open Access Journals (Sweden)

    Andrea Antonini

    2017-01-01

    Full Text Available In the last few years, the number of worldwide operational X-band weather radars has rapidly been growing, thanks to an established technology that offers reliability, high performance, and reduced efforts and costs for installation and maintenance, with respect to the more widespread C- and S-band systems. X-band radars are particularly suitable for nowcasting activities, as those operated by the LaMMA (Laboratory of Monitoring and Environmental Modelling for the sustainable development Consortium in the framework of its institutional duties of operational meteorological surveillance. In fact, they have the capability to monitor precipitation, resolving very local scales, with good spatial and temporal details, although with a reduced scanning range. The Consortium has recently installed a small network of X-band weather radars that partially overlaps and completes the existing national radar network over the north Tyrrhenian area. This paper describes the implementation of this regional network, detailing the aspects related with the radar signal processing chain that provides the final reflectivity composite, starting from the acquisition of the signal power data. The network performances are then qualitatively assessed for three case studies characterised by different precipitation regimes and different seasons. Results are satisfactory especially during intense precipitations, particularly regarding what concerns their spatial and temporal characterisation.

  20. Doppler radar observation of thunderstorm circulation in the 1977 trip program. [triple Doppler radar network for lightning detection and ranging

    Science.gov (United States)

    Lhermitte, R. M.; Conte, D.; Pasqualucci, F.; Lennon, C.; Serafin, R. J.

    1978-01-01

    Storm data obtained on August 1, 1977 are examined in an attempt to interpret the relationship between lightning occurrence and the thunderstorm inner dynamics and precipitation processes. Horizontal maps are presented which indicated the position of radiation sources detected by the Lightning Detection and Ranging (LDAR) network, together with the horizontal motion fields and radar reflectivity data. Detailed inspection of these fields showed that, although radiation sources are found in the vicinity of precipitation cells, they are not located in the heavy precipitation areas, but rather on their rear side in regions where the configuration of the wind fields suggests the presence of updrafts.

  1. Multistatic Wireless Fidelity Network Based Radar – Results of the Chrcynno Experiment

    Directory of Open Access Journals (Sweden)

    S. Rzewuski

    2014-04-01

    Full Text Available This paper presents the theory and experimental result of passive radar using WIFI transmitters as illuminators of opportunity. As a result of experiments conducted on 17th August 2013 at airfield Chrcynno a Cessna C208 airplane was detected and tracked using multistatic passive radar system based on low power signal from WIFI network nodes, which were acting as non cooperative illuminators of opportunity. In the experiment 3 wireless access points were communicating with each other and illuminating the radar scene (airfield. The direct reference and reflected (surveillance signals have been acquired and processed using specially developed algorithm presented in the paper. After signal processing using Passive Coherent Location methods target has been detected. This paper describes in details the algorithms and the results of the experiment for the multistatic passive radar based on the WIFI signal.

  2. Fuzzy Chance-constrained Programming Based Security Information Optimization for Low Probability of Identification Enhancement in Radar Network Systems

    Directory of Open Access Journals (Sweden)

    C. G. Shi

    2015-04-01

    Full Text Available In this paper, the problem of low probability of identification (LPID improvement for radar network systems is investigated. Firstly, the security information is derived to evaluate the LPID performance for radar network. Then, without any prior knowledge of hostile intercept receiver, a novel fuzzy chance-constrained programming (FCCP based security information optimization scheme is presented to achieve enhanced LPID performance in radar network systems, which focuses on minimizing the achievable mutual information (MI at interceptor, while the attainable MI outage probability at radar network is enforced to be greater than a specified confidence level. Regarding to the complexity and uncertainty of electromagnetic environment in the modern battlefield, the trapezoidal fuzzy number is used to describe the threshold of achievable MI at radar network based on the credibility theory. Finally, the FCCP model is transformed to a crisp equivalent form with the property of trapezoidal fuzzy number. Numerical simulation results demonstrating the performance of the proposed strategy are provided.

  3. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Directory of Open Access Journals (Sweden)

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  4. Application of MIMO Techniques in sky-surface wave hybrid networking sea-state radar system

    Science.gov (United States)

    Zhang, L.; Wu, X.; Yue, X.; Liu, J.; Li, C.

    2016-12-01

    The sky-surface wave hybrid networking sea-state radar system contains of the sky wave transmission stations at different sites and several surface wave radar stations. The subject comes from the national 863 High-tech Project of China. The hybrid sky-surface wave system and the HF surface wave system work simultaneously and the HF surface wave radar (HFSWR) can work in multi-static and surface-wave networking mode. Compared with the single mode radar system, this system has advantages of better detection performance at the far ranges in ocean dynamics parameters inversion. We have applied multiple-input multiple-output(MIMO) techniques in this sea-state radar system. Based on the multiple channel and non-causal transmit beam-forming techniques, the MIMO radar architecture can reduce the size of the receiving antennas and simplify antenna installation. Besides, by efficiently utilizing the system's available degrees of freedom, it can provide a feasible approach for mitigating multipath effect and Doppler-spread clutter in Over-the-horizon Radar. In this radar, slow-time phase-coded MIMO method is used. The transmitting waveforms are phase-coded in slow-time so as to be orthogonal after Doppler processing at the receiver. So the MIMO method can be easily implemented without the need to modify the receiver hardware. After the radar system design, the MIMO experiments of this system have been completed by Wuhan University during 2015 and 2016. The experiment used Wuhan multi-channel ionospheric sounding system(WMISS) as sky-wave transmitting source and three dual-frequency HFSWR developed by the Oceanography Laboratory of Wuhan University. The transmitter system located at Chongyang with five element linear equi-spaced antenna array and Wuhan with one log-periodic antenna. The RF signals are generated by synchronized, but independent digital waveform generators - providing complete flexibility in element phase and amplitude control, and waveform type and parameters

  5. Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2010-01-01

    Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.

  6. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems

    Science.gov (United States)

    2008-07-31

    West Virginia Sago mine disaster in January 2006, cognitive radar sensor network-based information integration for first responders is critical for...power supply and Utah Mine Collapse in August 2007 or West Virginia Sago Weather shield (small hut). The target is a trihedral reflector mine disaster in

  7. Network connectivity paradigm for the large data produced by weather radar systems

    Science.gov (United States)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  8. The ISMAR high frequency coastal radar network: Monitoring surface currents for management of marine resources

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier

    2015-01-01

    The Institute of Marine Sciences (ISMAR) of the National Research Council of Italy (CNR) established a High Frequency (HF) Coastal Radar Network for the measurement of the velocity of surface currents in coastal seas. The network consists of four HF radar systems located on the coast of the Gargano...... Promontory (Southern Adriatic, Italy). The network has been operational since May 2013 and covers an area of approximately 1700 square kilometers in the Gulf of Manfredonia. Quality Assessment (QA) procedures are applied for the systems deployment and maintenance and Quality Control (QC) procedures...... of geospatial data, a netCDF architecture has been defined on the basis of the Radiowave Operators Working Group (US ROWG) recommendations and compliant to the Climate and Forecast (CF) Metadata Conventions CF-1.6. The hourly netCDF files are automatically attached to a Thematic Real-time Environmental...

  9. Origin of the SuperDARN broad Doppler spectra:simultaneous observation with Oersted satellite magnetometer

    Directory of Open Access Journals (Sweden)

    K. Hosokawa

    2004-01-01

    Full Text Available We perform a case study of a favorable conjunction of an overpass of the Oersted satellite with the field-of-view of the SuperDARN Syowa East radar during an interval of the southward IMF Bz. At the time, the radar observed an L-shell aligned boundary in the spectral width around the dayside ionosphere. Simultaneously, high-frequency (0.2–5Hz magnetic field fluctuations were observed by the Oersted satellite's high-time resolution magnetometer. These magnetic field fluctuations are considered to be Alfvén waves possibly associated with the particle which precipitates into the dayside high-latitude ionosphere when magnetic reconnection occurs. It has been theoretically predicted that the time-varying electric field is the dominant physical process to expand the broad HF radar Doppler spectra. Our observation clearly demonstrates that the boundary between narrow and broad spectral widths is corresponding well to the boundary in the level of the fluctuations, which supports the previous theoretical prediction. A close relationship between electric and magnetic field fluctuations and particle precipitations during southward IMF conditions has been confirmed by many authors. The present observation allows us to suggest that the boundary between narrow and broad Doppler spectral widths observed in the dayside ionosphere is connected with the signature of the open/closed field line boundary, such as the cusp particle precipitations via electric and magnetic field fluctuations for the case of the negative IMF Bz conditions. Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma convection. Magnetospheric physics (magnetopause, cusp, and boundary layers

  10. Origin of the SuperDARN broad Doppler spectra:simultaneous observation with Oersted satellite magnetometer

    Directory of Open Access Journals (Sweden)

    K. Hosokawa

    2004-01-01

    Full Text Available We perform a case study of a favorable conjunction of an overpass of the Oersted satellite with the field-of-view of the SuperDARN Syowa East radar during an interval of the southward IMF Bz. At the time, the radar observed an L-shell aligned boundary in the spectral width around the dayside ionosphere. Simultaneously, high-frequency (0.2–5Hz magnetic field fluctuations were observed by the Oersted satellite's high-time resolution magnetometer. These magnetic field fluctuations are considered to be Alfvén waves possibly associated with the particle which precipitates into the dayside high-latitude ionosphere when magnetic reconnection occurs. It has been theoretically predicted that the time-varying electric field is the dominant physical process to expand the broad HF radar Doppler spectra. Our observation clearly demonstrates that the boundary between narrow and broad spectral widths is corresponding well to the boundary in the level of the fluctuations, which supports the previous theoretical prediction. A close relationship between electric and magnetic field fluctuations and particle precipitations during southward IMF conditions has been confirmed by many authors. The present observation allows us to suggest that the boundary between narrow and broad Doppler spectral widths observed in the dayside ionosphere is connected with the signature of the open/closed field line boundary, such as the cusp particle precipitations via electric and magnetic field fluctuations for the case of the negative IMF Bz conditions.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; plasma convection. Magnetospheric physics (magnetopause, cusp, and boundary layers

  11. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  12. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    Directory of Open Access Journals (Sweden)

    R. Murat Demirer

    2012-01-01

    Full Text Available The feasibility of using Commercial Off-The-Shelf (COTS sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost ( < $50 US miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  13. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    Science.gov (United States)

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  14. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  15. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network.

    Science.gov (United States)

    She, Ji; Wang, Fei; Zhou, Jianjiang

    2016-12-21

    Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  16. Sparsity-Based Optimization of the Sensors Positions in Radar Networks with Separated Transmit and Receive Nodes

    NARCIS (Netherlands)

    Ivashko, I.M.; Krasnov, O.A.; Yarovoy, A.G.

    2016-01-01

    A sparsity-based approach for the joint optimization of the transmit and the receive nodes positions in the radar network with widely distributed antennas is proposed in this paper. The optimization problem is formulated as minimization of the number of radars that meet fixed target localization

  17. A statistical comparison of SuperDARN spectral width boundaries and DMSP particle precipitation boundaries in the morning sector ionosphere

    Directory of Open Access Journals (Sweden)

    G. Chisham

    2005-03-01

    Full Text Available Determining reliable proxies for the ionospheric signature of the open-closed field line boundary (OCB is crucial for making accurate ionospheric measurements of many magnetospheric processes (e.g. magnetic reconnection. This study compares the latitudes of Spectral Width Boundaries (SWBs, identified in the morning sector ionosphere using the Super Dual Auroral Radar Network (SuperDARN, with Particle Precipitation Boundaries (PPBs determined using the low-altitude Defense Meteorological Satellite Program (DMSP spacecraft, in order to determine whether the SWB represents a good proxy for the ionospheric projection of the OCB. The latitudes of SWBs and PPBs were identified using automated algorithms applied to 5 years (1997-2001 of data measured in the 00:00-12:00 Magnetic Local Time (MLT range. A latitudinal difference was measured between each PPB and the nearest SWB within a ±10min Universal Time (UT window and within a ±1h MLT window. The results show that the SWB represents a good proxy for the OCB close to midnight (~00:00-02:00 MLT and noon (~08:00-12:00 MLT, but is located some distance (~2°-4° equatorward of the OCB across much of the morning sector ionosphere (~02:00-08:00 MLT. On the basis of this and other studies we deduce that the SWB is correlated with the poleward boundary of auroral emissions in the Lyman-Birge-Hopfield ``Long" (LBHL UV emission range and hence, that spectral width is inversely correlated with the energy flux of precipitating electrons. We further conclude that the combination of two factors may explain the spatial distribution of spectral width values in the polar ionospheres. The small-scale structure of the convection electric field leads to an enhancement in spectral width in regions close to the OCB, whereas increases in ionospheric conductivity (relating to the level of incident electron energy flux lead to a reduction in spectral width in regions just equatorward of the OCB.

  18. Combined flatland ST radar and digital-barometer network observations of mesoscale processes

    Science.gov (United States)

    Clark, W. L.; Vanzandt, T. E.; Gage, K. S.; Einaudi, F. E.; Rottman, J. W.; Hollinger, S. E.

    1991-01-01

    The paper describes a six-station digital-barometer network centered on the Flatland ST radar to support observational studies of gravity waves and other mesoscale features at the Flatland Atmospheric Observatory in central Illinois. The network's current mode of operation is examined, and a preliminary example of an apparent group of waves evident throughout the network as well as throughout the troposphere is presented. Preliminary results demonstrate the capabilities of the current operational system to study wave convection, wave-front, and other coherent mesoscale interactions and processes throughout the troposphere. Unfiltered traces for the pressure and horizontal zonal wind, for days 351 to 353 UT, 1990, are illustrated.

  19. Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

    Directory of Open Access Journals (Sweden)

    Chenguang Shi

    2016-12-01

    Full Text Available This paper investigates the joint target parameter (delay and Doppler estimation performance of linear frequency modulation (LFM-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, where the received signal scattered off the target comprises of dominant scatterer (DS component and weak isotropic scatterers (WIS components. Then, the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs on the Cartesian coordinates of target position and velocity are calculated, which can be adopted as a performance metric to access the target parameter estimation accuracy for LFM-based radar network systems in a Rice fading environment. It is found that the cumulative Fisher information matrix (FIM is a linear combination of both DS component and WIS components, and it also demonstrates that the joint CRLB is a function of signal-to-noise ratio (SNR, target’s radar cross section (RCS and transmitted waveform parameters, as well as the relative geometry between the target and the radar network architectures. Finally, numerical results are provided to indicate that the joint target parameter estimation performance of active radar networks can be significantly improved with the exploitation of DS component.

  20. Research and development cooperation project on environmental measurement using laser radar in fiscal 1995 (environmental network); Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku (kankyo network)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    As a part of the cooperative work with Indonesia of R and D of a laser radar for environmental measurement, the paper described the development of an environmental network. The field survey was conducted in April, July and December 1995 and in March 1996. For the investigational research, five meetings of the committee and four times of group work were held. The Asian environmental network was studied in terms of its arrangement, operation and management, and the overall network/path control design were being prepared. To make the persons concerned abroad and in Japan understood the APEC Osaka Conference held in November 1995, a homepage APEC `95 Kansai was opened using WWW (World Wide Web, a decentralized hyper media system which can dispatch information to the whole world by network using hyper text). Moreover, in connection with this, a homepage was opened of CICC (Center of the International Cooperation for Computerization, a center controlling the whole Asian environmental information network system where E-mail and data are exchangeable with Indonesia via Tokyo NOC (Network Operation Center)). 49 figs., 8 tabs.

  1. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems

    Science.gov (United States)

    2009-03-23

    Nevertheless, as an additional source of error, the in- terference from external network also play an important role in defining the quality of the link. To...beamformer at the receiver antenna is V = ££i Ane*»i-*«>£.« T.yiX*eH*7-**)E,8 E"l^M<jl^~"N)EsS + II (21) 16 Whore Es >> a 2{ri). In MIMO radar for

  2. US Integrated Ocean Observing System HF Radar Network: National Applications and International Implementation

    Science.gov (United States)

    Harlan, J.

    2016-12-01

    The US Integrated Ocean Observing System (IOOS), a partnership of academic institutions and Federal agencies, within NOAA National Ocean Service (NOS), operates the nation's only high-frequency (HF) radar network providing near-real-time 2-D maps of ocean of surface currents speed and direction. This system supports US Coast Guard search and rescue operations, NOAA response to oil spills, port navigation and tracking of harmful algal bloom. In the research realm, the data are helping to understand oceanographic processes such as the warm water mass off of the west coast of the US and are routinely ingested into oceanographic models and are used for research into tsunami detection. A key component of the network is the data management system that ingests and distributes hourly data from radars throughout US coastal areas as well as Canada and Mexico, comprising nearly 150 radars. HF radar operators outside the US have adopted the data file formats that were developed by the US IOOS and these data are displayed publicly in near-real-time. To enhance the utility of HF radar data to end-users in all parts of the globe, operational products are needed. Recently in the US, quasi-operational products have been developed, or are under development, including: 2-D maps in AWIPS-II, tidal analysis and prediction from NOS Center for Operational Oceanographic Products & Services (CO-OPS), tsunami detection algorithms led by National Tsunami Warning Center, and significant wave height pilot project. These products will be highlighted and potential for international use discussed.

  3. Towards the creation of a multi-institutional HF Radar Network in the Gulf of Mexico.

    Science.gov (United States)

    Flores-vidal, X.; Flament, P. J.; Durazo, R.; Navarro, L. F.; Salles, P.; Alvarez, P.; Carrillo, L.; Kurczyn, J. A.; Ulloa, M. J.; Rodriguez, I.; Toro Valencia, V. G.; Marin, M.; Perales, H.; Sanay, R.

    2016-12-01

    The Gulf of Mexico is source of important resources for both Mexico and USA, its beaches and coasts bring economical resources for these countries through the generation of jobs on the fisheries, touristic and industrial sectors. However, systematic monitoring is still necessary to evaluate its health and dynamics. This work is part of a multi-institutional project named "Implementation of oceanographic observational networks (physical, geochemical and ecological) to generate scenarios for possible contingencies related to the exploration and production of hydrocarbons in the deep waters of the Gulf of Mexico" (funded by SENER-CONACyT) which is an unprecedented Mexican joint effort to better understand the dynamics in the Gulf of Mexico. We will present the first actions towards the creation of the Mexican multi-Institutional HF Radar Network, which will allow us to synoptically map in real time the sea surface currents up to 200 km offshore. We expect to attract collaborations with the active or ongoing USA HF radar stations and institutions along the Gulf of Mexico, as well as to share methodologies and to evaluate standard data formats. The Radar Network in the Gulf of Mexico is planned to be active during 2017-2018, and it is expected to be permanent.

  4. Research and development cooperation project on environmental measurement using laser radar (environmental network) in fiscal 1993; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku (kankyo network)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    For the purpose of contributing to the research cooperation project on the development of a laser radar for environmental measurement, the paper surveyed the present and future trend of the environment related information network in Indonesia. The survey was conducted in terms of a name of the network, the main administration body, the number of users, the utilization status, the use protocol, details of service, domestic mode installation sites and the main administration body, accounting system, types of the network used, reliability and stability of network, limitations on the use and details of the limitation, etc. The plan for expanding telecommunication equipment is being advanced in a very quick tempo. However, there are many problems in digitalization, and it is feared that the plan will be delayed. As to telecommunication quality and connection quality, the telecommunication completion rate, SCR, is very low, approximately 24% on average, which is equal to that around 1990 in Japan. The business service for users is all bureaucratic since they have a lot of applications for the installation piling up with no exception to the rule of developing countries. 23 figs., 10 tabs.

  5. Using convolutional neural networks for human activity classification on micro-Doppler radar spectrograms

    Science.gov (United States)

    Jordan, Tyler S.

    2016-05-01

    This paper presents the findings of using convolutional neural networks (CNNs) to classify human activity from micro-Doppler features. An emphasis on activities involving potential security threats such as holding a gun are explored. An automotive 24 GHz radar on chip was used to collect the data and a CNN (normally applied to image classification) was trained on the resulting spectrograms. The CNN achieves an error rate of 1.65 % on classifying running vs. walking, 17.3 % error on armed walking vs. unarmed walking, and 22 % on classifying six different actions.

  6. Evaluation of the HF-Radar network system around Taiwan using normalized cumulative Lagrangian separation.

    Science.gov (United States)

    Fredj, Erick; Kohut, Josh; Roarty, Hugh; Lai, Jian-Wu

    2017-04-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as over continental shelves and the adjacent deep ocean. A skill score described in detail by (Lui et.al. 2011) was applied to estimate the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. In contrast, the Lagrangian separation distance alone gives a misleading result. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian based probability density function may be estimated. The skill score assesses The Taiwan Ocean Radar Observing System (TOROS) performance. TOROS consists of 17 SeaSonde type radars around the Taiwan Island. The currents off Taiwan are significantly influenced by the nearby Kuroshio current. The main stream of the Kuroshio flows along the east coast of Taiwan to the north throughout the year. Sometimes its branch current also bypasses the south end of Taiwan and goes north along the west coast of Taiwan. The Kuroshio is also prone to seasonal change in its speed of flow, current capacity, distribution width, and depth. The evaluations of HF-Radar National Taiwanese network performance using Lagrangian drifter records demonstrated the high quality and robustness of TOROS HF-Radar data using a purely trajectory-based non-dimensional index. Yonggang Liu and Robert H. Weisberg, "Evaluation of trajectory modeling in different dynamic regions using normalized cumulative Lagrangian separation", Journal of Geophysical Research, Vol. 116, C09013, doi:10.1029/2010JC006837, 2011

  7. On-Board Fiber-Optic Network Architectures for Radar and Avionics Signal Distribution

    Science.gov (United States)

    Alam, Mohammad F.; Atiquzzaman, Mohammed; Duncan, Bradley B.; Nguyen, Hung; Kunath, Richard

    2000-01-01

    Continued progress in both civil and military avionics applications is overstressing the capabilities of existing radio-frequency (RF) communication networks based on coaxial cables on board modem aircrafts. Future avionics systems will require high-bandwidth on- board communication links that are lightweight, immune to electromagnetic interference, and highly reliable. Fiber optic communication technology can meet all these challenges in a cost-effective manner. Recently, digital fiber-optic communication systems, where a fiber-optic network acts like a local area network (LAN) for digital data communications, have become a topic of extensive research and development. Although a fiber-optic system can be designed to transport radio-frequency (RF) signals, the digital fiber-optic systems under development today are not capable of transporting microwave and millimeter-wave RF signals used in radar and avionics systems on board an aircraft. Recent advances in fiber optic technology, especially wavelength division multiplexing (WDM), has opened a number of possibilities for designing on-board fiber optic networks, including all-optical networks for radar and avionics RF signal distribution. In this paper, we investigate a number of different novel approaches for fiber-optic transmission of on-board VHF and UHF RF signals using commercial off-the-shelf (COTS) components. The relative merits and demerits of each architecture are discussed, and the suitability of each architecture for particular applications is pointed out. All-optical approaches show better performance than other traditional approaches in terms of signal-to-noise ratio, power consumption, and weight requirements.

  8. Investigation of the relationship between optical auroral forms and HF radar E region backscatter

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2000-06-01

    Full Text Available The SuperDARN HF radars have been employed in the past to investigate the spectral characteristics of coherent backscatter from L-shell aligned features in the auroral E region. The present study employs all-sky camera observations of the aurora from Husafell, Iceland, and the two SuperDARN radars located on Iceland, Þykkvibær and Stokkseyri, to determine the optical signature of such backscatter features. It is shown that, especially during quiet geomagnetic conditions, the backscatter region is closely associated with east-west aligned diffuse auroral features, and that the two move in tandem with each other. This association between optical and radar aurora has repercussions for the instability mechanisms responsible for generating the E region irregularities from which radars scatter. This is discussed and compared with previous studies investigating the relationship between optical and VHF radar aurora. In addition, although it is known that E region backscatter is commonly observed by SuperDARN radars, the present study demonstrates for the first time that multiple radars can observe the same feature to extend over at least 3 h of magnetic local time, allowing precipitation features to be mapped over large portions of the auroral zone.Key words: Ionosphere (particle precipitation; plasma waves and instabilities

  9. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems 12/8/06 to 12/31/09

    Science.gov (United States)

    2010-01-01

    or West Virginia Sago mine disaster in January 2006, cognitive radar sensor network-based information integration for first responders is critical for...disaster scenario, such as Utah Mine Collapse in August 2007 or West Virginia Sago mine disaster in January 2006, radar sensor network-based information

  10. Radar subpixel-scale rainfall variability and uncertainty: lessons learned from observations of a dense rain-gauge network

    Directory of Open Access Journals (Sweden)

    N. Peleg

    2013-06-01

    Full Text Available Runoff and flash flood generation are very sensitive to rainfall's spatial and temporal variability. The increasing use of radar and satellite data in hydrological applications, due to the sparse distribution of rain gauges over most catchments worldwide, requires furthering our knowledge of the uncertainties of these data. In 2011, a new super-dense network of rain gauges containing 14 stations, each with two side-by-side gauges, was installed within a 4 km2 study area near Kibbutz Galed in northern Israel. This network was established for a detailed exploration of the uncertainties and errors regarding rainfall variability within a common pixel size of data obtained from remote sensing systems for timescales of 1 min to daily. In this paper, we present the analysis of the first year's record collected from this network and from the Shacham weather radar, located 63 km from the study area. The gauge–rainfall spatial correlation and uncertainty were examined along with the estimated radar error. The nugget parameter of the inter-gauge rainfall correlations was high (0.92 on the 1 min scale and increased as the timescale increased. The variance reduction factor (VRF, representing the uncertainty from averaging a number of rain stations per pixel, ranged from 1.6% for the 1 min timescale to 0.07% for the daily scale. It was also found that at least three rain stations are needed to adequately represent the rainfall (VRF < 5% on a typical radar pixel scale. The difference between radar and rain gauge rainfall was mainly attributed to radar estimation errors, while the gauge sampling error contributed up to 20% to the total difference. The ratio of radar rainfall to gauge-areal-averaged rainfall, expressed by the error distribution scatter parameter, decreased from 5.27 dB for 3 min timescale to 3.21 dB for the daily scale. The analysis of the radar errors and uncertainties suggest that a temporal scale of at least 10 min should be used for

  11. Estimation of convective precipitation: the meteorological radar versus an automatic rain gauge network

    Directory of Open Access Journals (Sweden)

    M. C. Llasat

    2005-01-01

    Full Text Available The estimation of convective precipitation and its contribution to total precipitation is an important issue both in hydrometeorology and radio links. The greatest part of this kind of precipitation is related with high intensity values that can produce floods and/or damage and disturb radio propagation. This contribution proposes two approaches for the estimation of convective precipitation, using the β parameter that is related with the greater or lesser convective character of the precipitation event, and its time and space distribution throughout the entire series of the samples. The first approach was applied to 126 rain gauges of the Automatic System of Hydrologic Information of the Internal Basins of Catalonia (NE Spain. Data are series of 5-min rain rate, for the period 1996-2002, and a long series of 1-min rain rate starting in 1927. Rainfall events were classified according to this parameter. The second approach involved using information obtained by the meteorological radar located near Barcelona. A modified version of the SCIT method for the 3-D analysis and a combination of different methods for the 2-D analysis were applied. Convective rainfall charts and β charts were reported. Results obtained by the rain gauge network and by the radar were compared. The application of the β parameter to improve the rainfall regionalisation was demonstrated.

  12. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  13. Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations

    Directory of Open Access Journals (Sweden)

    C. Senior

    Full Text Available High-time resolution data from the two Iceland SuperDARN HF radars show very strong nightside convection activity during a prolonged period of low geomagnetic activity and northward interplanetary magnetic field (IMF. Flows bursts with velocities ranging from 0.8 to 1.7 km/s are observed to propagate in the sunward direction with phase velocities up to 1.5 km/s. These bursts occur over several hours of MLT in the 20:00–01:00 MLT sector, in the evening-side sunward convection. Data from a simultaneous DMSP pass and POLAR UVI images show a very contracted polar cap and extended regions of auroral particle precipitation from the magnetospheric boundaries. A DMSP pass over the Iceland-West field-of-view while one of these sporadic bursts of enhanced flow is observed, indicates that the flow bursts appear within the plasma sheet and at its outward edge, which excludes Kelvin-Helmholtz instabilities at the magnetopause boundary as the generation mechanism. In the nightside region, the precipitation is more spot-like and the convection organizes itself as clockwise U-shaped structures. We interpret these flow bursts as the convective transport following plasma injection events from the tail into the night-side ionosphere. We show that during this period, where the IMF clock angle is around 70°, the dayside magnetosphere is not completely closed.

    Key words. Ionosphere (Auroral ionosphere; Ionospheremagnetosphere interactions; Particle precipitation

  14. Strong sunward propagating flow bursts in the night sector during quiet solar wind conditions: SuperDARN and satellite observations

    Directory of Open Access Journals (Sweden)

    C. Senior

    2002-06-01

    Full Text Available High-time resolution data from the two Iceland SuperDARN HF radars show very strong nightside convection activity during a prolonged period of low geomagnetic activity and northward interplanetary magnetic field (IMF. Flows bursts with velocities ranging from 0.8 to 1.7 km/s are observed to propagate in the sunward direction with phase velocities up to 1.5 km/s. These bursts occur over several hours of MLT in the 20:00–01:00 MLT sector, in the evening-side sunward convection. Data from a simultaneous DMSP pass and POLAR UVI images show a very contracted polar cap and extended regions of auroral particle precipitation from the magnetospheric boundaries. A DMSP pass over the Iceland-West field-of-view while one of these sporadic bursts of enhanced flow is observed, indicates that the flow bursts appear within the plasma sheet and at its outward edge, which excludes Kelvin-Helmholtz instabilities at the magnetopause boundary as the generation mechanism. In the nightside region, the precipitation is more spot-like and the convection organizes itself as clockwise U-shaped structures. We interpret these flow bursts as the convective transport following plasma injection events from the tail into the night-side ionosphere. We show that during this period, where the IMF clock angle is around 70°, the dayside magnetosphere is not completely closed.Key words. Ionosphere (Auroral ionosphere; Ionospheremagnetosphere interactions; Particle precipitation

  15. Using radar ground-truth to validate and improve the location accuracy of a lightning direction-finding network

    Science.gov (United States)

    Goodman, Steven J.

    1989-01-01

    A technique is described in which isolated radar echoes associated with clusters of lightning strikes are used to validate and improve the location accuracy of a lightning-direction-finding network. Using this technique, site errors of a magnetic direction-finding network for locating lightning strikes to ground were accurately determined. The technique offers advantages over existing techniques in that large sample sizes are readily attainable over a broad area on a regular basis; the technique can also provide additional constraints to redundant data methods such as that described by Orville (1987). Since most lightning strike networks have either partial or full weather radar coverage, the technique is practical for all but a few users.

  16. INCREASE: Innovation and Networking for the integration of Coastal Radars into European mArine SErvices

    Science.gov (United States)

    Mader, Julien; Rubio, Anna; Asensio Igoa, Jose Luis; Corgnati, Lorenzo; Mantovani, Carlo; Griffa, Annalisa; Gorringe, Patrick; Alba, Marco; Novellino, Antonio

    2017-04-01

    High Frequency radar (HFR) is a land-based remote sensing instrument offering a unique insight to coastal ocean variability, by providing synoptic, high frequency and high resolution data at the ocean atmosphere interface. HFRs have become invaluable tools in the field of operational oceanography for measuring surface currents, waves and winds, with direct applications in different sectors and an unprecedented potential for the integrated management of the coastal zone. To further the use of HFRs into the Copernicus Marine environment monitoring service, CMEMS, is becoming crucial to ensure the improved management of several related key issues such as Marine Safety, Marine Resources, Coastal & Marine Environment, Weather, Climate & Seasonal Forecast. In this context, INCREASE (Innovation and Networking for the integration of Coastal Radars into European mArine SErvices) project aims to set the necessary developments towards the integration of the existing European HFR operational systems into the CMEMS, following five main objectives: (i) Define and implement a common data and metadata model for HFR real-time data; (ii) Provide HFR quality controlled real-time surface currents and key derived products; (iii) Set the basis for the management of historical data and methodologies for advanced delayed mode quality-control techniques; (iv) Advance the use of HFR data for improving CMEMS numerical modelling systems; and (v) Enable an HFR European operational node to ensure the link with operational CMEMS. In cooperation with other ongoing initiatives (like the EuroGOOS HFR Task Team and the European project JERICO_NEXT), INCREASE has already set up the data management infrastructure to manage and make discoverable and accessible near real time data from 30 systems in Europe. This paper presents the achieved results and available products and features.

  17. Vertical air motion retrievals in deep convective clouds using the ARM scanning radar network in Oklahoma during MC3E

    Science.gov (United States)

    North, Kirk W.; Oue, Mariko; Kollias, Pavlos; Giangrande, Scott E.; Collis, Scott M.; Potvin, Corey K.

    2017-08-01

    The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site includes a heterogeneous distributed scanning Doppler radar network suitable for collecting coordinated Doppler velocity measurements in deep convective clouds. The surrounding National Weather Service (NWS) Next Generation Weather Surveillance Radar 1988 Doppler (NEXRAD WSR-88D) further supplements this network. Radar velocity measurements are assimilated in a three-dimensional variational (3DVAR) algorithm that retrieves horizontal and vertical air motions over a large analysis domain (100 km × 100 km) at storm-scale resolutions (250 m). For the first time, direct evaluation of retrieved vertical air velocities with those from collocated 915 MHz radar wind profilers is performed. Mean absolute and root-mean-square differences between the two sources are of the order of 1 and 2 m s-1, respectively, and time-height correlations are of the order of 0.5. An empirical sensitivity analysis is done to determine a range of 3DVAR constraint weights that adequately satisfy the velocity observations and anelastic mass continuity. It is shown that the vertical velocity spread over this range is of the order of 1 m s-1. The 3DVAR retrievals are also compared to those obtained from an iterative upwards integration technique. The results suggest that the 3DVAR technique provides a robust, stable solution for cases in which integration techniques have difficulty satisfying velocity observations and mass continuity simultaneously.

  18. An Operative X-band Mini-radar Network to Monitor Rainfall Events with High Time and Space Resolution

    Directory of Open Access Journals (Sweden)

    S. Bertoldo

    2012-08-01

    Full Text Available The increasing frequency of extreme and very localized precipitation events have been causing landslides, floods and casualties, especially in Sicily, due to its complex orography, and to the presence of densely inhabited areas just at the mouth of small basins. In order to monitor such phenomena with the needed high resolution in time and space, an experimental network of X-band mini-radars, exclusively devoted to monitor rain, has been installed in some parts of Sicily since November 2010. The network is made up by 4 mini weather radars able to acquire a rain map every minute (or even at shorter intervals with a radial space resolution better than 100 m within a range of up to 30 km. Their low cost and the easiness of installation make such radars ideal for monitoring small areas or even just limited angular sectors, since it is more convenient to install more than one instrument instead of choosing special site locations or spending for installation support. The raw data are immediately processed in real time by the software installed on each radar unit, Cartesian maps are locally produced, compressed and transmitted via GPRS to a server where ad hoc products for the users are prepared and made available on a web site. A few examples of final products and some comparisons with rain gauges are presented.

  19. Large networks of artificial radar reflectors to monitor land subsidence in natural lowlying coastal areas

    Science.gov (United States)

    Tosi, Luigi; Strozzi, Tazio; Teatini, Pietro

    2014-05-01

    Deltas, lagoons, estuaries are generally much prone to land subsidence. They are also very sensitive to land lowering due to their small elevation with respect to the mean sea level, also in view of the expected eustatic sea rise due to climate changes. Land subsidence can be presently monitored with an impressive accuracy by Persistent Scatterer Interferometry (PSI) on the large megacities that are often located on lowlying coastlands, e.g., Shanghai (China) on the Yangtze River delta, Dhaka (Bangladesh) on the Gange River delta, New Orleans (Louisiana) on the Mississippi river delta. Conversely, the land movements of the portions of these transitional coastlands where natural environments still persist are very challenging to be measured. The lack of anthropogenic structures strongly limits the use of PSI and the difficult accessibility caused by the presence of marshlands, tidal marshes, channels, and ponds yield traditional methodologies, such as levelling and GPS, both time-consuming and costly. In this contribution we present a unique experimental study aimed at using a large network of artificial radar reflectors to measure land subsidence in natural coastal areas. The test site is the 60-km long, 10-15 km wide lagoon of Venice, Italy, where previous PSI investigations revealed the lack of radar reflectors in large portions of the northern and southern lagoon basins (e.g., Teatini et al., 2011). A network of 57 trihedral corner reflectors (TCRs) were established between the end of 2006 and the beginning of 2007 and monitored by ENVISAT ASAR and TerraSAR-X acquisitions covering the time period from 2007 to 2011 (Strozzi et al., 2012). The application has provided general important insights on the possibility of controlling land subsidence using this approach. For example: (i) relatively small-size (from 0.5 to 1.0 m edge length) and cheap (few hundred euros) TCRs suffice to be clearly detectable from the radar sensors because of the low backscattering

  20. An operative X-band mini-radar network to monitor rainfall events with high time and space resolution

    OpenAIRE

    S. Bertoldo; C. Lucianaz; Allegretti, M.; Rorato, O.; A. Prato; Perona, G.

    2012-01-01

    The increasing frequency of extreme and very localized precipitation events have been causing landslides, floods and casualties, especially in Sicily, due to its complex orography, and to the presence of densely inhabited areas just at the mouth of small basins. In order to monitor such phenomena with the needed high resolution in time and space, an experimental network of X-band mini-radars, exclusively devoted to monitor rain, has been installed in some parts of Sicily since November 2010. ...

  1. Cut-off low monitoring by the French VHF-ST-radar network during the ESTIME campaign

    Science.gov (United States)

    Caccia, J.-L.; Bertin, F.; Campistron, B.; Klaus, V.; Pointin, Y.; van Baelen, J.; Wilson, R.

    2000-05-01

    In order to investigate mesoscale strato-tropospheric exchanges, the field campaign `Echanges Stratosphère-Troposphère: Investigations à Moyenne Echelle' was conducted in France from late 1993 to mid 1995 and focused on cut-off low events. It involved the French research network of five VHF (Very High Frequency) ST (Strato-Tropospheric) radars deployed in southern France. Observations corresponding to three Intensive Observing Periods are reported here. The radar data analyzed and discussed are time-height diagrams of the aspect ratio (AR), that is, the vertical to oblique beam-returned power ratio, used for monitoring three cut-off low events. In order to discuss the validity of the method, 506 h of radar AR data were compared with time-height diagrams of the static stability and the humidity obtained from synoptic European Center for Medium-range Weather Forecasts model analyses. A dataset corresponding to 297 h of observations is analyzed and discussed here. It is concluded that the AR is a good tracer to document cut-off low events, including tropopause folding identification and the detection of tropospheric air masses of enhanced stability, in dry or weakly humid cases. On the other hand, although the effects of the specific humidity and its gradients on VHF radar echo power could not be extensively investigated, our results suggest that the same parameter cannot be used at mid- and lower-tropospheric levels when the effects of specific humidity significantly reinforce the moist static stability. It is important to take into account these insights in the context of future observing campaigns in which a network of VHF-ST-radars will be involved, and where their role will be to observe and to document the evolution of upper-level features or potential vorticity streamers, or more generally stratospheric-tropospheric exchanges.

  2. On the Statistical Errors of RADAR Location Sensor Networks with Built-In Wi-Fi Gaussian Linear Fingerprints

    Directory of Open Access Journals (Sweden)

    Shuo Tian

    2012-03-01

    Full Text Available The expected errors of RADAR sensor networks with linear probabilistic location fingerprints inside buildings with varying Wi-Fi Gaussian strength are discussed. As far as we know, the statistical errors of equal and unequal-weighted RADAR networks have been suggested as a better way to evaluate the behavior of different system parameters and the deployment of reference points (RPs. However, up to now, there is still not enough related work on the relations between the statistical errors, system parameters, number and interval of the RPs, let alone calculating the correlated analytical expressions of concern. Therefore, in response to this compelling problem, under a simple linear distribution model, much attention will be paid to the mathematical relations of the linear expected errors, number of neighbors, number and interval of RPs, parameters in logarithmic attenuation model and variations of radio signal strength (RSS at the test point (TP with the purpose of constructing more practical and reliable RADAR location sensor networks (RLSNs and also guaranteeing the accuracy requirements for the location based services in future ubiquitous context-awareness environments. Moreover, the numerical results and some real experimental evaluations of the error theories addressed in this paper will also be presented for our future extended analysis.

  3. Radar cross section of dipole phased arrays with parallel feed network

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents the detailed analytical formulation for the RCS of parallel-fed linear dipole array in the presence of mutual coupling. The radar cross section (RCS) of an object represents its electromagnetic (EM) scattering properties for a given incident wave. The analysis of scattered field is critical in military and defence arenas, especially while designing low-observable platforms. It is well-known that the presence of an antenna/array on the target influences its echo area significantly. The primary cause for such scattering of the incident signals is reflection that occurs within the antenna aperture and its feed network. In this book, the RCS estimation is done based on the signal path within the antenna system. The scattered field is expressed in terms of array design parameters including the reflection and transmission coefficients. The computed results show the variation in the RCS pattern with and without mutual coupling. The effect of finite dipole-length, inter-element spacing, scan angle,...

  4. ABORT-like detector to combat active deceptive jamming in a network of LFM radars

    Directory of Open Access Journals (Sweden)

    Yuan ZHAO

    2017-08-01

    Full Text Available This paper studies an electronic counter-counter measures (ECCM scheme combating against deceptive electronic counter measure (ECM techniques. An adaptive detector exploiting generalized likelihood ratio test (GRLT criterion is applied to detect the presence of deceptive jamming in fractional Fourier transform (FrFT domain. First, the generating mechanism of spurious frequencies is analyzed based on the Volterra serial. The proposed nonlinear distortion model based on power amplifier behavior is robust in distortion analysis when the memory effect is considered. Second, a modified adaptive beamformer orthogonal rejection test (ABORT like detector in closed form is built. The proposed detector can discriminate the echo and deceptive jamming adaptively by exploiting primary data and secondary data. This ECCM scheme is capable of guaranteeing the performance without the restriction of orthogonality, which is essential for the ABORT detectors. The expansion to radar network is discussed as a special case at the final part of this paper. Numerical simulations demonstrate the effectiveness of the proposed method.

  5. Radar cross-section measurements of ice particles using vector network analyzer

    Directory of Open Access Journals (Sweden)

    Jinhu Wang

    2016-09-01

    Full Text Available We carried out radar cross-section (RSC measurements of ice particles in a microwave anechoic chamber at Nanjing University of Information Science and Technology. We used microwave similarity theory to enlarge the size of particle from the micrometer to millimeter scale and to reduce the testing frequency from 94 GHz to 10 GHz. The microwave similarity theory was validated using the method of moments for single metal sphere, single dielectric sphere, and spherical and non-spherical dielectric particle swarms. The differences between the retrieved and theoretical results at 94 GHz were 0.016117%, 0.0023029%, 0.027627%, and 0.0046053%, respectively. We proposed a device that can measure the RCS of ice particles in the chamber based on the S21 parameter obtained from vector network analyzer. On the basis of the measured S21 parameter of the calibration material (metal plates and their corresponding theoretical RCS values, the RCS values of a spherical Teflon particle swarm and cuboid candle particle swarm was retrieved at 10 GHz. In this case, the differences between the retrieved and theoretical results were 12.72% and 24.49% for the Teflon particle swarm and cuboid candle swarm, respectively.

  6. A spatial daily rainfall model for interpolation of raingauge networks using artificial radar fields, for realistic hydrological modelling

    Science.gov (United States)

    Pegram, Geoff; Gyasi-Agyei, Yeboah

    2014-05-01

    The inherent patchiness and intermittency of daily rainfall make interpolation of sparse point measurements over a catchment very challenging. Usual methods of interpolation of daily rainfall vary from simple numerical averaging through the use of Thiessen polygons to advanced statistical methods such as Kriging. This presentation treats the interpolation problem by conditioning plausible replicas of radar-rainfields on to the point observations and examines the effectiveness of the process by cross-validation. The issues addressed include: * we use Kriging but we first Gaussianise the point rainfall data with special treatment of the zeros to eliminate skewness * Kriging gives us estimates of error in the Gaussian domain to show how good/bad are the interpolations and also offers the standard deviation at each pixel in the field * we choose the form of the [co]variogram to be used in Kriging so as to mimic nature, by using spatial observations given us by radar * the spatial structure of radar rainfall images is peculiar to the accumulation time: instantaneous radar images do not have appreciable spatial anisotropy * by contrast, morphed hourly and daily accumulations of radar images exhibit strong spatial anisotropy * we determine the characteristics of the daily accumulations of radar rainfall and find the spatial correlogram characteristics [orientation, range and ratio of minor to major axes] in the chosen region are strongly related to the radar wetted area ratio: RWAR * to proceed, we simulate correlograms for the chosen day based on the RWAR which is related to the gauge wetness ratio * simulate Gaussian radar fields based on the RWAR with the same variance as the Kriged interpolations of the point values and conditionally merge them with the gauge values, be they observations or simulations * to evaluate the worth of the process, we perform cross-validation of spatial field estimates against gauge values in 'leave-one-out' exercises * the methodology is

  7. Optimization of neural network architecture for classification of radar jamming FM signals

    Science.gov (United States)

    Soto, Alberto; Mendoza, Ariadna; Flores, Benjamin C.

    2017-05-01

    The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiére Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.

  8. A Novel Low-Cost Dual-Wavelength Precipitation Radar Sensor Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Remote Sensing Solutions, Inc. (RSS) has developed a novel, practical design that will produce a low-cost precipitation radar / radiometer sensor. Operating in a...

  9. Influence of magnetospheric processes on winter HF radar spectra characteristics

    Directory of Open Access Journals (Sweden)

    R. André

    2002-11-01

    Full Text Available This study investigates further the relationship between regions of the magnetosphere and the characteristics of HF radar Doppler spectra recorded in the ionospheric projection of those regions. It builds on earlier work, which has reported a relationship between the Doppler spectral width and the ionospheric projection of the magnetospheric cusp region, by introducing novel techniques for classifying the Doppler spectra recorded by the SuperDARN radars. We first review the geophysical factors that can condition the characteristics of the autocorrelation function (ACF data produced by the radars. This leads to a classification scheme of the ACF data which is then applied to a large database compiled from winter data taken by the Northern Hemisphere Super-DARN radars. This statistical study shows that the ACF characteristics are not randomly distributed in space, but rather are spatially organized in the ionosphere. This paper suggests that these regions are ordered primarily by the low energy ( 1 keV electron precipitation region and the presence of intense ULF wave activity.Key words. Ionosphere (auroral ionosphere; ionosphere-magnetosphere interactions; plasma convection

  10. Effects of Using High-Density Rain Gauge Networks and Weather Radar Data on Urban Hydrological Analyses

    Directory of Open Access Journals (Sweden)

    Seong-Sim Yoon

    2017-11-01

    Full Text Available Flood prediction is difficult in urban areas because only sparse gauge data and radar data of low accuracy are usually used to analyze flooding and inundation. Sub-basins of urban areas are extremely small, so rainfall data of high spatial resolution are required for analyzing complex drainage systems with high spatial variability. This study aimed to produce three types of quantitative precipitation estimation (QPE products using rainfall data that was derived from 190 gauges, including the new high-density rain-gauge network operated by the SK Planet company, and the automated weather stations of the Korea Meteorological Administration, along with weather radar data. This study also simulated urban runoff for the Gangnam District of Seoul, South Korea, using the obtained QPE products to evaluate hydraulic and hydrologic impacts according to three rainfall fields. The accuracy of this approach was assessed in terms of the amount and spatial distribution of rainfall in an urban area. The QPE products provided highly accurate results and simulations of peak runoff and overflow phenomena. They also accurately described the spatial variability of the rainfall fields. Overall, the integration of high-density gauge data with radar data proved beneficial for quantitative rainfall estimation.

  11. Implementation and validation of the ISMAR High Frequency Coastal Radar Network in the Gulf of Manfredonia (Mediterranean Sea)

    DEFF Research Database (Denmark)

    Corgnati, Lorenzo; Mantovani, Carlo; Griffa, Annalisa

    2017-01-01

    Current Profiler (ADCP) during winter 2015, in order to gain information on the correlation between surface and water column velocities. This information is especially relevant for fishery and coastal management applications, where transport of larvae, sediments and pollutants in the water columns...... are considered. Results show that, at least in the considered period, the velocity in the water column is well correlated, and there is a good agreement between surface HF radar and ADCP data (correlations between 0.95 - 0.75). The Gulf of Manfredonia network has been instrumental to the set up of a core...

  12. CALYPSO: a new HF RADAR network to monitor sea surface currents in the Malta-Sicily channel (Mediterranean sea)

    Science.gov (United States)

    Cosoli, S.; Ciraolo, G.; Drago, A.; Capodici, F.; Maltese, A.; Gauci, A.; Galea, A.; Azzopardi, J.; Buscaino, G.; Raffa, F.; Mazzola, S.; Sinatra, R.

    2016-12-01

    Located in one of the main shipping lanes in the Mediterranean Sea, and in a strategic region for oil extraction platforms, the Malta-Sicily channel is exposed to significant oil spill risks. Shipping and extraction activities constitute a major threat for marine areas of relevant ecological value in the area, and impacts of oil spills on the local ecosystems and the economic activities, including tourism and fisheries, can be dramatic. Damages would be even more devastating for the Maltese archipelago, where marine resources represent important economic assets. Additionally, North Africa coastal areas are also under threat, due to their proximity to the Malta-Sicily Channel. Prevention and mitigation measures, together with rapid-response and decision-making in case of emergency situations, are fundamental steps that help accomplishing the tasks of minimizing risks and reducing impacts to the various compartments. Thanks to state-of-art technology for the monitoring of sea-surface currents in real-time under all sea-state conditions, the CALYPSO network of High-Frequency Radars represents an essential and invaluable tool for the specific purpose. HF radars technology provide a unique tool to track surface currents in near-real time, and as such the dispersion of pollutants can be monitored and forecasted and their origin backtracked, for instance through data assimilation into ocean circulation models or through short-term data-driven statistical forecasts of ocean currents. The network is constituted of four SeaSonde systems that work in the 13.5MHz frequency band. The network is operative since August 2012 and has been extensively validated using a variety of independent platforms and devices, including current meter data and drifting buoys. The latter provided clear evidences of the reliability of the collected data as for tracking the drifting objects. Additionally, data have provided a new insight into the oceanographic characteristics of the region

  13. Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a Cluster - FAST - SuperDARN- Søndrestrøm conjunction under a southwest IMF

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-09-01

    Full Text Available Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130°. Cluster 1 was outbound through the high altitude (~12RE exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0 when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field perturbations and tailward flow deflections. Analysis shows these to be Alfvén waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfvén waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy-latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward, implying a coherent eastward (tailward motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ~2°. The unprecedented accuracy of the conjunction argues strongly

  14. Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a Cluster - FAST - SuperDARN- Søndrestrøm conjunction under a southwest IMF

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-09-01

    Full Text Available Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130°. Cluster 1 was outbound through the high altitude (~12RE exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0 when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field perturbations and tailward flow deflections. Analysis shows these to be Alfvén waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfvén waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy-latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward, implying a coherent eastward (tailward motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ~2°. The unprecedented accuracy

  15. The Dallas-Fort Worth (DFW) Urban Radar Network: Enhancing Resilience in the Presence of Floods, Tornadoes, Hail and High Winds

    Science.gov (United States)

    Chandra*, Chandrasekar V.; the full DFW Team

    2015-04-01

    Currently, the National Weather Service (NWS) Next Generation Weather Radar (NEXRAD) provides observations updated every five-six minutes across the United States. However, at the maximum NEXRAD operating range of 230 km, the 0.5 degree radar beam (lowest tilt) height is about 5.4 km above ground level (AGL) because of the effect of Earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, at urban scale, the National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) has embarked the development of Dallas-Fort worth (DFW) urban remote sensing network to conduct high-resolution sensing in the lower atmosphere for a metropolitan environment, communicate high resolution observations and nowcasting of severe weather including flash floods, hail storms and high wind events. Being one of the largest inland metropolitan areas in the U.S., the DFW Metroplex is home to over 6.5 million people by 2012 according to the North Central Texas Council of Governments (NCTCOG). It experiences a wide range of natural weather hazards, including urban flash flood, high wind, tornado, and hail, etc. Successful monitoring of the rapid changing meteorological conditions in such a region is necessary for emergency management and decision making. Therefore, it is an ideal location to investigate the impacts of hazardous weather phenomena, to enhance resilience in an urban setting and demonstrate the CASA concept in a densely populated urban environment. The DFW radar network consists of 8 dual-polarization X-band weather radars and standard NEXRAD S-band radar, covering the greater DFW metropolitan region. This paper will present high resolution observation of tornado, urban flood, hail storm and damaging wind event all within the

  16. Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search

    Directory of Open Access Journals (Sweden)

    M. Metz

    2011-02-01

    Full Text Available The availability of both global and regional elevation datasets acquired by modern remote sensing technologies provides an opportunity to significantly improve the accuracy of stream mapping, especially in remote, hard to reach regions. Stream extraction from digital elevation models (DEMs is based on computation of flow accumulation, a summary parameter that poses performance and accuracy challenges when applied to large, noisy DEMs generated by remote sensing technologies. Robust handling of DEM depressions is essential for reliable extraction of connected drainage networks from this type of data. The least-cost flow routing method implemented in GRASS GIS as the module r.watershed was redesigned to significantly improve its speed, functionality, and memory requirements and make it an efficient tool for stream mapping and watershed analysis from large DEMs. To evaluate its handling of large depressions, typical for remote sensing derived DEMs, three different methods were compared: traditional sink filling, impact reduction approach, and least-cost path search. The comparison was performed using the Shuttle Radar Topographic Mission (SRTM and Interferometric Synthetic Aperture Radar for Elevation (IFSARE datasets covering central Panama at 90 m and 10 m resolutions, respectively. The accuracy assessment was based on ground control points acquired by GPS and reference points digitized from Landsat imagery along segments of selected Panamanian rivers. The results demonstrate that the new implementation of the least-cost path method is significantly faster than the original version, can cope with massive datasets, and provides the most accurate results in terms of stream locations validated against reference points.

  17. Multitarget tracking in cluttered environment for a multistatic passive radar system under the DAB/DVB network

    Science.gov (United States)

    Shi, Yi Fang; Park, Seung Hyo; Song, Taek Lyul

    2017-12-01

    The target tracking using multistatic passive radar in a digital audio/video broadcast (DAB/DVB) network with illuminators of opportunity faces two main challenges: the first challenge is that one has to solve the measurement-to-illuminator association ambiguity in addition to the conventional association ambiguity between the measurements and targets, which introduces a significantly complex three-dimensional (3-D) data association problem among the target-measurement illuminator, this is because all the illuminators transmit the same carrier frequency signals and signals transmitted by different illuminators but reflected via the same target become indistinguishable; the other challenge is that only the bistatic range and range-rate measurements are available while the angle information is unavailable or of very poor quality. In this paper, the authors propose a new target tracking algorithm directly in three-dimensional (3-D) Cartesian coordinates with the capability of track management using the probability of target existence as a track quality measure. The proposed algorithm is termed sequential processing-joint integrated probabilistic data association (SP-JIPDA), which applies the modified sequential processing technique to resolve the additional association ambiguity between measurements and illuminators. The SP-JIPDA algorithm sequentially operates the JIPDA tracker to update each track for each illuminator with all the measurements in the common measurement set at each time. For reasons of fair comparison, the existing modified joint probabilistic data association (MJPDA) algorithm that addresses the 3-D data association problem via "supertargets" using gate grouping and provides tracks directly in 3-D Cartesian coordinates, is enhanced by incorporating the probability of target existence as an effective track quality measure for track management. Both algorithms deal with nonlinear observations using the extended Kalman filtering. A simulation study is

  18. Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2004-12-01

    Full Text Available Polar mesosphere summer echoes (PMSEs have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N and Syowa Station, Antarctica (69.0° S, are analyzed, together with simultaneous VHF and medium-frequency (MF radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement. Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides

  19. Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2004-12-01

    Full Text Available Polar mesosphere summer echoes (PMSEs have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N and Syowa Station, Antarctica (69.0° S, are analyzed, together with simultaneous VHF and medium-frequency (MF radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides

  20. "Development Radar": The Co-Configuration of a Tool in a Learning Network

    Science.gov (United States)

    Toiviainen, Hanna; Kerosuo, Hannele; Syrjala, Tuula

    2009-01-01

    Purpose: The paper aims to argue that new tools are needed for operating, developing and learning in work-life networks where academic and practice knowledge are intertwined in multiple levels of and in boundary-crossing across activities. At best, tools for learning are designed in a process of co-configuration, as the analysis of one tool,…

  1. Synthetic aperture radar ship discrimination, generation and latent variable extraction using information maximizing generative adversarial networks

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2017-07-01

    Full Text Available Maximizing Generative Adversarial Network extend this idea by extracting untangled latent variables as part of the discrimination process which help to classify the data in terms of categories/classes and properties such as ship rotation. Despite the limited...

  2. Feasibility of Spectrum Sharing Between Airborne Weather Radar and Wireless Local Area Networks

    OpenAIRE

    Zarookian, Ruffy

    2007-01-01

    Emerging technologies such as wireless local area networks and cellular telephones have dramatically increased the use of wireless communications services within the last 10 years. The shortage of available spectrum exists due to increasing demand for wireless services and current spectrum allocation regulations. To alleviate this shortage, Research aims to improve spectral efficiency and to allow spectrum sharing between separatelymanaged and non-coordinating communications systems. T...

  3. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  4. Radar Chart

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  5. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    , glaciers investigation, biomass monitoring, detection of buried targets. Its extension to non-civil application concerns sub-surface target detection and foliage penetration (FOPEN). In order to achieve the flexibility to face all the above mentioned fields of application, the CORISTA system has been designed as a multi-mode and multi-frequency radar. Multimode stands for the functionality of the system both as Sounder and Imager. In addition, P-band radar is a multi-frequency instrument, since it is designed to work in three different frequency bands, as mentioned above: lower frequency band is used in sounder operative mode, higher frequency in imager operative mode. In the Imager operative mode, low resolution and high resolution capabilities are implemented. The data collected by the radar system have been processed using a model-based microwave tomographic approach, recently developed by IREA-CNR, with the aim to enhance the interpretability of the raw-data radar images. Currently, the non-invasive SAR P band application is under evaluation for testing in the Northern Coast of Perù, in collaboration with the Museo Arqueológico Nacional Brüning. The project will aim to recognize the subsurface ancient Moche (100-700 d.C.) and Lambayeque (700-1375 d.C.) canal networks, whose water supply comes from the Canal Taymi, started to be dug by the Mochicas, still in use by local communities.

  6. Efficient Ways to Learn Weather Radar Polarimetry

    Science.gov (United States)

    Cao, Qing; Yeary, M. B.; Zhang, Guifu

    2012-01-01

    The U.S. weather radar network is currently being upgraded with dual-polarization capability. Weather radar polarimetry is an interdisciplinary area of engineering and meteorology. This paper presents efficient ways to learn weather radar polarimetry through several basic and practical topics. These topics include: 1) hydrometeor scattering model…

  7. Jet stream related observations by MST radars

    Science.gov (United States)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  8. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  9. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  10. Kinematic and Thermodynamic Study of a Shallow Hailstorm Sampled by the McGill Bistatic Multiple-Doppler Radar Network.

    Science.gov (United States)

    Protat, Alain; Zawadzki, Isztar; Caya, Alain

    2001-05-01

    In this paper, the authors examine the kinematic and thermodynamic characteristics of a shallow hailstorm sampled by the McGill bistatic multiple-Doppler radar network on 26 May 1997. This storm consists of two main shallow convective cells (depth less than 5 km) aligned along a SW-NE convective line propagating to the southeast. The authors also analyze the interactions between the two cells during the life cycle of the convective line. In particular it is shown that dynamic interactions play a major role in the intensification of the second cell. This storm is found to evolve in a manner that shares some characteristics with both multicell and supercell storms. A rotating updraft associated with a mesocyclone develops in the mature stage of the storm, which is characteristic of a supercell. However, the lack of a `vault' structure on the precipitation field, the relatively fast evolution of the cells, and other characteristics detailed henceforth seem to indicate that this storm only shares a few of the typical characteristics of supercells. Some morphological and thermodynamic similarities are found between this storm and recent numerical simulations of shallow supercell storms. While the first cell starts dissipating, a cold downward rear inflow is developing, which resembles the `rear-flank' downdraft documented in several numerical and observational studies of tornadic storms. This downdraft acts to intensify the updraft associated with the second cell and produces a precipitation overhang within which hail eventually forms. When this pocket of hail falls to the ground a bit later, it accelerates the low-level rear inflow that progressively cuts off the inflow ahead of the storm, leading to the progressive dissipation of the second cell.The physical processes involved in the evolution of rotation at low levels to midlevels within this storm are evaluated using the vorticity equation. It is shown that the time tendency of the positive and negative vertical

  11. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  12. An infectious disease/fever screening radar system which stratifies higher-risk patients within ten seconds using a neural network and the fuzzy grouping method.

    Science.gov (United States)

    Sun, Guanghao; Matsui, Takemi; Hakozaki, Yukiya; Abe, Shigeto

    2015-03-01

    To classify higher-risk influenza patients within 10 s, we developed an infectious disease and fever screening radar system. The system screens infected patients based on vital signs, i.e., respiration rate measured by a radar, heart rate by a finger-tip photo-reflector, and facial temperature by a thermography. The system segregates subjects into higher-risk influenza (HR-I) group, lower-risk influenza (LR-I) group, and non-influenza (Non-I) group using a neural network and fuzzy clustering method (FCM). We conducted influenza screening for 35 seasonal influenza patients and 48 normal control subjects at the Japan Self-Defense Force Central Hospital. Pulse oximetry oxygen saturation (SpO2) was measured as a reference. The system classified 17 subjects into HR-I group, 26 into LR-I group, and 40 into Non-I group. Ten out of the 17 HR-I subjects indicated SpO2 Non-I group. The combination of neural network and FCM achieved efficient detection of higher-risk influenza patients who indicated SpO2 96% within 10 s. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  13. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    2003-04-01

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  14. Finland HF and Esrange MST radar observations of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    T. Ogawa

    Full Text Available Peculiar near range echoes observed in summer with the SuperDARN HF radar in Finland are presented. The echoes were detected at four frequencies of 9, 11, 13 and 15 MHz at slant ranges of 105–250 km for about 100 min. Interferometer measurements indicate that the echoes are returned from 80–100 km altitudes with elevation angles of 20°–60°. Echo power (< 16 dB, Doppler velocity (between –30 and + 30 ms-1 and spectral width (< 60 ms-1 fluctuate with periods of several to 20 min, perhaps due to short–period atmospheric gravity waves. When the HF radar detected the echoes, a vertical incidence MST radar, located at Esrange in Sweden (650 km north of the HF radar site, observed polar mesosphere summer echoes (PMSE at altitudes of 80–90 km. This fact suggests that the near range HF echoes are PMSE at HF band, although both radars did not probe a common volume. With increasing radar frequency, HF echo ranges are closer to the radar site and echo power becomes weaker. Possible mechanisms to explain these features are discussed.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides; instruments and techniques

  15. Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC-based convection model

    DEFF Research Database (Denmark)

    Lukianova, R.; Hanuise, C.; Christiansen, Freddy

    2008-01-01

    We compare the SuperDARN convection patterns with the predictions of a new numerical model of the global distribution of ionospheric electric potentials. The model utilizes high-precision statistical maps of field-aligned currents (FAC) derived from measurements made by polar-orbiting low-altitud...

  16. L-band radar scattering from grass

    Science.gov (United States)

    Chauhan, N.; O'Neill, P.; Le Vine, D.; Lang, R.; Khadr, N.

    1992-01-01

    A radar system based on a network analyzer has been developed to study the backscatter from vegetation. The radar is operated at L-band. Radar measurements of a grass field were made in 1991. The radar returns from the grass were measured at three incidence angles. Ground truth and canopy parameters such as blade and stem dimensions, moisture content of the grass and the soil, and blade and stem density, were measured. These parameters are used in a distorted Born approximation model to compute the backscatter coefficients from the grass layer. The model results are compared with the radar data.

  17. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    1998-10-01

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  18. Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available Quasi-periodic fluctuations in the returned ground-scatter power from the SuperDARN HF radars have been linked to the passage of medium-scale gravity waves. We have applied a technique that extracts the first radar range returns from the F-region to study the spatial extent and characteristics of these waves in the CUTLASS field-of-view. Some ray tracing was carried out to test the applicability of this method. The EISCAT radar facility at Tromsø is well within the CUTLASS field-of-view for these waves and provides a unique opportunity to assess independently the ability of the HF radars to derive gravity wave information. Results from 1st March, 1995, where the EISCAT UHF radar was operating in its CP-1 mode, demonstrate that the radars were in good agreement, especially if one selects the electron density variations measured by EISCAT at around 235 km. CUTLASS and EISCAT gravity wave observations complement each other; the former extends the spatial field of view considerably, whilst the latter provides detailed vertical information about a range of ionospheric parameters.

    Key words. Ionosphere (ionosphere – atmosphere interactions · Meteorology and atmospheric dynamics (thermospheric dynamics · Radio science (ionospheric propagations

  19. Radar history

    Science.gov (United States)

    Putley, Ernest

    2008-07-01

    The invention of radar, as mentioned in Chris Lavers' article on warship stealth technology (March pp21-25), continues to be a subject of discussion. Here in Malvern we have just unveiled a blue plaque to commemorate the physicist Albert Percival Rowe, who arrived in 1942 as the head of the Telecommunications Research Establishment (TRE), which was the Air Ministry research facility responsible for the first British radar systems.

  20. Radar interferometry persistent scatterer technique

    CERN Document Server

    Kampes, Bert M

    2014-01-01

    This volume is devoted to the Persistent Scatterer Technique, the latest development in radar interferometric data processing. It is the only book on Permanent Scatterer (PS) technique of radar interferometry, and it details a newly developed stochastic model and estimator algorithm to cope with possible problems for the application of the PS technique. The STUN (spatio-temporal unwrapping network) algorithm, developed to cope with these issues in a robust way, is presented and applied to two test sites.

  1. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  2. A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system

    Directory of Open Access Journals (Sweden)

    J. A. Davies

    Full Text Available The CUTLASS Finland radar, which comprises an integral part of the SuperDARN system of HF coherent radars, provides near continuous observations of high-latitude plasma irregularities within a field-of-view which extends over some four million square kilometres. Within the Finland radar field-of-view lie both the EISCAT mainland and EISCAT Svalbard incoherent scatter radar facilities. Since the CUTLASS Finland radar commenced operation, in February 1995, the mainland EISCAT UHF radar has been run in common programme 1 and 2 modes for a total duration exceeding 1000 h. Simultaneous and spatially coincident returns from these two radars over this period provide the basis for a comparison of irregularity drift velocity and F-region ion velocity. Initial comparison is limited to velocities from four intervals of simultaneous radar returns; intervals are selected such that they exhibit a variety of velocity signatures including that characteristic of the convection reversal and a rapidly fluctuating velocity feature. Subsequent comparison is on a statistical basis. The velocities measured by the two systems demonstrate reasonable correspondence over the velocity regime encountered during the simultaneous occurrence of coherent and incoherent scatter; differences between the EISCAT UHF measurements of F-region ion drift and the irregularity drift velocities from the Finland radar are explained in terms of a number of contributing factors including contamination of the latter by E-region echoes, a factor which is investigated further, and the potentially deleterious effect of discrepant volume and time sampling intervals.

    Key words. Ionosphere (ionospheric irregularities; plasma convection

  3. Koncept softverskog radara / Software radar concept

    Directory of Open Access Journals (Sweden)

    Dejan Ivković

    2007-01-01

    Full Text Available U ovom radu analiziran je koncept softverskog radara. Zbog velike fleksibilnosti softverski radar ima mnoge prednosti u odnosu na konvencionalne radare. Takođe, održavanje softverskog radarskog sistema je mnogo jeftinije. Predstavljena je teorijska i tehnološka osnovica softverskog radara i opisana njegova arhitektura, kao i način organizacije njegove mreže. Ploča DSP (Digital Signal Processing predstavlja centralni deo softverskog radara, pa je detaljno predstavljena njena uloga. Opisana je platforma quatro 6x i akviziciona kartica PCI-9812/10. Rezultat sprovedene tehno-ekonomske analize pokazuje da je za stvarnu implementaciju projektovanih softverskih modula radarskog prijemnika u konkretni konvencionalni radar potrebno izdvojiti oko 20 000 USD, što je mnogo manje od cene modernih radarskih sistema. / Software radar concept is described in this paper. Because of high level of flexibility software radar has many advantages in aspect to conventional radar. Also, service of the software radar system is much cheaper. Theoretical and technical basis of software radar is presented and its architecture is proposed. Organization method of the software radar network is specified. DSP (Digital, signal Processing board is central part of the software radar and its role is described in details. Quatro 6x platform and PCI-9812/10 acquisition card are described. Result of the given techno-economical analysis approves that it is necessary to invest around 20 000$ and that is much less than the price of modern radar systems.

  4. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  5. Compressive Sensing for MIMO Radar

    CERN Document Server

    Yu, Yao; Poor, H Vincent

    2009-01-01

    Multiple-input multiple-output (MIMO) radar systems have been shown to achieve superior resolution as compared to traditional radar systems with the same number of transmit and receive antennas. This paper considers a distributed MIMO radar scenario, in which each transmit element is a node in a wireless network, and investigates the use of compressive sampling for direction-of-arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOA of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center for further processing.

  6. Radar detection

    CERN Document Server

    DiFranco, Julius

    2004-01-01

    This book presents a comprehensive tutorial exposition of radar detection using the methods and techniques of mathematical statistics. The material presented is as current and useful to today's engineers as when the book was first published by Prentice-Hall in 1968 and then republished by Artech House in 1980. The book is divided into six parts.

  7. Simulation Model of Logistic Support to Isolated Airspace Smveillance Radar Stations

    Directory of Open Access Journals (Sweden)

    Tomislav Crnković

    2008-03-01

    Full Text Available A simulation model of the radar network operation of fivemilitary radar stations has been developed. Simulation waspeiformed in GPSS language and contains the time of operationof five radars through a period of one year, time of plannedpreventive maintenance, irregularities, time of corrective maintenanceand maintenance team(s. The simulation shows theinfluence of the number of maintenance teams on the availabilityof each radar and presents a good orienteering point fordefining the optimal model of preventive and corrective maintenanceof the radar network.

  8. Comparison of atmospheric instability indices derived from radiosonde observations and precipitation values measured with a weather radar and a rain gauge network in Sao Paulo, Brazil.

    Science.gov (United States)

    Alves, Mauro; Martin, Inacio; Shkevov, Rumen; Gusev, Anatoly; De Abreu, Alessandro

    2016-07-01

    Radio soundings are carried out daily in more than 800 stations throughout the world. The data collected in the soundings are used in many meteorological applications such as numerical weather prediction and climate models. Despite the relatively large number of sounding stations, they are unevenly distributed over the globe. It is generally assumed that the desired distance between stations is 300 km. In this study, we performed a comparison of 20 soundings of two stations located 85 km apart (State of São Paulo, Brazil; 23.511811° S, 46.637528° W, and 23.212578° S, 45.866581° W) to determine whether there is a concordance between atmospheric instability indices derived from the data collected by soundings at the these different locations. Additionally, precipitation data obtained by a meteorological radar and a rain gauge network during the same period as the soundings are compared to the stability indices to establish a correlation between precipitation values and these indices.

  9. Coded continuous wave meteor radar

    Science.gov (United States)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  10. RADAR PPI Scope Overlay

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — RADAR PPI Scope Overlays are used to position a RADAR image over a station at the correct resolution. The archive maintains several different RADAR resolution types,...

  11. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1997-01-01

    Full Text Available Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter.

  12. Interferometric evidence for the observation of ground backscatter originating behind the CUTLASS coherent HF radars

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Interferometric techniques allow the SuperDARN coherent HF radars to determine the elevation angles of returned backscatter, giving information on the altitude of the scatter volume, in the case of ionospheric backscatter, or the reflection altitude, in the case of ground backscatter. Assumptions have to be made in the determination of elevation angles, including the direction of arrival, or azimuth, of the returned signals, usually taken to be the forward look-direction (north of the radars, specified by the phasing of the antenna arrays. It is shown that this assumption is not always valid in the case of ground backscatter, and that significant returns can be detected from the backward look-direction of the radars. The response of the interferometer to backscatter from behind the radar is modelled and compared with observations. It is found that ground backscatter from a field-of-view that is the mirror image of the forward-looking field-of-view is a common feature of the observations, and this interpretation successfully explains several anomalies in the received backscatter.

  13. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  14. Flux closure during a substorm observed by Cluster, Double Star, IMAGE FUV, SuperDARN, and Greenland magnetometers

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2006-03-01

    Full Text Available We examine magnetic flux closure during an extended substorm interval on 29 August 2004 involving a two-stage onset and subsequent re-intensifications. Cluster and Double Star provide observations of magnetotail dynamics, while the corresponding auroral evolution, convection response, and substorm current wedge development are monitored by IMAGE FUV, SuperDARN, and the Greenland magnetometer chain, respectively. The first stage of onset is associated with the reconnection of closed flux in the plasma sheet; this is accompanied by a short-lived auroral intensification, a modest substorm current wedge magnetic bay, but no significant ionospheric convection enhancement. The second stage follows the progression of reconnection to the open field lines of the lobes; accompanied by prolonged auroral bulge and westward-travelling surge development, enhanced magnetic bays and convection. We find that the tail dynamics are highly influenced by ongoing dayside creation of open flux, leading to flux pile-up in the near-tail and a step-wise down-tail motion of the tail reconnection site. In all, 5 dipolarizations are observed, each associated with the closure of ~0.1 GWb of flux. Very simple calculations indicate that the X-line should progress down-tail at a speed of 20 km s-1, or 6 RE between each dipolarization.

  15. Flux closure during a substorm observed by Cluster, Double Star, IMAGE FUV, SuperDARN, and Greenland magnetometers

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    2006-03-01

    Full Text Available We examine magnetic flux closure during an extended substorm interval on 29 August 2004 involving a two-stage onset and subsequent re-intensifications. Cluster and Double Star provide observations of magnetotail dynamics, while the corresponding auroral evolution, convection response, and substorm current wedge development are monitored by IMAGE FUV, SuperDARN, and the Greenland magnetometer chain, respectively. The first stage of onset is associated with the reconnection of closed flux in the plasma sheet; this is accompanied by a short-lived auroral intensification, a modest substorm current wedge magnetic bay, but no significant ionospheric convection enhancement. The second stage follows the progression of reconnection to the open field lines of the lobes; accompanied by prolonged auroral bulge and westward-travelling surge development, enhanced magnetic bays and convection. We find that the tail dynamics are highly influenced by ongoing dayside creation of open flux, leading to flux pile-up in the near-tail and a step-wise down-tail motion of the tail reconnection site. In all, 5 dipolarizations are observed, each associated with the closure of ~0.1 GWb of flux. Very simple calculations indicate that the X-line should progress down-tail at a speed of 20 km s-1, or 6 RE between each dipolarization.

  16. Radar Sounder

    Science.gov (United States)

    1988-09-01

    free" measurements on the same or previous orbits. The Scatterometer is an integral part of the radar. The proposed system which is currently called...Right Arrays SATELLITE ( I ATOMOS PHERE/ SWATHWI DTH Figure 3.1.1 Metrad Coverage 18 4 05. 4 1-4 " -u a . .4 c4 641 C Ov31 N -4 a ~ U . - I.44m 41 44...application is not a study objective, but could be considered as part of an experimental program utilizing scatterometer, radiometer and high resolution

  17. Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks

    Science.gov (United States)

    Fieuzal, R.; Marais Sicre, C.; Baup, F.

    2017-05-01

    The yield forecasting of corn constitutes a key issue in agricultural management, particularly in the context of demographic pressure and climate change. This study presents two methods to estimate yields using artificial neural networks: a diagnostic approach based on all the satellite data acquired throughout the agricultural season, and a real-time approach, where estimates are updated after each image was acquired in the microwave and optical domains (Formosat-2, Spot-4/5, TerraSAR-X, and Radarsat-2) throughout the crop cycle. The results are based on the Multispectral Crop Monitoring experimental campaign conducted by the CESBIO (Centre d'Études de la BIOsphère) laboratory in 2010 over an agricultural region in southwestern France. Among the tested sensor configurations (multi-frequency, multi-polarization or multi-source data), the best yield estimation performance (using the diagnostic approach) is obtained with reflectance acquired in the red wavelength region, with a coefficient of determination of 0.77 and an RMSE of 6.6 q ha-1. In the real-time approach the combination of red reflectance and CHH backscattering coefficients provides the best compromise between the accuracy and earliness of the yield estimate (more than 3 months before the harvest), with an R2 of 0.69 and an RMSE of 7.0 q ha-1 during the development of the central stem. The two best yield estimates are similar in most cases (for more than 80% of the monitored fields), and the differences are related to discrepancies in the crop growth cycle and/or the consequences of pests.

  18. A laser radar experiment

    Science.gov (United States)

    Stiglitz, Martin R.; Blanchard, Christine

    1990-09-01

    An experiment demonstrating the feasibility of using a laser radar for long-range target acquisition and tracking is discussed. A CO2 laser was used to collect range Doppler images, while a medium-power argon ion laser was employed for angular tracking. Laser-radar operation is outlined with emphasis on isotopic laser radars. Laser-radar imaging is covered, and a laser-radar range equation is given. Experimental laser-radar transmitter, receiver, and telescope are described. A 35-foot long surface-to-air missile and payload were tracked in the experiment, with the laser radar acquiring the targets as they reached 480 km in altitude, 750 km from the radar site. The 4-ft-diameter aperture laser-radar telescope provided the resolution and range accuracy equivalent to that of a 120-ft microwave radar antenna.

  19. Wave activity (planetary, tidal) throughout the middle atmosphere (20-100km) over the CUJO network: Satellite (TOMS) and Medium Frequency (MF) radar observations

    Science.gov (United States)

    Manson, A. H.; Meek, C. E.; Chshyolkova, T.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2005-02-01

    Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT) is studied using combinations of ground-based (GB) and satellite instruments (2000-2002). The relatively new MFR (medium frequency radar) at Platteville (40° N, 105° W) has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity) comprises systems at London (43° N, 81° W), Platteville (40° N, 105° W), Saskatoon (52° N, 107° W), Wakkanai (45° N, 142° E) and Yamagawa (31° N, 131° E). It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric and MLT wave motions and their

  20. Wave activity (planetary, tidal throughout the middle atmosphere (20-100km over the CUJO network: Satellite (TOMS and Medium Frequency (MF radar observations

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2005-02-01

    Full Text Available Planetary and tidal wave activity in the tropopause-lower stratosphere and mesosphere-lower thermosphere (MLT is studied using combinations of ground-based (GB and satellite instruments (2000-2002. The relatively new MFR (medium frequency radar at Platteville (40° N, 105° W has provided the opportunity to create an operational network of middle-latitude MFRs, stretching from 81° W-142° E, which provides winds and tides 70-100km. CUJO (Canada U.S. Japan Opportunity comprises systems at London (43° N, 81° W, Platteville (40° N, 105° W, Saskatoon (52° N, 107° W, Wakkanai (45° N, 142° E and Yamagawa (31° N, 131° E. It offers a significant 7000-km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14° at two longitudes. Satellite data mainly involve the daily values of the total ozone column measured by the Earth Probe (EP TOMS (Total Ozone Mapping Spectrometer and provide a measure of tropopause-lower stratospheric planetary wave activity, as well as ozone variability.

    Climatologies of ozone and winds/tides involving frequency versus time (wavelet contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40° N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km heights. Both direct planetary wave (PW propagation into the MLT, nonlinear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS satellite data to demonstrate the differences between lower atmospheric

  1. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  2. Adaptive radar resource management

    CERN Document Server

    Moo, Peter

    2015-01-01

    Radar Resource Management (RRM) is vital for optimizing the performance of modern phased array radars, which are the primary sensor for aircraft, ships, and land platforms. Adaptive Radar Resource Management gives an introduction to radar resource management (RRM), presenting a clear overview of different approaches and techniques, making it very suitable for radar practitioners and researchers in industry and universities. Coverage includes: RRM's role in optimizing the performance of modern phased array radars The advantages of adaptivity in implementing RRMThe role that modelling and

  3. The proposed flatland radar

    Science.gov (United States)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  4. McGill algorithm for precipitation nowcasting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network. Part I: Sensitivity studies of the Variational Echo Tracking (VET) technique

    Science.gov (United States)

    Bellon, Aldo; Zawadzki, Isztar; Kilambi, Alamelu; Lee, Hee Choon; Lee, Yong Hee; Lee, Gyuwon

    2010-08-01

    A Variational Echo Tracking (VET) technique has been applied to four months of archived data from the South Korean radar network in order to examine the influence of the various user-selectable parameters on the skill of the resulting 20-min to 4-h nowcasts. The latter are computed over a (512 × 512) array at 2-km resolution. After correcting the original algorithm to take into account the motion of precipitation across the boundaries of such a smaller radar network, we concluded that the set of default input parameters initially assumed is very close to the optimum combination. Decreasing to (5 sx 5) or increasing to (50 × 50) the default vector density of (25 × 25), using two or three maps for velocity determination, varying the relative weights for the constraints of conservation of reflectivity and of the smoothing of the velocity vectors, and finally the application of temporal smoothing all had only marginal effects on the skill of the forecasts. The relatively small sensitivity to significant variations of the VET default parameters is a direct consequence of the fact that the major source of the loss in forecast skill cannot be attributed to errors in the forecast motion, but to the unpredictable nature of the storm growth and decay. Changing the time interval between maps, from 20 to 10 minutes, and significantly increasing the reflectivity threshold from 15 to 30 dBZ had a more noticeable reduction on the forecast skill. Comparisons with the Eulerian "zero velocity" forecast and with a "single" vector forecast have also been performed in order to determine the accrued skill of the VET algorithm. Because of the extensive stratiform nature of the precipitation areas affecting the Korean peninsula, the increased skill is not as large as may have been anticipated. This can be explained by the greater extent of the precipitation systems relative to the size of the radar coverage domain.

  5. Studies on Radar Sensor Networks

    Science.gov (United States)

    2007-08-08

    propagation in three (see Fig. 4). In the S-V model, the magnitude of the k-th cases: near field (less than 55m ), medium field ( 55m - path within the l...return at angle Oim and Doppler shift fi,. where iis a ty estim td n eri in tar e , t seso ible Si (U,t) = [al(u)sli(t),a 2(u )s 2i(t), ... ,aM,(U)SM

  6. Advanced Architectures for Modern Weather/Multifunction Radars

    Science.gov (United States)

    2017-03-01

    simulations for such a large conformal array, but that the system has successfully operated as a functioning radar . An early example of the latter...per polarization. 86 For normal radar operation , digital beamforming will be accomplished over a RapidIO network feeding the back of the LRUs...open up a new paradigm in weather radar capabilities and operational modalities, for both operational and research-oriented systems. The University

  7. Verification of satellite radar remote sensing based estimates of boreal and subalpine growing seasons using an ecosystem process model and surface biophysical measurement network information

    Science.gov (United States)

    McDonald, K. C.; Kimball, J. S.; Zimmerman, R.

    2002-01-01

    We employ daily surface Radar backscatter data from the SeaWinds Ku-band Scatterometer onboard Quikscat to estimate landscape freeze-thaw state and associated length of the seasonal non-frozen period as a surrogate for determining the annual growing season across boreal and subalpine regions of North America for 2000 and 2001.

  8. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  9. Weather Radar Impact Zones

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent an inventory of the national impacts of wind turbine interference with NEXRAD radar stations. This inventory was developed by the NOAA Radar...

  10. Radar: Human Safety Net

    Science.gov (United States)

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  11. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  12. RADAP II, an interim radar data processor

    Science.gov (United States)

    Greene, D. R.; Nilsen, J. D.; Saffle, R. E.; Holmes, D. W.; Hudlow, M. D.; Ahnert, P. R.

    The RADAP (radar data processor) II system, which is developed by the National Weather Service and is a follow-up of the D/RADEX (Digitized Radar Experiment) is described. RADAP maintains the present automatic digital processing capabilities at the D/RADEX sites and extends these capabilities to include 10 network sites in order to fulfill the digital radar data requirements during the period before the production of the Next-Generation Weather Radar (NEXRAD) systems. Consideration is given to the current and future users of the RADAP II data, to the system capability, operational requirements, and hardware; to the installation schedule, and to the products of RADAP II. RADAP II is used for the continued development and testing of applications software to provide feedback on the operational usefulness of the software which is critical to the successful design and development of the NEXRAD system.

  13. Applicability of Doppler weather radar based rainfall data for runoff ...

    Indian Academy of Sciences (India)

    Radar-based hydrological studies in various countries have proven that computation of runoff using radar rainfall data could outperform rain gauge network measurements. There are no reported studies on their utilization for hydrological modelling and/or flood-related studies in Indian river basins. A comparison study ...

  14. Doppler weather radar based nowcasting of cyclone Ogni

    Indian Academy of Sciences (India)

    Disaster Management Support Project (DMSP). Processing of Indian Doppler Weather Radar. (DWR) data for nowcasting application under the sub-project Local Severe Storms and Flash. Floods was one component of this collaborative project. IMD has recently started upgrading its old ana- log radar network with a denser ...

  15. An inter-hemispheric, statistical study of nightside spectral width distributions from coherent HF scatter radars

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    2002-12-01

    Full Text Available A statistical investigation of the Doppler spectral width parameter routinely observed by HF coherent radars has been conducted between the Northern and Southern Hemispheres for the nightside ionosphere. Data from the SuperDARN radars at Thykkvibær, Iceland and Syowa East, Antarctica have been employed for this purpose. Both radars frequently observe regions of high (>200 ms-1 spectral width polewards of low (<200 ms-1 spectral width. Three years of data from both radars have been analysed both for the spectral width and line of sight velocity. The pointing direction of these two radars is such that the flow reversal boundary may be estimated from the velocity data, and therefore, we have an estimate of the open/closed field line boundary location for comparison with the high spectral widths. Five key observations regarding the behaviour of the spectral width on the nightside have been made. These are (i the two radars observe similar characteristics on a statistical basis; (ii a latitudinal dependence related to magnetic local time is found in both hemispheres; (iii a seasonal dependence of the spectral width is observed by both radars, which shows a marked absence of latitudinal dependence during the summer months; (iv in general, the Syowa East spectral width tends to be larger than that from Iceland East, and (v the highest spectral widths seem to appear on both open and closed field lines. Points (i and (ii indicate that the cause of high spectral width is magnetospheric in origin. Point (iii suggests that either the propagation of the HF radio waves to regions of high spectral width or the generating mechanism(s for high spectral width is affected by solar illumination or other seasonal effects. Point (iv suggests that the radar beams from each of the radars are subject either to different instrumental or propagation effects, or different geophysical conditions due to their locations, although we suggest that this result is more likely to

  16. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  17. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  18. HF Radar Bistatic Measurement of Surface Current Velocities: Drifter Comparisons and Radar Consistency Checks

    OpenAIRE

    Lipa, Belinda; Whelan, Chad; Rector, Bill; Nyden, Bruce

    2009-01-01

    We describe the operation of a bistatic HF radar network and outline analysis methods for the derivation of the elliptical velocity components from the radar echo spectra. Bistatic operation is illustrated by application to a bistatic pair: Both remote systems receive backscattered echo, with one remote system in addition receiving bistatic echoes transmitted by the other. The pair produces elliptical velocity components in addition to two sets of radials. Results are compared with drifter me...

  19. Ground penetrating radar (GPR) analysis : Phase II field evaluation.

    Science.gov (United States)

    2011-10-01

    "The objective of this work was to evaluate the feasibility and value of expanding the MDT's Ground : Penetrating Radar (GPR) program to pavement design and rehabilitation, and to network level : evaluation. Phase I of this project concluded that in ...

  20. Validation of simulated hurricane drop size distributions using polarimetric radar

    National Research Council Canada - National Science Library

    Bonnie R Brown; Michael M Bell; Andrew J Frambach

    2016-01-01

      Recent upgrades to the U.S. radar network now allow for polarimetric measurements of landfalling hurricanes, providing a new data set to validate cloud microphysical parameterizations used in tropical cyclone simulations...

  1. Simulation Model of Logistic Support to Isolated Airspace Smveillance Radar Stations

    OpenAIRE

    Tomislav Crnković; Ernest Bazijanac; Danko Basch

    2008-01-01

    A simulation model of the radar network operation of fivemilitary radar stations has been developed. Simulation waspeiformed in GPSS language and contains the time of operationof five radars through a period of one year, time of plannedpreventive maintenance, irregularities, time of corrective maintenanceand maintenance team(s). The simulation shows theinfluence of the number of maintenance teams on the availabilityof each radar and presents a good orienteering point fordefining the optimal m...

  2. Proceedings of the COST 75 final seminar on advanced weather radar systems; Beitraege des Instituts zum COST 75 final seminar on advanced weather radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Flender, F.; Hagen, M.; Hoeller, H.; Keil, C.; Meischner, P.

    1998-07-01

    Across Europe more than 110 weather radars are in operation. More than 60 of them are Doppler radars and this number is increasing steadily. Doppler systems are becoming an operational standard. Most systems operate in C-band, with the exception of the Spanish radar network which is composed of S-band Doppler radars. Radar product composites are available for Scandinavia and Central Europe. National networks exist for the UK, France and Spain. Europe further is fortunate to have 8 polarimetric Doppler radars used mainly for research. In Italy some of those systems are used also for operational nowcasting applications for dedicated customers. The Chilbolton multiparameter Doppler radar operates at S-band. (orig.)

  3. Complexity in the high latitude HF radar spectral width boundary region

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2008-05-01

    Full Text Available SuperDARN radars are sensitive to the collective Doppler characteristics of decametre-scale irregularities in the high latitude ionosphere. The radars routinely observe a distinct transition from large spectral width (>100 m s−1 located at higher latitudes to low spectral width (<50 m s−1 located at lower latitudes. Because of its equatorward location, the TIGER Tasmanian radar is very sensitive to the detection of the spectral width boundary (SWB in the nightside auroral ionosphere. An analysis of the line-of-sight velocities and 2-D beam-swinging vectors suggests the meso-scale (~100 km convection is more erratic in the high spectral width region, but slower and more homogeneous in the low spectral width region. The radar autocorrelation functions are better modelled using Lorentzian Doppler spectra in the high spectral width region, and Gaussian Doppler spectra in the low spectral width region. However, paradoxically, Gaussian Doppler spectra are associated with the largest spectral widths. Application of the Burg maximum entropy method suggests the occurrence of double-peaked Doppler spectra is greater in the high spectral width region, implying the small-scale (~10 km velocity fluctuations are more intense above the SWB. These observations combined with collective wave scattering theory imply there is a transition from a fast flowing, turbulent plasma with a correlation length of velocity fluctuations less than the scattering wavelength, to a slower moving plasma with a correlation length greater than the scattering wavelength. Peak scaling and structure function analysis of fluctuations in the SWB itself reveals approximately scale-free behaviour across temporal scales of ~10 s to ~34 min. Preliminary scaling exponents for these fluctuations, αGSF=0.18±0.02 and αGSF=0.09±0.01, are even smaller than that expected for MHD turbulence.

  4. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  5. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  6. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  7. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  8. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  9. Radar based autonomous sensor module

    Science.gov (United States)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  10. Radar illusion via metamaterials

    Science.gov (United States)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  11. Aspects of Radar Polarimetry

    OpenAIRE

    Lüneburg, Ernst

    2002-01-01

    This contribution is a tutorial introduction to the phenomenological theory of radar polarimetry for the coherent scatter case emphasizing monostatic backscattering and forward scattering (transmission). Characteristic similarities and differences between radar polarimetry and optical polarimetry and the role of linear and antilinear operators (time-reversal) are pointed out and typical polarimetric invariants are identified.

  12. Determination of radar MTF

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  13. Decoders for MST radars

    Science.gov (United States)

    Woodman, R. F.

    1983-01-01

    Decoding techniques and equipment used by MST radars are described and some recommendations for new systems are presented. Decoding can be done either by software in special-purpose (array processors, etc.) or general-purpose computers or in specially designed digital decoders. Both software and hardware decoders are discussed and the special case of decoding for bistatic radars is examined.

  14. Java Radar Analysis Tool

    Science.gov (United States)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  15. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the

  16. Micropower impulse radar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  17. Global evolution and propagation of electric fields associated with Sudden Commencements observed by multi­ple magnetospheric satellites and ionospheric radars

    Science.gov (United States)

    Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Hori, T.; Nishitani, N.

    2015-12-01

    Sudden commencements (SCs) are triggered by a compression of the dayside magnetosphere, leading to fast mode wave propagation in the equatorial plane. In contrast, the compression induces Alfven waves that propagate toward the dayside polar ionosphere along field lines, and then ionospheric electric fields propagate toward low-latitude ionosphere at speed of light. Several direct observations have provided evidence of the fast mode or Alfven wave propagation, but spatial and temporal evolutions of these propagations are not well known. Moreover, a previous study shows that upward Poynting fluxes transport electromagnetic energy toward the nightside magnetosphere. However, whether such upward Poynting fluxes are launched from the ionosphere or converted from fast mode waves has not been confirmed yet. In this study, we investigate evolution of the electric field in the magnetosphere-ionosphere coupled system using THEMIS, Van Allen Probes, GOES 13 and 15, SuperDARN, and HF Doppler radars. We find 70 SC events occurred from January 2013 to December 2014. The result of event studies shows the time delay of the onsets between dayside and nightside magnetospheric electric fields, which can be explained by the fast mode wave propagation. However, we also find that the SC onset of the nightside electric field (~21 h LT) is 15 s later than that of the midnight one although they are detected in the same L-value, which may suggest a dawn-dusk asymmetry of the electromagnetic energy propagation time in the inner magnetosphere. In the ionosphere, both SuperDARN and HF Doppler radars detect a northward velocity at ~15 h LT about 1 min after that of the dayside magnetospheric electric field, which is consistent with the Alfven velocity from the dayside magnetosphere to the polar ionosphere. We will evaluate the possible propagation path of the electromagnetic energy associated with SCs.

  18. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    Science.gov (United States)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  19. Static and dynamic calibration of radar data for hydrological use

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The HYREX dense raingauge network over the Brue catchment in Somerset, England is used to explore the accuracy of calibrated (raingauge-adjusted weather radar data. Calibration is restricted to the use of any single gauge within the catchment so as to simulate the conditions in a typical rainfall monitoring network. Combination of a single gauge and a radar estimate is used to obtain calibrated radar estimates, with the 'calibration factor' varying dynamically from one time-frame to the next. Comparing this dynamic calibration with a static (long-term calibration factor indicates the distance from a gauge over which the dynamic calibration is useful. A tapered calibration factor is implemented which behaves in the same way as the raw dynamic calibration at short distances, tending towards the static calibration factor at larger distances. This hybrid approach outperforms raingauge, uncalibrated radar, and statically-calibrated radar estimates of rainfall for the majority of raingauges in the catchment. The results provide valuable guidance on the density of raingauge network to employ in combination with a weather radar for flood estimation and forecasting. Keywords: radar, raingauge, calibration, rainfall, accuracy

  20. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  1. Extracting bird migration information from C-band Doppler weather radars

    NARCIS (Netherlands)

    van Gasteren, H.; Holleman, I.; Bouten, W.; van Loon, E.; Shamoun-Baranes, J.

    2008-01-01

    Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since

  2. Using TRMM and GPM precipitation radar for calibration of weather radars in the Philippines

    Science.gov (United States)

    Crisologo, Irene; Bookhagen, Bodo; Smith, Taylor; Heistermann, Maik

    2016-04-01

    Torrential and sustained rainfall from tropical cyclones, monsoons, and thunderstorms frequently impact the Philippines. In order to predict, assess, and measure storm impact, it is imperative to have a reliable and accurate monitoring system in place. In 2011, the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) established a weather radar network of ten radar devices, eight of which are single-polarization S-band radars and two dual-polarization C-band radars. Because of a low-density hydrometeorological monitoring networks in the Philippines, calibration of weather radars becomes a challenging, but important task. In this study, we explore the potential of scrutinizing the calibration of ground radars by using the observations from the Tropical Rainfall Measuring Mission (TRMM). For this purpose, we compare different TRMM level 1 and 2 orbital products from overpasses over the Philippines, and compare these products to reflectivities observed by the Philippine ground radars. Differences in spatial resolution are addressed by computing adequate zonal statistics of the local radar bins located within the corresponding TRMM cell in space and time. The wradlib package (Heistermann et al. 2013; Heistermann et al. 2015) is used to process the data from the Subic S-band single-polarization weather radar. These data will be analyzed in conjunction with TRMM data for June to August 2012, three months of the wet season. This period includes the enhanced monsoon of 2012, locally called Habagat 2012, which brought sustained intense rainfall and massive floods in several parts of the country including the most populated city of Metro Manila. References Heistermann, M., Jacobi, S., Pfaff, T. (2013): Technical Note: An open source library for processing weather radar data (wradlib). Hydrol. Earth Syst. Sci., 17, 863-871, doi: 10.5194/hess-17-863-2013. Heistermann, M., S. Collis, M. J. Dixon, S. Giangrande, J. J. Helmus, B. Kelley, J

  3. Radar cross section

    CERN Document Server

    Knott, Gene; Tuley, Michael

    2004-01-01

    This is the second edition of the first and foremost book on this subject for self-study, training, and course work. Radar cross section (RCS) is a comparison of two radar signal strengths. One is the strength of the radar beam sweeping over a target, the other is the strength of the reflected echo sensed by the receiver. This book shows how the RCS ?gauge? can be predicted for theoretical objects and how it can be measured for real targets. Predicting RCS is not easy, even for simple objects like spheres or cylinders, but this book explains the two ?exact? forms of theory so well that even a

  4. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  5. Spatial variability of extreme rainfall at radar subpixel scale

    Science.gov (United States)

    Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2018-01-01

    Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.

  6. Advanced Meteor radar at Tirupati: System details and first results

    Science.gov (United States)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.

  7. An Online Multisensor Data Fusion Framework for Radar Emitter Classification

    Directory of Open Access Journals (Sweden)

    Dongqing Zhou

    2016-01-01

    Full Text Available Radar emitter classification is a special application of data clustering for classifying unknown radar emitters in airborne electronic support system. In this paper, a novel online multisensor data fusion framework is proposed for radar emitter classification under the background of network centric warfare. The framework is composed of local processing and multisensor fusion processing, from which the rough and precise classification results are obtained, respectively. What is more, the proposed algorithm does not need prior knowledge and training process; it can dynamically update the number of the clusters and the cluster centers when new pulses arrive. At last, the experimental results show that the proposed framework is an efficacious way to solve radar emitter classification problem in networked warfare.

  8. The new Passive microwave Neural network Precipitation Retrieval (PNPR algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars

    Directory of Open Access Journals (Sweden)

    P. Sanò

    2016-11-01

    Full Text Available The objective of this paper is to describe the development and evaluate the performance of a completely new version of the Passive microwave Neural network Precipitation Retrieval (PNPR v2, an algorithm based on a neural network approach, designed to retrieve the instantaneous surface precipitation rate using the cross-track Advanced Technology Microwave Sounder (ATMS radiometer measurements. This algorithm, developed within the EUMETSAT H-SAF program, represents an evolution of the previous version (PNPR v1, developed for AMSU/MHS radiometers (and used and distributed operationally within H-SAF, with improvements aimed at exploiting the new precipitation-sensing capabilities of ATMS with respect to AMSU/MHS. In the design of the neural network the new ATMS channels compared to AMSU/MHS, and their combinations, including the brightness temperature differences in the water vapor absorption band, around 183 GHz, are considered. The algorithm is based on a single neural network, for all types of surface background, trained using a large database based on 94 cloud-resolving model simulations over the European and the African areas. The performance of PNPR v2 has been evaluated through an intercomparison of the instantaneous precipitation estimates with co-located estimates from the TRMM Precipitation Radar (TRMM-PR and from the GPM Core Observatory Ku-band Precipitation Radar (GPM-KuPR. In the comparison with TRMM-PR, over the African area the statistical analysis was carried out for a 2-year (2013–2014 dataset of coincident observations over a regular grid at 0.5°  ×  0.5° resolution. The results have shown a good agreement between PNPR v2 and TRMM-PR for the different surface types. The correlation coefficient (CC was equal to 0.69 over ocean and 0.71 over vegetated land (lower values were obtained over arid land and coast, and the root mean squared error (RMSE was equal to 1.30 mm h−1 over ocean and 1.11 mm h−1 over

  9. Wind Profiling Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Clutter present in radar return signals as used for wind profiling is substantially removed by carrying out a Daubechies wavelet transformation on a time series of...

  10. Wave Activity (Planetary, Tidal) throughout the Middle Atmoshere (25-100 km) over the CUJO Network: Satellite and Medium Frequency (MF) Radar Observations

    Science.gov (United States)

    Manson, A.; Meek, C.; Chshyolkova, T.; Avery, S.; Thorsen, D.; MacDougall, J.; Hocking, W.; Murayama, Y.; Igarashi, K.

    Planetary and tidal wave activity in the mesosphere-lower thermosphere (MLT), and assessment of wave activity sources in the lower atmosphere, are studied using combinations of ground based (GB) and satellite instruments (2000-2002). CUJO (Canada U.S. Japan Opportunity) comprises MF radar (MFR) systems at London (43°N, 81°W), Platteville (40°N, 105°W), Saskatoon (52°N, 107°W), Wakkanai (45°N, 142°E) and Yamagawa (31°N, 131°E). It offers a significant mid-latitude 7,000 km longitudinal sector in the North American-Pacific region, and a useful range of latitudes (12-14°) at two longitudes. CUJO provides winds and tides 70-100km. Satellite data include the daily values of the total ozone column measured by the Earth Probe (EP) TOMS (Total Ozone Mapping Spectrometer) and provides a measure of tropopause-lower stratospheric planetary wave activity as well as ozone variability. The so-called UKMO data (an assimilation system) are used for correlative purposes with the TOMS data. Climatologies of ozone and winds/tides involving frequency versus time (wavelet) contour plots for periods from 2-d to 30-d and the interval from mid 2000 to 2002, show that the changes with altitude, longitude and latitude are very significant and distinctive. Geometric-mean wavelets for the region of the 40°N MFRs demonstrate occasions during the autumn, winter and spring months when there are similarities in the spectral features of the lower atmosphere and at mesopause (85km) heights. Both direct planetary wave (PW) propagation into the MLT, non-linear PW-tide interactions, and disturbances in MLT tides associated with fluctuations in the ozone forcing are considered to be possible coupling processes. The complex horizontal wave numbers of the longer period oscillations are provided in frequency contour plots for the TOMS and UKMO data to demonstrate the differences between lower atmospheric and MLT wave motions and their directions of propagation.

  11. Simultaneous optical and radar signatures of poleward-moving auroral forms

    Directory of Open Access Journals (Sweden)

    A. Thorolfsson

    2000-09-01

    Full Text Available Dayside poleward moving auroral forms (PMAFs were detected between 06:30 and 07:00 UT on December 16, 1998, by the meridian scanning photometer and the all-sky camera at Ny Ålesund, Svalbard. Simultaneous SuperDARN HF radar measurements permitted the study of the associated ionospheric velocity pattern. A good general agreement is observed between the location and movement of velocity enhancements (flow channels and the PMAFs. Clear signatures of equatorward flow were detected in the vicinity of PMAFs. This flow is believed to be the signature of a return flow outside the reconnected flux tube, as predicted by the Southwood model. The simulated signatures of this model reproduce globally the measured signatures, and differences with the experimental data can be explained by the simplifications of the model. Proposed schemes of the flow modification due to the presence of several flow channels and the modification of cusp and region 1 field-aligned currents at the time of sporadic reconnection events are shown to fit well with the observations.Key words: Ionosphere (auroral ionosphere; plasma convection - Magnetospheric physics  (magnetopause; cusp and boundary layers

  12. Dynamical critical scaling of electric field fluctuations in the greater cusp and magnetotail implied by HF radar observations of F-region Doppler velocity

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2006-03-01

    Full Text Available Akasofu's solar wind ε parameter describes the coupling of solar wind energy to the magnetosphere and ionosphere. Analysis of fluctuations in ε using model independent scaling techniques including the peaks of probability density functions (PDFs and generalised structure function (GSF analysis show the fluctuations were self-affine (mono-fractal, single exponent scaling over 9 octaves of time scale from ~46 s to ~9.1 h. However, the peak scaling exponent α0 was a function of the fluctuation bin size, so caution is required when comparing the exponents for different data sets sampled in different ways. The same generic scaling techniques revealed the organisation and functional form of concurrent fluctuations in azimuthal magnetospheric electric fields implied by SuperDARN HF radar measurements of line-of-sight Doppler velocity, vLOS, made in the high-latitude austral ionosphere. The PDFs of vLOS fluctuation were calculated for time scales between 1 min and 256 min, and were sorted into noon sector results obtained with the Halley radar, and midnight sector results obtained with the TIGER radar. The PDFs were further sorted according to the orientation of the interplanetary magnetic field, as well as ionospheric regions of high and low Doppler spectral width. High spectral widths tend to occur at higher latitude, mostly on open field lines but also on closed field lines just equatorward of the open-closed boundary, whereas low spectral widths are concentrated on closed field lines deeper inside the magnetosphere. The vLOS fluctuations were most self-affine (i.e. like the solar wind ε parameter on the high spectral width field lines in the noon sector ionosphere (i.e. the greater cusp, but suggested multi-fractal behaviour on closed field lines in the midnight sector (i.e. the central plasma sheet. Long tails in the PDFs imply that "microbursts" in ionospheric convection

  13. CAMEX-4 TOGA RADAR V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TOGA radar dataset consists of browse and radar data collected from the TOGA radar during the CAMEX-4 experiment. TOGA is a C-band linear polarized doppler radar...

  14. Mapping wintering waterfowl distributions using weather surveillance radar.

    Science.gov (United States)

    Buler, Jeffrey J; Randall, Lori A; Fleskes, Joseph P; Barrow, Wylie C; Bogart, Tianna; Kluver, Daria

    2012-01-01

    The current network of weather surveillance radars within the United States readily detects flying birds and has proven to be a useful remote-sensing tool for ornithological study. Radar reflectivity measures serve as an index to bird density and have been used to quantitatively map landbird distributions during migratory stopover by sampling birds aloft at the onset of nocturnal migratory flights. Our objective was to further develop and validate a similar approach for mapping wintering waterfowl distributions using weather surveillance radar observations at the onset of evening flights. We evaluated data from the Sacramento, CA radar (KDAX) during winters 1998-1999 and 1999-2000. We determined an optimal sampling time by evaluating the accuracy and precision of radar observations at different times during the onset of evening flight relative to observed diurnal distributions of radio-marked birds on the ground. The mean time of evening flight initiation occurred 23 min after sunset with the strongest correlations between reflectivity and waterfowl density on the ground occurring almost immediately after flight initiation. Radar measures became more spatially homogeneous as evening flight progressed because birds dispersed from their departure locations. Radars effectively detected birds to a mean maximum range of 83 km during the first 20 min of evening flight. Using a sun elevation angle of -5° (28 min after sunset) as our optimal sampling time, we validated our approach using KDAX data and additional data from the Beale Air Force Base, CA (KBBX) radar during winter 1998-1999. Bias-adjusted radar reflectivity of waterfowl aloft was positively related to the observed diurnal density of radio-marked waterfowl locations on the ground. Thus, weather radars provide accurate measures of relative wintering waterfowl density that can be used to comprehensively map their distributions over large spatial extents.

  15. Goldstone Solar System Radar Waveform Generator

    Science.gov (United States)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  16. Fusion of Telescopic and Doppler Radar Data

    Science.gov (United States)

    Navara, M.; Matousek, M.; Drbohlav, O.

    2014-09-01

    We study the possibilities of observations of satellites at circular LEO orbits simultaneously by a telescope and a bistatic continuous-wave Doppler radar. Telescopic images allow for trajectory determination except for its distance (and hence height). Assuming a circular orbit, the height can be computed from the angular speed, but this is often impossible for LEO objects which do not remain in the field of view during the whole exposure time. To restore the missing information, we use Doppler radar data from a radio astronomy network, originally designed for detection of meteors. Using simulated perturbations of real radar data we studied their influence on the estimates of (i) permanent parameters of trajectory (orbital elements), (ii) instantaneous parameters of trajectory, (iii) distance and height estimates if the other parameters are given by the telescopic data. We derived recommendations for the optimal positions of the transmitter and receivers leading to the best resolution. We also discuss possible ways of improvement of this technique. Fusion results are shown on a suite of several matched radar and telescopic satellite fly-over data.

  17. Radar for tracer particles

    Science.gov (United States)

    Ott, Felix; Herminghaus, Stephan; Huang, Kai

    2017-05-01

    We introduce a radar system capable of tracking a 5 mm spherical target continuously in three dimensions. The 10 GHz (X-band) radar system has a transmission power of 1 W and operates in the near field of the horn antennae. By comparing the phase shift of the electromagnetic wave traveling through the free space with an IQ-mixer, we obtain the relative movement of the target with respect to the antennae. From the azimuth and inclination angles of the receiving antennae obtained in the calibration, we reconstruct the target trajectory in a three-dimensional Cartesian system. Finally, we test the tracking algorithm with target moving in circular as well as in pendulum motions and discuss the capability of the radar system.

  18. The MST Radar Technique

    Science.gov (United States)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  19. Radar Scan Methods in Modern Multifunctional Radars

    Directory of Open Access Journals (Sweden)

    V. N. Skosyrev

    2014-01-01

    Full Text Available Considered urgent task of organizing the review space in modern multifunctional radar systems shall review the space in a wide range of elevation angles from minus 5 to 60-80 degrees and 360 degrees azimuth. MfRLS this type should provide an overview of the zone for a limited time (2-3 sec, detecting a wide range of subtle high and low-flying targets. The latter circumstance requires the organization to select targets against the background of reflections from the underlying surface and local objects (MP. When providing an overview of the space taken into account the need to increase not only the noise immunity, and survivability.Two variants of the review of space in the elevation plane in the solid-state AESA radar. In the first case the overview space narrow beam by one beam. In the second - the transfer of DNA is formed, covering the whole sector of responsibility in elevation and at the reception beam is formed in spetsvychislitele (CB as a result of the signal processing of digitized after emitters antenna web. The estimations of the parameters specific to the multifunction radar SAM air and missile defense. It is shown that in a number of practically important cases, preference should be given clearly one of the methods described review of space.The functional scheme with AESA radar for both variants of the review. Necessary to analyze their differences. Contains the problem of increasing the cost of MfRLS with digital beamforming DNA with increasing bandwidth probing signal being processed.Noted drawbacks of MfRLS with digital beamforming beam. Including: reduced accuracy of the coordinates at low elevation angles, the complexity of the organization of thermal regime of the solid element base using quasi-continuous signal with a low duty cycle. Shows their fundamentally unavoidable in the steppe and desert areas with uneven terrain (Kazakhstan, China, the Middle East.It is shown that for MfRLS working in strong clutter, more preferably

  20. Radar data smoothing filter study

    Science.gov (United States)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  1. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  2. Research on technology of ROF using in radar

    Science.gov (United States)

    Bi, Xiaowen; Zhang, Huiyong; Liu, Caibin

    2017-01-01

    The technology of Radio over Fiber (ROF) not only has broad prospects in the field of communications, but also has great potential in the field of radar. ROF technology will be able to change the traditional structure of radar and radar network, improve their performance. The radar can be reduced to a system that has only transmitter, receiver, transmission line and antenna. Other equipment can be concentrated to the command center. The command center will be not only a data processing center, but also a signal processing center. At first, this paper analyzed the factors that influence the phase stability of microwave signal in fiber. For a short fiber, the stress in the fiber direction is the major point that influence the phase stability, other factors can be neglected. For a long fiber, all factors should be considered. And then, this paper analyzed the technical requirements of radar signal transmission, concluded that the phase stability of ROF system is the most important factor for radar, and chosen the method of phase compensation to solve this problem. At last, this paper designed a ROF link for RF transmission of radar.

  3. Ground penetrating radar

    CERN Document Server

    Daniels, David J

    2004-01-01

    Ground-penetrating radar has come to public attention in recent criminal investigations, but has actually been a developing and maturing remote sensing field for some time. In the light of recent expansion of the technique to a wide range of applications, the need for an up-to-date reference has become pressing. This fully revised and expanded edition of the best-selling Surface-Penetrating Radar (IEE, 1996) presents, for the non-specialist user or engineer, all the key elements of this technique, which span several disciplines including electromagnetics, geophysics and signal processing. The

  4. An operational weather radar-based Quantitative Precipitation Estimation and its application in catchment water resources modeling

    DEFF Research Database (Denmark)

    He, Xin; Vejen, Flemming; Stisen, Simon

    2011-01-01

    The Danish Meteorological Institute operates a radar network consisting of five C-band Doppler radars. Quantitative precipitation estimation (QPE) using radar data is performed on a daily basis. Radar QPE is considered to have the potential to signifi cantly improve the spatial representation...... of precipitation compared with rain-gauge-based methods, thus providing the basis for better water resources assessments. The radar QPE algorithm called ARNE is a distance-dependent areal estimation method that merges radar data with ground surface observations. The method was applied to the Skjern River catchment...... in western Denmark where alternative precipitation estimates were also used as input to an integrated hydrologic model. The hydrologic responses from the model were analyzed by comparing radar- and ground-based precipitation input scenarios. Results showed that radar QPE products are able to generate...

  5. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    OpenAIRE

    Marco Gabella; Peter Speirs; Ulrich Hamann; Urs Germann; Alexis Berne

    2017-01-01

    The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1) the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE); (2) the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR); (3) a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip) is used; (4) spaceborne observatio...

  6. Compressive CFAR radar detection

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Rossum, W.L. van; Maleki, A.; Baraniuk, R.

    2012-01-01

    In this paper we develop the first Compressive Sensing (CS) adaptive radar detector. We propose three novel architectures and demonstrate how a classical Constant False Alarm Rate (CFAR) detector can be combined with ℓ1-norm minimization. Using asymptotic arguments and the Complex Approximate

  7. Netted LPI RADARs

    Science.gov (United States)

    2011-09-01

    that range bin masking should also be quite effective. They argue that if a section of the radar waveform recorded by DRFM or repeater...effective. A Digital RF Memory ( DRFM ) can be used to focus the available power of the jammer and inject Doppler noise only a few KHz wide, matching to the

  8. Metamaterial for Radar Frequencies

    Science.gov (United States)

    2012-09-01

    capacitive coupling with adjacent patches, as shown in Figure 3. The via provides inductance to ground. Figure 3. (a) Planar LH distributed periodic...After [20]). The capacitance in the structure balances out the inductance present when the cylinder is placed in a square array. The metallic... RADAR FREQUENCIES by Szu Hau Tan September 2012 Thesis Advisor: David C. Jenn Second Reader: James Calusdian

  9. Distributed MIMO radar using compressive sampling

    CERN Document Server

    Petropulu, Athina P; Poor, H Vincent

    2009-01-01

    A distributed MIMO radar is considered, in which the transmit and receive antennas belong to nodes of a small scale wireless network. The transmit waveforms could be uncorrelated, or correlated in order to achieve a desirable beampattern. The concept of compressive sampling is employed at the receive nodes in order to perform direction of arrival (DOA) estimation. According to the theory of compressive sampling, a signal that is sparse in some domain can be recovered based on far fewer samples than required by the Nyquist sampling theorem. The DOAs of targets form a sparse vector in the angle space, and therefore, compressive sampling can be applied for DOA estimation. The proposed approach achieves the superior resolution of MIMO radar with far fewer samples than other approaches. This is particularly useful in a distributed scenario, in which the results at each receive node need to be transmitted to a fusion center.

  10. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  11. Processing of 3D Weather Radar Data with Application for Assimilation in the NWP Model

    Directory of Open Access Journals (Sweden)

    Ośródka Katarzyna

    2014-09-01

    Full Text Available The paper is focused on the processing of 3D weather radar data to minimize the impact of a number of errors from different sources, both meteorological and non-meteorological. The data is also quantitatively characterized in terms of its quality. A set of dedicated algorithms based on analysis of the reflectivity field pattern is described. All the developed algorithms were tested on data from the Polish radar network POLRAD. Quality control plays a key role in avoiding the introduction of incorrect information into applications using radar data. One of the quality control methods is radar data assimilation in numerical weather prediction models to estimate initial conditions of the atmosphere. The study shows an experiment with quality controlled radar data assimilation in the COAMPS model using the ensemble Kalman filter technique. The analysis proved the potential of radar data for such applications; however, further investigations will be indispensable.

  12. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television

    Directory of Open Access Journals (Sweden)

    Wan Xianrong

    2017-02-01

    Full Text Available Digital broadcasting and television are important classes of illuminators of opportunity for passive radars. Distributed and multistatic structure are the development trends for passive radars. Most modern digital broadcasting and television systems work on a network, which not only provides a natural condition to distributed passive radar but also puts forward higher requirements on the design of passive radar systems. Among those requirements, precise synchronization among the receivers and transmitters as well as among multiple receiving stations, which mainly involves frequency and time synchronization, is the first to be solved. To satisfy the synchronization requirements of distributed passive radars, a synchronization scheme based on GPS is presented in this paper. Moreover, an effective scheme based on the China Mobile Multimedia Broadcasting signal is proposed to test the system synchronization performance. Finally, the reliability of the synchronization design is verified via the distributed multistatic passive radar experiments.

  13. Radar Analysis of Fall Bird Migration Stopover Sites in the Northeastern U.S.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The national network of weather surveillance radars (WSR-88D/NEXRAD) detects birds in flight, and has proven to be a useful remote-sensing tool for ornithological...

  14. Different responses of northern and southern high latitude ionospheric convection to IMF rotations: a case study based on SuperDARN observations

    Directory of Open Access Journals (Sweden)

    D. Ambrosino

    2009-06-01

    Full Text Available We use SuperDARN data to study high-latitude ionospheric convection over a three hour period (starting at 22:00 UT on 2 January 2003, during which the Interplanetary Magnetic Field (IMF flipped between two states, one with By>>|Bz| and one with Bz>0, both with negative Bx. We find, as expected from previous works, that day side ionospheric convection is controlled by the IMF in both hemispheres. For strongly northward IMF, we observed signatures of two reverse cells, both in the Northern Hemisphere (NH and in the Southern Hemisphere (SH, due to lobe reconnection. On one occasion, we also observed in the NH two viscous cells at the sides of the reverse cell pair. For duskward IMF, we observed in the NH a large dusk clockwise cell, accompanied by a smaller dawn cell, and the signature of a corresponding pattern in the SH. On two occasions, a three cell pattern, composed of a large clockwise cell and two viscous cells, was observed in the NH. As regards the timings of the NH and SH convection reconfigurations, we find that the convection reconfiguration from a positive Bz dominated to a positive By dominated pattern occurred almost simultaneously (i.e. within a few minutes in the two hemispheres. On the contrary, the reconfiguration from a By dominated to a northward IMF pattern started in the NH 8–13 min earlier than in the SH. We suggest that part of such a delay can be due to the following mechanism: as IMF Bx<0, the northward-tailward magnetosheath magnetic field reconnects with the magnetospheric field first tailward of the northern cusp and later on tailward of the southern cusp, due to the IMF draping around the magnetopause.

  15. Joint ACE ground penetrating radar antenna test facility at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter; Sarri, A.

    2005-01-01

    A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented.......A ground penetrating radar (GPR) antenna test facility, established within the ACE network at the Technical University of Denmark (DTU), is described. Examples of results from the facility obtained from measurements of eight different GPR antennas are presented....

  16. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  17. Propagation of radar rainfall uncertainty in urban flood simulations

    Science.gov (United States)

    Liguori, Sara; Rico-Ramirez, Miguel

    2013-04-01

    This work discusses the results of the implementation of a novel probabilistic system designed to improve ensemble sewer flow predictions for the drainage network of a small urban area in the North of England. The probabilistic system has been developed to model the uncertainty associated to radar rainfall estimates and propagate it through radar-based ensemble sewer flow predictions. The assessment of this system aims at outlining the benefits of addressing the uncertainty associated to radar rainfall estimates in a probabilistic framework, to be potentially implemented in the real-time management of the sewer network in the study area. Radar rainfall estimates are affected by uncertainty due to various factors [1-3] and quality control and correction techniques have been developed in order to improve their accuracy. However, the hydrological use of radar rainfall estimates and forecasts remains challenging. A significant effort has been devoted by the international research community to the assessment of the uncertainty propagation through probabilistic hydro-meteorological forecast systems [4-5], and various approaches have been implemented for the purpose of characterizing the uncertainty in radar rainfall estimates and forecasts [6-11]. A radar-based ensemble stochastic approach, similar to the one implemented for use in the Southern-Alps by the REAL system [6], has been developed for the purpose of this work. An ensemble generator has been calibrated on the basis of the spatial-temporal characteristics of the residual error in radar estimates assessed with reference to rainfall records from around 200 rain gauges available for the year 2007, previously post-processed and corrected by the UK Met Office [12-13]. Each ensemble member is determined by summing a perturbation field to the unperturbed radar rainfall field. The perturbations are generated by imposing the radar error spatial and temporal correlation structure to purely stochastic fields. A

  18. Detection of Weather Radar Clutter

    DEFF Research Database (Denmark)

    Bøvith, Thomas

    2008-01-01

    . Especially in the application of weather radar data in quantitative precipitation estimation and forecasting a high data quality is important. Clutter detection is one of the key components in achieving this goal. This thesis presents three methods for detection of clutter. The methods use supervised......Weather radars provide valuable information on precipitation in the atmosphere but due to the way radars work, not only precipitation is observed by the weather radar. Weather radar clutter, echoes from non-precipitating targets, occur frequently in the data, resulting in lowered data quality...... and precipitating and non-precipitating clouds. Another method uses the difference in the motion field of clutter and precipitation measured between two radar images. Furthermore, the direction of the wind field extracted from a weather model is used. The third method uses information about the refractive index...

  19. Detection of Hail Storms in Radar Imagery Using Deep Learning

    Science.gov (United States)

    Pullman, Melinda; Gurung, Iksha; Ramachandran, Rahul; Maskey, Manil

    2017-01-01

    In 2016, hail was responsible for 3.5 billion and 23 million dollars in damage to property and crops, respectively, making it the second costliest weather phenomenon in the United States. In an effort to improve hail-prediction techniques and reduce the societal impacts associated with hail storms, we propose a deep learning technique that leverages radar imagery for automatic detection of hail storms. The technique is applied to radar imagery from 2011 to 2016 for the contiguous United States and achieved a precision of 0.848. Hail storms are primarily detected through the visual interpretation of radar imagery (Mrozet al., 2017). With radars providing data every two minutes, the detection of hail storms has become a big data task. As a result, scientists have turned to neural networks that employ computer vision to identify hail-bearing storms (Marzbanet al., 2001). In this study, we propose a deep Convolutional Neural Network (ConvNet) to understand the spatial features and patterns of radar echoes for detecting hailstorms.

  20. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and...

  1. Radar rainfall image repair techniques

    OpenAIRE

    Wesson, Stephen M.; Pegram, Geoffrey G. S.

    2004-01-01

    There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality) on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast...

  2. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  3. Radares meteorológicos alimentados por vías alternativas; Weather Radars with Power Supply from Alternatives Ways

    Directory of Open Access Journals (Sweden)

    Milagros Diez Rodríguez

    2011-02-01

    Full Text Available La red de radares meteorológicos de Cuba está compuesta por siete radares antiguos (cuatro rusos y tresjaponeses, los cuales son mantenidos y operados por el Instituto de Meteorología de Cuba. En 1997 elInstituto de Meteorología decidió modernizar todos sus radares, tarea que tomó diez años para su ejecución.Los sistemas de accionamiento eléctrico de las antenas también fueron sometidos a la modernización,pero junto a los requerimientos impuestos por el nuevo sistema de adquisición, los sistemas deaccionamiento dibieron cumplir con las exigencias energéticas para ser alimentados de baterías. Esteartículo describe las soluciones técnicas implementadas en el nuevo sistema de accionamiento eléctricode las antenas.  Weather radar network in Cuba is composed by seven old-fashioned radars (four Russian and three Japaneseand they are maintained and operated by Cuban Meteorological Institute. In 1997 Cuban MeteorologicalInstitute decided to modernize all those radars, and this task was accomplished along ten years.Antenna motor drives were also a matter of modernization, but along with restrictions imposed by dataacquisition, drives needed to complain energy restrictions in order to be used with a battery supply. Thispaper describes technical solutions implemented in newly designed antenna motor drives.

  4. Research on Radar Importance with Decision Matrix

    Science.gov (United States)

    Meng, Lingjie; Du, Yu; Wang, Liuheng

    2017-12-01

    Considering the characteristic of radar, constructed the evaluation index system of radar importance, established the comprehensive evaluation model based on decision matrix. Finally, by means of an example, the methods of this evaluation on radar importance was right and feasibility.

  5. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    Science.gov (United States)

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  6. Characterization of Radar Signals Using Neural Networks

    Science.gov (United States)

    1990-12-01

    equation for this line is 3-1 d(Z) = wX1x + w2z 2 + 0’ (3.1) Here d(t) is the linear decision function tD is a vector containing the weights or scaling...an 4 un 6 on 6 Mn I R a un 9 Avg td %crcl %ctct %crct %crct %crct %erct %Crct %crot %trc %trct %cect %¢tet 100 6 93.00 39.00 59.00 73.00 62.00 34.00...WLmYL(1 - YL)YK] (F.34) KL=WL+ 2Vn =l M=l and N M 1+ = + a- 37 Z(dn - Y")[Z ,Winym(I - Ym)WL.YL(I - YL)] (F.35) n=1 rnm=1 F-14 After the first layer

  7. Radar foundations for imaging and advanced concepts

    CERN Document Server

    Sullivan, Roger

    2004-01-01

    Through courses internally taught at IDA, Dr. Roger Sullivan has devised a book that brings readers fully up to speed on the most essential quantitave aspects of general radar in order to introduce study of the most exciting and relevant applications to radar imaging and advanced concepts: Synthetic Aperture Radar (4 chapters), Space-time Adaptive Processing, moving target indication (MTI), bistatic radar, low probability of intercept (LPI) radar, weather radar, and ground-penetrating radar. Whether you're a radar novice or experienced professional, this is an essential refer

  8. Broadview Radar Altimetry Toolbox

    Science.gov (United States)

    Garcia-Mondejar, Albert; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrózio, Américo; Restano, Marco; Benveniste, Jérôme

    2017-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the frontend for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the dataformatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and specific

  9. Assimilation of radar-based nowcast into HIRLAM NWP model

    DEFF Research Database (Denmark)

    Jensen, David Getreuer; Petersen, Claus; Rasmussen, Michael R.

    2015-01-01

    . A selection criterion based on spatial coverage and temporal duration is applied to identify rain events for evaluation. Eight events from August 2010 comply with the criteria and additionally, an extreme event on 2 July 2011 is also evaluated. The RED assimilated NWP model is verified against a non...... by correlation) methodology and are generated from cleaned radar mosaics from the Danish weather radar network. The assimilation technique is a newly developed method that increases model precipitation by increasing low-level convergence and decreasing convergence aloft in order to increase the vertical velocity....... The level of improved predictability relies on the RED quality, which again relies on the type of event....

  10. Interferometric radar measurements

    Science.gov (United States)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  11. Radar Chaff: A Bibliography

    Science.gov (United States)

    1983-11-01

    presented and a general literature review is given. ii loerner. W-M., W. D. fl-Arini. C-Y. Chan, S. Satchi, W-S. Ip, P. W. Mastoria, and 5-Y. Foo, (cont...evolution of the chaff cloud in response to atmospheric processes _n terms of the mean concentration of various dipole " clases " (defined . dipole...Clutter." Arpendix III (Reviaion 1) of Volume It (Radar Clutter) of Book II (Appendixes) of Assessment of Requirements of 1985-20OO Era U. S. Navy Surface

  12. Weather Radar Studies.

    Science.gov (United States)

    1986-03-31

    Cartesian grid . Specifi software odles ane shown in, Table 151-3 ail ’ecIbe briefly in this section below. TAi S- _ _ _ UT LUWL ps mw Lqw Tomn am DWq..G. Se 2...beman the weather radar project software devalopmet personnel and the Limoa Control Syms Egiesering Oroup personnel who rde’-d and implementd the moun...We a~ad hove smard our dom collecton wish the FL-2 ainanmd whh the musmmot umm. Data amum ope ea lymA Mmnhb mod carnatly a sshdukd so coomm -kbro

  13. Partly cloudy with a chance of migration: Weather, radars, and aeroecology

    Science.gov (United States)

    Chilson, Phillip B.; Frick, Winifred F.; Kelly, Jeffrey F.; Howard, Kenneth W.; Larkin, Ronald P.; Diehl, Robert H.; Westbrook, John K.; Kelly, T. Adam; Kunz, Thomas H.

    2012-01-01

    Aeroecology is an emerging scientific discipline that integrates atmospheric science, Earth science, geography, ecology, computer science, computational biology, and engineering to further the understanding of biological patterns and processes. The unifying concept underlying this new transdisciplinary field of study is a focus on the planetary boundary layer and lower free atmosphere (i.e., the aerosphere), and the diversity of airborne organisms that inhabit and depend on the aerosphere for their existence. Here, we focus on the role of radars and radar networks in aeroecological studies. Radar systems scanning the atmosphere are primarily used to monitor weather conditions and track the location and movements of aircraft. However, radar echoes regularly contain signals from other sources, such as airborne birds, bats, and arthropods. We briefly discuss how radar observations can be and have been used to study a variety of airborne organisms and examine some of the many potential benefits likely to arise from radar aeroecology for meteorological and biological research over a wide range of spatial and temporal scales. Radar systems are becoming increasingly sophisticated with the advent of innovative signal processing and dual-polarimetric capabilities. These capabilities should be better harnessed to promote both meteorological and aeroecological research and to explore the interface between these two broad disciplines. We strongly encourage close collaboration among meteorologists, radar scientists, biologists, and others toward developing radar products that will contribute to a better understanding of airborne fauna.

  14. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  15. Synthetic Aperture Radar - Hardware Development

    Directory of Open Access Journals (Sweden)

    V. Rosner

    2009-06-01

    Full Text Available Experimental real and synthetic aperture radar are developed from the base-band digital unit to the analogue RF parts, based on solid state units, using pulse compression for radar imaging. Proper QPSK code is found for matched filter.

  16. SMAP's Radar OBP Algorithm Development

    Science.gov (United States)

    Le, Charles; Spencer, Michael W.; Veilleux, Louise; Chan, Samuel; He, Yutao; Zheng, Jason; Nguyen, Kayla

    2009-01-01

    An approach for algorithm specifications and development is described for SMAP's radar onboard processor with multi-stage demodulation and decimation bandpass digital filter. Point target simulation is used to verify and validate the filter design with the usual radar performance parameters. Preliminary FPGA implementation is also discussed.

  17. Behavior Subtraction applied to radar

    NARCIS (Netherlands)

    Rossum, W.L. van; Caro Cuenca, M.

    2014-01-01

    An algorithm developed for optical images has been applied to radar data. The algorithm, Behavior Subtraction, is based on capturing the dynamics of a scene and detecting anomalous behavior. The radar application is the detection of small surface targets at sea. The sea surface yields the expected

  18. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  19. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  20. Equatorial MST radars: Further consideration

    Science.gov (United States)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  1. 100 years of radar

    CERN Document Server

    Galati, Gaspare

    2016-01-01

    This book offers fascinating insights into the key technical and scientific developments in the history of radar, from the first patent, taken out by Hülsmeyer in 1904, through to the present day. Landmark events are highlighted and fascinating insights provided into the exceptional people who made possible the progress in the field, including the scientists and technologists who worked independently and under strict secrecy in various countries across the world in the 1930s and the big businessmen who played an important role after World War II. The book encourages multiple levels of reading. The author is a leading radar researcher who is ideally placed to offer a technical/scientific perspective as well as a historical one. He has taken care to structure and write the book in such a way as to appeal to both non-specialists and experts. The book is not sponsored by any company or body, either formally or informally, and is therefore entirely unbiased. The text is enriched by approximately three hundred ima...

  2. Propagation of electric fields during Pi2 pulsations based on multi­ple magnetospheric satellites and ionospheric radars

    Science.gov (United States)

    Takahashi, N.; Kasaba, Y.; Nishimura, Y.; Teramoto, M.; Hori, T.; Kikuchi, T.; Miyoshi, Y.; Nishitani, N.

    2015-12-01

    Pi2 pulsations are irregular oscillations having 40-150 s periods, and their source lies in the nightside magnetosphere. Electromagnetic disturbances associated with Pi2 pulsations propagate through the magnetosphere by magnetohydrodynamic waves. The compressional fast mode waves are launched by localized plasma sheet fast flows and propagate into the inner magnetosphere. On the other hand, the velocity shears at the edge of these flows excite shear Alfven waves, which transport magnetic shear and carry field-aligned currents along field lines. These propagation processes have been proposed based on several previous studies using magnetic field observations and numerical simulations. However, there have been few results by electric field observations although the electric field is an important quantity for detecting Pi2 pulsations than magnetic field. In addition, Pi2 pulsations are known to be associated with substorms. Nishimura et al. [2012] shows evolution of auroral streamers at the substorm onset time followed by Pi2 pulsations after a few minutes, using ground-based observations. It suggests that Pi2 pulsations are driven by multiple plasma sheet flow bursts to earthward, and reflects the nature of the current wedge and plasma sheet flow bursts. However, it is unknown whether Pi2 pulsations in the magnetosphere are caused by the oscillating current wedge or induced by a cavity mode. Therefore, simultaneous spacecraft and ground-based observations need to investigate this issue. In this study, we investigate the evolution and propagation of the electric field during Pi2 pulsations using THEMIS, Van Allen Probes, GOES 13 and 15, SuperDARN and HF Doppler radars. Pi2 events are identified by the low-latitude geomagnetic field detected at Kakioka and AL index. We will investigate several events that satellites and radars have the same local time, and evaluate the possible propagation process of the electromagnetic energy associated with Pi2 pulsations.

  3. Joint Efforts Towards European HF Radar Integration

    Science.gov (United States)

    Rubio, A.; Mader, J.; Griffa, A.; Mantovani, C.; Corgnati, L.; Novellino, A.; Schulz-Stellenfleth, J.; Quentin, C.; Wyatt, L.; Ruiz, M. I.; Lorente, P.; Hartnett, M.; Gorringe, P.

    2016-12-01

    During the past two years, significant steps have been made in Europe for achieving the needed accessibility to High Frequency Radar (HFR) data for a pan-European use. Since 2015, EuroGOOS Ocean Observing Task Teams (TT), such as HFR TT, are operational networks of observing platforms. The main goal is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of HFR data access and tools. Particular attention is being paid by HFR TT to converge from different projects and programs toward those common objectives. First, JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatory - Novel European eXpertise for coastal observaTories, H2020 2015 Programme) will contribute on describing the status of the European network, on seeking harmonization through exchange of best practices and standardization, on developing and giving access to quality control procedures and new products, and finally on demonstrating the use of such technology in the general scientific strategy focused by the Coastal Observatory. Then, EMODnet (European Marine Observation and Data Network) Physics started to assemble HF radar metadata and data products within Europe in a uniform way. This long term program is providing a combined array of services and functionalities to users for obtaining free of charge data, meta-data and data products on the physical conditions of European sea basins and oceans. Additionally, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers from 2015 a core information service to any user related to 4 areas of benefits: Maritime Safety, Coastal and Marine Environment, Marine Resources, and Weather, Seasonal Forecasting and Climate activities. INCREASE (Innovation and Networking for the integration of Coastal Radars into EuropeAn marine SErvices - CMEMS Service Evolution 2016) will set the necessary developments towards the integration of existing European

  4. Middle Atmosphere Program. Handbook for MAP. Volume 14: URSI/SCOSTEP Workshop on Technical Aspects of MST Radar

    Science.gov (United States)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1984-01-01

    Various topics relative to middle atmosphere research were discussed. meteorological and aeronomical requirements for mesosphere-stratosphere-troposphere (MST) radar networks, general circulation of the middle atmosphere, the interpretation of radar returns from clear air, spaced antenna and Doppler techniques for velocity measurement, and techniques for the study of gravity waves and turbulence are among the topics discussed.

  5. Feasibility analysis of WDM links for radar applications

    Directory of Open Access Journals (Sweden)

    D. Meena

    2015-03-01

    Full Text Available Active phased array antennas enhances the performance of modern radars by using multiple low power transmit/receive modules in place of a high power transmitter in conventional radars. Fully distributed phased array radars demand the distribution of various signals in radio frequency (RF and digital domain for real time operation. This is normally achieved through complex and bulky coaxial distribution networks. In this work, we intend to tap the inherent advantages of fiber links with wavelength division multiplexed (WDM technology and a feasibility study to adapt these links for radar applications is carried out. This is done by analysing various parameters like amplitude, delay, frequency and phase variation response of various radar waveforms over WDM links. This also includes performance evaluation of non-linear frequency modulation (NLFM signals, known for better signal to noise ratio (SNR to specific side lobe levels. NLFM waveforms are further analysed using pulse compression (PC technique. Link evaluation is also carried out using a standard simulation environment and is then experimentally verified with other waveforms like RF continuous wave (CW, pulsed RF and digital signals. Synchronization signals are generated from this variable duty cycle digital signals during real time radar operation. During evaluation of digital signals, variable transient effects for different duty cycles are observed from an amplifier configuration. A suppression method is proposed to eliminate this transient effects. Further, the link delay response is investigated using different lengths of fiber spools. It can be inferred from the experimental results that WDM links are capable of handling various signals significant to radar applications.

  6. Artificial intelligence techniques for clutter identification with polarimetric radar signatures

    Science.gov (United States)

    Islam, Tanvir; Rico-Ramirez, Miguel A.; Han, Dawei; Srivastava, Prashant K.

    2012-06-01

    The use of different artificial intelligence (AI) techniques for clutter signals identification in the context of radar based precipitation estimation is presented. The clutter signals considered are because of ground clutter, sea clutter and anomalous propagation whereas the explored AI techniques include the support vector machine (SVM), the artificial neural network (ANN), the decision tree (DT), and the nearest neighbour (NN) systems. Eight different radar measurement combinations comprising of various polarimetric spectral signatures — the reflectivity (ZH), differential reflectivity (ZDR), differential propagation phase (ΦDP), cross-correlation coefficient (ρHV), velocity (V) and spectral width (W) from a C-band polarimetric radar are taken into account as input vectors to the AI systems. The results reveal that all four AI classifiers can identify the clutter echoes with around 98-99% accuracy when all radar input signatures are used. As standalone input vectors, the polarimetric textures of the ΦDP and the ZDR have also demonstrated excellent skills distinguishing clutter echoes with an accuracy of 97-98% approximately. If no polarimetric signature is available, a combination of the texture of ZH, V and W representing typical measurements from a single-polarization Doppler radar may be used for clutter identification, but with a lower accuracy when compared to the use of polarimetric radar measurements. In contrast, the use of ZH or W alone is found less reliable for clutter classification. Among the AI techniques, the SVM has a slightly better score in terms of various clutter identification indicators as compared to the others. Conversely, the NN algorithm has shown a lower performance in identifying the clutter echoes correctly considering the standalone radar signatures as inputs. Despite this, the performance among the different AI techniques is comparable indicating the suitability of the developed systems, and this is further supported when

  7. European coordination for coastal HF radar data in EMODnet Physics

    Science.gov (United States)

    Mader, Julien; Novellino, Antonio; Gorringe, Patrick; Griffa, Annalisa; Schulz-Stellenfleth, Johannes; Montero, Pedro; Montovani, Carlo; Ayensa, Garbi; Vila, Begoña; Rubio, Anna; Sagarminaga, Yolanda

    2015-04-01

    Historically, joint effort has been put on observing open ocean, organizing, homogenizing, sharing and reinforcing the impact of the acquired information based on one technology: ARGO with profilers Argo floats, EuroSites, ESONET-NoE, FixO3 for deep water platforms, Ferrybox for stations in ships of opportunities, and GROOM for the more recent gliders. This kind of networking creates synergies and makes easier the implementation of this source of data in the European Data exchange services like EMODnet, ROOSs portals, or any applied services in the Blue economy. One main targeted improvement in the second phase of EMODnet projects is the assembling of data along coastline. In that sense, further coordination is recommended between platform operators around a specific technology in order to make easier the implementation of the data in the platforms (4th EuroGOOS DATAMEQ WG). HF radar is today recognized internationally as a cost-effective solution to provide high spatial and temporal resolution current maps (depending on the instrument operation frequency, covering from a few kilometres offshore up to 200 km) that are needed for many applications for issues related to ocean surface drift or sea state characterization. Significant heterogeneity still exists in Europe concerning technological configurations, data processing, quality standards and data availability. This makes more difficult the development of a significant network for achieving the needed accessibility to HF Radar data for a pan European use. EuroGOOS took the initiative to lead and coordinate activities within the various observation platforms by establishing a number of Ocean Observing Task Teams such as HF-Radars. The purpose is to coordinate and join the technological, scientific and operational HF radar communities at European level. The goal of the group is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of

  8. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    Science.gov (United States)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    by the WERA radars to TEWS. The radar measurements can be used to confirm a pre-warning and raise a tsunami alert. The output data of WERA processing software can be easily integrated into existing TEWS due to flexible data format, fast update rate and quality control of measurements. The archived radar data can be used for further hazard analysis and research purposes. The newly launched Tsunami Warning Center in Oman is one of the most sophisticated tsunami warning system world-wide applying a mix of well proven state-of-the-art subsystems. It allows the acquisition of data from many different sensor systems including seismic stations, GNSS, tide gauges, and WERA ocean radars in one acquisition system providing access to all sensor data via a common interface. The TEWS in Oman also integrates measurements of a modern network of HF ocean radars to verify tsunami simulations, which give additional scenario quality information and confirmation to the decision support.

  9. Skin artifact removal technique for breast cancer radar detection

    Science.gov (United States)

    Caorsi, S.; Lenzi, C.

    2016-06-01

    In this paper we propose a new model-based skin artifact cleaning technique with the aim to remove skin reflections with good effectiveness, without introducing significant signal distortions, and without assuming a priori information on the real structure of the breast. The reference cleaning model, constituted by a two-layer geometry skin-adipose tissue, is oriented to all the ultrawideband radar methods able to detect the tumor starting by the knowledge of each trace recorded around the breast. All the radar signal measurements were simulated by using realistic breast models derived from the University of Wisconsin computational electromagnetic laboratory database and the finite difference time domain (FDTD)-based open source software GprMax. First, we have searched for the best configuration for the reference cleaning model with the aim to minimize the distortions introduced on the radar signal. Second, the performance of the proposed cleaning technique has been assessed by using a breast cancer radar detection technique based on the use of artificial neural network (ANN). In order to minimize the signal distortions, we found that it was necessary to use the real skin thickness and the static Debye parameters of both skin and adipose tissue. In such a case the ANN-based radar approach was able to detect the tumor with an accuracy of 87%. By extending the performance assessment also to the case when only average standard values are used to characterize the reference cleaning model, the detection accuracy was of 84%.

  10. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation

    Directory of Open Access Journals (Sweden)

    T. H. Raupach

    2017-07-01

    Full Text Available A new technique for estimating the raindrop size distribution (DSD from polarimetric radar data is proposed. Two statistical moments of the DSD are estimated from polarimetric variables, and the DSD is reconstructed using a double-moment normalisation. The technique takes advantage of the relative invariance of the double-moment normalised DSD. The method was tested using X-band radar data and networks of disdrometers in three different climatic regions. Radar-derived estimates of the DSD compare reasonably well to observations. In the three tested domains, in terms of DSD moments, rain rate, and characteristic drop diameter, the proposed method performs similarly to and often better than a state-of-the-art DSD-retrieval technique. The approach is flexible because no specific DSD model is prescribed. In addition, a method is proposed to treat noisy radar data to improve DSD-retrieval performance with radar measurements.

  11. Radar, Insect Population Ecology, and Pest Management

    Science.gov (United States)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  12. Radar signal analysis and processing using Matlab

    CERN Document Server

    Mahafza, Bassem R

    2008-01-01

    Offering radar-related software for the analysis and design of radar waveform and signal processing, this book provides comprehensive coverage of radar signals and signal processing techniques and algorithms. It contains numerous graphical plots, common radar-related functions, table format outputs, and end-of-chapter problems. The complete set of MATLAB[registered] functions and routines are available for download online.

  13. The use of radar for bathymetry assessment

    NARCIS (Netherlands)

    Aardoom, J.H.; Greidanus, H.S.F.

    1998-01-01

    The bottom topography in shallow seas can be observed by air- and spaceborne imaging radar. Bathymetric information derived from radar data is limited in accuracy, but radar has a good spatial coverage. The accuracy can be increased by assimilating the radar imagery into existing or insitu gathered

  14. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  15. How Spaceborne Radar Helps Ground Radar in Precipitation Estimation: Real-time Incorporation of TRMM PR into NOAA NMQ System

    Science.gov (United States)

    Cao, Q.; Hong, Y.; Wen, Y.; Gourley, J. J.; Qi, Y.; Zhang, J.; Kirstetter, P.

    2012-12-01

    The U.S. Next-Generation Radar (NEXRAD) network provides operational precipitation products for the National Weather Service. However, the effective coverage of NEXRAD at low levels is restricted in complex terrain leading to insufficient surveillance of low-level portions of the atmosphere. This problem is especially most severe in the intermountain region of the western US. Quantitative precipitation estimation (QPE) based on radar measurements at high levels above the surface can be over- or underestimated, depending on if the radar beam intercepts or overshoots the melting layer. To mitigate this problem, researchers at the University of Oklahoma (OU) have proposed a VPR Identification and Enhancement (VPR-IE) approach to improve radar-based QPE near the surface. VPR-IE applies the VPR observed by Ku-band Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) to correct the S-band NEXRAD radar reflectivity contaminated by ice-related signals such as the bright band (BB) and dry snow signals. The real-time incorporation of TRMM-PR into the NEXRAD-based National Mosaic and Multi-sensor QPE (NMQ) system faces challenges because of their big difference in temporal resolution. The current study explores how to obtain representative VPRs for the real-time implementation of VPR-IE and investigates the potential error of VPR-IE attributed to the temporal variation of precipitation. The real-time VPR-IE is tested using the archived NMQ data collected in the mountainous West region of the U.S. (southern California, Arizona, and western New Mexico). Analysis results demonstrate the great potential of real-time VPR-IE in improving radar QPE in complex terrain.

  16. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  17. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  18. Under the Radar

    CERN Document Server

    Goss, WM

    2010-01-01

    This is the biography of Ruby Payne-Scott (1912 to 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II and were used by Australian, US and New Zealand personnel. From a sociological perspective, her career also offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs this book gives a fascinating insight into the beginning of radio astronomy and the role of a pioneering woman in astronomy.

  19. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  20. Detection of buried pipes by polarimetric borehole radar; Polarimetric borehole radar ni yoru maisetsukan no kenshutsu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Niitsuma, H. [Tohoku University, Sendai (Japan); Nakauchi, T. [Osaka Gas Co. Ltd., Osaka (Japan)

    1997-05-27

    If the borehole radar is utilized for detection of buried pipes, the underground radar measurement becomes possible even in the situation where the mesurement on the earth surface is difficult, for example, such a place as under the road where there is much traffic. However, since buried pipes are horizontally installed and the existing borehole radar can send/receive only vertical polarization, the measurement conducted comes to be poor in efficiency from a viewpoint of the polarization utilization. Therefore, by introducing the polarimetric borehole radar to the detection of buried pipes, a basic experiment was conducted for the effective detection of horizontal buried pipes. Proposing the use of a slot antenna which can send/receive horizontal polarization in borehole in addition to a dipole antenna which sends/receives vertical polarization, developed was a step frequency type continuous wave radar of a network analyzer basis. As a result of the experiment, it was confirmed that reflection from buried pipes is largely dependent on polarization. Especially, it was found that in the slot dipole cross polarization mesurement, reflection from buried pipes can be emphasized. 4 refs., 5 figs.

  1. Radar essentials a concise handbook for radar design and performance

    CERN Document Server

    Curry, G Richard

    2012-01-01

    When you need vital data fast, turn to Radar Essentials. This compact yet comprehensive reference has compiled the most used principles, data, tables, and equations that are used by radar and aerospace system designers on a daily basis. Experts and non-experts alike will find this to be their go-to source for recalling and understanding the fundamentals and employing them in design and performance analysis.

  2. Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling

    DEFF Research Database (Denmark)

    He, Xin; Sonnenborg, Torben Obel; Refsgaard, Jens Christian

    2013-01-01

    QPE data is in fact more obvious to groundwater than to surface water at daily scale. Moreover, substantial negative impact on the simulated hydrological responses is observed due to the cut down in operational rain gauge network between 2006 and 2010. The radar QPE based model demonstrates the added......Weather radar-based quantitative precipitation estimation (QPE) is in principle superior to the areal precipitation estimated by using rain gauge data only, and therefore has become increasingly popular in applications such as hydrological modeling. The present study investigates the potential...... of using multiannual radar QPE data in coupled surface water—groundwater modeling with emphasis given to the groundwater component. Since the radar QPE is partly dependent on the rain gauge observations, it is necessary to evaluate the impact of rain gauge network density on the quality of the estimated...

  3. Improved radar data processing algorithms for quantitative rainfall estimation in real time.

    Science.gov (United States)

    Krämer, S; Verworn, H R

    2009-01-01

    This paper describes a new methodology to process C-band radar data for direct use as rainfall input to hydrologic and hydrodynamic models and in real time control of urban drainage systems. In contrast to the adjustment of radar data with the help of rain gauges, the new approach accounts for the microphysical properties of current rainfall. In a first step radar data are corrected for attenuation. This phenomenon has been identified as the main cause for the general underestimation of radar rainfall. Systematic variation of the attenuation coefficients within predefined bounds allows robust reflectivity profiling. Secondly, event specific R-Z relations are applied to the corrected radar reflectivity data in order to generate quantitative reliable radar rainfall estimates. The results of the methodology are validated by a network of 37 rain gauges located in the Emscher and Lippe river basins. Finally, the relevance of the correction methodology for radar rainfall forecasts is demonstrated. It has become clearly obvious, that the new methodology significantly improves the radar rainfall estimation and rainfall forecasts. The algorithms are applicable in real time.

  4. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  5. Titan Radar Mapper observations from Cassini's T3 fly-by

    Science.gov (United States)

    Elachi, C.; Wall, S.; Janssen, M.; Stofan, E.; Lopes, R.; Kirk, R.; Lorenz, R.; Lunine, J.; Paganelli, F.; Soderblom, L.; Wood, C.; Wye, L.; Zebker, H.; Anderson, Y.; Ostro, S.; Allison, M.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Johnson, W.; Kelleher, K.; Muhleman, D.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Stiles, B.; Vetrella, S.; West, R.

    2006-01-01

    Cassini's Titan Radar Mapper imaged the surface of Saturn's moon Titan on its February 2005 fly-by (denoted T3), collecting high-resolution synthetic-aperture radar and larger-scale radiometry and scatterometry data. These data provide the first definitive identification of impact craters on the surface of Titan, networks of fluvial channels and surficial dark streaks that may be longitudinal dunes. Here we describe this great diversity of landforms. We conclude that much of the surface thus far imaged by radar of the haze-shrouded Titan is very young, with persistent geologic activity. ?? 2006 Nature Publishing Group.

  6. A brief history of the development of wind-profiling or MST radars

    Directory of Open Access Journals (Sweden)

    T. E. Van Zandt

    Full Text Available The history of the development of the wind-profiling or MST radar technique is reviewed from its inception in the late 1960s to the present. Extensions of the technique by the development of boundary-layer radars and the radio-acoustic sounding system (RASS technique to measure temperature are documented. Applications are described briefly, particularly practical applications to weather forecasting, with data from networks of radars, and scientific applications to the study of rapidly varying atmospheric phenomena such as gravity waves and turbulence.

    Key words: Meteorology and atmospheric dynamics (instruments and techniques · Radio science (remote sensing; instruments and techniques

  7. A brief history of the development of wind-profiling or MST radars

    Directory of Open Access Journals (Sweden)

    T. E. Van Zandt

    2000-07-01

    Full Text Available The history of the development of the wind-profiling or MST radar technique is reviewed from its inception in the late 1960s to the present. Extensions of the technique by the development of boundary-layer radars and the radio-acoustic sounding system (RASS technique to measure temperature are documented. Applications are described briefly, particularly practical applications to weather forecasting, with data from networks of radars, and scientific applications to the study of rapidly varying atmospheric phenomena such as gravity waves and turbulence.Key words: Meteorology and atmospheric dynamics (instruments and techniques · Radio science (remote sensing; instruments and techniques

  8. Bistatic and Multistatic Radar Systems

    Directory of Open Access Journals (Sweden)

    V. Schejbal

    2008-09-01

    Full Text Available Radar systems, based on bistatic radar concept attracted a substantial attention in the recent years. Passive coherent location systems using "transmitters of opportunity" like radio or TV broadcasters, GSM base stations, satellite communication and GNSS signals proved their potential in detection and tracking moving targets over a significant area. In this paper the multistatic location system with non-cooperative transmitters is described and various aspects of signal processing and signal parameters are discussed.

  9. Application of HF Radar in Hazard Management

    Directory of Open Access Journals (Sweden)

    Mal Heron

    2016-01-01

    Full Text Available A review is given of the impact that HF radars are having on the management of coastal hazards. Maps of surface currents can be produced every 10–20 minutes which, in real time, improve navigation safety in restricted areas commonly found near ports and harbours. The time sequence of surface current maps enables Lagrangian tracking of small parcels of surface water, which enables hazard mitigation in managing suspended sediments in dredging, in emergency situations where flotsam and other drifting items need to be found, and in pollution control. The surface current measurement capability is used to assist tsunami warnings as shown by the phased-array data from Chile following the Great Tohoku Earthquake in 2011. The newly launched Tsunami Warning Center in Oman includes a network of phased-array HF radars to provide real-time tsunami monitoring. Wind direction maps can be used to locate the position of cold fronts in the open ocean and to monitor the timing and strength of sea-breeze fronts in key locations.

  10. Tsunami Arrival Detection with High Frequency (HF Radar

    Directory of Open Access Journals (Sweden)

    Donald Barrick

    2012-05-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no system exists for local detection of an actual incoming wave with a significant warning capability. Networks of coastal high frequency (HF-radars are now routinely observing surface currents in many countries. We report here on an empirical method for the detection of the initial arrival of a tsunami, and demonstrate its use with results from data measured by fourteen HF radar sites in Japan and USA following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. We compare arrival times at the radars with those measured by neighboring tide gauges. Arrival times measured by the radars preceded those at neighboring tide gauges by an average of 19 min (Japan and 15 min (USA The initial water-height increase due to the tsunami as measured by the tide gauges was moderate, ranging from 0.3 to 2 m. Thus it appears possible to detect even moderate tsunamis using this method. Larger tsunamis could obviously be detected further from the coast. We find that tsunami arrival within the radar coverage area can be announced 8 min (i.e., twice the radar spectral time resolution after its first appearance. This can provide advance warning of the tsunami approach to the coastline locations.

  11. MST radar data management

    Science.gov (United States)

    Nastrom, G. D.

    1984-01-01

    One atmospheric variable which can be deduced from stratosphere-troposphere (ST) radar data other than wind speed and direction is C sub n sup 2, related to the eddy dissipation rate. The computation of C sub n sup 2 makes use of the transmitted power (average, or peak plus duty cycle), the range of the echoes, and the returned power. The returned power can be calibrated only if a noise source of known strength is imposed; e.g., in the absence of absolute calibration, one can compare the diurnal noise signal with the galactic sky temperature. Thus to compute C sub n sup 2 one needs the transmitter power, the returned signal as a function of height, and the returned noise at an altitude so high that it is not contaminated by any signal. Now C sub n sup 2 relates with the amount of energy within the inertial subrange, and for many research studies it may be desirable to relate this with background flow as well as shears or irregularities on the size of the sample volume. The latter are quantified by the spectral width.

  12. All-digital radar architecture

    Science.gov (United States)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  13. Hydrologic applications of weather radar

    Science.gov (United States)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  14. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  15. Short-term ensemble radar rainfall forecasts for hydrological applications

    Science.gov (United States)

    Codo de Oliveira, M.; Rico-Ramirez, M. A.

    2016-12-01

    Flooding is a very common natural disaster around the world, putting local population and economy at risk. Forecasting floods several hours ahead and issuing warnings are of main importance to permit proper response in emergency situations. However, it is important to know the uncertainties related to the rainfall forecasting in order to produce more reliable forecasts. Nowcasting models (short-term rainfall forecasts) are able to produce high spatial and temporal resolution predictions that are useful in hydrological applications. Nonetheless, they are subject to uncertainties mainly due to the nowcasting model used, errors in radar rainfall estimation, temporal development of the velocity field and to the fact that precipitation processes such as growth and decay are not taken into account. In this study an ensemble generation scheme using rain gauge data as a reference to estimate radars errors is used to produce forecasts with up to 3h lead-time. The ensembles try to assess in a realistic way the residual uncertainties that remain even after correction algorithms are applied in the radar data. The ensembles produced are compered to a stochastic ensemble generator. Furthermore, the rainfall forecast output was used as an input in a hydrodynamic sewer network model and also in hydrological model for catchments of different sizes in north England. A comparative analysis was carried of how was carried out to assess how the radar uncertainties propagate into these models. The first named author is grateful to CAPES - Ciencia sem Fronteiras for funding this PhD research.

  16. Radar altimetry assimilation in catchment-scale hydrological models

    Science.gov (United States)

    Bauer-Gottwein, P.; Michailovsky, C. I. B.

    2012-04-01

    Satellite-borne radar altimeters provide time series of river and lake levels with global coverage and moderate temporal resolution. Current missions can detect rivers down to a minimum width of about 100m, depending on local conditions around the virtual station. Water level time series from space-borne radar altimeters are an important source of information in ungauged or poorly gauged basins. However, many water resources management applications require information on river discharge. Water levels can be converted into river discharge by means of a rating curve, if sufficient and accurate information on channel geometry, slope and roughness is available. Alternatively, altimetric river levels can be assimilated into catchment-scale hydrological models. The updated models can subsequently be used to produce improved discharge estimates. In this study, a Muskingum routing model for a river network is updated using multiple radar altimetry time series. The routing model is forced with runoff produced by lumped-parameter rainfall-runoff models in each subcatchment. Runoff is uncertain because of errors in the precipitation forcing, structural errors in the rainfall-runoff model as well as uncertain rainfall-runoff model parameters. Altimetric measurements are translated into river reach storage based on river geometry. The Muskingum routing model is forced with a runoff ensemble and storages in the river reaches are updated using a Kalman filter approach. The approach is applied to the Zambezi and Brahmaputra river basins. Assimilation of radar altimetry significantly improves the capability of the models to simulate river discharge.

  17. LPI Radar Waveform Recognition Based on Time-Frequency Distribution

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-10-01

    Full Text Available In this paper, an automatic radar waveform recognition system in a high noise environment is proposed. Signal waveform recognition techniques are widely applied in the field of cognitive radio, spectrum management and radar applications, etc. We devise a system to classify the modulating signals widely used in low probability of intercept (LPI radar detection systems. The radar signals are divided into eight types of classifications, including linear frequency modulation (LFM, BPSK (Barker code modulation, Costas codes and polyphase codes (comprising Frank, P1, P2, P3 and P4. The classifier is Elman neural network (ENN, and it is a supervised classification based on features extracted from the system. Through the techniques of image filtering, image opening operation, skeleton extraction, principal component analysis (PCA, image binarization algorithm and Pseudo–Zernike moments, etc., the features are extracted from the Choi–Williams time-frequency distribution (CWD image of the received data. In order to reduce the redundant features and simplify calculation, the features selection algorithm based on mutual information between classes and features vectors are applied. The superiority of the proposed classification system is demonstrated by the simulations and analysis. Simulation results show that the overall ratio of successful recognition (RSR is 94.7% at signal-to-noise ratio (SNR of −2 dB.

  18. NOAA NEXt-Generation RADar (NEXRAD) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Level III weather radar products collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska,...

  19. ASTEROID RADAR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset is intended to include all asteroid radar detections. An entry for each detection reports radar cross-section and circular polarization, if known, as...

  20. Radar detection of mini-asteroids

    OpenAIRE

    Chernogor, Leonid F.

    2013-01-01

    Estimates of the possible early detection of decameter-size space bodies (mini-asteroids) by using the existing non-dedicated and dedicated (space surveillance) radars and also the upcoming radars are presented.

  1. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  2. Progress in existing and planned MST radars

    Science.gov (United States)

    Vanzandt, T. E.

    1986-01-01

    Radar systems are described which use two different wind measuring techniques: the partial-reflection drift technique and the mesosphere-stratosphere-troposphere (MST) or Doppler beam-swing radar technique. The advantages and disadvantages of each technique are discussed.

  3. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA TOGA Radar Data dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape...

  4. MST radar data-base management

    Science.gov (United States)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  5. SMAP RADAR Processing and Calibration

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  6. Scanning ARM Cloud Radar Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  7. Radar research at The Pennsylvania State University Radar and Communications Laboratory

    Science.gov (United States)

    Narayanan, Ram M.

    2017-05-01

    The Radar and Communications Laboratory (RCL) at The Pennsylvania State University is at the forefront of radar technology and is engaged in cutting edge research in all aspects of radar, including modeling and simulation studies of novel radar paradigms, design and development of new types of radar architectures, and extensive field measurements in realistic scenarios. This paper summarizes the research at The Pennsylvania State University's Radar and Communications Laboratory and relevant collaborative research with several groups over the past 15 years in the field of radar and related technologies, including communications, radio frequency identification (RFID), and spectrum sensing.

  8. High resolution observations of sporadic-E layers within the polar cap ionosphere using a new incoherent scatter radar experiment

    Directory of Open Access Journals (Sweden)

    B. Damtie

    Full Text Available High resolution observations of sporadic-E layers using a new experiment with the EISCAT (European Incoherent SCATter Svalbard radar (ESR are presented. The observations were made by means of a new type of hardware, which was connected in parallel with the standard receiver. The radar beam was aligned with the geomagnetic field. The experiment applies a new modulation principle. Two phase codes, one with 22 bits and the other with 5 bits, were transmitted at separate frequencies. Each bit was further modulated by a 5-bit Barker code. The basic bit length of both transmissions was 6 µs. Instead of storing the lagged products of the ionospheric echoes in the traditional way, samples of both the transmitted pulses and the ionospheric echoes were taken at intervals of 1 µs and stored on hard disk. The lagged products were calculated later in an off-line analysis. In the analysis a sidelobe-free Barker decoding technique was used. The experiment produces range ambiguities, which were removed by mathematical inversion. Sporadic-E layers were observed at 105–115 km altitudes, and they are displayed with a 150-m range resolution and a 10-s time resolution. The layers show sometimes complex shapes, including triple peaked structures. The thickness of these sublayers is of the order of 1–2 km and they may be separated by 5 km in range. While drifting downwards, the sublayers merge together to form a single layer. The plasma inside a layer is found to have a longer correlation length than that of the surrounding plasma. This may be an indication of heavy ions inside the layer. The field-aligned ion velocity is also calculated. It reveals shears in the meridional wind, which suggests that shears probably also exist in the zonal wind. Hence the wind shear mechanism is a possible generation mechanism of the layer. However, observations from the coherent SuperDARN radar indicate the presence of an ionospheric electric field pointing in the sector between

  9. High resolution observations of sporadic-E layers within the polar cap ionosphere using a new incoherent scatter radar experiment

    Directory of Open Access Journals (Sweden)

    B. Damtie

    2002-09-01

    Full Text Available High resolution observations of sporadic-E layers using a new experiment with the EISCAT (European Incoherent SCATter Svalbard radar (ESR are presented. The observations were made by means of a new type of hardware, which was connected in parallel with the standard receiver. The radar beam was aligned with the geomagnetic field. The experiment applies a new modulation principle. Two phase codes, one with 22 bits and the other with 5 bits, were transmitted at separate frequencies. Each bit was further modulated by a 5-bit Barker code. The basic bit length of both transmissions was 6 µs. Instead of storing the lagged products of the ionospheric echoes in the traditional way, samples of both the transmitted pulses and the ionospheric echoes were taken at intervals of 1 µs and stored on hard disk. The lagged products were calculated later in an off-line analysis. In the analysis a sidelobe-free Barker decoding technique was used. The experiment produces range ambiguities, which were removed by mathematical inversion. Sporadic-E layers were observed at 105–115 km altitudes, and they are displayed with a 150-m range resolution and a 10-s time resolution. The layers show sometimes complex shapes, including triple peaked structures. The thickness of these sublayers is of the order of 1–2 km and they may be separated by 5 km in range. While drifting downwards, the sublayers merge together to form a single layer. The plasma inside a layer is found to have a longer correlation length than that of the surrounding plasma. This may be an indication of heavy ions inside the layer. The field-aligned ion velocity is also calculated. It reveals shears in the meridional wind, which suggests that shears probably also exist in the zonal wind. Hence the wind shear mechanism is a possible generation mechanism of the layer. However, observations from the coherent SuperDARN radar indicate the presence of an ionospheric electric field pointing in the sector between

  10. High resolution observations of sporadic-E layers within the polar cap ionosphere using a new incoherent scatter radar experiment

    Science.gov (United States)

    Damtie, B.; Nygrén, T.; Lehtinen, M. S.; Huuskonen, A.

    2002-09-01

    High resolution observations of sporadic-E layers using a new experiment with the EISCAT (European Incoherent SCATter) Svalbard radar (ESR) are presented. The observations were made by means of a new type of hardware, which was connected in parallel with the standard receiver. The radar beam was aligned with the geomagnetic field. The experiment applies a new modulation principle. Two phase codes, one with 22 bits and the other with 5 bits, were transmitted at separate frequencies. Each bit was further modulated by a 5-bit Barker code. The basic bit length of both transmissions was 6 µs. Instead of storing the lagged products of the ionospheric echoes in the traditional way, samples of both the transmitted pulses and the ionospheric echoes were taken at intervals of 1 µs and stored on hard disk. The lagged products were calculated later in an off-line analysis. In the analysis a sidelobe-free Barker decoding technique was used. The experiment produces range ambiguities, which were removed by mathematical inversion. Sporadic-E layers were observed at 105 115 km altitudes, and they are displayed with a 150-m range resolution and a 10-s time resolution. The layers show sometimes complex shapes, including triple peaked structures. The thickness of these sublayers is of the order of 1 2 km and they may be separated by 5 km in range. While drifting downwards, the sublayers merge together to form a single layer. The plasma inside a layer is found to have a longer correlation length than that of the surrounding plasma. This may be an indication of heavy ions inside the layer. The field-aligned ion velocity is also calculated. It reveals shears in the meridional wind, which suggests that shears probably also exist in the zonal wind. Hence the wind shear mechanism is a possible generation mechanism of the layer. However, observations from the coherent SuperDARN radar indicate the presence of an ionospheric electric field pointing in the sector between west and north. Thus

  11. Goldstone solar system radar signal processing

    Science.gov (United States)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  12. Radar monitoring of heartbeats and respiration

    OpenAIRE

    Aardal, Øyvind

    2013-01-01

    This thesis addresses the use of radar for heartbeat and respiration monitoring. Medical radar can be used for detecting vital signs at distances up to several meters. A medical radar works by transmitting electromagnetic waves towards a person, and receiving echoes reflected off the person. Vital signs appear as modulations in the radar data in period with the heartbeats and respiration. We have measured and analyzed these modulations. The ability to detect human heartbeats from a distanc...

  13. Radar operation in a hostile electromagnetic environment

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  14. Fmcw Mmw Radar For Automotive Longitudinal Control

    OpenAIRE

    David, William

    1997-01-01

    This report presents information on millimeter wave (MMW) radar for automotive longitudinal control. It addresses the fundamental capabilities and limitations of millimeter waves for ranging and contrasts their operation with that of conventional microwave radar. The report analyzes pulsed and FMCW radar configurations, and provides detailed treatment of FMCW radar operating at MMW frequency, its advantages and disadvantages as they relate to range and velocity measurements.

  15. Microwave emissions from police radar.

    Science.gov (United States)

    Fink, J M; Wagner, J P; Congleton, J J; Rock, J C

    1999-01-01

    This study evaluated police officers' exposures to microwaves emitted by traffic radar units. Exposure measurements were taken at approximated ocular and testicular levels of officers seated in patrol vehicles. Comparisons were made of the radar manufacturers' published maximum power density specifications and actual measured power densities taken at the antenna faces of those units. Four speed-enforcement agencies and one transportation research institute provided 54 radar units for evaluation; 17 different models, encompassing 4 frequency bands and 3 antenna configurations, were included. Four of the 986 measurements taken exceeded the 5 mW/cm2 limit accepted by the International Radiation Protection Association and the National Council on Radiation Protection and Measurement, though none exceeded the American Conference of Governmental Industrial Hygienists, American National Standards Institute, Institute of Electrical and Electronic Engineers, or Occupational Safety and Health Administration standard of 10 mW/cm2. The four high measurements were maximum power density readings taken directly in front of the radar. Of the 812 measurements taken at the officers' seated ocular and testicular positions, none exceeded 0.04 mW/cm2; the highest of these (0.034 mW/cm2) was less than 1% of the most conservative current safety standards. High exposures in the limited region directly in front of the radar aperture are easily avoided with proper training. Results of this study indicate that police officer exposure to microwave radiation is apparently minimal. However, because of uncertainty in the medical and scientific communities concerning nonionizing radiation, it is recommended that law enforcement agencies implement a policy of prudent avoidance, including purchasing units with the lowest published maximum power densities, purchasing dash/rear deck-mounted units with antennae mounted outside the patrol vehicle, and training police officers to use the "stand-by" mode

  16. HF Radar Observations of Current, Wave and Wind Parameters in the South Australian Gulf

    Science.gov (United States)

    Middleditch, A.; Cosoli, S.

    2016-12-01

    The Australian Coastal Ocean Radar Network (ACORN) has been measuring metocean parameters from an array of HF radar systems since 2007. Current, wave and wind measurements from a WERA phased-array radar system in the South Australian Gulf are evaluated using current meter, wave buoy and weather station data over a 12-month period. The spatial and temporal scales of the radar deployment have been configured for the measurement of surface currents from the first order backscatter spectra. Quality control procedures are applied to the radar currents that relate to the geometric configurations, statistical properties, and diagnostic variables provided by the analysis software. Wave measurements are obtained through an iterative inversion algorithm that provides an estimate of the directional frequency spectrum. The standard static configurations and data sampling strategies are not optimised for waves and so additional signal processing steps need to be implemented in order to provide reliable estimates. These techniques are currently only applied in offline mode but a real-time approach is in development. Improvements in the quality of extracted wave data are found through increased averaging of the raw radar data but the impact of temporal non-stationarity and spatial inhomogeneities in the WERA measurement region needs to be taken into account. Validations of wind direction data from a weather station on Neptune Island show the potential of using HF radar to combat the spread of bushfires in South Australia.

  17. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  18. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  19. Portable receiver for radar detection

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  20. Principles of modern radar advanced techniques

    CERN Document Server

    Melvin, William

    2012-01-01

    Principles of Modern Radar: Advanced Techniques is a professional reference for practicing engineers that provides a stepping stone to advanced practice with in-depth discussions of the most commonly used advanced techniques for radar design. It will also serve advanced radar academic and training courses with a complete set of problems for students as well as solutions for instructors.

  1. Realization of a scalable airborne radar

    NARCIS (Netherlands)

    Halsema, D. van; Jongh, R.V. de; Es, J. van; Otten, M.P.G.; Vermeulen, B.C.B.; Liempt, L.J. van

    2008-01-01

    Modern airborne ground surveillance radar systems are increasingly based on Active Electronically Scanned Array (AESA) antennas. Efficient use of array technology and the need for radar solutions for various airborne platforms, manned and unmanned, leads to the design of scalable radar systems. The

  2. 46 CFR 108.717 - Radar.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 108.717 Section 108.717 Shipping COAST GUARD... Miscellaneous Equipment § 108.717 Radar. Each self-propelled unit of 1,600 gross tons and over in ocean or coastwise service must have— (a) A marine radar system for surface navigation; and (b) Facilities on the...

  3. 46 CFR 130.310 - Radar.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse. ...

  4. 46 CFR 167.40-40 - Radar.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting...

  5. Comparison of mimo radar concepts: Detection performance

    NARCIS (Netherlands)

    Rossum, W.L. van; Huizing, A.G.

    2007-01-01

    In this paper, four different array radar concepts are compared: pencil beam, floodlight, monostatic MIMO, and multistatic MIMO. The array radar concepts show an increase in complexity accompanied by an increase in diversity. The comparison between the radar concepts is made by investigating the

  6. Comparison of radar data versus rainfall data

    Science.gov (United States)

    Espinosa, B.; Hromadka, T.V.; Perez, R.

    2015-01-01

    Doppler radar data are increasingly used in rainfall-runoff synthesis studies, perhaps due to radar data availability, among other factors. However, the veracity of the radar data are often a topic of concern. In this paper, three Doppler radar outcomes developed by the United States National Weather Service at three radar sites are examined and compared to actual rain gage data for two separate severe storm events in order to assess accuracy in the published radar estimates of rainfall. Because the subject storms were very intense rainfall events lasting approximately one hour in duration, direct comparisons between the three radar gages themselves can be made, as well as a comparison to rain gage data at a rain gage location subjected to the same storm cells. It is shown that topographic interference with the radar outcomes can be a significant factor leading to differences between radar and rain gage readings, and that care is needed in calibrating radar outcomes using available rain gage data in order to interpolate rainfall estimates between rain gages using the spatial variation observed in the radar readings. The paper establishes and describes•the need for “ground-truthing” of radar data, and•possible errors due to topographic interference. PMID:26649276

  7. Survey of Radar Refraction Error Corrections

    Science.gov (United States)

    2016-11-01

    ELECTRONIC TRAJECTORY MEASUREMENTS GROUP RCC 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS DISTRIBUTION A: Approved for...DOCUMENT 266-16 SURVEY OF RADAR REFRACTION ERROR CORRECTIONS November 2016 Prepared by Electronic...This page intentionally left blank. Survey of Radar Refraction Error Corrections, RCC 266-16 iii Table of Contents Preface

  8. Space radar image of Ubar optical/radar

    Science.gov (United States)

    1995-01-01

    This pair of images from space shows a portion of the southern Empty Quarter of the Arabian Peninsula in the country of Oman. On the left is a radar image of the region around the site of the fabled Lost City of Ubar, discovered in 1992 with the aid of remote sensing data. On the right is an enhanced optical image taken by the shuttle astronauts. Ubar existed from about 2800 BC to about 300 AD. and was a remote desert outpost where caravans were assembled for the transport of frankincense across the desert. The actual site of the fortress of the Lost City of Ubar, currently under excavation, is too small to show in either image. However, tracks leading to the site, and surrounding tracks, show as prominent, but diffuse, reddish streaks in the radar image. Although used in modern times, field investigations show many of these tracks were in use in ancient times as well. Mapping of these tracks on regional remote sensing images provided by the Landsat satellite was a key to recognizing the site as Ubar. The prominent magenta colored area is a region of large sand dunes. The green areas are limestone rocks, which form a rocky desert floor. A major wadi, or dry stream bed, runs across the scene and appears as a white line. The radar images, and ongoing field investigations, will help shed light on an early civilization about which little in known. The radar image was taken by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) and is centered at 18 degrees North latitude and 53 degrees East longitude. The image covers an area about 50 kilometers by 100 kilometers (31 miles by 62 miles). The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted, horizontally received; blue is C-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and the United

  9. Recent non-linear radar research at the Army Research Laboratory

    Science.gov (United States)

    Gallagher, Kyle A.; Mazzaro, Gregory J.; Martone, Anthony F.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Nonlinear radar has proven to be a viable means of detecting devices that contain electrical nonlinearities. Electrical nonlinearities are present in dissimilar metals, metal to oxide junctions, semiconductors and more. This paper presents a linear and nonlinear synthetic aperture radar (SAR) system capable of imaging linear and nonlinear targets. The system creates images using data collected from a fixed 16 channel receiver with a single transmitter. A custom 16:1 switching network was developed to collect the SAR data from a 16 antenna receive array. SAR images presented show a nonlinear target placed directly on the ground and imaged in multiple range and cross-range locations. Data is also presented showing the clutter rejection properties of nonlinear radar. Images show that the harmonic radar is able to ignore the strong linear response from a corner reflector, while retaining the nonlinear response from a target.

  10. The economics of data acquisition computers for ST and MST radars

    Science.gov (United States)

    Watkins, B. J.

    1983-01-01

    Some low cost options for data acquisition computers for ST (stratosphere, troposphere) and MST (mesosphere, stratosphere, troposphere) are presented. The particular equipment discussed reflects choices made by the University of Alaska group but of course many other options exist. The low cost microprocessor and array processor approach presented here has several advantages because of its modularity. An inexpensive system may be configured for a minimum performance ST radar, whereas a multiprocessor and/or a multiarray processor system may be used for a higher performance MST radar. This modularity is important for a network of radars because the initial cost is minimized while future upgrades will still be possible at minimal expense. This modularity also aids in lowering the cost of software development because system expansions should rquire little software changes. The functions of the radar computer will be to obtain Doppler spectra in near real time with some minor analysis such as vector wind determination.

  11. Calibration of Local Area Weather Radar-Identifying significant factors affecting the calibration

    DEFF Research Database (Denmark)

    Pedersen, Lisbeth; Jensen, Niels Einar; Madsen, Henrik

    2010-01-01

    A Local Area Weather Radar (LAWR) is an X-band weather radar developed to meet the needs of high resolution rainfall data for hydrological applications. The LAWR system and data processing methods are reviewed in the first part of this paper, while the second part of the paper focuses...... on calibration. The data processing for handling the partial beam filling issue was found to be essential to the calibration. LAWR uses a different calibration process compared to conventional weather radars, which use a power-law relationship between reflectivity and rainfall rate. Instead LAWR uses a linear...... relationship of reflectivity and rainfall rate as result of the log transformation carried out by the logarithmic receiver as opposed to the linear receiver of conventional weather radars. Based on rain gauge data for a five month period from a dense network of nine gauges within a 500 x 500 m area and data...

  12. Heavy Rainfall Monitoring by Polarimetric C-Band Weather Radars

    Directory of Open Access Journals (Sweden)

    Roberto Cremonini

    2010-11-01

    Full Text Available Piemonte region, in the north-western Italy, is characterized by complex orography and Mediterranean influence that often causes extreme rainfall event, during the warm season. Although the region is monitored by a dense gauge network (more than one gauge per 100 km2, the ground measurements are often inadequate to properly observe intense and highly variable precipitations. Polarimetric weather radars provide a unique way to monitor rainfall over wide areas, with the required spatial detail and temporal resolution. Nevertheless, most European weather radar networks are operating at C-band, which may seriously limit quantitative precipitation estimation in heavy rainfall due to relevant power signal attenuation. Phase measurements, unlike power measurements, are not affected by signal attenuation. For this reason, polarimetric radars, for which the differential phase shift measurements are available, provide an additional way in which to estimate precipitation, which is immune to signal attenuation. In this work differential phase based rainfall estimation techniques are applied to analyze two flash-floods: the first one occurred on the Ligurian Apennines on 16 August 2006 and the second occurred on 13 September 2008, causing rain accumulations above 270 mm in few hours.

  13. Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings

    Science.gov (United States)

    Jorgensen, David P.; Hanshaw, Maiana N.; Schmidt, Kevin M.; Laber, Jayme L; Staley, Dennis M.; Kean, Jason W.; Restrepo, Pedro J.

    2011-01-01

    A portable truck-mounted C-band Doppler weather radar was deployed to observe rainfall over the Station Fire burn area near Los Angeles, California, during the winter of 2009/10 to assist with debris-flow warning decisions. The deployments were a component of a joint NOAA–U.S. Geological Survey (USGS) research effort to improve definition of the rainfall conditions that trigger debris flows from steep topography within recent wildfire burn areas. A procedure was implemented to blend various dual-polarized estimators of precipitation (for radar observations taken below the freezing level) using threshold values for differential reflectivity and specific differential phase shift that improves the accuracy of the rainfall estimates over a specific burn area sited with terrestrial tipping-bucket rain gauges. The portable radar outperformed local Weather Surveillance Radar-1988 Doppler (WSR-88D) National Weather Service network radars in detecting rainfall capable of initiating post-fire runoff-generated debris flows. The network radars underestimated hourly precipitation totals by about 50%. Consistent with intensity–duration threshold curves determined from past debris-flow events in burned areas in Southern California, the portable radar-derived rainfall rates exceeded the empirical thresholds over a wider range of storm durations with a higher spatial resolution than local National Weather Service operational radars. Moreover, the truck-mounted C-band radar dual-polarimetric-derived estimates of rainfall intensity provided a better guide to the expected severity of debris-flow events, based on criteria derived from previous events using rain gauge data, than traditional radar-derived rainfall approaches using reflectivity–rainfall relationships for either the portable or operational network WSR-88D radars. Part of the reason for the improvement was due to siting the radar closer to the burn zone than the WSR-88Ds, but use of the dual-polarimetric variables

  14. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  15. The MU radar now partly in operation

    Science.gov (United States)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1984-01-01

    The MU radar (middle- and upper-atmosphere radar) of RASC (Radio Atmospheric Science Center, Kyoto University) is now partly in operation, although the facility will be completed in 1985. The active array system of the radar makes it possible to steer the radar beam as fast as in each interpulse period. Various sophisticated experiments are expected to be performed by the system. A preliminary observation was successful to elucidate atmospheric motions during Typhoon No. 5 which approached the radar site in August, 1983.

  16. Shuttle Radar Topography Mission (SRTM)

    Science.gov (United States)

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  17. Contribution of radar images for grassland management identification

    Science.gov (United States)

    Dusseux, P.; Gong, X.; Corpetti, T.; Hubert-Moy, L.; Corgne, S.

    2012-09-01

    This paper is concerned with the identification of grassland management using both optical and radar data. In that context, grazing, mowing and a mix of these two managements are commonly used by the farmers on grassland fields. These practices and their intensity of use have different environmental impact. Thus, the objectives of this study are, firstly, to identify grassland management practices using a time series of optical and radar imagery at high spatial resolution and, secondly, to evaluate the contribution of radar data to improve identification of farming practices on grasslands. Because of cloud coverage and revisit frequency of satellite, the number of available optical data is limited during the vegetation period. Thus, radar data can be considered as an ideal complement. The present study is based on the use of SPOT, Landsat and RADARSAT-2 data, acquired in 2010 during the growing period. After a pre-processing step, several vegetation indices, biophysical variables, backscattering coefficients and polarimetric discriminators were computed on the data set. Then, with the help of some statistics, the most discriminating variables have been identified and used to classify grassland fields. In addition, to take into account the temporal variation of variables, dedicated indexes as first and second order derivatives were used. Classification process was based on training samples resulting from field campaigns and computed according six methods: Decision Trees, K-Nearest Neighbor, Neural Networks, Support Vector Machines, the Naive Bayes Classifier and Linear Discriminant Analysis. Results show that combined use of optical and radar remote sensing data is not more efficient for grassland management identification.

  18. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  19. Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique

    Directory of Open Access Journals (Sweden)

    A. Fornasiero

    2006-01-01

    Full Text Available Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes – caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes – and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1 calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2 correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3 topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be

  20. Radar research at the University of Kansas

    Science.gov (United States)

    Blunt, Shannon D.; Allen, Christopher; Arnold, Emily; Hale, Richard; Hui, Rongqing; Keshmiri, Shahriar; Leuschen, Carlton; Li, Jilu; Paden, John; Rodriguez-Morales, Fernando; Salandrino, Alessandro; Stiles, James

    2017-05-01

    Radar research has been synonymous with the University of Kansas (KU) for over half a century. As part of this special session organized to highlight significant radar programs in academia, this paper surveys recent and ongoing work at KU. This work encompasses a wide breadth of sensing applications including the remote sensing of ice sheets, autonomous navigation methods for unmanned aerial vehicles (UAVs), novel laser radar capabilities, detection of highenergy cosmic rays using bistatic radar, different forms of waveform diversity such as MIMO radar and pulse agility, and various radar-embedded communication methods. The results of these efforts impact our understanding of the changing nature of the environment, address the proliferation of unmanned systems in the US airspace, realize new sensing modalities enabled by the joint consideration of electromagnetics and signal processing, and greater facilitate radar operation in an increasingly congested and contested spectrum.

  1. The Shuttle Radar Topography Mission

    Science.gov (United States)

    Farr, T. G.; Kobrick, M.

    2001-12-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA, the National Imagery and Mapping Agency, and the German and Italian Space Agencies. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and better than 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. Data processing will be completed by the end of 2002. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  2. Eastern Sahara Geology from Orbital Radar: Potential Analog to Mars

    Science.gov (United States)

    Farr, T. G.; Paillou, P.; Heggy, E.

    2004-01-01

    Much of the surface of Mars has been intensely reworked by aeolian processes and key evidence about the history of the Martian environment seems to be hidden beneath a widespread layer of debris (paleo lakes and rivers, faults, impact craters). In the same way, the recent geological and hydrological history of the eastern Sahara is still mainly hidden under large regions of wind-blown sand which represent a possible terrestrial analog to Mars. The subsurface geology there is generally invisible to optical remote sensing techniques, but radar images obtained from the Shuttle Imaging Radar (SIR) missions were able to penetrate the superficial sand layer to reveal parts of paleohydrological networks in southern Egypt.

  3. Alpine radar conversion for LAWR

    Science.gov (United States)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  4. Observations of Heavy Rainfall in a Post Wildland Fire Area Using X-Band Polarimetric Radar

    Science.gov (United States)

    Cifelli, R.; Matrosov, S. Y.; Gochis, D. J.; Kennedy, P.; Moody, J. A.

    2011-12-01

    Polarimetric X-band radar systems have been used increasingly over the last decade for rainfall measurements. Since X-band radar systems are generally less costly, more mobile, and have narrower beam widths (for same antenna sizes) than those operating at lower frequencies (e.g., C and S-bands), they can be used for the "gap-filling" purposes for the areas when high resolution rainfall measurements are needed and existing operational radars systems lack adequate coverage and/or resolution for accurate quantitative precipitation estimation (QPE). The main drawback of X-band systems is attenuation of radar signals, which is significantly stronger compared to frequencies used by "traditional" precipitation radars operating at lower frequencies. The use of different correction schemes based on polarimetric data can, to a certain degree, overcome this drawback when attenuation does not cause total signal extinction. This presentation will focus on examining the use of high-resolution data from the NOAA Earth System Research Laboratory (ESRL) mobile X-band dual polarimetric radar for the purpose of estimating precipitation in a post-wildland fire area. The NOAA radar was deployed in the summer of 2011 to examine the impact of gap-fill radar on QPE and the resulting hydrologic response during heavy rain events in the Colorado Front Range in collaboration with colleagues from the National Center for Atmospheric Research (NCAR), Colorado State University (CSU), and the U.S. Geological Survey (USGS). A network of rain gauges installed by NCAR, the Denver Urban Drainage Flood Control District (UDFCD), and the USGS are used to compare with the radar estimates. Supplemental data from NEXRAD and the CSU-CHILL dual polarimetric radar are also used to compare with the NOAA X-band and rain gauges. It will be shown that rainfall rates and accumulations estimated from specific differential phase measurements (KDP) at X-band are in good agreement with the measurements from the gauge

  5. Aspects of Applying Weather Radar Based Nowcast for Highways in Denmark

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Quist, MIchael; Thorndahl, Søren Liedtke

    on the movement direction of the precipitation and the direction and speed of the road users. The paper compares and discusses the performance of the nowcast for a selected section of the highway to illustrate the potential in weather radar based forecast for highway applications over long distances.......The Danish road network consists of 73.331 km. of roads. 3.790 km. of these roads are state roads and are considered as major lines of transportation. Although these roads only represent 5% of the total network, 45% of all traffic is moving along these roads. Application of weather radar based...... scenarios. The first is often related to extreme rain intensities while the second can also include less extreme intensities (but maybe higher volume). In both the case of deteriorated traffic conditions and construction phase, a nowcast based on weather radar can provide valuable information...

  6. Nowcasting of kinetic energy of hail precipitation using radar

    Science.gov (United States)

    Sánchez, J. L.; López, L.; García-Ortega, E.; Gil, B.

    2013-04-01

    The detection of hail precipitation generated by a storm is a complicated task due to the limited spatial extension and the space-time irregularity of impacts generated on the ground. Some of the most extensive methods to create climatology of these impacts are observer networks or hailpad networks. Both methods are affected by numerous inconveniences, overall when it is necessary to work with an extensive area, in which it is necessary to maintain an operating network that has numerous maintenance costs. In this sense, there are numerous works done that have developed different models with the objective of detecting hail precipitation using meteorological radar. Some of these methods use discriminant statistic techniques that, through the combination of different radar parameters, can achieve very satisfactory results. On the other hand, it would be very interesting to know not only the probability of hail, but also some of the characteristics of the hailstones precipitated, such as the number or their kinetic energy, since these parameters are directly related to the damage generated in infrastructures and/or crops. The estimation of kinetic energy of hail precipitation using meteorological radar has caught the interest of some authors. In our case, we used the databases obtained by hailpad networks and the databases of C-band and S-Band radar to build an algorithm to estimate the vertical component of kinetic energy produced by a hail precipitation. In order to carry out this study, data on hail was gathered and analyzed from the hailpad networks in the province of Zaragoza (in the north-east of Spain) and the province of Mendoza (in Argentina, close to the Andes range on the border with Chile). These are two geographically distant regions, but which share a common characteristic: a high frequency of storms with hail precipitation, mainly during the summer months (Sánchez et al., 2009a). In order to compile the database, we have established two categories of

  7. Plasma flow during the brightening of proton aurora in the cusp

    DEFF Research Database (Denmark)

    Taguchi, S.; Hosokawa, K.; Suzuki, S.

    2010-01-01

    On the basis of simultaneous observations from the Super Dual Auroral Radar Network (SuperDARN), the far ultraviolet instrument on the IMAGE spacecraft, and a magnetometer installed on the east coast of Greenland, we present the characteristics of plasma flow during a westward moving proton auror...... to the traveling bulge at the polar cap boundary, which is the footprint of a flux transfer event, and imply that the preexisting vortical flow may be intensified when it becomes inflow to the bulge....

  8. Hourly Gulf Stream Position, Width, and Orientation Estimates with HF Radar off Cape Hatteras, North Carolina, U.S.A.

    Science.gov (United States)

    Muglia, M.; Seim, H.; Haines, S.; Taylor, P.

    2016-12-01

    Hourly time series of the landward edge of the Gulf Stream (GS), width of the cyclonic shear zone, and the orientation of the GS have been formed by first identifying the maxima in a single radar's radial surface current shears and current speeds. Maxima are chosen from within areas of consistent radar measurements over the time period sampled. Four bearings are selected for analysis, two where the GS enters and two where it exits the radar coverage. The width of the cyclonic shear zone is measured as the distance between the maximum in the gradient of the radial current speed, and the maximum in the speed along a single bearing. The orientation of the current is estimated by comparing the location of these maxima between the four selected bearings. This method is applied to two separate 5MHz Seasonde radars that consistently make GS measurements along the NC coast. The method benefits from recent application of radial metric quality controls on radial surface currents in the NC radar network that improves radial and total surface currents. The efficacy of the method is evaluated by comparing these estimates to those made using total surface currents from the radar network, satellite sea surface temperatures, and satellite altimetry. The radar hourly surface current measurements are more frequent than satellite observations and are not inhibited by cloud cover. Consistent long-term GS position estimates are expected to provide valuable new insights about the oceanography offshore of Cape Hatteras, NC.

  9. A comparison of airborne and ground-based radar observations with rain gages during the CaPE experiment

    Science.gov (United States)

    Satake, Makoto; Short, David A.; Iguchi, Toshio

    1992-01-01

    The vicinity of KSC, where the primary ground truth site of the Tropical Rainfall Measuring Mission (TRMM) program is located, was the focal point of the Convection and Precipitation/Electrification (CaPE) experiment in Jul. and Aug. 1991. In addition to several specialized radars, local coverage was provided by the C-band (5 cm) radar at Patrick AFB. Point measurements of rain rate were provided by tipping bucket rain gage networks. Besides these ground-based activities, airborne radar measurements with X- and Ka-band nadir-looking radars on board an aircraft were also recorded. A unique combination data set of airborne radar observations with ground-based observations was obtained in the summer convective rain regime of central Florida. We present a comparison of these data intending a preliminary validation. A convective rain event was observed simultaneously by all three instrument types on the evening of 27 Jul. 1991. The high resolution aircraft radar was flown over convective cells with tops exceeding 10 km and observed reflectivities of 40 to 50 dBZ at 4 to 5 km altitude, while the low resolution surface radar observed 35 to 55 dBZ echoes and a rain gage indicated maximum surface rain rates exceeding 100 mm/hr. The height profile of reflectivity measured with the airborne radar show an attenuation of 6.5 dB/km (two way) for X-band, corresponding to a rainfall rate of 95 mm/hr.

  10. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  11. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Philip E

    2008-01-01

    This revised and expanded second edition brings you to the cutting edge with new chapters on LPI radar design, including over-the-horizon radar, random noise radar, and netted LPI radar. You also discover critical LPI detection techniques, parameter extraction signal processing techniques, and anti-radiation missile design strategies to counter LPI radar.

  12. Monitoring wheat growth with radar

    Science.gov (United States)

    Bush, T. F.

    1976-01-01

    The scattering properties of wheat in the 8-18 GHz band were studied as a function of frequency, polarization, incidence angle, and crop maturity. Supporting ground truth was collected at the time of measurement. The data indicate the radar backscattering coefficient is sensitive to both radar system parameters and crop characteristics, particularly at incidence angles near nadir. Linear regression analysis of the backscattering coefficient (dB) on both time and plant moisture content result in rather good correlation, as high as 0.9, with the slope of these regression lines being 0.55 dB/day and -0.275 dB% plant moisture at 9.4 GHz at nadir. It is found that the coefficient undergoes rapid variations shortly before and after the wheat is harvested. Both of these analyses suggest methods for estimating wheat maturity and for monitoring the progress of harvest.

  13. Measuring coal deposits by radar

    Science.gov (United States)

    Barr, T. A.

    1980-01-01

    Front-surface, local-oscillator radar directly compares frequency of signals reflected from front and back surfaces of coal deposits. Thickness is measured directly as frequency difference. Transmitter is frequency modulated, so thickness is computed directly from frequency difference. Because front and back reflections are detected in combination rather than separately, masking of comparatively weak back signal is less problem. Also system is not sensitive to extraneous reflections from targets between transmitting antenna and coal surface.

  14. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  15. Canadian Meteor Orbit Radar (CMOR)

    OpenAIRE

    Webster, A. R.; P. G. Brown; Jones, J.; Ellis, K.J.; Campbell-Brown, M.

    2004-01-01

    International audience; The radar system described here (CMOR) comprises a basic 5-element receiving system, co-located with a pulsed transmitter, specifically designed to observe meteor echoes and to determine their position in space with an angular resolution of ~1° and a radial resolution of ~3 km. Two secondary receiving sites, a few km distant and arranged to form approximately a right angle with the base station, allow the determination of the velocity (speed and direction) of the meteo...

  16. InSAR datum connection using GNSS-augmented radar transponders

    NARCIS (Netherlands)

    Mahapatra, P.S.; van der Marel, H.; van Leijen, F.J.; Samiei Esfahany, S.; Klees, R.; Hanssen, R.F.

    2017-01-01

    Deformation estimates from Interferometric Synthetic
    Aperture Radar (InSAR) are relative: they form a ‘free’
    network referred to an arbitrary datum, e.g. by assuming a reference
    point in the image to be stable. However, some applications
    require ‘absolute’ InSAR estimates, i.e.

  17. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland and Antarctica using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument....

  18. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  19. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  20. IceBridge Accumulation Radar L1B Geolocated Radar Echo Strength Profiles

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken over Greenland using the Center for Remote Sensing of Ice Sheets (CReSIS) Accumulation Radar instrument. The data were...

  1. IceBridge Snow Radar L1B Geolocated Radar Echo Strength Profiles V002

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains radar echograms taken from the Center for Remote Sensing of Ice Sheets (CReSIS) ultra wide-band snow radar over land and sea ice in the Arctic...

  2. Measurement of Precipitation in the Alps Using Dual-Polarization C-Band Ground-Based Radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2017-11-01

    Full Text Available The complex problem of quantitative precipitation estimation in the Alpine region is tackled from four different points of view: (1 the modern MeteoSwiss network of automatic telemetered rain gauges (GAUGE; (2 the recently upgraded MeteoSwiss dual-polarization Doppler, ground-based weather radar network (RADAR; (3 a real-time merging of GAUGE and RADAR, implemented at MeteoSwiss, in which a technique based on co-kriging with external drift (CombiPrecip is used; (4 spaceborne observations, acquired by the dual-wavelength precipitation radar on board the Global Precipitation Measuring (GPM core satellite. There are obviously large differences in these sampling modes, which we have tried to minimize by integrating synchronous observations taken during the first 2 years of the GPM mission. The data comprises 327 “wet” overpasses of Switzerland, taken after the launch of GPM in February 2014. By comparing the GPM radar estimates with the MeteoSwiss products, a similar performance was found in terms of bias. On average (whole country, all days and seasons, both solid and liquid phases, underestimation is as large as −3.0 (−3.4 dB with respect to RADAR (GAUGE. GPM is not suitable for assessing what product is the best in terms of average precipitation over the Alps. GPM can nevertheless be used to evaluate the dispersion of the error around the mean, which is a measure of the geographical distribution of the error inside the country. Using 221 rain-gauge sites, the result is clear both in terms of correlation and in terms of scatter (a robust, weighted measure of the dispersion of the multiplicative error around the mean. The best agreement was observed between GPM and CombiPrecip, and, next, between GPM and RADAR, whereas a larger disagreement was found between GPM and GAUGE. Hence, GPM confirms that, for precipitation mapping in the Alpine region, the best results are obtained by combining ground-based radar with rain-gauge measurements using

  3. Automotive Radar Sensors in Silicon Technologies

    CERN Document Server

    Jain, Vipul

    2013-01-01

    This book presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors.  This book bridges an existing gap between information available on dependable system/architecture design and circuit design.  It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors.  System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.  Describes concepts and fundamentals of automotive rada...

  4. The Arecibo Observatory as an MST radar

    Science.gov (United States)

    Woodman, R. F.

    1983-01-01

    The radars and other systems at the Arecibo Observatory were designed and built, originally, for incoherent-scatter and radio-astronomy research. More recently, important additions have been made for planetary radar and artificial RF heating of the ionosphere. Although designed and built for a different application, these systems have shown to be very powerful tools for tropospheric, stratospheric and mesospheric research. The Observatory at present has two main radars: one at 430 and the other at 2380 MHz. In addition, 50-MHz MST radar work has been done using portable transmitters brought to the Observatory for this purpose. This capability will become permanent with the recent acquisition of a transmitter at this frequency. Furthermore, control and data processing systems have been developed to use the powerful HF transmitter and antennas of the HF-heating facility as an HF bistatic radar. A brief description of the four radars available at the Observatory is presented.

  5. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    Science.gov (United States)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  6. Radar Spectrum Engineering and Management (Ingenierie et gestion du spectre radar)

    Science.gov (United States)

    2017-04-01

    explains the nature of the spectrum congestion problem from a radar perspective , and describes a number of possible approaches to its solution both...REPORT TR-SET-182 Radar Spectrum Engineering and Management (Ingénierie et gestion du spectre radar) Final Report of Task Group SET-182...ORGANIZATION AC/323(SET-182)TP/695 www.sto.nato.int STO TECHNICAL REPORT TR-SET-182 Radar Spectrum Engineering and Management

  7. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    Science.gov (United States)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  8. Radar range measurements in the atmosphere.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2013-02-01

    The earths atmosphere affects the velocity of propagation of microwave signals. This imparts a range error to radar range measurements that assume the typical simplistic model for propagation velocity. This range error is a function of atmospheric constituents, such as water vapor, as well as the geometry of the radar data collection, notably altitude and range. Models are presented for calculating atmospheric effects on radar range measurements, and compared against more elaborate atmospheric models.

  9. The design of broadband radar absorbing surfaces

    OpenAIRE

    Go, Han Suk

    1990-01-01

    Approved for public release, distribution unlimited There has been a growing and widespread interest in radar-absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being...

  10. Spectrum Sharing Radar: Coexistence via Xampling

    OpenAIRE

    Cohen, Deborah; Mishra, Kumar Vijay; Eldar, Yonina C.

    2016-01-01

    This paper presents a spectrum sharing technology enabling interference-free operation of a surveillance radar and communication transmissions over a common spectrum. A cognitive radio receiver senses the spectrum using low sampling and processing rates. The radar is a cognitive system that employs a Xampling-based receiver and transmits in several narrow bands. Our main contribution is the alliance of two previous ideas, CRo and cognitive radar (CRr), and their adaptation to solve the spectr...

  11. MST radar detection of middle atmosphere tides

    Science.gov (United States)

    Forbes, J. M.

    1983-01-01

    Meteorological and dynamical requirements pertaining to the specification of middle atmosphere tides by the MST radar technique are outlined. Major issues addressed include: (1) the extraction of tidal information from measurements covering a fraction of a day; (2) the ramifications of transient effects (tidal variability) on the determination and interpretation of tides; (3) required temporal and spatial resolutions and; (4) global distributions of MST radars, so as to complement existing MST, meteor wind, and partial reflection drift radar locations.

  12. The Shared Mobile Atmospheric Research and Teaching Radar: A Collaboration to Enhance Research and Teaching.

    Science.gov (United States)

    Biggerstaff, Michael I.; Wicker, Louis J.; Guynes, Jerry; Ziegler, Conrad; Straka, Jerry M.; Rasmussen, Erik N.; Doggett, Arthur, IV; Carey, Larry D.; Schroeder, John L.; Weiss, Chris

    2005-09-01

    A group of scientists from three universities across two different states and from one federal research laboratory joined together to build and deploy two mobile C-band Doppler weather radars to enhance research and promote meteorological education. This 5-yr project led to the development of the Shared Mobile Atmospheric Research and Teaching (SMART) radar coalition that built the first mobile C-band Doppler weather radar in the United States and also successfully deployed the first mobile C-band dual-Doppler network in a landfalling hurricane. This accomplishment marked the beginning of an era in which high temporal and spatial resolution precipitation and dual-Doppler wind data over mesoscale (100 km) regions can be acquired from mobile ground-based platforms during extreme heavy rain and high-wind events.In this paper, we discuss the rationale for building the mobile observing systems, highlight some of the challenges that were encountered in creating a unique multia-gency coalition, provide examples of how the SMART radars have contributed to research and education, and discuss future plans for continued development and management of the radar facility, including how others may use the radars for their own research and teaching programs.The capability of the SMART radars to measure winds in non-precipitating environments, to capture rapidly evolving, short-lived, small-scale tornadic circulations, and to sample mesoscale regions with high spatial resolution over broad regions of heavy rainfall is demonstrated. Repeated successful intercepts provide evidence that these radars are capable of being used to study a wide range of atmospheric phenomena.

  13. Localization Capability of Cooperative Anti-Intruder Radar Systems

    Directory of Open Access Journals (Sweden)

    Mauro Montanari

    2008-06-01

    Full Text Available System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC and by the European Commission (EC power spectral density masks. A single transmitter-receiver pair (bistatic radar is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

  14. Ground Penetrating Radar : Ultra-wideband radars for improvised explosive devices and landmine detection

    NARCIS (Netherlands)

    Yarovoy, A.

    2008-01-01

    For last two decades Ultra-Wideband Ground Penetrating Radars seemed to be a useful tool for detection and classification of landmines and improvised explosive devices (IEDs). However limitations of radar technology considerably limited operational use of these radars. Recent research at TU Delft

  15. Resonance and aspect matched adaptive radar (RAMAR)

    CERN Document Server

    Barrett, Terence William

    2012-01-01

    The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar - mere ranging and detection - to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target's response can be a function of frequency components in the transmitted signal's

  16. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  17. Advanced Signal Analysis for Forensic Applications of Ground Penetrating Radar

    Energy Technology Data Exchange (ETDEWEB)

    Steven Koppenjan; Matthew Streeton; Hua Lee; Michael Lee; Sashi Ono

    2004-06-01

    Ground penetrating radar (GPR) systems have traditionally been used to image subsurface objects. The main focus of this paper is to evaluate an advanced signal analysis technique. Instead of compiling spatial data for the analysis, this technique conducts object recognition procedures based on spectral statistics. The identification feature of an object type is formed from the training vectors by a singular-value decomposition procedure. To illustrate its capability, this procedure is applied to experimental data and compared to the performance of the neural-network approach.

  18. Applications of Doppler radar to aviation operations - JAWS experiences

    Science.gov (United States)

    Mccarthy, J.; Wilson, J. W.

    1983-01-01

    The field phase of the Joint Airport Weather Studies (JAWS) Project was conducted in the vicinity of Denver's Stapleton International Airport from 15 May to 13 August 1982. The primary collection systems were three Doppler radars, a 27-station, closely spaced (4 km) network of surface stations, and five research aircraft. The program was specifically planned to observe wind shear phenomena with high time and space resolution that would be dangerous to aircraft operations. The program was successful in observing a large number of such events. Preliminary conclusions are presented on the effectiveness of several wind shear detection systems to warn of wind shear events critical to aviation safety.

  19. The NASA radar entomology program at Wallops Flight Center

    Science.gov (United States)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  20. An Enhanced Global Precipitation Measurement (GPM) Validation Network Prototype

    Science.gov (United States)

    Schwaller, Matthew R.; Morris, K. Robert

    2009-01-01

    A Validation Network (VN) prototype is currently underway that compares data from the Precipitation Radar (PR) instrument on NASA's Tropical Rainfall Measuring Mission (TRMM) satellite to similar measurements from the U.S. national network of operational weather radars. This prototype is being conducted as part of the ground validation activities of NASA's Global Precipitation Measurement (GPM) mission. GPM will carry a Dual-frequency Precipitation Radar instrument (DPR) with similar characteristics to the TRMM PR. The purpose of the VN is to identify and resolve significant discrepancies between the U.S. national network of ground radar (GR) observations and satellite observations. The ultimate goal of such comparisons is to understand and resolve the first order variability and bias of precipitation retrievals in different meteorological/hydrological regimes at large scales. This paper presents a description of, and results from, an improved algorithm for volume matching and comparison of PR and ground radar observations.

  1. Rainfall estimation from TOGA radar observations during LBA field campaign

    Science.gov (United States)

    Anagnostou, Emmanouil N.; Morales, Carlos A.

    2002-10-01

    The TRMM Large Scale Biosphere-Atmosphere (LBA) experiment, conducted between January and February of 1999 in Southwest Amazon, deployed among other instruments NASA's C-band Doppler radar (TOGA) and four dense rain gauge networks. This paper presents a procedure devised to derive surface rainfall rate estimates from combination of TOGA observations and the in situ rain gauge rainfall measurements. The spatial and temporal scales considered are 2 × 2 km2 grids of instantaneous to hourly rain accumulations. The procedure includes evaluation of TOGA calibration through comparisons with TRMM Precipitation Radar (PR) data and implementation of an optimal quantitative precipitation estimation (QPE) algorithm. Comparisons with PR indicated a 4-dB calibration offset occurring in the later two thirds of the observation period. The implemented QPE algorithm applies a parameter that differentiates the Z-R conversion in convective and stratiform regimes and a stochastic filtering approach for estimation of mean-field bias on the basis of radar-rain gauge comparisons at the hourly timescale. The calibration of the algorithm parameter values is formulated as a global optimization problem, which is solved by minimizing the radar-rain gauge rainfall accumulation root-mean-square (rms) difference at the hourly timescale. A random resampling calibration/validation exercise is performed to evaluate the algorithm performance and its sensitivity to parameter values. Validation against gauges shows that the algorithm produces unbiased estimates with ˜57% relative RMS difference at the hourly scale. Comparison with S-POL rain estimates showed good correlation (0.9) but some overestimation (9%). Rainfall products are used to derive rainfall statistics for two distinct meteorological low-level wind regimes (easterly and westerly) that occurred during LBA. Finally, instantaneous rain estimates are compared against TRMM PR rainfall profiles for six coincident storm cases showing high

  2. Antenna Pattern Measurements for Oceanographic Radars Using Small Aerial Drones

    Science.gov (United States)

    Washburn, L.; Romero, E.; Johnson, C.; Emery, B.; Gotschalk, C.

    2016-12-01

    We describe a method employing small, quadrotor drone aircraft for antenna pattern measurements (APMs) of high-frequency (HF) oceanographic radars used for observing ocean surface currents. During APMs, the drones carry small radio signal sources in circular arcs centered on receive antenna arrays at HF radar sites, similarly to conventional boat-based APMs. Previous studies have shown that accurate surface current measurements using HF radar require APMs. In the absence of APMs so-called "ideal" antenna patterns are assumed and these can differ substantially from measured patterns. Typically APMs are obtained using small research vessels, an expensive procedure requiring sea-going technicians, a vessel, and other equipment necessary to support small boat operations. Adverse sea conditions and obstacles in the water can limit the ability of small vessels to conduct APMs. In contrast, drones can successfully conduct APMs at much lower cost and in a broader range of sea states with comparable accuracy. Drone-based patterns can extend farther shoreward since they are not affected by the surf zone and thereby expand the range of bearings over which APMs are conducted. We describe recent progress in the use of drones for APMs including: (1) evaluation of the accuracy APM flight trajectories; (2) estimates of radial velocity components due to deviation of flight paths from circular arcs; and (3) the effects of altitude with respect to ground wave versus direct signal propagation. Use of drones simplifies APMs and it is hoped that this will lead to more frequent APMs and improved surface current measurements from HF radar networks.

  3. GPM Ground Validation Cloud Radar System (CRS) OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Cloud Radar System (CRS) OLYMPEX dataset provides radar reflectivity and Doppler velocity data collected during the Olympic Mountain...

  4. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  5. Array-Based Ultrawideband through-Wall Radar: Prediction and Assessment of Real Radar Abilities

    Directory of Open Access Journals (Sweden)

    Nadia Maaref

    2013-01-01

    Full Text Available This paper deals with a new through-the-wall (TTW radar demonstrator for the detection and the localisation of people in a room (in a noncooperative way with the radar situated outside but in the vicinity of the first wall. After modelling the propagation through various walls and quantifying the backscattering by the human body, an analysis of the technical considerations which aims at defining the radar design is presented. Finally, an ultrawideband (UWB frequency modulated continuous wave (FMCW radar is proposed, designed, and implemented. Some representative trials show that this radar is able to localise and track moving people behind a wall in real time.

  6. Radar Methods in Urban Environments

    Science.gov (United States)

    2016-10-26

    AFRL-AFOSR-VA-TR-2016-0344 Radar Methods in Urban Environments Arye Nehorai WASHINGTON UNIVERSITY THE Final Report 10/26/2016 DISTRIBUTION A...Methods in Urban Environments 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-11-1-0210 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Arye Nehorai 5d...Methods in Urban Environments Grant No. FA9550-11-1-0210 Final Report August 2011 – July 2016 Arye Nehorai Department of Electrical and Systems

  7. Vertical and Horizontal Polarization Observations of Slowly Varying Solar Emissions from Operational Swiss Weather Radars

    Directory of Open Access Journals (Sweden)

    Marco Gabella

    2014-12-01

    Full Text Available The electromagnetic power that arrives from the Sun in the C-band has been used to check the quality of the polarimetric, Doppler weather radar network that has recently been installed in Switzerland. The operational monitoring of this network is based on the analysis of Sun signals in the polar volume data produced during the MeteoSwiss scan program. It relies on a method that has been developed to: (1 determine electromagnetic antenna pointing; (2 monitor receiver stability; and (3 assess the differential reflectivity offset. Most of the results from such a method had been derived using data acquired in 2008, which was a period of quiet solar flux activity. Here, it has been applied, in simplified form, to the currently active Sun period. This note describes the results that have been obtained recently thanks to an inter-comparison of three polarimetric operational radars and the Sun’s reference signal observed in Canada in the S-band by the Dominion Radio Astrophysical Observatory (DRAO. The focus is on relative calibration: horizontal and vertical polarization are evaluated versus the DRAO reference and mutually compared. All six radar receivers (three systems, two polarizations are able to capture and describe the monthly variability of the microwave signal emitted by the Sun. It can be concluded that even this simplified form of the method has the potential to routinely monitor dual-polarization weather radar networks during periods of intense Sun activity.

  8. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Navigation Equipment § 184.404 Radars. (a) A vessel must be fitted with a...

  9. Harmonic Phase Response of Nonlinear Radar Targets

    Science.gov (United States)

    2015-10-01

    ARL-TR-7513 ● OCT 2015 US Army Research Laboratory Harmonic Phase Response of Nonlinear Radar Targets by Sean F McGowan, Dr...Laboratory Harmonic Phase Response of Nonlinear Radar Targets by Sean F McGowan and Kelly D Sherbondy Sensors and Electron Devices Directorate...

  10. Shuttle Imaging Radar Survey Mission C

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Spaceborne Imaging Radar-C (SIR-C) was part of an imaging radar system that was flown on board two Space Shuttle flights (9 - 20 April, 1994 and 30 September - 11...

  11. Spaceborne Imaging Radar C-band: 1994

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Spaceborne Imaging Radar-C (SIR-C) is part of an imaging radar system that was flown on board two Space Shuttle flights (9 - 20 April, 1994 and 30 September - 11...

  12. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available This chapter briefly outlines a few mathematical techniques to track targets in 3D using a 2D radar. 2D radars are relatively cheap and efficient sensors that often form the first line of defence in airspace control. In military applications...

  13. Accuracy of fused track for radar systems

    NARCIS (Netherlands)

    Farina, A.; Di Lallo, A.; Volpi, T.; Capponi, A.

    2005-01-01

    This paper provides some new results on track fusion for radars. In particular, it provides a relationship between the accuracies of fused tracks for co-located and non co-located radar sensors. The uncertainty volume corresponding to the fused estimate is smaller than the volume of the intersection

  14. High-precision positioning of radar scatterers

    NARCIS (Netherlands)

    Dheenathayalan, P.; Small, D.; Schubert, A.; Hanssen, R.F.

    2016-01-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy

  15. Weather radar rainfall data in urban hydrology

    NARCIS (Netherlands)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, J.A.E.; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology

  16. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  17. Magneto-Radar Hidden Metal Detector

    Energy Technology Data Exchange (ETDEWEB)

    McEwan, Thomas E. (Las Vegas, NV)

    2005-07-05

    A varying magnetic field excites slight vibrations in an object and a radar sensor detects the vibrations at a harmonic of the excitation frequency. The synergy of the magnetic excitation and radar detection provides increased detection range compared to conventional magnetic metal detectors. The radar rejects background clutter by responding only to reflecting objects that are vibrating at a harmonic excitation field, thereby significantly improving detection reliability. As an exemplary arrangement, an ultra-wideband micropower impulse radar (MIR) is capable of being employed to provide superior materials penetration while providing range information. The magneto-radar may be applied to pre-screening magnetic resonance imaging (MRI) patients, landmine detection and finding hidden treasures.

  18. Computing the apparent centroid of radar targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.E.

    1996-12-31

    A high-frequency multibounce radar scattering code was used as a simulation platform for demonstrating an algorithm to compute the ARC of specific radar targets. To illustrate this simulation process, several targets models were used. Simulation results for a sphere model were used to determine the errors of approximation associated with the simulation; verifying the process. The severity of glint induced tracking errors was also illustrated using a model of an F-15 aircraft. It was shown, in a deterministic manner, that the ARC of a target can fall well outside its physical extent. Finally, the apparent radar centroid simulation based on a ray casting procedure is well suited for use on most massively parallel computing platforms and could lead to the development of a near real-time radar tracking simulation for applications such as endgame fuzing, survivability, and vulnerability analyses using specific radar targets and fuze algorithms.

  19. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    This is a color composite image of southern Bahia, Brazil, centered at 15.22 degree south latitude and 39.07 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 38th orbit of Earth on October 2, 1994. The image covers an area centered over the Una Biological Reserve, one the largest protected areas in northeastern Brazil. The 7,000-hectare reserve is administered by the Brazilian Institute for the Environment and is part of the larger Atlantic coastal forest, a narrow band of rain forest extending along the eastern coast of Brazil. The Atlantic coastal forest of southern Bahia is one of the world's most threatened and diverse ecosystems. Due to widespread settlement, only 2 to 5 percent of the original forest cover remains. Yet the region still contains an astounding variety of plants and animals, including a large number of endemic species. More than half of the region's tree species and 80 percent of its animal species are indigenous and found nowhere else on Earth. The Una Reserve is also the only federally protected habitat for the golden-headed lion tamarin, the yellow-breasted capuchin monkey and many other endangered species. In the past few years, scientists from Brazilian and international conservation organizations have coordinated efforts to study the biological diversity of this region and to develop practical and economically viable options for preserving the remaining primary forests in southern Bahia. The shuttle imaging radar is used in this study to identify various land uses and vegetation types, including remaining patches of primary forest, cabruca forest (cacao planted in the understory of the native forest), secondary forest, pasture and coastal mangrove. Standard remote-sensing technology that relies on light reflected from the forest canopy cannot accurately distinguish between cabruca and undisturbed forest. Optical remote sensing is also

  20. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  1. Total Lightning Observations within Electrified Snowfall using Polarimetric Radar, LMA, and NLDN Measurements

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard

    2013-01-01

    Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.

  2. A Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements

    Directory of Open Access Journals (Sweden)

    E. Todini

    2001-01-01

    Full Text Available The paper introduces a new technique based upon the use of block-Kriging and of Kalman filtering to combine, optimally in a Bayesian sense, areal precipitation fields estimated from meteorological radar to point measurements of precipitation such as are provided by a network of rain-gauges. The theoretical development is followed by a numerical example, in which an error field with a large bias and a noise to signal ratio of 30% is added to a known random field, to demonstrate the potentiality of the proposed algorithm. The results analysed on a sample of 1000 realisations, show that the final estimates are totally unbiased and the noise variance reduced substantially. Moreover, a case study on the upper Reno river in Italy demonstrates the improvements in rainfall spatial distribution obtainable by means of the proposed radar conditioning technique. Keywords: Rainfall, meteorological radar, Bayesian technique, block-Kriging, Kalman filtering

  3. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  4. The MST radar technique: Requirements for operational weather forecasting

    Science.gov (United States)

    Larsen, M. F.

    1983-01-01

    There is a feeling that the accuracy of mesoscale forecasts for spatial scales of less than 1000 km and time scales of less than 12 hours can be improved significantly if resources are applied to the problem in an intensive effort over the next decade. Since the most dangerous and damaging types of weather occur at these scales, there are major advantages to be gained if such a program is successful. The interest in improving short term forecasting is evident. The technology at the present time is sufficiently developed, both in terms of new observing systems and the computing power to handle the observations, to warrant an intensive effort to improve stormscale forecasting. An assessment of the extent to which the so-called MST radar technique fulfills the requirements for an operational mesoscale observing network is reviewed and the extent to which improvements in various types of forecasting could be expected if such a network is put into operation are delineated.

  5. Levee Health Monitoring With Radar Remote Sensing

    Science.gov (United States)

    Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.

    2012-12-01

    the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Radar

    DEFF Research Database (Denmark)

    Nielsen, Tom

    2009-01-01

    Bidrag til arkitektens opgørelse (baseret på en række forskellige indlæg) over hvor dansk arkitektur står, med korte bud på spørgsmålene: Kan man ud over stedsanknytningen tale om en særlig dansk arkitektur?, Hvad er dansk arkitekturs største kvalitet, vores vigtigste force? og Hvad er dansk arki...

  7. Meteorological radar services: a brief discussion and a solution in practice

    Science.gov (United States)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  8. Composite technology in radar equipment. Dopler Meteo radar reflector device

    Directory of Open Access Journals (Sweden)

    A. V. Shumov

    2014-01-01

    Full Text Available The article is devoted features of the application composite materials in radar technology for example adjustment of the development technology of the reflector antenna device DMRL-S - radar for monitoring meteorological conditions.Russian and foreign analogues DMRL-S are made of aluminum, which no longer meets modern requirements for strength and weight. Also aluminum reflectors are not temperature stable. Composite materials are characterized by higher values of specific characteristics: temporary resistance, endurance limit, stiffness, elastic modulus, and less prone to cracking. The use of such materials improves the strength, rigidity and durability.For the manufacture of the DMRL-C reflector used composite materials based on epoxy resins reinforced with fiberglass (both unidirectional and woven. To increase the rigidity and weight reflector is made in the form of three-layer sandwich fiberglass panels with honeycomb core variable height. Design work was carried out in a CAD Siemens NX8.0 / Unigraphics, through which was established mathematical model layered reflector, as well as all accessories used in the manufacture. With the program NX Nastran was held strength calculation and analysis of stiffness on the finite element method.After the manufacture of the product, we measured the standard deviation of the working surface of the reflector from the theoretical surface using a three-dimensional laser scanner. Measurements were made at different angular positions of the reflector, and when loading. It is shown that the maximum strain in the operating modes of operation across the surface of the product does not exceed 4%, which will provide the most accurate operation of the product in any position of the antenna system.As a result of this work reflector design was developed, created and verified by experimental data calculation model. Reflector antenna device of the DMRL-S was manufactured and tested. The reflector was made of reinforced

  9. Japan Tsunami Current Flows Observed by HF Radars on Two Continents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Awaji

    2011-08-01

    Full Text Available Quantitative real-time observations of a tsunami have been limited to deep-water, pressure-sensor observations of changes in the sea surface elevation and observations of sea level fluctuations at the coast, which are essentially point measurements. Constrained by these data, models have been used for predictions and warning of the arrival of a tsunami, but to date no detailed verification of flow patterns nor area measurements have been possible. Here we present unique HF-radar area observations of the tsunami signal seen in current velocities as the wave train approaches the coast. Networks of coastal HF-radars are now routinely observing surface currents in many countries and we report clear results from five HF radar sites spanning a distance of 8,200 km on two continents following the magnitude 9.0 earthquake off Sendai, Japan, on 11 March 2011. We confirm the tsunami signal with three different methodologies and compare the currents observed with coastal sea level fluctuations at tide gauges. The distance offshore at which the tsunami can be detected, and hence the warning time provided, depends on the bathymetry: the wider the shallow continental shelf, the greater this time. Data from these and other radars around the Pacific rim can be used to further develop radar as an important tool to aid in tsunami observation and warning as well as post-processing comparisons between observation and model predictions.

  10. Radar-raingauge data combination techniques: a revision and analysis of their suitability for urban hydrology.

    Science.gov (United States)

    Wang, Li-Pen; Ochoa-Rodríguez, Susana; Simões, Nuno Eduardo; Onof, Christian; Maksimović, Cedo

    2013-01-01

    The applicability of the operational radar and raingauge networks for urban hydrology is insufficient. Radar rainfall estimates provide a good description of the spatiotemporal variability of rainfall; however, their accuracy is in general insufficient. It is therefore necessary to adjust radar measurements using raingauge data, which provide accurate point rainfall information. Several gauge-based radar rainfall adjustment techniques have been developed and mainly applied at coarser spatial and temporal scales; however, their suitability for small-scale urban hydrology is seldom explored. In this paper a review of gauge-based adjustment techniques is first provided. After that, two techniques, respectively based upon the ideas of mean bias reduction and error variance minimisation, were selected and tested using as case study an urban catchment (∼8.65 km(2)) in North-East London. The radar rainfall estimates of four historical events (2010-2012) were adjusted using in situ raingauge estimates and the adjusted rainfall fields were applied to the hydraulic model of the study area. The results show that both techniques can effectively reduce mean bias; however, the technique based upon error variance minimisation can in general better reproduce the spatial and temporal variability of rainfall, which proved to have a significant impact on the subsequent hydraulic outputs. This suggests that error variance minimisation based methods may be more appropriate for urban-scale hydrological applications.

  11. A dual-polarisation radar rainfall estimation method using a multi-parameter fuzzy logic algorithm

    Science.gov (United States)

    Hall, Will; Rico-Ramirez, Miguel Angel

    2017-04-01

    The emergence of dual-polarisation radar has resulted in a significant enhancement of quantitative precipitation estimation (QPE). It has enabled the measurement of rain drop size and shapes within a volume, the classification of hydrometeors, and the ability to more accurately account for attenuation of the radar beam. Previous methods for QPE have used only the radar reflectivity (Zh) to estimate rainfall, but more recent methods can use a combination of ZH, differential reflectivity (Zdr), specific differential phase (Kdp), and specific attenuation (Ah). The radar variables perform differently depending on rain rate, attenuation, and bright band presence. This has led to the use of fixed threshold values within which the different estimators are used, or the variables are weighted based on performance. This new method to be presented will use fuzzy logic to try to form a more robust algorithm using combinations of the rainfall estimators R(Zh), R(Kdp), and R(Ah). For this a C-band dual-polarised radar based in Hameldon Hill, near Burnley, UK, will be used, alongside a rain gauge network for calibration adn validation.

  12. Radar ornithology and the conservation of migratory birds

    Science.gov (United States)

    Sidney A. Gauthreaux; Carroll G. Belser

    2005-01-01

    It is possible to study with surveillance radar the movements of migrating birds in the atmosphere at different spatial scales. At a spatial scale within a range of 6 kilometers, high-resolution, 3-centimeter wavelength surveillance radar (e.g. BIRDRAD) can detect the departure of migrants from different types of habitat within a few kilometers of the radar. The radar...

  13. Decision Tool for optimal deployment of radar systems

    NARCIS (Netherlands)

    Vogel, M.H.

    1995-01-01

    A Decision Tool for air defence is presented. This Decision Tool, when provided with information about the radar, the environment, and the expected class of targets, informs the radar operator about detection probabilities. This assists the radar operator to select the optimum radar parameters. n

  14. The use of radar for bathymetry in shallow seas

    NARCIS (Netherlands)

    Greidanus, H.

    1997-01-01

    The bottom topography in shallow seas can be observed by air- and space borne radar. The paper reviews the radar imaging mechanism, and discusses the possibilities and limitations for practical use of radar in bathymetric applications, including the types of radar instruments available for this

  15. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  16. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, J.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission is planned to launch on Jan 8, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there will be a 3 month instrument checkout period, followed by 6 months of level 1 (L1) calibration and validation. In this presentation, we will discuss the plans and preparations for the calibration and validation of L1 radar data from SMAP. At the start of the L1 cal/val period, we will validate the operation of the instrument and of the ground processing using tools that look at readily identifiable surface features such as coast lines and corner reflectors. Geometric biases will be fit and removed. Radiometric cross-calibration with PALSAR and Aquarius will also be performed using target regions in the Amazon rain forest selected for their stability and uniformity. As the L1 cal/val period progresses, the performance of the automated short and long term calibration modules in ground processing will be tracked and verified using data from stable reference targets such as the wind corrected ocean and selected areas of rain forest that have shown good temporal stability. The performance of the radio frequency interference (RFI) removal algorithm will be validated by processing data with the algorithm turned on and off, and using different parameter settings. Additional information on the extent of RFI will be obtained from a special RFI survey conducted early in the L1 cal/val period. Radar transmissions are turned off during the RFI survey, and receive only data are collected over a variety of operating frequencies. The model based Faraday rotation corrections will also be checked during the L1 cal/val by comparing the model Faraday rotation with the measured Faraday rotation obtained by the SMAP Radiometer. This work is supported by the SMAP project at the Jet

  17. FMCW Radar Performance for Atmospheric Measurements

    Directory of Open Access Journals (Sweden)

    T. Ince

    2010-04-01

    Full Text Available Frequency-modulated continuous-wave radars (FMCW have been used in the investigation of the atmosphere since the late 1960’s. FMCW radars provide tremendous sensitivity and spatial resolution compared to their pulsed counterparts and are therefore attractive for clear-air remote-sensing applications. However, these systems have some disadvantages and performance limitations that have prevented their widespread use by the atmospheric science community. In this study, system performance of atmospheric FMCW radar is analyzed and some measurement limitations for atmospheric targets are discussed. The effects of Doppler velocities and spectral widths on radar performance, radar’s near-field operation, and parallax errors for two-antenna radar systems are considered. Experimental data collected by the highresolution atmospheric FMCW radar is used to illustrate typical performance qualitatively based on morphological backscattered power information. A post-processing based on single-lag covariance differences between the Bragg and Rayleigh echo is applied to estimate clear-air component from refractive index turbulence and perform quantitative analysis of FMCW radar reflectivity from atmospheric targets.

  18. Survey of Ultra-wideband Radar

    Science.gov (United States)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  19. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  20. Deepwater Horizon MC252 response data from the Environmental Resource Management Application (ERMA) containing Texture Classifying Neural Network Algorithm (TCNNA) from Synthetic Aperture Radar (SAR) nearshore potential oiling footprints collected from 2010-04-29 to 2010-08-11 in the Northern Gulf of Mexico (NCEI Accession 0163819)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival information package (AIP) contains Environmental Response Management Application (ERMA) GIS layers of outputs from Synthetic Aperture Radar (SAR)...

  1. Sub-auroral flow shear observed by King Salmon HF radar and RapidMAG

    Science.gov (United States)

    Hori, T.; Kikuchi, T.; Tsuji, Y.; Shinbori, A.; Ohtaka, T.; Kunitake, M.; Watari, S.; Nagatsuma, T.; Troshichev, O. A.

    2010-12-01

    We examine in detail the evolution of ionospheric flow shears in the sub-auroral region associated with alternate northward/southward turnings of the IMF. The flow shear structures are often observed in the dusk sector by the SuperDARN King Salmon (KSR) HF radar. Interestingly, some of those show the eastward (westward) flow on the lower (higher) latitude side, respectively, opposite to the typical polarity of the dusk convection cell. In those flow shear events, the IMF has a weak but persistent southward component (~ -1 to -3 nT) before onset of flow shears and following decreases of the southward IMF or even northward turning appear to cause the flow shears. The ground magnetograms provided by the Russian Auroral and Polar Ionospheric Disturbance Magnetometers (RapidMAG) show gradual increases (abrupt declines) of the H-component in association with the increases (decreases) of the merging electric field, respectively, derived from the simultaneous solar wind-IMF observations. The fairly coherent increases (decreases) of the H-component over the wide range of local time (afternoon to evening) indicate development (decay) of the large-scale DP2 current system. A detailed analysis on the 2-D convection structure near the lower latitude edge of the dusk convection cell shows that the ionospheric plasma generally flows westward there and has a larger speed with increasing latitude particularly during increases of the merging electric field. However, once the southward IMF decreases or even shifts to northward and thereby the merging electric field goes down, the region of westward flow moves toward higher latitudes and instead an eastward flow emerges there, forming a flow shear of the counterclockwise sense. This indicates that a downward field-aligned current (FAC), which is the Region-2 (R2) sense on the dusk side, flows into the flow shear region. Subsequently the convection returns to a westward flow again upon increases of the merging electric field due to the

  2. Canadian Meteor Orbit Radar (CMOR

    Directory of Open Access Journals (Sweden)

    A. R. Webster

    2004-01-01

    Full Text Available The radar system described here (CMOR comprises a basic 5-element receiving system, co-located with a pulsed transmitter, specifically designed to observe meteor echoes and to determine their position in space with an angular resolution of ~1° and a radial resolution of ~3 km. Two secondary receiving sites, a few km distant and arranged to form approximately a right angle with the base station, allow the determination of the velocity (speed and direction of the meteor that, together with the time of occurrence, lead to an estimate of the orbit of the original meteoroid. Some equipment details are presented along with a method used to determine the orbits. Representative echoes are shown and observations on the 2002 Leonid shower presented.

  3. Radar signal processing and its applications

    CERN Document Server

    Hummel, Robert; Stoica, Petre; Zelnio, Edmund

    2003-01-01

    Radar Signal Processing and Its Applications brings together in one place important contributions and up-to-date research results in this fast-moving area. In twelve selected chapters, it describes the latest advances in architectures, design methods, and applications of radar signal processing. The contributors to this work were selected from the leading researchers and practitioners in the field. This work, originally published as Volume 14, Numbers 1-3 of the journal, Multidimensional Systems and Signal Processing, will be valuable to anyone working or researching in the field of radar signal processing. It serves as an excellent reference, providing insight into some of the most challenging issues being examined today.

  4. Image Registration Methode in Radar Interferometry

    Directory of Open Access Journals (Sweden)

    S. Chelbi

    2015-08-01

    Full Text Available This article presents a methodology for the determination of the registration of an Interferometric Synthetic radar (InSAR pair images with half pixel precision. Using the two superposed radar images Single Look complexes (SLC [1-4], we developed an iterative process to superpose these two images according to their correlation coefficient with a high coherence area. This work concerns the exploitation of ERS Tandem pair of radar images SLC of the Algiers area acquired on 03 January and 04 January 1994. The former is taken as a master image and the latter as a slave image.

  5. The Italian involvement in Cassini radar

    Science.gov (United States)

    Nirchio, F.; Pernice, B.; Borgarelli, L.; Dionisio, C.

    1991-12-01

    The Radio Frequency Electronic Subsystem (RFES) of the Cassini radar is described. The requirements of the Cassini radar are summarized. The design parameters taken into consideration in developing the RFES are described. The RFES interfaces with the High Gain Antenna (HGA) for signal transmission and reception. The operational parameters of the Cassini radar are presented. The front end electronics (FEE), microwave receiver (MR), high power amplifier (HPA), frequency generator (FG), digital chip generator (DCG), Chirp Up Converter and Amplifier (CUCA) and power supply of the RFES are described.

  6. Radar Observations of Recent Mars Landing Sites

    Science.gov (United States)

    Larsen, K. W.; Haldemann, A. F. C.; Jurgens, R. F.; Slade, M. A.

    2004-01-01

    The Mars Exploration Rovers Spirit and Opportunity will arrive at their respective landing sites of Gusev Crater and Terra Meridiani in January 2004. During the 2001 and 2003 Mars Oppositions both landing sites were targeted for a series of radar observations using the telescopes of the Goldstone Deep Space Communications Complex (GDSCC). This paper will present results of terrestrial delay- Doppler radar observations of the landing sites, predictions for the surface properties that will be encountered, and, after successful landings, correlation between the predicted and observed surface properties. The in-situ observations made by both missions serve as ground truth for the validation of the high resolution radar mapping results.

  7. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  8. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  9. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...... that footprints are identical for the radar and the radiometer. The instrument will be flown in a pod under a Gulfstream G3 normally cruising with 240 m/sec at 12500 m, and will thus be able to sense clouds and precipitation from above...

  10. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  11. Various Effects of Embedded Intrapulse Communications on Pulsed Radar

    Science.gov (United States)

    2017-06-01

    impact of an interfering communications signal on the range-Doppler map of a pulse Doppler radar is investigated. The perspective of a radar operator in a...perspective of a radar operator in a maritime environment is also considered. In all cases, the communications signal is parameterized by the radar - to...utilize the S-band of around 3 GHz, where many maritime radars operate [1]. The two broad categories for how these two signals could be separated from

  12. Incremental online object learning in a vehicular radar-vision fusion framework

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Zhengping [Los Alamos National Laboratory; Weng, Juyang [Los Alamos National Laboratory; Luciw, Matthew [IEEE; Zeng, Shuqing [IEEE

    2010-10-19

    In this paper, we propose an object learning system that incorporates sensory information from an automotive radar system and a video camera. The radar system provides a coarse attention for the focus of visual analysis on relatively small areas within the image plane. The attended visual areas are coded and learned by a 3-layer neural network utilizing what is called in-place learning, where every neuron is responsible for the learning of its own signal processing characteristics within its connected network environment, through inhibitory and excitatory connections with other neurons. The modeled bottom-up, lateral, and top-down connections in the network enable sensory sparse coding, unsupervised learning and supervised learning to occur concurrently. The presented work is applied to learn two types of encountered objects in multiple outdoor driving settings. Cross validation results show the overall recognition accuracy above 95% for the radar-attended window images. In comparison with the uncoded representation and purely unsupervised learning (without top-down connection), the proposed network improves the recognition rate by 15.93% and 6.35% respectively. The proposed system is also compared with other learning algorithms favorably. The result indicates that our learning system is the only one to fit all the challenging criteria for the development of an incremental and online object learning system.

  13. Synthetic impulse and aperture radar (SIAR) a novel multi-frequency MIMO radar

    CERN Document Server

    Chen, Baixiao

    2014-01-01

    Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing me

  14. Comparison of soft computing systems for the post-calibration of weather radar

    Science.gov (United States)

    Hessami Kermani, Masoud Reza

    The most usual tools to monitor rainfall events are raingauges and weather radar. Networks of raingauges provide accurate point estimates of rainfall, when appropriately set, but their usual low density restricts considerably the spatial resolution of the gathered information. Such networks, with rain gauges at distinct points, do not reflect the spatial distribution of rainfall. The quality of raingauge observations is also susceptible to some error sources, for example wind effects around the raingauges and poor raingauge reports due to hardware problems. Radar systems offer high spatial and temporal resolution observation which is much more efficient at providing the space-time evolution of a rainfall event in comparison with raingauge networks. However the radar measurements are not free of errors due to a variety of factors including ground clutter, bright bands, anomalous propagation, beam blockages, and attenuation. The effectiveness of weather radar operation is strongly linked to rigorous calibration. Various methods have been proposed to calibrate radar data. They can be classified into two main categories: deterministic and statistical. The deterministic approach involves the calibration of radar rainfall estimations against raingauge observations. The statistical approach includes multivariate analysis and cokriging. Geostatistical approaches are known as the best methods for radar-raingauge data integration but they are usually inefficient in real time, especially when dealing with the sampling rates of one hour or less necessary for urban and small watershed applications. Such methods also rely on a strong human expertise which can lead to user-dependent results. The objectives of this research are to introduce and to investigate the feasibility of soft computing systems for the post-calibration of weather radar in comparison with the best existing method based on geostatistics. In this work, the soft computing systems include artificial neural

  15. Determining Tidal Phase Differences from X-Band Radar Images

    Science.gov (United States)

    Newman, Kieran; Bell, Paul; Brown, Jennifer; Plater, Andrew

    2017-04-01

    Validation will be attempted using data from a POLCOMS-WAM model run for Liverpool Bay at 180m resolution for February 2008 (Brown, 2011), and ongoing work to develop a model at 5m resolution using DELFT3D-FLOW. There are also a series of ADCP and other direct measurements of tidal current and elevation available, although periods of measurement do not all overlap. However, this could still be used for some validation. Conclusion While this work is in very early stages, it could present a method to determine fine-scale variations in tidal phase without a network of current recorders, and an improvement in the accuracy of bathymetric methods using X-band Radar. References Bell, P.S., Bird, C.O., Plater, A.J., 2016. A temporal waterline approach to mapping intertidal areas using X-band marine radar. Coastal Engineering, 07: 84-101. Brown, J.M., Bolaños, R., Wolf, J., 2011. Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow water application. Journal of Marine Systems, 87: 13-24. Deltares, 2010. Delft3D FLOW. Delft: Deltares.

  16. ASTEROID RADAR V10.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  17. ASTEROID RADAR V5.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all groundbased asteroid radar detections. These entries were collected by Steven J. Ostro (1989) [OSTRO1989] and selected data...

  18. ASTEROID RADAR V13.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  19. Identifying structural damage with ground penetrating radar

    CSIR Research Space (South Africa)

    Van Schoor, Abraham M

    2008-07-01

    Full Text Available Ground penetrating radar (GPR) and electrical resistance tomography (ERT) surveys were conducted in an urban environment in an attempt to identify the cause of severe structural damage to a historically significant residential property...

  20. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  1. ASTEROID RADAR V14.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is intended to include all published groundbased asteroid radar detections. The entries were collected by Steven J. Ostro, and selected data have been...

  2. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  3. Ground penetrating radar (GPR) analysis : Phase I.

    Science.gov (United States)

    2009-11-01

    "The objective of this work is to evaluate the feasibility of expanding the MDT's Ground Penetrating : Radar (GPR) program to a broader range of pavement evaluation activities. Currently, MDT uses GPR in : conjunction with its Falling Weight Deflecto...

  4. Ground penetrating radar evaluation and implementation.

    Science.gov (United States)

    2014-07-01

    Six commercial ground penetrating radar (GPR) : systems were evaluated to determine the state-of-the-art of GPR technologies for railroad track : substructure inspection. : Phase 1 evaluated GPR ballast inspection : techniques by performing testing a...

  5. Physical working principles of medical radar.

    Science.gov (United States)

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  6. Airborne ground penetrating radar: practical field experiments

    CSIR Research Space (South Africa)

    Van Schoor, Michael

    2013-10-01

    Full Text Available The performance of ground penetrating radar (GPR) under conditions where the ground coupling of the antenna is potentially compromised is investigated. Of particular interest is the effect of increasing the distance between the antennae...

  7. Space Compatible Radar Absorbing Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 project shall investigate novel radar absorbing materials (RAM) for use in space or simulated space environments. These materials are lightweight...

  8. Space-qualifiable Digital Radar Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radar technology offers a very flexible, powerful tool for applications such as object detection, tracking, and characterization, as well as remote sensing, imaging,...

  9. Tomographic Techniques for Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik

    AbstractLow frequency radars, also known as sounders, can be used for subsurfacemeasurements of Earth’s massive ice sheets. Radar data are essential toimproving ice sheet models for better prediction of the response of theseice sheets to global climate change. While airborne sounders are neededfor...... challenge. This dissertation deals with tomographic techniques based on multiphase-center radars that represent state-of-the-art technology within thefield of ice sounding. The use of advanced tomographic processing forclutter suppression is investigated, which up to this point has beenlargely unexplored...... acquired withthe POLarimetric Airborne Radar Ice Sounder (POLARIS), single-passtomographic surface clutter suppression capabilities are demonstratedfor the system. Using repeat-pass POLARIS data, a method based ondata-driven DOA estimation is used to show an along-track variation ofthe effective scattering...

  10. Over-the-horizon backscatter radar

    Science.gov (United States)

    Stiglitz, Martin R.; Blanchard, Christine

    1990-05-01

    This paper describes a recently constructed over-the-horizon backscatter (OTH-B) radar system covering as many as 4,800,000 sq nautical miles over a distance of 1800 nautical miles. This HF system operates at frequencies from 5 to 28 MHz. The radar's 3630-ft-long transmitting antenna is divided into six subarrays to accommodate different operating frequencies. Three sets of these arrays are located at the east coast radar system transmit site near Moscow, Maine. The transmitter is powered by 12 10-kW tubes per sector, emitting 360 kW of radiated RF power. The signal processing software correlates the receiver radar track data with flight patterns of unknown aircraft and flight plans of friendly aircraft; twenty-nine computers perform the signal analysis and processing function of the receiver.

  11. Snowballing and flying under the radar

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Hjortsø, Carsten Nico Portefée

    2013-01-01

    management and venture development paths. More specifically, flying under radar in terms of operating under lower institutional requirements, and slowly accumulating resources (snowballing) are major leveraging strategies. We integrate our results into a hypothesized framework for resource management in East...

  12. TCSP CLOUD RADAR SYSTEM (CRS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cloud Radar System (CRS) provides vertically profiled reflectivity and Doppler velocity at aircraft nadir along the flight track. The CRS is a 94 GHz (W-band; 3...

  13. NAMMA TOGA RADAR DATA V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of a collection of products derived from the NASA TOGA radar observations that were collected in the Republic of Cape Verde during the NAMMA...

  14. MST radar observations of turbulent altocumulus layers

    National Research Council Canada - National Science Library

    Worthington, R. M

    2015-01-01

    .... This study examines another type of turbulent layer, common but rarely studied. Aberystwyth Meso‐Strato‐Troposphere ( MST ) radar shows layers of turbulence where there is no unusual wind shear or breaking gravity waves...

  15. Space-Qualifiable Digital Radar Transceiver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Historically, radar systems have tended to be either large, complex, power-hungry, purpose-built systems, or extremely simple systems of limited capability. More...

  16. Embedded ultrasonic sensors for automotive radar

    OpenAIRE

    Adams, T.

    2010-01-01

    Researchers at Fraunhofer Institute IZM, Germany, had developed embedded ultrasonic sensors for automotive radar with potential for wider applications. The researchers realized that the costs of developing such technology were reduced significantly by using a novel method. The lower-cost long-range automotive radar was also expected to provide significant benefits, along with protecting the driver and passengers in a vehicle traveling at high speeds. The Fraunhofer Institute played such a key...

  17. Radar Waveform Design in Active Communications Channel

    OpenAIRE

    Romero, Ric A.; Shepherd, Kevin D.

    2013-01-01

    In this paper, we investigate spectrally adaptive radar transmit waveform design and its effects on an active communication system. We specifically look at waveform design for point targets. The transmit waveform is optimized by accounting for the modulation spectrum of the communication system while trying to efficiently use the remaining spectrum. With the use of spectrally-matched radar waveform, we show that the SER detection performance of the communication system ...

  18. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  19. An Introduction to Radar Sliding Window Detectors

    OpenAIRE

    Weinberg, Graham V.

    2017-01-01

    An introduction to the theory of sliding window detection processes, used as alternatives to optimal Neyman-Pearson based radar detectors, is presented. Included is an outline of their historical development, together with an explanation for the resurgence of interest in such detectors for operation in modern maritime surveillance radar clutter. In particular, recent research has developed criteria that enables one to construct such detection processes with the desired constant false alarm ra...

  20. Recent progress in the Urbana MST radar

    Science.gov (United States)

    Bowhill, S. A.

    1986-01-01

    The Urbana radar, which operates at 40.92 MHz with a peak power of about 1.2 MW into a 100 x 120 m phased array antenna was improved. An accelerated data-acquisition system, a beam-steering system, and a transmit/receive switch were installed. With these changes, the radar is in regular operations for two hours every day around local noon gathering stratospheric and mesospheric data. Special campaigns are mounted in addition under severe weather conditions.

  1. Distributed radar sensors for aircraft detection

    Science.gov (United States)

    Canavan, G. H.

    1991-04-01

    Radars suitable for aircraft detection could be deployed on singlet space-based interceptor (SBI) platforms. They could operate at short ranges and still achieve useful search rates. Powers are modest and insensitive to frequency; the dominant costs are the pulsers and phased-array elements. A fundamental simplification results from mounting the radar on the life jacket rather than the SBI. Many satellites could be processed to derive aircraft trajectories sufficiently accurate for the commitment of fighters or defensive missiles.

  2. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  3. Integrated multi-domain radar demonstration

    Science.gov (United States)

    Shilepsky, Carol C.; Bucknell, Mary; Taylor, Rick

    1991-12-01

    The objective of the IMRD program is to apply artificial intelligence techniques to the adaptive control of a state-of-the-art radar environment. The radar operates in the C-Band and is located within the Rome Laboratory Surveillance Facility (RLSF), Building 106, Griffiss Air Force Base (GAFB). The artificial intelligence is embedded in an adaptive control expert system which is written in Prolog. This system identifies sources of interference in each antenna beam position of the surveillance region and responds with the appropriate adaptive controls to maximize the probability of target detection consistent with operator-specified tactical objectives. In addition, the system has the following features: (1) radar inputs provided by a real, as opposed to a simulated, radar; (2) real-time operation with one scan response time of ten seconds or less; (3) modular design for rulebase and system evolution; (4) extensive parameterization for different radar configurations and operational specifications; and (5) control of a large number of radar parameters. The report includes IMRD organization, parameterization options for configuring it to different environments, the expert system software development, and results.

  4. Radar Baseret Styringspotentiale for Vejle Spildevand

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Rasmussen, Michael R.

    Denne undersøgelse er initieret af Vejle Spildevands A/S som har bedt Krüger AS om at undersøge styringspotentialet i Vejle by på baggrund af Vejles LAWR radar. Aalborg Universitet har derfor fået til opgave at sammenligne LAWR radaren med både regnmålere og DMI’s Virring radar i 3 udvalgte...... er baseret på 8 SVK-regnmålerne i og omkring Vejle og er desuden sammenlignet med regn estimater fra DMI’s metrologiske C-bånds radar, der er placeret nær Virring ca. 45 km nord-øst for Vejle. De to radarer er i undersøgelsen kalibreres/justeres efter tre forskellige metoder. Det er vigtigt...... at pointere, at datagrundlaget for såvel kalibrering og validering er det samme for de to radarer. Der er således i undersøgelsen kun anvendt data hvor begge radarer har fungeret, således at radarenes kvalitet er evalueret under eksakt samme meteorologiske forhold og med de samme regnmålerdata. Følgende tre...

  5. The design of broadband radar absorbing surfaces

    Science.gov (United States)

    Suk, Go H.

    1990-09-01

    There has been a growing and widespread interest in radar absorbing material technology. As the name implies, radar absorbing materials or RAM's are coatings whose electric and magnetic properties have been selected to allow the absorption of microwave energy at discrete or broadband frequencies. In military applications low radar cross section (RCS) of a vehicle may be required in order to escape detection while a covert mission is being carried on. These requirements have led to the very low observable or stealth technology that reduces the probability of detection of an aircraft. The design of radar absorbing materials is limited by constraints on the allowable volume and weight of the surface coating, and it is difficult to design a broadband radar absorbing structure in limited volume. This thesis investigates the use of lossy dielectric materials of high dielectric permittivity in multilayer composites for the production of low radar cross section (RCS). The analysis is done by computing the plane wave reflection coefficient at the exterior surface of the composite coating by means of a computer program which selects layer parameters which determine low reflection coefficients for electromagnetic radiation under constraint of limited layer thickness as well as maximum frequency bandwidth.

  6. Antenna induced range smearing in MST radars

    Science.gov (United States)

    Watkins, B. J.; Johnston, P. E.

    1984-01-01

    There is considerable interest in developing stratosphere troposphere (ST) and mesosphere stratosphere troposphere (MST) radars for higher resolution to study small-scale turbulent structures and waves. At present most ST and MST radars have resolutions of 150 meters or larger, and are not able to distinguish the thin (40 - 100 m) turbulent layers that are known to occur in the troposphere and stratosphere, and possibly in the mesosphere. However the antenna beam width and sidelobe level become important considerations for radars with superior height resolution. The objective of this paper is to point out that for radars with range resolutions of about 150 meters or less, there may be significant range smearing of the signals from mesospheric altitudes due to the finite beam width of the radar antenna. At both stratospheric and mesospheric heights the antenna sidelobe level for lear equally spaced phased arrays may also produce range aliased signals. To illustrate this effect the range smearing functions for two vertically directed antennas have been calculated, (1) an array of 32 coaxial-collinear strings each with 48 elements that simulates the vertical beam of the Poker Flat, Glaska, MST radar; and (2) a similar, but smaller, array of 16 coaxial-collinear strings each with 24 elements.

  7. Weather radar rainfall data in urban hydrology

    Science.gov (United States)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick; Ellerbæk Nielsen, Jesper; ten Veldhuis, Marie-Claire; Arnbjerg-Nielsen, Karsten; Rasmussen, Michael R.; Molnar, Peter

    2017-03-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value to the aforementioned emerging fields in current and future applications, but also to the analysis of integrated water systems.

  8. A COMPARISON ON RADAR ABSORBING PROPERTIES OF NANO AND MICRO-SCALE BARIUM HEXAFERRITE POWDERS REINFORCED POLYMERIC COMPOSITES

    Directory of Open Access Journals (Sweden)

    Hüsnügül Yılmaz Atay

    2016-06-01

    Full Text Available It has been highlighted the usage of barium hexaferrite as a radar absorbing material in the polymer composites in our previous works. With this respect in this study, finer barium hexaferrite powders were obtained, and a comparison has been done on the radar absorbing properties by means of usage of micro and Nano-size powders reinforced composite coatings. Barium hexaferrite powders were synthesized by Sol-Gel method in Nano-size with the hexagonal molecular structure obtained powders were added to a polyurethane resin to interpolate radar absorbing property with different loading levels. Later on, metal substrates were coated with those polymeric composites. Besides characterization tests, such as particle size analysis, X-Ray Diffraction, Scanning Electron Microscopy (SEM, scratch test, radar absorbing test were performed with a Network Analyzer to indicate electromagnetic properties of barium hexaferrite reinforced composites. It was concluded that increasing barium hexaferrite powder amount in the composites increased radar absorbing performance. Additionally, by decreasing BaFe12O19 powder size to Nano scale, improved radar absorbing properties were obtained.

  9. Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar

    NARCIS (Netherlands)

    Schuurmans, J.M.; Bierkens, M.F.P.; Pebesma, E.J.; Uijlenhoet, R.

    2007-01-01

    This study investigates the added value of operational radar with respect to rain gauges in obtaining high-resolution daily rainfall fields as required in distributed hydrological modeling. To this end data from the Netherlands operational national rain gauge network (330 gauges nationwide) is

  10. GPM Satellite Radar Measurements of Precipitation and Freezing Level in Atmospheric Rivers: Comparison With Ground-Based Radars and Reanalyses

    Science.gov (United States)

    Cannon, Forest; Ralph, F. Martin; Wilson, Anna M.; Lettenmaier, Dennis P.

    2017-12-01

    Atmospheric rivers (ARs) account for more than 90% of the total meridional water vapor flux in midlatitudes, and 25-50% of the annual precipitation in the coastal western United States. In this study, reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) are used to evaluate precipitation and temperature characteristics of ARs over the western coast of North America and the eastern North Pacific Ocean. Evaluation of GPM-DPR bright-band height using a network of ground-based vertically pointing radars along the West Coast demonstrated exceptional agreement, and comparison with freezing level height from reanalyses over the eastern North Pacific Ocean also consistently agreed, indicating that GPM-DPR can be used to independently validate freezing level in models. However, precipitation comparison with gridded observations across the western United States indicated deficiencies in GPM-DPR's ability to reproduce the spatial distribution of winter precipitation, likely related to sampling frequency. Over the geographically homogeneous oceanic portion of the domain, sampling frequency was not problematic, and significant differences in the frequency and intensity of precipitation between GPM-DPR and reanalyses highlighted biases in both satellite-observed and modeled AR precipitation. Reanalyses precipitation rates below the minimum sensitivity of GPM-DPR accounted for a 20% increase in total precipitation, and 25% of radar-derived precipitation rates were greater than the 99th percentile precipitation rate in reanalyses. Due to differences in the proportions of precipitation in convective, stratiform bright-band, and non-bright-band conditions, AR conditions contributed nearly 10% more to total precipitation in GPM-DPR than reanalyses.

  11. Flash flood area mapping utilising SENTINEL-1 radar data

    Science.gov (United States)

    Psomiadis, Emmanouil

    2016-10-01

    The new European Observatory radar data of polar orbiting satellite system Sentinel-1 provide a continuous and systematic data acquisition, enabling flood events monitoring and mapping. The study area is the basin of Sperchios River in Fthiotida Prefecture, Central Greece, having an increased ecological, environmental and socio-economic interest. The catchment area and especially the river delta, faces several problems and threats caused by anthropogenic activities and natural processes. The geomorphology of Sperchios catchment area and the drainage network formation provoke the creation of floods. A large flash flood event took place in late January early February 2015 following an intense and heavy rainfall that occurred in the area. Two space born radar images, obtained from Sentinel-1 covering the same area, one before and another one during the flood event, were processed. Two different methods were utilized so as to produce flood hazard maps, which demonstrate the inundated areas. The results of the two methods were similar and the flooded area was detected and delineated ideally.

  12. Meridian-scanning photometer, coherent HF radar, and magnetometer observations of the cusp: a case study

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    1999-02-01

    Full Text Available The dynamics of the cusp region and post-noon sector for an interval of predominantly IMF By, Bz < 0 nT are studied with the CUTLASS Finland coherent HF radar, a meridian-scanning photometer located at Ny Ålesund, Svalbard, and a meridional network of magnetometers. The scanning mode of the radar is such that one beam is sampled every 14 s, and a 30° azimuthal sweep is completed every 2 minutes, all at 15 km range resolution. Both the radar backscatter and red line (630 nm optical observations are closely co-located, especially at their equatorward boundary. The optical and radar aurora reveal three different behaviours which can interchange on the scale of minutes, and which are believed to be related to the dynamic nature of energy and momentum transfer from the solar wind to the magnetosphere through transient dayside reconnection. Two interpretations of the observations are presented, based upon the assumed location of the open/closed field line boundary (OCFLB. In the first, the OCFLB is co-located with equatorward boundary of the optical and radar aurora, placing most of the observations on open field lines. In the second, the observed aurora are interpreted as the ionospheric footprint of the region 1 current system, and the OCFLB is placed near the poleward edge of the radar backscatter and visible aurora; in this interpretation, most of the observations are placed on closed field lines, though transient brightenings of the optical aurora occur on open field lines. The observations reveal several transient features, including poleward and equatorward steps in the observed boundaries, "braiding" of the backscatter power, and 2 minute quasi-periodic enhancements of the plasma drift and optical intensity, predominantly on closed field lines.Key words. Ionosphere (auroral ionosphere; plasma convection · Magnetospheric physics (magnetopause · cusp · and boundary layers

  13. Backtracking drifting objects using surface currents from high-frequency (HF) radar technology

    Science.gov (United States)

    Abascal, Ana Julia; Castanedo, Sonia; Fernández, Vicente; Medina, Raúl

    2012-07-01

    In this work, the benefits of high-frequency (HF) radar ocean observation technology for backtracking drifting objects are analysed. The HF radar performance is evaluated by comparison of trajectories between drifter buoys versus numerical simulations using a Lagrangian trajectory model. High-resolution currents measured by a coastal HF radar network combined with atmospheric fields provided by numerical models are used to backtrack the trajectory of two dataset of surface-drifting buoys: group I (with drogue) and group II (without drogue). A methodology based on optimization methods is applied to estimate the uncertainty in the trajectory simulations and to optimize the search area of the backtracked positions. The results show that, to backtrack the trajectory of the buoys in group II, both currents and wind fields were required. However, wind fields could be practically discarded when simulating the trajectories of group I. In this case, the optimal backtracked trajectories were obtained using only HF radar currents as forcing. Based on the radar availability data, two periods ranging between 8 and 10 h were selected to backtrack the buoy trajectories. The root mean squared error (RMSE) was found to be 1.01 km for group I and 0.82 km for group II. Taking into account these values, a search area was calculated using circles of RMSE radii, obtaining 3.2 and 2.11 km2 for groups I and II, respectively. These results show the positive contribution of HF radar currents for backtracking drifting objects and demonstrate that these data combined with atmospheric models are of value to perform backtracking analysis of drifting objects.

  14. Sea clutter scattering, the K distribution and radar performance

    CERN Document Server

    Ward, Keith; Watts, Simon

    2013-01-01

    Sea Clutter: Scattering, the K Distribution and Radar Performance, 2nd Edition gives an authoritative account of our current understanding of radar sea clutter. Topics covered include the characteristics of radar sea clutter, modelling radar scattering by the ocean surface, statistical models of sea clutter, the simulation of clutter and other random processes, detection of small targets in sea clutter, imaging ocean surface features, radar detection performance calculations, CFAR detection, and the specification and measurement of radar performance. The calculation of the performance of pract

  15. Radar principles for the nonspecialist, 3rd edition

    CERN Document Server

    Toomay, John

    2004-01-01

    Radar Principles for the Non-specialist, Third Edition continues its popular tradition: to distill the very complex technology of radar into its fundamentals, tying them to the laws of nature on one end and to the most modern and complex systems on the other. It starts with electromagnetic propagation, describes a radar of the utmost simplicity, and derives the radar range equation from that simple radar. Once the range equation is available, the book attacks the meaning of each term in it, moving through antennas, detection and tracking, radar cross-section, waveforms andsignal proces

  16. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Directory of Open Access Journals (Sweden)

    E. Picciotti

    2013-05-01

    Full Text Available Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative mbox{integrated} decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5

  17. Coupling X-band dual-polarized mini-radars and hydro-meteorological forecast models: the HYDRORAD project

    Science.gov (United States)

    Picciotti, E.; Marzano, F. S.; Anagnostou, E. N.; Kalogiros, J.; Fessas, Y.; Volpi, A.; Cazac, V.; Pace, R.; Cinque, G.; Bernardini, L.; De Sanctis, K.; Di Fabio, S.; Montopoli, M.; Anagnostou, M. N.; Telleschi, A.; Dimitriou, E.; Stella, J.

    2013-05-01

    Hydro-meteorological hazards like convective outbreaks leading to torrential rain and floods are among the most critical environmental issues world-wide. In that context weather radar observations have proven to be very useful in providing information on the spatial distribution of rainfall that can support early warning of floods. However, quantitative precipitation estimation by radar is subjected to many limitations and uncertainties. The use of dual-polarization at high frequency (i.e. X-band) has proven particularly useful for mitigating some of the limitation of operational systems, by exploiting the benefit of easiness to transport and deploy and the high spatial and temporal resolution achievable at small antenna sizes. New developments on X-band dual-polarization technology in recent years have received the interest of scientific and operational communities in these systems. New enterprises are focusing on the advancement of cost-efficient mini-radar network technology, based on high-frequency (mainly X-band) and low-power weather radar systems for weather monitoring and hydro-meteorological forecasting. Within the above context, the main objective of the HYDRORAD project was the development of an innovative integrated decision support tool for weather monitoring and hydro-meteorological applications. The integrated system tool is based on a polarimetric X-band mini-radar network which is the core of the decision support tool, a novel radar products generator and a hydro-meteorological forecast modelling system that ingests mini-radar rainfall products to forecast precipitation and floods. The radar products generator includes algorithms for attenuation correction, hydrometeor classification, a vertical profile reflectivity correction, a new polarimetric rainfall estimators developed for mini-radar observations, and short-term nowcasting of convective cells. The hydro-meteorological modelling system includes the Mesoscale Model 5 (MM5) and the Army Corps

  18. Signal compression in radar using FPGA

    Directory of Open Access Journals (Sweden)

    Enrique Escamilla Hemández

    2010-01-01

    Full Text Available El presente artículo muestra la puesta en práctica de hardware para realizar el procesamiento en tiempo real de la señal de radar usando una técnica simple, rápida basada en arquitectura de FPGA (Field Programmable Gate Array. El proceso incluye diversos procedimientos de enventanado durante la compresión del pulso del radar de apertura sintética (SAR. El proceso de compresión de la señal de radar se hace con un filtro acoplado. que aplica funciones clásicas y nuevas de enventanado, donde nos centramos en obtener una mejor atenuación para los valores de lóbulos laterales. La arquitectura propuesta explota los recursos de computación paralela de los dispositivos FPGA para alcanzar una mejor velocidad de cómputo. Las investigaciones experimentales han demostrado que los mejores resultados para el funcionamiento de la compresión del pulso se han obtenido usando las funciones atómicas, mejorando el funcionamiento del sistema del radar en presencia de ruido, y consiguiendo una pequeña degradación en la resolución de rango. La puesta en práctica del tratamiento de señales en el sistema de radar en tiempo real se discute y se justifica la eficiencia de la arquitectura de hardware propuesta.

  19. RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Science.gov (United States)

    Pan, F.; Kang, K.; Duguay, C. R.

    2016-12-01

    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where meteorological conditions and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and different ice types during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms. These procedures as well as basic polarimetric parameters were integrated into modified convolutional neural networks (CNN). The CNN were modified via introduction of a Markov random field into the higher iterative layers of networks for acquiring updated priors and classifying ice and open water areas over the lake. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation, including different ice types. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services.

  20. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA)

    Science.gov (United States)

    Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed

    2015-12-01

    The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by Ca