WorldWideScience

Sample records for network structure plays

  1. Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

    NARCIS (Netherlands)

    van den Dries, Sjoerd; Wiering, Marco A.

    This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network

  2. Spatial prisoner's dilemma optimally played in small-world networks

    International Nuclear Information System (INIS)

    Masuda, Naoki; Aihara, Kazuyuki

    2003-01-01

    Cooperation is commonly found in ecological and social systems even when it apparently seems that individuals can benefit from selfish behavior. We investigate how cooperation emerges with the spatial prisoner's dilemma played in a class of networks ranging from regular lattices to random networks. We find that, among these networks, small-world topology is the optimal structure when we take into account the speed at which cooperative behavior propagates. Our results may explain why the small-world properties are self-organized in real networks

  3. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Networks are widely used to represent interaction pattern among the components in complex systems. Structures of real networks from different domains may vary quite significantly. As there is an interplay between network architecture and dynamics, structure plays an important role in communication and spreading of ...

  4. European networks in structural integrity

    International Nuclear Information System (INIS)

    Crutzen, S.; Davies, M.; Hemsworth, B.; Hurst, R.; Kussmaul, K.

    1994-01-01

    Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC) have the capability to deal problems posed by the operation and ageing of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes now organised in networks. They include utilities, engineering companies, R and D laboratories and Regulatory Bodies. Networks are organised and managed like the successful PISC programme: The Institute for Advanced Materials of JRC plays the role of Operating Agent and Manager of these networks: ENIQ, AMES, NESC, each of them dealing with a specific aspect of fitness for purpose of materials in structural components. There exist strong links between the networks and EC Working Groups on Structural Integrity Codes and Standards. (orig.)

  5. Structure constrained by metadata in networks of chess players.

    Science.gov (United States)

    Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V

    2017-11-09

    Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.

  6. PlayNCool: Opportunistic Network Coding for Local Optimization of Routing in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Pedersen, Morten Videbæk

    2013-01-01

    This paper introduces PlayNCool, an opportunistic protocol with local optimization based on network coding to increase the throughput of a wireless mesh network (WMN). PlayNCool aims to enhance current routing protocols by (i) allowing random linear network coding transmissions end-to-end, (ii) r...

  7. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  8. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  9. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  10. The overlapping community structure of structural brain network in young healthy individuals.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2011-05-01

    Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.

  11. Plug & Play object oriented Bayesian networks

    DEFF Research Database (Denmark)

    Bangsø, Olav; Flores, J.; Jensen, Finn Verner

    2003-01-01

    been shown to be quite suitable for dynamic domains as well. However, processing object oriented Bayesian networks in practice does not take advantage of their modular structure. Normally the object oriented Bayesian network is transformed into a Bayesian network and, inference is performed...... dynamic domains. The communication needed between instances is achieved by means of a fill-in propagation scheme....

  12. Robustness and modular structure in networks

    DEFF Research Database (Denmark)

    Bagrow, James P.; Lehmann, Sune; Ahn, Yong-Yeol

    2015-01-01

    -12]. Many complex systems, from power grids and the Internet to the brain and society [13-15], can be modeled using modular networks comprised of small, densely connected groups of nodes [16, 17]. These modules often overlap, with network elements belonging to multiple modules [18, 19]. Yet existing work...... on robustness has not considered the role of overlapping, modular structure. Here we study the robustness of these systems to the failure of elements. We show analytically and empirically that it is possible for the modules themselves to become uncoupled or non-overlapping well before the network disintegrates....... If overlapping modular organization plays a role in overall functionality, networks may be far more vulnerable than predicted by conventional percolation theory....

  13. Partially Overlapping Brain Networks for Singing and Cello Playing

    Directory of Open Access Journals (Sweden)

    Melanie Segado

    2018-05-01

    Full Text Available This research uses an MR-Compatible cello to compare functional brain activation during singing and cello playing within the same individuals to determine the extent to which arbitrary auditory-motor associations, like those required to play the cello, co-opt functional brain networks that evolved for singing. Musical instrument playing and singing both require highly specific associations between sounds and movements. Because these are both used to produce musical sounds, it is often assumed in the literature that their neural underpinnings are highly similar. However, singing is an evolutionarily old human trait, and the auditory-motor associations used for singing are also used for speech and non-speech vocalizations. This sets it apart from the arbitrary auditory-motor associations required to play musical instruments. The pitch range of the cello is similar to that of the human voice, but cello playing is completely independent of the vocal apparatus, and can therefore be used to dissociate the auditory-vocal network from that of the auditory-motor network. While in the MR-Scanner, 11 expert cellists listened to and subsequently produced individual tones either by singing or cello playing. All participants were able to sing and play the target tones in tune (<50C deviation from target. We found that brain activity during cello playing directly overlaps with brain activity during singing in many areas within the auditory-vocal network. These include primary motor, dorsal pre-motor, and supplementary motor cortices (M1, dPMC, SMA,the primary and periprimary auditory cortices within the superior temporal gyrus (STG including Heschl's gyrus, anterior insula (aINS, anterior cingulate cortex (ACC, and intraparietal sulcus (IPS, and Cerebellum but, notably, exclude the periaqueductal gray (PAG and basal ganglia (Putamen. Second, we found that activity within the overlapping areas is positively correlated with, and therefore likely contributing to

  14. What's Next in Complex Networks? Capturing the Concept of Attacking Play in Invasive Team Sports.

    Science.gov (United States)

    Ramos, João; Lopes, Rui J; Araújo, Duarte

    2018-01-01

    The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as well as a powerful communication tool. Despite these advances, some fundamental team sports concepts such as an attacking play have not been properly captured by the more common applications of social network analysis to team sports performance. In this article, we propose a novel approach to team sports performance centered on sport concepts, namely that of an attacking play. Network theory and tools including temporal and bipartite or multilayered networks were used to capture this concept. We put forward eight questions directly related to team performance to discuss how common pitfalls in the use of network tools for capturing sports concepts can be avoided. Some answers are advanced in an attempt to be more precise in the description of team dynamics and to uncover other metrics directly applied to sport concepts, such as the structure and dynamics of attacking plays. Finally, we propose that, at this stage of knowledge, it may be advantageous to build up from fundamental sport concepts toward complex network theory and tools, and not the other way around.

  15. Partially Overlapping Brain Networks for Singing and Cello Playing.

    Science.gov (United States)

    Segado, Melanie; Hollinger, Avrum; Thibodeau, Joseph; Penhune, Virginia; Zatorre, Robert J

    2018-01-01

    This research uses an MR-Compatible cello to compare functional brain activation during singing and cello playing within the same individuals to determine the extent to which arbitrary auditory-motor associations, like those required to play the cello, co-opt functional brain networks that evolved for singing. Musical instrument playing and singing both require highly specific associations between sounds and movements. Because these are both used to produce musical sounds, it is often assumed in the literature that their neural underpinnings are highly similar. However, singing is an evolutionarily old human trait, and the auditory-motor associations used for singing are also used for speech and non-speech vocalizations. This sets it apart from the arbitrary auditory-motor associations required to play musical instruments. The pitch range of the cello is similar to that of the human voice, but cello playing is completely independent of the vocal apparatus, and can therefore be used to dissociate the auditory-vocal network from that of the auditory-motor network. While in the MR-Scanner, 11 expert cellists listened to and subsequently produced individual tones either by singing or cello playing. All participants were able to sing and play the target tones in tune (singing in many areas within the auditory-vocal network. These include primary motor, dorsal pre-motor, and supplementary motor cortices (M1, dPMC, SMA),the primary and periprimary auditory cortices within the superior temporal gyrus (STG) including Heschl's gyrus, anterior insula (aINS), anterior cingulate cortex (ACC), and intraparietal sulcus (IPS), and Cerebellum but, notably, exclude the periaqueductal gray (PAG) and basal ganglia (Putamen). Second, we found that activity within the overlapping areas is positively correlated with, and therefore likely contributing to, both singing and playing in tune determined with performance measures. Third, we found that activity in auditory areas is functionally

  16. Ames and other European networks in integrity of ageing structures

    International Nuclear Information System (INIS)

    Davies, L.M.; Von Estorff, U.; Crutzen, S.

    1996-01-01

    Several European institutions and organisations and the Joint Research Centre have developed co-operative programmes now organised into Networks for mutual benefit. They include utilities, engineering companies, Research and Development laboratories and regulatory bodies. Networks are organised and managed like the successful Programme for the Inspection of Steel Components (PISC). The JRC's Institute for Advanced Materials of the European Commission plays the role of Operating Agent and manager of these Networks: ENIQ. AMES, NESC, each of them dealing with specific aspect of fitness for purpose of materials in structural components. This paper describes the structure and the objectives of these networks. Particular emphasis is given to the network AMES

  17. Active influence in dynamical models of structural balance in social networks

    Science.gov (United States)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  18. Epidemic spreading in weighted scale-free networks with community structure

    International Nuclear Information System (INIS)

    Chu, Xiangwei; Guan, Jihong; Zhang, Zhongzhi; Zhou, Shuigeng

    2009-01-01

    Many empirical studies reveal that the weights and community structure are ubiquitous in various natural and artificial networks. In this paper, based on the SI disease model, we investigate the epidemic spreading in weighted scale-free networks with community structure. Two exponents, α and β, are introduced to weight the internal edges and external edges, respectively; and a tunable probability parameter q is also introduced to adjust the strength of community structure. We find the external weighting exponent β plays a much more important role in slackening the epidemic spreading and reducing the danger brought by the epidemic than the internal weighting exponent α. Moreover, a novel result we find is that the strong community structure is no longer helpful for slackening the danger brought by the epidemic in the weighted cases. In addition, we show the hierarchical dynamics of the epidemic spreading in the weighted scale-free networks with communities which is also displayed in the famous BA scale-free networks

  19. Network structure exploration in networks with node attributes

    Science.gov (United States)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  20. Epidemic spreading on complex networks with overlapping and non-overlapping community structure

    Science.gov (United States)

    Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng

    2015-02-01

    Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.

  1. vhv supply networks, problems of network structure

    Energy Technology Data Exchange (ETDEWEB)

    Raimbault, J

    1966-04-01

    The present and future power requirements of the Paris area and the structure of the existing networks are discussed. The various limitations that will have to be allowed for to lay down the structure of a regional transmission network leading in the power of the large national transmission network to within the Paris built up area are described. The theoretical solution that has been adopted, and the features of its final achievement, which is planned for about the year 2000, and the intermediate stages are given. The problem of the structure of the National Power Transmission network which is to supply the regional network was studied. To solve this problem, a 730 kV voltage network will have to be introduced.

  2. [Network structures in biological systems].

    Science.gov (United States)

    Oleskin, A V

    2013-01-01

    Network structures (networks) that have been extensively studied in the humanities are characterized by cohesion, a lack of a central control unit, and predominantly fractal properties. They are contrasted with structures that contain a single centre (hierarchies) as well as with those whose elements predominantly compete with one another (market-type structures). As far as biological systems are concerned, their network structures can be subdivided into a number of types involving different organizational mechanisms. Network organization is characteristic of various structural levels of biological systems ranging from single cells to integrated societies. These networks can be classified into two main subgroups: (i) flat (leaderless) network structures typical of systems that are composed of uniform elements and represent modular organisms or at least possess manifest integral properties and (ii) three-dimensional, partly hierarchical structures characterized by significant individual and/or intergroup (intercaste) differences between their elements. All network structures include an element that performs structural, protective, and communication-promoting functions. By analogy to cell structures, this element is denoted as the matrix of a network structure. The matrix includes a material and an immaterial component. The material component comprises various structures that belong to the whole structure and not to any of its elements per se. The immaterial (ideal) component of the matrix includes social norms and rules regulating network elements' behavior. These behavioral rules can be described in terms of algorithms. Algorithmization enables modeling the behavior of various network structures, particularly of neuron networks and their artificial analogs.

  3. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  4. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  5. An actor-based model of social network influence on adolescent body size, screen time, and playing sports.

    Directory of Open Access Journals (Sweden)

    David A Shoham

    Full Text Available Recent studies suggest that obesity may be "contagious" between individuals in social networks. Social contagion (influence, however, may not be identifiable using traditional statistical approaches because they cannot distinguish contagion from homophily (the propensity for individuals to select friends who are similar to themselves or from shared environmental influences. In this paper, we apply the stochastic actor-based model (SABM framework developed by Snijders and colleagues to data on adolescent body mass index (BMI, screen time, and playing active sports. Our primary hypothesis was that social influences on adolescent body size and related behaviors are independent of friend selection. Employing the SABM, we simultaneously modeled network dynamics (friendship selection based on homophily and structural characteristics of the network and social influence. We focused on the 2 largest schools in the National Longitudinal Study of Adolescent Health (Add Health and held the school environment constant by examining the 2 school networks separately (N = 624 and 1151. Results show support in both schools for homophily on BMI, but also for social influence on BMI. There was no evidence of homophily on screen time in either school, while only one of the schools showed homophily on playing active sports. There was, however, evidence of social influence on screen time in one of the schools, and playing active sports in both schools. These results suggest that both homophily and social influence are important in understanding patterns of adolescent obesity. Intervention efforts should take into consideration peers' influence on one another, rather than treating "high risk" adolescents in isolation.

  6. Wireless Plug and Play Control Systems: Hardware, Networks, and Protocols

    DEFF Research Database (Denmark)

    Meybodi, Soroush Afkhami

    2012-01-01

    This dissertation reports the result of efforts to identify and solve the problems that arise when a control system is to be designed for various industrial case studies of the Plug and Play Process Control (P3C) project that require autonomous addition/removal of sensors, actuators and subsystems...... in only one of the P3C case studies where all of the nodes of the wireless networked control system are placed underground and should be able to transmit data among themselves. It is not a trivial problem because the well known radio frequency electromagnetic waves face serious difficulties penetrating...... is recommended for wireless plug and play control systems. Formation and maintenance of clusters of nodes are directly linked to the top level application layer via a novel application-based routing metric. The proposed routing metric facilitates implementation of the networking topology in accordance...

  7. Effects of the network structure and coupling strength on the noise-induced response delay of a neuronal network

    International Nuclear Information System (INIS)

    Ozer, Mahmut; Uzuntarla, Muhammet

    2008-01-01

    The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called 'noise delayed decay' (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code

  8. Managing Network Partitions in Structured P2P Networks

    Science.gov (United States)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  9. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. The differences in physical activity levels in preschool children during free play recess and structured play recess

    Directory of Open Access Journals (Sweden)

    Megan L. Frank

    2018-04-01

    Full Text Available Background/Objective: Physical activity (PA is important in reducing childhood obesity, yet a majority of children are not meeting PA guidelines. Schools have been identified as a place to promote childhood PA. The purpose of this study was to determine the best type of physically active recess period to increase preschool-aged children's PA. Methods: PA was measured via accelerometers in preschool-aged children (n = 29 during three, 30-min recess conditions (control; structured play; free play on separate school days. Tertile splits were performed based on PA during the free play condition and children were divided into three groups: highly, moderately and least active. Results: For the aggregated sample, children were more (p ≤ 0.001 active during the free play (1282 ± 662 counts. min−1 and structured play (1416 ± 448 counts. min−1 recess versus the control condition (570 ± 460 counts. min−1 and activity was not different between the free play and structured conditions. However, children who were the most active during free play (1970 ± 647 counts·min−1 decreased (p ≤ 0.05 activity during structured play (1462 ± 535 counts·min−1, whereas children who were moderately active (1031 ± 112 counts·min−1 or the least (530 ± 239 counts·min−1 active during free play increased activity during structured play (1383 ± 345 counts·min−1 moderately active, 1313 ± 413 counts·min−1 least active. Conclusion: Providing a physically-active recess period will contribute to preschool-aged children meeting the recommended PA guidelines; however, different children may respond in a different way based upon the structure of the recess period.

  11. The Art of Playful Mobility in Museums

    DEFF Research Database (Denmark)

    Froes, Isabel Cristina G.; Walker, Kevin

    2012-01-01

    Many of us interact with other people in online games and social networks, through multiple digital devices. But harnessing playful and mobile activities for museum learning is mostly undeveloped. In this chapter we explore play as a structure to support visitor learning, drawing from internation...

  12. Resolving structural variability in network models and the brain.

    Directory of Open Access Journals (Sweden)

    Florian Klimm

    2014-03-01

    Full Text Available Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling--in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity do not in general simultaneously display a second (e.g., hierarchy. This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful

  13. From network structure to network reorganization: implications for adult neurogenesis

    International Nuclear Information System (INIS)

    Schneider-Mizell, Casey M; Zochowski, Michal R; Sander, Leonard M; Parent, Jack M; Ben-Jacob, Eshel

    2010-01-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells

  14. An examination of a reciprocal relationship between network governance and network structure

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Goduscheit, René Chester

    The present article examines the network structure and governance of inter-organisational innovation networks. Network governance refers to the issue of how to manage and coordinate the relational activities and processes in the network while research on network structure deals with the overall...... structural relations between the actors in the network. These streams of research do contain references to each other but mostly rely on a static conception of the relationship between network structure and the applied network governance. The paper is based on a primarily qualitative case study of a loosely...... coupled Danish inter-organisational innovation network. The proposition is that a reciprocal relation between network governance and network structure can be identified....

  15. Network structure exploration via Bayesian nonparametric models

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Xiang, X; Tang, B Z; Bu, J Z

    2015-01-01

    Complex networks provide a powerful mathematical representation of complex systems in nature and society. To understand complex networks, it is crucial to explore their internal structures, also called structural regularities. The task of network structure exploration is to determine how many groups there are in a complex network and how to group the nodes of the network. Most existing structure exploration methods need to specify either a group number or a certain type of structure when they are applied to a network. In the real world, however, the group number and also the certain type of structure that a network has are usually unknown in advance. To explore structural regularities in complex networks automatically, without any prior knowledge of the group number or the certain type of structure, we extend a probabilistic mixture model that can handle networks with any type of structure but needs to specify a group number using Bayesian nonparametric theory. We also propose a novel Bayesian nonparametric model, called the Bayesian nonparametric mixture (BNPM) model. Experiments conducted on a large number of networks with different structures show that the BNPM model is able to explore structural regularities in networks automatically with a stable, state-of-the-art performance. (paper)

  16. Probabilistic neural network playing and learning Tic-Tac-Toe

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Somol, Petr; Pudil, Pavel

    2005-01-01

    Roč. 26, č. 12 (2005), s. 1866-1873 ISSN 0167-8655 R&D Projects: GA ČR GA402/02/1271; GA ČR GA402/03/1310; GA MŠk 1M0572 Grant - others:Comission EU(XE) FP6-507772 Institutional research plan: CEZ:AV0Z10750506 Keywords : neural networks * distribution mixtures * playing game s Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.138, year: 2005

  17. Networks: structure and action : steering in and steering by policy networks

    NARCIS (Netherlands)

    Dassen, A.

    2010-01-01

    This thesis explores the opportunities to build a structural policy network model that is rooted in social network theories. By making a distinction between a process of steering in networks, and a process of steering by networks, it addresses the effects of network structures on network dynamics as

  18. Detecting Hierarchical Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2012-01-01

    Many real-world networks exhibit hierarchical organization. Previous models of hierarchies within relational data has focused on binary trees; however, for many networks it is unknown whether there is hierarchical structure, and if there is, a binary tree might not account well for it. We propose...... a generative Bayesian model that is able to infer whether hierarchies are present or not from a hypothesis space encompassing all types of hierarchical tree structures. For efficient inference we propose a collapsed Gibbs sampling procedure that jointly infers a partition and its hierarchical structure....... On synthetic and real data we demonstrate that our model can detect hierarchical structure leading to better link-prediction than competing models. Our model can be used to detect if a network exhibits hierarchical structure, thereby leading to a better comprehension and statistical account the network....

  19. Collective network for computer structures

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  20. Cross-linked structure of network evolution

    International Nuclear Information System (INIS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-01-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  1. Cross-linked structure of network evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  2. The BDNF Val66Met Polymorphism Affects the Vulnerability of the Brain Structural Network

    Directory of Open Access Journals (Sweden)

    Chang-hyun Park

    2017-08-01

    Full Text Available Val66Met, a naturally occurring polymorphism in the human brain-derived neurotrophic factor (BDNF gene resulting in a valine (Val to methionine (Met substitution at codon 66, plays an important role in neuroplasticity. While the effect of the BDNF Val66Met polymorphism on local brain structures has previously been examined, its impact on the configuration of the graph-based white matter structural networks is yet to be investigated. In the current study, we assessed the effect of the BDNF polymorphism on the network properties and robustness of the graph-based white matter structural networks. Graph theory was employed to investigate the structural connectivity derived from white matter tractography in two groups, Val homozygotes (n = 18 and Met-allele carriers (n = 55. Although there were no differences in the global network measures including global efficiency, local efficiency, and modularity between the two genotype groups, we found the effect of the BDNF Val66Met polymorphism on the robustness properties of the white matter structural networks. Specifically, the white matter structural networks of the Met-allele carrier group showed higher vulnerability to targeted removal of central nodes as compared with those of the Val homozygote group. These findings suggest that the central role of the BDNF Val66Met polymorphism in regards to neuroplasticity may be associated with inherent differences in the robustness of the white matter structural network according to the genetic variants. Furthermore, greater susceptibility to brain disorders in Met-allele carriers may be understood as being due to their limited stability in white matter structural connectivity.

  3. Pinning Control Strategy of Multicommunity Structure Networks

    Directory of Open Access Journals (Sweden)

    Chao Ding

    2017-01-01

    Full Text Available In order to investigate the effects of community structure on synchronization, a pinning control strategy is researched in a class of complex networks with community structure in this paper. A feedback control law is designed based on the network community structure information. The stability condition is given and proved by using Lyapunov stability theory. Our research shows that as to community structure networks, there being a threshold hT≈5, when coupling strength bellows this threshold, the stronger coupling strength corresponds to higher synchronizability; vice versa, the stronger coupling strength brings lower synchronizability. In addition the synchronizability of overlapping and nonoverlapping community structure networks was simulated and analyzed; while the nodes were controlled randomly and intensively, the results show that intensive control strategy is better than the random one. The network will reach synchronization easily when the node with largest betweenness was controlled. Furthermore, four difference networks’ synchronizability, such as Barabási-Albert network, Watts-Strogatz network, Erdös-Rényi network, and community structure network, are simulated; the research shows that the community structure network is more easily synchronized under the same control strength.

  4. True Nature of Supply Network Communication Structure

    Directory of Open Access Journals (Sweden)

    Lokhman Hakim bin Osman

    2016-04-01

    Full Text Available Globalization of world economy has altered the definition of organizational structure. Global supply chain can no longer be viewed as an arm-length structure. It has become more complex. The complexity demands deeper research and understanding. This research analyzed a structure of supply network in an attempt to elucidate the true structure of the supply network. Using the quantitative Social Network Analysis methodology, findings of this study indicated that, the structure of the supply network differs depending on the types of network relations. An important implication of these findings would be a more focus resource management upon network relationship development that is based on firms’ positions in the different network structure. This research also contributes to the various strategies of effective and efficient supply chain management.

  5. Airline network structure in competitive market

    Directory of Open Access Journals (Sweden)

    Babić Danica D.

    2014-01-01

    Full Text Available Airline's network is the key element of its business strategy and selected network structure will not have influence only on the airline's costs but could gain some advantage in revenues, too. Network designing implies that an airline has to make decisions about markets that it will serve and how to serve those markets. Network choice raises the following questions for an airline: a what markets to serve, b how to serve selected markets, c what level of service to offer, d what are the benefits/cost of the that decisions and e what is the influence of the competition. We analyzed the existing airline business models and corresponding network structure. The paper highlights the relationship between the network structures and the airline business strategies. Using a simple model we examine the relationship between the network structure and service quality in deregulated market.

  6. Towards structural controllability of local-world networks

    International Nuclear Information System (INIS)

    Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi

    2016-01-01

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  7. Towards structural controllability of local-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shiwen, E-mail: sunsw80@126.com [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China); Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi [Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, Tianjin 300384 (China)

    2016-05-20

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems. - Highlights: • Structural controllability of a class of local-world networks is investigated. • For sparse local-world networks, compared to network size, local-world size can bring stronger influence on controllability. • For dense networks, controllability is greatly affected by network size and the effect of local-world size can be neglected. • Structural controllability against targeted node attacks is discussed.

  8. Data Use for School Improvement : Knowledge Sharing and Knowledge Brokerage in Network Structures

    NARCIS (Netherlands)

    Hubers, Mireille Desirée; Moolenaar, Nienke; Schildkamp, Kim; Handelzalts, Adam; Pieters, Julius Marie; Daly, A.J.; Daly, Alan J.

    2015-01-01

    Data teams are used in Dutch secondary education to support schools in data use for school improvement. Such teams are likely to be most effective when knowledge is shared between the data team members and brokered throughout the school. Social network structures may play an important role in this.

  9. Games as Actors - Interaction, Play, Design, and Actor Network Theory

    DEFF Research Database (Denmark)

    Jessen, Jari Due; Jessen, Carsten

    2014-01-01

    When interacting with computer games, users are forced to follow the rules of the game in return for the excitement, joy, fun, or other pursued experiences. In this paper, we investigate how games a chieve these experiences in the perspective of Actor Network Theory (ANT). Based on a qualitative......, and by doing so they create in humans what in modern play theory is known as a “state of play”...

  10. Exploring biological network structure with clustered random networks

    Directory of Open Access Journals (Sweden)

    Bansal Shweta

    2009-12-01

    Full Text Available Abstract Background Complex biological systems are often modeled as networks of interacting units. Networks of biochemical interactions among proteins, epidemiological contacts among hosts, and trophic interactions in ecosystems, to name a few, have provided useful insights into the dynamical processes that shape and traverse these systems. The degrees of nodes (numbers of interactions and the extent of clustering (the tendency for a set of three nodes to be interconnected are two of many well-studied network properties that can fundamentally shape a system. Disentangling the interdependent effects of the various network properties, however, can be difficult. Simple network models can help us quantify the structure of empirical networked systems and understand the impact of various topological properties on dynamics. Results Here we develop and implement a new Markov chain simulation algorithm to generate simple, connected random graphs that have a specified degree sequence and level of clustering, but are random in all other respects. The implementation of the algorithm (ClustRNet: Clustered Random Networks provides the generation of random graphs optimized according to a local or global, and relative or absolute measure of clustering. We compare our algorithm to other similar methods and show that ours more successfully produces desired network characteristics. Finding appropriate null models is crucial in bioinformatics research, and is often difficult, particularly for biological networks. As we demonstrate, the networks generated by ClustRNet can serve as random controls when investigating the impacts of complex network features beyond the byproduct of degree and clustering in empirical networks. Conclusion ClustRNet generates ensembles of graphs of specified edge structure and clustering. These graphs allow for systematic study of the impacts of connectivity and redundancies on network function and dynamics. This process is a key step in

  11. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  12. Influence of university network structures on forming the network environment of regional economy (on the example of national research universities of Tatarstan Republic

    Directory of Open Access Journals (Sweden)

    Darya-Anna Alekseevna Kaibiyainen

    2015-03-01

    Full Text Available Objective to elaborate theoretical and applied aspects of the processes of forming the new network institutional environment of the Russian regional economy under the influence of the developing integral educational network structures basing on the study of the experience of national research universities of Tatarstan Republic Methods general scientific logical methods of analysis and synthesis induction and deduction scientific abstraction as well as the method of systemicfunctional analysis. Results the practical examples are revealed and analyzed of introducing the new network integral principles into the functioning of national research universities which have a real economic effect and influencing such indicators of regional economy as the growth of employment reduction of unemployment etc. Scientific novelty problems of network structures development in the Russian education have not been thoroughly studied yet. The article analyzes the experience reveals and describes the methods and techniques of forming the network educational structures in the functioning of national research universities in Tatarstan Republic Practical value the author shows the ability of network university structures not only to play a significant role forming the new institutional environment of the regional economy but also to influence the macro and microeconomic indicators of development of the region and the country. nbsp

  13. An examination of a reciprocal relationship between network governance and network structure

    DEFF Research Database (Denmark)

    Bergenholtz, Carsten; Goduscheit, René Chester

    2011-01-01

    In the present article, we examine the network structure and governance of inter-organisational innovation networks over time. Network governance refers to the issue of how to manage and coordinate the relational activities and processes in the network while research on network structure deals...

  14. Optimal neural networks for protein-structure prediction

    International Nuclear Information System (INIS)

    Head-Gordon, T.; Stillinger, F.H.

    1993-01-01

    The successful application of neural-network algorithms for prediction of protein structure is stymied by three problem areas: the sparsity of the database of known protein structures, poorly devised network architectures which make the input-output mapping opaque, and a global optimization problem in the multiple-minima space of the network variables. We present a simplified polypeptide model residing in two dimensions with only two amino-acid types, A and B, which allows the determination of the global energy structure for all possible sequences of pentamer, hexamer, and heptamer lengths. This model simplicity allows us to compile a complete structural database and to devise neural networks that reproduce the tertiary structure of all sequences with absolute accuracy and with the smallest number of network variables. These optimal networks reveal that the three problem areas are convoluted, but that thoughtful network designs can actually deconvolute these detrimental traits to provide network algorithms that genuinely impact on the ability of the network to generalize or learn the desired mappings. Furthermore, the two-dimensional polypeptide model shows sufficient chemical complexity so that transfer of neural-network technology to more realistic three-dimensional proteins is evident

  15. Learning Latent Structure in Complex Networks

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai

    such as the Modularity, it has recently been shown that latent structure in complex networks is learnable by Bayesian generative link distribution models (Airoldi et al., 2008, Hofman and Wiggins, 2008). In this paper we propose a new generative model that allows representation of latent community structure......Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives...... as in the previous Bayesian approaches and in addition allows learning of node specific link properties similar to that in the modularity objective. We employ a new relaxation method for efficient inference in these generative models that allows us to learn the behavior of very large networks. We compare the link...

  16. Robustness and structure of complex networks

    Science.gov (United States)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  17. STRUCTURE AND COOPTATION IN ORGANIZATION NETWORK

    Directory of Open Access Journals (Sweden)

    Valéria Riscarolli

    2007-10-01

    Full Text Available Business executive are rethinking business concept, based on horizontalization principles. As so, most organizational functions are outsourced, leading the enterprise to build business through a network of organizations. Here we study the case of Cia Hering’s network of organizations, a leader in knit apparel segment in Latin America (IEMI, 2004, looking at the network’s structure and levels of cooptation. A theoretical model was used using Quinn et al. (2001 “sun ray” network structure as basis to analyze the case study. Main results indicate higher degree of structural conformity, but incipient degree of coopetation in the network.

  18. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  19. Emergence of structural patterns out of synchronization in networks with competitive interactions

    Science.gov (United States)

    Assenza, Salvatore; Gutiérrez, Ricardo; Gómez-Gardeñes, Jesús; Latora, Vito; Boccaletti, Stefano

    2011-09-01

    Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.

  20. Immunization of networks with community structure

    International Nuclear Information System (INIS)

    Masuda, Naoki

    2009-01-01

    In this study, an efficient method to immunize modular networks (i.e. networks with community structure) is proposed. The immunization of networks aims at fragmenting networks into small parts with a small number of removed nodes. Its applications include prevention of epidemic spreading, protection against intentional attacks on networks, and conservation of ecosystems. Although preferential immunization of hubs is efficient, good immunization strategies for modular networks have not been established. On the basis of an immunization strategy based on eigenvector centrality, we develop an analytical framework for immunizing modular networks. To this end, we quantify the contribution of each node to the connectivity in a coarse-grained network among modules. We verify the effectiveness of the proposed method by applying it to model and real networks with modular structure.

  1. The network structure of human personality according to the NEO-PI-R: matching network community structure to factor structure.

    Directory of Open Access Journals (Sweden)

    Rutger Goekoop

    Full Text Available INTRODUCTION: Human personality is described preferentially in terms of factors (dimensions found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. AIM: To directly compare the ability of network community detection (NCD and principal component factor analysis (PCA to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R. METHODS: 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. RESULTS: At facet level, NCS showed a best match (96.2% with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80% with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. CONCLUSION: We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.

  2. Patchworking Network Structures

    DEFF Research Database (Denmark)

    Norus, Jesper

    2004-01-01

    analyzes fourdifferent managerial strategies of how to create network structures to deal with theinterfaces between industry, university and public institutions. The research-orientedstrategy, the incubator strategy, the industrial-partnering strategy, and the policyorientedstrategy. The research...... groups has been treated as a contingent factor.However, little attention has been given to the managerial efforts that entrepreneurshave make to establish the fit between small firms, university research, and publicpolicies such as regulatory policies and R&D policies through network-type structures.......New biotechnology organizations are perfect objects to study these relationshipsbecause new biotechnologies and techniques predominantly come from the universitysector (Kenney, 1986; Yoxen; 1984; Zucker & Darby, 1997; Robbins-Roth, 2001).From the perspective of the small biotechnology firms (SBFs,) this paper...

  3. Network structure and travel time perception.

    Science.gov (United States)

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  4. Information transfer in community structured multiplex networks

    Science.gov (United States)

    Solé Ribalta, Albert; Granell, Clara; Gómez, Sergio; Arenas, Alex

    2015-08-01

    The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.). The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  5. Information transfer in community structured multiplex networks

    Directory of Open Access Journals (Sweden)

    Albert eSolé Ribalta

    2015-08-01

    Full Text Available The study of complex networks that account for different types of interactions has become a subject of interest in the last few years, specially because its representational power in the description of users interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.. The mathematical description of these interacting networks has been coined under the name of multilayer networks, where each layer accounts for a type of interaction. It has been shown that diffusive processes on top of these networks present a phenomenology that cannot be explained by the naive superposition of single layer diffusive phenomena but require the whole structure of interconnected layers. Nevertheless, the description of diffusive phenomena on multilayer networks has obviated the fact that social networks have strong mesoscopic structure represented by different communities of individuals driven by common interests, or any other social aspect. In this work, we study the transfer of information in multilayer networks with community structure. The final goal is to understand and quantify, if the existence of well-defined community structure at the level of individual layers, together with the multilayer structure of the whole network, enhances or deteriorates the diffusion of packets of information.

  6. Advanced Polymer Network Structures

    Science.gov (United States)

    2016-02-01

    attractive interaction (n = 2.0) and a neutral interaction (n = 1.0); n is equal to unity for self-interactions among the monomers of first network and...... Network Structures by Robert Lambeth, Joseph Lenhart, and Tim Sirk Weapons and Materials Research Directorate, ARL Yelena Sliozberg TKC Global

  7. Epidemic spreading on complex networks with community structures

    NARCIS (Netherlands)

    Stegehuis, C.; van der Hofstad, R.W.; van Leeuwaarden, J.S.H.

    2016-01-01

    Many real-world networks display a community structure. We study two random graph models that create a network with similar community structure as a given network. One model preserves the exact community structure of the original network, while the other model only preserves the set of communities

  8. Global Electricity Trade Network: Structures and Implications

    Science.gov (United States)

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  9. Global and local targeted immunization in networks with community structure

    International Nuclear Information System (INIS)

    Yan, Shu; Tang, Shaoting; Pei, Sen; Zheng, Zhiming; Fang, Wenyi

    2015-01-01

    Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases. (paper)

  10. Structure and evolution of a European Parliament via a network and correlation analysis

    Science.gov (United States)

    Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele

    2016-11-01

    We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.

  11. The structural connectivity pattern of the default mode network and its association with memory and anxiety

    Directory of Open Access Journals (Sweden)

    Yan eTao

    2015-11-01

    Full Text Available The default mode network (DMN is one of the most widely studied resting state functional networks. The structural basis for the DMN is of particular interest and has been studied by several researchers using diffusion tensor imaging (DTI. Most of these previous studies focused on a few regions or white matter tracts of the DMN so that the global structural connectivity pattern and network properties of the DMN remain unclear. Moreover, evidences indicate that the DMN is involved in both memory and emotion, but how the DMN regulates memory and anxiety from the perspective of the whole DMN structural network remains unknown. We used multimodal neuroimaging methods to investigate the structural connectivity pattern of the DMN and the association of its network properties with memory and anxiety in 205 young healthy subjects. Using a probabilistic fiber tractography technique based on DTI data and graph theory methods, we constructed the global structural connectivity pattern of the DMN and found that memory quotient (MQ score was significantly positively correlated with the global and local efficiency of the DMN whereas anxiety was found to be negatively correlated with the efficiency. The strong structural connectivity between multiple brain regions within DMN may reflect that the DMN has certain structural basis. Meanwhile, we found the network efficiency of the DMN were related to memory and anxiety measures, which indicated that the DMN may play a role in the memory and anxiety.

  12. Network Ecology and Adolescent Social Structure.

    Science.gov (United States)

    McFarland, Daniel A; Moody, James; Diehl, David; Smith, Jeffrey A; Thomas, Reuben J

    2014-12-01

    Adolescent societies-whether arising from weak, short-term classroom friendships or from close, long-term friendships-exhibit various levels of network clustering, segregation, and hierarchy. Some are rank-ordered caste systems and others are flat, cliquish worlds. Explaining the source of such structural variation remains a challenge, however, because global network features are generally treated as the agglomeration of micro-level tie-formation mechanisms, namely balance, homophily, and dominance. How do the same micro-mechanisms generate significant variation in global network structures? To answer this question we propose and test a network ecological theory that specifies the ways features of organizational environments moderate the expression of tie-formation processes, thereby generating variability in global network structures across settings. We develop this argument using longitudinal friendship data on schools (Add Health study) and classrooms (Classroom Engagement study), and by extending exponential random graph models to the study of multiple societies over time.

  13. Disruptive Effects of Colorful versus Non-Colorful Play Area on Structured Play – a Pilot Study with Preschoolers

    Directory of Open Access Journals (Sweden)

    Keren Stern-Ellran

    2016-10-01

    Full Text Available To contribute to young children's development, sensory enrichment is often provided via colorful play areas. However, little is known about the effects of colorful environments on children while they engage in age-appropriate tasks and games. Studies in adults suggest that aspects of color can distract attention and impair performance, and children are known to have less developed attentional and executive abilities than adults. Preliminary studies conducted in children aged 5-8 suggest that the colorfulness of both distal (e.g., wall decorations and proximal (e.g., the surface of the desktop environments can have a disruptive effect on children's performance. The present research seeks to extend the previous studies to an even younger age group and focus on proximal colorfulness. With a sample of 15 pre-schoolers (3-4 years old we examined whether a colorful play surface compared to a non-colorful (white play surface would affect engagement in developmentally appropriate structured play. Our pilot findings suggest that a colorful play surface interfered with preschoolers' structured play, inducing more behaviors indicating disruption in task execution compared with a non-colorful play surface. The implications of the current study for practice and further research are discussed.

  14. Characteristics of Social Network Gamers: in between Social Networking and Online Role-Playing Games

    Directory of Open Access Journals (Sweden)

    Olga eGeisel

    2015-07-01

    Full Text Available Current research on internet addiction (IA reported moderate to high prevalence rates of IA and comorbid psychiatric symptoms in users of social networking sites (SNS and online role-playing games. The aim of this study was to characterise adult users of an internet multiplayer strategy game within a SNS. Therefore, we conducted an exploratory study using an online survey to assess sociodemographic variables, psychopathology and the rate of IA in a sample of adult social network gamers by Young´s Internet Addiction Test (IAT, the Toronto Alexithymia Scale (TAS, the Beck Depression Inventory II (BDI-II, the Symptom Checklist-90-R (SCL-90-R and the WHO Quality of Life-BREF (WHOQOL-BREF. All participants were listed gamers of combat zone in the SNS Facebook. In the IAT analysis, 16.2 % of the participants (n = 60 were categorized as subjects with IA and 19.5 % (n = 72 fulfilled the criteria for alexithymia. Comparing study participants with and without IA, the IA group had significantly more subjects with alexithymia, reported more depressive symptoms, and showed poorer quality of life. These findings suggest that social network gaming might also be associated with maladaptive patterns of internet use. Furthermore, a relationship between IA, alexithymia and depressive symptoms was found that needs to be elucidated by future studies.

  15. Resistance and Security Index of Networks: Structural Information Perspective of Network Security.

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-03

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  16. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-01-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks. PMID:27255783

  17. Resistance and Security Index of Networks: Structural Information Perspective of Network Security

    Science.gov (United States)

    Li, Angsheng; Hu, Qifu; Liu, Jun; Pan, Yicheng

    2016-06-01

    Recently, Li and Pan defined the metric of the K-dimensional structure entropy of a structured noisy dataset G to be the information that controls the formation of the K-dimensional structure of G that is evolved by the rules, order and laws of G, excluding the random variations that occur in G. Here, we propose the notion of resistance of networks based on the one- and two-dimensional structural information of graphs. Given a graph G, we define the resistance of G, written , as the greatest overall number of bits required to determine the code of the module that is accessible via random walks with stationary distribution in G, from which the random walks cannot escape. We show that the resistance of networks follows the resistance law of networks, that is, for a network G, the resistance of G is , where and are the one- and two-dimensional structure entropies of G, respectively. Based on the resistance law, we define the security index of a network G to be the normalised resistance of G, that is, . We show that the resistance and security index are both well-defined measures for the security of the networks.

  18. Evolving production network structures

    DEFF Research Database (Denmark)

    Grunow, Martin; Gunther, H.O.; Burdenik, H.

    2007-01-01

    When deciding about future production network configurations, the current structures have to be taken into account. Further, core issues such as the maturity of the products and the capacity requirements for test runs and ramp-ups must be incorporated. Our approach is based on optimization...... modelling and assigns products and capacity expansions to production sites under the above constraints. It also considers the production complexity at the individual sites and the flexibility of the network. Our implementation results for a large manufacturing network reveal substantial possible cost...

  19. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    Science.gov (United States)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  20. The prisoner's dilemma in structured scale-free networks

    International Nuclear Information System (INIS)

    Li Xing; Wu Yonghui; Zhang Zhongzhi; Zhou Shuigeng; Rong Zhihai

    2009-01-01

    The conventional wisdom is that scale-free networks are prone to cooperation spreading. In this paper we investigate the cooperative behavior on the structured scale-free network. In contrast to the conventional wisdom that scale-free networks are prone to cooperation spreading, the evolution of cooperation is inhibited on the structured scale-free network when the prisoner's dilemma (PD) game is modeled. First, we demonstrate that neither the scale-free property nor the high clustering coefficient is responsible for the inhibition of cooperation spreading on the structured scale-free network. Then we provide one heuristic method to argue that the lack of age correlations and its associated 'large-world' behavior in the structured scale-free network inhibit the spread of cooperation. These findings may help enlighten further studies on the evolutionary dynamics of the PD game in scale-free networks

  1. Clustering coefficient and community structure of bipartite networks

    Science.gov (United States)

    Zhang, Peng; Wang, Jinliang; Li, Xiaojia; Li, Menghui; Di, Zengru; Fan, Ying

    2008-12-01

    Many real-world networks display natural bipartite structure, where the basic cycle is a square. In this paper, with the similar consideration of standard clustering coefficient in binary networks, a definition of the clustering coefficient for bipartite networks based on the fraction of squares is proposed. In order to detect community structures in bipartite networks, two different edge clustering coefficients LC4 and LC3 of bipartite networks are defined, which are based on squares and triples respectively. With the algorithm of cutting the edge with the least clustering coefficient, communities in artificial and real world networks are identified. The results reveal that investigating bipartite networks based on the original structure can show the detailed properties that is helpful to get deep understanding about the networks.

  2. Structural principles in network glasses

    International Nuclear Information System (INIS)

    Boolchand, P.

    1986-01-01

    Substantial progress in decoding the structure of network glasses has taken place in the past few years. Crucial insights into the molecular structure of glasses have emerged by application of Raman bond and Moessbauer site spectroscopy. In this context, the complimentary role of each spectroscopy as a check on the interpretation of the other, is perhaps one of the more significant developments in the field. New advances in the theory of the subject have also taken place. It is thus appropriate to inquire what general principles if any, have emerged on the structure of real glasses. The author reviews some of the principal ideas on the structure of inorganic network glasses with the aid of specific examples. (Auth.)

  3. The community structure of the European network of interlocking directorates 2005-2010.

    Directory of Open Access Journals (Sweden)

    Eelke M Heemskerk

    Full Text Available The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer.

  4. The community structure of the European network of interlocking directorates 2005-2010.

    Science.gov (United States)

    Heemskerk, Eelke M; Daolio, Fabio; Tomassini, Marco

    2013-01-01

    The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer.

  5. The Role of Structural Characteristics in Problematic Video Game Play: An Empirical Study

    Science.gov (United States)

    King, Daniel L.; Delfabbro, Paul H.; Griffiths, Mark D.

    2011-01-01

    The research literature suggests that the structural characteristics of video games may play a considerable role in the initiation, development and maintenance of problematic video game playing. The present study investigated the role of structural characteristics in video game playing behaviour within a sample of 421 video game players aged…

  6. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  7. Implications of network structure on public health collaboratives.

    Science.gov (United States)

    Retrum, Jessica H; Chapman, Carrie L; Varda, Danielle M

    2013-10-01

    Interorganizational collaboration is an essential function of public health agencies. These partnerships form social networks that involve diverse types of partners and varying levels of interaction. Such collaborations are widely accepted and encouraged, yet very little comparative research exists on how public health partnerships develop and evolve, specifically in terms of how subsequent network structures are linked to outcomes. A systems science approach, that is, one that considers the interdependencies and nested features of networks, provides the appropriate methods to examine the complex nature of these networks. Applying Mays and Scutchfields's categorization of "structural signatures" (breadth, density, and centralization), this research examines how network structure influences the outcomes of public health collaboratives. Secondary data from the Program to Analyze, Record, and Track Networks to Enhance Relationships (www.partnertool.net) data set are analyzed. This data set consists of dyadic (N = 12,355), organizational (N = 2,486), and whole network (N = 99) data from public health collaborations around the United States. Network data are used to calculate structural signatures and weighted least squares regression is used to examine how network structures can predict selected intermediary outcomes (resource contributions, overall value and trust rankings, and outcomes) in public health collaboratives. Our findings suggest that network structure may have an influence on collaborative-related outcomes. The structural signature that had the most significant relationship to outcomes was density, with higher density indicating more positive outcomes. Also significant was the finding that more breadth creates new challenges such as difficulty in reaching consensus and creating ties with other members. However, assumptions that these structural components lead to improved outcomes for public health collaboratives may be slightly premature. Implications of

  8. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  9. Network structure of subway passenger flows

    Science.gov (United States)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  10. Epidemics in adaptive networks with community structure

    Science.gov (United States)

    Shaw, Leah; Tunc, Ilker

    2010-03-01

    Models for epidemic spread on static social networks do not account for changes in individuals' social interactions. Recent studies of adaptive networks have modeled avoidance behavior, as non-infected individuals try to avoid contact with infectives. Such models have not generally included realistic social structure. Here we study epidemic spread on an adaptive network with community structure. We model the effect of heterogeneous communities on infection levels and epidemic extinction. We also show how an epidemic can alter the community structure.

  11. Metagovernance, network structure, and legitimacy

    DEFF Research Database (Denmark)

    Daugbjerg, Carsten; Fawcett, Paul

    2017-01-01

    This article develops a heuristic for comparative governance analysis. The heuristic depicts four network types by combining network structure with the state’s capacity to metagovern. It suggests that each network type produces a particular combination of input and output legitimacy. We illustrate...... the heuristic and its utility using a comparative study of agri-food networks (organic farming and land use) in four countries, which each exhibit different combinations of input and output legitimacy respectively. The article concludes by using a fifth case study to illustrate what a network type that produces...... high levels of input and output legitimacy might look like....

  12. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Stea, Diego; Soda, Giuseppe; Pedersen, Torben

    2016-01-01

    Network research has yet to determine whether bonding ties or bridging ties are more beneficial for individual creativity, but the debate has mostly overlooked the organizational context in which such ties are formed. In particular, the causal chain connecting network structures and individual...... with the network’s organizational context. Thus, actors in dense network structures acquire more knowledge and eventually become more creative in organizational contexts where collaboration is high. Conversely, brokers who arbitrage information across disconnected network contacts acquire more valuable knowledge...

  13. Structural analysis of behavioral networks from the Internet

    International Nuclear Information System (INIS)

    Meiss, M R; Menczer, F; Vespignani, A

    2008-01-01

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic

  14. Structural analysis of behavioral networks from the Internet

    Energy Technology Data Exchange (ETDEWEB)

    Meiss, M R; Menczer, F [Department of Computer Science, Indiana University, Bloomington, IN 47405 (United States); Vespignani, A [Department of Informatics, Indiana University, Bloomington, IN 47408 (United States)], E-mail: mmeiss@indiana.edu

    2008-06-06

    In spite of the Internet's phenomenal growth and social impact, many aspects of the collective communication behavior of its users are largely unknown. Understanding the structure and dynamics of the behavioral networks that connect users with each other and with services across the Internet is key to modeling the network and designing future applications. We present a characterization of the properties of the behavioral networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. For example, we find that the structure of the behavioral network associated with Web activity is characterized by such extreme heterogeneity as to challenge any simple attempt to model Web server traffic.

  15. The role of structural characteristics in problem video game playing: a review

    OpenAIRE

    King, DL; Delfabbro, PH; Griffiths, MD

    2010-01-01

    The structural characteristics of video games may play an important role in explaining why some people play video games to excess. This paper provides a review of the literature on structural features of video games and the psychological experience of playing video games. The dominant view of the appeal of video games is based on operant conditioning theory and the notion that video games satisfy various needs for social interaction and belonging. However, there is a lack of experimental and ...

  16. Exploring network structure, dynamics, and function using networkx

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Aric [Los Alamos National Laboratory; Swart, Pieter [Los Alamos National Laboratory; S Chult, Daniel [COLGATE UNIV

    2008-01-01

    NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.

  17. Density-based and transport-based core-periphery structures in networks.

    Science.gov (United States)

    Lee, Sang Hoon; Cucuringu, Mihai; Porter, Mason A

    2014-03-01

    Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transport. In such structures, core network components are well-connected both among themselves and to peripheral components, which are not well-connected to anything. We examine core-periphery structures in a wide range of examples of transportation, social, and financial networks-including road networks in large urban areas, a rabbit warren, a dolphin social network, a European interbank network, and a migration network between counties in the United States. We illustrate that a recently developed transport-based notion of node coreness is very useful for characterizing transportation networks. We also generalize this notion to examine core versus peripheral edges, and we show that the resulting diagnostic is also useful for transportation networks. To examine the properties of transportation networks further, we develop a family of generative models of roadlike networks. We illustrate the effect of the dimensionality of the embedding space on transportation networks, and we demonstrate that the correlations between different measures of coreness can be very different for different types of networks.

  18. Learning and structure of neuronal networks

    Indian Academy of Sciences (India)

    structures, protein–protein interaction networks, social interactions, the Internet, and so on can be described by complex networks [1–5]. Recent developments in the understanding of complex networks has led to deeper insights about their origin and other properties [1–5]. One common realization that emerges from these ...

  19. A Mapping Between Structural and Functional Brain Networks.

    Science.gov (United States)

    Meier, Jil; Tewarie, Prejaas; Hillebrand, Arjan; Douw, Linda; van Dijk, Bob W; Stufflebeam, Steven M; Van Mieghem, Piet

    2016-05-01

    The relationship between structural and functional brain networks is still highly debated. Most previous studies have used a single functional imaging modality to analyze this relationship. In this work, we use multimodal data, from functional MRI, magnetoencephalography, and diffusion tensor imaging, and assume that there exists a mapping between the connectivity matrices of the resting-state functional and structural networks. We investigate this mapping employing group averaged as well as individual data. We indeed find a significantly high goodness of fit level for this structure-function mapping. Our analysis suggests that a functional connection is shaped by all walks up to the diameter in the structural network in both modality cases. When analyzing the inverse mapping, from function to structure, longer walks in the functional network also seem to possess minor influence on the structural connection strengths. Even though similar overall properties for the structure-function mapping are found for different functional modalities, our results indicate that the structure-function relationship is modality dependent.

  20. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  1. Structural covariance network centrality in maltreated youth with posttraumatic stress disorder.

    Science.gov (United States)

    Sun, Delin; Peverill, Matthew R; Swanson, Chelsea S; McLaughlin, Katie A; Morey, Rajendra A

    2018-03-01

    Childhood maltreatment is associated with posttraumatic stress disorder (PTSD) and elevated rates of adolescent and adult psychopathology including major depression, bipolar disorder, substance use disorders, and other medical comorbidities. Gray matter volume changes have been found in maltreated youth with (versus without) PTSD. However, little is known about the alterations of brain structural covariance network topology derived from cortical thickness in maltreated youth with PTSD. High-resolution T1-weighted magnetic resonance imaging scans were from demographically matched maltreated youth with PTSD (N = 24), without PTSD (N = 64), and non-maltreated healthy controls (n = 67). Cortical thickness data from 148 cortical regions was entered into interregional partial correlation analyses across participants. The supra-threshold correlations constituted connections in a structural brain network derived from four types of centrality measures (degree, betweenness, closeness, and eigenvector) estimated network topology and the importance of nodes. Between-group differences were determined by permutation testing. Maltreated youth with PTSD exhibited larger centrality in left anterior cingulate cortex than the other two groups, suggesting cortical network topology specific to maltreated youth with PTSD. Moreover, maltreated youth with versus without PTSD showed smaller centrality in right orbitofrontal cortex, suggesting that this may represent a vulnerability factor to PTSD following maltreatment. Longitudinal follow-up of the present results will help characterize the role that altered centrality plays in vulnerability and resilience to PTSD following childhood maltreatment. Copyright © 2017. Published by Elsevier Ltd.

  2. True Nature of Supply Network Communication Structure (P.1-14

    Directory of Open Access Journals (Sweden)

    Lokhman Hakim bin Osman

    2017-02-01

    Full Text Available Globalization of world economy has altered the definition of organizational structure. Global supply chain can no longer be viewed as an arm-length structure. It has become more complex. The complexity demands deeper research and understanding. This research analyzed a structure of supply network in an attempt to elucidate the true structure of the supply network. Using the quantitative Social Network Analysis methodology, findings of this study indicated that, the structure of the supply network differs depending on the types of network relations. An important implication of these findings would be a more focus resource management upon network relationship development that is based on firms’ positions in the different network structure. This research also contributes to the various strategies of effective and efficient supply chain management.Keywords: Supply Chain Management, Network Studies, Inter-Organizational Relations, Social Capital

  3. Inferring network structure from cascades

    Science.gov (United States)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  4. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  5. Basketball teams as strategic networks.

    Science.gov (United States)

    Fewell, Jennifer H; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

  6. Probabilistic diffusion tractography reveals improvement of structural network in musicians.

    Directory of Open Access Journals (Sweden)

    Jianfu Li

    Full Text Available PURPOSE: Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. METHODS: Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. RESULTS: Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. CONCLUSIONS: We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.

  7. The Community Structure of the European Network of Interlocking Directorates 2005–2010

    Science.gov (United States)

    Heemskerk, Eelke M.; Daolio, Fabio; Tomassini, Marco

    2013-01-01

    The boards of directors at large European companies overlap with each other to a sizable extent both within and across national borders. This could have important economic, political and management consequences. In this work we study in detail the topological structure of the networks that arise from this phenomenon. Using a comprehensive information database, we reconstruct the implicit networks of shared directorates among the top 300 European firms in 2005 and 2010, and suggest a number of novel ways to explore the trans-nationality of such business elite networks. Powerful community detection heuristics indicate that geography still plays an important role: there exist clear communities and they have a distinct national character. Nonetheless, from 2005 to 2010 we observe a densification of the boards interlocks network and a larger transnational orientation in its communities. Together with central actors and assortativity analyses, we provide statistical evidence that, at the level of corporate governance, Europe is getting closer. PMID:23894318

  8. Effects of contact network structure on epidemic transmission trees: implications for data required to estimate network structure.

    Science.gov (United States)

    Carnegie, Nicole Bohme

    2018-01-30

    Understanding the dynamics of disease spread is key to developing effective interventions to control or prevent an epidemic. The structure of the network of contacts over which the disease spreads has been shown to have a strong influence on the outcome of the epidemic, but an open question remains as to whether it is possible to estimate contact network features from data collected in an epidemic. The approach taken in this paper is to examine the distributions of epidemic outcomes arising from epidemics on networks with particular structural features to assess whether that structure could be measured from epidemic data and what other constraints might be needed to make the problem identifiable. To this end, we vary the network size, mean degree, and transmissibility of the pathogen, as well as the network feature of interest: clustering, degree assortativity, or attribute-based preferential mixing. We record several standard measures of the size and spread of the epidemic, as well as measures that describe the shape of the transmission tree in order to ascertain whether there are detectable signals in the final data from the outbreak. The results suggest that there is potential to estimate contact network features from transmission trees or pure epidemic data, particularly for diseases with high transmissibility or for which the relevant contact network is of low mean degree. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  10. Distance metric learning for complex networks: Towards size-independent comparison of network structures

    Science.gov (United States)

    Aliakbary, Sadegh; Motallebi, Sadegh; Rashidian, Sina; Habibi, Jafar; Movaghar, Ali

    2015-02-01

    Real networks show nontrivial topological properties such as community structure and long-tail degree distribution. Moreover, many network analysis applications are based on topological comparison of complex networks. Classification and clustering of networks, model selection, and anomaly detection are just some applications of network comparison. In these applications, an effective similarity metric is needed which, given two complex networks of possibly different sizes, evaluates the amount of similarity between the structural features of the two networks. Traditional graph comparison approaches, such as isomorphism-based methods, are not only too time consuming but also inappropriate to compare networks with different sizes. In this paper, we propose an intelligent method based on the genetic algorithms for integrating, selecting, and weighting the network features in order to develop an effective similarity measure for complex networks. The proposed similarity metric outperforms state of the art methods with respect to different evaluation criteria.

  11. Communication on the structure of biological networks

    Indian Academy of Sciences (India)

    Introduction. Over the past few years, network science has drawn attention from a large number of ... The qualitative properties of biological networks cannot ... Here, we study the underlying undirected structure of empirical biological networks.

  12. Structural analysis of health-relevant policy-making information exchange networks in Canada.

    Science.gov (United States)

    Contandriopoulos, Damien; Benoît, François; Bryant-Lukosius, Denise; Carrier, Annie; Carter, Nancy; Deber, Raisa; Duhoux, Arnaud; Greenhalgh, Trisha; Larouche, Catherine; Leclerc, Bernard-Simon; Levy, Adrian; Martin-Misener, Ruth; Maximova, Katerina; McGrail, Kimberlyn; Nykiforuk, Candace; Roos, Noralou; Schwartz, Robert; Valente, Thomas W; Wong, Sabrina; Lindquist, Evert; Pullen, Carolyn; Lardeux, Anne; Perroux, Melanie

    2017-09-20

    Health systems worldwide struggle to identify, adopt, and implement in a timely and system-wide manner the best-evidence-informed-policy-level practices. Yet, there is still only limited evidence about individual and institutional best practices for fostering the use of scientific evidence in policy-making processes The present project is the first national-level attempt to (1) map and structurally analyze-quantitatively-health-relevant policy-making networks that connect evidence production, synthesis, interpretation, and use; (2) qualitatively investigate the interaction patterns of a subsample of actors with high centrality metrics within these networks to develop an in-depth understanding of evidence circulation processes; and (3) combine these findings in order to assess a policy network's "absorptive capacity" regarding scientific evidence and integrate them into a conceptually sound and empirically grounded framework. The project is divided into two research components. The first component is based on quantitative analysis of ties (relationships) that link nodes (participants) in a network. Network data will be collected through a multi-step snowball sampling strategy. Data will be analyzed structurally using social network mapping and analysis methods. The second component is based on qualitative interviews with a subsample of the Web survey participants having central, bridging, or atypical positions in the network. Interviews will focus on the process through which evidence circulates and enters practice. Results from both components will then be integrated through an assessment of the network's and subnetwork's effectiveness in identifying, capturing, interpreting, sharing, reframing, and recodifying scientific evidence in policy-making processes. Knowledge developed from this project has the potential both to strengthen the scientific understanding of how policy-level knowledge transfer and exchange functions and to provide significantly improved advice

  13. Developing a network-level structural capacity index for structural evaluation of pavements.

    Science.gov (United States)

    2013-03-01

    The objective of this project was to develop a structural index for use in network-level pavement evaluation to facilitate : the inclusion of the pavements structural condition in pavement management applications. The primary goal of network-level...

  14. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  15. Validation of network communicability metrics for the analysis of brain structural networks.

    Directory of Open Access Journals (Sweden)

    Jennifer Andreotti

    Full Text Available Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

  16. Phase synchronization on small-world networks with community structure

    International Nuclear Information System (INIS)

    Xiao-Hua, Wang; Li-Cheng, Jiao; Jian-She, Wu

    2010-01-01

    In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter- to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales: the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network. (general)

  17. The structural and functional brain networks that support human social networks.

    Science.gov (United States)

    Noonan, M P; Mars, R B; Sallet, J; Dunbar, R I M; Fellows, L K

    2018-02-20

    Social skills rely on a specific set of cognitive processes, raising the possibility that individual differences in social networks are related to differences in specific brain structural and functional networks. Here, we tested this hypothesis with multimodality neuroimaging. With diffusion MRI (DMRI), we showed that differences in structural integrity of particular white matter (WM) tracts, including cingulum bundle, extreme capsule and arcuate fasciculus were associated with an individual's social network size (SNS). A voxel-based morphology analysis demonstrated correlations between gray matter (GM) volume and SNS in limbic and temporal lobe regions. These structural changes co-occured with functional network differences. As a function of SNS, dorsomedial and dorsolateral prefrontal cortex showed altered resting-state functional connectivity with the default mode network (DMN). Finally, we integrated these three complementary methods, interrogating the relationship between social GM clusters and specific WM and resting-state networks (RSNs). Probabilistic tractography seeded in these GM nodes utilized the SNS-related WM pathways. Further, the spatial and functional overlap between the social GM clusters and the DMN was significantly closer than other control RSNs. These integrative analyses provide convergent evidence of the role of specific circuits in SNS, likely supporting the adaptive behavior necessary for success in extensive social environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  19. Reconstructing consensus Bayesian network structures with application to learning molecular interaction networks

    NARCIS (Netherlands)

    Fröhlich, H.; Klau, G.W.

    2013-01-01

    Bayesian Networks are an established computational approach for data driven network inference. However, experimental data is limited in its availability and corrupted by noise. This leads to an unavoidable uncertainty about the correct network structure. Thus sampling or bootstrap based strategies

  20. Disentangling bipartite and core-periphery structure in financial networks

    International Nuclear Information System (INIS)

    Barucca, Paolo; Lillo, Fabrizio

    2016-01-01

    A growing number of systems are represented as networks whose architecture conveys significant information and determines many of their properties. Examples of network architecture include modular, bipartite, and core-periphery structures. However inferring the network structure is a non trivial task and can depend sometimes on the chosen null model. Here we propose a method for classifying network structures and ranking its nodes in a statistically well-grounded fashion. The method is based on the use of Belief Propagation for learning through Entropy Maximization on both the Stochastic Block Model (SBM) and the degree-corrected Stochastic Block Model (dcSBM). As a specific application we show how the combined use of the two ensembles—SBM and dcSBM—allows to disentangle the bipartite and the core-periphery structure in the case of the e-MID interbank network. Specifically we find that, taking into account the degree, this interbank network is better described by a bipartite structure, while using the SBM the core-periphery structure emerges only when data are aggregated for more than a week.

  1. Structural stability of interaction networks against negative external fields

    Science.gov (United States)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  2. Influence of choice of null network on small-world parameters of structural correlation networks.

    Directory of Open Access Journals (Sweden)

    S M Hadi Hosseini

    Full Text Available In recent years, coordinated variations in brain morphology (e.g., volume, thickness have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1 networks constructed by topology randomization (TOP, 2 networks matched to the distributional properties of the observed covariance matrix (HQS, and 3 networks generated from correlation of randomized input data (COR. The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures.

  3. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    Science.gov (United States)

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  4. The macroecology of phylogenetically structured hummingbird-plant networks

    DEFF Research Database (Denmark)

    González, Ana M. Martín; Dalsgaard, Bo; Nogues, David Bravo

    2015-01-01

    Aim To investigate the association between hummingbird–plant network structure and species richness, phylogenetic signal on species' interaction pattern, insularity and historical and current climate. Location Fifty-four communities along a c. 10,000 km latitudinal gradient across the Americas (39...... approach, we examined the influence of species richness, phylogenetic signal, insularity and current and historical climate conditions on network structure (null-model-corrected specialization and modularity). Results Phylogenetically related species, especially plants, showed a tendency to interact...... with a similar array of mutualistic partners. The spatial variation in network structure exhibited a constant association with species phylogeny (R2 = 0.18–0.19); however, network structure showed the strongest association with species richness and environmental factors (R2 = 0.20–0.44 and R2 = 0...

  5. Basketball Teams as Strategic Networks

    Science.gov (United States)

    Fewell, Jennifer H.; Armbruster, Dieter; Ingraham, John; Petersen, Alexander; Waters, James S.

    2012-01-01

    We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1) whether teams consistently moved the ball towards their shooting specialists, measured as “uphill/downhill” flux, and (2) whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players) and network entropy (unpredictability of ball movement) had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness. PMID:23139744

  6. Basketball teams as strategic networks.

    Directory of Open Access Journals (Sweden)

    Jennifer H Fewell

    Full Text Available We asked how team dynamics can be captured in relation to function by considering games in the first round of the NBA 2010 play-offs as networks. Defining players as nodes and ball movements as links, we analyzed the network properties of degree centrality, clustering, entropy and flow centrality across teams and positions, to characterize the game from a network perspective and to determine whether we can assess differences in team offensive strategy by their network properties. The compiled network structure across teams reflected a fundamental attribute of basketball strategy. They primarily showed a centralized ball distribution pattern with the point guard in a leadership role. However, individual play-off teams showed variation in their relative involvement of other players/positions in ball distribution, reflected quantitatively by differences in clustering and degree centrality. We also characterized two potential alternate offensive strategies by associated variation in network structure: (1 whether teams consistently moved the ball towards their shooting specialists, measured as "uphill/downhill" flux, and (2 whether they distributed the ball in a way that reduced predictability, measured as team entropy. These network metrics quantified different aspects of team strategy, with no single metric wholly predictive of success. However, in the context of the 2010 play-offs, the values of clustering (connectedness across players and network entropy (unpredictability of ball movement had the most consistent association with team advancement. Our analyses demonstrate the utility of network approaches in quantifying team strategy and show that testable hypotheses can be evaluated using this approach. These analyses also highlight the richness of basketball networks as a dataset for exploring the relationships between network structure and dynamics with team organization and effectiveness.

  7. Play in two societies: pervasiveness of process, specificity of structure.

    Science.gov (United States)

    Bornstein, M H; Haynes, O M; Pascual, L; Painter, K M; Galperín, C

    1999-01-01

    The present study compared Argentine (N = 39) and U.S. (N = 43) children and their mothers on exploratory, symbolic, and social play and interaction when children were 20 months of age. Patterns of cultural similarity and difference emerged. In both cultures, boys engaged in more exploratory play than girls, and girls engaged in more symbolic play than boys; mothers of boys engaged in more exploratory play than mothers of girls, and mothers of girls engaged in more symbolic play than mothers of boys. Moreover, in both cultures, individual variation in children's exploratory and symbolic play was specifically associated with individual variation in mothers' exploratory and symbolic play, respectively. Between cultures, U.S. children and their mothers engaged in more exploratory play, whereas Argentine children and their mothers engaged in more symbolic play. Moreover, Argentine mothers exceeded U.S. mothers in social play and verbal praise of their children. During an early period of mental and social growth, general developmental processes in play may be pervasive, but dyadic and cultural structures are apparently specific. Overall, Argentine and U.S. dyads utilized different modes of exploration, representation, and interaction--emphasizing "other-directed" acts of pretense versus "functional" and "combinatorial" exploration, for example--and these individual and dyadic allocentric versus idiocentric stresses accord with larger cultural concerns of collectivism versus individualism in the two societies.

  8. Unifying Inference of Meso-Scale Structures in Networks.

    Science.gov (United States)

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  9. Unifying Inference of Meso-Scale Structures in Networks.

    Directory of Open Access Journals (Sweden)

    Birkan Tunç

    Full Text Available Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities of the brain, as well as its auxiliary characteristics (core-periphery.

  10. Network structure of multivariate time series.

    Science.gov (United States)

    Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito

    2015-10-21

    Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.

  11. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  12. Network Properties of the Ensemble of RNA Structures

    Science.gov (United States)

    Clote, Peter; Bayegan, Amir

    2015-01-01

    We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors. PMID:26488894

  13. Offspring social network structure predicts fitness in families.

    Science.gov (United States)

    Royle, Nick J; Pike, Thomas W; Heeb, Philipp; Richner, Heinz; Kölliker, Mathias

    2012-12-22

    Social structures such as families emerge as outcomes of behavioural interactions among individuals, and can evolve over time if families with particular types of social structures tend to leave more individuals in subsequent generations. The social behaviour of interacting individuals is typically analysed as a series of multiple dyadic (pair-wise) interactions, rather than a network of interactions among multiple individuals. However, in species where parents feed dependant young, interactions within families nearly always involve more than two individuals simultaneously. Such social networks of interactions at least partly reflect conflicts of interest over the provision of costly parental investment. Consequently, variation in family network structure reflects variation in how conflicts of interest are resolved among family members. Despite its importance in understanding the evolution of emergent properties of social organization such as family life and cooperation, nothing is currently known about how selection acts on the structure of social networks. Here, we show that the social network structure of broods of begging nestling great tits Parus major predicts fitness in families. Although selection at the level of the individual favours large nestlings, selection at the level of the kin-group primarily favours families that resolve conflicts most effectively.

  14. Road Network Selection Based on Road Hierarchical Structure Control

    Directory of Open Access Journals (Sweden)

    HE Haiwei

    2015-04-01

    Full Text Available A new road network selection method based on hierarchical structure is studied. Firstly, road network is built as strokes which are then classified into hierarchical collections according to the criteria of betweenness centrality value (BC value. Secondly, the hierarchical structure of the strokes is enhanced using structural characteristic identification technique. Thirdly, the importance calculation model was established according to the relationships among the hierarchical structure of the strokes. Finally, the importance values of strokes are got supported with the model's hierarchical calculation, and with which the road network is selected. Tests are done to verify the advantage of this method by comparing it with other common stroke-oriented methods using three kinds of typical road network data. Comparision of the results show that this method had few need to semantic data, and could eliminate the negative influence of edge strokes caused by the criteria of BC value well. So, it is better to maintain the global hierarchical structure of road network, and suitable to meet with the selection of various kinds of road network at the same time.

  15. Uncovering the community structure associated with the diffusion dynamics on networks

    International Nuclear Information System (INIS)

    Cheng, Xue-Qi; Shen, Hua-Wei

    2010-01-01

    As two main focuses of the study of complex networks, the community structure and the dynamics on networks have both attracted much attention in various scientific fields. However, it is still an open question how the community structure is associated with the dynamics on complex networks. In this paper, through investigating the diffusion process taking place on networks, we demonstrate that the intrinsic community structure of networks can be revealed by the stable local equilibrium states of the diffusion process. Furthermore, we show that such community structure can be directly identified through the optimization of the conductance of the network, which measures how easily the diffusion among different communities occurs. Tests on benchmark networks indicate that the conductance optimization method significantly outperforms the modularity optimization methods in identifying the community structure of networks. Applications to real world networks also demonstrate the effectiveness of the conductance optimization method. This work provides insights into the multiple topological scales of complex networks, and the community structure obtained can naturally reflect the diffusion capability of the underlying network

  16. Influence of degree correlations on network structure and stability in protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    Zimmer Ralf

    2007-08-01

    Full Text Available Abstract Background The existence of negative correlations between degrees of interacting proteins is being discussed since such negative degree correlations were found for the large-scale yeast protein-protein interaction (PPI network of Ito et al. More recent studies observed no such negative correlations for high-confidence interaction sets. In this article, we analyzed a range of experimentally derived interaction networks to understand the role and prevalence of degree correlations in PPI networks. We investigated how degree correlations influence the structure of networks and their tolerance against perturbations such as the targeted deletion of hubs. Results For each PPI network, we simulated uncorrelated, positively and negatively correlated reference networks. Here, a simple model was developed which can create different types of degree correlations in a network without changing the degree distribution. Differences in static properties associated with degree correlations were compared by analyzing the network characteristics of the original PPI and reference networks. Dynamics were compared by simulating the effect of a selective deletion of hubs in all networks. Conclusion Considerable differences between the network types were found for the number of components in the original networks. Negatively correlated networks are fragmented into significantly less components than observed for positively correlated networks. On the other hand, the selective deletion of hubs showed an increased structural tolerance to these deletions for the positively correlated networks. This results in a lower rate of interaction loss in these networks compared to the negatively correlated networks and a decreased disintegration rate. Interestingly, real PPI networks are most similar to the randomly correlated references with respect to all properties analyzed. Thus, although structural properties of networks can be modified considerably by degree

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  19. On Adding Structure to Unstructured Overlay Networks

    Science.gov (United States)

    Leitão, João; Carvalho, Nuno A.; Pereira, José; Oliveira, Rui; Rodrigues, Luís

    Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining, in each process, a random partial view of peers in the system. The resulting random unstructured topology is suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks. This chapter discusses different techniques that aim at combining the advantages of unstructured and structured networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based on optimizing the gossip mechanism itself.

  20. Modelling the structure of complex networks

    DEFF Research Database (Denmark)

    Herlau, Tue

    networks has been independently studied as mathematical objects in their own right. As such, there has been both an increased demand for statistical methods for complex networks as well as a quickly growing mathematical literature on the subject. In this dissertation we explore aspects of modelling complex....... The next chapters will treat some of the various symmetries, representer theorems and probabilistic structures often deployed in the modelling complex networks, the construction of sampling methods and various network models. The introductory chapters will serve to provide context for the included written...

  1. The global structure of knowledge network

    NARCIS (Netherlands)

    Angelopoulos, Spyros; Lomi, Alessandro

    2017-01-01

    In this paper, we treat patent citations as knowledge networks connecting pieces of formalized knowledge and people, and focus on how ideas are connected, rather than how they are protected. We focus on the global structural properties of formalized knowledge network, and more specifically on the

  2. Structure of a randomly grown 2-d network

    DEFF Research Database (Denmark)

    Ajazi, Fioralba; Napolitano, George M.; Turova, Tatyana

    2015-01-01

    We introduce a growing random network on a plane as a model of a growing neuronal network. The properties of the structure of the induced graph are derived. We compare our results with available data. In particular, it is shown that depending on the parameters of the model the system undergoes in...... in time different phases of the structure. We conclude with a possible explanation of some empirical data on the connections between neurons.......We introduce a growing random network on a plane as a model of a growing neuronal network. The properties of the structure of the induced graph are derived. We compare our results with available data. In particular, it is shown that depending on the parameters of the model the system undergoes...

  3. An overview of structural characteristics in problematic video game playing

    OpenAIRE

    Griffiths, MD; Nuyens, F

    2017-01-01

    Purpose of Review: There are many different factors involved in how and why people develop problems with video game playing. One such set of factors concerns the structural characteristics of video games (i.e., the structure, elements, and components of the video games themselves). Much of the research examining the structural characteristics of video games was initially based on research and theorizing from the gambling studies field. The present review briefly overviews the key papers in th...

  4. Social inheritance can explain the structure of animal social networks

    Science.gov (United States)

    Ilany, Amiyaal; Akçay, Erol

    2016-01-01

    The social network structure of animal populations has major implications for survival, reproductive success, sexual selection and pathogen transmission of individuals. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose a simple and generally applicable model of social network structure. We consider the emergence of network structure as a result of social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output with data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that important observed properties of social networks, including heritability of network position or assortative associations, can be understood as consequences of social inheritance. PMID:27352101

  5. Art of Play

    DEFF Research Database (Denmark)

    Froes, Isabel Cristina G.; Walker, Kevin

    2011-01-01

    Play is a key element in cultural development, according to the Dutch historian Johan Huizinga. Nowadays many of us interact with other people in online games and social networks, through multiple digital devices. But harnessing playful activities for museum learning is mostly undeveloped. In thi...

  6. Synchronization in complex networks with a modular structure.

    Science.gov (United States)

    Park, Kwangho; Lai, Ying-Cheng; Gupte, Saurabh; Kim, Jong-Won

    2006-03-01

    Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.

  7. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    Science.gov (United States)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  8. Disentangling the co-structure of multilayer interaction networks: degree distribution and module composition in two-layer bipartite networks.

    Science.gov (United States)

    Astegiano, Julia; Altermatt, Florian; Massol, François

    2017-11-13

    Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.

  9. Regulation, Competition and Network Evolution in Aviation

    Science.gov (United States)

    Gillen, David; Morrison, William

    2003-01-01

    Our focus is the evolution of business strategies and network structure decisions in the commercial passenger aviation industry. The paper reviews the growth of hub-and-spoke networks as the dominant business model following deregulation in the latter part of the 20 century, followed by the emergence of value-based airlines as a global phenomenon at the end of the century. The paper highlights the link between airline business strategies and network structures, and examines the resulting competition between divergent network structure business models. In this context we discuss issues of market structure stability and the role played by competition policy.

  10. Network marketing on a small-world network

    Science.gov (United States)

    Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.

    2006-02-01

    We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.

  11. Structural Quality of Service in Large-Scale Networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    , telephony and data. To meet the requirements of the different applications, and to handle the increased vulnerability to failures, the ability to design robust networks providing good Quality of Service is crucial. However, most planning of large-scale networks today is ad-hoc based, leading to highly...... complex networks lacking predictability and global structural properties. The thesis applies the concept of Structural Quality of Service to formulate desirable global properties, and it shows how regular graph structures can be used to obtain such properties.......Digitalization has created the base for co-existence and convergence in communications, leading to an increasing use of multi service networks. This is for example seen in the Fiber To The Home implementations, where a single fiber is used for virtually all means of communication, including TV...

  12. An Overview of Structural Characteristics in Problematic Video Game Playing.

    Science.gov (United States)

    Griffiths, Mark D; Nuyens, Filip

    2017-01-01

    There are many different factors involved in how and why people develop problems with video game playing. One such set of factors concerns the structural characteristics of video games (i.e., the structure, elements, and components of the video games themselves). Much of the research examining the structural characteristics of video games was initially based on research and theorizing from the gambling studies field. The present review briefly overviews the key papers in the field to date. The paper examines a number of areas including (i) similarities in structural characteristics of gambling and video gaming, (ii) structural characteristics in video games, (iii) narrative and flow in video games, (iv) structural characteristic taxonomies for video games, and (v) video game structural characteristics and game design ethics. Many of the studies carried out to date are small-scale, and comprise self-selected convenience samples (typically using self-report surveys or non-ecologically valid laboratory experiments). Based on the small amount of empirical data, it appears that structural features that take a long time to achieve in-game are the ones most associated with problematic video game play (e.g., earning experience points, managing in-game resources, mastering the video game, getting 100% in-game). The study of video games from a structural characteristic perspective is of benefit to many different stakeholders including academic researchers, video game players, and video game designers, as well as those interested in prevention and policymaking by making the games more socially responsible. It is important that researchers understand and recognize the psycho-social effects and impacts that the structural characteristics of video games can have on players, both positive and negative.

  13. Structural parameter identifiability analysis for dynamic reaction networks

    DEFF Research Database (Denmark)

    Davidescu, Florin Paul; Jørgensen, Sten Bay

    2008-01-01

    method based on Lie derivatives. The proposed systematic two phase methodology is illustrated on a mass action based model for an enzymatically catalyzed reaction pathway network where only a limited set of variables is measured. The methodology clearly pinpoints the structurally identifiable parameters...... where for a given set of measured variables it is desirable to investigate which parameters may be estimated prior to spending computational effort on the actual estimation. This contribution addresses the structural parameter identifiability problem for the typical case of reaction network models....... The proposed analysis is performed in two phases. The first phase determines the structurally identifiable reaction rates based on reaction network stoichiometry. The second phase assesses the structural parameter identifiability of the specific kinetic rate expressions using a generating series expansion...

  14. Nuclear Structure and Decay Data (NSDD) network

    International Nuclear Information System (INIS)

    Pronyaev, V.G.

    2001-02-01

    This report provides a brief description of the Nuclear Structure and Decay Data (NSDD) Network in response to a request from the Advisory Group Meeting on ''Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators'' (IAEA, Vienna, 14-17 December 1998, report IAEA(NDS)-399 (1999)). This report supersedes the special issue of the Nuclear Data Newsletter No. 20 published in November 1994. (author)

  15. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  16. On-the-field performance of quintuple-play long-reach OFDM-based WDM-PON optical access networks.

    Science.gov (United States)

    Llorente, Roberto; Morant, Maria; Pellicer, Eloy; Herman, Milan; Nagy, Zsolt; Alves, Tiago; Cartaxo, Adolfo; Herrera, Javier; Correcher, Jose; Quinlan, Terence; Walker, Stuart; Rodrigues, Cláudio; Cluzeaud, Pierre; Schmidt, Axel; Piesiewicz, Radoslaw; Sambaraju, Rakesh

    2014-03-24

    In this paper the on-the-field performance of a WDM-PON optical access providing quintuple-play services using orthogonal frequency division multiplexing (OFDM) modulation is evaluated in a real fiber-to-the-home (FTTH) network deployed by Towercom operator in Bratislava (Slovakia). A bundle of quintuple-play services comprising full-standard OFDM-based signals (LTE, WiMAX, UWB and DVB-T) and an ad-hoc OFDM-GbE signal is transmitted in coexistence per single user. Both downstream and upstream transmission performances are evaluated in different on-the-field long-reach optical link distance configurations. Four wavelength multi-user transmission of quintuple-play OFDM services is demonstrated exceeding 60.8 km reach in standard single mode fiber.

  17. Does landscape connectivity shape local and global social network structure in white-tailed deer?

    Directory of Open Access Journals (Sweden)

    Erin L Koen

    Full Text Available Intraspecific social behavior can be influenced by both intrinsic and extrinsic factors. While much research has focused on how characteristics of individuals influence their roles in social networks, we were interested in the role that landscape structure plays in animal sociality at both individual (local and population (global levels. We used female white-tailed deer (Odocoileus virginianus in Illinois, USA, to investigate the potential effect of landscape on social network structure by weighting the edges of seasonal social networks with association rate (based on proximity inferred from GPS collar data. At the local level, we found that sociality among female deer in neighboring social groups (n = 36 was mainly explained by their home range overlap, with two exceptions: 1 during fawning in an area of mixed forest and grassland, deer whose home ranges had low forest connectivity were more social than expected; and 2 during the rut in an area of intensive agriculture, deer inhabiting home ranges with high amount and connectedness of agriculture were more social than expected. At the global scale, we found that deer populations (n = 7 in areas with highly connected forest-agriculture edge, a high proportion of agriculture, and a low proportion of forest tended to have higher weighted network closeness, although low sample size precluded statistical significance. This result implies that infectious disease could spread faster in deer populations inhabiting such landscapes. Our work advances the general understanding of animal social networks, demonstrating how landscape features can underlie differences in social behavior both within and among wildlife social networks.

  18. Functional clustering in hippocampal cultures: relating network structure and dynamics

    International Nuclear Information System (INIS)

    Feldt, S; Dzakpasu, R; Olariu, E; Żochowski, M; Wang, J X; Shtrahman, E

    2010-01-01

    In this work we investigate the relationship between gross anatomic structural network properties, neuronal dynamics and the resultant functional structure in dissociated rat hippocampal cultures. Specifically, we studied cultures as they developed under two conditions: the first supporting glial cell growth (high glial group), and the second one inhibiting it (low glial group). We then compared structural network properties and the spatio-temporal activity patterns of the neurons. Differences in dynamics between the two groups could be linked to the impact of the glial network on the neuronal network as the cultures developed. We also implemented a recently developed algorithm called the functional clustering algorithm (FCA) to obtain the resulting functional network structure. We show that this new algorithm is useful for capturing changes in functional network structure as the networks evolve over time. The FCA detects changes in functional structure that are consistent with expected dynamical differences due to the impact of the glial network. Cultures in the high glial group show an increase in global synchronization as the cultures age, while those in the low glial group remain locally synchronized. We additionally use the FCA to quantify the amount of synchronization present in the cultures and show that the total level of synchronization in the high glial group is stronger than in the low glial group. These results indicate an interdependence between the glial and neuronal networks present in dissociated cultures

  19. Structural network heterogeneities and network dynamics: a possible dynamical mechanism for hippocampal memory reactivation.

    Science.gov (United States)

    Jablonski, Piotr; Poe, Gina; Zochowski, Michal

    2007-03-01

    The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.

  20. Impact of environmental inputs on reverse-engineering approach to network structures.

    Science.gov (United States)

    Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng

    2009-12-04

    Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

  1. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  2. Differential Age-Related Changes in Structural Covariance Networks of Human Anterior and Posterior Hippocampus

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    2018-05-01

    Full Text Available The hippocampus plays an important role in memory function relying on information interaction between distributed brain areas. The hippocampus can be divided into the anterior and posterior sections with different structure and function along its long axis. The aim of this study is to investigate the effects of normal aging on the structural covariance of the anterior hippocampus (aHPC and the posterior hippocampus (pHPC. In this study, 240 healthy subjects aged 18–89 years were selected and subdivided into young (18–23 years, middle-aged (30–58 years, and older (61–89 years groups. The aHPC and pHPC was divided based on the location of uncal apex in the MNI space. Then, the structural covariance networks were constructed by examining their covariance in gray matter volumes with other brain regions. Finally, the influence of age on the structural covariance of these hippocampal sections was explored. We found that the aHPC and pHPC had different structural covariance patterns, but both of them were associated with the medial temporal lobe and insula. Moreover, both increased and decreased covariances were found with the aHPC but only increased covariance was found with the pHPC with age (p < 0.05, family-wise error corrected. These decreased connections occurred within the default mode network, while the increased connectivity mainly occurred in other memory systems that differ from the hippocampus. This study reveals different age-related influence on the structural networks of the aHPC and pHPC, providing an essential insight into the mechanisms of the hippocampus in normal aging.

  3. Beyond E-business : towards networked structures

    NARCIS (Netherlands)

    Grefen, P.W.P.J.

    2015-01-01

    In Beyond E-Business: Towards Networked Structures Paul Grefen returns with his tried and tested BOAT framework for e-business, now fully expanded and updated with the very latest overview of digitally connected business; from business models, organization structures and architecture, to information

  4. Mesoscopic structure conditions the emergence of cooperation on social networks.

    Directory of Open Access Journals (Sweden)

    Sergi Lozano

    Full Text Available BACKGROUND: We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. METHODOLOGY/PRINCIPAL FINDINGS: We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. CONCLUSION: Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.

  5. Mesoscopic structure conditions the emergence of cooperation on social networks

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, S.; Arenas, A.; Sanchez, A.

    2008-12-01

    We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.

  6. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  7. Topological properties of complex networks in protein structures

    Science.gov (United States)

    Kim, Kyungsik; Jung, Jae-Won; Min, Seungsik

    2014-03-01

    We study topological properties of networks in structural classification of proteins. We model the native-state protein structure as a network made of its constituent amino-acids and their interactions. We treat four structural classes of proteins composed predominantly of α helices and β sheets and consider several proteins from each of these classes whose sizes range from amino acids of the Protein Data Bank. Particularly, we simulate and analyze the network metrics such as the mean degree, the probability distribution of degree, the clustering coefficient, the characteristic path length, the local efficiency, and the cost. This work was supported by the KMAR and DP under Grant WISE project (153-3100-3133-302-350).

  8. Community structures and role detection in music networks

    Science.gov (United States)

    Teitelbaum, T.; Balenzuela, P.; Cano, P.; Buldú, Javier M.

    2008-12-01

    We analyze the existence of community structures in two different social networks using data obtained from similarity and collaborative features between musical artists. Our analysis reveals some characteristic organizational patterns and provides information about the driving forces behind the growth of the networks. In the similarity network, we find a strong correlation between clusters of artists and musical genres. On the other hand, the collaboration network shows two different kinds of communities: rather small structures related to music bands and geographic zones, and much bigger communities built upon collaborative clusters with a high number of participants related through the period the artists were active. Finally, we detect the leading artists inside their corresponding communities and analyze their roles in the network by looking at a few topological properties of the nodes.

  9. Structure of Retail Services in the Brazilian Hosting Network

    Directory of Open Access Journals (Sweden)

    Claudio Zancan

    2015-08-01

    Full Text Available this research has identified Brazilian hosting networks through infrastructure services indicators that it was sold to tourists in organizations that form these networks. The theory consulted the discussion of structural techniques present in Social Network Analysis. The study has three stages: documental research, creation of Tourism database and interviews. The results identified three networks with the highest expression in Brazil formed by hotels, lodges, and resorts. Different char-acteristics of infrastructure and services were observed between hosting networks. Future studies suggest a comparative analysis of structural indicators present in other segments of tourism services, as well as the existing international influ-ence on the development of the Brazilian hosting networks.

  10. Communication network structure parameters and new knowledge generation capabilities in companies engaged in industry control system engineering projects

    Directory of Open Access Journals (Sweden)

    Titov Sergei

    2016-01-01

    Full Text Available Engineering companies engaged in business of industry control systems need to manage the processes of generation of innovations within and across their projects. Generation and diffusion of innovations materialize through the communication networks of project teams. Therefore, it is possible to hypothesize that the characteristics of communication networks play role in generation of new knowledge. With the data from 14 industry control system projects of a Russian engineering company the communication network structure characteristics were calculated and the analysis of correlation between these characteristics and knowledge generation capabilities was performed. As a result correlation between centralization of communication and the number of new technical solutions developed in projects was discovered.

  11. Structural Connectivity Networks of Transgender People

    NARCIS (Netherlands)

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF)

  12. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  13. A new hierarchical method to find community structure in networks

    Science.gov (United States)

    Saoud, Bilal; Moussaoui, Abdelouahab

    2018-04-01

    Community structure is very important to understand a network which represents a context. Many community detection methods have been proposed like hierarchical methods. In our study, we propose a new hierarchical method for community detection in networks based on genetic algorithm. In this method we use genetic algorithm to split a network into two networks which maximize the modularity. Each new network represents a cluster (community). Then we repeat the splitting process until we get one node at each cluster. We use the modularity function to measure the strength of the community structure found by our method, which gives us an objective metric for choosing the number of communities into which a network should be divided. We demonstrate that our method are highly effective at discovering community structure in both computer-generated and real-world network data.

  14. The Structure of Online Consumer Communication Networks

    NARCIS (Netherlands)

    B.G.C. Dellaert (Benedict); M.J.W. Harmsen-van Hout (Marjolein); P.J.J. Herings (Jean-Jacques)

    2006-01-01

    textabstractIn this paper we study the structure of the bilateral communication links within Online Consumer Communication Networks (OCCNs), such as virtual communities. Compared to the offline world, consumers in online networks are highly flexible to choose their communication partners and little

  15. Modeling Temporal Evolution and Multiscale Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2013-01-01

    Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change......-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights...

  16. The structure of complex networks theory and applications

    CERN Document Server

    Estrada, Ernesto

    2012-01-01

    This book deals with the analysis of the structure of complex networks by combining results from graph theory, physics, and pattern recognition. The book is divided into two parts. 11 chapters are dedicated to the development of theoretical tools for the structural analysis of networks, and 7 chapters are illustrating, in a critical way, applications of these tools to real-world scenarios. The first chapters provide detailed coverage of adjacency and metric and topologicalproperties of networks, followed by chapters devoted to the analysis of individual fragments and fragment-based global inva

  17. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  18. A network of networks model to study phase synchronization using structural connection matrix of human brain

    Science.gov (United States)

    Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.

    2018-04-01

    The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.

  19. Structural and functional social network attributes moderate the association of self-rated health with mental health in midlife and older adults.

    Science.gov (United States)

    Windsor, Tim D; Rioseco, Pilar; Fiori, Katherine L; Curtis, Rachel G; Booth, Heather

    2016-01-01

    Social relationships are multifaceted, and different social network components can operate via different processes to influence well-being. This study examined associations of social network structure and relationship quality (positive and negative social exchanges) with mental health in midlife and older adults. The focus was on both direct associations of network structure and relationship quality with mental health, and whether these social network attributes moderated the association of self-rated health (SRH) with mental health. Analyses were based on survey data provided by 2001 (Mean age = 65, SD = 8.07) midlife and older adults. We used Latent Class Analysis (LCA) to classify participants into network types based on network structure (partner status, network size, contact frequency, and activity engagement), and used continuous measures of positive and negative social exchanges to operationalize relationship quality. Regression analysis was used to test moderation. LCA revealed network types generally consistent with those reported in previous studies. Participants in more diverse networks reported better mental health than those categorized into a restricted network type after adjustment for age, sex, education, and employment status. Analysis of moderation indicated that those with poorer SRH were less likely to report poorer mental health if they were classified into more diverse networks. A similar moderation effect was also evident for positive exchanges. The findings suggest that both quantity and quality of social relationships can play a role in buffering against the negative implications of physical health decline for mental health.

  20. Structural constraints in complex networks

    International Nuclear Information System (INIS)

    Zhou, S; Mondragon, R J

    2007-01-01

    We present a link rewiring mechanism to produce surrogates of a network where both the degree distribution and the rich-club connectivity are preserved. We consider three real networks, the autonomous system (AS)-Internet, protein interaction and scientific collaboration. We show that for a given degree distribution, the rich-club connectivity is sensitive to the degree-degree correlation, and on the other hand the degree-degree correlation is constrained by the rich-club connectivity. In particular, in the case of the Internet, the assortative coefficient is always negative and a minor change in its value can reverse the network's rich-club structure completely; while fixing the degree distribution and the rich-club connectivity restricts the assortative coefficient to such a narrow range, that a reasonable model of the Internet can be produced by considering mainly the degree distribution and the rich-club connectivity. We also comment on the suitability of using the maximal random network as a null model to assess the rich-club connectivity in real networks

  1. Coevolution of network structure and cooperation in the public goods game

    International Nuclear Information System (INIS)

    Wang Lei; Xia Chengyi; Wang Juan

    2013-01-01

    Recently, the emergence of cooperation has become a central topic in the evolutionary game field, and coevolution of game dynamics and network topology structure can give us a fresh viewpoint of how the network evolves and cooperation arises. In this paper, we show in detail a picture of the co-evolutionary behaviors between the microscopic structure of the network and cooperation promotion in the public goods game (PGG). Based on a mechanism named after evolutionary preferential attachment (EPA), in which the growth of the network depends on the outcome of PGG dynamics, we explore the structural properties of networks and cooperative behaviors taking place on the networks created by EPA rules. Extensive simulation results indicate that the structure of the resulting networks displays a transition from homogeneous to heterogeneous properties as the selection strength ϵ increases, and the cooperative behaviors have a non-trivial state in which cooperators and defectors can simultaneously occupy the hub nodes in the network. Current results are of interest for us to further understand the cooperation persistence and structure evolution in many natural, social and economical systems. (paper)

  2. Cognitive and Social Structure of the Elite Collaboration Network of Astrophysics: A Case Study on Shifting Network Structures

    Science.gov (United States)

    Heidler, Richard

    2011-01-01

    Scientific collaboration can only be understood along the epistemic and cognitive grounding of scientific disciplines. New scientific discoveries in astrophysics led to a major restructuring of the elite network of astrophysics. To study the interplay of the epistemic grounding and the social network structure of a discipline, a mixed-methods…

  3. Structural controllability and controlling centrality of temporal networks.

    Science.gov (United States)

    Pan, Yujian; Li, Xiang

    2014-01-01

    Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks.

  4. Structural and Infrastructural Underpinnings of International R&D Networks

    DEFF Research Database (Denmark)

    Niang, Mohamed; Sørensen, Brian Vejrum

    2009-01-01

    This paper explores the process of globally distributing R&D activities with an emphasis on the effects of network maturity. It discusses emerging configurations by asking how the structure and infrastructure of international R&D networks evolve along with the move from a strong R&D center...... to dispersed development. Drawing from case studies of two international R&D networks, it presents a capability maturity model and argues that understanding the interaction between new structures and infrastructures of the dispersed networks has become a key requirement for developing organizational...

  5. A failure of suppression within the default mode network in depressed adolescents with compulsive internet game play.

    Science.gov (United States)

    Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F; Anderson, Jeffrey S

    2016-04-01

    Individuals who are chronic, compulsive video game players experience an elevated incidence of major depression. Excessive or problematic game play can interact with depression clinically, and may magnify impulsive behavior associated with video gaming. Functional brain imaging was performed during a Wisconsin Card Sorting Test (WCST) task in 42 healthy control and 95 volunteers seeking treatment for compulsive video game playing, including 60 participants without major depression (pure internet gaming disorder, pure IGD) and 35 participants comorbid with major depression (IGD+MDD). In response to the WCST in contrast to fixation, activation was observed in canonical brain attentional networks including bilateral intraparietal sulcus, frontal eye fields, and middle temporal cortical regions as well as dorsolateral prefrontal, inferior parietal and anterior insula, anterior cingulate cortex in all participants. For WCST>Fixation contrasts, the IGD+MDD group exhibited greater relative activation within the left hippocampus, compared to healthy control participants. For WCST>Fixation contrasts, the IGD+MDD group exhibited greater relative activation within the left hippocampus and the right parahippocampal gyrus immediately posterior to the hippocampus, compared to the pure IGD group. In cohorts of individuals with a history of compulsive internet game play, individuals with depression showed failure to suppress default mode network activity during an attentionally demanding task, compared to individuals without depression, including comparison groups with and without a history of compulsive video gaming. This reduced suppression of the brain regions within the default mode network may be a consequence of depressive neurophysiology or represent a predisposition for depression within compulsive game players. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Complex network perspective on structure and function of ...

    Indian Academy of Sciences (India)

    of community social networks, which are dense node–node links within modules, but have sparser links between ... 3.2 Bow tie structure. The whole metabolic network of S. aureus is then decomposed into four parts based on the 'bow tie' structure (figure 2, table 2). It should be noted that most nodes in S, P and IS parts are ...

  7. Playing life away: Videogames and personality structure.

    Directory of Open Access Journals (Sweden)

    Leones do Couto G.

    2014-09-01

    Full Text Available This study aims to fill a gap in the current research on the personality organization of frequent videogame users. The scientific literature in this area refers only to the existence of risk factors that increase the likelihood of abusing videogames and their negative consequences on the mental health of users (Gentile et al., 2011; Lemmens, Valkenburg, & Peter, 2011; Rehbein & Baier, 2013. In this study, a sample of patients who reported spending an excessive amount of their time playing videogames were recruited from Instituto Quintino Aires–Lisbon/Oporto and took the Rorschach Personality Test (Exner, 1993, 1995. Two other samples—one consisting of patients who reported not playing videogames, and the other of patients who were discharged from the institution after psychotherapy—also took part in the study. The patients in the first sample revealed less exposure to the relational sources of stress that are necessary for socioemotional development and less interest in others than did patients in the other samples. Other results regarding the personality structure of the subjects in the three samples are compared and discussed in light of cultural-historical psychology.

  8. A Hierarchical Dispatch Structure for Distribution Network Pricing

    OpenAIRE

    Yuan, Zhao; Hesamzadeh, Mohammad Reza

    2015-01-01

    This paper presents a hierarchical dispatch structure for efficient distribution network pricing. The dispatch coordination problem in the context of hierarchical network operators are addressed. We formulate decentralized generation dispatch into a bilevel optimization problem in which main network operator and the connected distribution network operator optimize their costs in two levels. By using Karush-Kuhn-Tucker conditions and Fortuny-Amat McCarl linearization, the bilevel optimization ...

  9. Structure-Function Network Mapping and Its Assessment via Persistent Homology

    Science.gov (United States)

    2017-01-01

    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127

  10. Changing organizational structures of jihadist networks in the Netherlands

    NARCIS (Netherlands)

    de Bie, Jasper L.; de Poot, Christianne J.; Freilich, Joshua D.; Chermak, Steven M.

    2017-01-01

    This paper uses Social Network Analysis to study and compare the organizational structures and division of roles of three jihadist networks in the Netherlands. It uses unique longitudinal Dutch police data covering the 2000–2013 period. This study demonstrates how the organizational structures

  11. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  12. How structure determines correlations in neuronal networks.

    Directory of Open Access Journals (Sweden)

    Volker Pernice

    2011-05-01

    Full Text Available Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.

  13. Improving the Reliability of Network Metrics in Structural Brain Networks by Integrating Different Network Weighting Strategies into a Single Graph

    Directory of Open Access Journals (Sweden)

    Stavros I. Dimitriadis

    2017-12-01

    Full Text Available Structural brain networks estimated from diffusion MRI (dMRI via tractography have been widely studied in healthy controls and patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost fully-weighted. Here, we scanned five healthy participants five times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROI from the Automated Anatomical Labeling (AAL template. The edges were weighted according to nine different methods. We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an Integrated Weighted Structural Brain Network (ISWBN. Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of: (a intra-class correlation coefficient (ICC of well-known network metrics, both node-wise and per network level; and (b the recognition accuracy of each subject compared to the remainder of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject, after first applying our proposed topological filtering scheme. Based on a threshold where the network level ICC should be >0.90, our findings revealed that six out of nine NWS lead to unreliable results at the network level, while all nine NWS were unreliable at the node level. In comparison, our proposed ISWBN performed as well as the best performing individual NWS at the network level, and the ICC was higher compared to all individual NWS at the node

  14. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  15. Structure and growth of weighted networks

    Energy Technology Data Exchange (ETDEWEB)

    Riccaboni, Massimo [Department of Computer and Management Sciences, University of Trento, Trento (Italy); Schiavo, Stefano [Department of Economics, University of Trento, Trento (Italy)], E-mail: massimo.riccaboni@unitn.it, E-mail: stefano.schiavo@unitn.it

    2010-02-15

    We develop a simple theoretical framework for the evolution of weighted networks that is consistent with a number of stylized features of real-world data. In our framework, the Barabasi-Albert model of network evolution is extended by assuming that link weights evolve according to a geometric Brownian motion. Our model is verified by means of simulations and real-world trade data. We show that the model correctly predicts the intensity and growth distribution of links, the size-variance relationship of the growth of link weights, the relationship between the degree and strength of nodes, and the scale-free structure of the network.

  16. Online Social Networks: Essays on Membership, Privacy, and Structure

    NARCIS (Netherlands)

    Hofstra, B.

    2017-01-01

    The structure of social networks is crucial for obtaining social support, for meaningful connections to unknown social groups, and to overcome prejudice. Yet, we know little about the structure of social networks beyond those contacts that stand closest to us. This lack of knowledge results from a

  17. Joint Modelling of Structural and Functional Brain Networks

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Herlau, Tue; Mørup, Morten

    -parametric Bayesian network model which allows for joint modelling and integration of multiple networks. We demonstrate the model’s ability to detect vertices that share structure across networks jointly in functional MRI (fMRI) and diffusion MRI (dMRI) data. Using two fMRI and dMRI scans per subject, we establish...

  18. Spatial structure of an individual-based plant–pollinator network

    DEFF Research Database (Denmark)

    Dupont, Yoko Luise; Nielsen, Kristian Trøjelsgaard; Hagen, Melanie

    2014-01-01

    The influence of space on the structure (e.g. modularity) of complex ecological networks remains largely unknown. Here, we sampled an individual-based plant–pollinator network by following the movements and flower visits of marked bumblebee individuals within a population of thistle plants...... for which the identities and spatial locations of stems were mapped in a 50  50 m study plot. The plant–pollinator network was dominated by parasitic male bumblebees and had a significantly modular structure, with four identified modules being clearly separated in space. This indicated that individual....... This demonstrated that individual-based plant–pollinator networks are influenced by both the spatial structure of plant populations and individual-specific plant traits. Additionally, bumblebee individuals with long observation times were important for both the connectivity between and within modules. The latter...

  19. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... district. The case study considers a novel approach to the design of district heating systems in which the diameter of the pipes used in the system is reduced in order to reduce the heat losses in the system, thereby making it profitable to provide district heating to areas with low energy demands. The new...

  20. Structural covariance networks in the mouse brain.

    Science.gov (United States)

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.

    Science.gov (United States)

    Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania

    2017-02-01

    Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Comparison and validation of community structures in complex networks

    Science.gov (United States)

    Gustafsson, Mika; Hörnquist, Michael; Lombardi, Anna

    2006-07-01

    The issue of partitioning a network into communities has attracted a great deal of attention recently. Most authors seem to equate this issue with the one of finding the maximum value of the modularity, as defined by Newman. Since the problem formulated this way is believed to be NP-hard, most effort has gone into the construction of search algorithms, and less to the question of other measures of community structures, similarities between various partitionings and the validation with respect to external information. Here we concentrate on a class of computer generated networks and on three well-studied real networks which constitute a bench-mark for network studies; the karate club, the US college football teams and a gene network of yeast. We utilize some standard ways of clustering data (originally not designed for finding community structures in networks) and show that these classical methods sometimes outperform the newer ones. We discuss various measures of the strength of the modular structure, and show by examples features and drawbacks. Further, we compare different partitions by applying some graph-theoretic concepts of distance, which indicate that one of the quality measures of the degree of modularity corresponds quite well with the distance from the true partition. Finally, we introduce a way to validate the partitionings with respect to external data when the nodes are classified but the network structure is unknown. This is here possible since we know everything of the computer generated networks, as well as the historical answer to how the karate club and the football teams are partitioned in reality. The partitioning of the gene network is validated by use of the Gene Ontology database, where we show that a community in general corresponds to a biological process.

  3. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  4. Linking structure and activity in nonlinear spiking networks.

    Science.gov (United States)

    Ocker, Gabriel Koch; Josić, Krešimir; Shea-Brown, Eric; Buice, Michael A

    2017-06-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  5. Community detection for networks with unipartite and bipartite structure

    Science.gov (United States)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  6. Optimizing Diamond Structured Automobile Supply Chain Network Towards a Robust Business Continuity Management

    Directory of Open Access Journals (Sweden)

    Abednico Montshiwa

    2016-02-01

    Full Text Available This paper presents an optimized diamond structured automobile supply chain network towards a robust Business Continuity Management model. The model is necessitated by the nature of the automobile supply chain. Companies in tier two are centralized and numerically limited and have to supply multiple tier one companies with goods and services. The challenge with this supply chain structure is the inherent risks in the supply chain. Once supply chain disruption takes place at tier 2 level, the whole supply chain network suffers huge loses. To address this challenge, the paper replaces Risk Analysis with Risk Ranking and it introduces Supply Chain Cooperation (SCC to the traditional Business Continuity Plan (BCP concept. The paper employed three statistical analysis techniques (correlation analysis, regression analysis and Smart PLS 3.0 calculations. In this study, correlation and regression analysis results on risk rankings, SCC and Business Impact Analysis were significant, ascertaining the value of the model. The multivariate data analysis calculations demonstrated that SCC has a positive total significant effect on risk rankings and BCM while BIA has strongest positive effects on all BCP factors. Finally, sensitivity analysis demonstrated that company size plays a role in BCM.

  7. Identification of alterations associated with age in the clustering structure of functional brain networks.

    Science.gov (United States)

    Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre

    2018-01-01

    Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.

  8. The Deep Structure of Organizational Online Networking

    DEFF Research Database (Denmark)

    Trier, Matthias; Richter, Alexander

    2015-01-01

    While research on organizational online networking recently increased significantly, most studies adopt quantitative research designs with a focus on the consequences of social network configurations. Very limited attention is paid to comprehensive theoretical conceptions of the complex phenomenon...... of organizational online networking. We address this gap by adopting a theoretical framework of the deep structure of organizational online networking with a focus on their emerging meaning for the employees. We apply and assess the framework in a qualitative case study of a large-scale implementation...... of a corporate social network site (SNS) in a global organization. We reveal organizational online networking as a multi-dimensional phenomenon with multiplex relationships that are unbalanced, primarily consist of weak ties and are subject to temporal change. Further, we identify discourse drivers...

  9. Network structure detection and analysis of Shanghai stock market

    Directory of Open Access Journals (Sweden)

    Sen Wu

    2015-04-01

    Full Text Available Purpose: In order to investigate community structure of the component stocks of SSE (Shanghai Stock Exchange 180-index, a stock correlation network is built to find the intra-community and inter-community relationship. Design/methodology/approach: The stock correlation network is built taking the vertices as stocks and edges as correlation coefficients of logarithm returns of stock price. It is built as undirected weighted at first. GN algorithm is selected to detect community structure after transferring the network into un-weighted with different thresholds. Findings: The result of the network community structure analysis shows that the stock market has obvious industrial characteristics. Most of the stocks in the same industry or in the same supply chain are assigned to the same community. The correlation of the internal stock prices’ fluctuation is closer than in different communities. The result of community structure detection also reflects correlations among different industries. Originality/value: Based on the analysis of the community structure in Shanghai stock market, the result reflects some industrial characteristics, which has reference value to relationship among industries or sub-sectors of listed companies.

  10. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Cordero Hernandez, Jorge

    2008-01-01

    It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

  11. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  12. Impact of constrained rewiring on network structure and node dynamics

    Science.gov (United States)

    Rattana, P.; Berthouze, L.; Kiss, I. Z.

    2014-11-01

    In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.

  13. The formation of a core-periphery structure in heterogeneous financial networks

    NARCIS (Netherlands)

    van der Leij, M.; in 't Veld, D.; Hommes, C.

    2016-01-01

    Recent empirical evidence suggests that financial networks exhibit a core-periphery network structure. This paper aims at giving an explanation for the emergence of such a structure using network formation theory. We propose a simple model of the overnight interbank lending market, in which banks

  14. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    Science.gov (United States)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  15. Epidemic outbreaks in growing scale-free networks with local structure

    Science.gov (United States)

    Ni, Shunjiang; Weng, Wenguo; Shen, Shifei; Fan, Weicheng

    2008-09-01

    The class of generative models has already attracted considerable interest from researchers in recent years and much expanded the original ideas described in BA model. Most of these models assume that only one node per time step joins the network. In this paper, we grow the network by adding n interconnected nodes as a local structure into the network at each time step with each new node emanating m new edges linking the node to the preexisting network by preferential attachment. This successfully generates key features observed in social networks. These include power-law degree distribution pk∼k, where μ=(n-1)/m is a tuning parameter defined as the modularity strength of the network, nontrivial clustering, assortative mixing, and modular structure. Moreover, all these features are dependent in a similar way on the parameter μ. We then study the susceptible-infected epidemics on this network with identical infectivity, and find that the initial epidemic behavior is governed by both of the infection scheme and the network structure, especially the modularity strength. The modularity of the network makes the spreading velocity much lower than that of the BA model. On the other hand, increasing the modularity strength will accelerate the propagation velocity.

  16. High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator.

    Science.gov (United States)

    Huang, Min; Hou, Yi; Li, Yubao; Wang, Danqing; Zhang, Li

    2017-01-01

    A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels' properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields.

  17. Statistical inference to advance network models in epidemiology.

    Science.gov (United States)

    Welch, David; Bansal, Shweta; Hunter, David R

    2011-03-01

    Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Analysis of context dependence in social interaction networks of a massively multiplayer online role-playing game.

    Science.gov (United States)

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior.

  19. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  20. Crushing Candy: The Free-to-Play Game in Its Connective Commodity Form

    NARCIS (Netherlands)

    Nieborg, D.B.

    2015-01-01

    The goal of this article is to add a complementary perspective to the study of social network sites by surveying how the political economy of social media platforms relates to the structure of free-to-play games in their commodity form. Drawing on the theory of multisided markets and critical

  1. Analysis of the structure of complex networks at different resolution levels

    Energy Technology Data Exchange (ETDEWEB)

    Arenas, A.; Fernandez, A.; Gomez, S.

    2008-02-28

    Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights in the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for a partition of a network into modules. Recently some authors have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows to find the exact splits reported in the literature, as well as the substructure beyond the actual split.

  2. Adapting Bayes Network Structures to Non-stationary Domains

    DEFF Research Database (Denmark)

    Nielsen, Søren Holbech; Nielsen, Thomas Dyhre

    2008-01-01

    When an incremental structural learning method gradually modifies a Bayesian network (BN) structure to fit a sequential stream of observations, we call the process structural adaptation. Structural adaptation is useful when the learner is set to work in an unknown environment, where a BN is gradu...

  3. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  4. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Science.gov (United States)

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  5. A user exposure based approach for non-structural road network vulnerability analysis.

    Directory of Open Access Journals (Sweden)

    Lei Jin

    Full Text Available Aiming at the dense urban road network vulnerability without structural negative consequences, this paper proposes a novel non-structural road network vulnerability analysis framework. Three aspects of the framework are mainly described: (i the rationality of non-structural road network vulnerability, (ii the metrics for negative consequences accounting for variant road conditions, and (iii the introduction of a new vulnerability index based on user exposure. Based on the proposed methodology, a case study in the Sioux Falls network which was usually threatened by regular heavy snow during wintertime is detailedly discussed. The vulnerability ranking of links of Sioux Falls network with respect to heavy snow scenario is identified. As a result of non-structural consequences accompanied by conceivable degeneration of network, there are significant increases in generalized travel time costs which are measurements for "emotionally hurt" of topological road network.

  6. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  7. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  8. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  9. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    International Nuclear Information System (INIS)

    Zhou Changsong; Zemanova, Lucia; Zamora-Lopez, Gorka; Hilgetag, Claus C; Kurths, Juergen

    2007-01-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks

  10. Structure-function relationship in complex brain networks expressed by hierarchical synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changsong [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zemanova, Lucia [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Zamora-Lopez, Gorka [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany); Hilgetag, Claus C [Jacobs University Bremen, Campus Ring 6, Rm 116, D-28759 Bremen (Germany); Kurths, Juergen [Institute of Physics, University of Potsdam, PF 601553, 14415 Potsdam (Germany)

    2007-06-15

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  11. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    International Nuclear Information System (INIS)

    Li, Chun-Hsien; Yang, Suh-Yuh

    2015-01-01

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability

  12. Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hsien, E-mail: chli@nknucc.nknu.edu.tw [Department of Mathematics, National Kaohsiung Normal University, Yanchao District, Kaohsiung City 82444, Taiwan (China); Yang, Suh-Yuh, E-mail: syyang@math.ncu.edu.tw [Department of Mathematics, National Central University, Jhongli District, Taoyuan City 32001, Taiwan (China)

    2015-10-23

    This work is devoted to investigate the effects of network structure on the synchronizability of nonlinearly coupled dynamical network of Hindmarsh–Rose neurons with a sigmoidal coupling function. We mainly focus on the networks that exhibit the small-world character or scale-free property. By checking the first nonzero eigenvalue of the outer-coupling matrix, which is closely related to the synchronization threshold, the synchronizabilities of three specific network ensembles with prescribed network structures are compared. Interestingly, we find that networks with more connections will not necessarily result in better synchronizability. - Highlights: • We investigate the effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. • We mainly consider the networks that exhibit the small-world character or scale-free property. • The synchronizability of three specific network ensembles with prescribed network structures are compared. • Networks with more connections will not necessarily result in better synchronizability.

  13. TreeNetViz: revealing patterns of networks over tree structures.

    Science.gov (United States)

    Gou, Liang; Zhang, Xiaolong Luke

    2011-12-01

    Network data often contain important attributes from various dimensions such as social affiliations and areas of expertise in a social network. If such attributes exhibit a tree structure, visualizing a compound graph consisting of tree and network structures becomes complicated. How to visually reveal patterns of a network over a tree has not been fully studied. In this paper, we propose a compound graph model, TreeNet, to support visualization and analysis of a network at multiple levels of aggregation over a tree. We also present a visualization design, TreeNetViz, to offer the multiscale and cross-scale exploration and interaction of a TreeNet graph. TreeNetViz uses a Radial, Space-Filling (RSF) visualization to represent the tree structure, a circle layout with novel optimization to show aggregated networks derived from TreeNet, and an edge bundling technique to reduce visual complexity. Our circular layout algorithm reduces both total edge-crossings and edge length and also considers hierarchical structure constraints and edge weight in a TreeNet graph. These experiments illustrate that the algorithm can reduce visual cluttering in TreeNet graphs. Our case study also shows that TreeNetViz has the potential to support the analysis of a compound graph by revealing multiscale and cross-scale network patterns. © 2011 IEEE

  14. Brain networks, structural realism, and local approaches to the scientific realism debate.

    Science.gov (United States)

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  16. Structural and functional networks in complex systems with delay.

    Science.gov (United States)

    Eguíluz, Víctor M; Pérez, Toni; Borge-Holthoefer, Javier; Arenas, Alex

    2011-05-01

    Functional networks of complex systems are obtained from the analysis of the temporal activity of their components, and are often used to infer their unknown underlying connectivity. We obtain the equations relating topology and function in a system of diffusively delay-coupled elements in complex networks. We solve exactly the resulting equations in motifs (directed structures of three nodes) and in directed networks. The mean-field solution for directed uncorrelated networks shows that the clusterization of the activity is dominated by the in-degree of the nodes, and that the locking frequency decreases with increasing average degree. We find that the exponent of a power law degree distribution of the structural topology γ is related to the exponent of the associated functional network as α=(2-γ)(-1) for γ<2. © 2011 American Physical Society

  17. Community Structure in Online Collegiate Social Networks

    Science.gov (United States)

    Traud, Amanda; Kelsic, Eric; Mucha, Peter; Porter, Mason

    2009-03-01

    Online social networking sites have become increasingly popular with college students. The networks we studied are defined through ``friendships'' indicated by Facebook users from UNC, Oklahoma, Caltech, Georgetown, and Princeton. We apply the tools of network science to study the Facebook networks from these five different universities at a single point in time. We investigate each single-institution network's community structure, which we obtain through partitioning the graph using an eigenvector method. We use both graphical and quantitative tools, including pair-counting methods, which we interpret through statistical analysis and permutation tests to measure the correlations between the network communities and a set of characteristics given by each user (residence, class year, major, and high school). We also analyze the single gender subsets of these networks, and the impact of missing demographical data. Our study allows us to compare the online social networks for the five schools as well as infer differences in offline social interactions. At the schools studied, we were able to define which characteristics of the Facebook users correlate best with friendships.

  18. Network Structure, Collaborative Context, and Individual Creativity

    DEFF Research Database (Denmark)

    Soda, Giuseppe; Stea, Diego; Pedersen, Torben

    2017-01-01

    The debate on whether bonding or bridging ties are more beneficial for acquiring knowledge that is conducive to individual creativity has mostly overlooked the context in which such ties are formed. We challenge the widespread assumption that closed, heavily bonded networks imply a collaborative...... attitude on the part of the embedded actors and propose that the level of collaboration in a network can be independent from that network’s structural characteristics, such that it moderates the effects of closed and brokering network positions on the acquisition of knowledge that supports creativity....... Individuals embedded in closed networks acquire more knowledge and become more creative when the level of collaboration in their network is high. Brokers who arbitrage information across disconnected contacts acquire more knowledge and become more creative when collaboration is low. An analysis of employee...

  19. Conflict and convention in dynamic networks.

    Science.gov (United States)

    Foley, Michael; Forber, Patrick; Smead, Rory; Riedl, Christoph

    2018-03-01

    An important way to resolve games of conflict (snowdrift, hawk-dove, chicken) involves adopting a convention: a correlated equilibrium that avoids any conflict between aggressive strategies. Dynamic networks allow individuals to resolve conflict via their network connections rather than changing their strategy. Exploring how behavioural strategies coevolve with social networks reveals new dynamics that can help explain the origins and robustness of conventions. Here, we model the emergence of conventions as correlated equilibria in dynamic networks. Our results show that networks have the tendency to break the symmetry between the two conventional solutions in a strongly biased way. Rather than the correlated equilibrium associated with ownership norms (play aggressive at home, not away), we usually see the opposite host-guest norm (play aggressive away, not at home) evolve on dynamic networks, a phenomenon common to human interaction. We also show that learning to avoid conflict can produce realistic network structures in a way different than preferential attachment models. © 2017 The Author(s).

  20. Effect of synapse dilution on the memory retrieval in structured attractor neural networks

    Science.gov (United States)

    Brunel, N.

    1993-08-01

    We investigate a simple model of structured attractor neural network (ANN). In this network a module codes for the category of the stored information, while another group of neurons codes for the remaining information. The probability distribution of stabilities of the patterns and the prototypes of the categories are calculated, for two different synaptic structures. The stability of the prototypes is shown to increase when the fraction of neurons coding for the category goes down. Then the effect of synapse destruction on the retrieval is studied in two opposite situations : first analytically in sparsely connected networks, then numerically in completely connected ones. In both cases the behaviour of the structured network and that of the usual homogeneous networks are compared. When lesions increase, two transitions are shown to appear in the behaviour of the structured network when one of the patterns is presented to the network. After the first transition the network recognizes the category of the pattern but not the individual pattern. After the second transition the network recognizes nothing. These effects are similar to syndromes caused by lesions in the central visual system, namely prosopagnosia and agnosia. In both types of networks (structured or homogeneous) the stability of the prototype is greater than the stability of individual patterns, however the first transition, for completely connected networks, occurs only when the network is structured.

  1. Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley

    2015-04-01

    • Over the past two decades an interest in the role that plant-animal mutualistic networks play in the organization and dynamic of biodiversity has steadily risen. Despite the ecological, evolutionary, and economic importance of plant-herbivore and plant-pathogen antagonistic relationships, however, few studies have examined these interactions in an ecological network framework.• We describe for the first time the topological structure of multitrophic networks involving congeneric tropical plant species of the genus Heliconia (Heliconiaceae, Zingiberales) and their herbivores and pathogens in the state of Pernambuco, Brazil. We based our study on the available literature describing the organisms (e.g., insects, mites, fungi, and bacteria) that attack 24 different species, hybrids, and cultivated varieties of Heliconia.• In general, pathogen- and herbivore-Heliconia networks differed in their topological structure (more modular vs. more nested, respectively): pathogen-Heliconia networks were more specialized and compartmentalized than herbivore-Heliconia networks. High modularity was likely due to the high intimacy that pathogens have with their host plants as compared with the more generalized feeding modes and behavior of herbivores. Some clusters clearly reflected the clustering of closely related cultivated varieties of Heliconia sharing the same pathogens.• From a commercial standpoint, different varieties of the same Heliconia species may be more susceptible to being attacked by the same species of pathogens. In summary, our study highlights the importance of interaction intimacy in structuring trophic relationships between plants and pathogens in the tropics. © 2015 Botanical Society of America, Inc.

  2. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  3. NCI National Clinical Trials Network Structure

    Science.gov (United States)

    Learn about how the National Clinical Trials Network (NCTN) is structured. The NCTN is a program of the National Cancer Institute that gives funds and other support to cancer research organizations to conduct cancer clinical trials.

  4. Research on Community Structure in Bus Transport Networks

    International Nuclear Information System (INIS)

    Yang Xuhua; Wang Bo; Sun Youxian

    2009-01-01

    We abstract the bus transport networks (BTNs) to two kinds of complex networks with space L and space P methods respectively. Using improved community detecting algorithm (PKM agglomerative algorithm), we analyze the community property of two kinds of BTNs graphs. The results show that the BTNs graph described with space L method have obvious community property, but the other kind of BTNs graph described with space P method have not. The reason is that the BTNs graph described with space P method have the intense overlapping community property and general community division algorithms can not identify this kind of community structure. To overcome this problem, we propose a novel community structure called N-depth community and present a corresponding community detecting algorithm, which can detect overlapping community. Applying the novel community structure and detecting algorithm to a BTN evolution model described with space P, whose network property agrees well with real BTNs', we get obvious community property. (general)

  5. Analysis of Context Dependence in Social Interaction Networks of a Massively Multiplayer Online Role-Playing Game

    Science.gov (United States)

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior. PMID:22496771

  6. Analysis of context dependence in social interaction networks of a massively multiplayer online role-playing game.

    Directory of Open Access Journals (Sweden)

    Seokshin Son

    Full Text Available Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs, here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior.

  7. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    International Nuclear Information System (INIS)

    Xu Yuhua; Zhou Wuneng; Fang Jian'an; Lu Hongqian

    2009-01-01

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  8. Structure identification and adaptive synchronization of uncertain general complex dynamical networks

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yuhua, E-mail: yuhuaxu2004@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China) and Department of Maths, Yunyang Teacher' s College, Hubei 442000 (China); Zhou Wuneng, E-mail: wnzhou@163.co [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Fang Jian' an [College of Information Science and Technology, Donghua University, Shanghai 201620 (China); Lu Hongqian [Shandong Institute of Light Industry, Shandong Jinan 250353 (China)

    2009-12-28

    This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.

  9. Displacement and deformation measurement for large structures by camera network

    Science.gov (United States)

    Shang, Yang; Yu, Qifeng; Yang, Zhen; Xu, Zhiqiang; Zhang, Xiaohu

    2014-03-01

    A displacement and deformation measurement method for large structures by a series-parallel connection camera network is presented. By taking the dynamic monitoring of a large-scale crane in lifting operation as an example, a series-parallel connection camera network is designed, and the displacement and deformation measurement method by using this series-parallel connection camera network is studied. The movement range of the crane body is small, and that of the crane arm is large. The displacement of the crane body, the displacement of the crane arm relative to the body and the deformation of the arm are measured. Compared with a pure series or parallel connection camera network, the designed series-parallel connection camera network can be used to measure not only the movement and displacement of a large structure but also the relative movement and deformation of some interesting parts of the large structure by a relatively simple optical measurement system.

  10. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  11. Structural dimensions of knowledge-action networks for sustainability

    Science.gov (United States)

    Tischa A. Munoz; B.B. Cutts

    2016-01-01

    Research on the influence of social network structure over flows of knowledge in support of sustainability governance and action has recently flourished. These studies highlight three challenges to evaluating knowledge-action networks: first, defining boundaries; second, characterizing power distributions; and third, identifying obstacles to knowledge sharing and...

  12. Detecting the overlapping and hierarchical community structure in complex networks

    International Nuclear Information System (INIS)

    Lancichinetti, Andrea; Fortunato, Santo; Kertesz, Janos

    2009-01-01

    Many networks in nature, society and technology are characterized by a mesoscopic level of organization, with groups of nodes forming tightly connected units, called communities or modules, that are only weakly linked to each other. Uncovering this community structure is one of the most important problems in the field of complex networks. Networks often show a hierarchical organization, with communities embedded within other communities; moreover, nodes can be shared between different communities. Here, we present the first algorithm that finds both overlapping communities and the hierarchical structure. The method is based on the local optimization of a fitness function. Community structure is revealed by peaks in the fitness histogram. The resolution can be tuned by a parameter enabling different hierarchical levels of organization to be investigated. Tests on real and artificial networks give excellent results.

  13. Modeling structure and resilience of the dark network.

    Science.gov (United States)

    De Domenico, Manlio; Arenas, Alex

    2017-02-01

    While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.

  14. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  15. The Meso-level Structure of F/OSS Collaboration Network

    DEFF Research Database (Denmark)

    Conald, Guido; Rullani, Francesco

    2010-01-01

    Social networks in Free/Open Source Software (F/OSS) have been usually analyzed at the level of the single project e.g., [6], or at the level of a whole ecology of projects, e.g., [33]. In this paper, we also investigate the social network generated by developers who collaborate to one or multiple...... F/OSS projects, but we focus on the less-studied meso-level structure emerging when applying to this network a community-detection technique. The network of ‘communities’ emerging from this analysis links sub-groups of densely connected developers, sub-groups that are smaller than the components...... of the network but larger than the teams working on single projects. Our results reveal the complexity of this meso-level structure, where several dense sub-groups of developers are connected by sparse collaboration among different sub-groups. We discuss the theoretical implications of our findings...

  16. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  17. Imaging structural and functional brain networks in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  18. Imaging structural and functional brain networks in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Boris eBernhardt

    2013-10-01

    Full Text Available Early imaging studies in temporal lobe epilepsy (TLE focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  19. Interactive network configuration maintains bacterioplankton community structure under elevated CO2 in a eutrophic coastal mesocosm experiment

    Science.gov (United States)

    Lin, Xin; Huang, Ruiping; Li, Yan; Li, Futian; Wu, Yaping; Hutchins, David A.; Dai, Minhan; Gao, Kunshan

    2018-01-01

    There is increasing concern about the effects of ocean acidification on marine biogeochemical and ecological processes and the organisms that drive them, including marine bacteria. Here, we examine the effects of elevated CO2 on the bacterioplankton community during a mesocosm experiment using an artificial phytoplankton community in subtropical, eutrophic coastal waters of Xiamen, southern China. Through sequencing the bacterial 16S rRNA gene V3-V4 region, we found that the bacterioplankton community in this high-nutrient coastal environment was relatively resilient to changes in seawater carbonate chemistry. Based on comparative ecological network analysis, we found that elevated CO2 hardly altered the network structure of high-abundance bacterioplankton taxa but appeared to reassemble the community network of low abundance taxa. This led to relatively high resilience of the whole bacterioplankton community to the elevated CO2 level and associated chemical changes. We also observed that the Flavobacteria group, which plays an important role in the microbial carbon pump, showed higher relative abundance under the elevated CO2 condition during the early stage of the phytoplankton bloom in the mesocosms. Our results provide new insights into how elevated CO2 may influence bacterioplankton community structure.

  20. Measuring structural similarity in large online networks.

    Science.gov (United States)

    Shi, Yongren; Macy, Michael

    2016-09-01

    Structural similarity based on bipartite graphs can be used to detect meaningful communities, but the networks have been tiny compared to massive online networks. Scalability is important in applications involving tens of millions of individuals with highly skewed degree distributions. Simulation analysis holding underlying similarity constant shows that two widely used measures - Jaccard index and cosine similarity - are biased by the distribution of out-degree in web-scale networks. However, an alternative measure, the Standardized Co-incident Ratio (SCR), is unbiased. We apply SCR to members of Congress, musical artists, and professional sports teams to show how massive co-following on Twitter can be used to map meaningful affiliations among cultural entities, even in the absence of direct connections to one another. Our results show how structural similarity can be used to map cultural alignments and demonstrate the potential usefulness of social media data in the study of culture, politics, and organizations across the social and behavioral sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Multi-frequency complex network from time series for uncovering oil-water flow structure.

    Science.gov (United States)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan

    2015-02-04

    Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.

  2. Dynamic behaviors in directed networks

    International Nuclear Information System (INIS)

    Park, Sung Min; Kim, Beom Jun

    2006-01-01

    Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks

  3. Analysis of Context Dependence in Social Interaction Networks of a Massively Multiplayer Online Role-Playing Game

    OpenAIRE

    Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang

    2012-01-01

    Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (...

  4. Coevolution of game and network structure with adjustable linking

    Science.gov (United States)

    Qin, Shao-Meng; Zhang, Guo-Yong; Chen, Yong

    2009-12-01

    Most papers about the evolutionary game on graph assume the statistic network structure. However, in the real world, social interaction could change the relationship among people. And the change of social structure will also affect people’s strategies. We build a coevolution model of prisoner’s dilemma game and network structure to study the dynamic interaction in the real world. Differing from other coevolution models, players rewire their network connections according to the density of cooperation and other players’ payoffs. We use a parameter α to control the effect of payoff in the process of rewiring. Based on the asynchronous update rule and Monte Carlo simulation, we find that, when players prefer to rewire their links to those who are richer, the temptation can increase the cooperation density.

  5. Information Propagation in Complex Networks : Structures and Dynamics

    NARCIS (Netherlands)

    Märtens, M.

    2018-01-01

    This thesis is a contribution to a deeper understanding of how information propagates and what this process entails. At its very core is the concept of the network: a collection of nodes and links, which describes the structure of the systems under investigation. The network is a mathematical model

  6. Polarized DIS Structure Functions from Neural Networks

    International Nuclear Information System (INIS)

    Del Debbio, L.; Guffanti, A.; Piccione, A.

    2007-01-01

    We present a parametrization of polarized Deep-Inelastic-Scattering (DIS) structure functions based on Neural Networks. The parametrization provides a bias-free determination of the probability measure in the space of structure functions, which retains information on experimental errors and correlations. As an example we discuss the application of this method to the study of the structure function g 1 p (x,Q 2 )

  7. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing

    Directory of Open Access Journals (Sweden)

    Valentina Ciullo

    2018-05-01

    Full Text Available The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition or onset (temporal condition were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation.Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between

  8. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    Science.gov (United States)

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and

  9. The neurobiology of social play and its rewarding value in rats

    Science.gov (United States)

    Vanderschuren, Louk J.M.J.; Achterberg, E.J. Marijke; Trezza, Viviana

    2016-01-01

    In the young of many mammalian species, including humans, a vigorous and highly rewarding social activity is abundantly expressed, known as social play behaviour. Social play is thought to be important for the development of social, cognitive and emotional processes and their neural underpinnings, and it is disrupted in pediatric psychiatric disorders. Here, we summarize recent progress in our understanding of the brain mechanisms of social play behaviour, with a focus on its rewarding properties. Opioid, endocannabinoid, dopamine and noradrenaline systems play a prominent role in the modulation of social play. Of these, dopamine is particularly important for the motivational properties of social play. The nucleus accumbens has been identified as a key site for opioid and dopamine modulation of social play. Endocannabinoid influences on social play rely on the basolateral amygdala, whereas noradrenaline modulates social play through the basolateral amygdala, habenula and prefrontal cortex. In sum, social play behaviour is the result of coordinated activity in a network of corticolimbic structures, and its monoamine, opioid and endocannabinoid innervation. PMID:27587003

  10. Network structure shapes spontaneous functional connectivity dynamics.

    Science.gov (United States)

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  11. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene.

    Science.gov (United States)

    Li, Jun; Mei, Xue; Prokhorov, Danil; Tao, Dacheng

    2017-03-01

    Hierarchical neural networks have been shown to be effective in learning representative image features and recognizing object classes. However, most existing networks combine the low/middle level cues for classification without accounting for any spatial structures. For applications such as understanding a scene, how the visual cues are spatially distributed in an image becomes essential for successful analysis. This paper extends the framework of deep neural networks by accounting for the structural cues in the visual signals. In particular, two kinds of neural networks have been proposed. First, we develop a multitask deep convolutional network, which simultaneously detects the presence of the target and the geometric attributes (location and orientation) of the target with respect to the region of interest. Second, a recurrent neuron layer is adopted for structured visual detection. The recurrent neurons can deal with the spatial distribution of visible cues belonging to an object whose shape or structure is difficult to explicitly define. Both the networks are demonstrated by the practical task of detecting lane boundaries in traffic scenes. The multitask convolutional neural network provides auxiliary geometric information to help the subsequent modeling of the given lane structures. The recurrent neural network automatically detects lane boundaries, including those areas containing no marks, without any explicit prior knowledge or secondary modeling.

  12. Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization

    Directory of Open Access Journals (Sweden)

    Sengupta Dhriti

    2012-06-01

    Full Text Available Abstract Background The three-dimensional structure of a protein can be described as a graph where nodes represent residues and the strength of non-covalent interactions between them are edges. These protein contact networks can be separated into long and short-range interactions networks depending on the positions of amino acids in primary structure. Long-range interactions play a distinct role in determining the tertiary structure of a protein while short-range interactions could largely contribute to the secondary structure formations. In addition, physico chemical properties and the linear arrangement of amino acids of the primary structure of a protein determines its three dimensional structure. Here, we present an extensive analysis of protein contact subnetworks based on the London van der Waals interactions of amino acids at different length scales. We further subdivided those networks in hydrophobic, hydrophilic and charged residues networks and have tried to correlate their influence in the overall topology and organization of a protein. Results The largest connected component (LCC of long (LRN-, short (SRN- and all-range (ARN networks within proteins exhibit a transition behaviour when plotted against different interaction strengths of edges among amino acid nodes. While short-range networks having chain like structures exhibit highly cooperative transition; long- and all-range networks, which are more similar to each other, have non-chain like structures and show less cooperativity. Further, the hydrophobic residues subnetworks in long- and all-range networks have similar transition behaviours with all residues all-range networks, but the hydrophilic and charged residues networks don’t. While the nature of transitions of LCC’s sizes is same in SRNs for thermophiles and mesophiles, there exists a clear difference in LRNs. The presence of larger size of interconnected long-range interactions in thermophiles than mesophiles, even at

  13. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  14. Automated analysis of Physarum network structure and dynamics

    Science.gov (United States)

    Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-06-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.

  15. Automated analysis of Physarum network structure and dynamics

    International Nuclear Information System (INIS)

    Fricker, Mark D; Heaton, Luke LM; Akita, Dai; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-01-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015. (paper)

  16. Genetic effect of interleukin-1 beta (C-511T) polymorphism on the structural covariance network and white matter integrity in Alzheimer's disease.

    Science.gov (United States)

    Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih

    2017-01-18

    Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white

  17. Structure of Small World Innovation Network and Learning Performance

    Directory of Open Access Journals (Sweden)

    Shuang Song

    2014-01-01

    Full Text Available This paper examines the differences of learning performance of 5 MNCs (multinational corporations that filed the largest number of patents in China. We establish the innovation network with the patent coauthorship data by these 5 MNCs and classify the networks by the tail of distribution curve of connections. To make a comparison of the learning performance of these 5 MNCs with differing network structures, we develop an organization learning model by regarding the reality as having m dimensions, which denotes the heterogeneous knowledge about the reality. We further set n innovative individuals that are mutually interactive and own unique knowledge about the reality. A longer (shorter distance between the knowledge of the individual and the reality denotes a lower (higher knowledge level of that individual. Individuals interact with and learn from each other within the small-world network. By making 1,000 numerical simulations and averaging the simulated results, we find that the differing structure of the small-world network leads to the differences of learning performance between these 5 MNCs. The network monopolization negatively impacts and network connectivity positively impacts learning performance. Policy implications in the conclusion section suggest that to improve firm learning performance, it is necessary to establish a flat and connective network.

  18. Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies

    Science.gov (United States)

    Kocakaplan, Yusuf; Deviren, Bayram; Keskin, Mustafa

    2012-12-01

    We have examined the hierarchical structures of correlations networks among Turkey’s exports and imports by currencies for the 1996-2010 periods, using the concept of a minimal spanning tree (MST) and hierarchical tree (HT) which depend on the concept of ultrametricity. These trees are useful tools for understanding and detecting the global structure, taxonomy and hierarchy in financial markets. We derived a hierarchical organization and build the MSTs and HTs during the 1996-2001 and 2002-2010 periods. The reason for studying two different sub-periods, namely 1996-2001 and 2002-2010, is that the Euro (EUR) came into use in 2001, and some countries have made their exports and imports with Turkey via the EUR since 2002, and in order to test various time-windows and observe temporal evolution. We have carried out bootstrap analysis to associate a value of the statistical reliability to the links of the MSTs and HTs. We have also used the average linkage cluster analysis (ALCA) to observe the cluster structure more clearly. Moreover, we have obtained the bidimensional minimal spanning tree (BMST) due to economic trade being a bidimensional problem. From the structural topologies of these trees, we have identified different clusters of currencies according to their proximity and economic ties. Our results show that some currencies are more important within the network, due to a tighter connection with other currencies. We have also found that the obtained currencies play a key role for Turkey’s exports and imports and have important implications for the design of portfolio and investment strategies.

  19. Network Transformations in Economy

    Directory of Open Access Journals (Sweden)

    Bolychev O.

    2014-09-01

    Full Text Available In the context of ever-increasing market competition, networked interactions play a special role in the economy. The network form of entrepreneurship is increasingly viewed as an effective organizational structure to create a market value embedded in innovative business solutions. The authors study the characteristics of a network as an economic category and emphasize certain similarities between Rus sian and international approaches to identifying interactions of economic systems based on the network principle. The paper focuses on the types of networks widely used in the economy. The authors analyze the transformation of business networks along two lines: from an intra- to an inter-firm network and from an inter-firm to an inter-organizational network. The possible forms of network formation are described depending on the strength of connections and the type of integration. The drivers and reasons behind process of transition from a hierarchical model of the organizational structure to a network type are identified. The authors analyze the advantages of creating inter-firm networks and discuss the features of inter-organizational networks as compares to inter-firm ones. The article summarizes the reasons for and advantages of participation in inter-rganizational networks and identifies the main barriers to the formation of inter-organizational network.

  20. Structural and robustness properties of smart-city transportation networks

    International Nuclear Information System (INIS)

    Zhang Zhen-Gang; Ding Zhuo; Fan Jing-Fang; Chen Xiao-Song; Meng Jun; Ye Fang-Fu; Ding Yi-Min

    2015-01-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. (rapid communication)

  1. The evolving network structure of US airline system during 1990-2010

    Science.gov (United States)

    Lin, Jingyi; Ban, Yifang

    2014-09-01

    This paper analyzes the growth and evolution of topological features of the US airline network over a 20-year period. It captures the change in the network system from different dimensions of complex networks such as centrality distribution and various structural properties of the network over time. We first illustrate the results of a set of measures, including degree, strength, betweenness centrality, and clustering structure. The geographic features of airport systems, spatial distance and network efficiency are also discussed in this section. In order to further capture the dynamics of the system, this paper also explores the correlation between different measures, and investigates various interactions inside the network. Overall this study offers a novel approach to understanding the growth and evolution of real physical networks.

  2. Approximating spectral impact of structural perturbations in large networks

    CERN Document Server

    Milanese, A; Nishikawa, Takashi; Sun, Jie

    2010-01-01

    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ran...

  3. Self-organization, Networks, Future

    Directory of Open Access Journals (Sweden)

    T. S. Akhromeyeva

    2013-01-01

    Full Text Available This paper presents an analytical review of a conference on the great scientist, a brilliant professor, an outstanding educator Sergei Kapitsa, held in November 2012. In the focus of this forum were problems of self-organization and a paradigm of network structures. The use of networks in the context of national defense, economics, management of mass consciousness was discussed. The analysis of neural networks in technical systems, the structure of the brain, as well as in the space of knowledge, information, and behavioral strategies plays an important role. One of the conference purposes was to an online organize community in Russia and to identify the most promising directions in this field. Some of them are presented in this paper.

  4. A wireless sensor network design and evaluation for large structural strain field monitoring

    International Nuclear Information System (INIS)

    Qiu, Zixue; Wu, Jian; Yuan, Shenfang

    2011-01-01

    Structural strain changes under external environmental or mechanical loads are the main monitoring parameters in structural health monitoring or mechanical property tests. This paper presents a wireless sensor network designed for monitoring large structural strain field variation. First of all, a precision strain sensor node is designed for multi-channel strain gauge signal conditioning and wireless monitoring. In order to establish a synchronous strain data acquisition network, the cluster-star network synchronization method is designed in detail. To verify the functionality of the designed wireless network for strain field monitoring capability, a multi-point network evaluation system is developed for an experimental aluminum plate structure for load variation monitoring. Based on the precision wireless strain nodes, the wireless data acquisition network is deployed to synchronously gather, process and transmit strain gauge signals and monitor results under concentrated loads. This paper shows the efficiency of the wireless sensor network for large structural strain field monitoring

  5. The relationship between structured and free play in the development of a mentally handicapped child: a case study.

    Science.gov (United States)

    Hewson, S; McConkey, R; Jeffree, D

    1980-01-01

    This case study provides an individual illustration of the work of the Parental Involvement Project. A key feature of the approach used was the structured play situation. Thus, the case study also serves to demonstrate the role of structured play, and its relation to free play, in the development of a young, mentally handicapped child.

  6. Fragmented Romanian sociology: growth and structure of the collaboration network.

    Science.gov (United States)

    Hâncean, Marian-Gabriel; Perc, Matjaž; Vlăsceanu, Lazăr

    2014-01-01

    Structural patterns in collaboration networks are essential for understanding how new ideas, research practices, innovation or cooperation circulate and develop within academic communities and between and within university departments. In our research, we explore and investigate the structure of the collaboration network formed by the academics working full-time within all the 17 sociology departments across Romania. We show that the collaboration network is sparse and fragmented, and that it constitutes an environment that does not promote the circulation of new ideas and innovation within the field. Although recent years have witnessed an increase in the productivity of Romanian sociologists, there is still ample room for improvement in terms of the interaction infrastructure that ought to link individuals together so that they could maximize their potentials. We also fail to discern evidence in favor of the Matthew effect governing the growth of the network, which suggests scientific success and productivity are not rewarded. Instead, the structural properties of the collaboration network are partly those of a core-periphery network, where the spread of innovation and change can be explained by structural equivalence rather than by interpersonal influence models. We also provide support for the idea that, within the observed network, collaboration is the product of homophily rather than prestige effects. Further research on the subject based on data from other countries in the region is needed to place our results in a comparative framework, in particular to discern whether the behavior of the Romanian sociologist community is unique or rather common.

  7. Protein secondary structure prediction using modular reciprocal bidirectional recurrent neural networks.

    Science.gov (United States)

    Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali

    2010-12-01

    The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Structural covariance networks across the life span, from 6 to 94 years of age

    Directory of Open Access Journals (Sweden)

    Elizabeth DuPre

    2017-10-01

    Full Text Available Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective—bridging childhood with early, middle, and late adulthood—on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories. The importance of life span perspectives is increasingly apparent in understanding normative interactions of large-scale neurocognitive networks. Although recent work has made significant strides in understanding the functional and structural connectivity of these networks, there has been comparatively little attention to life span trajectories of structural covariance networks. In this study we examine patterns of structural covariance across the life span for six neurocognitive networks. Our results suggest that networks exhibit

  9. Analysis of the structure of complex networks at different resolution levels

    International Nuclear Information System (INIS)

    Arenas, A; Fernandez, A; Gomez, S

    2008-01-01

    Modular structure is ubiquitous in real-world complex networks, and its detection is important because it gives insights into the structure-functionality relationship. The standard approach is based on the optimization of a quality function, modularity, which is a relative quality measure for the partition of a network into modules. Recently, some authors (Fortunato and Barthelemy 2007 Proc. Natl Acad. Sci. USA 104 36 and Kumpula et al 2007 Eur. Phys. J. B 56 41) have pointed out that the optimization of modularity has a fundamental drawback: the existence of a resolution limit beyond which no modular structure can be detected even though these modules might have their own entity. The reason is that several topological descriptions of the network coexist at different scales, which is, in general, a fingerprint of complex systems. Here, we propose a method that allows for multiple resolution screening of the modular structure. The method has been validated using synthetic networks, discovering the predefined structures at all scales. Its application to two real social networks allows us to find the exact splits reported in the literature, as well as the substructure beyond the actual split

  10. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  11. Social structure of a semi-free ranging group of mandrills (Mandrillus sphinx: a social network analysis.

    Directory of Open Access Journals (Sweden)

    Céline Bret

    Full Text Available The difficulty involved in following mandrills in the wild means that very little is known about social structure in this species. Most studies initially considered mandrill groups to be an aggregation of one-male/multifemale units, with males occupying central positions in a structure similar to those observed in the majority of baboon species. However, a recent study hypothesized that mandrills form stable groups with only two or three permanent males, and that females occupy more central positions than males within these groups. We used social network analysis methods to examine how a semi-free ranging group of 19 mandrills is structured. We recorded all dyads of individuals that were in contact as a measure of association. The betweenness and the eigenvector centrality for each individual were calculated and correlated to kinship, age and dominance. Finally, we performed a resilience analysis by simulating the removal of individuals displaying the highest betweenness and eigenvector centrality values. We found that related dyads were more frequently associated than unrelated dyads. Moreover, our results showed that the cumulative distribution of individual betweenness and eigenvector centrality followed a power function, which is characteristic of scale-free networks. This property showed that some group members, mostly females, occupied a highly central position. Finally, the resilience analysis showed that the removal of the two most central females split the network into small subgroups and increased the network diameter. Critically, this study confirms that females appear to occupy more central positions than males in mandrill groups. Consequently, these females appear to be crucial for group cohesion and probably play a pivotal role in this species.

  12. Social structure of a semi-free ranging group of mandrills (Mandrillus sphinx): a social network analysis.

    Science.gov (United States)

    Bret, Céline; Sueur, Cédric; Ngoubangoye, Barthélémy; Verrier, Delphine; Deneubourg, Jean-Louis; Petit, Odile

    2013-01-01

    The difficulty involved in following mandrills in the wild means that very little is known about social structure in this species. Most studies initially considered mandrill groups to be an aggregation of one-male/multifemale units, with males occupying central positions in a structure similar to those observed in the majority of baboon species. However, a recent study hypothesized that mandrills form stable groups with only two or three permanent males, and that females occupy more central positions than males within these groups. We used social network analysis methods to examine how a semi-free ranging group of 19 mandrills is structured. We recorded all dyads of individuals that were in contact as a measure of association. The betweenness and the eigenvector centrality for each individual were calculated and correlated to kinship, age and dominance. Finally, we performed a resilience analysis by simulating the removal of individuals displaying the highest betweenness and eigenvector centrality values. We found that related dyads were more frequently associated than unrelated dyads. Moreover, our results showed that the cumulative distribution of individual betweenness and eigenvector centrality followed a power function, which is characteristic of scale-free networks. This property showed that some group members, mostly females, occupied a highly central position. Finally, the resilience analysis showed that the removal of the two most central females split the network into small subgroups and increased the network diameter. Critically, this study confirms that females appear to occupy more central positions than males in mandrill groups. Consequently, these females appear to be crucial for group cohesion and probably play a pivotal role in this species.

  13. Structural covariance networks across healthy young adults and their consistency.

    Science.gov (United States)

    Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2015-08-01

    To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.

  14. Structural changes in socio-affective networks: Multi-modal MRI findings in long-term meditation practitioners.

    Science.gov (United States)

    Engen, Haakon G; Bernhardt, Boris C; Skottnik, Leon; Ricard, Matthieu; Singer, Tania

    2017-08-31

    Our goal was to assess the effects of long-term mental training in socio-affective skills on structural brain networks. We studied a group of long-term meditation practitioners (LTMs) who have focused on cultivating socio-affective skills using loving-kindness and compassion meditation for an average of 40k h, comparing these to meditation-naïve controls. To maximize homogeneity of prior practice, LTMs were included only if they had undergone extensive full-time meditation retreats in the same center. MRI-based cortical thickness analysis revealed increased thickness in the LTM cohort relative to meditation-native controls in fronto-insular cortices. To identify functional networks relevant for the generation of socio-affective states, structural imaging analysis were complemented by fMRI analysis in LTMs, showing amplitude increases during a loving-kindness meditation session relative to non-meditative rest in multiple prefrontal and insular regions bilaterally. Importantly, functional findings partially overlapped with regions of cortical thickness increases in the left ventrolateral prefrontal cortex and anterior insula, suggesting that these regions may play a central role in the generation of emotional states relevant for the meditative practice. Our multi-modal MRI approach revealed structural changes in LTMs who have cultivated loving-kindness and compassion for a significant period of their life in functional networks activated by these practices. These preliminary cross-sectional findings motivate future longitudinal work studying brain plasticity following the regular practice of skills aiming at enhancing human altruism and prosocial motivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Robust Learning of Fixed-Structure Bayesian Networks

    OpenAIRE

    Diakonikolas, Ilias; Kane, Daniel; Stewart, Alistair

    2016-01-01

    We investigate the problem of learning Bayesian networks in an agnostic model where an $\\epsilon$-fraction of the samples are adversarially corrupted. Our agnostic learning model is similar to -- in fact, stronger than -- Huber's contamination model in robust statistics. In this work, we study the fully observable Bernoulli case where the structure of the network is given. Even in this basic setting, previous learning algorithms either run in exponential time or lose dimension-dependent facto...

  16. Structure-based control of complex networks with nonlinear dynamics.

    Science.gov (United States)

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  17. Emergent explosive synchronization in adaptive complex networks

    Science.gov (United States)

    Avalos-Gaytán, Vanesa; Almendral, Juan A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S.

    2018-04-01

    Adaptation plays a fundamental role in shaping the structure of a complex network and improving its functional fitting. Even when increasing the level of synchronization in a biological system is considered as the main driving force for adaptation, there is evidence of negative effects induced by excessive synchronization. This indicates that coherence alone cannot be enough to explain all the structural features observed in many real-world networks. In this work, we propose an adaptive network model where the dynamical evolution of the node states toward synchronization is coupled with an evolution of the link weights based on an anti-Hebbian adaptive rule, which accounts for the presence of inhibitory effects in the system. We found that the emergent networks spontaneously develop the structural conditions to sustain explosive synchronization. Our results can enlighten the shaping mechanisms at the heart of the structural and dynamical organization of some relevant biological systems, namely, brain networks, for which the emergence of explosive synchronization has been observed.

  18. Association between structural brain network efficiency and intelligence increases during adolescence

    NARCIS (Netherlands)

    Koenis, Marinka M G; Brouwer, Rachel M; Swagerman, Suzanne C; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2018-01-01

    Adolescence represents an important period during which considerable changes in the brain take place, including increases in integrity of white matter bundles, and increasing efficiency of the structural brain network. A more efficient structural brain network has been associated with higher

  19. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    Science.gov (United States)

    Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  20. The role of syntax in complex networks: Local and global importance of verbs in a syntactic dependency network

    Science.gov (United States)

    Čech, Radek; Mačutek, Ján; Žabokrtský, Zdeněk

    2011-10-01

    Syntax of natural language has been the focus of linguistics for decades. The complex network theory, being one of new research tools, opens new perspectives on syntax properties of the language. Despite numerous partial achievements, some fundamental problems remain unsolved. Specifically, although statistical properties typical for complex networks can be observed in all syntactic networks, the impact of syntax itself on these properties is still unclear. The aim of the present study is to shed more light on the role of syntax in the syntactic network structure. In particular, we concentrate on the impact of the syntactic function of a verb in the sentence on the complex network structure. Verbs play the decisive role in the sentence structure (“local” importance). From this fact we hypothesize the importance of verbs in the complex network (“global” importance). The importance of verb in the complex network is assessed by the number of links which are directed from the node representing verb to other nodes in the network. Six languages (Catalan, Czech, Dutch, Hungarian, Italian, Portuguese) were used for testing the hypothesis.

  1. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    Science.gov (United States)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  2. Social Network Structures among Groundnut Farmers

    Science.gov (United States)

    Thuo, Mary; Bell, Alexandra A.; Bravo-Ureta, Boris E.; Okello, David K.; Okoko, Evelyn Nasambu; Kidula, Nelson L.; Deom, C. Michael; Puppala, Naveen

    2013-01-01

    Purpose: Groundnut farmers in East Africa have experienced declines in production despite research and extension efforts to increase productivity. This study examined how social network structures related to acquisition of information about new seed varieties and productivity among groundnut farmers in Uganda and Kenya.…

  3. Decentralized Networked Control of Building Structures

    Czech Academy of Sciences Publication Activity Database

    Bakule, Lubomír; Rehák, Branislav; Papík, Martin

    2016-01-01

    Roč. 31, č. 11 (2016), s. 871-886 ISSN 1093-9687 R&D Projects: GA ČR GA13-02149S Institutional support: RVO:67985556 Keywords : decentralized control * networked control * building structures Subject RIV: BC - Control Systems Theory Impact factor: 5.786, year: 2016

  4. Information diffusion in structured online social networks

    Science.gov (United States)

    Li, Pei; Zhang, Yini; Qiao, Fengcai; Wang, Hui

    2015-05-01

    Nowadays, due to the word-of-mouth effect, online social networks have been considered to be efficient approaches to conduct viral marketing, which makes it of great importance to understand the diffusion dynamics in online social networks. However, most research on diffusion dynamics in epidemiology and existing social networks cannot be applied directly to characterize online social networks. In this paper, we propose models to characterize the information diffusion in structured online social networks with push-based forwarding mechanism. We introduce the term user influence to characterize the average number of times that messages are browsed which is incurred by a given type user generating a message, and study the diffusion threshold, above which the user influence of generating a message will approach infinity. We conduct simulations and provide the simulation results, which are consistent with the theoretical analysis results perfectly. These results are of use in understanding the diffusion dynamics in online social networks and also critical for advertisers in viral marketing who want to estimate the user influence before posting an advertisement.

  5. A review of structural and functional brain networks: small world and atlas.

    Science.gov (United States)

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  6. Complex Network Structure Influences Processing in Long-Term and Short-Term Memory

    Science.gov (United States)

    Vitevitch, Michael S.; Chan, Kit Ying; Roodenrys, Steven

    2012-01-01

    Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological…

  7. Genomic analysis of the hierarchical structure of regulatory networks

    Science.gov (United States)

    Yu, Haiyuan; Gerstein, Mark

    2006-01-01

    A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135

  8. Escapist Motives for Playing On-Line Games

    DEFF Research Database (Denmark)

    Sudzina, Frantisek; Razmerita, Liana

    2012-01-01

    Social games have become popular along with the tremendous growth of social networking sites, esp. Facebook. There is a gap in literature on what motivates people to play Facebook games. This paper studies social games usage behavior of students. We focus on escapist reasons, based on Warmelink...... of escapist motives for playing Facebook and other on-line games, we investigate how they are linked to demographic data such as: age, gender, place of origin, along with other social interactions patterns and social network usage behavior, current gaming status and an estimate of gaming time. According...... to our study, only 10% of respondents, who have started to play Facebook games, continued to play them. The most important motives for playing games is mundane breaking, the second reason is pleasure seeking, the third is stress relieving, and the least important is imagination conjuring....

  9. Network Centric Information Structure - Crisis Information Management

    National Research Council Canada - National Science Library

    Aarholt, Eldar; Berg, Olav

    2004-01-01

    This paper presents a generic Network Centric Information Structure (NCIS) that can be used by civilian, military and public sectors, and that supports information handling applied to crises management and emergency response...

  10. Combining structure, governance and context : A configurational approach to network effectiveness

    NARCIS (Netherlands)

    Raab, J.; Mannak, R.S.; Cambré, B.

    2015-01-01

    This study explores the way in which network structure (network integration), network context (resource munificence and stability), and network governance mode relate to net -work effectiveness. The model by Provan and Milward (Provan, Keith G., and H. Brinton Milward. 1995. A preliminary theory of

  11. Global tree network for computing structures enabling global processing operations

    Science.gov (United States)

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  12. Radiation synthesis and characterization of network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Sen, M.; Hayrabolulu, H.

    2011-01-01

    Complete text of publication follows. Superabsorbent polymers (SAPs) are moderately cross linked, 3-D, hydrophilic network polymers that can absorb and conserve considerable amounts of aqueous fluids even under certain heat or pressure. Because of the unique properties superior to conventional absorbents, SAPs have found potential application in many fields such as hygienic products, disposable diapers, horticulture, gel actuators, drug-delivery systems, as well as water-blocking tapes coal dewatering, water managing materials for the renewal of arid and desert environment, etc. In recent years, naturally available resources, such as polysaccharides have drawn considerable attention for the preparation of SAPs. Since the mechanical properties of polysaccharide based natural polymers are low, researchers have mostly focused on natural/synthetic polymer/monomer mixtures to obtain novel SAPs. The aim of this study is to synthesize and characterization of network structure of novel double-network (DN) hydrogels as a SAP. Hydrogels with high mechanical strength have been prepared by radiation induced polymerization and crosslink of acrylic acid sodium salt in the presence of natural polymer locust bean gum. Liquid retention capacities and absorbency under load (AUL) analysis of synthesized SAPs was performed at different temperatures in water and synthetic urine solution, in order to determine their SAP character. For the characterization of network structure of the semi-IPN hydrogels, the average molecular weight between cross links (M c ) were evaluated by using uniaxial compression and oscillatory dynamical mechanical analyses and the advantage and disadvantage of these two technique for the characterization of network structures were compared.

  13. Early grey matter changes in structural covariance networks in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C

    2016-01-01

    Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n  = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p  covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.

  14. Applying 4-regular grid structures in large-scale access networks

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Knudsen, Thomas P.; Patel, Ahmed

    2006-01-01

    4-Regular grid structures have been used in multiprocessor systems for decades due to a number of nice properties with regard to routing, protection, and restoration, together with a straightforward planar layout. These qualities are to an increasing extent demanded also in largescale access...... networks, but concerning protection and restoration these demands have been met only to a limited extent by the commonly used ring and tree structures. To deal with the fact that classical 4-regular grid structures are not directly applicable in such networks, this paper proposes a number of extensions...... concerning restoration, protection, scalability, embeddability, flexibility, and cost. The extensions are presented as a tool case, which can be used for implementing semi-automatic and in the longer term full automatic network planning tools....

  15. Structural and robustness properties of smart-city transportation networks

    Science.gov (United States)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  16. The Internet of Playful Things

    DEFF Research Database (Denmark)

    Wyeth, Peta; Brereton, Margot; Roe, Paul

    2015-01-01

    This one-day workshop brings together researchers and practitioners to share knowledge and practices on how people can connect and interact with the Internet of Things in a playful way. Open to participants with a diverse range of interests and expertise, and by exploring novel ways to playfully...... will be a road map to support the development of a Model of Playful Connectedness, focusing on how best to design and make playful networks of things, identifying the challenges that need to be addressed in order to do so....

  17. Research on energy stock market associated network structure based on financial indicators

    Science.gov (United States)

    Xi, Xian; An, Haizhong

    2018-01-01

    A financial market is a complex system consisting of many interacting units. In general, due to the various types of information exchange within the industry, there is a relationship between the stocks that can reveal their clear structural characteristics. Complex network methods are powerful tools for studying the internal structure and function of the stock market, which allows us to better understand the stock market. Applying complex network methodology, a stock associated network model based on financial indicators is created. Accordingly, we set threshold value and use modularity to detect the community network, and we analyze the network structure and community cluster characteristics of different threshold situations. The study finds that the threshold value of 0.7 is the abrupt change point of the network. At the same time, as the threshold value increases, the independence of the community strengthens. This study provides a method of researching stock market based on the financial indicators, exploring the structural similarity of financial indicators of stocks. Also, it provides guidance for investment and corporate financial management.

  18. Hierarchical modular structure enhances the robustness of self-organized criticality in neural networks

    International Nuclear Information System (INIS)

    Wang Shengjun; Zhou Changsong

    2012-01-01

    One of the most prominent architecture properties of neural networks in the brain is the hierarchical modular structure. How does the structure property constrain or improve brain function? It is thought that operating near criticality can be beneficial for brain function. Here, we find that networks with modular structure can extend the parameter region of coupling strength over which critical states are reached compared to non-modular networks. Moreover, we find that one aspect of network function—dynamical range—is highest for the same parameter region. Thus, hierarchical modularity enhances robustness of criticality as well as function. However, too much modularity constrains function by preventing the neural networks from reaching critical states, because the modular structure limits the spreading of avalanches. Our results suggest that the brain may take advantage of the hierarchical modular structure to attain criticality and enhanced function. (paper)

  19. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector; Kiani, Narsis A.; Shang, Ming-mei; Tegner, Jesper

    2018-01-01

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  20. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector

    2018-02-16

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  1. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

    KAUST Repository

    Zenil, Hector

    2018-04-02

    Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

  2. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    Science.gov (United States)

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  3. A new metric method-improved structural holes researches on software networks

    Science.gov (United States)

    Li, Bo; Zhao, Hai; Cai, Wei; Li, Dazhou; Li, Hui

    2013-03-01

    The scale software systems quickly increase with the rapid development of software technologies. Hence, how to understand, measure, manage and control software structure is a great challenge for software engineering. there are also many researches on software networks metrics: C&K, MOOD, McCabe and etc, the aim of this paper is to propose a new and better method to metric software networks. The metric method structural holes are firstly introduced to in this paper, which can not directly be applied as a result of modular characteristics on software network. Hence, structural holes is redefined in this paper and improved, calculation process and results are described in detail. The results shows that the new method can better reflect bridge role of vertexes on software network and there is a significant correlation between degree and improved structural holes. At last, a hydropower simulation system is taken as an example to show validity of the new metric method.

  4. Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas

    Directory of Open Access Journals (Sweden)

    Nicholas eFurl

    2015-05-01

    Full Text Available Visual category perception is thought to depend on brain areas that respond specifically when certain categories are viewed. These category-sensitive areas are often assumed to be modules (with some degree of processing autonomy and to act predominantly on feedforward visual input. This modular view can be complemented by a view that treats brain areas as elements within more complex networks and as influenced by network properties. This network-oriented viewpoint is emerging from studies using either diffusion tensor imaging to map structural connections or effective connectivity analyses to measure how their functional responses influence each other. This literature motivates several hypotheses that predict category-sensitive activity based on network properties. Large, long-range fiber bundles such as inferior fronto-occipital, arcuate and inferior longitudinal fasciculi are associated with behavioural recognition and could play crucial roles in conveying backward influences on visual cortex from anterior temporal and frontal areas. Such backward influences could support top-down functions such as visual search and emotion-based visual modulation. Within visual cortex itself, areas sensitive to different categories appear well-connected (e.g., face areas connect to object- and motion sensitive areas and their responses can be predicted by backward modulation. Evidence supporting these propositions remains incomplete and underscores the need for better integration of DTI and functional imaging.

  5. Structure and Evolution of the Foreign Exchange Networks

    Science.gov (United States)

    Kwapień, J.; Gworek, S.; Drożdż, S.

    2009-01-01

    We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.

  6. A longitudinal study of structural brain network changes with normal aging

    Directory of Open Access Journals (Sweden)

    Kai eWu

    2013-04-01

    Full Text Available The aim of this study was to investigate age-related changes in the topological organization of structural brain networks by applying a longitudinal design over 6 years. Structural brain networks were derived from measurements of regional gray matter volume and were constructed in age-specific groups from baseline and follow-up scans. The structural brain networks showed economical small-world properties, providing high global and local efficiency for parallel information processing at low connection costs. In the analysis of the global network properties, the local and global efficiency of the baseline scan were significantly lower compared to the follow-up scan. Moreover, the annual rate of changes in local and global efficiency showed a positive and negative quadratic correlation with the baseline age, respectively; both curvilinear correlations peaked at approximately the age of 50. In the analysis of the regional nodal properties, significant negative correlations between the annual rate of changes in nodal strength and the baseline age were found in the brain regions primarily involved in the visual and motor/ control systems, whereas significant positive quadratic correlations were found in the brain regions predominately associated with the default-mode, attention, and memory systems. The results of the longitudinal study are consistent with the findings of our previous cross-sectional study: the structural brain networks develop into a fast distribution from young to middle age (approximately 50 years old and eventually became a fast localization in the old age. Our findings elucidate the network topology of structural brain networks and its longitudinal changes, thus enhancing the understanding of the underlying physiology of normal aging in the human brain.

  7. Structure, function and networks of transcription factors involved in abiotic stress responses

    DEFF Research Database (Denmark)

    Lindemose, Søren; O'Shea, Charlotte; Jensen, Michael Krogh

    2013-01-01

    Transcription factors (TFs) are master regulators of abiotic stress responses in plants. This review focuses on TFs from seven major TF families, known to play functional roles in response to abiotic stresses, including drought, high salinity, high osmolarity, temperature extremes...... and the phytohormone ABA. Although ectopic expression of several TFs has improved abiotic stress tolerance in plants, fine-tuning of TF expression and protein levels remains a challenge to avoid crop yield loss. To further our understanding of TFs in abiotic stress responses, emerging gene regulatory networks based...... on TFs and their direct targets genes are presented. These revealed components shared between ABA-dependent and independent signaling as well as abiotic and biotic stress signaling. Protein structure analysis suggested that TFs hubs of large interactomes have extended regions with protein intrinsic...

  8. Axelrod's metanorm games on networks.

    Directory of Open Access Journals (Sweden)

    José M Galán

    Full Text Available Metanorms is a mechanism proposed to promote cooperation in social dilemmas. Recent experimental results show that network structures that underlie social interactions influence the emergence of norms that promote cooperation. We generalize Axelrod's analysis of metanorms dynamics to interactions unfolding on networks through simulation and mathematical modeling. Network topology strongly influences the effectiveness of the metanorms mechanism in establishing cooperation. In particular, we find that average degree, clustering coefficient and the average number of triplets per node play key roles in sustaining or collapsing cooperation.

  9. Self-control with spiking and non-spiking neural networks playing games.

    Science.gov (United States)

    Christodoulou, Chris; Banfield, Gaye; Cleanthous, Aristodemos

    2010-01-01

    Self-control can be defined as choosing a large delayed reward over a small immediate reward, while precommitment is the making of a choice with the specific aim of denying oneself future choices. Humans recognise that they have self-control problems and attempt to overcome them by applying precommitment. Problems in exercising self-control, suggest a conflict between cognition and motivation, which has been linked to competition between higher and lower brain functions (representing the frontal lobes and the limbic system respectively). This premise of an internal process conflict, lead to a behavioural model being proposed, based on which, we implemented a computational model for studying and explaining self-control through precommitment behaviour. Our model consists of two neural networks, initially non-spiking and then spiking ones, representing the higher and lower brain systems viewed as cooperating for the benefit of the organism. The non-spiking neural networks are of simple feed forward multilayer type with reinforcement learning, one with selective bootstrap weight update rule, which is seen as myopic, representing the lower brain and the other with the temporal difference weight update rule, which is seen as far-sighted, representing the higher brain. The spiking neural networks are implemented with leaky integrate-and-fire neurons with learning based on stochastic synaptic transmission. The differentiating element between the two brain centres in this implementation is based on the memory of past actions determined by an eligibility trace time constant. As the structure of the self-control problem can be likened to the Iterated Prisoner's Dilemma (IPD) game in that cooperation is to defection what self-control is to impulsiveness or what compromising is to insisting, we implemented the neural networks as two players, learning simultaneously but independently, competing in the IPD game. With a technique resembling the precommitment effect, whereby the

  10. Developmental changes in organization of structural brain networks.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  11. Self-Healing Networks: Redundancy and Structure

    Science.gov (United States)

    Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio

    2014-01-01

    We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns—from planar grids, to small-world, up to scale-free networks—on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065

  12. The role of the Joint Research Centre from the European Commission in the European Structural Integrity Networks AMES, ENIQ and NESC

    International Nuclear Information System (INIS)

    Estorff, U. von; Torronen, K.

    1999-01-01

    Due to the reduction in many countries of the research budget for nuclear safety several European institutions and organisations and the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the European Commission (EC) have developed co-operative programmes now organised into 'Networks' for mutual benefit. They include utilities, engineering companies, research and development (R and D) laboratories and regulatory bodies. These Networks are all organised and managed in a similar way, i.e. like the successful Programme for the Inspection of Steel Components (PISC). The IAM plays the role of Operating Agent, Reference Laboratory and Network Manager of these Networks: European Network on Ageing Materials Evaluation and Studies (AMES), European Network for Inspection Qualification (ENIQ) and Network for Evaluating Steel Components (NESC), each of them dealing with a specific aspect of fitness for purpose of materials in structural components. This article will describe how the network organisation works, which was the positive experience from the past, why the networks are a tool for integrating fragmented research in Europe and how they fit into the mission of the JRC and therefore follow the EC policy. (orig.)

  13. Does where you stand depend on who you behave? Networking behavior as an alternative explanation for gender differences in network structure

    NARCIS (Netherlands)

    Gremmen, I.; Akkerman, A.; Benschop, Y.

    2013-01-01

    The purpose of this study is to gain insight into the relations between gender, networking behavior and network structure, in order to investigate the relevance of gender for organizational networks. Semi-structured interviews with 39 white, Dutch, women and men account managers were analyzed both

  14. Elastic properties and short-range structural order in mixed network former glasses.

    Science.gov (United States)

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John

    2017-06-21

    Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

  15. The structural, connectomic and network covariance of the human brain.

    Science.gov (United States)

    Irimia, Andrei; Van Horn, John D

    2013-02-01

    Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.

  16. Social play among juvenile wild Japanese macaques (Macaca fuscata) strengthens their social bonds.

    Science.gov (United States)

    Shimada, Masaki; Sueur, Cédric

    2018-01-01

    Social play and grooming are typical affiliative interactions for many primate species, and are thought to have similar biological functions. However, grooming increases with age, whereas social play decreases. We proposed the hypothesis that both social grooming and social play in juveniles strengthen their social bonds in daily activities. We carried out field research on the social relationships among juvenile wild Japanese macaques in a troop in Kinkazan, Miyagi Prefecture, Japan, from fall 2007 to spring 2008 to investigate this hypothesis. We evaluated three relationships among juveniles, play indices (PI), grooming indices (GI), and 3-m-proximity indices (3mI) of each dyad (i.e., interacting pair), and compared these social networks based on the matrices of the indices. The play and grooming networks were correlated with the association network throughout the two research periods. The multiple network level measurements of the play network, but not the grooming network, resembled those of the association network. Using a causal step approach, we showed that social play and grooming interactions in fall seem to predict associations in the following spring, controlling for the PI and GI matrix in spring, respectively. Social play and grooming for each juvenile were negatively correlated. The results partially support our predictions; therefore, the hypothesis that the biological function of social play among immature Japanese macaques is to strengthen their social bonds in the near future and develop their social life appears to be correct. For juvenile macaques, social play, rather than grooming, functions as an important social mechanism to strengthen affiliative relationships. © 2017 Wiley Periodicals, Inc.

  17. Network dynamics and its relationships to topology and coupling structure in excitable complex networks

    International Nuclear Information System (INIS)

    Zhang Li-Sheng; Mi Yuan-Yuan; Gu Wei-Feng; Hu Gang

    2014-01-01

    All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend on network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically. (interdisciplinary physics and related areas of science and technology)

  18. Agent-Based Modeling of China's Rural-Urban Migration and Social Network Structure.

    Science.gov (United States)

    Fu, Zhaohao; Hao, Lingxin

    2018-01-15

    We analyze China's rural-urban migration and endogenous social network structures using agent-based modeling. The agents from census micro data are located in their rural origin with an empirical-estimated prior propensity to move. The population-scale social network is a hybrid one, combining observed family ties and locations of the origin with a parameter space calibrated from census, survey and aggregate data and sampled using a stepwise Latin Hypercube Sampling method. At monthly intervals, some agents migrate and these migratory acts change the social network by turning within-nonmigrant connections to between-migrant-nonmigrant connections, turning local connections to nonlocal connections, and adding among-migrant connections. In turn, the changing social network structure updates migratory propensities of those well-connected nonmigrants who become more likely to move. These two processes iterate over time. Using a core-periphery method developed from the k -core decomposition method, we identify and quantify the network structural changes and map these changes with the migration acceleration patterns. We conclude that network structural changes are essential for explaining migration acceleration observed in China during the 1995-2000 period.

  19. Agent-based modeling of China's rural-urban migration and social network structure

    Science.gov (United States)

    Fu, Zhaohao; Hao, Lingxin

    2018-01-01

    We analyze China's rural-urban migration and endogenous social network structures using agent-based modeling. The agents from census micro data are located in their rural origin with an empirical-estimated prior propensity to move. The population-scale social network is a hybrid one, combining observed family ties and locations of the origin with a parameter space calibrated from census, survey and aggregate data and sampled using a stepwise Latin Hypercube Sampling method. At monthly intervals, some agents migrate and these migratory acts change the social network by turning within-nonmigrant connections to between-migrant-nonmigrant connections, turning local connections to nonlocal connections, and adding among-migrant connections. In turn, the changing social network structure updates migratory propensities of those well-connected nonmigrants who become more likely to move. These two processes iterate over time. Using a core-periphery method developed from the k-core decomposition method, we identify and quantify the network structural changes and map these changes with the migration acceleration patterns. We conclude that network structural changes are essential for explaining migration acceleration observed in China during the 1995-2000 period.

  20. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    Science.gov (United States)

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  1. Emergence of scale-free close-knit friendship structure in online social networks.

    Directory of Open Access Journals (Sweden)

    Ai-Xiang Cui

    Full Text Available Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four

  2. Emergence of scale-free close-knit friendship structure in online social networks.

    Science.gov (United States)

    Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan

    2012-01-01

    Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This

  3. Structural networks involved in attention and executive functions in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Sara Llufriu

    2017-01-01

    Full Text Available Attention and executive deficits are disabling symptoms in multiple sclerosis (MS that have been related to disconnection mechanisms. We aimed to investigate changes in structural connectivity in MS and their association with attention and executive performance applying an improved framework that combines high order probabilistic tractography and anatomical exclusion criteria postprocessing. We compared graph theory metrics of structural networks and fractional anisotropy (FA of white matter (WM connections or edges between 72 MS subjects and 38 healthy volunteers (HV and assessed their correlation with cognition. Patients displayed decreased network transitivity, global efficiency and increased path length compared with HV (p < 0.05, corrected. Also, nodal strength was decreased in 26 of 84 gray matter regions. The distribution of nodes with stronger connections or hubs of the network was similar among groups except for the right pallidum and left insula, which became hubs in patients. MS subjects presented reduced edge FA widespread in the network, while FA was increased in 24 connections (p < 0.05, corrected. Decreased integrity of frontoparietal networks, deep gray nuclei and insula correlated with worse attention and executive performance (r between 0.38 and 0.55, p < 0.05, corrected. Contrarily, higher strength in the right transverse temporal cortex and increased FA of several connections (mainly from cingulate, frontal and occipital cortices were associated with worse functioning (r between −0.40 and −0.47, p < 0.05 corrected. In conclusion, structural brain connectivity is disturbed in MS due to widespread impairment of WM connections and gray matter structures. The increased edge connectivity suggests the presence of reorganization mechanisms at the structural level. Importantly, attention and executive performance relates to frontoparietal networks, deep gray nuclei and insula. These results support the relevance of

  4. The Network Completion Problem: Inferring Missing Nodes and Edges in Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Leskovec, J

    2011-11-14

    Network structures, such as social networks, web graphs and networks from systems biology, play important roles in many areas of science and our everyday lives. In order to study the networks one needs to first collect reliable large scale network data. While the social and information networks have become ubiquitous, the challenge of collecting complete network data still persists. Many times the collected network data is incomplete with nodes and edges missing. Commonly, only a part of the network can be observed and we would like to infer the unobserved part of the network. We address this issue by studying the Network Completion Problem: Given a network with missing nodes and edges, can we complete the missing part? We cast the problem in the Expectation Maximization (EM) framework where we use the observed part of the network to fit a model of network structure, and then we estimate the missing part of the network using the model, re-estimate the parameters and so on. We combine the EM with the Kronecker graphs model and design a scalable Metropolized Gibbs sampling approach that allows for the estimation of the model parameters as well as the inference about missing nodes and edges of the network. Experiments on synthetic and several real-world networks show that our approach can effectively recover the network even when about half of the nodes in the network are missing. Our algorithm outperforms not only classical link-prediction approaches but also the state of the art Stochastic block modeling approach. Furthermore, our algorithm easily scales to networks with tens of thousands of nodes.

  5. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

    Directory of Open Access Journals (Sweden)

    Guangyi Liu

    2014-01-01

    Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

  6. Sampling from complex networks with high community structures.

    Science.gov (United States)

    Salehi, Mostafa; Rabiee, Hamid R; Rajabi, Arezo

    2012-06-01

    In this paper, we propose a novel link-tracing sampling algorithm, based on the concepts from PageRank vectors, to sample from networks with high community structures. Our method has two phases; (1) Sampling the closest nodes to the initial nodes by approximating personalized PageRank vectors and (2) Jumping to a new community by using PageRank vectors and unknown neighbors. Empirical studies on several synthetic and real-world networks show that the proposed method improves the performance of network sampling compared to the popular link-based sampling methods in terms of accuracy and visited communities.

  7. Analyzing the multilevel structure of the European airport network

    Directory of Open Access Journals (Sweden)

    Oriol Lordan

    2017-04-01

    Full Text Available The multilayered structure of the European airport network (EAN, composed of connections and flights between European cities, is analyzed through the k-core decomposition of the connections network. This decomposition allows to identify the core, bridge and periphery layers of the EAN. The core layer includes the best-connected cities, which include important business air traffic destinations. The periphery layer includes cities with lesser connections, which serve low populated areas where air travel is an economic alternative. The remaining cities form the bridge of the EAN, including important leisure travel origins and destinations. The multilayered structure of the EAN affects network robustness, as the EAN is more robust to isolation of nodes of the core, than to the isolation of a combination of core and bridge nodes.

  8. Brain Structure Network Analysis in Patients with Obstructive Sleep Apnea.

    Science.gov (United States)

    Luo, Yun-Gang; Wang, Defeng; Liu, Kai; Weng, Jian; Guan, Yuefeng; Chan, Kate C C; Chu, Winnie C W; Shi, Lin

    2015-01-01

    Childhood obstructive sleep apnea (OSA) is a sleeping disorder commonly affecting school-aged children and is characterized by repeated episodes of blockage of the upper airway during sleep. In this study, we performed a graph theoretical analysis on the brain morphometric correlation network in 25 OSA patients (OSA group; 5 female; mean age, 10.1 ± 1.8 years) and investigated the topological alterations in global and regional properties compared with 20 healthy control individuals (CON group; 6 females; mean age, 10.4 ± 1.8 years). A structural correlation network based on regional gray matter volume was constructed respectively for each group. Our results revealed a significantly decreased mean local efficiency in the OSA group over the density range of 0.32-0.44 (p gyrus, and a tendency of decreased degree in the right lingual and inferior frontal (orbital part) gyrus (p < 0.005, uncorrected). We also found that the network hubs in OSA and controls were distributed differently. To the best of our knowledge, this is the first study that characterizes the brain structure network in OSA patients and invests the alteration of topological properties of gray matter volume structural network. This study may help to provide new evidence for understanding the neuropathophysiology of OSA from a topological perspective.

  9. Age structure and cooperation in coevolutionary games on dynamic network

    Science.gov (United States)

    Qin, Zilong; Hu, Zhenhua; Zhou, Xiaoping; Yi, Jingzhang

    2015-04-01

    Our proposed model imitates the growth of a population and describes the age structure and the level of cooperation in games on dynamic network with continuous changes of structure and topology. The removal of nodes and links caused by age-dependent attack, together with the nodes addition standing for the newborns of population, badly ruins Matthew effect in this coevolutionary process. Though the network is generated by growth and preferential attachment, it degenerates into random network and it is no longer heterogeneous. When the removal of nodes and links is equal to the addition of nodes and links, the size of dynamic network is maintained in steady-state, so is the low level of cooperation. Severe structure variation, homogeneous topology and continuous invasion of new defection jointly make dynamic network unsuitable for the survival of cooperator even when the probability with which the newborn players initially adopt the strategy cooperation is high, while things change slightly when the connections of newborn players are restricted. Fortunately, moderate interactions in a generation trigger an optimal recovering process to encourage cooperation. The model developed in this paper outlines an explanation of the cohesion changes in the development process of an organization. Some suggestions for cooperative behavior improvement are given in the end.

  10. Similarity between community structures of different online social networks and its impact on underlying community detection

    Science.gov (United States)

    Fan, W.; Yeung, K. H.

    2015-03-01

    As social networking services are popular, many people may register in more than one online social network. In this paper we study a set of users who have accounts of three online social networks: namely Foursquare, Facebook and Twitter. Community structure of this set of users may be reflected in these three online social networks. Therefore, high correlation between these reflections and the underlying community structure may be observed. In this work, community structures are detected in all three online social networks. Also, we investigate the similarity level of community structures across different networks. It is found that they show strong correlation with each other. The similarity between different networks may be helpful to find a community structure close to the underlying one. To verify this, we propose a method to increase the weights of some connections in networks. With this method, new networks are generated to assist community detection. By doing this, value of modularity can be improved and the new community structure match network's natural structure better. In this paper we also show that the detected community structures of online social networks are correlated with users' locations which are identified on Foursquare. This information may also be useful for underlying community detection.

  11. PROSPECTS OF REGIONAL NETWORK STRUCTURES IN THE SOUTHERN FEDERAL DISTRICT

    Directory of Open Access Journals (Sweden)

    I. V. Morozov

    2014-01-01

    Full Text Available The article reveals the possibility of the Southern Federal District to form regional network structures. The prospects for the formation of networks in the region in relation to the Olympic Winter Games Sochi 2014.

  12. The Sustainability of Global Chain Governance: Network Structures and Local Supplier Upgrading in Thailand

    Directory of Open Access Journals (Sweden)

    Sungchul Cho

    2016-09-01

    Full Text Available Although it has been widely accepted that insertion into global production networks may play a critical role in fostering local supplier upgrading, scholars have yet to fully incorporate heterogeneous configurations of buyer-supplier relationships within networks into empirical testing. Using a representative sample of manufacturing firms in Thailand, we propose a more nuanced empirical framework that asks which features of buyer-supplier relationships are related to which aspects of local supplier upgrading. Our findings, derived from latent class analysis, show that the ways value chains are governed can exert varying effects on different types of technological upgrading. Being a multinational corporation (MNC supplier was found to have positive effects on process and minor product upgrading, irrespective of the types of buyer-supplier networks. However, we found a more radical type of upgrading (i.e., the development of own brands to be negatively related to insertion into ‘quasi-hierarchical’ or ‘buyer-driven relationships’, whilst involvement in ‘cooperative networks’ was associated with a significantly higher tendency of product and brand upgrading. Understanding this inherent relationality provides a crucial balance to previous firm-level findings, suggesting that the sustainability of participation in global value chains depends on the relational structures in which local manufacturers are embedded.

  13. Longitudinal network structure of depression symptoms and self-efficacy in low-income mothers.

    Science.gov (United States)

    Santos, Hudson P; Kossakowski, Jolanda J; Schwartz, Todd A; Beeber, Linda; Fried, Eiko I

    2018-01-01

    Maternal depression was recently conceptualized as a network of interacting symptoms. Prior studies have shown that low self-efficacy, as an index of maternal functioning, is one important source of stress that worsens depression. We have limited information, however, on the specific relationships between depression symptoms and self-efficacy. In this study, we used regularized partial correlation networks to explore the multivariate relationships between maternal depression symptoms and self-efficacy over time. Depressed mothers (n = 306) completed the Center for Epidemiological Studies Depression (CES-D) scale at four time points, between four and eight weeks apart. We estimated (a) the network structure of the 20 CES-D depression symptoms and self-efficacy for each time point, (b) determined the centrality or structural importance of all variables, and (c) tested whether the network structure changed over time. In the resulting networks, self-efficacy was mostly negatively connected with depression symptoms. The strongest relationships among depression symptoms were 'lonely-sleep difficulties' and 'inability to get going-crying'. 'Feeling disliked' and 'concentration difficulty' were the two most central symptoms. In comparing the network structures, we found that the network structures were moderately stable over time. This is the first study to investigate the network structure and their temporal stability of maternal depression symptoms and self-efficacy in low-income depressed mothers. We discuss how these findings might help future research to identify clinically relevant symptom-to-symptom relationships that could drive maternal depression processes, and potentially inform tailored interventions. We share data and analytical code, making our results fully reproducible.

  14. Arsenic levels in wipe samples collected from play structures constructed with CCA-treated wood: Impact on exposure estimates

    Energy Technology Data Exchange (ETDEWEB)

    Barraj, Leila M. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States)], E-mail: lbarraj@exponent.com; Scrafford, Carolyn G. [Chemical Regulation and Food Safety, Exponent, Inc., Suite 1100, 1150 Connecticut Ave., NW, Washington, DC 20036 (United States); Eaton, W. Cary [RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709 (United States); Rogers, Robert E.; Jeng, Chwen-Jyh [Toxcon Health Sciences Research Centre Inc., 9607 - 41 Avenue, Edmonton, Alberta, T6E 5X7 (Canada)

    2009-04-01

    Lumber treated with chromated copper arsenate (CCA) has been used in residential outdoor wood structures and playgrounds. The U.S. EPA has conducted a probabilistic assessment of children's exposure to arsenic from CCA-treated structures using the Stochastic Human Exposure and Dose Simulation model for the wood preservative scenario (SHEDS-Wood). The EPA assessment relied on data from an experimental study using adult volunteers and designed to measure arsenic in maximum hand and wipe loadings. Analyses using arsenic handloading data from a study of children playing on CCA-treated play structures in Edmonton, Canada, indicate that the maximum handloading values significantly overestimate the exposure that occurs during actual play. The objective of our paper is to assess whether the dislodgeable arsenic residues from structures in the Edmonton study are comparable to those observed in other studies and whether they support the conclusion that the values derived by EPA using modeled maximum loading values overestimate hand exposures. We compared dislodgeable arsenic residue data from structures in the playgrounds in the Edmonton study to levels observed in studies used in EPA's assessment. Our analysis showed that the dislodgeable arsenic levels in the Edmonton playground structures are similar to those in the studies used by EPA. Hence, the exposure estimates derived using the handloading data from children playing on CCA-treated structures are more representative of children's actual exposures than the overestimates derived by EPA using modeled maximum values. Handloading data from children playing on CCA-treated structures should be used to reduce the uncertainty of modeled estimates derived using the SHEDS-Wood model.

  15. Scalable, ultra-resistant structural colors based on network metamaterials

    KAUST Repository

    Galinski, Henning

    2017-05-05

    Structural colors have drawn wide attention for their potential as a future printing technology for various applications, ranging from biomimetic tissues to adaptive camouflage materials. However, an efficient approach to realize robust colors with a scalable fabrication technique is still lacking, hampering the realization of practical applications with this platform. Here, we develop a new approach based on large-scale network metamaterials that combine dealloyed subwavelength structures at the nanoscale with lossless, ultra-thin dielectric coatings. By using theory and experiments, we show how subwavelength dielectric coatings control a mechanism of resonant light coupling with epsilon-near-zero regions generated in the metallic network, generating the formation of saturated structural colors that cover a wide portion of the spectrum. Ellipsometry measurements support the efficient observation of these colors, even at angles of 70°. The network-like architecture of these nanomaterials allows for high mechanical resistance, which is quantified in a series of nano-scratch tests. With such remarkable properties, these metastructures represent a robust design technology for real-world, large-scale commercial applications.

  16. Associations of Bcl-2 rs956572 genotype groups in the structural covariance network in early-stage Alzheimer's disease.

    Science.gov (United States)

    Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi

    2018-02-08

    Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.

  17. Effect of direct reciprocity and network structure on continuing prosperity of social networking services.

    Science.gov (United States)

    Osaka, Kengo; Toriumi, Fujio; Sugawara, Toshihauru

    2017-01-01

    Social networking services (SNSs) are widely used as communicative tools for a variety of purposes. SNSs rely on the users' individual activities associated with some cost and effort, and thus it is not known why users voluntarily continue to participate in SNSs. Because the structures of SNSs are similar to that of the public goods (PG) game, some studies have focused on why voluntary activities emerge as an optimal strategy by modifying the PG game. However, their models do not include direct reciprocity between users, even though reciprocity is a key mechanism that evolves and sustains cooperation in human society. We developed an abstract SNS model called the reciprocity rewards and meta-rewards games that include direct reciprocity by extending the existing models. Then, we investigated how direct reciprocity in an SNS facilitates cooperation that corresponds to participation in SNS by posting articles and comments and how the structure of the networks of users exerts an influence on the strategies of users using the reciprocity rewards game. We run reciprocity rewards games on various complex networks and an instance network of Facebook and found that two types of stable cooperation emerged. First, reciprocity slightly improves the rate of cooperation in complete graphs but the improvement is insignificant because of the instability of cooperation. However, this instability can be avoided by making two assumptions: high degree of fun, i.e. articles are read with high probability, and different attitudes to reciprocal and non-reciprocal agents. We then propose the concept of half free riders to explain what strategy sustains cooperation-dominant situations. Second, we indicate that a certain WS network structure affects users' optimal strategy and facilitates stable cooperation without any extra assumptions. We give a detailed analysis of the different characteristics of the two types of cooperation-dominant situations and the effect of the memory of

  18. Translocality, Network Structure, and Music Worlds: Underground Metal in the United Kingdom.

    Science.gov (United States)

    Emms, Rachel; Crossley, Nick

    2018-02-01

    Translocal music worlds are often defined as networks of local music worlds. However, their networked character and more especially their network structure is generally assumed rather than concretely mapped and explored. Formal social network analysis (SNA) is beginning to attract interest in music sociology but it has not previously been used to explore a translocal music world. In this paper, drawing upon a survey of the participation of 474 enthusiasts in 148 live music events, spread across 6 localities, we use SNA to explore a significant "slice" of the network structure of the U.K.'s translocal underground heavy metal world. Translocality is generated in a number of ways, we suggest, but one way, the way we focus upon, involves audiences traveling between localities to attend gigs and festivals. Our analysis of this network uncovers a core-periphery structure which, we further find, maps onto locality. Not all live events enjoy equal standing in our music world and some localities are better placed to capture more prestigious events, encouraging inward travel. The identification of such structures, and the inequality they point to, is, we believe, one of several benefits of using SNA to analyze translocal music worlds. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.

  19. Social structure of Facebook networks

    Science.gov (United States)

    Traud, Amanda L.; Mucha, Peter J.; Porter, Mason A.

    2012-08-01

    We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes-gender, class year, major, high school, and residence-at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.

  20. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene

    Directory of Open Access Journals (Sweden)

    Ji Sun Hong

    2018-04-01

    Full Text Available Problematic Internet game play is often accompanied by major depressive disorder (MDD. Depression seems to be closely related to altered functional connectivity (FC within (and between the default mode network (DMN and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS, Beck Depressive Inventory, Beck Anxiety Inventory (BAI, Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS, respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG to the right rostral prefrontal cortex (RPFC, right anterior insular (AInsular to right SMG, anterior cingulate cortex (ACC to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  1. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene.

    Science.gov (United States)

    Hong, Ji Sun; Kim, Sun Mi; Bae, Sujin; Han, Doug Hyun

    2018-01-01

    Problematic Internet game play is often accompanied by major depressive disorder (MDD). Depression seems to be closely related to altered functional connectivity (FC) within (and between) the default mode network (DMN) and salience network. In addition, serotonergic neurotransmission may regulate the symptoms of depression, including impulsivity, potentially by modulating the DMN. We hypothesized that altered connectivity between the DMN and salience network could mediate an association between the 5HTTLPR genotype and impulsivity in patients with depression. A total of 54 participants with problematic Internet game play and MDD completed the research protocol. We genotyped for 5HTTLPR and assessed the DMN FC using resting-state functional magnetic resonance imaging. The severity of Internet game play, depressive symptoms, anxiety, attention and impulsivity, and behavioral inhibition and activation were assessed using the Young Internet Addiction Scale (YIAS), Beck Depressive Inventory, Beck Anxiety Inventory (BAI), Korean Attention Deficit Hyperactivity Disorder scale, and the Behavioral Inhibition and Activation Scales (BIS-BAS), respectively. The SS allele was associated with increased FC within the DMN, including the middle prefrontal cortex (MPFC) to the posterior cingulate cortex, and within the salience network, including the right supramarginal gyrus (SMG) to the right rostral prefrontal cortex (RPFC), right anterior insular (AInsular) to right SMG, anterior cingulate cortex (ACC) to left RPFC, and left AInsular to right RPFC, and between the DMN and salience network, including the MPFC to the ACC. In addition, the FC from the MPFC to ACC positively correlated with the BIS and YIAS scores in the SS allele group. The SS allele of 5HTTLPR might modulate the FC within and between the DMN and salience network, which may ultimately be a risk factor for impulsive Internet game play in patients with MDD.

  2. Exploring hierarchical and overlapping modular structure in the yeast protein interaction network

    Directory of Open Access Journals (Sweden)

    Zhao Yi

    2010-12-01

    Full Text Available Abstract Background Developing effective strategies to reveal modular structures in protein interaction networks is crucial for better understanding of molecular mechanisms of underlying biological processes. In this paper, we propose a new density-based algorithm (ADHOC for clustering vertices of a protein interaction network using a novel subgraph density measurement. Results By statistically evaluating several independent criteria, we found that ADHOC could significantly improve the outcome as compared with five previously reported density-dependent methods. We further applied ADHOC to investigate the hierarchical and overlapping modular structure in the yeast PPI network. Our method could effectively detect both protein modules and the overlaps between them, and thus greatly promote the precise prediction of protein functions. Moreover, by further assaying the intermodule layer of the yeast PPI network, we classified hubs into two types, module hubs and inter-module hubs. Each type presents distinct characteristics both in network topology and biological functions, which could conduce to the better understanding of relationship between network architecture and biological implications. Conclusions Our proposed algorithm based on the novel subgraph density measurement makes it possible to more precisely detect hierarchical and overlapping modular structures in protein interaction networks. In addition, our method also shows a strong robustness against the noise in network, which is quite critical for analyzing such a high noise network.

  3. Mass media influence spreading in social networks with community structure

    Science.gov (United States)

    Candia, Julián; Mazzitello, Karina I.

    2008-07-01

    We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.

  4. Contact networks structured by sex underpin sex-specific epidemiology of infection.

    Science.gov (United States)

    Silk, Matthew J; Weber, Nicola L; Steward, Lucy C; Hodgson, David J; Boots, Mike; Croft, Darren P; Delahay, Richard J; McDonald, Robbie A

    2018-02-01

    Contact networks are fundamental to the transmission of infection and host sex often affects the acquisition and progression of infection. However, the epidemiological impacts of sex-related variation in animal contact networks have rarely been investigated. We test the hypothesis that sex-biases in infection are related to variation in multilayer contact networks structured by sex in a population of European badgers Meles meles naturally infected with Mycobacterium bovis. Our key results are that male-male and between-sex networks are structured at broader spatial scales than female-female networks and that in male-male and between-sex contact networks, but not female-female networks, there is a significant relationship between infection and contacts with individuals in other groups. These sex differences in social behaviour may underpin male-biased acquisition of infection and may result in males being responsible for more between-group transmission. This highlights the importance of sex-related variation in host behaviour when managing animal diseases. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  5. Enabling Controlling Complex Networks with Local Topological Information.

    Science.gov (United States)

    Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene

    2018-03-15

    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.

  6. Adaptation of coordination mechanisms to network structures

    Directory of Open Access Journals (Sweden)

    Herwig Mittermayer

    2008-12-01

    Full Text Available The coordination efficiency of Supply Chain Management is determined by two opposite poles: benefit from improved planning results and associated coordination cost. The centralization grade, applied coordination mechanisms and IT support have influence on both categories. Therefore three reference types are developed and subsequently detailed in business process models for different network structures. In a simulation study the performance of these organization forms are compared in a process plant network. Coordination benefit is observed if the planning mode is altered by means of a demand planning IT tool. Coordination cost is divided into structural and activity-dependent cost. The activity level rises when reactive planning iterations become necessary as a consequence of inconsistencies among planning levels. Some characteristic influence factors are considered to be a reason for uninfeasible planning. In this study the effect of capacity availability and stochastic machine downtimes is investigated in an uncertain demand situation. Results that if the network runs with high overcapacity, central planning is less likely to increase benefit enough to outweigh associated cost. Otherwise, if capacity constraints are crucial, a central planning mode is recommendable. When also unforeseen machine downtimes are low, the use of sophisticated IT tools is most profitable.

  7. Effect of interaction strength on robustness of controlling edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2018-05-01

    Robustness plays a critical role in the controllability of complex networks to withstand failures and perturbations. Recent advances in the edge controllability show that the interaction strength among edges plays a more important role than network structure. Therefore, we focus on the effect of interaction strength on the robustness of edge controllability. Using three categories of all edges to quantify the robustness, we develop a universal framework to evaluate and analyze the robustness in complex networks with arbitrary structures and interaction strengths. Applying our framework to a large number of model and real-world networks, we find that the interaction strength is a dominant factor for the robustness in undirected networks. Meanwhile, the strongest robustness and the optimal edge controllability in undirected networks can be achieved simultaneously. Different from the case of undirected networks, the robustness in directed networks is determined jointly by the interaction strength and the network's degree distribution. Moreover, a stronger robustness is usually associated with a larger number of driver nodes required to maintain full control in directed networks. This prompts us to provide an optimization method by adjusting the interaction strength to optimize the robustness of edge controllability.

  8. Group composition and network structure in school classes : a multilevel application of the p* model

    NARCIS (Netherlands)

    Lubbers, Miranda J.

    2003-01-01

    This paper describes the structure of social networks of students within school classes and examines differences in network structure between classes. In order to examine the network structure within school classes, we focused in particular on the principle of homophily, i.e. the tendency that

  9. Brain Structure Network Analysis in Patients with Obstructive Sleep Apnea.

    Directory of Open Access Journals (Sweden)

    Yun-Gang Luo

    Full Text Available Childhood obstructive sleep apnea (OSA is a sleeping disorder commonly affecting school-aged children and is characterized by repeated episodes of blockage of the upper airway during sleep. In this study, we performed a graph theoretical analysis on the brain morphometric correlation network in 25 OSA patients (OSA group; 5 female; mean age, 10.1 ± 1.8 years and investigated the topological alterations in global and regional properties compared with 20 healthy control individuals (CON group; 6 females; mean age, 10.4 ± 1.8 years. A structural correlation network based on regional gray matter volume was constructed respectively for each group. Our results revealed a significantly decreased mean local efficiency in the OSA group over the density range of 0.32-0.44 (p < 0.05. Regionally, the OSAs showed a tendency of decreased betweenness centrality in the left angular gyrus, and a tendency of decreased degree in the right lingual and inferior frontal (orbital part gyrus (p < 0.005, uncorrected. We also found that the network hubs in OSA and controls were distributed differently. To the best of our knowledge, this is the first study that characterizes the brain structure network in OSA patients and invests the alteration of topological properties of gray matter volume structural network. This study may help to provide new evidence for understanding the neuropathophysiology of OSA from a topological perspective.

  10. Dynamical Structure of a Traditional Amazonian Social Network

    Directory of Open Access Journals (Sweden)

    Paul L. Hooper

    2013-11-01

    Full Text Available Reciprocity is a vital feature of social networks, but relatively little is known about its temporal structure or the mechanisms underlying its persistence in real world behavior. In pursuit of these two questions, we study the stationary and dynamical signals of reciprocity in a network of manioc beer (Spanish: chicha; Tsimane’: shocdye’ drinking events in a Tsimane’ village in lowland Bolivia. At the stationary level, our analysis reveals that social exchange within the community is heterogeneously patterned according to kinship and spatial proximity. A positive relationship between the frequencies at which two families host each other, controlling for kinship and proximity, provides evidence for stationary reciprocity. Our analysis of the dynamical structure of this network presents a novel method for the study of conditional, or non-stationary, reciprocity effects. We find evidence that short-timescale reciprocity (within three days is present among non- and distant-kin pairs; conversely, we find that levels of cooperation among close kin can be accounted for on the stationary hypothesis alone.

  11. A Structure Fidelity Approach for Big Data Collection in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mou Wu

    2014-12-01

    Full Text Available One of the most widespread and important applications in wireless sensor networks (WSNs is the continuous data collection, such as monitoring the variety of ambient temperature and humidity. Due to the sensor nodes with a limited energy supply, the reduction of energy consumed in the continuous observation of physical phenomenon plays a significant role in extending the lifetime of WSNs. However, the high redundancy of sensing data leads to great waste of energy as a result of over-deployed sensor nodes. In this paper, we develop a structure fidelity data collection (SFDC framework leveraging the spatial correlations between nodes to reduce the number of the active sensor nodes while maintaining the low structural distortion of the collected data. A structural distortion based on the image quality assessment approach is used to perform the nodes work/sleep scheduling, such that the number of the working nodes is reduced while the remainder of nodes can be put into the low-power sleep mode during the sampling period. The main contribution of SFDC is to provide a unique perspective on how to maintain the data fidelity in term of structural similarity in the continuous sensing applications for WSNs. The simulation results based on synthetic and real world datasets verify the effectiveness of SFDC framework both on energy saving and data fidelity.

  12. I Wanna Play Too: Factors Related to Changes in Social Behavior for Children with and without Autism Spectrum Disorder after Implementation of a Structured Outdoor Play Curriculum

    Science.gov (United States)

    Morrier, Michael J.; Ziegler, Sonja M. T.

    2018-01-01

    Children with autism spectrum disorder (ASD) have difficulties interacting with same-aged peers during unstructured play (e.g., on the playground). Thirty-five toddler and preschool children with and without ASD participated in a structured 15-min outdoor play curriculum. The intervention, "the Buddy Game," used familiar songs, movement,…

  13. Optimal network structure to induce the maximal small-world effect

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Xu Wen-Jun; Lin Jia-Ru; Zeng Shang-You

    2014-01-01

    In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (> 500), the small rewiring probability (≍ 0.02) and the small average connection probability (< 0.1). Many previous research results support our results. (interdisciplinary physics and related areas of science and technology)

  14. Dynamics of Networks if Everyone Strives for Structural Holes

    NARCIS (Netherlands)

    Buskens, Vincent; Rijt, Arnout van de

    2008-01-01

    When entrepreneurs enter structural holes in networks, they can exploit the related benefits. Evidence for these benefits has steadily accumulated. The authors ask whether those who strive for such structural advantages can maintain them if others follow their example. Burt speculates that they

  15. Longitudinal Structural and Functional Brain Network Alterations in a Mouse Model of Neuropathic Pain.

    Science.gov (United States)

    Bilbao, Ainhoa; Falfán-Melgoza, Claudia; Leixner, Sarah; Becker, Robert; Singaravelu, Sathish Kumar; Sack, Markus; Sartorius, Alexander; Spanagel, Rainer; Weber-Fahr, Wolfgang

    2018-04-22

    Neuropathic pain affects multiple brain functions, including motivational processing. However, little is known about the structural and functional brain changes involved in the transition from an acute to a chronic pain state. Here we combined behavioral phenotyping of pain thresholds with multimodal neuroimaging to longitudinally monitor changes in brain metabolism, structure and connectivity using the spared nerve injury (SNI) mouse model of chronic neuropathic pain. We investigated stimulus-evoked pain responses prior to SNI surgery, and one and twelve weeks following surgery. A progressive development and potentiation of stimulus-evoked pain responses (cold and mechanical allodynia) were detected during the course of pain chronification. Voxel-based morphometry demonstrated striking decreases in volume following pain induction in all brain sites assessed - an effect that reversed over time. Similarly, all global and local network changes that occurred following pain induction disappeared over time, with two notable exceptions: the nucleus accumbens, which played a more dominant role in the global network in a chronic pain state and the prefrontal cortex and hippocampus, which showed lower connectivity. These changes in connectivity were accompanied by enhanced glutamate levels in the hippocampus, but not in the prefrontal cortex. We suggest that hippocampal hyperexcitability may contribute to alterations in synaptic plasticity within the nucleus accumbens, and to pain chronification. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Multilayer Brokerage in Geo-Social Networks

    OpenAIRE

    Hristova, Desislava; Panzarasa, Pietro; Mascolo, Cecilia

    2016-01-01

    This is a metadata record relating to an article that cannot be shared due to publisher copyright. Open network structures and brokerage positions have long been seen as playing a crucial role in sustaining social capital and competitive advantage. The degree to which individuals intermediate between otherwise disconnected others can differ across online and offline social networks. For example, users may broker online between two others who then exchange offline the i...

  17. Identifying the Critical Links in Road Transportation Networks: Centrality-based approach utilizing structural properties

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.

  18. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    Science.gov (United States)

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and

  19. Time synchronization of a wired sensor network for structural health monitoring

    International Nuclear Information System (INIS)

    Ishikawa, Ken-ichiro; Mita, Akira

    2008-01-01

    This paper introduces a time synchronization system for wired smart sensor networks to be applied to the structural health monitoring of gigantic structures. The jitter of sensor nodes in the wired network depends on the wire length between the origin and the destination of the time synchronization signals. The proposed system can theoretically achieve the accuracy to limit the jitter of sensors within 34 ns by adjusting the timing depending on the wire length, and experimentally showed the jitter of 190 m separation to be within 25 ns. The proposed system uses local area network (LAN) cables and does not require additional cabling for synchronization. Thus the proposed synchronization system can be embedded in the sensor network with minimal cost

  20. Structural properties and complexity of a new network class: Collatz step graphs.

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    Full Text Available In this paper, we introduce a biologically inspired model to generate complex networks. In contrast to many other construction procedures for growing networks introduced so far, our method generates networks from one-dimensional symbol sequences that are related to the so called Collatz problem from number theory. The major purpose of the present paper is, first, to derive a symbol sequence from the Collatz problem, we call the step sequence, and investigate its structural properties. Second, we introduce a construction procedure for growing networks that is based on these step sequences. Third, we investigate the structural properties of this new network class including their finite scaling and asymptotic behavior of their complexity, average shortest path lengths and clustering coefficients. Interestingly, in contrast to many other network models including the small-world network from Watts & Strogatz, we find that CS graphs become 'smaller' with an increasing size.

  1. Finding the Sweet Spot: Network Structures and Processes for Increased Knowledge Mobilization

    Directory of Open Access Journals (Sweden)

    Patricia Briscoe

    2016-06-01

    Full Text Available The use of networks in public education is one of a number of knowledge mobilization (KMb strategies utilized to promote evidence-based research into practice. However, challenges exist in the ability to effectively mobilizing knowledge through external partnership networks. The purpose of this paper is to further explore how networks work. Data was collected from virtual discussions for an interim report for a province-wide government initiative. A secondary analysis of the data was performed. The findings present network structures and processes that partners were engaged in when building a network within education. The implications of this study show that building a network for successful outcomes is complex and metaphorically similar to finding the “sweet spot.” It is challenging but networks that used strategies to align structures and processes proved to achieve more success in mobilizing research to practice.

  2. Enhancing response coordination through the assessment of response network structural dynamics.

    Directory of Open Access Journals (Sweden)

    Alireza Abbasi

    Full Text Available Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities. This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks' and participants' structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant's brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy.

  3. Microseismic Monitoring Using Sparse Surface Network of Broadband Instruments: Western Canada Shale Play Case Study

    Science.gov (United States)

    Yenier, E.; Baturan, D.; Karimi, S.

    2016-12-01

    Monitoring of seismicity related to oil and gas operations is routinely performed nowadays using a number of different surface and downhole seismic array configurations and technologies. Here, we provide a hydraulic fracture (HF) monitoring case study that compares the data set generated by a sparse local surface network of broadband seismometers to a data set generated by a single downhole geophone string. Our data was collected during a 5-day single-well HF operation, by a temporary surface network consisting of 10 stations deployed within 5 km of the production well. The downhole data was recorded by a 20 geophone string deployed in an observation well located 15 m from the production well. Surface network data processing included standard STA/LTA event triggering enhanced by template-matching subspace detection, grid search locations which was improved using the double-differencing re-location technique, as well as Richter (ML) and moment (Mw) magnitude computations for all detected events. In addition, moment tensors were computed from first motion polarities and amplitudes for the subset of highest SNR events. The resulting surface event catalog shows a very weak spatio-temporal correlation to HF operations with only 43% of recorded seismicity occurring during HF stages times. This along with source mechanisms shows that the surface-recorded seismicity delineates the activation of several pre-existing structures striking NNE-SSW and consistent with regional stress conditions as indicated by the orientation of SHmax. Comparison of the sparse-surface and single downhole string datasets allows us to perform a cost-benefit analysis of the two monitoring methods. Our findings show that although the downhole array recorded ten times as many events, the surface network provides a more coherent delineation of the underlying structure and more accurate magnitudes for larger magnitude events. We attribute this to the enhanced focal coverage provided by the surface

  4. On the chromospheric network structure around deVeloped groups of sunspots

    International Nuclear Information System (INIS)

    Kartashova, L.G.

    1980-01-01

    The chromospheric network structure around several developed groups of sunspots were studied on the basis of the observations in the Hsub(α) line. The resolution on the filtergrams was of 2. The following was found: 1) in the neighbourhood of the groups of sunspots 70% (from 870) of network cells stretch along fibrils direction (with accuracy 30 deg), and 15% of cells stretch approximately across that (at angles 70-90 deg); 2) out of the boundary of the main radial fibrils structure the groups of sunspots is often rounded by the system of network cells stretched approximately perpendicular to radial direction

  5. Robust emergence of small-world structure in networks of spiking neurons.

    Science.gov (United States)

    Kwok, Hoi Fei; Jurica, Peter; Raffone, Antonino; van Leeuwen, Cees

    2007-03-01

    Spontaneous activity in biological neural networks shows patterns of dynamic synchronization. We propose that these patterns support the formation of a small-world structure-network connectivity optimal for distributed information processing. We present numerical simulations with connected Hindmarsh-Rose neurons in which, starting from random connection distributions, small-world networks evolve as a result of applying an adaptive rewiring rule. The rule connects pairs of neurons that tend fire in synchrony, and disconnects ones that fail to synchronize. Repeated application of the rule leads to small-world structures. This mechanism is robustly observed for bursting and irregular firing regimes.

  6. Using Social Network Analysis to Examine the Effect of Care Management Structure on Chronic Disease Management Communication Within Primary Care.

    Science.gov (United States)

    Holtrop, Jodi Summers; Ruland, Sandra; Diaz, Stephanie; Morrato, Elaine H; Jones, Eric

    2018-05-01

    Care management and care managers are becoming increasingly prevalent in primary care medical practice as a means of improving population health and reducing unnecessary care. Care managers are often involved in chronic disease management and associated transitional care. In this study, we examined the communication regarding chronic disease care within 24 primary care practices in Michigan and Colorado. We sought to answer the following questions: Do care managers play a key role in chronic disease management in the practice? Does the prominence of the care manager's connectivity within the practice's communication network vary by the type of care management structure implemented? Individual written surveys were given to all practice members in the participating practices. Survey questions assessed demographics as well as practice culture, quality improvement, care management activities, and communication regarding chronic disease care. Using social network analysis and other statistical methods, we analyzed the communication dynamics related to chronic disease care for each practice. The structure of chronic disease communication varies greatly from practice to practice. Care managers who were embedded in the practice or co-located were more likely to be in the core of the communication network than were off-site care managers. These care managers also had higher in-degree centrality, indicating that they acted as a hub for communication with team members in many other roles. Social network analysis provided a useful means of examining chronic disease communication in practice, and highlighted the central role of care managers in this communication when their role structure supported such communication. Structuring care managers as embedded team members within the practice has important implications for their role in chronic disease communication within primary care.

  7. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    Science.gov (United States)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  8. Protein enriched pasta: structure and digestibility of its protein network.

    Science.gov (United States)

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  9. Topological structure and mechanics of glassy polymer networks.

    Science.gov (United States)

    Elder, Robert M; Sirk, Timothy W

    2017-11-22

    The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.

  10. Completely random measures for modelling block-structured sparse networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2016-01-01

    Many statistical methods for network data parameterize the edge-probability by attributing latent traits to the vertices such as block structure and assume exchangeability in the sense of the Aldous-Hoover representation theorem. Empirical studies of networks indicate that many real-world networks...... have a power-law distribution of the vertices which in turn implies the number of edges scale slower than quadratically in the number of vertices. These assumptions are fundamentally irreconcilable as the Aldous-Hoover theorem implies quadratic scaling of the number of edges. Recently Caron and Fox...

  11. Graph analysis of structural brain networks in Alzheimer's disease: beyond small world properties.

    Science.gov (United States)

    John, Majnu; Ikuta, Toshikazu; Ferbinteanu, Janina

    2017-03-01

    Changes in brain connectivity in patients with early Alzheimer's disease (AD) have been investigated using graph analysis. However, these studies were based on small data sets, explored a limited range of network parameters, and did not focus on more restricted sub-networks, where neurodegenerative processes may introduce more prominent alterations. In this study, we constructed structural brain networks out of 87 regions using data from 135 healthy elders and 100 early AD patients selected from the Open Access Series of Imaging Studies (OASIS) database. We evaluated the graph properties of these networks by investigating metrics of network efficiency, small world properties, segregation, product measures of complexity, and entropy. Because degenerative processes take place at different rates in different brain areas, analysis restricted to sub-networks may reveal changes otherwise undetected. Therefore, we first analyzed the graph properties of a network encompassing all brain areas considered together, and then repeated the analysis after dividing the brain areas into two sub-networks constructed by applying a clustering algorithm. At the level of large scale network, the analysis did not reveal differences between AD patients and controls. In contrast, the same analysis performed on the two sub-networks revealed that small worldness diminished with AD only in the sub-network containing the areas of medial temporal lobe known to be heaviest and earliest affected. The second sub-network, which did not present significant AD-induced modifications of 'classical' small world parameters, nonetheless showed a trend towards an increase in small world propensity, a novel metric that unbiasedly quantifies small world structure. Beyond small world properties, complexity and entropy measures indicated that the intricacy of connection patterns and structural diversity decreased in both sub-networks. These results show that neurodegenerative processes impact volumetric

  12. Transition Towards An Integrated Network Organisation

    DEFF Research Database (Denmark)

    Mykhaylenko, Alona; Wæhrens, Brian Vejrum

    2016-01-01

    , with particular attention to the role played by the home base (HB) organisation in this evolution. The research is focused on the intra-organisational global network and uses a longitudinal single-case study. Findings depict the transition as being enabled by the interaction between HB knowledge about......Management of internationally dispersed and networked operations has been in the focus of research attention. However, the existing studies underestimate the incrementality of changes shaping such organisations. This work investigates how organisations evolve into network structures...... the organization, and its reconfiguration decisions. Implications are also discussed regarding process drivers and the role of HB in the network organization....

  13. Network approach towards understanding the crazing in glassy amorphous polymers

    Science.gov (United States)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  14. A mobile-agent-based wireless sensing network for structural monitoring applications

    International Nuclear Information System (INIS)

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Moro, Erik A; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2009-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field

  15. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  16. Transfer of Knowledge on Agroforestry Management Practices: the Structure of Farmer Advice Networks

    Directory of Open Access Journals (Sweden)

    Marney E. Isaac

    2007-12-01

    Full Text Available Access to knowledge on farm management practices is essential for the maintenance of productive agroforestry systems. Farmers who lack the means to acquire farming knowledge from formal sources often rely on information within their informal social networks. However, little research has explored the explicit structure of farmer communication patterns. We examined advice network structures by using farmer attributes, i.e., kin relationships, community involvement, and imitation, to characterize structural positions and investigated the consequences of such structure on farming practices in cocoa agroforestry systems in Ghana, West Africa. Furthermore, we used a multicommunity approach; we constructed networks for four communities to increase replication and enhance the generality of our conclusions. A high density of advice ties occurred among a small group of farmers, indicating a core-periphery structure. Settler farmers composed 73% of core position members, suggesting that social proximity did not control the formation of informal advice structures. Because core farmers were highly participative in community activities, the promotion of community involvement may facilitate the movement of knowledge and social exchange to strengthen informal networks. Farmers in both core and peripheral structural positions indicated that they observed fellow farmers and subsequently adopted their practices. Of highly sought farmers, 84% used external information, predominately from government institutions, thus functioning as bridging links between formal and informal networks. Both external and farmer-derived sources of knowledge of agroforestry practices were transferred through informal advice networks, providing available information throughout the farming community, as well as a foundation for community-based adaptive management.

  17. Discrete particle swarm optimization for identifying community structures in signed social networks.

    Science.gov (United States)

    Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng

    2014-10-01

    Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. A Sequence and Structure Based Method to Predict Putative Substrates, Functions and Regulatory Networks of Endo Proteases

    Science.gov (United States)

    Venkatraman, Prasanna; Balakrishnan, Satish; Rao, Shashidhar; Hooda, Yogesh; Pol, Suyog

    2009-01-01

    Background Proteases play a central role in cellular homeostasis and are responsible for the spatio- temporal regulation of function. Many putative proteases have been recently identified through genomic approaches, leading to a surge in global profiling attempts to characterize their function. Through such efforts and others it has become evident that many proteases play non-traditional roles. Accordingly, the number and the variety of the substrate repertoire of proteases are expected to be much larger than previously assumed. In line with such global profiling attempts, we present here a method for the prediction of natural substrates of endo proteases (human proteases used as an example) by employing short peptide sequences as specificity determinants. Methodology/Principal Findings Our method incorporates specificity determinants unique to individual enzymes and physiologically relevant dual filters namely, solvent accessible surface area-a parameter dependent on protein three-dimensional structure and subcellular localization. By incorporating such hitherto unused principles in prediction methods, a novel ligand docking strategy to mimic substrate binding at the active site of the enzyme, and GO functions, we identify and perform subjective validation on putative substrates of matriptase and highlight new functions of the enzyme. Using relative solvent accessibility to rank order we show how new protease regulatory networks and enzyme cascades can be created. Conclusion We believe that our physiologically relevant computational approach would be a very useful complementary method in the current day attempts to profile proteases (endo proteases in particular) and their substrates. In addition, by using functional annotations, we have demonstrated how normal and unknown functions of a protease can be envisaged. We have developed a network which can be integrated to create a proteolytic world. This network can in turn be extended to integrate other regulatory

  19. Dynamics of cluster structures in a financial market network

    Science.gov (United States)

    Kocheturov, Anton; Batsyn, Mikhail; Pardalos, Panos M.

    2014-11-01

    In the course of recent fifteen years the network analysis has become a powerful tool for studying financial markets. In this work we analyze stock markets of the USA and Sweden. We study cluster structures of a market network constructed from a correlation matrix of returns of the stocks traded in each of these markets. Such cluster structures are obtained by means of the P-Median Problem (PMP) whose objective is to maximize the total correlation between a set of stocks called medians of size p and other stocks. Every cluster structure is an undirected disconnected weighted graph in which every connected component (cluster) is a star, or a tree with one central node (called a median) and several leaf nodes connected with the median by weighted edges. Our main observation is that in non-crisis periods of time cluster structures change more chaotically, while during crises they show more stable behavior and fewer changes. Thus an increasing stability of a market graph cluster structure obtained via the PMP could be used as an indicator of a coming crisis.

  20. Optimal map of the modular structure of complex networks

    International Nuclear Information System (INIS)

    Arenas, A; Borge-Holthoefer, J; Gomez, S; Zamora-Lopez, G

    2010-01-01

    The modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and the function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have the contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as much data as the number of modules times the number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and then we use truncated singular value decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allows us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.

  1. Structural properties of the Chinese air transportation multilayer network

    International Nuclear Information System (INIS)

    Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo

    2016-01-01

    Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

  2. The structure and resilience of financial market networks.

    Science.gov (United States)

    Peron, Thomas Kaue Dal'Maso; Costa, Luciano da Fontoura; Rodrigues, Francisco A

    2012-03-01

    Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.

  3. The structure and resilience of financial market networks

    Science.gov (United States)

    Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.

    2012-03-01

    Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.

  4. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  5. Structural breakdown of specialized plant-herbivore interaction networks in tropical forest edges

    Directory of Open Access Journals (Sweden)

    Bruno Ximenes Pinho

    2017-10-01

    Full Text Available Plant-herbivore relationships are essential for ecosystem functioning, typically forming an ecological network with a compartmentalized (i.e. modular structure characterized by highly specialized interactions. Human disturbances can favor habitat generalist species and thus cause the collapse of this modular structure, but its effects are rarely assessed using a network-based approach. We investigate how edge proximity alters plant-insect herbivore networks by comparing forest edge and interior in a large remnant (3.500 ha of the Brazilian Atlantic forest. Given the typical dominance of pioneer plants and generalist herbivores in edge-affected habitats, we test the hypothesis that the specialized structure of plant-herbivore networks collapse in forest edges, resulting in lower modularity and herbivore specialization. Despite no differences in the number of species and interactions, the network structure presented marked differences between forest edges and interior. Herbivore specialization, modularity and number of modules were significantly higher in forest interior than edge-affected habitats. When compared to a random null model, two (22.2% and eight (88.8% networks were significantly modular in forest edge and interior, respectively. The loss of specificity and modularity in plant-herbivore networks in forest edges may be related to the loss of important functions, such as density-dependent control of superior plant competitors, which is ultimately responsible for the maintenance of biodiversity and ecosystem functions. Our results support previous warnings that focusing on traditional community measures only (e.g. species diversity may overlook important modifications in species interactions and ecosystem functioning.

  6. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  7. 2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors.

    Science.gov (United States)

    Kim, Byoung Soo; Lee, Kangsuk; Kang, Seulki; Lee, Soyeon; Pyo, Jun Beom; Choi, In Suk; Char, Kookheon; Park, Jong Hyuk; Lee, Sang-Soo; Lee, Jonghwi; Son, Jeong Gon

    2017-09-14

    Stretchable energy storage systems are essential for the realization of implantable and epidermal electronics. However, high-performance stretchable supercapacitors have received less attention because currently available processing techniques and material structures are too limited to overcome the trade-off relationship among electrical conductivity, ion-accessible surface area, and stretchability of electrodes. Herein, we introduce novel 2D reentrant cellular structures of porous graphene/CNT networks for omnidirectionally stretchable supercapacitor electrodes. Reentrant structures, with inwardly protruded frameworks in porous networks, were fabricated by the radial compression of vertically aligned honeycomb-like rGO/CNT networks, which were prepared by a directional crystallization method. Unlike typical porous graphene structures, the reentrant structure provided structure-assisted stretchability, such as accordion and origami structures, to otherwise unstretchable materials. The 2D reentrant structures of graphene/CNT networks maintained excellent electrical conductivities under biaxial stretching conditions and showed a slightly negative or near-zero Poisson's ratio over a wide strain range because of their structural uniqueness. For practical applications, we fabricated all-solid-state supercapacitors based on 2D auxetic structures. A radial compression process up to 1/10 th densified the electrode, significantly increasing the areal and volumetric capacitances of the electrodes. Additionally, vertically aligned graphene/CNT networks provided a plentiful surface area and induced sufficient ion transport pathways for the electrodes. Therefore, they exhibited high gravimetric and areal capacitance values of 152.4 F g -1 and 2.9 F cm -2 , respectively, and had an excellent retention ratio of 88% under a biaxial strain of 100%. Auxetic cellular and vertically aligned structures provide a new strategy for the preparation of robust platforms for stretchable

  8. The structure of political elite networks in the Republic of Poland in 1993—2013

    Directory of Open Access Journals (Sweden)

    Fidrya Efim

    2013-12-01

    Full Text Available To identify the structure of network ties within Polish political elites; to study the features of network ties formation and the impact that both primary and labour socialisation periods and diaspora characteristics have on this process; to describe the structural features of the resultant network structures over different periods of time and analyse the structural dynamics of political elites for the purpose of forecasting major trends in the structural transformation of Polish political elites. In the course of the study, biographical data on the presidents, ministers, advisors, and party leaders of the Republic of Poland was collected and processed. The work follows the network analysis paradigm and identifies the dynamics of the key network parameters: distance, density, transitivity, and compactness. The author analyses the dynamics of representation in the structure of political territorial diaspora elites, business community members, and ‘moral politicians’. The article identifies two periods of formation of political party networks in Poland: the first period (1993—2007 saw a transition from rather weakly integrated systems to high density and cohesion networks as early as the second electoral cycle, after which a gradual decrease in the key indices of network integration was registered. A new peak of network cohesion and integration was reached in 2007—2011; however, the death of some key members of political elites in a plane crash resulted in a decrease in the network integration indices to the level of 2001—2005. On the whole, the network structure of Polish political elite is characterised by unstable dynamics relating to the crisis events of the past. However, it is established that the elites have a pronounced diaspora core and an unstable periphery; the share of businesspeople directly participating in political processes is decreasing, whereas ‘moral politicians’ usually take an active part in the formation of

  9. Developing a robust wireless sensor network structure for environmental sensing

    Science.gov (United States)

    Zhang, Z.; Oroza, C.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.

    2013-12-01

    The American River Hydrologic Observatory is being strategically deployed as a real-time ground-based measurement network that delivers accurate and timely information on snow conditions and other hydrologic attributes with a previously unheard of granularity of time and space. The basin-scale network involves 18 sub-networks set out at physiographically representative locations spanning the seasonally snow-covered half of the 5000 km2 American river basin. Each sub-network, covering about a 1-km2 area, consists of 10 wirelessly networked sensing nodes that continuously measure and telemeter temperature, and snow depth; plus selected locations are equipped with sensors for relative humidity, solar radiation, and soil moisture at several depths. The sensor locations were chosen to maximize the variance sampled for snow depth within the basin. Network design and deployment involves an iterative but efficient process. After sensor-station locations are determined, a robust network of interlinking sensor stations and signal repeaters must be constructed to route sensor data to a central base station with a two-way communicable data uplink. Data can then be uploaded from site to remote servers in real time through satellite and cell modems. Signal repeaters are placed for robustness of a self-healing network with redundant signal paths to the base station. Manual, trial-and-error heuristic approaches for node placement are inefficient and labor intensive. In that approach field personnel must restructure the network in real time and wait for new network statistics to be calculated at the base station before finalizing a placement, acting without knowledge of the global topography or overall network structure. We show how digital elevation plus high-definition aerial photographs to give foliage coverage can optimize planning of signal repeater placements and guarantee a robust network structure prior to the physical deployment. We can also 'stress test' the final network

  10. Structure-function relationships in elderly resting-state-networks : influence of age and cognitive performance

    OpenAIRE

    Jockwitz, Christiane

    2016-01-01

    The aim of this work was to investigate the structure-function relationship in cognitive resting state networks in a large population-based elderly sample. The first study characterized the functional connectivity in four cognitive resting state networks with respect to age, gender and cognitive performance: Default Mode Network (DMN), executive, and left and right frontoparietal resting state networks. The second study assessed the structural correlates of the functional reorganization of th...

  11. The Political Activity in the Network Environment

    Directory of Open Access Journals (Sweden)

    Марианна Юрьевна Павлютенкова

    2015-12-01

    Full Text Available The rapid development and deep penetration into all areas of modern society of information and communication technologies significantly increase the role of network interactions. Network structures represented primarily social networks, embedded in the public policy process and became one of the key political actors. Online communities take the form of public policy, where the formation of public opinion and political decision-making plays the main role. Networking environment opens up new opportunities for the opposition and protest movements, civic participation, and control of public policy in general. The article gives an insight on the political aspects of social networking, concludes on the trend formation and network's strengthening of the political activity in a wide distribution of e-networking and e-communications.

  12. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    NARCIS (Netherlands)

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as

  13. Active patterning and asymmetric transport in a model actomyosin network

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shenshen [Department of Chemical Engineering and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Wolynes, Peter G. [Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005 (United States)

    2013-12-21

    Cytoskeletal networks, which are essentially motor-filament assemblies, play a major role in many developmental processes involving structural remodeling and shape changes. These are achieved by nonequilibrium self-organization processes that generate functional patterns and drive intracellular transport. We construct a minimal physical model that incorporates the coupling between nonlinear elastic responses of individual filaments and force-dependent motor action. By performing stochastic simulations we show that the interplay of motor processes, described as driving anti-correlated motion of the network vertices, and the network connectivity, which determines the percolation character of the structure, can indeed capture the dynamical and structural cooperativity which gives rise to diverse patterns observed experimentally. The buckling instability of individual filaments is found to play a key role in localizing collapse events due to local force imbalance. Motor-driven buckling-induced node aggregation provides a dynamic mechanism that stabilizes the two-dimensional patterns below the apparent static percolation limit. Coordinated motor action is also shown to suppress random thermal noise on large time scales, the two-dimensional configuration that the system starts with thus remaining planar during the structural development. By carrying out similar simulations on a three-dimensional anchored network, we find that the myosin-driven isotropic contraction of a well-connected actin network, when combined with mechanical anchoring that confers directionality to the collective motion, may represent a novel mechanism of intracellular transport, as revealed by chromosome translocation in the starfish oocyte.

  14. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    Science.gov (United States)

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  15. Network Coding to Enhance Standard Routing Protocols in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2013-01-01

    This paper introduces a design and simulation of a locally optimized network coding protocol, called PlayNCool, for wireless mesh networks. PlayN-Cool is easy to implement and compatible with existing routing protocols and devices. This allows the system to gain from network coding capabilities i...

  16. The Interplay between Real Money Trade and Narrative Structure in Massively Multiplayer Online Role-Playing Games

    Directory of Open Access Journals (Sweden)

    Byungchul Park

    2017-01-01

    Full Text Available A narrative structure is one of the main components to constitute the genre of Massively Multiplayer Online Role-Playing Games (MMORPGs. Meanwhile Real Money Trade (RMT enables a player to adjust an ex post level of challenge by skipping the narrative structure of a game. However, RMT may concurrently disturb a player who enjoys game following the narrative structure hierarchically. In pursuance of developing the knowledge about the relationship between RMT and the usage of MMORPG, we investigate the role of the strictness of predetermined narrative structure. We present the dual structure of societies to describe a player that arbitrarily decides to reside in a virtual society. Then we adopt the social nominalism to explain how individual motif of playing a game is expanded to the nature of game. Finally, we argue that a game with weakly predetermined narrative structure is more positively associated with RMT volume, since these games arouse a player’s sentiment of fun by relying more on their socially oriented motivation. With empirical evidence from the Korean MMORPGs market, we proved the hypothesis.

  17. Data envelopment analysis a handbook of modeling internal structure and network

    CERN Document Server

    Cook, Wade D

    2014-01-01

    This comprehensive handbook on state-of-the-art topics in DEA modeling of internal structures and networks presents work by leading researchers who share their results on subjects including additive efficiency decomposition and slacks-based network DEA.

  18. Coordination of the international network of nuclear structure and decay data evaluators

    International Nuclear Information System (INIS)

    Lorenz, A.

    1984-09-01

    This meeting of the International NSDD (Nuclear Structure and Decay Data) Network dealt with problems related to both the coordination of the NSDD network of centres and groups and to physics questions related to the evaluation of NSDD. The status of the mass-chain and nuclear structure data is reviewed and the planned activities are presented

  19. Fracture network topology and characterization of structural permeability

    Science.gov (United States)

    Hansberry, Rowan; King, Rosalind; Holford, Simon

    2017-04-01

    There are two fundamental requirements for successful geothermal development: elevated temperatures at accessible depths, and a reservoir from which fluids can be extracted. The Australian geothermal sector has successfully targeted shallow heat, however, due in part to the inherent complexity of targeting permeability, obtaining adequate flow rates for commercial production has been problematic. Deep sedimentary aquifers are unlikely to be viable geothermal resources due to the effects of diagenetic mineral growth on rock permeability. Therefore, it is likely structural permeability targets, exploiting natural or induced fracture networks will provide the primary means for fluid flow in geothermal, as well as unconventional gas, reservoirs. Recent research has focused on the pattern and generation of crustal stresses across Australia, while less is known about the resultant networks of faults, joints, and veins that can constitute interconnected sub-surface permeability pathways. The ability of a fracture to transmit fluid is controlled by the orientation and magnitude of the in-situ stress field that acts on the fracture walls, rock strength, and pore pressure, as well as fracture properties such as aperture, orientation, and roughness. Understanding the distribution, orientation and character of fractures is key to predicting structural permeability. This project focuses on extensive mapping of fractures over various scales in four key Australian basins (Cooper, Otway, Surat and Perth) with the potential to host geothermal resources. Seismic attribute analysis is used in concert with image logs from petroleum wells, and field mapping to identify fracture networks that are usually not resolved in traditional seismic interpretation. We use fracture network topology to provide scale-invariant characterisation of fracture networks from multiple data sources to assess similarity between data sources, and fracture network connectivity. These results are compared with

  20. Evolution of individual versus social learning on social networks.

    Science.gov (United States)

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Global efficiency of structural networks mediates cognitive control in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Rok Berlot

    2016-12-01

    Full Text Available Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localised white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI.Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI. Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusions: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive

  2. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  3. From Microactions to Macrostructure and Back : A Structurational Approach to the Evolution of Organizational Networks

    NARCIS (Netherlands)

    Whitbred, Robert; Fonti, Fabio; Steglich, Christian; Contractor, Noshir

    Structuration theory (ST) and network analysis are promising approaches for studying the emergence of communication networks. We offer a model that integrates the conceptual richness of structuration with the precision of relevant concepts and mechanisms offered from communication network research.

  4. Neural contributions to flow experience during video game playing.

    Science.gov (United States)

    Klasen, Martin; Weber, René; Kircher, Tilo T J; Mathiak, Krystyna A; Mathiak, Klaus

    2012-04-01

    Video games are an exciting part of new media. Although game play has been intensively studied, the underlying neurobiology is still poorly understood. Flow theory is a well-established model developed to describe subjective game experience. In 13 healthy male subjects, we acquired fMRI data during free play of a video game and analyzed brain activity based on the game content. In accordance with flow theory, we extracted the following factors from the game content: (i) balance between ability and challenge; (ii) concentration and focus; (iii) direct feedback of action results; (iv) clear goals; and (v) control over the situation/activity. We suggest that flow is characterized by specific neural activation patterns and that the latter can be assessed-at least partially-by content factors contributing to the emergence of flow. Each of the content factors was characterized by specific and distinguishable brain activation patterns, encompassing reward-related midbrain structures, as well as cognitive and sensorimotor networks. The activation of sensory and motor networks in the conjunction analyses underpinned the central role of simulation for flow experience. Flow factors can be validated with functional brain imaging which can improve the understanding of human emotions and motivational processes during media entertainment.

  5. Learning the Structure of Bayesian Network from Small Amount of Data

    Directory of Open Access Journals (Sweden)

    Bogdan COCU

    2009-12-01

    Full Text Available Many areas of artificial intelligence must handling with imperfection ofinformation. One of the ways to do this is using representation and reasoning withBayesian networks. Creation of a Bayesian network consists in two stages. First stage isto design the node structure and directed links between them. Choosing of a structurefor network can be done either through empirical developing by human experts orthrough machine learning algorithm. The second stage is completion of probabilitytables for each node. Using a machine learning method is useful, especially when wehave a big amount of leaning data. But in many fields the amount of data is small,incomplete and inconsistent. In this paper, we make a case study for choosing the bestlearning method for small amount of learning data. Means more experiments we dropconclusion of using existent methods for learning a network structure.

  6. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  7. To cut or not to cut? Assessing the modular structure of brain networks.

    Science.gov (United States)

    Chang, Yu-Teng; Pantazis, Dimitrios; Leahy, Richard M

    2014-05-01

    A wealth of methods has been developed to identify natural divisions of brain networks into groups or modules, with one of the most prominent being modularity. Compared with the popularity of methods to detect community structure, only a few methods exist to statistically control for spurious modules, relying almost exclusively on resampling techniques. It is well known that even random networks can exhibit high modularity because of incidental concentration of edges, even though they have no underlying organizational structure. Consequently, interpretation of community structure is confounded by the lack of principled and computationally tractable approaches to statistically control for spurious modules. In this paper we show that the modularity of random networks follows a transformed version of the Tracy-Widom distribution, providing for the first time a link between module detection and random matrix theory. We compute parametric formulas for the distribution of modularity for random networks as a function of network size and edge variance, and show that we can efficiently control for false positives in brain and other real-world networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Structure and evolution of the global seafood trade network

    Science.gov (United States)

    Gephart, Jessica A.; Pace, Michael L.

    2015-12-01

    The food production system is increasingly global and seafood is among the most highly traded commodities. Global trade can improve food security by providing access to a greater variety of foods, increasing wealth, buffering against local supply shocks, and benefit the environment by increasing overall use efficiency for some resources. However, global trade can also expose countries to external supply shocks and degrade the environment by increasing resource demand and loosening feedbacks between consumers and the impacts of food production. As a result, changes in global food trade can have important implications for both food security and the environmental impacts of production. Measurements of globalization and the environmental impacts of food production require data on both total trade and the origin and destination of traded goods (the network structure). While the global trade network of agricultural and livestock products has previously been studied, seafood products have been excluded. This study describes the structure and evolution of the global seafood trade network, including metrics quantifying the globalization of seafood, shifts in bilateral trade flows, changes in centrality and comparisons of seafood to agricultural and industrial trade networks. From 1994 to 2012 the number of countries trading in the network remained relatively constant, while the number of trade partnerships increased by over 65%. Over this same period, the total quantity of seafood traded increased by 58% and the value increased 85% in real terms. These changes signify the increasing globalization of seafood products. Additionally, the trade patterns in the network indicate: increased influence of Thailand and China, strengthened intraregional trade, and increased exports from South America and Asia. In addition to characterizing these network changes, this study identifies data needs in order to connect seafood trade with environmental impacts and food security outcomes.

  9. Comparative Study of Elastic Network Model and Protein Contact Network for Protein Complexes: The Hemoglobin Case

    Directory of Open Access Journals (Sweden)

    Guang Hu

    2017-01-01

    Full Text Available The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein complexes. Elastic Network Model (ENM and Protein Contact Network (PCN are two widely used methods for high throughput investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and PCN relative to hemoglobin (Hb was taken as case study. We examine four types of structural and dynamical paradigms, namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface characterization of an Hb. The comparative study shows that ENM has an advantage in studying dynamical properties and protein-protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

  10. A Network-Based Dynamic Analysis in an Equity Stock Market

    Directory of Open Access Journals (Sweden)

    Juan Eberhard

    2017-01-01

    Full Text Available We study how changes in the structure of a brokers’ transaction network affect the probability with which the returns and volume of the traded financial assets change significantly. We analyze how the dynamics of the brokers’ transaction network are associated with the returns and volume observed in the Chilean stock market. To do this, we construct and validate an index that synthesizes the daily changes of the brokers’ transaction network structure of equity market transactions. We find that the changes of this structure are significantly correlated with variables that describe the local and international economic-financial environments. In addition, changes in the brokers’ transaction network structure are associated with a greater probability of positive shocks of more than two standard deviations in the stock exchange index return and total traded stock volume. These results suggest that the structure of the brokers’ trading relations plays a role in determining the returns and volume of transactions in the Chilean stock market.

  11. Structural covariance networks across the life span, from 6 to 94 years of age.

    Science.gov (United States)

    DuPre, Elizabeth; Spreng, R Nathan

    2017-10-01

    Structural covariance examines covariation of gray matter morphology between brain regions and across individuals. Despite significant interest in the influence of age on structural covariance patterns, no study to date has provided a complete life span perspective-bridging childhood with early, middle, and late adulthood-on the development of structural covariance networks. Here, we investigate the life span trajectories of structural covariance in six canonical neurocognitive networks: default, dorsal attention, frontoparietal control, somatomotor, ventral attention, and visual. By combining data from five open-access data sources, we examine the structural covariance trajectories of these networks from 6 to 94 years of age in a sample of 1,580 participants. Using partial least squares, we show that structural covariance patterns across the life span exhibit two significant, age-dependent trends. The first trend is a stable pattern whose integrity declines over the life span. The second trend is an inverted-U that differentiates young adulthood from other age groups. Hub regions, including posterior cingulate cortex and anterior insula, appear particularly influential in the expression of this second age-dependent trend. Overall, our results suggest that structural covariance provides a reliable definition of neurocognitive networks across the life span and reveal both shared and network-specific trajectories.

  12. Structure Identification of Uncertain Complex Networks Based on Anticipatory Projective Synchronization.

    Directory of Open Access Journals (Sweden)

    Liu Heng

    Full Text Available This paper investigates a method to identify uncertain system parameters and unknown topological structure in general complex networks with or without time delay. A complex network, which has uncertain topology and unknown parameters, is designed as a drive network, and a known response complex network with an input controller is designed to identify the drive network. Under the proposed input controller, the drive network and the response network can achieve anticipatory projective synchronization when the system is steady. Lyapunov theorem and Barbǎlat's lemma guarantee the stability of synchronization manifold between two networks. When the synchronization is achieved, the system parameters and topology in response network can be changed to equal with the parameters and topology in drive network. A numerical example is given to show the effectiveness of the proposed method.

  13. A Persistent Structured Hierarchical Overlay Network to Counter Intentional Churn Attack

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2016-01-01

    Full Text Available The increased use of structured overlay network for a variety of applications has attracted a lot of attention from both research community and attackers. However, the structural constraints, open nature (anybody can join and anybody may leave, and unreliability of its participant nodes significantly affect the performance of these applications and make it vulnerable to a variety of attacks such as eclipse, Sybil, and churn. One attack to compromise the service availability in overlay network is intentional churn (join/leave attack, where a large number of malicious users will join and leave the overlay network so frequently that the entire structure collapses and becomes unavailable. The focus of this paper is to provide a new robust, efficient, and scalable hierarchical overlay architecture that will counter these attacks by providing a structure that can accommodate the fleeting behaviour of nodes without causing much structural inconsistencies. The performance evaluation showed that the proposed architecture has more failure resilience and self-organization as compared to chord based architecture. Experimental results have demonstrated that the effect of failures on an overlay is proportional to the size of failure.

  14. Structural reliability calculation method based on the dual neural network and direct integration method.

    Science.gov (United States)

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  15. [The effects of narcissism and self-esteem on immersion in social network games and massively multiplayer online role-playing games].

    Science.gov (United States)

    Jin, Kato; Igarashi, Tasuku

    2016-04-01

    Recent research has shown growing interest in the process by which narcissism triggers immersion in social network games (SNG). Highly narcissistic individuals are motivated not only by the achievement of goals and monopoly of materials (i:e., self-enhancement), but also by comparison and competition with others (i.e., social comparison) We predicted that the common rules and environments of SNG and massively multiplayer online role-playing games (MMORPG), such as systems of exchanging items and ranking players, facilitate immersion of highly narcissistic individuals during the game. Structural equation modeling of data from 378 SNG players and 150 MMORPG players recruited online showed that self-esteem inhibited game immersion, whereas narcissism increased game immersion via motivation for goal attainment. SNG players were more likely to be immersed in the game via motivation for goal attainment than MMORPG players. These findings suggest that, compared with MMORPG, the environments of SNG provide strong incentives not for those high in self-esteem who seek acceptance of others, but for those high in narcissism who are motivated by self-enhancement via competition with others.

  16. Action selection in growing state spaces: control of network structure growth

    International Nuclear Information System (INIS)

    Thalmeier, Dominik; Kappen, Hilbert J; Gómez, Vicenç

    2017-01-01

    The dynamical processes taking place on a network depend on its topology. Influencing the growth process of a network therefore has important implications on such dynamical processes. We formulate the problem of influencing the growth of a network as a stochastic optimal control problem in which a structural cost function penalizes undesired topologies. We approximate this control problem with a restricted class of control problems that can be solved using probabilistic inference methods. To deal with the increasing problem dimensionality, we introduce an adaptive importance sampling method for approximating the optimal control. We illustrate this methodology in the context of formation of information cascades, considering the task of influencing the structure of a growing conversation thread, as in Internet forums. Using a realistic model of growing trees, we show that our approach can yield conversation threads with better structural properties than the ones observed without control. (paper)

  17. The functional and structural characteristics of the emotion network in alexithymia

    Directory of Open Access Journals (Sweden)

    Han D

    2018-04-01

    Full Text Available Dai Han,1–3 Mei Li,4 Minjun Mei,4 Xiaofei Sun4 1Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; 2Children and Adolescents Mental Health Joint Clinic, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; 3Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China; 4Mental Health Education and Counseling Center, Hangzhou Normal University, Hangzhou, Zhejiang, China Background: Alexithymia is a multifaceted personality trait characterized by emotional dysfunction.Methods: In this study, the functional and structural features of the emotion network in alexithymia were investigated using resting-state functional MRI (rsfMRI, voxel-based morphometry (VBM, functional connectivity (FC analysis, and diffusion tensor imaging (DTI. Alexithymic and non-alexithymic students were recruited from the local university. The intrinsic neural activity and gray matter density of the brain regions in the emotion network were measured using rsfMRI and VBM; the FC and structural connectivity of the brain regions in the emotion network were measured using FC analysis and DTI.Results: The altered intrinsic neural activity in V1, rostral dorsal anterior cingulate cortex, and left amygdala, and the weak FC between V1 and left superior temporal gyrus and V1 and left paracentral lobule in alexithymia subjects were identified. However, no alteration of the structure and structural connectivity of the emotion network was identified.Conclusion: The results indicated that the development of alexithymia might have been caused only by slight alteration of the neural activity. Furthermore, the results suggest that noninvasive treatment technologies for improving the brain activity are suitable for alexithymic individuals. Keywords: emotion network, rsfMRI, VBM, functional connectivity, structural connectivity

  18. A model for the emergence of cooperation, interdependence, and structure in evolving networks

    Science.gov (United States)

    Jain, Sanjay; Krishna, Sandeep

    2001-01-01

    Evolution produces complex and structured networks of interacting components in chemical, biological, and social systems. We describe a simple mathematical model for the evolution of an idealized chemical system to study how a network of cooperative molecular species arises and evolves to become more complex and structured. The network is modeled by a directed weighted graph whose positive and negative links represent "catalytic" and "inhibitory" interactions among the molecular species, and which evolves as the least populated species (typically those that go extinct) are replaced by new ones. A small autocatalytic set, appearing by chance, provides the seed for the spontaneous growth of connectivity and cooperation in the graph. A highly structured chemical organization arises inevitably as the autocatalytic set enlarges and percolates through the network in a short analytically determined timescale. This self organization does not require the presence of self-replicating species. The network also exhibits catastrophes over long timescales triggered by the chance elimination of "keystone" species, followed by recoveries.

  19. Entrepreneur online social networks: structure, diversity and impact on start-up survival

    NARCIS (Netherlands)

    Song, Y.; Vinig, T.

    2012-01-01

    In this paper, we discuss the results of a pilot study in which we use a novel approach to collect entrepreneur online social network data from LinkedIn, Facebook and Twitter. We studied the size and structure of entrepreneur social networks by analysing the online network industry and location

  20. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  1. Detailed temporal structure of communication networks in groups of songbirds.

    Science.gov (United States)

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  2. How does network structure affect partnerships for promoting physical activity? Evidence from Brazil and Colombia.

    Science.gov (United States)

    Parra, Diana C; Dauti, Marsela; Harris, Jenine K; Reyes, Lissette; Malta, Deborah C; Brownson, Ross C; Quintero, Mario A; Pratt, Michael

    2011-11-01

    The objective of this study was to describe the network structure and factors associated with collaboration in two networks that promote physical activity (PA) in Brazil and Colombia. Organizations that focus on studying and promoting PA in Brazil (35) and Colombia (53) were identified using a modified one-step reputational snowball sampling process. Participants completed an on-line survey between December 2008 and March 2009 for the Brazil network, and between April and June 2009 for the Colombia network. Network stochastic modeling was used to investigate the likelihood of reported inter-organizational collaboration. While structural features of networks were significant predictors of collaboration within each network, the coefficients and other network characteristics differed. Brazil's PA network was decentralized with a larger number of shared partnerships. Colombia's PA network was centralized and collaboration was influenced by perceived importance of peer organizations. On average, organizations in the PA network of Colombia reported facing more barriers (1.5 vs. 2.5 barriers) for collaboration. Future studies should focus on how these different network structures affect the implementation and uptake of evidence-based PA interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Insights into failed lexical retrieval from network science

    OpenAIRE

    Vitevitch, Michael S.; Chan, Kit Ying; Goldstein, Rutherford

    2013-01-01

    Previous network analyses of the phonological lexicon (Vitevitch, 2008) observed a web-like structure that exhibited assortative mixing by degree: words with dense phonological neighborhoods tend to have as neighbors words that also have dense phonological neighborhoods, and words with sparse phonological neighborhoods tend to have as neighbors words that also have sparse phonological neighborhoods. Given the role that assortative mixing by degree plays in network resilience, we examined inst...

  4. Network diversity structure, closeness and innovation of South African micro-entrepreneurs

    OpenAIRE

    Eliada Wosu Griffin-EL

    2014-01-01

    This study qualitatively explores the embeddedness of the innovation process of South African microbusinesses by investigating how small local entrepreneurs in the Greater Johannesburg area utilise their social networks to source entrepreneurial value. A comparative grounded theory analysis enabled the original conceptualisation of Network Diversity Structure and formulates the central proposition that the network dimensions of diversity and closeness enable the innovation process among manuf...

  5. Using structural equation modeling for network meta-analysis.

    Science.gov (United States)

    Tu, Yu-Kang; Wu, Yun-Chun

    2017-07-14

    Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison

  6. Co-ordination of the international network of nuclear structure and decay data evaluators

    International Nuclear Information System (INIS)

    Lorenz, A.

    1986-10-01

    The seventh meeting of the International Network of Nuclear Structure and Decay Data (NSDD) Evaluators concentrated on the organizational aspects of the coordination of the NSDD network and on the presentation and discussion of papers related to the physics of evaluation of NSDD. The report contains short status reports from NSDD Network members, the status of the mass-chain and nuclear structure data, a discussion of evaluation rules and procedures and a short presentation of the next activities

  7. Evaluating multiple determinants of the structure of plant-animal mutualistic networks.

    Science.gov (United States)

    Vázquez, Diego P; Chacoff, Natacha P; Cagnolo, Luciano

    2009-08-01

    The structure of mutualistic networks is likely to result from the simultaneous influence of neutrality and the constraints imposed by complementarity in species phenotypes, phenologies, spatial distributions, phylogenetic relationships, and sampling artifacts. We develop a conceptual and methodological framework to evaluate the relative contributions of these potential determinants. Applying this approach to the analysis of a plant-pollinator network, we show that information on relative abundance and phenology suffices to predict several aggregate network properties (connectance, nestedness, interaction evenness, and interaction asymmetry). However, such information falls short of predicting the detailed network structure (the frequency of pairwise interactions), leaving a large amount of variation unexplained. Taken together, our results suggest that both relative species abundance and complementarity in spatiotemporal distribution contribute substantially to generate observed network patters, but that this information is by no means sufficient to predict the occurrence and frequency of pairwise interactions. Future studies could use our methodological framework to evaluate the generality of our findings in a representative sample of study systems with contrasting ecological conditions.

  8. Spectral methods for the detection of network community structure: a comparative analysis

    International Nuclear Information System (INIS)

    Shen, Hua-Wei; Cheng, Xue-Qi

    2010-01-01

    Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity

  9. An anatomical substrate for integration among functional networks in human cortex.

    Science.gov (United States)

    van den Heuvel, Martijn P; Sporns, Olaf

    2013-09-04

    The human brain shows several characteristics of an efficient communication network architecture, including short communication paths and the existence of modules interlinked by a small set of highly connected regions. Studies of structural networks comprising macroscopic white matter projections have shown that these putative hubs are densely interconnected, giving rise to a spatially distributed and topologically central collective called the "rich club." In parallel, studies of intrinsic brain activity have consistently revealed distinct functional communities or resting-state networks (RSNs), indicative of specialized processing and segregation of neuronal information. However, the pattern of structural connectivity interconnecting these functional RSNs and how such inter-RSN structural connections might bring about functional integration between RSNs remain largely unknown. Combining high-resolution diffusion weighted imaging with resting-state fMRI, we present novel evidence suggesting that the rich club structure plays a central role in cross-linking macroscopic RSNs of the human brain. Rich club hub nodes were present in all functional networks, accounted for a large proportion of "connector nodes," and were found to coincide with regions in which multiple networks overlap. In addition, a large proportion of all inter-RSN connections were found to involve rich club nodes, and these connections participated in a disproportionate number of communication paths linking nodes in different RSNs. Our findings suggest that the brain's rich club serves as a macroscopic anatomical substrate to cross-link functional networks and thus plays an important role in the integration of information between segregated functional domains of the human cortex.

  10. Open hardware: a role to play in wireless sensor networks?

    Science.gov (United States)

    Fisher, Roy; Ledwaba, Lehlogonolo; Hancke, Gerhard; Kruger, Carel

    2015-03-20

    The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the 'thing' level-devices and inter-device network communication-the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.

  11. Open Hardware: A Role to Play in Wireless Sensor Networks?

    Directory of Open Access Journals (Sweden)

    Roy Fisher

    2015-03-01

    Full Text Available The concept of the Internet of Things is rapidly becoming a reality, with many applications being deployed within industrial and consumer sectors. At the ‘thing’ level—devices and inter-device network communication—the core technical building blocks are generally the same as those found in wireless sensor network implementations. For the Internet of Things to continue growing, we need more plentiful resources for building intelligent devices and sensor networks. Unfortunately, current commercial devices, e.g., sensor nodes and network gateways, tend to be expensive and proprietary, which presents a barrier to entry and arguably slows down further development. There are, however, an increasing number of open embedded platforms available and also a wide selection of off-the-shelf components that can quickly and easily be built into device and network gateway solutions. The question is whether these solutions measure up to built-for-purpose devices. In the paper, we provide a comparison of existing built-for-purpose devices against open source devices. For comparison, we have also designed and rapidly prototyped a sensor node based on off-the-shelf components. We show that these devices compare favorably to built-for-purpose devices in terms of performance, power and cost. Using open platforms and off-the-shelf components would allow more developers to build intelligent devices and sensor networks, which could result in a better overall development ecosystem, lower barriers to entry and rapid growth in the number of IoT applications.

  12. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  13. The Network Structure Underlying the Earth Observation Assessment

    Science.gov (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  14. Composing Music with Complex Networks

    Science.gov (United States)

    Liu, Xiaofan; Tse, Chi K.; Small, Michael

    In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.

  15. The relations between network-operation and topological-property in a scale-free and small-world network with community structure

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2017-10-01

    It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.

  16. Decision-making in irrigation networks: Selecting appropriate canal structures using multi-attribute decision analysis.

    Science.gov (United States)

    Hosseinzade, Zeinab; Pagsuyoin, Sheree A; Ponnambalam, Kumaraswamy; Monem, Mohammad J

    2017-12-01

    The stiff competition for water between agriculture and non-agricultural production sectors makes it necessary to have effective management of irrigation networks in farms. However, the process of selecting flow control structures in irrigation networks is highly complex and involves different levels of decision makers. In this paper, we apply multi-attribute decision making (MADM) methodology to develop a decision analysis (DA) framework for evaluating, ranking and selecting check and intake structures for irrigation canals. The DA framework consists of identifying relevant attributes for canal structures, developing a robust scoring system for alternatives, identifying a procedure for data quality control, and identifying a MADM model for the decision analysis. An application is illustrated through an analysis for automation purposes of the Qazvin irrigation network, one of the oldest and most complex irrigation networks in Iran. A survey questionnaire designed based on the decision framework was distributed to experts, managers, and operators of the Qazvin network and to experts from the Ministry of Power in Iran. Five check structures and four intake structures were evaluated. A decision matrix was generated from the average scores collected from the survey, and was subsequently solved using TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. To identify the most critical structure attributes for the selection process, optimal attribute weights were calculated using Entropy method. For check structures, results show that the duckbill weir is the preferred structure while the pivot weir is the least preferred. Use of the duckbill weir can potentially address the problem with existing Amil gates where manual intervention is required to regulate water levels during periods of flow extremes. For intake structures, the Neyrpic® gate and constant head orifice are the most and least preferred alternatives, respectively. Some advantages

  17. Network communities within and across borders.

    Science.gov (United States)

    Cerina, Federica; Chessa, Alessandro; Pammolli, Fabio; Riccaboni, Massimo

    2014-04-01

    We investigate the impact of borders on the topology of spatially embedded networks. Indeed territorial subdivisions and geographical borders significantly hamper the geographical span of networks thus playing a key role in the formation of network communities. This is especially important in scientific and technological policy-making, highlighting the interplay between pressure for the internationalization to lead towards a global innovation system and the administrative borders imposed by the national and regional institutions. In this study we introduce an outreach index to quantify the impact of borders on the community structure and apply it to the case of the European and US patent co-inventors networks. We find that (a) the US connectivity decays as a power of distance, whereas we observe a faster exponential decay for Europe; (b) European network communities essentially correspond to nations and contiguous regions while US communities span multiple states across the whole country without any characteristic geographic scale. We confirm our findings by means of a set of simulations aimed at exploring the relationship between different patterns of cross-border community structures and the outreach index.

  18. Association of Symptom Network Structure With the Course of [corrected] Depression.

    Science.gov (United States)

    van Borkulo, Claudia; Boschloo, Lynn; Borsboom, Denny; Penninx, Brenda W J H; Waldorp, Lourens J; Schoevers, Robert A

    2015-12-01

    Major depressive disorder (MDD) is a heterogeneous condition in terms of symptoms, course, and underlying disease mechanisms. Current classifications do not adequately address this complexity. In novel network approaches to psychopathology, psychiatric disorders are conceptualized as complex dynamic systems of mutually interacting symptoms. This perspective implies that a more densely connected network of symptoms is indicative of a poorer prognosis, but, to date, no previous study has examined whether network structure is indeed associated with the longitudinal course of MDD. To examine whether the baseline network structure of MDD symptoms is associated with the longitudinal course of MDD. In this prospective study, in which remittent and persistent MDD was defined on the basis of a follow-up assessment after 2 years, 515 patients from the Netherlands Study of Depression and Anxiety with past-year MDD (established with the Composite International Diagnostic Interview) and at least moderate depressive symptoms (assessed with the Inventory of Depressive Symptomatology [IDS]) at baseline were studied. Baseline starting and ending dates were September 1, 2004, through February 28, 2007. Follow-up starting and ending dates were September 1, 2006, through February 28, 2009. Analysis was conducted August 2015. The MDD was considered persistent if patients had at least moderate depressive symptoms (IDS) at 2-year follow-up; otherwise, the MDD was considered remitted. Sparse network structures of baseline MDD symptoms assessed via IDS were computed. Global and local connectivity of network structures were compared across persisters and remitters using a permutation test. Among the 515 patients, 335 (65.1%) were female, mead (SD) age was 40.9 (12.1) years, and 253 (49.1%) had persistent MDD at 2-year follow-up. Persisters (n = 253) had a higher baseline IDS sum score than remitters (n = 262) (mean [SD] score, 40.2 [8.9] vs 35.1 [7.1]; the test statistic for the difference

  19. Theorising big IT programmes in healthcare: strong structuration theory meets actor-network theory.

    Science.gov (United States)

    Greenhalgh, Trisha; Stones, Rob

    2010-05-01

    The UK National Health Service is grappling with various large and controversial IT programmes. We sought to develop a sharper theoretical perspective on the question "What happens - at macro-, meso- and micro-level - when government tries to modernise a health service with the help of big IT?" Using examples from data fragments at the micro-level of clinical work, we considered how structuration theory and actor-network theory (ANT) might be combined to inform empirical investigation. Giddens (1984) argued that social structures and human agency are recursively linked and co-evolve. ANT studies the relationships that link people and technologies in dynamic networks. It considers how discourses become inscribed in data structures and decision models of software, making certain network relations irreversible. Stones' (2005) strong structuration theory (SST) is a refinement of Giddens' work, systematically concerned with empirical research. It views human agents as linked in dynamic networks of position-practices. A quadripartite approcach considers [a] external social structures (conditions for action); [b] internal social structures (agents' capabilities and what they 'know' about the social world); [c] active agency and actions and [d] outcomes as they feed back on the position-practice network. In contrast to early structuration theory and ANT, SST insists on disciplined conceptual methodology and linking this with empirical evidence. In this paper, we adapt SST for the study of technology programmes, integrating elements from material interactionism and ANT. We argue, for example, that the position-practice network can be a socio-technical one in which technologies in conjunction with humans can be studied as 'actants'. Human agents, with their complex socio-cultural frames, are required to instantiate technology in social practices. Structurally relevant properties inscribed and embedded in technological artefacts constrain and enable human agency. The fortunes

  20. Finding the core : Network structure in interbank markets

    NARCIS (Netherlands)

    in 't Veld, Daan; van Lelyveld, Iman

    2014-01-01

    This paper investigates the network structure of interbank markets. Using a dataset of interbank exposures in the Netherlands, we corroborate the recent hypothesis that the core periphery model is a 'stylised fact' of interbank markets. We find a core of highly connected banks intermediating between

  1. The interactions of normal and hyperactive children with their mothers in free play and structured tasks.

    Science.gov (United States)

    Cunningham, C E; Barkley, R A

    1979-03-01

    Groups of 20 normal and 20 hyperactive boys ranging in age from 6 to 12 years were observed interacting with their mothers in 15-min free-play and 15-min structured-task situations. Using a 15-sec interval coding procedure, 1 observer recorded the mother's response to specific antecedent behaviors of the child while a second observer recorded the child's response to specific behaviors of the mother. Hyperactive boys proved more active, less compliant, and less likely to remain on task than nonhyperactive peers. Mothers of hyperactive boys were less likely to respond positively to the child's social interactions, solitary play activities, or compliant on-task behavior. In addition, mothers of hyperactive boys imposed more structure and control on the child's play, social interactions, and task-oriented activities. It is suggested that the controlling intrusive style observed among the mothers of hyperactive boys, while initially a response to the child's overactive, impulsive, inattentive style, may further contribute to the child's behavioral difficulties.

  2. Too much power to the networks

    Directory of Open Access Journals (Sweden)

    Alessandro Delfanti

    2009-10-01

    Full Text Available In his latest book titled “Communication power”, the famous sociologist of information society Manuel Castells focuses on the way in which power takes shape and acts in information societies, and the role of communication in defining, structuring, and changing it. From the rise of “mass self-communication” to the role of environmental movements and neuropolitics, the network is the key structure at play and the main lens used to analyse the transformations we are witnessing. To support his thesis Castells links media studies, power theory and brain science, but his insistence on networks puts in danger his ability to give to his readers a comprehensive and coherent interpretative framework.

  3. Structure Learning in Power Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as these related to demand response, outage detection and management, and improved load-monitoring. Here, inspired by proliferation of the metering technology, we discuss statistical estimation problems in structurally loopy but operationally radial distribution grids consisting in learning operational layout of the network from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time – which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  4. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  5. Inferring the interplay between network structure and market effects in Bitcoin

    International Nuclear Information System (INIS)

    Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor

    2014-01-01

    A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins. (paper)

  6. Inferring the interplay between network structure and market effects in Bitcoin

    Science.gov (United States)

    Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor

    2014-12-01

    A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins.

  7. Parallel protein secondary structure prediction based on neural networks.

    Science.gov (United States)

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  8. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions.

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Ribeiro Mello

    2011-02-01

    Full Text Available Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i some bat species depend more on fruits than others, and (ii that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H(2' = 0.37±0.10, mean ± SD and similar nestedness (NODF = 0.56±0.12 than pollination networks. All networks were modular (M = 0.32±0.07, and had on average four cohesive subgroups (modules of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum, although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10 and plants (R = 0.68±0.09. Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks.

  9. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-11-01

    Full Text Available Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging, we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging.

  10. Epidemics scenarios in the "Romantic network".

    Directory of Open Access Journals (Sweden)

    Alexsandro M Carvalho

    Full Text Available The networks of sexual contacts together with temporal interactions play key roles in the spread of sexually transmitted infections. Unfortunately, data for this kind of network is scarce. One of the few exceptions, the "Romantic network", is a complete structure of a real sexual network in a high school. Based on many network measurements the authors of the work have concluded that it does not correspond to any other model network. Regarding the temporal structure, several studies indicate that relationship timing can have an effect on the diffusion throughout networks, as relationship order determines transmission routes. The aim is to check if the particular structure, static and dynamic, of the Romantic network is determinant for the propagation of an STI. We performed simulations in two scenarios: the static network where all contacts are available and the dynamic case where contacts evolve over time. In the static case, we compared the epidemic results in the Romantic network with some paradigmatic topologies. In the dynamic scenario, we considered the dynamics of formation of pairs in the Romantic network and we studied the propagation of the diseases. Our results suggest that although this real network cannot be labeled as a Watts-Strogatz network, it is, in regard to the propagation of an STI, very similar to a high disorder network. Additionally, we found that: the effect that any individual contacting an externally infected subject is to make the network closer to a fully connected one, the higher the contact degree of patient zero the faster the spread of the outbreaks, and the epidemic impact is proportional to the numbers of contacts per unit time. Finally, our simulations confirm that relationship timing severely reduced the final outbreak size, and also, show a clear correlation between the average degree and the outbreak size over time.

  11. The stability of financial market networks

    Science.gov (United States)

    Yan, Xin-Guo; Xie, Chi; Wang, Gang-Jin

    2014-08-01

    We investigate the stability of a financial market network by measuring its topological robustness, namely the ability of the network to resist structural or topological changes. The closing prices of 710 stocks in the Shanghai Stock Exchange (SSE) from 2005 to 2011 are chosen as the empirical data. We divide the period into three sub-periods: before, during, and after the US sub-prime crisis. By monitoring the size of the clusters which fall apart from the network after removing the nodes (i.e., the listed companies in the SSE), we find that: i) the SSE network is sensitive to the nodes' failure, which implies that the network is unstable. ii) the SSE network before the financial crisis has the strongest robustness against the intentional topological damage; iii) the hubs (i.e., highly connected nodes) connect with each other directly and play a vital important role in maintaining SSE network's stability.

  12. Social networks and performance in distributed learning communities

    OpenAIRE

    Cadima, Rita; Ojeda Rodríguez, Jordi; Monguet Fierro, José María

    2012-01-01

    Social networks play an essential role in learning environments as a key channel for knowledge sharing and students' support. In distributed learning communities, knowledge sharing does not occur as spontaneously as when a working group shares the same physical space; knowledge sharing depends even more on student informal connections. In this study we analyse two distributed learning communities' social networks in order to understand how characteristics of the social structure can enhance s...

  13. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    OpenAIRE

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an...

  14. Network structure and thermal stability study of high temperature seal glass

    Science.gov (United States)

    Lu, K.; Mahapatra, M. K.

    2008-10-01

    High temperature seal glass has stringent requirement on glass thermal stability, which is dictated by glass network structures. In this study, a SrO-La2O3-Al2O3-B2O3-SiO2 based glass system was studied using nuclear magnetic resonance, Raman spectroscopy, and x-ray diffraction for solid oxide cell application purpose. Glass structural unit neighboring environment and local ordering were evaluated. Glass network connectivity as well as silicon and boron glass former coordination were calculated for different B2O3:SiO2 ratios. Thermal stability of the borosilicate glasses was studied after thermal treatment at 850 °C. The study shows that high B2O3 content induces BO4 and SiO4 structural unit ordering, increases glass localized inhomogeneity, decreases glass network connectivity, and causes devitrification. Glass modifiers interact with either silicon- or boron-containing structural units and form different devitrified phases at different B2O3:SiO2 ratios. B2O3-free glass shows the best thermal stability among the studied compositions, remaining stable after thermal treatment for 200 h at 850 °C.

  15. Eigenspaces of networks reveal the overlapping and hierarchical community structure more precisely

    International Nuclear Information System (INIS)

    Ma, Xiaoke; Gao, Lin; Yong, Xuerong

    2010-01-01

    Identifying community structure is fundamental for revealing the structure–functionality relationship in complex networks, and spectral algorithms have been shown to be powerful for this purpose. In a traditional spectral algorithm, each vertex of a network is embedded into a spectral space by making use of the eigenvectors of the adjacency matrix or Laplacian matrix of the graph. In this paper, a novel spectral approach for revealing the overlapping and hierarchical community structure of complex networks is proposed by not only using the eigenvalues and eigenvectors but also the properties of eigenspaces of the networks involved. This gives us a better characterization of community. We first show that the communicability between a pair of vertices can be rewritten in term of eigenspaces of a network. An agglomerative clustering algorithm is then presented to discover the hierarchical communities using the communicability matrix. Finally, these overlapping vertices are discovered with the corresponding eigenspaces, based on the fact that the vertices more densely connected amongst one another are more likely to be linked through short cycles. Compared with the traditional spectral algorithms, our algorithm can identify both the overlapping and hierarchical community without increasing the time complexity O(n 3 ), where n is the size of the network. Furthermore, our algorithm can also distinguish the overlapping vertices from bridges. The method is tested by applying it to some computer-generated and real-world networks. The experimental results indicate that our algorithm can reveal community structure more precisely than the traditional spectral approaches

  16. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui

    2015-01-01

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  17. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  18. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    International Nuclear Information System (INIS)

    Hobbs, L.W.; Jesurum, C.E.; Pulim, V.

    1997-01-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  19. Local topological modeling of glass structure and radiation-induced rearrangements in connected networks

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, L.W. [Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, Cambridge, MA (United States); Jesurum, C.E. [Massachusetts Institute of Technology, Dept. of Mathematics, Cambridge, MA (United States); Pulim, V. [Massachusetts Institute of Technology, Lab. for Computer Science, Cambridge, MA (United States)

    1997-07-01

    Topology is shown to govern the arrangement of connected structural elements in network glasses such as silica and related radiation-amorphized network compounds: A topological description of such topologically-disordered arrangements is possible which utilizes a characteristic unit of structure--the local cluster--not far in scale from the unit cells in crystalline arrangements. Construction of credible glass network structures and their aberration during cascade disordering events during irradiation can be effected using local assembly rules based on modification of connectivity-based assembly rules derived for crystalline analogues. These topological approaches may provide useful complementary information to that supplied by molecular dynamics about re-ordering routes and final configurations in irradiated glasses. (authors)

  20. Scale-free models for the structure of business firm networks.

    Science.gov (United States)

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  1. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Retrofit of heat exchanger networks considering pressure drop and existing structure: a new targeting procedure

    International Nuclear Information System (INIS)

    PanjehShahi, M.H.; Nouzari, M.M.

    2002-01-01

    A new retrofit targeting procedure, based on pinch technology has been developed. The procedure considers existing structure and hydrodynamic system of a given network as two main constraint during targeting. The procedure uses a linear programming model to consider existing structure. The model finds a network structure that has maximum compatibility with existing structure. Furthermore, the procedure using the pressure drop equations, can consider decreasing the film coefficients of streams due to increasing network area. Good compatibility between old and new networks and non replacement of hydrodynamic equipment cause to the best use of capital in retrofit projects. The procedure has been checked by doing two case studies, in which the results compared to the established methods, and realized significant improvement

  3. Low-cost airlines in Europe: Network structures after the enlargement of the European Union

    Directory of Open Access Journals (Sweden)

    Dudas Gabor

    2010-01-01

    Full Text Available The liberalization of the European air opened the strictly regulated European market, and contributed to the appearance and quick spread of the Low-Cost Carriers (LCCs. At the beginning of the 21st century the low cost traffic absolutely concentrated on the Western European market but after the enlargement of the European Union (EU LCCs started their operations in Eastern Europe enlarging and enriching the former evolved network structures. The aim of this paper is to trace the evolution of the route network as a result of EU expansion. During the study we came to the conclusion that in the time period after the EU enlargement the European LCC traffic showed dynamic development, route networks widened and the number of accessible destinations doubled. Comparing the LCCs network structures we defined three main characteristics, which represents the North-South flows, the West-East routes and the mixed network structure.

  4. Epidemic spreading on dual-structure networks with mobile agents

    Science.gov (United States)

    Yao, Yiyang; Zhou, Yinzuo

    2017-02-01

    The rapid development of modern society continually transforms the social structure which leads to an increasingly distinct dual structure of higher population density in urban areas and lower density in rural areas. Such structure may induce distinctive spreading behavior of epidemics which does not happen in a single type structure. In this paper, we study the epidemic spreading of mobile agents on dual structure networks based on SIRS model. First, beyond the well known epidemic threshold for generic epidemic model that when the infection rate is below the threshold a pertinent infectious disease will die out, we find the other epidemic threshold which appears when the infection rate of a disease is relatively high. This feature of two thresholds for the SIRS model may lead to the elimination of infectious disease when social network has either high population density or low population density. Interestingly, however, we find that when a high density area is connected to a low density may cause persistent spreading of the infectious disease, even though the same disease will die out when it spreads in each single area. This phenomenon indicates the critical role of the connection between the two areas which could radically change the behavior of spreading dynamics. Our findings, therefore, provide new understanding of epidemiology pertinent to the characteristic modern social structure and have potential to develop controlling strategies accordingly.

  5. Recent Progress in Some Active Topics on Complex Networks

    International Nuclear Information System (INIS)

    Gu, J; Zhu, Y; Wang, Q A; Guo, L; Jiang, J; Chi, L; Li, W; Cai, X

    2015-01-01

    Complex networks have been extensively studied across many fields, especially in interdisciplinary areas. It has since long been recognized that topological structures and dynamics are important aspects for capturing the essence of complex networks. The recent years have also witnessed the emergence of several new elements which play important roles in network study. By combining the results of different research orientations in our group, we provide here a review of the recent advances in regards to spectral graph theory, opinion dynamics, interdependent networks, graph energy theory and temporal networks. We hope this will be helpful for the newcomers of those fields to discover new intriguing topics. (paper)

  6. Traffic Load on Interconnection Lines of Generalized Double Ring Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Riaz, Muhammad Tahir; Madsen, Ole Brun

    2004-01-01

    Generalized Double Ring (N2R) network structures possess a number of good properties, but being not planar they are hard to physically embed in communication networks. However, if some of the lines, the interconnection lines, are implemented by wireless technologies, the remaining structure...... consists of two planar rings, which are easily embedded by fiber or other wired solutions. It is shown that for large N2R structures, the interconnection lines carry notably lower loads than the other lines if shortest-path routing is used, and the effects of two other routing schemes are explored, leading...... to lower load on interconnection lines at the price of larger efficient average distance and diameter....

  7. Theoretical Neuroanatomy:Analyzing the Structure, Dynamics,and Function of Neuronal Networks

    Science.gov (United States)

    Seth, Anil K.; Edelman, Gerald M.

    The mammalian brain is an extraordinary object: its networks give rise to our conscious experiences as well as to the generation of adaptive behavior for the organism within its environment. Progress in understanding the structure, dynamics and function of the brain faces many challenges. Biological neural networks change over time, their detailed structure is difficult to elucidate, and they are highly heterogeneous both in their neuronal units and synaptic connections. In facing these challenges, graph-theoretic and information-theoretic approaches have yielded a number of useful insights and promise many more.

  8. Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.

    Science.gov (United States)

    Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L

    2016-11-01

    Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Grooming network cohesion and the role of individuals in a captive chimpanzee group.

    Science.gov (United States)

    Kanngiesser, Patricia; Sueur, Cédric; Riedl, Katrin; Grossmann, Johannes; Call, Josep

    2011-08-01

    Social network analysis offers new tools to study the social structure of primate groups. We used social network analysis to investigate the cohesiveness of a grooming network in a captive chimpanzee group (N = 17) and the role that individuals may play in it. Using data from a year-long observation, we constructed an unweighted social network of preferred grooming interactions by retaining only those dyads that groomed above the group mean. This choice of criterion was validated by the finding that the properties of the unweighted network correlated with the properties of a weighted network (i.e. a network representing the frequency of grooming interactions) constructed from the same data. To investigate group cohesion, we tested the resilience of the unweighted grooming network to the removal of central individuals (i.e. individuals with high betweenness centrality). The network fragmented more after the removal of individuals with high betweenness centrality than after the removal of random individuals. Central individuals played a pivotal role in maintaining the network's cohesiveness, and we suggest that this may be a typical property of affiliative networks like grooming networks. We found that the grooming network correlated with kinship and age, and that individuals with higher social status occupied more central positions in the network. Overall, the grooming network showed a heterogeneous structure, yet did not exhibit scale-free properties similar to many other primate networks. We discuss our results in light of recent findings on animal social networks and chimpanzee grooming. © 2010 Wiley-Liss, Inc.

  10. Users structure and behavior on an online social network during a political protest

    Science.gov (United States)

    Morales, A. J.; Losada, J. C.; Benito, R. M.

    2012-11-01

    Over the past years, new technologies and specially online social networks have penetrated into the world’s population at an accelerated pace. In this paper we analyze collected data from the web application Twitter, in order to describe the structure and dynamics of the emergent social networks, based on complexity science. We focused on a Venezuelan protest that took place exclusively by Twitter during December, 2010. We found a community structure with highly connected hubs and three different kinds of user behavior that determine the information flow dynamics. We noticed that even though online social networks appear to be a pure social environment, traditional media still holds loads of influence inside the network.

  11. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  12. Importance of small-degree nodes in assortative networks with degree-weight correlations

    Science.gov (United States)

    Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng

    2017-10-01

    It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.

  13. Monitoring of composite structures using a network of integrated PVDF film transducers

    International Nuclear Information System (INIS)

    Guzmán, Enrique; Cugnoni, Joël; Gmür, Thomas

    2015-01-01

    Aiming to reduce costs, polyvinylidene difluoride (PVDF) film patches are an emerging alternative to more classic piezoelectric technologies, like ceramic patches, as transducers to measure local deformation in many structural applications. This choice is supported by advantages such as the low weight and mechanical flexibility of PVDF, making this polymer suitable for embedding inside full scale polymer based composite structures. Piezoelectric transducer patches can be used as actuators to dynamically excite full-scale composite structures, and as sensors to measure the strain. The main objective of this paper is to verify that the PVDF transducers can provide exploitable signals in the context of structural health monitoring. In order to do so, two aspects of the design of transducer network are investigated: the optimization of the sensor network, for which the effective independence method is proposed, and the use of operational modal analysis (OMA), since it is a simple method to extract the natural frequencies of a structure from a time series. The results of the analysis are compared to a reference set issued from experimental modal analysis (EMA), a simple, well-known, classic method, which is carried out using accelerometers and an impact hammer. By statistical means, it is shown that there is no significant difference between the two methods, and an optimized PVDF transducer network combined with OMA can perform the dynamic analysis of a structure as well as a classic EMA setup would do. This leads the way to the use of low-cost PVDF embedded transducer networks for robust composite material characterization. (paper)

  14. Delayed convergence between brain network structure and function in rolandic epilepsy

    Directory of Open Access Journals (Sweden)

    Rene MH Besseling

    2014-09-01

    Full Text Available Introduction Rolandic epilepsy (RE manifests during a critical phase of brain development, and has been associated with language impairments. Concordant abnormalities in structural and functional connectivity (SC and FC have been described before. As SC and FC are under mutual influence, the current study investigates abnormalities in the SC-FC synergy in RE. Methods Twenty-two children with RE (age, mean±SD: 11.3±2.0 y and 22 healthy controls (age 10.5±1.6 y underwent structural, diffusion weighted, and functional MRI at 3T. The probabilistic anatomical landmarks atlas was used to parcellate the (subcortical gray matter. Constrained spherical deconvolution tractography and correlation of time series were used to assess SC and FC, respectively. The SC-FC correlation was assessed as a function of age for the non-zero structural connections over a range of sparsity values (0.01-0.75. A modularity analysis was performed on the mean SC network of the controls to localize potential global effects to subnetworks. SC and FC were also assessed separately using graph analysis.Results The SC-FC correlation was significantly reduced in children with RE compared to healthy controls, especially for the youngest participants. This effect was most pronounced in a left and a right centro-temporal network, as well as in a medial parietal network. Graph analysis revealed no prominent abnormalities in SC or FC network organization.Conclusion Since SC and FC converge during normal maturation, our finding of reduced SC-FC correlation illustrates impaired synergy between brain structure and function. More specifically, since this effect was most pronounced in the youngest participants, RE may represent a developmental disorder of delayed brain network maturation. The observed effects seem especially attributable to medial parietal connections, which forms an intermediate between bilateral centro-temporal modules of epileptiform activity, and bear relevance for

  15. CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks

    Science.gov (United States)

    Franke, R.

    2016-11-01

    In many networks discovered in biology, medicine, neuroscience and other disciplines special properties like a certain degree distribution and hierarchical cluster structure (also called communities) can be observed as general organizing principles. Detecting the cluster structure of an unknown network promises to identify functional subdivisions, hierarchy and interactions on a mesoscale. It is not trivial choosing an appropriate detection algorithm because there are multiple network, cluster and algorithmic properties to be considered. Edges can be weighted and/or directed, clusters overlap or build a hierarchy in several ways. Algorithms differ not only in runtime, memory requirements but also in allowed network and cluster properties. They are based on a specific definition of what a cluster is, too. On the one hand, a comprehensive network creation model is needed to build a large variety of benchmark networks with different reasonable structures to compare algorithms. On the other hand, if a cluster structure is already known, it is desirable to separate effects of this structure from other network properties. This can be done with null model networks that mimic an observed cluster structure to improve statistics on other network features. A third important application is the general study of properties in networks with different cluster structures, possibly evolving over time. Currently there are good benchmark and creation models available. But what is left is a precise sandbox model to build hierarchical, overlapping and directed clusters for undirected or directed, binary or weighted complex random networks on basis of a sophisticated blueprint. This gap shall be closed by the model CHIMERA (Cluster Hierarchy Interconnection Model for Evaluation, Research and Analysis) which will be introduced and described here for the first time.

  16. Limits to the development of feed-forward structures in large recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Susanne Kunkel

    2011-02-01

    Full Text Available Spike-timing dependent plasticity (STDP has traditionally been of great interest to theoreticians, as it seems to provide an answer to the question of how the brain can develop functional structure in response to repeated stimuli. However, despite this high level of interest, convincing demonstrations of this capacity in large, initially random networks have not been forthcoming. Such demonstrations as there are typically rely on constraining the problem artificially. Techniques include employing additional pruning mechanisms or STDP rules that enhance symmetry breaking, simulating networks with low connectivity that magnify competition between synapses, or combinations of the above. In this paper we first review modeling choices that carry particularly high risks of producing non-generalizable results in the context of STDP in recurrent networks. We then develop a theory for the development of feed-forward structure in random networks and conclude that an unstable fixed point in the dynamics prevents the stable propagation of structure in recurrent networks with weight-dependent STDP. We demonstrate that the key predictions of the theory hold in large-scale simulations. The theory provides insight into the reasons why such development does not take place in unconstrained systems and enables us to identify candidate biologically motivated adaptations to the balanced random network model that might enable it.

  17. On Line Segment Length and Mapping 4-regular Grid Structures in Network Infrastructures

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Nielsen, Rasmus Hjorth; Pedersen, Jens Myrup

    2006-01-01

    The paper focuses on mapping the road network into 4-regular grid structures. A mapping algorithm is proposed. To model the road network GIS data have been used. The Geographic Information System (GIS) data for the road network are composed with different size of line segment lengths...

  18. Exploring the Impact of Network Structure and Demand Collaboration on the Dynamics of a Supply Chain Network Using a Robust Control Approach

    Directory of Open Access Journals (Sweden)

    Yongchang Wei

    2015-01-01

    uncertain environment. The impact of network structure and collaboration on the dynamics and robustness of supply chain network, however, remains to be explored. In this paper, a unified state space model for a two-layer supply chain network composed of multiple distributors and multiple retailers is developed. A robust control algorithm is advocated to reduce both order and demand fluctuations for unknown demand. Numerical simulations demonstrate that the robust control approach has the advantage to reduce both inventory and order fluctuations. In the simulation experiment, it is interesting to notice that complex network structure and collaborations might contribute to the reduction of inventory and order oscillations. This paper yields new insights into the overestimated bullwhip effect problem and helps us understand the complexities of supply chain networks.

  19. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes.

    Science.gov (United States)

    Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben

    2018-01-10

    Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.

  20. Topological structure of the space of phenotypes: the case of RNA neutral networks.

    Directory of Open Access Journals (Sweden)

    Jacobo Aguirre

    Full Text Available The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence and phenotype (approximated by the secondary structure fold are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.