WorldWideScience

Sample records for network simulation model

  1. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  2. Network Modeling and Simulation (NEMSE)

    Science.gov (United States)

    2013-07-01

    Prioritized Packet Fragmentation", IEEE Trans. Multimedia , Oct. 2012. [13 SYSENG] . Defense Acquisition Guidebook, Chapter 4 System Engineering, and...2012 IEEE High Performance Extreme Computing Conference (HPEC) poster session [1 Ross]. Motivation  Air Force Research Lab needs o Capability...is virtual. These eight virtualizations were: System-in-the-Loop (SITL) using OPNET Modeler, COPE, Field Programmable Gate Array ( FPGA Physical

  3. Modeling and Simulation Network Data Standards

    Science.gov (United States)

    2011-09-30

    12.1 Open Shortest Path First ( OSPF ) Protocol commonly used to find the shortest path between two nodes. User defined. 12.2 Border Gateway Protocol...Element Definition 12.7 Request for Comments – 1256 (RFC-1256) Router discovery protocol. 13.0 OSPF Sub-elements define OSPF parameters 13.1...resolution network analysis simulation tool OSPF open shortest path first OV operational view PEO-I Program Executive Office - Information

  4. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  5. Modified network simulation model with token method of bus access

    Directory of Open Access Journals (Sweden)

    L.V. Stribulevich

    2013-08-01

    Full Text Available Purpose. To study the characteristics of the local network with the marker method of access to the bus its modified simulation model was developed. Methodology. Defining characteristics of the network is carried out on the developed simulation model, which is based on the state diagram-layer network station with the mechanism of processing priorities, both in steady state and in the performance of control procedures: the initiation of a logical ring, the entrance and exit of the station network with a logical ring. Findings. A simulation model, on the basis of which can be obtained the dependencies of the application the maximum waiting time in the queue for different classes of access, and the reaction time usable bandwidth on the data rate, the number of network stations, the generation rate applications, the number of frames transmitted per token holding time, frame length was developed. Originality. The technique of network simulation reflecting its work in the steady condition and during the control procedures, the mechanism of priority ranking and handling was proposed. Practical value. Defining network characteristics in the real-time systems on railway transport based on the developed simulation model.

  6. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  7. Slow update stochastic simulation algorithms for modeling complex biochemical networks.

    Science.gov (United States)

    Ghosh, Debraj; De, Rajat K

    2017-10-30

    The stochastic simulation algorithm (SSA) based modeling is a well recognized approach to predict the stochastic behavior of biological networks. The stochastic simulation of large complex biochemical networks is a challenge as it takes a large amount of time for simulation due to high update cost. In order to reduce the propensity update cost, we proposed two algorithms: slow update exact stochastic simulation algorithm (SUESSA) and slow update exact sorting stochastic simulation algorithm (SUESSSA). We applied cache-based linear search (CBLS) in these two algorithms for improving the search operation for finding reactions to be executed. Data structure used for incorporating CBLS is very simple and the cost of maintaining this during propensity update operation is very low. Hence, time taken during propensity updates, for simulating strongly coupled networks, is very fast; which leads to reduction of total simulation time. SUESSA and SUESSSA are not only restricted to elementary reactions, they support higher order reactions too. We used linear chain model and colloidal aggregation model to perform a comparative analysis of the performances of our methods with the existing algorithms. We also compared the performances of our methods with the existing ones, for large biochemical networks including B cell receptor and FcϵRI signaling networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Developed hydraulic simulation model for water pipeline networks

    Directory of Open Access Journals (Sweden)

    A. Ayad

    2013-03-01

    Full Text Available A numerical method that uses linear graph theory is presented for both steady state, and extended period simulation in a pipe network including its hydraulic components (pumps, valves, junctions, etc.. The developed model is based on the Extended Linear Graph Theory (ELGT technique. This technique is modified to include new network components such as flow control valves and tanks. The technique also expanded for extended period simulation (EPS. A newly modified method for the calculation of updated flows improving the convergence rate is being introduced. Both benchmarks, ad Actual networks are analyzed to check the reliability of the proposed method. The results reveal the finer performance of the proposed method.

  9. Hybrid neural network bushing model for vehicle dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jeong Hyun [Pukyong National University, Busan (Korea, Republic of); Lee, Seung Kyu [Hyosung Corporation, Changwon (Korea, Republic of); Yoo, Wan Suk [Pusan National University, Busan (Korea, Republic of)

    2008-12-15

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  10. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  11. A Neural Network Model for Dynamics Simulation | Bholoa ...

    African Journals Online (AJOL)

    University of Mauritius Research Journal. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 15, No 1 (2009) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. A Neural Network Model for Dynamics Simulation. Ajeevsing ...

  12. Fracture Network Modeling and GoldSim Simulation Support

    OpenAIRE

    杉田 健一郎; Dershowiz, W.

    2003-01-01

    During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aspo Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA).

  13. Network Modeling and Simulation Environment (NEMSE)

    Science.gov (United States)

    2012-07-01

    transmission ( frame rate and resolution) and encoding (compression) characteristics of a video stream to adapt to changing bandwidth limitations. 3.3...transitions the NEMSE Demos to 6.2 research. The NEMSE Demos were System-in-the-Loop ( STIL ) using OPNET Modeler, COPE, FPGA Physical Layer Emulator...sensor payloads were flown by SUSEX: Gimbaled IR Video – LWIR, MWIR, & SWIR, WAMI – 1-5 frame /sec, large footprint, Gimbaled EO Video – 26x zoom, AR

  14. Modeling and simulation of the USAVRE network and radiology operations

    Science.gov (United States)

    Martinez, Ralph; Bradford, Daniel Q.; Hatch, Jay; Sochan, John; Chimiak, William J.

    1998-07-01

    The U.S. Army Medical Command, lead by the Brooke Army Medical Center, has embarked on a visionary project. The U.S. Army Virtual Radiology Environment (USAVRE) is a CONUS-based network that connects all the Army's major medical centers and Regional Medical Commands (RMC). The purpose of the USAVRE is to improve the quality, access, and cost of radiology services in the Army via the use of state-of-the-art medical imaging, computer, and networking technologies. The USAVRE contains multimedia viewing workstations; database archive systems are based on a distributed computing environment using Common Object Request Broker Architecture (CORBA) middleware protocols. The underlying telecommunications network is an ATM-based backbone network that connects the RMC regional networks and PACS networks at medical centers and RMC clinics. This project is a collaborative effort between Army, university, and industry centers with expertise in teleradiology and Global PACS applications. This paper describes a model and simulation of the USAVRE for performance evaluation purposes. As a first step the results of a Technology Assessment and Requirements Analysis (TARA) -- an analysis of the workload in Army radiology departments, their equipment and their staffing. Using the TARA data and other workload information, we have developed a very detailed analysis of the workload and workflow patterns of our Medical Treatment Facilities. We are embarking on modeling and simulation strategies, which will form the foundation for the VRE network. The workload analysis is performed for each radiology modality in a RMC site. The workload consists of the number of examinations per modality, type of images per exam, number of images per exam, and size of images. The frequency for store and forward cases, second readings, and interactive consultation cases are also determined. These parameters are translated into the model described below. The model for the USAVRE is hierarchical in nature

  15. Ekofisk chalk: core measurements, stochastic reconstruction, network modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Saifullah

    2002-07-01

    This dissertation deals with (1) experimental measurements on petrophysical, reservoir engineering and morphological properties of Ekofisk chalk, (2) numerical simulation of core flood experiments to analyze and improve relative permeability data, (3) stochastic reconstruction of chalk samples from limited morphological information, (4) extraction of pore space parameters from the reconstructed samples, development of network model using pore space information, and computation of petrophysical and reservoir engineering properties from network model, and (5) development of 2D and 3D idealized fractured reservoir models and verification of the applicability of several widely used conventional up scaling techniques in fractured reservoir simulation. Experiments have been conducted on eight Ekofisk chalk samples and porosity, absolute permeability, formation factor, and oil-water relative permeability, capillary pressure and resistivity index are measured at laboratory conditions. Mercury porosimetry data and backscatter scanning electron microscope images have also been acquired for the samples. A numerical simulation technique involving history matching of the production profiles is employed to improve the relative permeability curves and to analyze hysteresis of the Ekofisk chalk samples. The technique was found to be a powerful tool to supplement the uncertainties in experimental measurements. Porosity and correlation statistics obtained from backscatter scanning electron microscope images are used to reconstruct microstructures of chalk and particulate media. The reconstruction technique involves a simulated annealing algorithm, which can be constrained by an arbitrary number of morphological parameters. This flexibility of the algorithm is exploited to successfully reconstruct particulate media and chalk samples using more than one correlation functions. A technique based on conditional simulated annealing has been introduced for exact reproduction of vuggy

  16. Simulation of heart rate variability model in a network

    Science.gov (United States)

    Cascaval, Radu C.; D'Apice, Ciro; D'Arienzo, Maria Pia

    2017-07-01

    We consider a 1-D model for the simulation of the blood flow in the cardiovascular system. As inflow condition we consider a model for the aortic valve. The opening and closing of the valve is dynamically determined by the pressure difference between the left ventricular and aortic pressures. At the outflow we impose a peripheral resistance model. To approximate the solution we use a numerical scheme based on the discontinuous Galerkin method. We also considering a variation in heart rate and terminal reflection coefficient due to monitoring of the pressure in the network.

  17. Analyzing, Modeling, and Simulation for Human Dynamics in Social Network

    Directory of Open Access Journals (Sweden)

    Yunpeng Xiao

    2012-01-01

    Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.

  18. Network condition simulator for benchmarking sewer deterioration models.

    Science.gov (United States)

    Scheidegger, A; Hug, T; Rieckermann, J; Maurer, M

    2011-10-15

    An accurate description of aging and deterioration of urban drainage systems is necessary for optimal investment and rehabilitation planning. Due to a general lack of suitable datasets, network condition models are rarely validated, and if so with varying levels of success. We therefore propose a novel network condition simulator (NetCoS) that produces a synthetic population of sewer sections with a given condition-class distribution. NetCoS can be used to benchmark deterioration models and guide utilities in the selection of appropriate models and data management strategies. The underlying probabilistic model considers three main processes: a) deterioration, b) replacement policy, and c) expansions of the sewer network. The deterioration model features a semi-Markov chain that uses transition probabilities based on user-defined survival functions. The replacement policy is approximated with a condition-class dependent probability of replacing a sewer pipe. The model then simulates the course of the sewer sections from the installation of the first line to the present, adding new pipes based on the defined replacement and expansion program. We demonstrate the usefulness of NetCoS in two examples where we quantify the influence of incomplete data and inspection frequency on the parameter estimation of a cohort survival model and a Markov deterioration model. Our results show that typical available sewer inventory data with discarded historical data overestimate the average life expectancy by up to 200 years. Although NetCoS cannot prove the validity of a particular deterioration model, it is useful to reveal its possible limitations and shortcomings and quantifies the effects of missing or uncertain data. Future developments should include additional processes, for example to investigate the long-term effect of pipe rehabilitation measures, such as inliners. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    OpenAIRE

    Diogo Santos; José Pinto; Rossetti, Rosaldo J. F.; Eugénio Oliveira

    2016-01-01

    Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particul...

  20. A Network Scheduling Model for Distributed Control Simulation

    Science.gov (United States)

    Culley, Dennis; Thomas, George; Aretskin-Hariton, Eliot

    2016-01-01

    Distributed engine control is a hardware technology that radically alters the architecture for aircraft engine control systems. Of its own accord, it does not change the function of control, rather it seeks to address the implementation issues for weight-constrained vehicles that can limit overall system performance and increase life-cycle cost. However, an inherent feature of this technology, digital communication networks, alters the flow of information between critical elements of the closed-loop control. Whereas control information has been available continuously in conventional centralized control architectures through virtue of analog signaling, moving forward, it will be transmitted digitally in serial fashion over the network(s) in distributed control architectures. An underlying effect is that all of the control information arrives asynchronously and may not be available every loop interval of the controller, therefore it must be scheduled. This paper proposes a methodology for modeling the nominal data flow over these networks and examines the resulting impact for an aero turbine engine system simulation.

  1. Stochastic simulation of HIV population dynamics through complex network modelling

    NARCIS (Netherlands)

    Sloot, P. M. A.; Ivanov, S. V.; Boukhanovsky, A. V.; van de Vijver, D. A. M. C.; Boucher, C. A. B.

    We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and

  2. Stochastic simulation of HIV population dynamics through complex network modelling

    NARCIS (Netherlands)

    Sloot, P.M.A.; Ivanov, S.V.; Boukhanovsky, A.V.; van de Vijver, D.A.M.C.; Boucher, C.A.B.

    2008-01-01

    We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and

  3. Toward Designing a Quantum Key Distribution Network Simulation Model

    Directory of Open Access Journals (Sweden)

    Miralem Mehic

    2016-01-01

    Full Text Available As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator.

  4. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  5. NCC Simulation Model: Simulating the operations of the network control center, phase 2

    Science.gov (United States)

    Benjamin, Norman M.; Paul, Arthur S.; Gill, Tepper L.

    1992-12-01

    The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors.

  6. Enterprise Networks for Competences Exchange: A Simulation Model

    Science.gov (United States)

    Remondino, Marco; Pironti, Marco; Pisano, Paola

    A business process is a set of logically related tasks performed to achieve a defined business and related to improving organizational processes. Process innovation can happen at various levels: incrementally, redesign of existing processes, new processes. The knowledge behind process innovation can be shared, acquired, changed and increased by the enterprises inside a network. An enterprise can decide to exploit innovative processes it owns, thus potentially gaining competitive advantage, but risking, in turn, that other players could reach the same technological levels. Or it could decide to share it, in exchange for other competencies or money. These activities could be the basis for a network formation and/or impact the topology of an existing network. In this work an agent based model is introduced (E3), aiming to explore how a process innovation can facilitate network formation, affect its topology, induce new players to enter the market and spread onto the network by being shared or developed by new players.

  7. Queueing Models and Stability of Message Flows in Distributed Simulators of Open Queueing Networks

    OpenAIRE

    Gupta, Manish; Kumar, Anurag; Shorey, Rajeev

    1996-01-01

    In this paper we study message flow processes in distributed simulators of open queueing networks. We develop and study queueing models for distributed simulators with maximum lookahead sequencing. We characterize the external arrival process, and the message feedback process in the simulator of a simple queueing network with feedback. We show that a certain natural modelling construct for the arrival process is exactly correct, whereas an obvious model for the feedback process is wrong; we t...

  8. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  9. Modelling Altitude Information in Two-Dimensional Traffic Networks for Electric Mobility Simulation

    Directory of Open Access Journals (Sweden)

    Diogo Santos

    2016-06-01

    Full Text Available Elevation data is important for electric vehicle simulation. However, traffic simulators are often two-dimensional and do not offer the capability of modelling urban networks taking elevation into account. Specifically, SUMO - Simulation of Urban Mobility, a popular microscopic traffic simulator, relies on networks previously modelled with elevation data as to provide this information during simulations. This work tackles the problem of adding elevation data to urban network models - particularly for the case of the Porto urban network, in Portugal. With this goal in mind, a comparison between different altitude information retrieval approaches is made and a simple tool to annotate network models with altitude data is proposed. The work starts by describing the methodological approach followed during research and development, then describing and analysing its main findings. This description includes an in-depth explanation of the proposed tool. Lastly, this work reviews some related work to the subject.

  10. Analysis and Simulation of Hybrid Models for Reaction Networks

    OpenAIRE

    Kreim, Michael

    2014-01-01

    The dynamics of biochemical reaction networks can be described by a variety of models, like the Reaction Rate equation (RRE), the Chemical Master equation (CME) or the Fokker-Planck equation (FPE). In this thesis, the behaviour of these different models is analysed. It is shown that the FPE can be motivated as an approximation of the CME and convergence is proven. Furthermore, two hybrid models are constructed by combining different approaches and convergence properties are proven and discussed.

  11. A Network Traffic Generator Model for Fast Network-on-Chip Simulation

    DEFF Research Database (Denmark)

    Mahadevan, Shankar; Angiolini, Frederico; Storgaard, Michael

    2005-01-01

    and effective Network-on-Chip (NoC) development and debugging environment. By capturing the type and the timestamp of communication events at the boundary of an IP core in a reference environment, the TG can subsequently emulate the core's communication behavior in different environments. Access patterns......For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...

  12. Network Traffic Generator Model for Fast Network-on-Chip Simulation

    DEFF Research Database (Denmark)

    Mahadevan, Shankar; Ang, Frederico; Olsen, Rasmus G.

    2008-01-01

    and effective Network-on-Chip (NoC) development and debugging environment. By capturing the type and the timestamp of communication events at the boundary of an IP core in a reference environment, the TG can subsequently emulate the core's communication behavior in different environments. Access patterns......For Systems-on-Chip (SoCs) development, a predominant part of the design time is the simulation time. Performance evaluation and design space exploration of such systems in bit- and cycle-true fashion is becoming prohibitive. We propose a traffic generation (TG) model that provides a fast...

  13. An introduction to network modeling and simulation for the practicing engineer

    CERN Document Server

    Burbank, Jack; Ward, Jon

    2011-01-01

    This book provides the practicing engineer with a concise listing of commercial and open-source modeling and simulation tools currently available including examples of implementing those tools for solving specific Modeling and Simulation examples. Instead of focusing on the underlying theory of Modeling and Simulation and fundamental building blocks for custom simulations, this book compares platforms used in practice, and gives rules enabling the practicing engineer to utilize available Modeling and Simulation tools. This book will contain insights regarding common pitfalls in network Modeling and Simulation and practical methods for working engineers.

  14. Modeling and Simulation of Handover Scheme in Integrated EPON-WiMAX Networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars

    2011-01-01

    In this paper, we tackle the seamless handover problem in integrated optical wireless networks. Our model applies for the convergence network of EPON and WiMAX and a mobilityaware signaling protocol is proposed. The proposed handover scheme, Integrated Mobility Management Scheme (IMMS), is assisted...... by enhancing the traditional MPCP signaling protocol, which cooperatively collects mobility information from the front-end wireless network and makes centralized bandwidth allocation decisions in the backhaul optical network. The integrated network architecture and the joint handover scheme are simulated using...... OPNET modeler. Results show validation of the protocol, i.e., integrated handover scheme gains better network performances....

  15. Linking Simulation with Formal Verification and Modeling of Wireless Sensor Network in TLA+

    Science.gov (United States)

    Martyna, Jerzy

    In this paper, we present the results of the simulation of a wireless sensor network based on the flooding technique and SPIN protocols. The wireless sensor network was specified and verified by means of the TLA+ specification language [1]. For a model of wireless sensor network built this way simulation was carried with the help of specially constructed software tools. The obtained results allow us to predict the behaviour of the wireless sensor network in various topologies and spatial densities. Visualization of the output data enable precise examination of some phenomenas in wireless sensor networks, such as a hidden terminal, etc.

  16. How Crime Spreads Through Imitation in Social Networks: A Simulation Model

    Science.gov (United States)

    Punzo, Valentina

    In this chapter an agent-based model for investigating how crime spreads through social networks is presented. Some theoretical issues related to the sociological explanation of crime are tested through simulation. The agent-based simulation allows us to investigate the relative impact of some mechanisms of social influence on crime, within a set of controlled simulated experiments.

  17. Application of Neural Network and Simulation Modeling to Evaluate Russian Banks’ Performance

    OpenAIRE

    Sharma, Satish; Shebalkov, Mikhail

    2013-01-01

    This paper presents an application of neural network and simulation modeling to analyze and predict the performance of 883 Russian Banks over the period 2000-2010. Correlation analysis was performed to obtain key financial indicators which reflect the leverage, liquidity, profitability and size of Banks. Neural network was trained over the entire dataset, and then simulation modeling was performed generating values which are distributed with Largest Extreme Value and Loglogistic distributions...

  18. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  19. Development of a pore network simulation model to study nonaqueous phase liquid dissolution

    Science.gov (United States)

    Dillard, Leslie A.; Blunt, Martin J.

    2000-01-01

    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure-saturation curves. The predicted network residual styrene blob-size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous-phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  20. Modeling a Million-Node Slim Fly Network Using Parallel Discrete-Event Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Noah; Carothers, Christopher; Mubarak, Misbah; Ross, Robert; Carns, Philip

    2016-05-15

    As supercomputers close in on exascale performance, the increased number of processors and processing power translates to an increased demand on the underlying network interconnect. The Slim Fly network topology, a new lowdiameter and low-latency interconnection network, is gaining interest as one possible solution for next-generation supercomputing interconnect systems. In this paper, we present a high-fidelity Slim Fly it-level model leveraging the Rensselaer Optimistic Simulation System (ROSS) and Co-Design of Exascale Storage (CODES) frameworks. We validate our Slim Fly model with the Kathareios et al. Slim Fly model results provided at moderately sized network scales. We further scale the model size up to n unprecedented 1 million compute nodes; and through visualization of network simulation metrics such as link bandwidth, packet latency, and port occupancy, we get an insight into the network behavior at the million-node scale. We also show linear strong scaling of the Slim Fly model on an Intel cluster achieving a peak event rate of 36 million events per second using 128 MPI tasks to process 7 billion events. Detailed analysis of the underlying discrete-event simulation performance shows that a million-node Slim Fly model simulation can execute in 198 seconds on the Intel cluster.

  1. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  2. Packet Tracer network simulator

    CERN Document Server

    Jesin, A

    2014-01-01

    A practical, fast-paced guide that gives you all the information you need to successfully create networks and simulate them using Packet Tracer.Packet Tracer Network Simulator is aimed at students, instructors, and network administrators who wish to use this simulator to learn how to perform networking instead of investing in expensive, specialized hardware. This book assumes that you have a good amount of Cisco networking knowledge, and it will focus more on Packet Tracer rather than networking.

  3. Modeling a secular trend by Monte Carlo simulation of height biased migration in a spatial network.

    Science.gov (United States)

    Groth, Detlef

    2017-04-01

    Background: In a recent Monte Carlo simulation, the clustering of body height of Swiss military conscripts within a spatial network with characteristic features of the natural Swiss geography was investigated. In this study I examined the effect of migration of tall individuals into network hubs on the dynamics of body height within the whole spatial network. The aim of this study was to simulate height trends. Material and methods: Three networks were used for modeling, a regular rectangular fishing net like network, a real world example based on the geographic map of Switzerland, and a random network. All networks contained between 144 and 148 districts and between 265-307 road connections. Around 100,000 agents were initially released with average height of 170 cm, and height standard deviation of 6.5 cm. The simulation was started with the a priori assumption that height variation within a district is limited and also depends on height of neighboring districts (community effect on height). In addition to a neighborhood influence factor, which simulates a community effect, body height dependent migration of conscripts between adjacent districts in each Monte Carlo simulation was used to re-calculate next generation body heights. In order to determine the direction of migration for taller individuals, various centrality measures for the evaluation of district importance within the spatial network were applied. Taller individuals were favored to migrate more into network hubs, backward migration using the same number of individuals was random, not biased towards body height. Network hubs were defined by the importance of a district within the spatial network. The importance of a district was evaluated by various centrality measures. In the null model there were no road connections, height information could not be delivered between the districts. Results: Due to the favored migration of tall individuals into network hubs, average body height of the hubs, and later

  4. Credibility and validation of simulation models for tactical IP networks

    NARCIS (Netherlands)

    Boltjes, B.; Thiele, F.; Diaz, I.F.

    2007-01-01

    The task of TNO is to provide predictions of the scalability and performance of the new all-IP tactical networks of the Royal Netherlands Army (RNLA) that are likely to be fielded. The inherent properties of fielded tactical networks, such as low bandwidth and Quality of Service (QoS) policies

  5. Optimal design of supply chain network under uncertainty environment using hybrid analytical and simulation modeling approach

    Science.gov (United States)

    Chiadamrong, N.; Piyathanavong, V.

    2017-04-01

    Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.

  6. A Model to Simulate Multimodality in a Mesoscopic Dynamic Network Loading Framework

    Directory of Open Access Journals (Sweden)

    Massimo Di Gangi

    2017-01-01

    Full Text Available A dynamic network loading (DNL model using a mesoscopic approach is proposed to simulate a multimodal transport network considering en-route change of the transport modes. The classic mesoscopic approach, where packets of users belonging to the same mode move following a path, is modified to take into account multiple modes interacting with each other, simultaneously and on the same multimodal network. In particular, to simulate modal change, functional aspects of multimodal arcs have been developed; those arcs are properly located on the network where modal change occurs and users are packed (or unpacked in a new modal resource that moves up to destination or to another multimodal arc. A test on a simple network reproducing a real situation is performed in order to show model peculiarities; some indicators, used to describe performances of the considered transport system, are shown.

  7. ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks

    Directory of Open Access Journals (Sweden)

    David R. Hunter

    2008-12-01

    Full Text Available We describe some of the capabilities of the ergm package and the statistical theory underlying it. This package contains tools for accomplishing three important, and inter-related, tasks involving exponential-family random graph models (ERGMs: estimation, simulation, and goodness of fit. More precisely, ergm has the capability of approximating a maximum likelihood estimator for an ERGM given a network data set; simulating new network data sets from a fitted ERGM using Markov chain Monte Carlo; and assessing how well a fitted ERGM does at capturing characteristics of a particular network data set.

  8. Simulation and Modeling of a New Medium Access Control Scheme for Multi-Beam Directional Networking

    Science.gov (United States)

    2017-03-03

    implement our protocol in both simula- tion and a new Extendable Mobile Ad -hoc Network Emula- tor (EMANE) model that allows for real-time, high fidelity...issues, where the amount of data passed between the servers is too high, and 2) computation issues, where calculating the interference on the packets...developed a custom discrete event simulator in C++, and a new Ex- tendable Mobile Ad -hoc Network Emulator (EMANE) [10] model. These tools are used to both

  9. Modeling radio link performance in UMTS W-CDMA network simulations

    DEFF Research Database (Denmark)

    Klingenbrunn, Thomas; Mogensen, Preben Elgaard

    2000-01-01

    This article presents a method to model the W-CDMA radio receiver performance, which is usable in network simulation tools for third generation mobile cellular systems. The method represents a technique to combine link level simulations with network level simulations. The method is derived from [1......], which defines a stochastic mapping function from a Signal-to-Interference Ratio into a Bit-Error-Rate for a TDMA system. However, in order to work in a W-CDMA based system, the fact that the Multiple-Access Interference in downlink consists of both Gaussian inter-cell interference and orthogonal intra...

  10. Neural networks simulation of a discrete model of continious effects of irrelevant stimuli

    NARCIS (Netherlands)

    Molenaar, P.C.M.

    1990-01-01

    Presents a general simulation method based on minimal neural network representations of nonmathematical, structural models of information processes. The time-dependent behavior of each component in a given structural model is represented by a simple, noncommittal equation that does not affect the

  11. ezBioNet: A modeling and simulation system for analyzing biological reaction networks

    Science.gov (United States)

    Yu, Seok Jong; Tung, Thai Quang; Park, Junho; Lim, Jongtae; Yoo, Jaesoo

    2012-10-01

    To achieve robustness against living environments, a living organism is composed of complicated regulatory mechanisms ranging from gene regulations to signal transduction. If such life phenomena are to be understand, an integrated analysis tool that should have modeling and simulation functions for biological reactions, as well as new experimental methods for measuring biological phenomena, is fundamentally required. We have designed and implemented modeling and simulation software (ezBioNet) for analyzing biological reaction networks. The software can simultaneously perform an integrated modeling of various responses occurring in cells, ranging from gene expressions to signaling processes. To support massive analysis of biological networks, we have constructed a server-side simulation system (VCellSim) that can perform ordinary differential equations (ODE) analysis, sensitivity analysis, and parameter estimates. ezBioNet integrates the BioModel database by connecting the european bioinformatics institute (EBI) servers through Web services APIs and supports the handling of systems biology markup language (SBML) files. In addition, we employed eclipse RCP (rich client platform) which is a powerful modularity framework allowing various functional expansions. ezBioNet is intended to be an easy-to-use modeling tool, as well as a simulation system, to understand the control mechanism by monitoring the change of each component in a biological network. A researcher may perform the kinetic modeling and execute the simulation. The simulation result can be managed and visualized on ezBioNet, which is freely available at http://ezbionet.cbnu.ac.kr.

  12. Discrete Event Modeling and Simulation-Driven Engineering for the ATLAS Data Acquisition Network

    CERN Document Server

    Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel

    2016-01-01

    We present an iterative and incremental development methodology for simulation models in network engineering projects. Driven by the DEVS (Discrete Event Systems Specification) formal framework for modeling and simulation we assist network design, test, analysis and optimization processes. A practical application of the methodology is presented for a case study in the ATLAS particle physics detector, the largest scientific experiment built by man where scientists around the globe search for answers about the origins of the universe. The ATLAS data network convey real-time information produced by physics detectors as beams of particles collide. The produced sub-atomic evidences must be filtered and recorded for further offline scrutiny. Due to the criticality of the transported data, networks and applications undergo careful engineering processes with stringent quality of service requirements. A tight project schedule imposes time pressure on design decisions, while rapid technology evolution widens the palett...

  13. Simulating microinjection experiments in a novel model of the rat sleep-wake regulatory network.

    Science.gov (United States)

    Diniz Behn, Cecilia G; Booth, Victoria

    2010-04-01

    This study presents a novel mathematical modeling framework that is uniquely suited to investigating the structure and dynamics of the sleep-wake regulatory network in the brain stem and hypothalamus. It is based on a population firing rate model formalism that is modified to explicitly include concentration levels of neurotransmitters released to postsynaptic populations. Using this framework, interactions among primary brain stem and hypothalamic neuronal nuclei involved in rat sleep-wake regulation are modeled. The model network captures realistic rat polyphasic sleep-wake behavior consisting of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep states. Network dynamics include a cyclic pattern of NREM sleep, REM sleep, and wake states that is disrupted by simulated variability of neurotransmitter release and external noise to the network. Explicit modeling of neurotransmitter concentrations allows for simulations of microinjections of neurotransmitter agonists and antagonists into a key wake-promoting population, the locus coeruleus (LC). Effects of these simulated microinjections on sleep-wake states are tracked and compared with experimental observations. Agonist/antagonist pairs, which are presumed to have opposing effects on LC activity, do not generally induce opposing effects on sleep-wake patterning because of multiple mechanisms for LC activation in the network. Also, different agents, which are presumed to have parallel effects on LC activity, do not induce parallel effects on sleep-wake patterning because of differences in the state dependence or independence of agonist and antagonist action. These simulation results highlight the utility of formal mathematical modeling for constraining conceptual models of the sleep-wake regulatory network.

  14. Customer social network affects marketing strategy: A simulation analysis based on competitive diffusion model

    Science.gov (United States)

    Hou, Rui; Wu, Jiawen; Du, Helen S.

    2017-03-01

    To explain the competition phenomenon and results between QQ and MSN (China) in the Chinese instant messaging software market, this paper developed a new population competition model based on customer social network. The simulation results show that the firm whose product with greater network externality effect will gain more market share than its rival when the same marketing strategy is used. The firm with the advantage of time, derived from the initial scale effect will become more competitive than its rival when facing a group of common penguin customers within a social network, verifying the winner-take-all phenomenon in this case.

  15. Building Model for the University of Mosul Computer Network Using OPNET Simulator

    Directory of Open Access Journals (Sweden)

    Modhar Modhar A. Hammoudi

    2013-04-01

    Full Text Available This paper aims at establishing a model in OPNET (Optimized Network Engineering Tool simulator for the University of Mosul computer network. The proposed network model was made up of two routers (Cisco 2600, core switch (Cisco6509, two servers, ip 32 cloud and 37 VLANs. These VLANs were connected to the core switch using fiber optic cables (1000BaseX. Three applications were added to test the network model. These applications were FTP (File Transfer Protocol, HTTP (Hyper Text Transfer Protocol and VoIP (Voice over Internet Protocol. The results showed that the proposed model had a positive efficiency on designing and managing the targeted network and can be used to view the data flow in it. Also, the simulation results showed that the maximum number of VoIP service users could be raised upto 5000 users when working under IP Telephony. This means that the ability to utilize VoIP service in this network can be maintained and is better when subjected to IP telephony scheme.

  16. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    Science.gov (United States)

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  17. An Efficient Neural Network Based Modeling Method for Automotive EMC Simulation

    Science.gov (United States)

    Frank, Florian; Weigel, Robert

    2011-09-01

    This paper presents a newly developed methodology for VHDL-AMS model integration into SPICE-based EMC simulations. To this end the VHDL-AMS model, which is available in a compiled version only, is characterized under typical loading conditions, and afterwards a neural network based technique is applied to convert characteristic voltage and current data into an equivalent circuit in SPICE syntax. After the explanation of the whole method and the presentation of a newly developed switched state space dynamic neural network model, the entire analysis process is demonstrated using a typical application from automotive industry.

  18. Modeling a Large Data Acquisition Network in a Simulation Framework

    CERN Document Server

    Colombo, Tommaso; The ATLAS collaboration

    2015-01-01

    The ATLAS detector at CERN records particle collision “events” delivered by the Large Hadron Collider. Its data-acquisition system is a distributed software system that identifies, selects, and stores interesting events in near real-time, with an aggregate throughput of several 10 GB/s. It is a distributed software system executed on a farm of roughly 2000 commodity worker nodes communicating via TCP/IP on an Ethernet network. Event data fragments are received from the many detector readout channels and are buffered, collected together, analyzed and either stored permanently or discarded. This system, and data-acquisition systems in general, are sensitive to the latency of the data transfer from the readout buffers to the worker nodes. Challenges affecting this transfer include the many-to-one communication pattern and the inherently bursty nature of the traffic. In this paper we introduce the main performance issues brought about by this workload, focusing in particular on the so-called TCP incast pathol...

  19. Epidemic Processes on Complex Networks : Modelling, Simulation and Algorithms

    NARCIS (Netherlands)

    Van de Bovenkamp, R.

    2015-01-01

    Local interactions on a graph will lead to global dynamic behaviour. In this thesis we focus on two types of dynamic processes on graphs: the Susceptible-Infected-Susceptilbe (SIS) virus spreading model, and gossip style epidemic algorithms. The largest part of this thesis is devoted to the SIS

  20. Simulation-Based Dynamic Passenger Flow Assignment Modelling for a Schedule-Based Transit Network

    Directory of Open Access Journals (Sweden)

    Xiangming Yao

    2017-01-01

    Full Text Available The online operation management and the offline policy evaluation in complex transit networks require an effective dynamic traffic assignment (DTA method that can capture the temporal-spatial nature of traffic flows. The objective of this work is to propose a simulation-based dynamic passenger assignment framework and models for such applications in the context of schedule-based rail transit systems. In the simulation framework, travellers are regarded as individual agents who are able to obtain complete information on the current traffic conditions. A combined route selection model integrated with pretrip route selection and entrip route switch is established for achieving the dynamic network flow equilibrium status. The train agent is operated strictly with the timetable and its capacity limitation is considered. A continuous time-driven simulator based on the proposed framework and models is developed, whose performance is illustrated through a large-scale network of Beijing subway. The results indicate that more than 0.8 million individual passengers and thousands of trains can be simulated simultaneously at a speed ten times faster than real time. This study provides an efficient approach to analyze the dynamic demand-supply relationship for large schedule-based transit networks.

  1. Use of a neural network to extract a missile flight model for simulation purposes

    Science.gov (United States)

    Pascale, Danny; Volckaert, Guy

    1996-03-01

    A neural network is used to extract the flight model of guided, short to medium range, tripod and shoulder-fired missile systems which is then integrated into a training simulator. The simulator uses injected video to replace the optical sight and is fitted with a multi-axis positioning system which senses the gunner's movement. The movement creates an image shift and affects the input data to the missile control algorithm. Accurate flight dynamics are a key to efficient training, particularly in the case of closed loop guided systems. However, flight model data is not always available, either because it is proprietary, or because it is too complex to embed in a real time simulator. A solution is to reverse engineer the flight model by analyzing the missile's response when submitted to typical input conditions. Training data can be extracted from either recorded video or from a combination of weapon and missile positioning data. The video camera can be located either on the weapon or attached to a through-sight adapter. No knowledge of the missile flight transfer function is used in the process. The data is fed to a three-layer back-propagation type neural network. The network is configured within a standard spreadsheet application and is optimized with the built-in solver functions. The structure of the network, the selected inputs and outputs, as well as training data, output data after training, and output data when embedded in the simulator are presented.

  2. DECISION WITH ARTIFICIAL NEURAL NETWORKS IN DISCRETE EVENT SIMULATION MODELS ON A TRAFFIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Marília Gonçalves Dutra da Silva

    2016-04-01

    Full Text Available ABSTRACT This work aims to demonstrate the use of a mechanism to be applied in the development of the discrete-event simulation models that perform decision operations through the implementation of an artificial neural network. Actions that involve complex operations performed by a human agent in a process, for example, are often modeled in simplified form with the usual mechanisms of simulation software. Therefore, it was chosen a traffic system controlled by a traffic officer with a flow of vehicles and pedestrians to demonstrate the proposed solution. From a module built in simulation software itself, it was possible to connect the algorithm for intelligent decision to the simulation model. The results showed that the model elaborated responded as expected when it was submitted to actions, which required different decisions to maintain the operation of the system with changes in the flow of people and vehicles.

  3. How the ownership structures cause epidemics in financial markets: A network-based simulation model

    Science.gov (United States)

    Dastkhan, Hossein; Gharneh, Naser Shams

    2018-02-01

    Analysis of systemic risks and contagions is one of the main challenges of policy makers and researchers in the recent years. Network theory is introduced as a main approach in the modeling and simulation of financial and economic systems. In this paper, a simulation model is introduced based on the ownership network to analyze the contagion and systemic risk events. For this purpose, different network structures with different values for parameters are considered to investigate the stability of the financial system in the presence of different kinds of idiosyncratic and aggregate shocks. The considered network structures include Erdos-Renyi, core-periphery, segregated and power-law networks. Moreover, the results of the proposed model are also calculated for a real ownership network. The results show that the network structure has a significant effect on the probability and the extent of contagion in the financial systems. For each network structure, various values for the parameters results in remarkable differences in the systemic risk measures. The results of real case show that the proposed model is appropriate in the analysis of systemic risk and contagion in financial markets, identification of systemically important firms and estimation of market loss when the initial failures occur. This paper suggests a new direction in the modeling of contagion in the financial markets, in particular that the effects of new kinds of financial exposure are clarified. This paper's idea and analytical results may also be useful for the financial policy makers, portfolio managers and the firms to conduct their investment in the right direction.

  4. A Mobility and Traffic Generation Framework for Modeling and Simulating Ad Hoc Communication Networks

    Directory of Open Access Journals (Sweden)

    Chris Barrett

    2004-01-01

    Full Text Available We present a generic mobility and traffic generation framework that can be incorporated into a tool for modeling and simulating large scale ad~hoc networks. Three components of this framework, namely a mobility data generator (MDG, a graph structure generator (GSG and an occlusion modification tool (OMT allow a variety of mobility models to be incorporated into the tool. The MDG module generates positions of transceivers at specified time instants. The GSG module constructs the graph corresponding to the ad hoc network from the mobility data provided by MDG. The OMT module modifies the connectivity of the graph produced by GSG to allow for occlusion effects. With two other modules, namely an activity data generator (ADG which generates packet transmission activities for transceivers and a packet activity simulator (PAS which simulates the movement and interaction of packets among the transceivers, the framework allows the modeling and simulation of ad hoc communication networks. The design of the framework allows a user to incorporate various realistic parameters crucial in the simulation. We illustrate the utility of our framework through a comparative study of three mobility models. Two of these are synthetic models (random waypoint and exponentially correlated mobility proposed in the literature. The third model is based on an urban population mobility modeling tool (TRANSIMS developed at the Los Alamos National Laboratory. This tool is capable of providing comprehensive information about the demographics, mobility and interactions of members of a large urban population. A comparison of these models is carried out by computing a variety of parameters associated with the graph structures generated by the models. There has recently been interest in the structural properties of graphs that arise in real world systems. We examine two aspects of this for the graphs created by the mobility models: change associated with power control (range of

  5. Modeling and Simulation of Road Traffic Noise Using Artificial Neural Network and Regression.

    Science.gov (United States)

    Honarmand, M; Mousavi, S M

    2014-04-01

    Modeling and simulation of noise pollution has been done in a large city, where the population is over 2 millions. Two models of artificial neural network and regression were developed to predict in-city road traffic noise pollution with using the data of noise measurements and vehicle counts at three points of the city for a period of 12 hours. The MATLAB and DATAFIT softwares were used for simulation. The predicted results of noise level were compared with the measured noise levels in three stations. The values of normalized bias, sum of squared errors, mean of squared errors, root mean of squared errors, and squared correlation coefficient calculated for each model show the results of two models are suitable, and the predictions of artificial neural network are closer to the experimental data.

  6. Method of construction of rational corporate network using the simulation model

    Directory of Open Access Journals (Sweden)

    V.N. Pakhomovа

    2013-06-01

    Full Text Available Purpose. Search for new options of the transition from Ethernet technology. Methodology. Physical structuring of the Fast Ethernet network based on hubs and logical structuring of Fast Ethernet network using commutators. Organization of VLAN based on ports grouping and in accordance with the standard IEEE 802 .1Q. Findings. The options for improving of the Ethernet network are proposed. According to the Fast Ethernet and VLAN technologies on the simulation models in packages NetCraker and Cisco Packet Traker respectively. Origiality. The technique of designing of local area network using the VLAN technology is proposed. Practical value.Each of the options of "Dniprozaliznychproekt" network improving has its advantages. Transition from the Ethernet to Fast Ethernet technology is simple and economical, it requires only one commutator, when the VLAN organization requires at least two. VLAN technology, however, has the following advantages: reducing the load on the network, isolation of the broadcast traffic, change of the logical network structure without changing its physical structure, improving the network security. The transition from Ethernet to the VLAN technology allows you to separate the physical topology from the logical one, and the format of the ÌEEE 802.1Q standard frames allows you to simplify the process of virtual networks implementation to enterprises.

  7. Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: a primer.

    Science.gov (United States)

    ElKalaawy, Nesma; Wassal, Amr

    2015-03-01

    Biochemical networks depict the chemical interactions that take place among elements of living cells. They aim to elucidate how cellular behavior and functional properties of the cell emerge from the relationships between its components, i.e. molecules. Biochemical networks are largely characterized by dynamic behavior, and exhibit high degrees of complexity. Hence, the interest in such networks is growing and they have been the target of several recent modeling efforts. Signal transduction pathways (STPs) constitute a class of biochemical networks that receive, process, and respond to stimuli from the environment, as well as stimuli that are internal to the organism. An STP consists of a chain of intracellular signaling processes that ultimately result in generating different cellular responses. This primer presents the methodologies used for the modeling and simulation of biochemical networks, illustrated for STPs. These methodologies range from qualitative to quantitative, and include structural as well as dynamic analysis techniques. We describe the different methodologies, outline their underlying assumptions, and provide an assessment of their advantages and disadvantages. Moreover, publicly and/or commercially available implementations of these methodologies are listed as appropriate. In particular, this primer aims to provide a clear introduction and comprehensive coverage of biochemical modeling and simulation methodologies for the non-expert, with specific focus on relevant literature of STPs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Modeling and simulation of network-on-chip systems with DEVS and DEUS.

    Science.gov (United States)

    Amoretti, Michele

    2014-01-01

    Networks on-chip (NoCs) provide enhanced performance, scalability, modularity, and design productivity as compared with previous communication architectures for VLSI systems on-chip (SoCs), such as buses and dedicated signal wires. Since the NoC design space is very large and high dimensional, evaluation methodologies rely heavily on analytical modeling and simulation. Unfortunately, there is no standard modeling framework. In this paper we illustrate how to design and evaluate NoCs by integrating the Discrete Event System Specification (DEVS) modeling framework and the simulation environment called DEUS. The advantage of such an approach is that both DEVS and DEUS support modularity-the former being a sound and complete modeling framework and the latter being an open, general-purpose platform, characterized by a steep learning curve and the possibility to simulate any system at any level of detail.

  9. Efficient Uplink Modeling for Dynamic System-Level Simulations of Cellular and Mobile Networks

    Directory of Open Access Journals (Sweden)

    Lobinger Andreas

    2010-01-01

    Full Text Available A novel theoretical framework for uplink simulations is proposed. It allows investigations which have to cover a very long (real- time and which at the same time require a certain level of accuracy in terms of radio resource management, quality of service, and mobility. This is of particular importance for simulations of self-organizing networks. For this purpose, conventional system level simulators are not suitable due to slow simulation speeds far beyond real-time. Simpler, snapshot-based tools are lacking the aforementioned accuracy. The runtime improvements are achieved by deriving abstract theoretical models for the MAC layer behavior. The focus in this work is long term evolution, and the most important uplink effects such as fluctuating interference, power control, power limitation, adaptive transmission bandwidth, and control channel limitations are considered. Limitations of the abstract models will be discussed as well. Exemplary results are given at the end to demonstrate the capability of the derived framework.

  10. Modeling and Simulation for Effectiveness Evaluation of Dynamic Discrete Military Supply Chain Networks

    Directory of Open Access Journals (Sweden)

    Biao Xiong

    2017-01-01

    Full Text Available The effectiveness of military supply chain networks is an important reference for logistics decision-making, and it is crucial to evaluate it scientifically and accurately. This paper highlights the problem from the perspective of dynamic and discrete networks. A topological structure model with the characteristics of dynamic and discreteness is used to describe the structure of military supply chain networks (MSCNs. In order to provide a platform for evaluating the effectiveness, simulation algorithms based on topological structure models for MSCNs are presented. Considering military and economic factors, evaluation metrics including supply capability and supply efficiency are proposed. By applying the model and algorithms to a POL supply network in a theater, we obtain the values of supply capability and efficiency metrics in a dynamic environment. We also identify an optimal solution from multiple feasible solutions to help decision-makers to make scientific and rational decisions by using exploratory analysis method. The results show that new evaluation metrics can capture important effectiveness requirements for military supply networks positively. We also find the proposed method in this paper can solve the problem of evaluating the effectiveness of dynamic and discrete network effectiveness evaluation in a feasible and effective manner.

  11. A Cut Cell Method for Simulating Spatial Models of Biochemical Reaction Networks in Arbitrary Geometries.

    Science.gov (United States)

    Strychalski, Wanda; Adalsteinsson, David; Elston, Timothy C

    2010-01-01

    Cells use signaling networks consisting of multiple interacting proteins to respond to changes in their environment. In many situations, such as chemotaxis, spatial and temporal information must be transmitted through the network. Recent computational studies have emphasized the importance of cellular geometry in signal transduction, but have been limited in their ability to accurately represent complex cell morphologies. We present a finite volume method that addresses this problem. Our method uses Cartesian cut cells and is second order in space and time. We use our method to simulate several models of signaling systems in realistic cell morphologies obtained from live cell images and examine the effects of geometry on signal transduction.

  12. A discrete event simulation model for evaluating time delays in a pipeline network

    Energy Technology Data Exchange (ETDEWEB)

    Spricigo, Deisi; Muggiati, Filipe V.; Lueders, Ricardo; Neves Junior, Flavio [Federal University of Technology of Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    Currently in the oil industry the logistic chain stands out as a strong candidate to obtain highest profit, since recent studies have pointed out to a cost reduction by adoption of better policies for distribution of oil derivatives, particularly those where pipelines are used to transport products. Although there are models to represent transfers of oil derivatives in pipelines, they are quite complex and computationally burden. In this paper, we are interested on models that are less detailed in terms of fluid dynamics but provide more information about operational decisions in a pipeline network. We propose a discrete event simulation model in ARENA that allows simulating a pipeline network based on average historical data. Time delays for transferring different products can be evaluated through different routes. It is considered that transport operations follow a historical behavior and average time delays can thus be estimated within certain bounds. Due to its stochastic nature, time quantities are characterized by average and dispersion measures. This allows comparing different operational scenarios for product transportation. Simulation results are compared to data obtained from a real world pipeline network and different scenarios of production and demand are analyzed. (author)

  13. Package Equivalent Reactor Networks as Reduced Order Models for Use with CAPE-OPEN Compliant Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Chou, C. -P.; Garratt, T.

    2013-03-31

    Engineering simulations of coal gasifiers are typically performed using computational fluid dynamics (CFD) software, where a 3-D representation of the gasifier equipment is used to model the fluid flow in the gasifier and source terms from the coal gasification process are captured using discrete-phase model source terms. Simulations using this approach can be very time consuming, making it difficult to imbed such models into overall system simulations for plant design and optimization. For such system-level designs, process flowsheet software is typically used, such as Aspen Plus® [1], where each component where each component is modeled using a reduced-order model. For advanced power-generation systems, such as integrated gasifier/gas-turbine combined-cycle systems (IGCC), the critical components determining overall process efficiency and emissions are usually the gasifier and combustor. Providing more accurate and more computationally efficient reduced-order models for these components, then, enables much more effective plant-level design optimization and design for control. Based on the CHEMKIN-PRO and ENERGICO software, we have developed an automated methodology for generating an advanced form of reduced-order model for gasifiers and combustors. The reducedorder model offers representation of key unit operations in flowsheet simulations, while allowing simulation that is fast enough to be used in iterative flowsheet calculations. Using high-fidelity fluiddynamics models as input, Reaction Design’s ENERGICO® [2] software can automatically extract equivalent reactor networks (ERNs) from a CFD solution. For the advanced reduced-order concept, we introduce into the ERN a much more detailed kinetics model than can be included practically in the CFD simulation. The state-of-the-art chemistry solver technology within CHEMKIN-PRO allows that to be accomplished while still maintaining a very fast model turn-around time. In this way, the ERN becomes the basis for

  14. Inference, simulation, modeling, and analysis of complex networks, with special emphasis on complex networks in systems biology

    Science.gov (United States)

    Christensen, Claire Petra

    Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author

  15. Compact model of power MOSFET with temperature dependent Cauer RC network for more accurate thermal simulations

    Science.gov (United States)

    Marek, Juraj; Chvála, Aleš; Donoval, Daniel; Príbytný, Patrik; Molnár, Marián; Mikolášek, Miroslav

    2014-04-01

    A new, more accurate SPICE-like model of a power MOSFET containing a temperature dependent thermal network is described. The designed electro-thermal MOSFET model consists of several parts which represent different transistor behavior under different conditions such as reverse bias, avalanche breakdown and others. The designed model is able to simulate destruction of the device as thermal runaway and/or overcurrent destruction during the switching process of a wide variety of inductive loads. Modified thermal equivalent circuit diagrams were designed taking into account temperature dependence of thermal resistivity. The potential and limitations of the new models are presented and analyzed. The new model is compared with the standard and empirical models and brings a higher accuracy for rapid heating pulses. An unclamped inductive switching (UIS) test as a stressful condition was used to verify the proper behavior of the designed MOSFET model.

  16. Catchment & sewer network simulation model to benchmark control strategies within urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, Ramesh; Flores Alsina, Xavier; Fu, Guangtao

    2016-01-01

    explaining possible applications of the proposed model for evaluation of: 1) Control strategies; and, 2) System modifications, are provided. The proposed framework is specifically designed to allow for easy development and comparison of multiple control possibilities and integration with existing......This paper aims at developing a benchmark simulation model to evaluate control strategies for the urban catchment and sewer network. Various modules describing wastewater generation in the catchment, its subsequent transport and storage in the sewer system are presented. Global/local overflow based...

  17. Development of Artificial Neural-Network-Based Models for the Simulation of Spring Discharge

    Directory of Open Access Journals (Sweden)

    M. Mohan Raju

    2011-01-01

    Full Text Available The present study demonstrates the application of artificial neural networks (ANNs in predicting the weekly spring discharge. The study was based on the weekly spring discharge from a spring located near Ranichauri in Tehri Garhwal district of Uttarakhand, India. Five models were developed for predicting the spring discharge based on a weekly interval using rainfall, evaporation, temperature with a specified lag time. All models were developed both with one and two hidden layers. Each model was developed with many trials by selecting different network architectures and different number of hidden neurons; finally a best predicting model presented against each developed model. The models were trained with three different algorithms, that is, quick-propagation algorithm, batch backpropagation algorithm, and Levenberg-Marquardt algorithm using weekly data from 1999 to 2005. A best model for the simulation was selected from the three presented algorithms using the statistical criteria such as correlation coefficient (, determination coefficient, or Nash Sutcliff's efficiency (DC. Finally, optimized number of neurons were considered for the best model. Training and testing results revealed that the models were predicting the weekly spring discharge satisfactorily. Based on these criteria, ANN-based model results in better agreement for the computation of spring discharge. LMR models were also developed in the study, and they also gave good results, but, when compared with the ANN methodology, ANN resulted in better optimized values.

  18. Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees

    Directory of Open Access Journals (Sweden)

    Régis Corinne

    2011-07-01

    Full Text Available Abstract Background The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups. Moreover, their space and time resolutions are limited, so that data are not explicit at the person-to-person level, and the dynamic nature of the contacts is disregarded. In this study, we aimed to assess the role of data-driven dynamic contact patterns between individuals, and in particular of their temporal aspects, in shaping the spread of a simulated epidemic in the population. Methods We considered high-resolution data about face-to-face interactions between the attendees at a conference, obtained from the deployment of an infrastructure based on radiofrequency identification (RFID devices that assessed mutual face-to-face proximity. The spread of epidemics along these interactions was simulated using an SEIR (Susceptible, Exposed, Infectious, Recovered model, using both the dynamic network of contacts defined by the collected data, and two aggregated versions of such networks, to assess the role of the data temporal aspects. Results We show that, on the timescales considered, an aggregated network taking into account the daily duration of contacts is a good approximation to the full resolution network, whereas a homogeneous representation that retains only the topology of the contact network fails to reproduce the size of the epidemic. Conclusions These results have important implications for understanding the level of detail needed to correctly inform computational models for the study and management of real epidemics. Please see related article BMC Medicine, 2011, 9:88

  19. Modeling, analysis, and simulation of the co-development of road networks and vehicle ownership

    Science.gov (United States)

    Xu, Mingtao; Ye, Zhirui; Shan, Xiaofeng

    2016-01-01

    A two-dimensional logistic model is proposed to describe the co-development of road networks and vehicle ownership. The endogenous interaction between road networks and vehicle ownership and how natural market forces and policies transformed into their co-development are considered jointly in this model. If the involved parameters satisfy a certain condition, the proposed model can arrive at a steady equilibrium level and the final development scale will be within the maximum capacity of an urban traffic system; otherwise, the co-development process will be unstable and even manifest chaotic behavior. Then sensitivity tests are developed to determine the proper values for a series of parameters in this model. Finally, a case study, using Beijing City as an example, is conducted to explore the applicability of the proposed model to the real condition. Results demonstrate that the proposed model can effectively simulate the co-development of road network and vehicle ownership for Beijing City. Furthermore, we can obtain that their development process will arrive at a stable equilibrium level in the years 2040 and 2045 respectively, and the equilibrium values are within the maximum capacity.

  20. A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models

    Science.gov (United States)

    Rolls, David A.; Wang, Peng; McBryde, Emma; Pattison, Philippa; Robins, Garry

    2015-01-01

    We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure. PMID:26555701

  1. Artificial neural network model for simulation of water distribution in sprinkle irrigation

    Directory of Open Access Journals (Sweden)

    Paulo L. de Menezes

    2015-09-01

    Full Text Available ABSTRACTDetermining uniformity coefficients of sprinkle irrigation systems, in general, depends on field trials, which require time and financial resources. One alternative to reduce time and expense is the use of simulations. The objective of this study was to develop an artificial neural network (ANN to simulate sprinkler precipitation, using the values ​​of operating pressure, wind speed, wind direction and sprinkler nozzle diameter as the input parameters. Field trials were performed with one sprinkler operating in a grid of 16 x 16, collectors with spacing of 1.5 m and different combinations of nozzles, pressures, and wind conditions. The ANN model showed good results in the simulation of precipitation, with Spearman's correlation coefficient (rs ranging from 0.92 to 0.97 and Willmott agreement index (d from 0.950 to 0.991, between the observed and simulated values for ten analysed trials. The ANN model shows promise in the simulation of precipitation in sprinkle irrigation systems.

  2. Airport Network Flow Simulator

    Science.gov (United States)

    1978-10-01

    The Airport Network Flow Simulator is a FORTRAN IV simulation of the flow of air traffic in the nation's 600 commercial airports. It calculates for any group of selected airports: (a) the landing and take-off (Type A) delays; and (b) the gate departu...

  3. The dynamical modeling and simulation analysis of the recommendation on the user-movie network

    Science.gov (United States)

    Zhang, Shujuan; Jin, Zhen; Zhang, Juan

    2016-12-01

    At present, most research about the recommender system is based on graph theory and algebraic methods, but these methods cannot predict the evolution of the system with time under the recommendation method, and cannot dynamically analyze the long-term utility of the recommendation method. However, these two aspects can be studied by the dynamical method, which essentially investigates the intrinsic evolution mechanism of things, and is widely used to study a variety of actual problems. So, in this paper, network dynamics is used to study the recommendation on the user-movie network, which consists of users and movies, and the movies are watched either by the personal search or through the recommendation. Firstly, dynamical models are established to characterize the personal search and the system recommendation mechanism: the personal search model, the random recommendation model, the preference recommendation model, the degree recommendation model and the hybrid recommendation model. The rationality of the models established is verified by comparing the stochastic simulation with the numerical simulation. Moreover, the validity of the recommendation methods is evaluated by studying the movie degree, which is defined as the number of the movie that has been watched. Finally, we combine the personal search and the recommendation to establish a more general model. The change of the average degree of all the movies is given with the strength of the recommendation. Results show that for each recommendation method, the change of the movie degree is different, and is related to the initial degree of movies, the adjacency matrix A representing the relation between users and movies, the time t. Additionally, we find that in a long time, the degree recommendation is not as good as that in a short time, which fully demonstrates the advantage of the dynamical method. For the whole user-movie system, the preference recommendation is the best.

  4. Modeling network technology deployment rates with different network models

    OpenAIRE

    Chung, Yoo

    2011-01-01

    To understand the factors that encourage the deployment of a new networking technology, we must be able to model how such technology gets deployed. We investigate how network structure influences deployment with a simple deployment model and different network models through computer simulations. The results indicate that a realistic model of networking technology deployment should take network structure into account.

  5. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    Science.gov (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  6. An effective fractal-tree closure model for simulating blood flow in large arterial networks

    Science.gov (United States)

    Perdikaris, Paris; Grinberg, Leopold; Karniadakis, George

    2014-11-01

    The aim of the present work is to address the closure problem for hemodynamics simulations by developing a flexible and effective model that accurately distributes flow in the downstream vasculature and can stably provide a physiological pressure outflow boundary condition. We model blood flow in the sub-pixel vasculature by using a nonlinear 1D model in self-similar networks of compliant arteries that mimic the structure and hierarchy of vessels in the meso-vascular regime. The proposed model accounts for wall viscoelasticity and non-Newtonian flow effects in arterioles, overcomes cut-off radius sensitivity issues by introducing a monotonically decreasing artery length to radius ratio across different generations of the fractal tree, and convergences to a periodic state in just two cardiac cycles. The resulting fractal trees typically consist of thousands to millions of arteries, posing the need for efficient parallel algorithms. To this end, we have developed a scalable hybrid MPI/OpenMP solver that is capable of computing near real-time solutions. The proposed model is tested on a large patient-specific cranial network returning physiological flow and pressure wave predictions without requiring any parameter estimation or calibration procedures.

  7. On Improved Least Squares Regression and Artificial Neural Network Meta-Models for Simulation via Control Variates

    Science.gov (United States)

    2016-09-15

    neural network using applications across varied industries . Alam et al. [2] showed the factorial design did not perform as well as other designs (mentioned...composite design with a neural network using applications across varied industries . Alam et al. [2] showed the central composite design did not perform as...ON IMPROVED LEAST SQUARES REGRESSION & ARTIFICIAL NEURAL NETWORK META-MODELS FOR SIMULATION VIA CONTROL VARIATES DISSERTATION Michael P. Gibb

  8. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference

  9. Comparison of Artificial Neural Networks and ARIMA statistical models in simulations of target wind time series

    Science.gov (United States)

    Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas

    2015-04-01

    The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.

  10. Application of artificial neural networks in hydrological modeling: A case study of runoff simulation of a Himalayan glacier basin

    Science.gov (United States)

    Buch, A. M.; Narain, A.; Pandey, P. C.

    1994-01-01

    The simulation of runoff from a Himalayan Glacier basin using an Artificial Neural Network (ANN) is presented. The performance of the ANN model is found to be superior to the Energy Balance Model and the Multiple Regression model. The RMS Error is used as the figure of merit for judging the performance of the three models, and the RMS Error for the ANN model is the latest of the three models. The ANN is faster in learning and exhibits excellent system generalization characteristics.

  11. Simulated Associating Polymer Networks

    Science.gov (United States)

    Billen, Joris

    Telechelic associating polymer networks consist of polymer chains terminated by endgroups that have a different chemical composition than the polymer backbone. When dissolved in a solution, the endgroups cluster together to form aggregates. At low temperature, a strongly connected reversible network is formed and the system behaves like a gel. Telechelic networks are of interest since they are representative for biopolymer networks (e.g. F-actin) and are widely used in medical applications (e.g. hydrogels for tissue engineering, wound dressings) and consumer products (e.g. contact lenses, paint thickeners). In this thesis such systems are studied by means of a molecular dynamics/Monte Carlo simulation. At first, the system in rest is studied by means of graph theory. The changes in network topology upon cooling to the gel state, are characterized. Hereto an extensive study of the eigenvalue spectrum of the gel network is performed. As a result, an in-depth investigation of the eigenvalue spectra for spatial ER, scale-free, and small-world networks is carried out. Next, the gel under the application of a constant shear is studied, with a focus on shear banding and the changes in topology under shear. Finally, the relation between the gel transition and percolation is discussed.

  12. Chaotic Simulated Annealing by A Neural Network Model with Transient Chaos

    CERN Document Server

    Chen, L; Chen, Luonan; Aihara, Kazuyuki

    1997-01-01

    We propose a neural network model with transient chaos, or a transiently chaotic neural network (TCNN) as an approximation method for combinatorial optimization problem, by introducing transiently chaotic dynamics into neural networks. Unlike conventional neural networks only with point attractors, the proposed neural network has richer and more flexible dynamics, so that it can be expected to have higher ability of searching for globally optimal or near-optimal solutions. A significant property of this model is that the chaotic neurodynamics is temporarily generated for searching and self-organizing, and eventually vanishes with autonomous decreasing of a bifurcation parameter corresponding to the "temperature" in usual annealing process. Therefore, the neural network gradually approaches, through the transient chaos, to dynamical structure similar to such conventional models as the Hopfield neural network which converges to a stable equilibrium point. Since the optimization process of the transiently chaoti...

  13. Combining CFD simulations with blockoriented heatflow-network model for prediction of photovoltaic energy-production

    Science.gov (United States)

    Haber, I. E.; Farkas, I.

    2011-01-01

    The exterior factors which influencing the working circumstances of photovoltaic modules are the irradiation, the optical air layer (Air Mass - AM), the irradiation angle, the environmental temperature and the cooling effect of the wind. The efficiency of photovoltaic (PV) devices is inversely proportional to the cell temperature and therefore the mounting of the PV modules can have a big affect on the cooling, due to wind flow-around and naturally convection. The construction of the modules could be described by a heatflow-network model, and that can define the equation which determines the cells temperature. An equation like this can be solved as a block oriented model with hybrid-analogue simulator such as Matlab-Simulink. In view of the flow field and the heat transfer, witch was calculated numerically, the heat transfer coefficients can be determined. Five inflow rates were set up for both pitched and flat roof cases, to let the trend of the heat transfer coefficient know, while these functions can be used for the Matlab/Simulink model. To model the free convection flows, the Boussinesq-approximation were used, integrated into the Navier-Stokes equations and the energy equation. It has been found that under a constant solar heat gain, the air velocity around the modules and behind the pitched-roof mounted module is increasing, proportionately to the wind velocities, and as result the heat transfer coefficient increases linearly, and can be described by a function in both cases. To the block based model the meteorological parameters and the results of the CFD simulations as single functions were attached. The final aim was to make a model that could be used for planning photovoltaic systems, and define their accurate performance for better sizing of an array of modules.

  14. Simulation models developed for voltage control in a distribution network using energy storage systems for PV penetration

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Bindner, Henrik W.

    2013-01-01

    This paper presents the development of simulation models for DER components in a distribution network, with focus on voltage controllers using energy storage systems for PV penetration. The Vanadium Redox Battery (VRB) system model, used as an energy storage system, was implemented in MATLAB...

  15. A Generalized Fluid System Simulation Program to Model Flow Distribution in Fluid Networks

    Science.gov (United States)

    Majumdar, Alok; Bailey, John W.; Schallhorn, Paul; Steadman, Todd

    1998-01-01

    This paper describes a general purpose computer program for analyzing steady state and transient flow in a complex network. The program is capable of modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal. The program's preprocessor allows the user to interactively develop a fluid network simulation consisting of nodes and branches. Mass, energy and specie conservation equations are solved at the nodes; the momentum conservation equations are solved in the branches. The program contains subroutines for computing "real fluid" thermodynamic and thermophysical properties for 33 fluids. The fluids are: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutane, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride and ammonia. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. Seventeen different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include: pipe flow, flow through a restriction, non-circular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, and a Joule-Thompson device. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. This paper also illustrates the application and verification of the code by comparison with Hardy Cross method for steady state flow and analytical solution for unsteady flow.

  16. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  17. Simulated evolution of fractures and fracture networks subject to thermal cooling: A coupled discrete element and heat conduction model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai; Plummer, Mitchell; Podgorney, Robert

    2013-02-01

    Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.

  18. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.

    Science.gov (United States)

    Pájaro, Manuel; Alonso, Antonio A; Otero-Muras, Irene; Vázquez, Carlos

    2017-05-21

    Gene expression is inherently stochastic. Advanced single-cell microscopy techniques together with mathematical models for single gene expression led to important insights in elucidating the sources of intrinsic noise in prokaryotic and eukaryotic cells. In addition to the finite size effects due to low copy numbers, translational bursting is a dominant source of stochasticity in cell scenarios involving few short lived mRNA transcripts with high translational efficiency (as is typically the case for prokaryotes), causing protein synthesis to occur in random bursts. In the context of gene regulation cascades, the Chemical Master Equation (CME) governing gene expression has in general no closed form solution, and the accurate stochastic simulation of the dynamics of complex gene regulatory networks is a major computational challenge. The CME associated to a single gene self regulatory motif has been previously approximated by a one dimensional time dependent partial integral differential equation (PIDE). However, to the best of our knowledge, multidimensional versions for such PIDE have not been developed yet. Here we propose a multidimensional PIDE model for regulatory networks involving multiple genes with self and cross regulations (in which genes can be regulated by different transcription factors) derived as the continuous counterpart of a CME with jump process. The model offers a reliable description of systems with translational bursting. In order to provide an efficient numerical solution, we develop a semilagrangian method to discretize the differential part of the PIDE, combined with a composed trapezoidal quadrature formula to approximate the integral term. We apply the model and numerical method to study sustained stochastic oscillations and the development of competence, a particular case of transient differentiation attained by certain bacterial cells under stress conditions. We found that the resulting probability distributions are distinguishable

  19. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    Science.gov (United States)

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  20. A simulation model for aligning smart home networks and deploying smart objects

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes use sensor based networks to capture activities and offer learned services to the user. These smart home networks are challenging because they mainly use wireless communication at frequencies that are shared with other services and equipments. One of the major challenges...... is the interferences produced by WiFi access points in smart home networks which are expensive to overcome in terms of battery energy. Currently, different method exists to handle this. However, they use complex mechanisms such as sharing frequencies, sharing time slots, and spatial reuse of frequencies. This paper...... introduces a unique concept which saves battery energy and lowers the interference level by simulating the network alignment and assign the necessary amount of transmit power to each individual network node and finally, deploy the smart objects. The needed transmit powers are calculated by the presented...

  1. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  2. Incorporating Realistic Acoustic Propagation Models in Simulation of Underwater Acoustic Networks: A Statistical Approach

    National Research Council Canada - National Science Library

    Xie, Geoffrey; Gibson, John; Diaz-Gonzalez, Leopoldo

    2006-01-01

    .... The validity of the simulation results becomes questionable. There are, though, very high fidelity models developed by acoustic engineers and physicists for predicting acoustic propagation characteristics...

  3. COMPUTER-SIMULATED NEURAL NETWORKS - AN APPROPRIATE MODEL FOR MOTOR DEVELOPMENT

    NARCIS (Netherlands)

    VOS, JE; SCHEEPSTRA, KA

    The idea of an artificial neural network is introduced in a historical context, and the essential aspect of it, viz., the modifiable synapse, is compared to the aspect of plasticity in the natural nervous system. Based on such an artificial neural network, a model is presented for the way in which

  4. Cellular neural network modelling of soft tissue dynamics for surgical simulation.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Currently, the mechanical dynamics of soft tissue deformation is achieved by numerical time integrations such as the explicit or implicit integration; however, the explicit integration is stable only under a small time step, whereas the implicit integration is computationally expensive in spite of the accommodation of a large time step. This paper presents a cellular neural network method for stable simulation of soft tissue deformation dynamics. The non-rigid motion equation is formulated as a cellular neural network with local connectivity of cells, and thus the dynamics of soft tissue deformation is transformed into the neural dynamics of the cellular neural network. Results show that the proposed method can achieve good accuracy at a small time step. It still remains stable at a large time step, while maintaining the computational efficiency of the explicit integration. The proposed method can achieve stable soft tissue deformation with efficiency of explicit integration for surgical simulation.

  5. POLARIS: Agent-based modeling framework development and implementation for integrated travel demand and network and operations simulations

    Energy Technology Data Exchange (ETDEWEB)

    Auld, Joshua; Hope, Michael; Ley, Hubert; Sokolov, Vadim; Xu, Bo; Zhang, Kuilin

    2016-03-01

    This paper discusses the development of an agent-based modelling software development kit, and the implementation and validation of a model using it that integrates dynamic simulation of travel demand, network supply and network operations. A description is given of the core utilities in the kit: a parallel discrete event engine, interprocess exchange engine, and memory allocator, as well as a number of ancillary utilities: visualization library, database IO library, and scenario manager. The overall framework emphasizes the design goals of: generality, code agility, and high performance. This framework allows the modeling of several aspects of transportation system that are typically done with separate stand-alone software applications, in a high-performance and extensible manner. The issue of integrating such models as dynamic traffic assignment and disaggregate demand models has been a long standing issue for transportation modelers. The integrated approach shows a possible way to resolve this difficulty. The simulation model built from the POLARIS framework is a single, shared-memory process for handling all aspects of the integrated urban simulation. The resulting gains in computational efficiency and performance allow planning models to be extended to include previously separate aspects of the urban system, enhancing the utility of such models from the planning perspective. Initial tests with case studies involving traffic management center impacts on various network events such as accidents, congestion and weather events, show the potential of the system.

  6. Abnormal quality detection and isolation in water distribution networks using simulation models

    Directory of Open Access Journals (Sweden)

    F. Nejjari

    2012-11-01

    Full Text Available This paper proposes a model based detection and localisation method to deal with abnormal quality levels based on the chlorine measurements and chlorine sensitivity analysis in a water distribution network. A fault isolation algorithm which correlates on line the residuals (generated by comparing the available chlorine measurements with their estimations using a model with the fault sensitivity matrix is used. The proposed methodology has been applied to a District Metered Area (DMA in the Barcelona network.

  7. Simulation-based Modeling Frameworks for Networked Multi-processor System-on-Chip

    DEFF Research Database (Denmark)

    Mahadevan, Shankar

    2006-01-01

    This thesis deals with modeling aspects of multi-processor system-on-chip (MpSoC) design affected by the on-chip interconnect, also called the Network-on-Chip (NoC), at various levels of abstraction. To begin with, we undertook a comprehensive survey of research and design practices of networked Mp......: namely ARTS and RIPE, that allows to model hardware (computation time, power consumption, network latency, caching effect, etc.) and software (application partition and mapping, operating system scheduling, interrupt handling, etc.) aspects from system-level to cycle-true abstraction. Thereby, we can...

  8. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models.

    Science.gov (United States)

    Pappu, J Sharon Mano; Gummadi, Sathyanarayana N

    2016-11-01

    This study examines the use of unstructured kinetic model and artificial neural networks as predictive tools for xylitol production by Debaryomyces nepalensis NCYC 3413 in bioreactor. An unstructured kinetic model was proposed in order to assess the influence of pH (4, 5 and 6), temperature (25°C, 30°C and 35°C) and volumetric oxygen transfer coefficient kLa (0.14h(-1), 0.28h(-1) and 0.56h(-1)) on growth and xylitol production. A feed-forward back-propagation artificial neural network (ANN) has been developed to investigate the effect of process condition on xylitol production. ANN configuration of 6-10-3 layers was selected and trained with 339 experimental data points from bioreactor studies. Results showed that simulation and prediction accuracy of ANN was apparently higher when compared to unstructured mechanistic model under varying operational conditions. ANN was found to be an efficient data-driven tool to predict the optimal harvest time in xylitol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Hierarchical Network Design Using Simulated Annealing

    DEFF Research Database (Denmark)

    Thomadsen, Tommy; Clausen, Jens

    2002-01-01

    networks are described and a mathematical model is proposed for a two level version of the hierarchical network problem. The problem is to determine which edges should connect nodes, and how demand is routed in the network. The problem is solved heuristically using simulated annealing which as a sub...

  10. Estimation of the Required Modeling Depth for the Simulation of Cable Switching in a Cable-based Network

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth; Balle Holst, Per

    2012-01-01

    . The simulation of electromagnetic transients in cable-based networks requires larger computational effort than in an equivalent overhead-line (OHL)-based network. Therefore, the method is demonstrated for the former, with the cases of OHL-based networks and hybrid cable-OHL networks addressed in a future paper......The simulation of an electromagnetic transient is only as good as the model's data and the level of detail put into the modeling. One parameter with influence in the results is the size of the modeling of the area around the switched-on line. If the area is too small, the results are inaccurate....... If the area is too large, the simulation requires a long period of time and numerical problems are more likely to exist. This paper proposes a method that can be used to estimate the depth of the modeling area using the grid layout, which can be obtained directly from a PSS/E file, or equivalent...

  11. The efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems.

    Science.gov (United States)

    Yang, Jin; Hlavacek, William S

    2011-10-01

    Rule-based models, which are typically formulated to represent cell signaling systems, can now be simulated via various network-free simulation methods. In a network-free method, reaction rates are calculated for rules that characterize molecular interactions, and these rule rates, which each correspond to the cumulative rate of all reactions implied by a rule, are used to perform a stochastic simulation of reaction kinetics. Network-free methods, which can be viewed as generalizations of Gillespie's method, are so named because these methods do not require that a list of individual reactions implied by a set of rules be explicitly generated, which is a requirement of other methods for simulating rule-based models. This requirement is impractical for rule sets that imply large reaction networks (i.e. long lists of individual reactions), as reaction network generation is expensive. Here, we compare the network-free simulation methods implemented in RuleMonkey and NFsim, general-purpose software tools for simulating rule-based models encoded in the BioNetGen language. The method implemented in NFsim uses rejection sampling to correct overestimates of rule rates, which introduces null events (i.e. time steps that do not change the state of the system being simulated). The method implemented in RuleMonkey uses iterative updates to track rule rates exactly, which avoids null events. To ensure a fair comparison of the two methods, we developed implementations of the rejection and rejection-free methods specific to a particular class of kinetic models for multivalent ligand-receptor interactions. These implementations were written with the intention of making them as much alike as possible, minimizing the contribution of irrelevant coding differences to efficiency differences. Simulation results show that performance of the rejection method is equal to or better than that of the rejection-free method over wide parameter ranges. However, when parameter values are such that

  12. Development of a iron pipe corrosion simulation model for a water supply network

    OpenAIRE

    Bernats, M.; Osterhus, S. W.; Dzelzitis, K.; Juhna, T.

    2012-01-01

    Corrosion in water supply networks is unwanted process that causes pipe material loss and subsequent pipe failures. Nowadays pipe replacing strategy most often is based on pipe age, which is not always the most important factor in pipe burst rate. In this study a methodology for developing a mathematical model to predict the decrease of pipe thickness in a large cast iron networks is presented. The quality of water, the temperature and the water flow regime were the main factors taken into ac...

  13. A multiscale modelling of bone ultrastructure elastic proprieties using finite elements simulation and neural network method.

    Science.gov (United States)

    Barkaoui, Abdelwahed; Tlili, Brahim; Vercher-Martínez, Ana; Hambli, Ridha

    2016-10-01

    Bone is a living material with a complex hierarchical structure which entails exceptional mechanical properties, including high fracture toughness, specific stiffness and strength. Bone tissue is essentially composed by two phases distributed in approximately 30-70%: an organic phase (mainly type I collagen and cells) and an inorganic phase (hydroxyapatite-HA-and water). The nanostructure of bone can be represented throughout three scale levels where different repetitive structural units or building blocks are found: at the first level, collagen molecules are arranged in a pentameric structure where mineral crystals grow in specific sites. This primary bone structure constitutes the mineralized collagen microfibril. A structural organization of inter-digitating microfibrils forms the mineralized collagen fibril which represents the second scale level. The third scale level corresponds to the mineralized collagen fibre which is composed by the binding of fibrils. The hierarchical nature of the bone tissue is largely responsible of their significant mechanical properties; consequently, this is a current outstanding research topic. Scarce works in literature correlates the elastic properties in the three scale levels at the bone nanoscale. The main goal of this work is to estimate the elastic properties of the bone tissue in a multiscale approach including a sensitivity analysis of the elastic behaviour at each length scale. This proposal is achieved by means of a novel hybrid multiscale modelling that involves neural network (NN) computations and finite elements method (FEM) analysis. The elastic properties are estimated using a neural network simulation that previously has been trained with the database results of the finite element models. In the results of this work, parametric analysis and averaged elastic constants for each length scale are provided. Likewise, the influence of the elastic constants of the tissue constituents is also depicted. Results highlight

  14. Selective adaptation in networks of heterogeneous populations: model, simulation, and experiment.

    Directory of Open Access Journals (Sweden)

    Avner Wallach

    2008-02-01

    Full Text Available Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus increases the system's sensitivity to rare stimuli. These phenomena were explained in previous work as a result of complex interactions between the various subpopulations of the network. A formal description and analysis of neuronal systems, however, is hindered by the network's heterogeneity and by the multitude of processes taking place at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is sufficiently general to apply to different biological systems, and was demonstrated in two different cases.

  15. Modeling and simulation of adaptive Neuro-fuzzy based intelligent system for predictive stabilization in structured overlay networks

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2017-02-01

    Full Text Available Intelligent prediction of neighboring node (k well defined neighbors as specified by the dht protocol dynamism is helpful to improve the resilience and can reduce the overhead associated with topology maintenance of structured overlay networks. The dynamic behavior of overlay nodes depends on many factors such as underlying user’s online behavior, geographical position, time of the day, day of the week etc. as reported in many applications. We can exploit these characteristics for efficient maintenance of structured overlay networks by implementing an intelligent predictive framework for setting stabilization parameters appropriately. Considering the fact that human driven behavior usually goes beyond intermittent availability patterns, we use a hybrid Neuro-fuzzy based predictor to enhance the accuracy of the predictions. In this paper, we discuss our predictive stabilization approach, implement Neuro-fuzzy based prediction in MATLAB simulation and apply this predictive stabilization model in a chord based overlay network using OverSim as a simulation tool. The MATLAB simulation results present that the behavior of neighboring nodes is predictable to a large extent as indicated by the very small RMSE. The OverSim based simulation results also observe significant improvements in the performance of chord based overlay network in terms of lookup success ratio, lookup hop count and maintenance overhead as compared to periodic stabilization approach.

  16. On a Novel Simulation Framework and Scheduling Model Integrating Coverage Mechanisms for Sensor Networks and Handling Concurrency

    Science.gov (United States)

    Filippou, A.; Karras, D. A.; Papazoglou, P. M.; Papademetriou, R. C.

    Coverage is one of the fundamental metrics used to quantify the quality of service (QoS) of sensor networks. In general, we use this term to measure the ability of the network to observe and react to the phenomena taking place in the area of interest of the network. In addition, coverage is associated with connectivity and energy consumption, both important aspects in the design process of a Wireless Sensor Network (WSN). On the other hand, simulating a WSN involves taking into account different software and hardware aspects. In this paper we attempt to present a simulation framework suitable for integrating coverage mechanisms in WSN emulation using a layered architecture and a fitting scheduling model. The suggested model is derived after a critical overview and presentation of the coverage strategies as well as the simulation approaches for WSN developed so far. The main advantage of the proposed framework is its capability to handle concurrent events occurring at WSN deployment and operation through the suitable layered scheduler integrated.

  17. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  18. GNS3 network simulation guide

    CERN Document Server

    Welsh, Chris

    2013-01-01

    GNS3 Network Simulation Guide is an easy-to-follow yet comprehensive guide which is written in a tutorial format helping you grasp all the things you need for accomplishing your certification or simulation goal. If you are a networking professional who wants to learn how to simulate networks using GNS3, this book is ideal for you. The introductory examples within the book only require minimal networking knowledge, but as the book progresses onto more advanced topics, users will require knowledge of TCP/IP and routing.

  19. Simulation Model developed for a Small-Scale PV-System in a Distribution Network

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Mihet-Popa, Lucian; Isleifsson, Fridrik Rafn

    2012-01-01

    This paper presents a PV panel simulation model using the single-diode four-parameter model based on data sheet values. The model was implemented first in MATLAB/Simulink, and the results have been compared with the data sheet values and characteristics of the PV panels in standard test conditions....... Moreover to point out the strong dependency on ambient conditions and its influence on array operation and to validate simulation results with measured data a complex model has also been developed. A PV inverter model, using the same equations and parameters as in MATLAB/Simulink has also been developed...... and implemented in PowerFactory to study load flow, steady-state voltage stability and dynamic behavior of a distributed power system....

  20. SIMULATION MODELLING OF VITÓRIA-MINAS CLOSED-LOOP RAIL NETWORK

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Fernandes de FARIA

    2015-12-01

    Full Text Available This paper presents a closed loop simulation model that represents the mining logistics chain of the Vitória Minas Railway (VMR, Brazil. The simulator includes the loading process, circulation of loaded trains, unloading of ores for external and internal markets and the distribution of empty trains for new loads. General cargo and passengers trains are also included in the model, which, along with the queues formed in the circulation and the preventive and corrective maintenance of rolling stock, tracks and equipment, interfere with the transportation of iron ore. The primary objective of the iron ore transport is to meet the daily loading and unloading schedules and minimize queues by maximizing the operations at the loading and unloading points. The VMR simulator developed uses macro-mesoscopic approach with Monte Carlo simulation. To validate the simulator, we used actual data of the railway and compared with reality. We obtained a very good adhesion to the value of 2.9% for the validation scenario (Scenario 1 and 3.4% for the scenario with reducing the number of lots of wagons (Scenario 2. We concluded with this simulation that it is possible to reduce the number of GDE wagons without reducing the current level of productivity of the rail system.

  1. Chlorophyll a simulation in a lake ecosystem using a model with wavelet analysis and artificial neural network.

    Science.gov (United States)

    Wang, Fei; Wang, Xuan; Chen, Bin; Zhao, Ying; Yang, Zhifeng

    2013-05-01

    Accurate and reliable forecasting is important for the sustainable management of ecosystems. Chlorophyll a (Chl a) simulation and forecasting can provide early warning information and enable managers to make appropriate decisions for protecting lake ecosystems. In this study, we proposed a method for Chl a simulation in a lake that coupled the wavelet analysis and the artificial neural networks (WA-ANN). The proposed method had the advantage of data preprocessing, which reduced noise and managed nonstationary data. Fourteen variables were included in the developed and validated model, relating to hydrologic, ecological and meteorologic time series data from January 2000 to December 2009 at the Lake Baiyangdian study area, North China. The performance of the proposed WA-ANN model for monthly Chl a simulation in the lake ecosystem was compared with a multiple stepwise linear regression (MSLR) model, an autoregressive integrated moving average (ARIMA) model and a regular ANN model. The results showed that the WA-ANN model was suitable for Chl a simulation providing a more accurate performance than the MSLR, ARIMA, and ANN models. We recommend that the proposed method be widely applied to further facilitate the development and implementation of lake ecosystem management.

  2. Chlorophyll a Simulation in a Lake Ecosystem Using a Model with Wavelet Analysis and Artificial Neural Network

    Science.gov (United States)

    Wang, Fei; Wang, Xuan; Chen, Bin; Zhao, Ying; Yang, Zhifeng

    2013-05-01

    Accurate and reliable forecasting is important for the sustainable management of ecosystems. Chlorophyll a (Chl a) simulation and forecasting can provide early warning information and enable managers to make appropriate decisions for protecting lake ecosystems. In this study, we proposed a method for Chl a simulation in a lake that coupled the wavelet analysis and the artificial neural networks (WA-ANN). The proposed method had the advantage of data preprocessing, which reduced noise and managed nonstationary data. Fourteen variables were included in the developed and validated model, relating to hydrologic, ecological and meteorologic time series data from January 2000 to December 2009 at the Lake Baiyangdian study area, North China. The performance of the proposed WA-ANN model for monthly Chl a simulation in the lake ecosystem was compared with a multiple stepwise linear regression (MSLR) model, an autoregressive integrated moving average (ARIMA) model and a regular ANN model. The results showed that the WA-ANN model was suitable for Chl a simulation providing a more accurate performance than the MSLR, ARIMA, and ANN models. We recommend that the proposed method be widely applied to further facilitate the development and implementation of lake ecosystem management.

  3. Simulation and Modeling of a Novel Medium Access Control Scheme for Multi-Beam Directional Networking

    Science.gov (United States)

    2017-03-03

    several novel MAC features are added that allow for robust communication, such as location tracking and tracking neighbor’s transmit or receive state. For...this paper, we implement this protocol in both simula- tion and a new Extendable Mobile Ad -hoc Network Emula- tor (EMANE) model that allows for real...infrastructure issues, where the amount of data passed between the servers is too high, and 2) computation issues, where calculating the interference on the

  4. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models

    Science.gov (United States)

    Krupp, Armin; Griffiths, Ian; Please, Colin

    2016-11-01

    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  5. Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models.

    Science.gov (United States)

    Lemke, Tobias; Peter, Christine

    2017-12-12

    Coarse-grained (CG) simulation models have become very popular tools to study complex molecular systems with great computational efficiency on length and time scales that are inaccessible to simulations at atomistic resolution. In so-called bottom-up coarse-graining strategies, the interactions in the CG model are devised such that an accurate representation of an atomistic sampling of configurational phase space is achieved. This means the coarse-graining methods use the underlying multibody potential of mean force (i.e., free-energy surface) derived from the atomistic simulation as parametrization target. Here, we present a new method where a neural network (NN) is used to extract high-dimensional free energy surfaces (FES) from molecular dynamics (MD) simulation trajectories. These FES are used for simulations on a CG level of resolution. The method is applied to simulating homo-oligo-peptides (oligo-glutamic-acid (oligo-glu) and oligo-aspartic-acid (oligo-asp)) of different lengths. We show that the NN not only is able to correctly describe the free-energy surface for oligomer lengths that it was trained on but also is able to predict the conformational sampling of longer chains.

  6. Passenger rail security, planning, and resilience: application of network, plume, and economic simulation models as decision support tools.

    Science.gov (United States)

    Greenberg, Michael; Lioy, Paul; Ozbas, Birnur; Mantell, Nancy; Isukapalli, Sastry; Lahr, Michael; Altiok, Tayfur; Bober, Joseph; Lacy, Clifton; Lowrie, Karen; Mayer, Henry; Rovito, Jennifer

    2013-11-01

    We built three simulation models that can assist rail transit planners and operators to evaluate high and low probability rail-centered hazard events that could lead to serious consequences for rail-centered networks and their surrounding regions. Our key objective is to provide these models to users who, through planning with these models, can prevent events or more effectively react to them. The first of the three models is an industrial systems simulation tool that closely replicates rail passenger traffic flows between New York Penn Station and Trenton, New Jersey. Second, we built and used a line source plume model to trace chemical plumes released by a slow-moving freight train that could impact rail passengers, as well as people in surrounding areas. Third, we crafted an economic simulation model that estimates the regional economic consequences of a variety of rail-related hazard events through the year 2020. Each model can work independently of the others. However, used together they help provide a coherent story about what could happen and set the stage for planning that should make rail-centered transport systems more resistant and resilient to hazard events. We highlight the limitations and opportunities presented by using these models individually or in sequence. © 2013 Society for Risk Analysis.

  7. An integrated model for simulating and diagnosing the water quality based on the system dynamics and Bayesian network.

    Science.gov (United States)

    Wang, Gengzhe; Wang, Shuo; Kang, Qiao; Duan, Haiyan; Wang, Xian'En

    2016-12-01

    An integrated model for simulating and diagnosing water quality based on the system dynamics and Bayesian network (BN) is presented in the paper. The research aims to connect water monitoring downstream with outlet management upstream in order to present an efficiency outlet management strategy. The integrated model was built from two components: the system dynamics were used to simulate the water quality and the BN was applied to diagnose the reason for water quality deterioration according to the water quality simulation. The integrated model was applied in a case study of the Songhua River from the Baiqi section to the Songlin section to prove its reasonability and accuracy. The results showed that the simulation fit to the variation trend of monitoring data, and the average relative error was less than 10%. The water quality deterioration in the Songlin section was mainly found to be caused by the water quality in the upper reach and Hadashan Reservoir drain by using the diagnosis function of the integrated model based on BN. The relevant result revealed that the integrated model could provide reasonable and quantitative support for the basin manager to make a reasonable outlet control strategy to avoid more serious water quality deterioration.

  8. Model and Simulation of Network Crisis Information Diffusion under Uncertain Environment

    Directory of Open Access Journals (Sweden)

    Yi-Rui Deng

    2016-01-01

    Full Text Available Network crisis information diffusion will have a certain impact on the public’s psychology and behavior and will cause harm to the normal operation social of the public system and the effective allocation of the public resources. So we should timely control the key factors which affect the diffusion process to reduce the damage. Using cellular automata theory, the paper views the public as a series of cellular automata and sets up some cellular state evolution rules. With the help of MATLAB simulated evolution, this paper explores the diffusion rule of crisis information diffusion process and finds out the key factors of crisis information diffusion process and its influence on the diffusion scale and effect, so as to put forward coping strategies. It is hoped that this paper provides reference for the theoretical study of the crisis information diffusion and provides suggestion for the real world to control the crisis information diffusion.

  9. Simulation and prediction of the thuringiensin abiotic degradation processes in aqueous solution by a radius basis function neural network model.

    Science.gov (United States)

    Zhou, Jingwen; Xu, Zhenghong; Chen, Shouwen

    2013-04-01

    The thuringiensin abiotic degradation processes in aqueous solution under different conditions, with a pH range of 5.0-9.0 and a temperature range of 10-40°C, were systematically investigated by an exponential decay model and a radius basis function (RBF) neural network model, respectively. The half-lives of thuringiensin calculated by the exponential decay model ranged from 2.72 d to 16.19 d under the different conditions mentioned above. Furthermore, an RBF model with accuracy of 0.1 and SPREAD value 5 was employed to model the degradation processes. The results showed that the model could simulate and predict the degradation processes well. Both the half-lives and the prediction data showed that thuringiensin was an easily degradable antibiotic, which could be an important factor in the evaluation of its safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A spatial DB model to simulate the road network efficiency in hydrogeological emergency

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Mangiameli, E-mail: michele.mangiameli@dica.unict.it; Giuseppe, Mussumeci [Dept. of Civil Engineering and Architecture, University of Catania, Catania (Italy)

    2015-12-31

    We deal with the theme of the simulation of risk analysis using a technological approach based on the integration of exclusively free and open source tools: PostgreSQL as Database Management System (DBMS) and Quantum GIS-GRASS as Geographic Information System (GIS) platform. The case study is represented by a seismic land in Sicily characterized by steep slopes and frequent instability phenomena. This area includes a city of about 30.000 inhabitants (Enna) that lies on the top of a mountain at about 990 m a.s.l.. The access to the city is assured by few and very winding roads that are also highly vulnerable to seismic and hydrogeological hazards. When exceptional rainfall events occur, the loss of efficiency of these roads should compromise timeliness and effectiveness of rescue operations. The data of the sample area have been structured into the adopted DBMS, and the connection to the GIS functionalities allows simulating the exceptional events. We analyzed the hazard, vulnerability and exposure related to these events and calculated the final risk defining three classes for each scenario: low (L), medium (M) and high (H). This study can be a valuable tool to prioritize risk levels and set priorities for intervention to the main road networks.

  11. Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates

    Science.gov (United States)

    Narayanareddy, V. V.; Chandrasekhar, N.; Vasudevan, M.; Muthukumaran, S.; Vasantharaja, P.

    2016-02-01

    In the present study, artificial neural network modeling has been employed for predicting welding-induced angular distortions in autogenous butt-welded 304L stainless steel plates. The input data for the neural network have been obtained from a series of three-dimensional finite element simulations of TIG welding for a wide range of plate dimensions. Thermo-elasto-plastic analysis was carried out for 304L stainless steel plates during autogenous TIG welding employing double ellipsoidal heat source. The simulated thermal cycles were validated by measuring thermal cycles using thermocouples at predetermined positions, and the simulated distortion values were validated by measuring distortion using vertical height gauge for three cases. There was a good agreement between the model predictions and the measured values. Then, a multilayer feed-forward back propagation neural network has been developed using the numerically simulated data. Artificial neural network model developed in the present study predicted the angular distortion accurately.

  12. A comparison of aggregated models for simulation and operational optimisation of district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.V. [Risoe National Laboratory, Roskilde (Denmark). Dept. of Systems Analysis; Boehm, B. [Technical University of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Wigbels, M. [Franhoefer Institute for Environmental Safety and Energy Technology, Oberhausen (Germany)

    2004-05-01

    Work on aggregation of district heating networks has been in progress during the last decade. Two methods have independently been developed in Denmark and Germany. In this article, a comparison of the two methods is first presented. Next, the district heating system Ishoej near Copenhagen is used as a test case. For the 23 substations in Ishoej, heat loads and primary and secondary supply and return temperatures were available every 5 min for the period December 19-24, 2000. The accuracy of the aggregation models has been documented as the errors in heat production and in return temperature at the DH plant between the physical network and the aggregated model. Both the Danish and the German aggregation methods work well. It is concluded that the number of pipes can be reduced from 44 to three when using the Danish method of aggregation without significantly increasing the error in heat production or return temperature at the plant. In the case of the German method, the number of pipes should not be reduced much below 10 in the Ishoej case. (author)

  13. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation.

    Science.gov (United States)

    Buyukada, Musa

    2016-09-01

    Co-combustion of coal and peanut hull (PH) were investigated using artificial neural networks (ANN), particle swarm optimization, and Monte Carlo simulation as a function of blend ratio, heating rate, and temperature. The best prediction was reached by ANN61 multi-layer perception model with a R(2) of 0.99994. Blend ratio of 90 to 10 (PH to coal, wt%), temperature of 305°C, and heating rate of 49°Cmin(-1) were determined as the optimum input values and yield of 87.4% was obtained under PSO optimized conditions. The validation experiments resulted in yields of 87.5%±0.2 after three replications. Monte Carlo simulations were used for the probabilistic assessments of stochastic variability and uncertainty associated with explanatory variables of co-combustion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The layered sensing operations center: a modeling and simulation approach to developing complex ISR networks

    Science.gov (United States)

    Curtis, Christopher; Lenzo, Matthew; McClure, Matthew; Preiss, Bruce

    2010-04-01

    In order to anticipate the constantly changing landscape of global warfare, the United States Air Force must acquire new capabilities in the field of Intelligence, Surveillance, and Reconnaissance (ISR). To meet this challenge, the Air Force Research Laboratory (AFRL) is developing a unifying construct of "Layered Sensing" which will provide military decision-makers at all levels with the timely, actionable, and trusted information necessary for complete battlespace awareness. Layered Sensing is characterized by the appropriate combination of sensors and platforms (including those for persistent sensing), infrastructure, and exploitation capabilities to enable this synergistic awareness. To achieve the Layered Sensing vision, AFRL is pursuing a Modeling & Simulation (M&S) strategy through the Layered Sensing Operations Center (LSOC). An experimental ISR system-of-systems test-bed, the LSOC integrates DoD standard simulation tools with commercial, off-the-shelf video game technology for rapid scenario development and visualization. These tools will help facilitate sensor management performance characterization, system development, and operator behavioral analysis. Flexible and cost-effective, the LSOC will implement a non-proprietary, open-architecture framework with well-defined interfaces. This framework will incentivize the transition of current ISR performance models to service-oriented software design for maximum re-use and consistency. This paper will present the LSOC's development and implementation thus far as well as a summary of lessons learned and future plans for the LSOC.

  15. A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.; van Eck, Pascal; Wieringa, Roelf J.; Lopes, Raul H.C.

    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the

  16. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  17. Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units.

    Science.gov (United States)

    Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi

    2011-11-01

    Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    Science.gov (United States)

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  19. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Madhumathy Perumal

    2015-01-01

    Full Text Available Data gathering and optimal path selection for wireless sensor networks (WSN using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS. This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  20. A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network

    Directory of Open Access Journals (Sweden)

    Jae-Dong Hong

    2014-10-01

    Full Text Available Purpose: The purpose of this paper is to propose a simulation-based robust biofuel facility location model for solving an integrated bio-energy logistics network (IBLN problem, where biomass yield is often uncertain or difficult to determine.Design/methodology/approach: The IBLN considered in this paper consists of four different facilities: farm or harvest site (HS, collection facility (CF, biorefinery (BR, and blending station (BS. Authors propose a mixed integer quadratic modeling approach to simultaneously determine the optimal CF and BR locations and corresponding biomass and bio-energy transportation plans. The authors randomly generate biomass yield of each HS and find the optimal locations of CFs and BRs for each generated biomass yield, and select the robust locations of CFs and BRs to show the effects of biomass yield uncertainty on the optimality of CF and BR locations. Case studies using data from the State of South Carolina in the United State are conducted to demonstrate the developed model’s capability to better handle the impact of uncertainty of biomass yield.Findings: The results illustrate that the robust location model for BRs and CFs works very well in terms of the total logistics costs. The proposed model would help decision-makers find the most robust locations for biorefineries and collection facilities, which usually require huge investments, and would assist potential investors in identifying the least cost or important facilities to invest in the biomass and bio-energy industry.Originality/value: An optimal biofuel facility location model is formulated for the case of deterministic biomass yield. To improve the robustness of the model for cases with probabilistic biomass yield, the model is evaluated by a simulation approach using case studies. The proposed model and robustness concept would be a very useful tool that helps potential biofuel investors minimize their investment risk.

  1. Efficient simulation of a tandem Jackson network

    NARCIS (Netherlands)

    Kroese, Dirk; Nicola, V.F.

    2002-01-01

    The two-node tandem Jackson network serves as a convenient reference model for the analysis and testing of different methodologies and techniques in rare event simulation. In this paper we consider a new approach to efficiently estimate the probability that the content of the second buffer exceeds

  2. Network Simulation of Technical Architecture

    National Research Council Canada - National Science Library

    Cave, William

    1998-01-01

    ..., and development of the Army Battle Command System (ABCS). PSI delivered a hierarchical iconic modeling facility that can be used to structure and restructure both models and scenarios, interactively, while simulations are running...

  3. Irrigation network design and reconstruction and its analysis by simulation model

    Directory of Open Access Journals (Sweden)

    Čistý Milan

    2014-06-01

    Full Text Available There are many problems related to pipe network rehabilitation, the main one being how to provide an increase in the hydraulic capacity of a system. Because of its complexity the conventional optimizations techniques are poorly suited for solving this task. In recent years some successful attempts to apply modern heuristic methods to this problem have been published. The main part of the paper deals with applying such technique, namely the harmony search methodology, to network rehabilitation optimization considering both technical and economic aspects of the problem. A case study of the sprinkler irrigation system is presented in detail. Two alternatives of the rehabilitation design are compared. The modified linear programming method is used first with new diameters proposed in the existing network so it could satisfy the increased demand conditions with the unchanged topology. This solution is contrasted to the looped one obtained using a harmony search algorithm

  4. A comparison of aggregated models for simulation and operational optimisation of district heating networks

    DEFF Research Database (Denmark)

    Larsen, Helge V.; Bøhm, Benny; Wigbels, M.

    2004-01-01

    Work on aggregation of district heating networks has been in progress during the last decade. Two methods have independently been developed in Denmark and Germany. In this article, a comparison of the two methods is first presented. Next, the district heating system Ishoej near Copenhagen is used...

  5. The neural code in developing cultured networks: experiments and advanced simulation models

    NARCIS (Netherlands)

    Rutten, Wim; Gritsun, T.; Stoyanova, Irina; le Feber, Jakob

    2012-01-01

    Understanding the neural code of cultured neuronal networks may help to forward our understanding of human brain processes.The most striking property of spontaneously firing cultures is their regular bursting activity, a burst being defined as synchronized firing of groups of neurons spread

  6. Parameter estimation in channel network flow simulation

    Directory of Open Access Journals (Sweden)

    Han Longxi

    2008-03-01

    Full Text Available Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.

  7. Simulation of Stimuli-Responsive Polymer Networks

    Directory of Open Access Journals (Sweden)

    Thomas Gruhn

    2013-11-01

    Full Text Available The structure and material properties of polymer networks can depend sensitively on changes in the environment. There is a great deal of progress in the development of stimuli-responsive hydrogels for applications like sensors, self-repairing materials or actuators. Biocompatible, smart hydrogels can be used for applications, such as controlled drug delivery and release, or for artificial muscles. Numerical studies have been performed on different length scales and levels of details. Macroscopic theories that describe the network systems with the help of continuous fields are suited to study effects like the stimuli-induced deformation of hydrogels on large scales. In this article, we discuss various macroscopic approaches and describe, in more detail, our phase field model, which allows the calculation of the hydrogel dynamics with the help of a free energy that considers physical and chemical impacts. On a mesoscopic level, polymer systems can be modeled with the help of the self-consistent field theory, which includes the interactions, connectivity, and the entropy of the polymer chains, and does not depend on constitutive equations. We present our recent extension of the method that allows the study of the formation of nano domains in reversibly crosslinked block copolymer networks. Molecular simulations of polymer networks allow the investigation of the behavior of specific systems on a microscopic scale. As an example for microscopic modeling of stimuli sensitive polymer networks, we present our Monte Carlo simulations of a filament network system with crosslinkers.

  8. Modeling and simulation of permanent magnet synchronous motor based on neural network control strategy

    Science.gov (United States)

    Luo, Bingyang; Chi, Shangjie; Fang, Man; Li, Mengchao

    2017-03-01

    Permanent magnet synchronous motor is used widely in industry, the performance requirements wouldn't be met by adopting traditional PID control in some of the occasions with high requirements. In this paper, a hybrid control strategy - nonlinear neural network PID and traditional PID parallel control are adopted. The high stability and reliability of traditional PID was combined with the strong adaptive ability and robustness of neural network. The permanent magnet synchronous motor will get better control performance when switch different working modes according to different controlled object conditions. As the results showed, the speed response adopting the composite control strategy in this paper was faster than the single control strategy. And in the case of sudden disturbance, the recovery time adopting the composite control strategy designed in this paper was shorter, the recovery ability and the robustness were stronger.

  9. Dynamic simulation of regulatory networks using SQUAD

    Directory of Open Access Journals (Sweden)

    Xenarios Ioannis

    2007-11-01

    Full Text Available Abstract Background The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. Results We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. Conclusion The simulation of regulatory networks aims at predicting the behavior of a whole system when subject

  10. Network simulations of optical illusions

    Science.gov (United States)

    Shinbrot, Troy; Lazo, Miguel Vivar; Siu, Theo

    We examine a dynamical network model of visual processing that reproduces several aspects of a well-known optical illusion, including subtle dependencies on curvature and scale. The model uses a genetic algorithm to construct the percept of an image, and we show that this percept evolves dynamically so as to produce the illusions reported. We find that the perceived illusions are hardwired into the model architecture and we propose that this approach may serve as an archetype to distinguish behaviors that are due to nature (i.e. a fixed network architecture) from those subject to nurture (that can be plastically altered through learning).

  11. Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis

    Science.gov (United States)

    Antanasijević, Davor; Pocajt, Viktor; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2014-11-01

    This paper describes the training, validation, testing and uncertainty analysis of general regression neural network (GRNN) models for the forecasting of dissolved oxygen (DO) in the Danube River. The main objectives of this work were to determine the optimum data normalization and input selection techniques, the determination of the relative importance of uncertainty in different input variables, as well as the uncertainty analysis of model results using the Monte Carlo Simulation (MCS) technique. Min-max, median, z-score, sigmoid and tanh were validated as normalization techniques, whilst the variance inflation factor, correlation analysis and genetic algorithm were tested as input selection techniques. As inputs, the GRNN models used 19 water quality variables, measured in the river water each month at 17 different sites over a period of 9 years. The best results were obtained using min-max normalized data and the input selection based on the correlation between DO and dependent variables, which provided the most accurate GRNN model, and in combination the smallest number of inputs: Temperature, pH, HCO3-, SO42-, NO3-N, Hardness, Na, Cl-, Conductivity and Alkalinity. The results show that the correlation coefficient between measured and predicted DO values is 0.85. The inputs with the greatest effect on the GRNN model (arranged in descending order) were T, pH, HCO3-, SO42- and NO3-N. Of all inputs, variability of temperature had the greatest influence on the variability of DO content in river body, with the DO decreasing at a rate similar to the theoretical DO decreasing rate relating to temperature. The uncertainty analysis of the model results demonstrate that the GRNN can effectively forecast the DO content, since the distribution of model results are very similar to the corresponding distribution of real data.

  12. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.

    Science.gov (United States)

    Sripad, Athul; Sanchez, Giovanny; Zapata, Mireya; Pirrone, Vito; Dorta, Taho; Cambria, Salvatore; Marti, Albert; Krishnamourthy, Karthikeyan; Madrenas, Jordi

    2018-01-01

    Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Simulating the 'other-race' effect with autoassociative neural networks: further evidence in favor of the face-space model.

    Science.gov (United States)

    Caldara, Roberto; Hervé, Abdi

    2006-01-01

    Other-race (OR) faces are less accurately recognized than same-race (SR) faces, but faster classified by race. This phenomenon has often been reported as the 'other-race' effect (ORE). Valentine (1991 Quarterly Journal of Experimental Psychology A: Human Experimental Psychology 43 161-204) proposed a theoretical multidimensional face-space model that explained both of these results, in terms of variations in exemplar density between races. According to this model, SR faces are more widely distributed across the dimensions of the space than OR faces. However, this model does not quantify nor state the dimensions coded within this face space. The aim of the present study was to test the face-space explanation of the ORE with neural network simulations by quantifying its dimensions. We found the predicted density properties of Valentine's framework in the face-projection spaces of the autoassociative memories. This was supported by an interaction for exemplar density between the race of the learned face set and the race of the faces. In addition, the elaborated face representations showed optimal responses for SR but not for OR faces within SR face spaces when explored at the individual level, as gender errors occurred significantly more often in OR than in SR face-space representations. Altogether, our results add further evidence in favor of a statistical exemplar density explanation of the ORE as suggested by Valentine, and question the plausibility of such coding for faces in the framework of recent neuroimaging studies.

  14. Models and Methodologies for Realistic Propagation Simulation for Urban Mesh Networks

    Science.gov (United States)

    2006-10-01

    accurate, then there are well known formulas that describe the behavior (e.g., see [10]). In general, the reflection can be written in terms of six ...and the 75th percentile. 5 10 150.5 1 1.5 2 si gm a an d ga m m a sigma gamma variance High densityLess density Figure 4.7: Relationship between...Furthermore, accurate mobility simulation requires knowledge of details such as the types of establishments within each build- ing (e.g., restaurant

  15. Using Ensemble of Neural Networks to Learn Stochastic Convection Parameterizations for Climate and Numerical Weather Prediction Models from Data Simulated by a Cloud Resolving Model

    Directory of Open Access Journals (Sweden)

    Vladimir M. Krasnopolsky

    2013-01-01

    Full Text Available A novel approach based on the neural network (NN ensemble technique is formulated and used for development of a NN stochastic convection parameterization for climate and numerical weather prediction (NWP models. This fast parameterization is built based on learning from data simulated by a cloud-resolving model (CRM initialized with and forced by the observed meteorological data available for 4-month boreal winter from November 1992 to February 1993. CRM-simulated data were averaged and processed to implicitly define a stochastic convection parameterization. This parameterization is learned from the data using an ensemble of NNs. The NN ensemble members are trained and tested. The inherent uncertainty of the stochastic convection parameterization derived following this approach is estimated. The newly developed NN convection parameterization has been tested in National Center of Atmospheric Research (NCAR Community Atmospheric Model (CAM. It produced reasonable and promising decadal climate simulations for a large tropical Pacific region. The extent of the adaptive ability of the developed NN parameterization to the changes in the model environment is briefly discussed. This paper is devoted to a proof of concept and discusses methodology, initial results, and the major challenges of using the NN technique for developing convection parameterizations for climate and NWP models.

  16. Simulation of Snowmelt Runoff Using SRM Model and Comparison With Neural Networks ANN and ANFIS (Case Study: Kardeh dam basin

    Directory of Open Access Journals (Sweden)

    morteza akbari

    2017-03-01

    of the basin with 2962 meters above sea level. Kardeh dam was primarily constructed on the Kardehriver for providing drinking and agriculture water demand with an annual volume rate of 21.23 million cubic meters. Satellite image: To estimate the level of snow cover, the satellite Landsat ETM+ data at path 35-159, rows 34-159 over the period 2001-2002 were used. Surfaces covered with snow were separated bysnow distinction normalized index (NDSI, But due to the lack of training data for image classification (areas with snow and no snow, the k-means unsupervised classification algorithm was used. Extracting the data from the meteorological and hydrological Since only a gauging station exists at the Kardeh dam site, the daily discharge data recorded at these stations was used. To extract meteorological parameters such as precipitation and temperature data, the records of the three stations Golmakan, Mashhad and Ghouchan, as the stations closest to the dam basin Kardeh were used. The purpose of this study was to simulate snowmelt runoff using SRM hydrological models and to compare the results with the outputs of the neural network models such as the ANN and the ANFIS model. Flow simulation was carried out using SRM, ANN model with the Multilayer Perceptron with back-propagation algorithm, and Sugeno type ANFIS. To evaluate the performance of the models in addition to the standard statistics such as mean square error or mean absolute percentage error, the regression coefficient measures and the difference in volume were used. The results showed that all three models are almost similar in terms of statistical parameters MSE and R and the differences were negligible. SRM model: SRM model is a daily hydrological model. This equation is composed of different components including 14 parameters. The input values were calculated based on the equations of degree-day factor. The evaluation of the model was performed with flow subside factor, coefficient and subtracting volume

  17. Simulating Dynamic Network Models and Adolescent Smoking: The Impact of Varying Peer Influence and Peer Selection.

    Science.gov (United States)

    Lakon, Cynthia M; Hipp, John R; Wang, Cheng; Butts, Carter T; Jose, Rupa

    2015-12-01

    We used a stochastic actor-based approach to examine the effect of peer influence and peer selection--the propensity to choose friends who are similar--on smoking among adolescents. Data were collected from 1994 to 1996 from 2 schools involved in the National Longitudinal Study of Adolescent to Adult Health, with respectively 2178 and 976 students, and different levels of smoking. Our experimental manipulations of the peer influence and selection parameters in a simulation strategy indicated that stronger peer influence decreased school-level smoking. In contrast to the assumption that a smoker may induce a nonsmoker to begin smoking, adherence to antismoking norms may result in an adolescent nonsmoker inducing a smoker to stop smoking and reduce school-level smoking.

  18. Simulating Dynamic Network Models and Adolescent Smoking: The Impact of Varying Peer Influence and Peer Selection

    Science.gov (United States)

    Hipp, John R.; Wang, Cheng; Butts, Carter T.; Jose, Rupa

    2015-01-01

    We used a stochastic actor-based approach to examine the effect of peer influence and peer selection—the propensity to choose friends who are similar—on smoking among adolescents. Data were collected from 1994 to 1996 from 2 schools involved in the National Longitudinal Study of Adolescent to Adult Health, with respectively 2178 and 976 students, and different levels of smoking. Our experimental manipulations of the peer influence and selection parameters in a simulation strategy indicated that stronger peer influence decreased school-level smoking. In contrast to the assumption that a smoker may induce a nonsmoker to begin smoking, adherence to antismoking norms may result in an adolescent nonsmoker inducing a smoker to stop smoking and reduce school-level smoking. PMID:26469641

  19. Complex Networks in Psychological Models

    Science.gov (United States)

    Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.

    We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.

  20. Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation

    NARCIS (Netherlands)

    D. Palachanis; A. Szabó (Andras); R.M.H. Merks (Roeland)

    2015-01-01

    htmlabstractComputational modelling is helpful for elucidating the cellular mechanisms driving biological morphogenesis. Previous simulation studies of blood vessel growth based on the Cellular Potts model (CPM) proposed that elongated, adhesive or mutually attractive endothelial cells suffice for

  1. Simulation of developing human neuronal cell networks.

    Science.gov (United States)

    Lenk, Kerstin; Priwitzer, Barbara; Ylä-Outinen, Laura; Tietz, Lukas H B; Narkilahti, Susanna; Hyttinen, Jari A K

    2016-08-30

    Microelectrode array (MEA) is a widely used technique to study for example the functional properties of neuronal networks derived from human embryonic stem cells (hESC-NN). With hESC-NN, we can investigate the earliest developmental stages of neuronal network formation in the human brain. In this paper, we propose an in silico model of maturating hESC-NNs based on a phenomenological model called INEX. We focus on simulations of the development of bursts in hESC-NNs, which are the main feature of neuronal activation patterns. The model was developed with data from developing hESC-NN recordings on MEAs which showed increase in the neuronal activity during the investigated six measurement time points in the experimental and simulated data. Our simulations suggest that the maturation process of hESC-NN, resulting in the formation of bursts, can be explained by the development of synapses. Moreover, spike and burst rate both decreased at the last measurement time point suggesting a pruning of synapses as the weak ones are removed. To conclude, our model reflects the assumption that the interaction between excitatory and inhibitory neurons during the maturation of a neuronal network and the spontaneous emergence of bursts are due to increased connectivity caused by the forming of new synapses.

  2. Realistic computer network simulation for network intrusion detection dataset generation

    Science.gov (United States)

    Payer, Garrett

    2015-05-01

    The KDD-99 Cup dataset is dead. While it can continue to be used as a toy example, the age of this dataset makes it all but useless for intrusion detection research and data mining. Many of the attacks used within the dataset are obsolete and do not reflect the features important for intrusion detection in today's networks. Creating a new dataset encompassing a large cross section of the attacks found on the Internet today could be useful, but would eventually fall to the same problem as the KDD-99 Cup; its usefulness would diminish after a period of time. To continue research into intrusion detection, the generation of new datasets needs to be as dynamic and as quick as the attacker. Simply examining existing network traffic and using domain experts such as intrusion analysts to label traffic is inefficient, expensive, and not scalable. The only viable methodology is simulation using technologies including virtualization, attack-toolsets such as Metasploit and Armitage, and sophisticated emulation of threat and user behavior. Simulating actual user behavior and network intrusion events dynamically not only allows researchers to vary scenarios quickly, but enables online testing of intrusion detection mechanisms by interacting with data as it is generated. As new threat behaviors are identified, they can be added to the simulation to make quicker determinations as to the effectiveness of existing and ongoing network intrusion technology, methodology and models.

  3. A model of coauthorship networks

    Science.gov (United States)

    Zhou, Guochang; Li, Jianping; Xie, Zonglin

    2017-10-01

    A natural way of representing the coauthorship of authors is to use a generalization of graphs known as hypergraphs. A random geometric hypergraph model is proposed here to model coauthorship networks, which is generated by placing nodes on a region of Euclidean space randomly and uniformly, and connecting some nodes if the nodes satisfy particular geometric conditions. Two kinds of geometric conditions are designed to model the collaboration patterns of academic authorities and basic researches respectively. The conditions give geometric expressions of two causes of coauthorship: the authority and similarity of authors. By simulation and calculus, we show that the forepart of the degree distribution of the network generated by the model is mixture Poissonian, and the tail is power-law, which are similar to these of some coauthorship networks. Further, we show more similarities between the generated network and real coauthorship networks: the distribution of cardinalities of hyperedges, high clustering coefficient, assortativity, and small-world property

  4. Introduction to Network Simulator NS2

    CERN Document Server

    Issariyakul, Teerawat

    2008-01-01

    A beginners' guide for network simulator NS2, an open-source discrete event simulator designed mainly for networking research. It presents two fundamental NS2 concepts: how objects are assembled to create a network and how a packet flows from one object to another

  5. Trace Replay and Network Simulation Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-22

    TraceR Is a trace replay tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performance and understanding network behavior by simulating messaging In High Performance Computing applications on interconnection networks.

  6. Modelling personal exposure to particulate air pollution: an assessment of time-integrated activity modelling, Monte Carlo simulation & artificial neural network approaches.

    Science.gov (United States)

    McCreddin, A; Alam, M S; McNabola, A

    2015-01-01

    An experimental assessment of personal exposure to PM10 in 59 office workers was carried out in Dublin, Ireland. 255 samples of 24-h personal exposure were collected in real time over a 28 month period. A series of modelling techniques were subsequently assessed for their ability to predict 24-h personal exposure to PM10. Artificial neural network modelling, Monte Carlo simulation and time-activity based models were developed and compared. The results of the investigation showed that using the Monte Carlo technique to randomly select concentrations from statistical distributions of exposure concentrations in typical microenvironments encountered by office workers produced the most accurate results, based on 3 statistical measures of model performance. The Monte Carlo simulation technique was also shown to have the greatest potential utility over the other techniques, in terms of predicting personal exposure without the need for further monitoring data. Over the 28 month period only a very weak correlation was found between background air quality and personal exposure measurements, highlighting the need for accurate models of personal exposure in epidemiological studies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. The Airport Network Flow Simulator.

    Science.gov (United States)

    1976-05-01

    The impact of investment at an individual airport is felt through-out the National Airport System by reduction of delays at other airports in the the system. A GPSS model was constructed to simulate the propagation of delays through a nine-airport sy...

  8. Service entity network virtualization architecture and model

    Science.gov (United States)

    Jin, Xue-Guang; Shou, Guo-Chu; Hu, Yi-Hong; Guo, Zhi-Gang

    2017-07-01

    Communication network can be treated as a complex network carrying a variety of services and service can be treated as a network composed of functional entities. There are growing interests in multiplex service entities where individual entity and link can be used for different services simultaneously. Entities and their relationships constitute a service entity network. In this paper, we introduced a service entity network virtualization architecture including service entity network hierarchical model, service entity network model, service implementation and deployment of service entity networks. Service entity network oriented multiplex planning model were also studied and many of these multiplex models were characterized by a significant multiplex of the links or entities in different service entity network. Service entity networks were mapped onto shared physical resources by dynamic resource allocation controller. The efficiency of the proposed architecture was illustrated in a simulation environment that allows for comparative performance evaluation. The results show that, compared to traditional networking architecture, this architecture has a better performance.

  9. Resilience Simulation for Water, Power & Road Networks

    Science.gov (United States)

    Clark, S. S.; Seager, T. P.; Chester, M.; Eisenberg, D. A.; Sweet, D.; Linkov, I.

    2014-12-01

    The increasing frequency, scale, and damages associated with recent catastrophic events has called for a shift in focus from evading losses through risk analysis to improving threat preparation, planning, absorption, recovery, and adaptation through resilience. However, neither underlying theory nor analytic tools have kept pace with resilience rhetoric. As a consequence, current approaches to engineering resilience analysis often conflate resilience and robustness or collapse into a deeper commitment to the risk analytic paradigm proven problematic in the first place. This research seeks a generalizable understanding of resilience that is applicable in multiple disciplinary contexts. We adopt a unique investigative perspective by coupling social and technical analysis with human subjects research to discover the adaptive actions, ideas and decisions that contribute to resilience in three socio-technical infrastructure systems: electric power, water, and roadways. Our research integrates physical models representing network objects with examination of the knowledge systems and social interactions revealed by human subjects making decisions in a simulated crisis environment. To ensure a diversity of contexts, we model electric power, water, roadway and knowledge networks for Phoenix AZ and Indianapolis IN. We synthesize this in a new computer-based Resilient Infrastructure Simulation Environment (RISE) to allow individuals, groups (including students) and experts to test different network design configurations and crisis response approaches. By observing simulated failures and best performances, we expect a generalizable understanding of resilience may emerge that yields a measureable understanding of the sensing, anticipating, adapting, and learning processes that are essential to resilient organizations.

  10. A dynamic simulation model of passenger flow distribution on schedule-based rail transit networks with train delays

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-08-01

    Full Text Available In a schedule-based rail transit system, passenger route choices are affected by train delays, and, consequently, the relevant passenger flow distribution of the network will differ from the normal state. In this paper, a passenger's alternative choices, such as selecting another route, waiting, and switching to other transportation modes, and the corresponding influence mechanism are analyzed in detail. Given train time–space diagrams and the time-varying travel demands between the origin and destination (O–D, a dynamic simulation model of passenger flow distribution on schedule-based transit networks with train delays is proposed. Animation demonstration and statistical indices, including the passenger flow volume of each train and station, can be generated from simulation results. A numerical example is given to illustrate the application of the proposed model. Numerical results indicate that, compared with conventional methods, the proposed model performs better for a passenger flow distribution with train delays.

  11. FNS: an event-driven spiking neural network framework for efficient simulations of large-scale brain models

    OpenAIRE

    Susi, Gianluca; Garces, Pilar; Cristini, Alessandro; Paracone, Emanuele; Salerno, Mario; Maestu, Fernando; Pereda, Ernesto

    2018-01-01

    Limitations in processing capabilities and memory of today's computers make spiking neuron-based (human) whole-brain simulations inevitably characterized by a compromise between bio-plausibility and computational cost. It translates into brain models composed of a reduced number of neurons and a simplified neuron's mathematical model. Taking advantage of the sparse character of brain-like computation, eventdriven technique allows us to carry out efficient simulation of large-scale Spiking Neu...

  12. Motorway Network Simulation Using Bluetooth Data

    Directory of Open Access Journals (Sweden)

    Karakikes Ioannis

    2016-09-01

    Full Text Available This paper describes a systematic calibration process of a Vissim model, based on data derived from BT detectors. It also provides instructions how to calibrate and validate a highway network model based upon a case study and establishes an example for practitioners that are interested in designing highway networks with micro simulation tools. Within this case study, a 94,5 % proper calibration to all segments was achieved First, an overview of the systematic calibration approach that will be followed is presented. A description of the given datasets follows. Finally, model’s systematic calibration and validation based on BT data from segments under free flow conditions is thoroughly explained. The delivered calibrated Vissim model acts as a test bed, which in combination with other analysis tools can be used for potential future exploitation regarding transportation related purposes.

  13. EMC Simulation and Modeling

    Science.gov (United States)

    Takahashi, Takehiro; Schibuya, Noboru

    The EMC simulation is now widely used in design stage of electronic equipment to reduce electromagnetic noise. As the calculated electromagnetic behaviors of the EMC simulator depends on the inputted EMC model of the equipment, the modeling technique is important to obtain effective results. In this paper, simple outline of the EMC simulator and EMC model are described. Some modeling techniques of EMC simulation are also described with an example of the EMC model which is shield box with aperture.

  14. Information diversity in structure and dynamics of simulated neuronal networks.

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  15. Information Diversity in Structure and Dynamics of Simulated Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Tuomo eMäki-Marttunen

    2011-06-01

    Full Text Available Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance (NCD. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviours are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses.We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  16. SDL-based network performance simulation

    Science.gov (United States)

    Yang, Yang; Lu, Yang; Lin, Xiaokang

    2005-11-01

    Specification and description language (SDL) is an object-oriented formal language defined as a standard by ITU-T. Though SDL is mainly used in describing communication protocols, it is an efficient way to simulate the network performance with SDL tools according to our experience. This paper presents our methodology of SDL-based network performance simulation in such aspects as the simulation platform, the simulation modes and the integrated simulation environment. Note that Telelogic Tau 4.3 SDL suite is used here as the simulation environment though our methodology isn't limited to the software. Finally the SDL-based open shortest path first (OSPF) performance simulation in the wireless private network is illustrated as an example of our methodology, which indicates that SDL is indeed an efficient language in the area of the network performance simulation.

  17. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins.

    Science.gov (United States)

    Stetz, Gabrielle; Verkhivker, Gennady M

    2015-01-01

    Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations

  18. Introduction to Network Simulator NS2

    CERN Document Server

    Issariyakul, Teerawat

    2012-01-01

    "Introduction to Network Simulator NS2" is a primer providing materials for NS2 beginners, whether students, professors, or researchers for understanding the architecture of Network Simulator 2 (NS2) and for incorporating simulation modules into NS2. The authors discuss the simulation architecture and the key components of NS2 including simulation-related objects, network objects, packet-related objects, and helper objects. The NS2 modules included within are nodes, links, SimpleLink objects, packets, agents, and applications. Further, the book covers three helper modules: timers, ra

  19. A Flexible System for Simulating Aeronautical Telecommunication Network

    Science.gov (United States)

    Maly, Kurt; Overstreet, C. M.; Andey, R.

    1998-01-01

    At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.

  20. Modeling the Dynamics of Compromised Networks

    Energy Technology Data Exchange (ETDEWEB)

    Soper, B; Merl, D M

    2011-09-12

    Accurate predictive models of compromised networks would contribute greatly to improving the effectiveness and efficiency of the detection and control of network attacks. Compartmental epidemiological models have been applied to modeling attack vectors such as viruses and worms. We extend the application of these models to capture a wider class of dynamics applicable to cyber security. By making basic assumptions regarding network topology we use multi-group epidemiological models and reaction rate kinetics to model the stochastic evolution of a compromised network. The Gillespie Algorithm is used to run simulations under a worst case scenario in which the intruder follows the basic connection rates of network traffic as a method of obfuscation.

  1. DPSNA-1: A simulation model for queueing networks with limited capacity and repetition of service demand calls

    Science.gov (United States)

    Curzi, L.; Grillo, D.; Tartaruga, G.

    1982-09-01

    A simulation program in which nodes are represented as having a limited queueing capacity, while channels between nodes are assumed to be unlimited is described. The data flow is controlled by differentiating the queue access in function of the call origin. External packets are admitted in the network only if the node occupation level is less than a given fraction. Incoming messages from other nodes are admitted without restrictions and in the case of saturation are repeated. The program structure, inlet data, outlet statistics and a set of term definitions are detailed.

  2. A Bayesian network based approach for integration of condition-based maintenance in strategic offshore wind farm O&M simulation models

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær; Sørensen, John Dalsgaard; Sperstad, Iver Bakken

    2018-01-01

    In the overall decision problem regarding optimization of operation and maintenance (O&M) for offshore wind farms, there are many approaches for solving parts of the overall decision problem. Simulation-based strategy models accurately capture system effects related to logistics, but model...... condition-based maintenance (CBM) in a simplified manner. The influence of the CBM strategy on the failure rate can be directly consid-ered using a risk-based approach, but here logistics is modelled in a simplified manner. This paper presents an efficient approach for accurate integration of CBM...... in simulation-based strategy models. Using Bayesian net-works, the probability distribution for the time of failure and the conditional probability distribution for the time of CBM given the time of failure is estimated accounting for the CBM strategy, and are used by the sim-ulation-based strategy model...

  3. Modeling the citation network by network cosmology.

    Science.gov (United States)

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  4. Modeling the citation network by network cosmology.

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    Full Text Available Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  5. Brain Network Modelling

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther

    Three main topics are presented in this thesis. The first and largest topic concerns network modelling of functional Magnetic Resonance Imaging (fMRI) and Diffusion Weighted Imaging (DWI). In particular nonparametric Bayesian methods are used to model brain networks derived from resting state f...... for their ability to reproduce node clustering and predict unseen data. Comparing the models on whole brain networks, BCD and IRM showed better reproducibility and predictability than IDM, suggesting that resting state networks exhibit community structure. This also points to the importance of using models, which...... allow for complex interactions between all pairs of clusters. In addition, it is demonstrated how the IRM can be used for segmenting brain structures into functionally coherent clusters. A new nonparametric Bayesian network model is presented. The model builds upon the IRM and can be used to infer...

  6. Neural network modeling of emotion

    Science.gov (United States)

    Levine, Daniel S.

    2007-03-01

    This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.

  7. CHNTRN: a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1983-09-01

    This report presents the development of a CHaNnel TRaNsport model for simulating sediment and chemical distribution in a stream/river network. A particular feature of the model is its capability to deal with the network system that may consist of any number of joined and branched streams/rivers of comparable size. The model employs a numerical method - an integrated compartment method (ICM) - which greatly facilitates the setup of the matrix equation for the discrete field approximating the corresponding continuous field. Most of the possible boundary conditions that may be anticipated in real-world problems are considered. These include junctions, prescribed concentration, prescribed dispersive flux, and prescribed total flux. The model is applied to two case studies: (1) a single river and (2) a five-segment river in a watershed. Results indicate that the model can realistically simulate the behavior of the sediment and chemical variations in a stream/river network. 11 references, 10 figures, 3 tables.

  8. Mobility Model for Tactical Networks

    Science.gov (United States)

    Rollo, Milan; Komenda, Antonín

    In this paper a synthetic mobility model which represents behavior and movement pattern of heterogeneous units in disaster relief and battlefield scenarios is proposed. These operations usually take place in environment without preexisting communication infrastructure and units thus have to be connected by wireless communication network. Units cooperate to fulfill common tasks and communication network has to serve high amount of communication requests, especially data, voice and video stream transmissions. To verify features of topology control, routing and interaction protocols software simulations are usually used, because of their scalability, repeatability and speed. Behavior of all these protocols relies on the mobility model of the network nodes, which has to resemble real-life movement pattern. Proposed mobility model is goal-driven and provides support for various types of units, group mobility and realistic environment model with obstacles. Basic characteristics of the mobility model like node spatial distribution and average node degree were analyzed.

  9. Vectorized algorithms for spiking neural network simulation.

    Science.gov (United States)

    Brette, Romain; Goodman, Dan F M

    2011-06-01

    High-level languages (Matlab, Python) are popular in neuroscience because they are flexible and accelerate development. However, for simulating spiking neural networks, the cost of interpretation is a bottleneck. We describe a set of algorithms to simulate large spiking neural networks efficiently with high-level languages using vector-based operations. These algorithms constitute the core of Brian, a spiking neural network simulator written in the Python language. Vectorized simulation makes it possible to combine the flexibility of high-level languages with the computational efficiency usually associated with compiled languages.

  10. A user oriented active network simulator

    Science.gov (United States)

    Rao, K. S.; Swamy, M. N. S.

    1980-07-01

    A digital computer simulator for the frequency response and tolerance analysis of an electrical network comprising RLCM elements, ideal operational amplifiers and controlled sources is presented in this tutorial paper. The simulator is based on 'tableau approach'. Reordering of the sparse tableau matrix is done using Markowitz Criterion and the diagonal pivots are chosen for simplicity. The simulator also employs dynamic allocation for maximum utilization of memory and faster turn around time. Three networks are simulated and their results are presented in this paper. A network in which the operational amplifiers are assumed to have single pole behaviour is also analyzed.

  11. Learning in innovation networks: Some simulation experiments

    Science.gov (United States)

    Gilbert, Nigel; Ahrweiler, Petra; Pyka, Andreas

    2007-05-01

    According to the organizational learning literature, the greatest competitive advantage a firm has is its ability to learn. In this paper, a framework for modeling learning competence in firms is presented to improve the understanding of managing innovation. Firms with different knowledge stocks attempt to improve their economic performance by engaging in radical or incremental innovation activities and through partnerships and networking with other firms. In trying to vary and/or to stabilize their knowledge stocks by organizational learning, they attempt to adapt to environmental requirements while the market strongly selects on the results. The simulation experiments show the impact of different learning activities, underlining the importance of innovation and learning.

  12. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  13. Causal modeling using network ensemble simulations of genetic and gene expression data predicts genes involved in rheumatoid arthritis.

    Science.gov (United States)

    Xing, Heming; McDonagh, Paul D; Bienkowska, Jadwiga; Cashorali, Tanya; Runge, Karl; Miller, Robert E; Decaprio, Dave; Church, Bruce; Roubenoff, Ronenn; Khalil, Iya G; Carulli, John

    2011-03-01

    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86--a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.

  14. Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [University Centre of Medea, Institute of Science Engineering, Medea (Algeria). Department of Electronics; Benghanem, M. [University of Sciences and Technologies Houari Boumadiene, Algiers (Algeria). Faculty of Electrical Engineering; Kalogirou, S.A. [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2007-02-15

    This paper presents an adaptive artificial neural network (ANN) for modeling and simulation of a Stand-Alone photovoltaic (SAPV) system operating under variable climatic conditions. The ANN combines the Levenberg-Marquardt algorithm (LM) with an infinite impulse response (IIR) filter in order to accelerate the convergence of the network. SAPV systems are widely used in renewable energy source (RES) applications and it is important to be able to evaluate the performance of installed systems. The modeling of the complete SAPV system is achieved by combining the models of the different components of the system (PV-generator, battery and regulator). A global model can identify the SAPV characteristics by knowing only the climatological conditions. In addition, a new procedure proposed for SAPV system sizing is presented in this work. Different measured signals of solar radiation sequences and electrical parameters (photovoltaic voltage and current) from a SAPV system installed at the south of Algeria have been recorded during a period of 5-years. These signals have been used for the training and testing the developed models, one for each component of the system and a global model of the complete system. The ANN model predictions allow the users of SAPV systems to predict the different signals for each model and identify the output current of the system for different climatological conditions. The comparison between simulated and experimental signals of the SAPV gave good results. The correlation coefficient obtained varies from 90% to 96% for each estimated signals, which is considered satisfactory. A comparison between multilayer perceptron (MLP), radial basis function (RBF) network and the proposed LM-IIR model is presented in order to confirm the advantage of this model. (author)

  15. Program Aids Simulation Of Neural Networks

    Science.gov (United States)

    Baffes, Paul T.

    1990-01-01

    Computer program NETS - Tool for Development and Evaluation of Neural Networks - provides simulation of neural-network algorithms plus software environment for development of such algorithms. Enables user to customize patterns of connections between layers of network, and provides features for saving weight values of network, providing for more precise control over learning process. Consists of translating problem into format using input/output pairs, designing network configuration for problem, and finally training network with input/output pairs until acceptable error reached. Written in C.

  16. Graphical user interface for wireless sensor networks simulator

    Science.gov (United States)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  17. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  18. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  19. PyNN: A Common Interface for Neuronal Network Simulators

    Science.gov (United States)

    Davison, Andrew P.; Brüderle, Daniel; Eppler, Jochen; Kremkow, Jens; Muller, Eilif; Pecevski, Dejan; Perrinet, Laurent; Yger, Pierre

    2008-01-01

    Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN. PMID:19194529

  20. PyNN: a common interface for neuronal network simulators

    Directory of Open Access Journals (Sweden)

    Andrew P Davison

    2009-01-01

    Full Text Available Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware. PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization, and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN.

  1. Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer

    Science.gov (United States)

    Kong-A-Siou, Line; Fleury, Perrine; Johannet, Anne; Borrell Estupina, Valérie; Pistre, Séverin; Dörfliger, Nathalie

    2014-11-01

    Karst aquifers can provide previously untapped freshwater resources and have thus generated considerable interest among stakeholders involved in the water supply sector. Here we compare the capacity of two systemic models to simulate the discharge and piezometry of a karst aquifer. Systemic models have the advantage of allowing the study of heterogeneous, complex karst systems without relying on extensive geographical and meteorological datasets. The effectiveness and complementarity of the two models are evaluated for a range of hydrologic conditions and for three methods to estimate evapotranspiration (Monteith, a priori ET, and effective rainfall). The first model is a reservoir model (referred to as VENSIM, after the software used), which is designed with just one reservoir so as to be as parsimonious as possible. The second model is a neural network (NN) model. The models are designed to simulate the rainfall-runoff and rainfall-water level relations in a karst conduit. The Lez aquifer, a karst aquifer located near the city of Montpellier in southern France and a critical water resource, was chosen to compare the two models. Simulated discharge and water level were compared after completing model design and calibration. The results suggest that the NN model is more effective at incorporating the nonlinearity of the karst spring for extreme events (extreme low and high water levels), whereas VENSIM provides a better representation of intermediate-amplitude water level fluctuations. VENSIM is sensitive to the method used to estimate evapotranspiration, whereas the NN model is not. Given that the NN model performs better for extreme events, it is better for operational applications (predicting floods or determining water pumping height). VENSIM, on the other hand, seems more appropriate for representing the hydrologic state of the basin during intermediate periods, when several effects are at work: rain, evapotranspiration, development of vegetation, etc. A

  2. A neuronal network model for simulating the effects of repetitive transcranial magnetic stimulation on local field potential power spectra.

    Directory of Open Access Journals (Sweden)

    Alina Bey

    Full Text Available Repetitive transcranial magnetic stimulation (rTMS holds promise as a non-invasive therapy for the treatment of neurological disorders such as depression, schizophrenia, tinnitus, and epilepsy. Complex interdependencies between stimulus duration, frequency and intensity obscure the exact effects of rTMS stimulation on neural activity in the cortex, making evaluation of and comparison between rTMS studies difficult. To explain the influence of rTMS on neural activity (e.g. in the motor cortex, we use a neuronal network model. The results demonstrate that the model adequately explains experimentally observed short term effects of rTMS on the band power in common frequency bands used in electroencephalography (EEG. We show that the equivalent local field potential (eLFP band power depends on stimulation intensity rather than on stimulation frequency. Additionally, our model resolves contradictions in experiments.

  3. RMBNToolbox: random models for biochemical networks

    Directory of Open Access Journals (Sweden)

    Niemi Jari

    2007-05-01

    Full Text Available Abstract Background There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models. Results We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language. Conclusion While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.

  4. Two modelling approaches to water-quality simulation in a flooded iron-ore mine (Saizerais, Lorraine, France): a semi-distributed chemical reactor model and a physically based distributed reactive transport pipe network model.

    Science.gov (United States)

    Hamm, V; Collon-Drouaillet, P; Fabriol, R

    2008-02-19

    The flooding of abandoned mines in the Lorraine Iron Basin (LIB) over the past 25 years has degraded the quality of the groundwater tapped for drinking water. High concentrations of dissolved sulphate have made the water unsuitable for human consumption. This problematic issue has led to the development of numerical tools to support water-resource management in mining contexts. Here we examine two modelling approaches using different numerical tools that we tested on the Saizerais flooded iron-ore mine (Lorraine, France). A first approach considers the Saizerais Mine as a network of two chemical reactors (NCR). The second approach is based on a physically distributed pipe network model (PNM) built with EPANET 2 software. This approach considers the mine as a network of pipes defined by their geometric and chemical parameters. Each reactor in the NCR model includes a detailed chemical model built to simulate quality evolution in the flooded mine water. However, in order to obtain a robust PNM, we simplified the detailed chemical model into a specific sulphate dissolution-precipitation model that is included as sulphate source/sink in both a NCR model and a pipe network model. Both the NCR model and the PNM, based on different numerical techniques, give good post-calibration agreement between the simulated and measured sulphate concentrations in the drinking-water well and overflow drift. The NCR model incorporating the detailed chemical model is useful when a detailed chemical behaviour at the overflow is needed. The PNM incorporating the simplified sulphate dissolution-precipitation model provides better information of the physics controlling the effect of flow and low flow zones, and the time of solid sulphate removal whereas the NCR model will underestimate clean-up time due to the complete mixing assumption. In conclusion, the detailed NCR model will give a first assessment of chemical processes at overflow, and in a second time, the PNM model will provide more

  5. Energy modelling in sensor networks

    Directory of Open Access Journals (Sweden)

    D. Schmidt

    2007-06-01

    Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  6. 3D-CFD simulation and neural network model for the j and f factors of the wavy fin-and-flat tube heat exchangers

    Directory of Open Access Journals (Sweden)

    M Khoshvaght Aliabadi

    2011-09-01

    Full Text Available A three dimensional (3D computational fluid dynamics (CFD simulation and a neural network model are presented to estimate the behaviors of the Colburn factor (j and the Fanning friction factor (f for wavy fin - and - flat tube (WFFT heat exchangers. Effects of the five geometrical factors of fin pitch, fin height, fin length, fin thickness, and wavy amplitude are investigated over a wide range of Reynolds number (600simulation results express that the geometrical parameters of wavy fins have significant effects on the j and f factors as a function of Reynolds number. The computational results have an adequate accuracy when compared to experimental data. The accuracy of the calculations of the j and f factors are evaluated by the values of the absolute average relative deviation (AARD, being respectively 3.8% and 8.2% for the CFD simulation and 1.3% and 1% for the neural network model. Finally, new correlations are proposed to estimate the values of the j and f factors with 3.22% and 3.68% AARD respectively.

  7. Modeling Epidemic Network Failures

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Fagertun, Anna Manolova

    2013-01-01

    This paper presents the implementation of a failure propagation model for transport networks when multiple failures occur resulting in an epidemic. We model the Susceptible Infected Disabled (SID) epidemic model and validate it by comparing it to analytical solutions. Furthermore, we evaluate...

  8. Modeling automation of hydraulic networks with application in training simulators; Automatizacion del modelado de redes hidraulicas con aplicacion en simuladores para entrenamiento

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Edgardo; Tavira, Jose [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    The modeling of hydraulic networks is a fundamental task in the development of simulators for operator`s training. Having an automatic tool that eases the implementation of this models in a simulator, without the need that the user has to formulate and program his specific problem, represents a great saving of time and effort. In this paper the generalities of a computer program that allows the characterization and testing of models of hydraulic networks, are presented. A graphical interface is described; the principles on which the six types of models that the user can choose, are summarized and the results obtained, are presented. [Espanol] El modelado de redes hidraulicas es una tarea primordial dentro del desarrollo de simuladores para el entrenamiento de operadores. El contar con una herramienta automatica que facilite la implantacion de estos modelos en un simulador, sin que el usuario tenga que formular y programar su problema especifico, representa un gran ahorro en tiempo y esfuerzo. En este articulo se presentan las generalidades de un programa computacional que permite caracterizar y probar modelos de redes hidraulicas. Se describe su interfaz grafica; se resumen los principios en que se basan los seis tipos de modelos que el usuario puede elegir, y se presentan los resultados obtenidos.

  9. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...... of models has been somewhat narrow-minded reducing the notion of validation to establishment of truth. This article puts forward the diversity in applications of simulation models that demands a corresponding diversity in the notion of validation....

  10. Software for Brain Network Simulations: A Comparative Study

    Science.gov (United States)

    Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.

    2017-01-01

    Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with

  11. The Stochastic-Deterministic Transition in Discrete Fracture Network Models and its Implementation in a Safety Assessment Application by Means of Conditional Simulation

    Science.gov (United States)

    Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.

    2015-12-01

    In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to

  12. Gene Regulation Networks for Modeling Drosophila Development

    Science.gov (United States)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  13. A GIS Tool for simulating Nitrogen transport along schematic Network

    Science.gov (United States)

    Tavakoly, A. A.; Maidment, D. R.; Yang, Z.; Whiteaker, T.; David, C. H.; Johnson, S.

    2012-12-01

    An automated method called the Arc Hydro Schematic Processor has been developed for water process computation on schematic networks formed from the NHDPlus and similar GIS river networks. The sechemtaic network represents the hydrologic feature on the ground and is a network of links and nodes. SchemaNodes show hydrologic features, such as catchments or stream junctions. SchemaLinks prescripe the connections between nodes. The schematic processor uses the schematic network to pass informatin through a watershed and move water or pollutants dwonstream. In addition, the schematic processor has a capability to use additional programming applied to the passed and/or received values and manipulating data trough network. This paper describes how the schemtic processor can be used to simulate nitrogen transport and transformation on river networks. For this purpose the nitrogen loads is estimated on the NHDPlus river network using the Schematic Processor coupled with the river routing model for the Texas Gulf Coast Hydrologic Region.

  14. Polymer networks: Modeling and applications

    Science.gov (United States)

    Masoud, Hassan

    Polymer networks are an important class of materials that are ubiquitously found in natural, biological, and man-made systems. The complex mesoscale structure of these soft materials has made it difficult for researchers to fully explore their properties. In this dissertation, we introduce a coarse-grained computational model for permanently cross-linked polymer networks than can properly capture common properties of these materials. We use this model to study several practical problems involving dry and solvated networks. Specifically, we analyze the permeability and diffusivity of polymer networks under mechanical deformations, we examine the release of encapsulated solutes from microgel capsules during volume transitions, and we explore the complex tribological behavior of elastomers. Our simulations reveal that the network transport properties are defined by the network porosity and by the degree of network anisotropy due to mechanical deformations. In particular, the permeability of mechanically deformed networks can be predicted based on the alignment of network filaments that is characterized by a second order orientation tensor. Moreover, our numerical calculations demonstrate that responsive microcapsules can be effectively utilized for steady and pulsatile release of encapsulated solutes. We show that swollen gel capsules allow steady, diffusive release of nanoparticles and polymer chains, whereas gel deswelling causes burst-like discharge of solutes driven by an outward flow of the solvent initially enclosed within a shrinking capsule. We further demonstrate that this hydrodynamic release can be regulated by introducing rigid microscopic rods in the capsule interior. We also probe the effects of velocity, temperature, and normal load on the sliding of elastomers on smooth and corrugated substrates. Our friction simulations predict a bell-shaped curve for the dependence of the friction coefficient on the sliding velocity. Our simulations also illustrate

  15. Meeting the memory challenges of brain-scale network simulation

    Directory of Open Access Journals (Sweden)

    Susanne eKunkel

    2012-01-01

    Full Text Available The development of high-performance simulation software is crucial for studying the brain connectome. Using connectome data to generate neurocomputational models requires software capable of coping with models on a variety of scales: from the microscale, investigating plasticity and dynamics of circuits in local networks, to the macroscale, investigating the interactions between distinct brain regions. Prior to any serious dynamical investigation, the first task of network simulations is to check the consistency of data integrated in the connectome and constrain ranges for yet unknown parameters. Thanks to distributed computing techniques, it is possible today to routinely simulate local cortical networks of around 10^5 neurons with up to 10^9 synapses on clusters and multi-processor shared-memory machines. However, brain-scale networks are one or two orders of magnitude larger than such local networks, in terms of numbers of neurons and synapses as well as in terms of computational load. Such networks have been studied in individual studies, but the underlying simulation technologies have neither been described in sufficient detail to be reproducible nor made publicly available. Here, we discover that as the network model sizes approach the regime of meso- and macroscale simulations, memory consumption on individual compute nodes becomes a critical bottleneck. This is especially relevant on modern supercomputers such as the Bluegene/P architecture where the available working memory per CPU core is rather limited. We develop a simple linear model to analyze the memory consumption of the constituent components of a neuronal simulator as a function of network size and the number of cores used. This approach has multiple benefits. The model enables identification of key contributing components to memory saturation and prediction of the effects of potential improvements to code before any implementation takes place.

  16. statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data

    Directory of Open Access Journals (Sweden)

    Mark S. Handcock

    2007-12-01

    Full Text Available statnet is a suite of software packages for statistical network analysis. The packages implement recent advances in network modeling based on exponential-family random graph models (ERGM. The components of the package provide a comprehensive framework for ERGM-based network modeling, including tools for model estimation, model evaluation, model-based network simulation, and network visualization. This broad functionality is powered by a central Markov chain Monte Carlo (MCMC algorithm. The coding is optimized for speed and robustness.

  17. Buffer Management Simulation in ATM Networks

    Science.gov (United States)

    Yaprak, E.; Xiao, Y.; Chronopoulos, A.; Chow, E.; Anneberg, L.

    1998-01-01

    This paper presents a simulation of a new dynamic buffer allocation management scheme in ATM networks. To achieve this objective, an algorithm that detects congestion and updates the dynamic buffer allocation scheme was developed for the OPNET simulation package via the creation of a new ATM module.

  18. An object-oriented modeling and simulation framework for bearings-only multi-target tracking using an unattended acoustic sensor network

    Science.gov (United States)

    Aslan, Murat Šamil

    2013-10-01

    Tracking ground targets using low cost ground-based sensors is a challenging field because of the limited capabilities of such sensors. Among the several candidates, including seismic and magnetic sensors, the acoustic sensors based on microphone arrays have a potential of being useful: They can provide a direction to the sound source, they can have a relatively better range, and the sound characteristics can provide a basis for target classification. However, there are still many problems. One of them is the difficulty to resolve multiple sound sources, another is that they do not provide distance, a third is the presence of background noise from wind, sea, rain, distant air and land traffic, people, etc., and a fourth is that the same target can sound very differently depending on factors like terrain type, topography, speed, gear, distance, etc. Use of sophisticated signal processing and data fusion algorithms is the key for compensating (to an extend) the limited capabilities and mentioned problems of these sensors. It is hard, if not impossible, to evaluate the performance of such complex algorithms analytically. For an effective evaluation, before performing expensive field trials, well-designed laboratory experiments and computer simulations are necessary. Along this line, in this paper, we present an object-oriented modeling and simulation framework which can be used to generate simulated data for the data fusion algorithms for tracking multiple on-road targets in an unattended acoustic sensor network. Each sensor node in the network is a circular microphone array which produces the direction of arrival (DOA) (or bearing) measurements of the targets and sends this information to a fusion center. We present the models for road networks, targets (motion and acoustic power) and acoustic sensors in an object-oriented fashion where different and possibly time-varying sampling periods for each sensor node is possible. Moreover, the sensor's signal processing and

  19. Simulating Social Networks of Online Communities: Simulation as a Method for Sociability Design

    Science.gov (United States)

    Ang, Chee Siang; Zaphiris, Panayiotis

    We propose the use of social simulations to study and support the design of online communities. In this paper, we developed an Agent-Based Model (ABM) to simulate and study the formation of social networks in a Massively Multiplayer Online Role Playing Game (MMORPG) guild community. We first analyzed the activities and the social network (who-interacts-with-whom) of an existing guild community to identify its interaction patterns and characteristics. Then, based on the empirical results, we derived and formalized the interaction rules, which were implemented in our simulation. Using the simulation, we reproduced the observed social network of the guild community as a means of validation. The simulation was then used to examine how various parameters of the community (e.g. the level of activity, the number of neighbors of each agent, etc) could potentially influence the characteristic of the social networks.

  20. Network bursts in cortical neuronal cultures: 'noise - versus pacemaker'- driven neural network simulations

    NARCIS (Netherlands)

    Gritsun, T.; Stegenga, J.; le Feber, Jakob; Rutten, Wim

    2009-01-01

    In this paper we address the issue of spontaneous bursting activity in cortical neuronal cultures and explain what might cause this collective behavior using computer simulations of two different neural network models. While the common approach to acivate a passive network is done by introducing

  1. Neural network simulation of the industrial producer price index dynamical series

    OpenAIRE

    Soshnikov, L. E.

    2013-01-01

    This paper is devoted the simulation and forecast of dynamical series of the economical indicators. Multilayer perceptron and Radial basis function neural networks have been used. The neural networks model results are compared with the econometrical modeling.

  2. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  3. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  4. EVALUATING AUSTRALIAN FOOTBALL LEAGUE PLAYER CONTRIBUTIONS USING INTERACTIVE NETWORK SIMULATION

    Directory of Open Access Journals (Sweden)

    Jonathan Sargent

    2013-03-01

    Full Text Available This paper focuses on the contribution of Australian Football League (AFL players to their team's on-field network by simulating player interactions within a chosen team list and estimating the net effect on final score margin. A Visual Basic computer program was written, firstly, to isolate the effective interactions between players from a particular team in all 2011 season matches and, secondly, to generate a symmetric interaction matrix for each match. Negative binomial distributions were fitted to each player pairing in the Geelong Football Club for the 2011 season, enabling an interactive match simulation model given the 22 chosen players. Dynamic player ratings were calculated from the simulated network using eigenvector centrality, a method that recognises and rewards interactions with more prominent players in the team network. The centrality ratings were recorded after every network simulation and then applied in final score margin predictions so that each player's match contribution-and, hence, an optimal team-could be estimated. The paper ultimately demonstrates that the presence of highly rated players, such as Geelong's Jimmy Bartel, provides the most utility within a simulated team network. It is anticipated that these findings will facilitate optimal AFL team selection and player substitutions, which are key areas of interest to coaches. Network simulations are also attractive for use within betting markets, specifically to provide information on the likelihood of a chosen AFL team list "covering the line".

  5. HSimulator: Hybrid Stochastic/Deterministic Simulation of Biochemical Reaction Networks

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available HSimulator is a multithread simulator for mass-action biochemical reaction systems placed in a well-mixed environment. HSimulator provides optimized implementation of a set of widespread state-of-the-art stochastic, deterministic, and hybrid simulation strategies including the first publicly available implementation of the Hybrid Rejection-based Stochastic Simulation Algorithm (HRSSA. HRSSA, the fastest hybrid algorithm to date, allows for an efficient simulation of the models while ensuring the exact simulation of a subset of the reaction network modeling slow reactions. Benchmarks show that HSimulator is often considerably faster than the other considered simulators. The software, running on Java v6.0 or higher, offers a simulation GUI for modeling and visually exploring biological processes and a Javadoc-documented Java library to support the development of custom applications. HSimulator is released under the COSBI Shared Source license agreement (COSBI-SSLA.

  6. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  7. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  8. Implementation of quantum key distribution network simulation module in the network simulator NS-3

    Science.gov (United States)

    Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav

    2017-10-01

    As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.

  9. SiGNet: A signaling network data simulator to enable signaling network inference.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Coker

    Full Text Available Network models are widely used to describe complex signaling systems. Cellular wiring varies in different cellular contexts and numerous inference techniques have been developed to infer the structure of a network from experimental data of the network's behavior. To objectively identify which inference strategy is best suited to a specific network, a gold standard network and dataset are required. However, suitable datasets for benchmarking are difficult to find. Numerous tools exist that can simulate data for transcriptional networks, but these are of limited use for the study of signaling networks. Here, we describe SiGNet (Signal Generator for Networks: a Cytoscape app that simulates experimental data for a signaling network of known structure. SiGNet has been developed and tested against published experimental data, incorporating information on network architecture, and the directionality and strength of interactions to create biological data in silico. SiGNet is the first tool to simulate biological signaling data, enabling an accurate and systematic assessment of inference strategies. SiGNet can also be used to produce preliminary models of key biological pathways following perturbation.

  10. Evaluating Australian football league player contributions using interactive network simulation.

    Science.gov (United States)

    Sargent, Jonathan; Bedford, Anthony

    2013-01-01

    This paper focuses on the contribution of Australian Football League (AFL) players to their team's on-field network by simulating player interactions within a chosen team list and estimating the net effect on final score margin. A Visual Basic computer program was written, firstly, to isolate the effective interactions between players from a particular team in all 2011 season matches and, secondly, to generate a symmetric interaction matrix for each match. Negative binomial distributions were fitted to each player pairing in the Geelong Football Club for the 2011 season, enabling an interactive match simulation model given the 22 chosen players. Dynamic player ratings were calculated from the simulated network using eigenvector centrality, a method that recognises and rewards interactions with more prominent players in the team network. The centrality ratings were recorded after every network simulation and then applied in final score margin predictions so that each player's match contribution-and, hence, an optimal team-could be estimated. The paper ultimately demonstrates that the presence of highly rated players, such as Geelong's Jimmy Bartel, provides the most utility within a simulated team network. It is anticipated that these findings will facilitate optimal AFL team selection and player substitutions, which are key areas of interest to coaches. Network simulations are also attractive for use within betting markets, specifically to provide information on the likelihood of a chosen AFL team list "covering the line ". Key pointsA simulated interaction matrix for Australian Rules football players is proposedThe simulations were carried out by fitting unique negative binomial distributions to each player pairing in a sideEigenvector centrality was calculated for each player in a simulated matrix, then for the teamThe team centrality measure adequately predicted the team's winning marginA player's net effect on margin could hence be estimated by replacing him in

  11. Models of educational institutions' networking

    OpenAIRE

    Shilova Olga Nikolaevna

    2015-01-01

    The importance of educational institutions' networking in modern sociocultural conditions and a definition of networking in education are presented in the article. The results of research levels, methods and models of educational institutions' networking are presented and substantially disclosed.

  12. Brian: a simulator for spiking neural networks in Python

    Directory of Open Access Journals (Sweden)

    Dan F M Goodman

    2008-11-01

    Full Text Available Brian is a new simulator for spiking neural networks, written in Python (http://brian.di.ens.fr. It is an intuitive and highly flexible tool for rapidly developing new models, especially networks of single-compartment neurons. In addition to using standard types of neuron models, users can define models by writing arbitrary differential equations in ordinary mathematical notation. Python scientific libraries can also be used for defining models and analysing data. Vectorisation techniques allow efficient simulations despite the overheads of an interpreted language. Brian will be especially valuable for working on non-standard neuron models not easily covered by existing software, and as an alternative to using Matlab or C for simulations. With its easy and intuitive syntax, Brian is also very well suited for teaching computational neuroscience.

  13. Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations.

    Science.gov (United States)

    Šiljić, Aleksandra; Antanasijević, Davor; Perić-Grujić, Aleksandra; Ristić, Mirjana; Pocajt, Viktor

    2015-03-01

    Biological oxygen demand (BOD) is the most significant water quality parameter and indicates water pollution with respect to the present biodegradable organic matter content. European countries are therefore obliged to report annual BOD values to Eurostat; however, BOD data at the national level is only available for 28 of 35 listed European countries for the period prior to 2008, among which 46% of data is missing. This paper describes the development of an artificial neural network model for the forecasting of annual BOD values at the national level, using widely available sustainability and economical/industrial parameters as inputs. The initial general regression neural network (GRNN) model was trained, validated and tested utilizing 20 inputs. The number of inputs was reduced to 15 using the Monte Carlo simulation technique as the input selection method. The best results were achieved with the GRNN model utilizing 25% less inputs than the initial model and a comparison with a multiple linear regression model trained and tested using the same input variables using multiple statistical performance indicators confirmed the advantage of the GRNN model. Sensitivity analysis has shown that inputs with the greatest effect on the GRNN model were (in descending order) precipitation, rural population with access to improved water sources, treatment capacity of wastewater treatment plants (urban) and treatment of municipal waste, with the last two having an equal effect. Finally, it was concluded that the developed GRNN model can be useful as a tool to support the decision-making process on sustainable development at a regional, national and international level.

  14. System Identification, Prediction, Simulation and Control with Neural Networks

    DEFF Research Database (Denmark)

    Sørensen, O.

    1997-01-01

    a Gauss-Newton search direction is applied. 3) Amongst numerous model types, often met in control applications, only the Non-linear ARMAX (NARMAX) model, representing input/output description, is examined. A simulated example confirms that a neural network has the potential to perform excellent System...... Identification, Prediction, Simulation and Control of a dynamic, non-linear and noisy process. Further, the difficulties to control a practical non-linear laboratory process in a satisfactory way by using a traditional controller are overcomed by using a trained neural network to perform non-linear System......The intention of this paper is to make a systematic examination of the possibilities of applying neural networks in those technical areas, which are familiar to a control engineer. In other words, the potential of neural networks in control applications is given higher priority than a detailed...

  15. Solution to the inverse problem of estimating gap-junctional and inhibitory conductance in inferior olive neurons from spike trains by network model simulation.

    Science.gov (United States)

    Onizuka, Miho; Hoang, Huu; Kawato, Mitsuo; Tokuda, Isao T; Schweighofer, Nicolas; Katori, Yuichi; Aihara, Kazuyuki; Lang, Eric J; Toyama, Keisuke

    2013-11-01

    The inferior olive (IO) possesses synaptic glomeruli, which contain dendritic spines from neighboring neurons and presynaptic terminals, many of which are inhibitory and GABAergic. Gap junctions between the spines electrically couple neighboring neurons whereas the GABAergic synaptic terminals are thought to act to decrease the effectiveness of this coupling. Thus, the glomeruli are thought to be important for determining the oscillatory and synchronized activity displayed by IO neurons. Indeed, the tendency to display such activity patterns is enhanced or reduced by the local administration of the GABA-A receptor blocker picrotoxin (PIX) or the gap junction blocker carbenoxolone (CBX), respectively. We studied the functional roles of the glomeruli by solving the inverse problem of estimating the inhibitory (gi) and gap-junctional conductance (gc) using an IO network model. This model was built upon a prior IO network model, in which the individual neurons consisted of soma and dendritic compartments, by adding a glomerular compartment comprising electrically coupled spines that received inhibitory synapses. The model was used in the forward mode to simulate spike data under PIX and CBX conditions for comparison with experimental data consisting of multi-electrode recordings of complex spikes from arrays of Purkinje cells (complex spikes are generated in a one-to-one manner by IO spikes and thus can substitute for directly measuring IO spike activity). The spatiotemporal firing dynamics of the experimental and simulation spike data were evaluated as feature vectors, including firing rates, local variation, auto-correlogram, cross-correlogram, and minimal distance, and were contracted onto two-dimensional principal component analysis (PCA) space. gc and gi were determined as the solution to the inverse problem such that the simulation and experimental spike data were closely matched in the PCA space. The goodness of the match was confirmed by an analysis of variance

  16. Power Aware Simulation Framework for Wireless Sensor Networks and Nodes

    Directory of Open Access Journals (Sweden)

    Daniel Weber

    2008-07-01

    Full Text Available The constrained resources of sensor nodes limit analytical techniques and cost-time factors limit test beds to study wireless sensor networks (WSNs. Consequently, simulation becomes an essential tool to evaluate such systems.We present the power aware wireless sensors (PAWiS simulation framework that supports design and simulation of wireless sensor networks and nodes. The framework emphasizes power consumption capturing and hence the identification of inefficiencies in various hardware and software modules of the systems. These modules include all layers of the communication system, the targeted class of application itself, the power supply and energy management, the central processing unit (CPU, and the sensor-actuator interface. The modular design makes it possible to simulate heterogeneous systems. PAWiS is an OMNeT++ based discrete event simulator written in C++. It captures the node internals (modules as well as the node surroundings (network, environment and provides specific features critical to WSNs like capturing power consumption at various levels of granularity, support for mobility, and environmental dynamics as well as the simulation of timing effects. A module library with standardized interfaces and a power analysis tool have been developed to support the design and analysis of simulation models. The performance of the PAWiS simulator is comparable with other simulation environments.

  17. Techniques for Modelling Network Security

    OpenAIRE

    Lech Gulbinovič

    2012-01-01

    The article compares modelling techniques for network security, including the theory of probability, Markov processes, Petri networks and application of stochastic activity networks. The paper introduces the advantages and disadvantages of the above proposed methods and accepts the method of modelling the network of stochastic activity as one of the most relevant. The stochastic activity network allows modelling the behaviour of the dynamic system where the theory of probability is inappropri...

  18. In silico Biochemical Reaction Network Analysis (IBRENA): a package for simulation and analysis of reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2008-04-15

    We present In silico Biochemical Reaction Network Analysis (IBRENA), a software package which facilitates multiple functions including cellular reaction network simulation and sensitivity analysis (both forward and adjoint methods), coupled with principal component analysis, singular-value decomposition and model reduction. The software features a graphical user interface that aids simulation and plotting of in silico results. While the primary focus is to aid formulation, testing and reduction of theoretical biochemical reaction networks, the program can also be used for analysis of high-throughput genomic and proteomic data. The software package, manual and examples are available at http://www.eng.buffalo.edu/~neel/ibrena

  19. Stochastic discrete model of karstic networks

    Science.gov (United States)

    Jaquet, O.; Siegel, P.; Klubertanz, G.; Benabderrhamane, H.

    Karst aquifers are characterised by an extreme spatial heterogeneity that strongly influences their hydraulic behaviour and the transport of pollutants. These aquifers are particularly vulnerable to contamination because of their highly permeable networks of conduits. A stochastic model is proposed for the simulation of the geometry of karstic networks at a regional scale. The model integrates the relevant physical processes governing the formation of karstic networks. The discrete simulation of karstic networks is performed with a modified lattice-gas cellular automaton for a representative description of the karstic aquifer geometry. Consequently, more reliable modelling results can be obtained for the management and the protection of karst aquifers. The stochastic model was applied jointly with groundwater modelling techniques to a regional karst aquifer in France for the purpose of resolving surface pollution issues.

  20. Simulating activation propagation in social networks using the graph theory

    Directory of Open Access Journals (Sweden)

    František Dařena

    2010-01-01

    Full Text Available The social-network formation and analysis is nowadays one of objects that are in a focus of intensive research. The objective of the paper is to suggest the perspective of representing social networks as graphs, with the application of the graph theory to problems connected with studying the network-like structures and to study spreading activation algorithm for reasons of analyzing these structures. The paper presents the process of modeling multidimensional networks by means of directed graphs with several characteristics. The paper also demonstrates using Spreading Activation algorithm as a good method for analyzing multidimensional network with the main focus on recommender systems. The experiments showed that the choice of parameters of the algorithm is crucial, that some kind of constraint should be included and that the algorithm is able to provide a stable environment for simulations with networks.

  1. Posterior Predictive Model Checking in Bayesian Networks

    Science.gov (United States)

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  2. Social Network Mixing Patterns In Mergers & Acquisitions - A Simulation Experiment

    Directory of Open Access Journals (Sweden)

    Robert Fabac

    2011-01-01

    Full Text Available In the contemporary world of global business and continuously growing competition, organizations tend to use mergers and acquisitions to enforce their position on the market. The future organization’s design is a critical success factor in such undertakings. The field of social network analysis can enhance our uderstanding of these processes as it lets us reason about the development of networks, regardless of their origin. The analysis of mixing patterns is particularly useful as it provides an insight into how nodes in a network connect with each other. We hypothesize that organizational networks with compatible mixing patterns will be integrated more successfully. After conducting a simulation experiment, we suggest an integration model based on the analysis of network assortativity. The model can be a guideline for organizational integration, such as occurs in mergers and acquisitions.

  3. Aggregated Representation of Distribution Networks for Large-Scale Transmission Network Simulations

    DEFF Research Database (Denmark)

    Göksu, Ömer; Altin, Müfit; Sørensen, Poul Ejnar

    2014-01-01

    As a common practice of large-scale transmission network analysis the distribution networks have been represented as aggregated loads. However, with increasing share of distributed generation, especially wind and solar power, in the distribution networks, it became necessary to include the distri......As a common practice of large-scale transmission network analysis the distribution networks have been represented as aggregated loads. However, with increasing share of distributed generation, especially wind and solar power, in the distribution networks, it became necessary to include...... the distributed generation within those analysis. In this paper a practical methodology to obtain aggregated behaviour of the distributed generation is proposed. The methodology, which is based on the use of the IEC standard wind turbine models, is applied on a benchmark distribution network via simulations....

  4. Simulating Autonomous Telecommunication Networks for Space Exploration

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.

    2008-01-01

    Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.

  5. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  6. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  7. Modeling Network Interdiction Tasks

    Science.gov (United States)

    2015-09-17

    allow professionals and families to stay in touch through voice or video calls. Power grids provide electricity to homes , offices, and recreational...instances using IBMr ILOGr CPLEXr Optimization Studio V12.6. For each instance, two solutions are deter- mined. First, the MNDP-a model is solved with no...three values: 0.25, 0.50, or 0.75. The DMP-a model is solved for the various random network instances using IBMr ILOGr CPLEXr Optimization Studio V12.6

  8. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  9. Agent-Based Simulation Analysis for Network Formation

    OpenAIRE

    神原, 李佳; 林田, 智弘; 西﨑, 一郎; 片桐, 英樹

    2009-01-01

    In the mathematical models for network formation by Bala and Goyal(2000), it is shown that a star network is the strict Nash equilibrium. However, the result of the experiments in a laboratory using human subjects by Berninghaus et al.(2007) basing on the model of Bala and Goyal indicates that players reach a strict Nash equilibrium and deviate it. In this paper, an agent-based simulation model in which artificial adaptive agents have mechanisms of decision making and learning based on nueral...

  10. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    Science.gov (United States)

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  11. Socialising Health Burden Through Different Network Topologies: A Simulation Study.

    Science.gov (United States)

    Peacock, Adrian; Cheung, Anthony; Kim, Peter; Poon, Simon K

    2017-01-01

    An aging population and the expectation of premium quality health services combined with the increasing economic burden of the healthcare system requires a paradigm shift toward patient oriented healthcare. The guardian angel theory described by Szolovits [1] explores the notion of enlisting patients as primary providers of information and motivation to patients with similar clinical history through social connections. In this study, an agent based model was developed to simulate to explore how individuals are affected through their levels of intrinsic positivity. Ring, point-to-point (paired buddy), and random networks were modelled, with individuals able to send messages to each other given their levels of variables positivity and motivation. Of the 3 modelled networks it is apparent that the ring network provides the most equal, collective improvement in positivity and motivation for all users. Further study into other network topologies should be undertaken in the future.

  12. An endogenous model of the credit network

    Science.gov (United States)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  13. Towards Reproducible Descriptions of Neuronal Network Models

    Science.gov (United States)

    Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard

    2009-01-01

    Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing—and thinking about—complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain. PMID:19662159

  14. Towards reproducible descriptions of neuronal network models.

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2009-08-01

    Full Text Available Progress in science depends on the effective exchange of ideas among scientists. New ideas can be assessed and criticized in a meaningful manner only if they are formulated precisely. This applies to simulation studies as well as to experiments and theories. But after more than 50 years of neuronal network simulations, we still lack a clear and common understanding of the role of computational models in neuroscience as well as established practices for describing network models in publications. This hinders the critical evaluation of network models as well as their re-use. We analyze here 14 research papers proposing neuronal network models of different complexity and find widely varying approaches to model descriptions, with regard to both the means of description and the ordering and placement of material. We further observe great variation in the graphical representation of networks and the notation used in equations. Based on our observations, we propose a good model description practice, composed of guidelines for the organization of publications, a checklist for model descriptions, templates for tables presenting model structure, and guidelines for diagrams of networks. The main purpose of this good practice is to trigger a debate about the communication of neuronal network models in a manner comprehensible to humans, as opposed to machine-readable model description languages. We believe that the good model description practice proposed here, together with a number of other recent initiatives on data-, model-, and software-sharing, may lead to a deeper and more fruitful exchange of ideas among computational neuroscientists in years to come. We further hope that work on standardized ways of describing--and thinking about--complex neuronal networks will lead the scientific community to a clearer understanding of high-level concepts in network dynamics, and will thus lead to deeper insights into the function of the brain.

  15. Simulation of Attacks for Security in Wireless Sensor Network.

    Science.gov (United States)

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  16. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  17. Simulated evolution of signal transduction networks.

    Directory of Open Access Journals (Sweden)

    Mohammad Mobashir

    Full Text Available Signal transduction is the process of routing information inside cells when receiving stimuli from their environment that modulate the behavior and function. In such biological processes, the receptors, after receiving the corresponding signals, activate a number of biomolecules which eventually transduce the signal to the nucleus. The main objective of our work is to develop a theoretical approach which will help to better understand the behavior of signal transduction networks due to changes in kinetic parameters and network topology. By using an evolutionary algorithm, we designed a mathematical model which performs basic signaling tasks similar to the signaling process of living cells. We use a simple dynamical model of signaling networks of interacting proteins and their complexes. We study the evolution of signaling networks described by mass-action kinetics. The fitness of the networks is determined by the number of signals detected out of a series of signals with varying strength. The mutations include changes in the reaction rate and network topology. We found that stronger interactions and addition of new nodes lead to improved evolved responses. The strength of the signal does not play any role in determining the response type. This model will help to understand the dynamic behavior of the proteins involved in signaling pathways. It will also help to understand the robustness of the kinetics of the output response upon changes in the rate of reactions and the topology of the network.

  18. Teaching Students to Model Neural Circuits and Neural Networks Using an Electronic Spreadsheet Simulator. Microcomputing Working Paper Series.

    Science.gov (United States)

    Hewett, Thomas T.

    There are a number of areas in psychology where an electronic spreadsheet simulator can be used to study and explore functional relationships among a number of parameters. For example, when dealing with sensation, perception, and pattern recognition, it is sometimes desirable for students to understand both the basic neurophysiology and the…

  19. Do Network Models Just Model Networks? On The Applicability of Network-Oriented Modeling

    NARCIS (Netherlands)

    Treur, J.; Shmueli, Erez

    2017-01-01

    In this paper for a Network-Oriented Modelling perspective based on temporal-causal networks it is analysed how generic and applicable it is as a general modelling approach and as a computational paradigm. This results in an answer to the question in the title different from: network models just

  20. A network model of the interbank market

    Science.gov (United States)

    Li, Shouwei; He, Jianmin; Zhuang, Yaming

    2010-12-01

    This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.

  1. Modeling Epidemics Spreading on Social Contact Networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Wang, Chonggang; Fang, Hua

    2015-09-01

    Social contact networks and the way people interact with each other are the key factors that impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR) model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact networks. The results from both simulations and real data set conclude that the epidemics are more likely to outbreak on social contact networks with higher average degree. We also present some potential immunization strategies, such as random set immunization, dominating set immunization, and high degree set immunization to further prove the conclusion.

  2. Simulated, Emulated, and Physical Investigative Analysis (SEPIA) of networked systems.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, David P.; Van Leeuwen, Brian P.; McDonald, Michael James; Onunkwo, Uzoma A.; Tarman, Thomas David; Urias, Vincent E.

    2009-09-01

    This report describes recent progress made in developing and utilizing hybrid Simulated, Emulated, and Physical Investigative Analysis (SEPIA) environments. Many organizations require advanced tools to analyze their information system's security, reliability, and resilience against cyber attack. Today's security analysis utilize real systems such as computers, network routers and other network equipment, computer emulations (e.g., virtual machines) and simulation models separately to analyze interplay between threats and safeguards. In contrast, this work developed new methods to combine these three approaches to provide integrated hybrid SEPIA environments. Our SEPIA environments enable an analyst to rapidly configure hybrid environments to pass network traffic and perform, from the outside, like real networks. This provides higher fidelity representations of key network nodes while still leveraging the scalability and cost advantages of simulation tools. The result is to rapidly produce large yet relatively low-cost multi-fidelity SEPIA networks of computers and routers that let analysts quickly investigate threats and test protection approaches.

  3. Social Network Modeling and Simulation of Integrated Resilient Command and Control (C2) in Contested Cyber Environments

    Science.gov (United States)

    2011-12-09

    though it is clear each method has its own interests, stakeholders, constituents, adherents, and publicists . The general paucity of simulations, or...process. The transcribed text file had simple declarative sentences, using Figure 2 as the exemplar, such as, “The AOC has a strategy division.” This...sustaining logistics base for modern warfare through the dominance of the Strategy Division and the Air Mobility Division. The modern Air Force’s

  4. Simulation of Two High Pressure Distribution Network Operation in one-Network Connection

    Directory of Open Access Journals (Sweden)

    Perju Sorin

    2014-09-01

    Full Text Available The programs developed by the water supply system operators in view of metering the branches and reducing the potable water losses from the distribution network pipes lead to the performance reassessment of these networks. As a result the energetic consumption of the pumping stations should meet the accepted limits. An essential role in the evaluation of the operation parameters of the network performance is played by hydraulic modeling, by means of which the network performance simulation can be done in different scenarios. The present article describes the concept of two high-pressure network coupling. These networks are supplied by two repumping stations, in which the water flows were drastically reduced due to the present situation

  5. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2017-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  6. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2018-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  7. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  8. A simulated annealing approach for redesigning a warehouse network problem

    Science.gov (United States)

    Khairuddin, Rozieana; Marlizawati Zainuddin, Zaitul; Jiun, Gan Jia

    2017-09-01

    Now a day, several companies consider downsizing their distribution networks in ways that involve consolidation or phase-out of some of their current warehousing facilities due to the increasing competition, mounting cost pressure and taking advantage on the economies of scale. Consequently, the changes on economic situation after a certain period of time require an adjustment on the network model in order to get the optimal cost under the current economic conditions. This paper aimed to develop a mixed-integer linear programming model for a two-echelon warehouse network redesign problem with capacitated plant and uncapacitated warehouses. The main contribution of this study is considering capacity constraint for existing warehouses. A Simulated Annealing algorithm is proposed to tackle with the proposed model. The numerical solution showed the model and method of solution proposed was practical.

  9. General regression neural network and Monte Carlo simulation model for survival and growth of Salmonella on raw chicken skin as a function of serotype, temperature and time for use in risk assessment

    Science.gov (United States)

    A general regression neural network and Monte Carlo simulation model for predicting survival and growth of Salmonella on raw chicken skin as a function of serotype (Typhimurium, Kentucky, Hadar), temperature (5 to 50C) and time (0 to 8 h) was developed. Poultry isolates of Salmonella with natural r...

  10. Peer Influence, Peer Selection and Adolescent Alcohol Use: a Simulation Study Using a Dynamic Network Model of Friendship Ties and Alcohol Use.

    Science.gov (United States)

    Wang, Cheng; Hipp, John R; Butts, Carter T; Jose, Rupa; Lakon, Cynthia M

    2017-05-01

    While studies suggest that peer influence can in some cases encourage adolescent substance use, recent work demonstrates that peer influence may be on average protective for cigarette smoking, raising questions about whether this effect occurs for other substance use behaviors. Herein, we focus on adolescent drinking, which may follow different social dynamics than smoking. We use a data-calibrated Stochastic Actor-Based (SAB) Model of adolescent friendship tie choice and drinking behavior to explore the impact of manipulating the size of peer influence and selection effects on drinking in two school-based networks. We first fit a SAB Model to data on friendship tie choice and adolescent drinking behavior within two large schools (n = 2178 and n = 976) over three time points using data from the National Longitudinal Study of Adolescent to Adult Health. We then alter the size of the peer influence and selection parameters with all other effects fixed at their estimated values and simulate the social systems forward 1000 times under varying conditions. Whereas peer selection appears to contribute to drinking behavior similarity among adolescents, there is no evidence that it leads to higher levels of drinking at the school level. A stronger peer influence effect lowers the overall level of drinking in both schools. There are many similarities in the patterning of findings between this study of drinking and previous work on smoking, suggesting that peer influence and selection may function similarly with respect to these substances.

  11. Computer simulation of randomly cross-linked polymer networks

    CERN Document Server

    Williams, T P

    2002-01-01

    In this work, Monte Carlo and Stochastic Dynamics computer simulations of mesoscale model randomly cross-linked networks were undertaken. Task parallel implementations of the lattice Monte Carlo Bond Fluctuation model and Kremer-Grest Stochastic Dynamics bead-spring continuum model were designed and used for this purpose. Lattice and continuum precursor melt systems were prepared and then cross-linked to varying degrees. The resultant networks were used to study structural changes during deformation and relaxation dynamics. The effects of a random network topology featuring a polydisperse distribution of strand lengths and an abundance of pendant chain ends, were qualitatively compared to recent published work. A preliminary investigation into the effects of temperature on the structural and dynamical properties was also undertaken. Structural changes during isotropic swelling and uniaxial deformation, revealed a pronounced non-affine deformation dependant on the degree of cross-linking. Fractal heterogeneiti...

  12. Discrete Network Modeling for Field-Scale Flow and Transport Through Porous Media

    National Research Council Canada - National Science Library

    Howington, Stacy

    1997-01-01

    .... Specifically, a stochastic, high-resolution, discrete network model is developed and explored for simulating macroscopic flow and conservative transport through macroscopic porous media Networks...

  13. CNMO: Towards the Construction of a Communication Network Modelling Ontology

    Science.gov (United States)

    Rahman, Muhammad Azizur; Pakstas, Algirdas; Wang, Frank Zhigang

    Ontologies that explicitly identify objects, properties, and relationships in specific domains are essential for collaboration that involves sharing of data, knowledge or resources. A communications network modelling ontology (CNMO) has been designed to represent a network model as well as aspects related to its development and actual network operation. Network nodes/sites, link, traffic sources, protocols as well as aspects of the modeling/simulation scenario and operational aspects are defined with their formal representation. A CNMO may be beneficial for various network design/simulation/research communities due to the uniform representation of network models. This ontology is designed using terminology and concepts from various network modeling, simulation and topology generation tools.

  14. Molecular Simulations of Actomyosin Network Self-Assembly and Remodeling

    Science.gov (United States)

    Komianos, James; Popov, Konstantin; Papoian, Garegin; Papoian Lab Team

    Actomyosin networks are an integral part of the cytoskeleton of eukaryotic cells and play an essential role in determining cellular shape and movement. Actomyosin network growth and remodeling in vivo is based on a large number of chemical and mechanical processes, which are mutually coupled and spatially and temporally resolved. To investigate the fundamental principles behind the self-organization of these networks, we have developed a detailed mechanochemical, stochastic model of actin filament growth dynamics, at a single-molecule resolution, where the nonlinear mechanical rigidity of filaments and their corresponding deformations under internally and externally generated forces are taken into account. Our work sheds light on the interplay between the chemical and mechanical processes governing the cytoskeletal dynamics, and also highlights the importance of diffusional and active transport phenomena. Our simulations reveal how different actomyosin micro-architectures emerge in response to varying the network composition. Support from NSF Grant CHE-1363081.

  15. Correlated EEG Signals Simulation Based on Artificial Neural Networks.

    Science.gov (United States)

    Tomasevic, Nikola M; Neskovic, Aleksandar M; Neskovic, Natasa J

    2017-08-01

    In recent years, simulation of the human electroencephalogram (EEG) data found its important role in medical domain and neuropsychology. In this paper, a novel approach to simulation of two cross-correlated EEG signals is proposed. The proposed method is based on the principles of artificial neural networks (ANN). Contrary to the existing EEG data simulators, the ANN-based approach was leveraged solely on the experimentally acquired EEG data. More precisely, measured EEG data were utilized to optimize the simulator which consisted of two ANN models (each model responsible for generation of one EEG sequence). In order to acquire the EEG recordings, the measurement campaign was carried out on a healthy awake adult having no cognitive, physical or mental load. For the evaluation of the proposed approach, comprehensive quantitative and qualitative statistical analysis was performed considering probability distribution, correlation properties and spectral characteristics of generated EEG processes. The obtained results clearly indicated the satisfactory agreement with the measurement data.

  16. Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.

    Science.gov (United States)

    Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus

    2017-01-01

    Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.

  17. Spiking network simulation code for petascale computers

    Science.gov (United States)

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  18. Spiking network simulation code for petascale computers.

    Science.gov (United States)

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  19. C Library for Simulated Evolution of Biological Networks

    OpenAIRE

    Chandran, Deepak; Sauro, Herbert M.

    2010-01-01

    Simulated evolution of biological networks can be used to generate functional networks as well as investigate hypotheses regarding natural evolution. A handful of studies have shown how simulated evolution can be used for studying the functional space spanned by biochemical networks, studying natural evolution, or designing new synthetic networks. If there was a method for easily performing such studies, it can allow the community to further experiment with simulated evolution and explore all...

  20. A Network Model of Credit Risk Contagion

    Directory of Open Access Journals (Sweden)

    Ting-Qiang Chen

    2012-01-01

    Full Text Available A network model of credit risk contagion is presented, in which the effect of behaviors of credit risk holders and the financial market regulators and the network structure are considered. By introducing the stochastic dominance theory, we discussed, respectively, the effect mechanisms of the degree of individual relationship, individual attitude to credit risk contagion, the individual ability to resist credit risk contagion, the monitoring strength of the financial market regulators, and the network structure on credit risk contagion. Then some derived and proofed propositions were verified through numerical simulations.

  1. Mobile-ip Aeronautical Network Simulation Study

    Science.gov (United States)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  2. Computational Aspects of Sensor Network Protocols (Distributed Sensor Network Simulator

    Directory of Open Access Journals (Sweden)

    Vasanth Iyer

    2009-08-01

    Full Text Available In this work, we model the sensor networks as an unsupervised learning and clustering process. We classify nodes according to its static distribution to form known class densities (CCPD. These densities are chosen from specific cross-layer features which maximizes lifetime of power-aware routing algorithms. To circumvent computational complexities of a power-ware communication STACK we introduce path-loss models at the nodes only for high density deployments. We study the cluster heads and formulate the data handling capacity for an expected deployment and use localized probability models to fuse the data with its side information before transmission. So each cluster head has a unique Pmax but not all cluster heads have the same measured value. In a lossless mode if there are no faults in the sensor network then we can show that the highest probability given by Pmax is ambiguous if its frequency is ≤ n/2 otherwise it can be determined by a local function. We further show that the event detection at the cluster heads can be modelled with a pattern 2m and m, the number of bits can be a correlated pattern of 2 bits and for a tight lower bound we use 3-bit Huffman codes which have entropy < 1. These local algorithms are further studied to optimize on power, fault detection and to maximize on the distributed routing algorithm used at the higher layers. From these bounds in large network, it is observed that the power dissipation is network size invariant. The performance of the routing algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed that if the network size is kept constant and the density of the nodes is kept closer then the local pathloss model effects the performance of the routing algorithms. We also obtain the maximum intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., the lifetime of sensor network.

  3. SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY

    Directory of Open Access Journals (Sweden)

    J. Jaslin Deva Gifty

    2016-03-01

    Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.

  4. Delay and Disruption Tolerant Networking MACHETE Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Gao, Jay L.

    2011-01-01

    To verify satisfaction of communication requirements imposed by unique missions, as early as 2000, the Communications Networking Group at the Jet Propulsion Laboratory (JPL) saw the need for an environment to support interplanetary communication protocol design, validation, and characterization. JPL's Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE), described in Simulator of Space Communication Networks (NPO-41373) NASA Tech Briefs, Vol. 29, No. 8 (August 2005), p. 44, combines various commercial, non-commercial, and in-house custom tools for simulation and performance analysis of space networks. The MACHETE environment supports orbital analysis, link budget analysis, communications network simulations, and hardware-in-the-loop testing. As NASA is expanding its Space Communications and Navigation (SCaN) capabilities to support planned and future missions, building infrastructure to maintain services and developing enabling technologies, an important and broader role is seen for MACHETE in design-phase evaluation of future SCaN architectures. To support evaluation of the developing Delay Tolerant Networking (DTN) field and its applicability for space networks, JPL developed MACHETE models for DTN Bundle Protocol (BP) and Licklider/Long-haul Transmission Protocol (LTP). DTN is an Internet Research Task Force (IRTF) architecture providing communication in and/or through highly stressed networking environments such as space exploration and battlefield networks. Stressed networking environments include those with intermittent (predictable and unknown) connectivity, large and/or variable delays, and high bit error rates. To provide its services over existing domain specific protocols, the DTN protocols reside at the application layer of the TCP/IP stack, forming a store-and-forward overlay network. The key capabilities of the Bundle Protocol include custody-based reliability, the ability to cope with intermittent connectivity

  5. Simulation technologies in networking and communications selecting the best tool for the test

    CERN Document Server

    Pathan, Al-Sakib Khan; Khan, Shafiullah

    2014-01-01

    Simulation is a widely used mechanism for validating the theoretical models of networking and communication systems. Although the claims made based on simulations are considered to be reliable, how reliable they really are is best determined with real-world implementation trials.Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test addresses the spectrum of issues regarding the different mechanisms related to simulation technologies in networking and communications fields. Focusing on the practice of simulation testing instead of the theory, it presents

  6. Modeling semiflexible polymer networks

    OpenAIRE

    Broedersz, Chase P.; MacKintosh, Fred C.

    2014-01-01

    Here, we provide an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, crosslinked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks o...

  7. Modelling Mobility in Mobile AD-HOC Network Environments ...

    African Journals Online (AJOL)

    We show how to implement the random waypoint mobility model for ad-hoc networks without pausing, through a more efficient and reliable computer simulation, using MATrix LABoratory 7.5.0 (R2007b). Simulation results obtained verify the correctness of the model. Keywords : Stationary, random waypoint, simulation, ...

  8. Code generation: a strategy for neural network simulators.

    Science.gov (United States)

    Goodman, Dan F M

    2010-10-01

    We demonstrate a technique for the design of neural network simulation software, runtime code generation. This technique can be used to give the user complete flexibility in specifying the mathematical model for their simulation in a high level way, along with the speed of code written in a low level language such as C+ +. It can also be used to write code only once but target different hardware platforms, including inexpensive high performance graphics processing units (GPUs). Code generation can be naturally combined with computer algebra systems to provide further simplification and optimisation of the generated code. The technique is quite general and could be applied to any simulation package. We demonstrate it with the 'Brian' simulator ( http://www.briansimulator.org ).

  9. Developing Personal Network Business Models

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    2006-01-01

    on the 'state of the art' in the field of business modeling. Furthermore, the paper suggests three generic business models for PNs: a service oriented model, a self-organized model, and a combination model. Finally, examples of relevant services and applications in relation to three different cases......The aim of the paper is to examine the issue of business modeling in relation to personal networks, PNs. The paper builds on research performed on business models in the EU 1ST MAGNET1 project (My personal Adaptive Global NET). The paper presents the Personal Network concept and briefly reports...... are presented and analyzed in light of business modeling of PN....

  10. A 2000-year European Mean Summer Temperature Reconstruction from the PAGES 2k Regional Network and Comparison to Millennium-Length Forced Model Simulations

    Science.gov (United States)

    Smerdon, J. E.; Büntgen, U.; Ljungqvist, F. C.; Esper, J.; Fernández-Donado, L.; Gonzalez-Rouco, F. J.; Luterbacher, J.; McCarroll, D.; Wagner, S.; Wahl, E. R.; Wanner, H.; Werner, J.; Zorita, E.

    2012-12-01

    A reconstruction of mean European summer (JJA) land temperatures from 138 B.C.E. to 2003 C.E. is presented and compared to 37 forced transient simulations of the last millennium from coupled General Circulation Models (CGCMs). Eleven annually resolved tree-ring and documentary records from ten European countries/regions were used for the reconstruction and compiled as part of the Euro_Med working group contribution to the PAGES 2k Regional Network. Records were selected based upon their summer temperature signal, annual resolution, and time-continuous sampling. All tree-ring data were detrended using the Regional Curve Standardization (RCS) method to retain low-frequency variance in the resulting mean chronologies. The calibration time series was the area-weighted JJA temperature computed from the CRUTEM4v dataset over a European land domain (35°-70°N, 10°W-40°E). A nested 'Composite-Plus-Scale' reconstruction was derived using nine nests reflecting the availability of predictors back in time. Each nest was calculated by standardizing the available predictor series over the calibration interval, and subsequently calculating a weighted composite in which each proxy was multiplied by its correlation with the target index. The CPS methodology was implemented using a resampling scheme that uses 104 years for calibration. The initial calibration period extended from 1850-1953 C.E. and was incremented by one year until reaching the final period of 1900-2003 C.E., yielding a total of 51 reconstructions for each nest. Within each calibration step, the 50 years excluded from calibration were used for validation. Validation statistics across all reconstruction ensemble members within each nest indicate skillful reconstructions (RE: 0.42-0.64; CE: 0.26-0.54) and are all above the maximum validation statistics achieved in an ensemble of red noise benchmarking experiments. Warm periods in the derived reconstruction during the 1st, 2nd, and 7th-12th centuries compare to

  11. Throughput capacity computation model for hybrid wireless networks

    African Journals Online (AJOL)

    wireless networks. We present in this paper, a computational model for obtaining throughput capacity for hybrid wireless networks. For a hybrid network with n nodes and m base stations, we observe through simulation that the throughput capacity increases linearly with the base station infrastructure connected by the wired ...

  12. Neural Networks For Electrohydrodynamic Effect Modelling

    Directory of Open Access Journals (Sweden)

    Wiesław Wajs

    2004-01-01

    Full Text Available This paper presents currently achieved results concerning methods of electrohydrodynamiceffect used in geophysics simulated with feedforward networks trained with backpropagation algorithm, radial basis function networks and generalized regression networks.

  13. Mathematical model for spreading dynamics of social network worms

    Science.gov (United States)

    Sun, Xin; Liu, Yan-Heng; Li, Bin; Li, Jin; Han, Jia-Wei; Liu, Xue-Jie

    2012-04-01

    In this paper, a mathematical model for social network worm spreading is presented from the viewpoint of social engineering. This model consists of two submodels. Firstly, a human behavior model based on game theory is suggested for modeling and predicting the expected behaviors of a network user encountering malicious messages. The game situation models the actions of a user under the condition that the system may be infected at the time of opening a malicious message. Secondly, a social network accessing model is proposed to characterize the dynamics of network users, by which the number of online susceptible users can be determined at each time step. Several simulation experiments are carried out on artificial social networks. The results show that (1) the proposed mathematical model can well describe the spreading dynamics of social network worms; (2) weighted network topology greatly affects the spread of worms; (3) worms spread even faster on hybrid social networks.

  14. A Data-Model Comparison over Europe using a new 2000-yr Summer Temperature Reconstruction from the PAGES 2k Regional Network and Last-Millennium GCM Simulations

    Science.gov (United States)

    Smerdon, Jason; Werner, Johannes; Fernandez-Donado, Laura; Buntgen, Ulf; Charpentier Ljungqvist, Fredrik; Esper, Jan; Fidel Gonzalez-Rouco, J.; Luterbacher, Juerg; McCarroll, Danny; Wagner, Sebastian; Wahl, Eugene; Wanner, Heinz; Zorita, Eduardo

    2013-04-01

    A new reconstruction of European summer (JJA) land temperatures is presented and compared to 37 forced transient simulations of the last millennium from coupled General Circulation Models (CGCMs). The reconstructions are derived from eleven annually resolved tree-ring and documentary records from ten European countries/regions, compiled as part of the Euro_Med working group contribution to the PAGES 2k Regional Network. Records were selected based upon their summer temperature signal, annual resolution, and time-continuous sampling. All tree-ring data were detrended using the Regional Curve Standardization (RCS) method to retain low-frequency variance in the resulting mean chronologies. A nested Composite-Plus-Scale (CPS) mean temperature reconstruction extending from 138 B.C.E. to 2003 C.E. was derived using nine nests reflecting the availability of predictors back in time. Each nest was calculated using a weighted composite based on the correlation of each proxy with the CRUTEM4v mean European JJA land temperature (35°-70°N, 10°W-40°E). The CPS methodology was implemented using a sliding calibration period, initially extending from 1850-1953 C.E. and incrementing by one year until reaching the final period of 1900-2003 C.E. Within each calibration step, the 50 years excluded from calibration were used for validation. Validation statistics across all reconstruction ensemble members within each nest indicate skillful reconstructions (RE: 0.42-0.64; CE: 0.26-0.54) and are all above the maximum validation statistics achieved in an ensemble of red noise benchmarking experiments. A gridded (5°x5°) European summer (JJA) temperature reconstruction back to 750 C.E. was derived using Bayesian inference together with a localized stochastic description of the underlying processes. Instrumental data are JJA means from the 5° European land grid cells in the CRUTEM4v dataset. Predictive experiments using the full proxy data were made, resulting in a multivariate

  15. The design of a network emulation and simulation laboratory

    CSIR Research Space (South Africa)

    Von Solms, S

    2015-07-01

    Full Text Available The development of the Network Emulation and Simulation Laboratory is motivated by the drive to contribute to the enhancement of the security and resilience of South Africa's critical information infrastructure. The goal of the Network Emulation...

  16. A Comparison of Geographic Information Systems, Complex Networks, and Other Models for Analyzing Transportation Network Topologies

    Science.gov (United States)

    Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher

    2005-01-01

    This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.

  17. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  18. Neural Networks in R Using the Stuttgart Neural Network Simulator: RSNNS

    Directory of Open Access Journals (Sweden)

    Christopher Bergmeir

    2012-01-01

    Full Text Available Neural networks are important standard machine learning procedures for classification and regression. We describe the R package RSNNS that provides a convenient interface to the popular Stuttgart Neural Network Simulator SNNS. The main features are (a encapsulation of the relevant SNNS parts in a C++ class, for sequential and parallel usage of different networks, (b accessibility of all of the SNNSalgorithmic functionality from R using a low-level interface, and (c a high-level interface for convenient, R-style usage of many standard neural network procedures. The package also includes functions for visualization and analysis of the models and the training procedures, as well as functions for data input/output from/to the original SNNSfile formats.

  19. A Model of Network Porosity

    Science.gov (United States)

    2016-11-09

    standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial, security-critical design...from a security standpoint remains more of an art than a science . Even when well executed, the ongoing evolution of the network may violate initial...is outside the scope of this paper. As such, we focus on event probabilities. The output of the network porosity model is a stream of timestamped

  20. Telecommunications network modelling, planning and design

    CERN Document Server

    Evans, Sharon

    2003-01-01

    Telecommunication Network Modelling, Planning and Design addresses sophisticated modelling techniques from the perspective of the communications industry and covers some of the major issues facing telecommunications network engineers and managers today. Topics covered include network planning for transmission systems, modelling of SDH transport network structures and telecommunications network design and performance modelling, as well as network costs and ROI modelling and QoS in 3G networks.

  1. Validation of Mobility Simulations via Measurement Drive Tests in an Operational Network

    DEFF Research Database (Denmark)

    Gimenez, Lucas Chavarria; Barbera, Simone; Polignano, Michele

    2015-01-01

    Simulations play a key role in validating new concepts in cellular networks, since most of the features proposed and introduced into the standards are typically first studied by means of simulations. In order to increase the trustworthiness of the simulation results, proper models and settings must...... to reality. The presented study is based on drive tests measurements and explicit simulations of an operator network in the city of Aalborg (Denmark) – modelling a real 3D environment and using a commonly accepted dynamic system level simulation methodology. In short, the presented results show...

  2. Runoff Modelling in Urban Storm Drainage by Neural Networks

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Brorsen, Michael; Schaarup-Jensen, Kjeld

    1995-01-01

    A neural network is used to simulate folw and water levels in a sewer system. The calibration of th neural network is based on a few measured events and the network is validated against measureed events as well as flow simulated with the MOUSE model (Lindberg and Joergensen, 1986). The neural...... network is used to compute flow or water level at selected points in the sewer system, and to forecast the flow from a small residential area. The main advantages of the neural network are the build-in self calibration procedure and high speed performance, but the neural network cannot be used to extract...... knowledge of the runoff process. The neural network was found to simulate 150 times faster than e.g. the MOUSE model....

  3. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  4. Modeling gene regulatory network motifs using Statecharts.

    Science.gov (United States)

    Fioravanti, Fabio; Helmer-Citterich, Manuela; Nardelli, Enrico

    2012-03-28

    Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks.For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal.We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed.

  5. The design and implementation of a network simulation platform

    CSIR Research Space (South Africa)

    Von Solms, S

    2013-11-01

    Full Text Available of the NS. A discussion on the various aspects of the NS is discussed subsequently. A. Topology It can be seen from Figure 1 that the developed NS comprises of multiple network sections, namely Internal User Networks/Local Area Networks (LANs) connected...]. This will provide a realistic platform which is isolated, more controlled and more predictable than implementation across live networks [4]. In this paper we discuss the development of such a network simulation environment, called a network simulator (NS...

  6. Characterization of Background Traffic in Hybrid Network Simulation

    National Research Council Canada - National Science Library

    Lauwens, Ben; Scheers, Bart; Van de Capelle, Antoine

    2006-01-01

    .... Two approaches are common: discrete event simulation and fluid approximation. A discrete event simulation generates a huge amount of events for a full-blown battlefield communication network resulting in a very long runtime...

  7. Campus network security model study

    Science.gov (United States)

    Zhang, Yong-ku; Song, Li-ren

    2011-12-01

    Campus network security is growing importance, Design a very effective defense hacker attacks, viruses, data theft, and internal defense system, is the focus of the study in this paper. This paper compared the firewall; IDS based on the integrated, then design of a campus network security model, and detail the specific implementation principle.

  8. Simulation of a Classically Conditioned Response: Components of the Input Trace and a Cerebellar Neural Network Implementation of the Sutton-Barto-Desmond Model.

    Science.gov (United States)

    1987-09-14

    the Input Trace and a Cerebellar Neural Network Implementation of the Sutton-Barto-Desmond Model Diana E. J. Blazis and John W. Moore COINS Technical...efferent pathway of the CR. li order for (ClHs to lie generated by on- ){(s inst ead of off-I)(,Cs, there would h ave o le ;i <,gral inversion .orniewher

  9. A Transfer Learning Approach for Network Modeling

    Science.gov (United States)

    Huang, Shuai; Li, Jing; Chen, Kewei; Wu, Teresa; Ye, Jieping; Wu, Xia; Yao, Li

    2012-01-01

    Networks models have been widely used in many domains to characterize the interacting relationship between physical entities. A typical problem faced is to identify the networks of multiple related tasks that share some similarities. In this case, a transfer learning approach that can leverage the knowledge gained during the modeling of one task to help better model another task is highly desirable. In this paper, we propose a transfer learning approach, which adopts a Bayesian hierarchical model framework to characterize task relatedness and additionally uses the L1-regularization to ensure robust learning of the networks with limited sample sizes. A method based on the Expectation-Maximization (EM) algorithm is further developed to learn the networks from data. Simulation studies are performed, which demonstrate the superiority of the proposed transfer learning approach over single task learning that learns the network of each task in isolation. The proposed approach is also applied to identification of brain connectivity networks of Alzheimer’s disease (AD) from functional magnetic resonance image (fMRI) data. The findings are consistent with the AD literature. PMID:24526804

  10. Creating real network with expected degree distribution: A statistical simulation

    OpenAIRE

    WenJun Zhang; GuangHua Liu

    2012-01-01

    The degree distribution of known networks is one of the focuses in network analysis. However, its inverse problem, i.e., to create network from known degree distribution has not yet been reported. In present study, a statistical simulation algorithm was developed to create real network with expected degree distribution. It is aniteration procedure in which a real network, with the least deviation of actual degree distribution to expected degree distribution, was created. Random assignment was...

  11. Modeling acquaintance networks based on balance theory

    Directory of Open Access Journals (Sweden)

    Vukašinović Vida

    2014-09-01

    Full Text Available An acquaintance network is a social structure made up of a set of actors and the ties between them. These ties change dynamically as a consequence of incessant interactions between the actors. In this paper we introduce a social network model called the Interaction-Based (IB model that involves well-known sociological principles. The connections between the actors and the strength of the connections are influenced by the continuous positive and negative interactions between the actors and, vice versa, the future interactions are more likely to happen between the actors that are connected with stronger ties. The model is also inspired by the social behavior of animal species, particularly that of ants in their colony. A model evaluation showed that the IB model turned out to be sparse. The model has a small diameter and an average path length that grows in proportion to the logarithm of the number of vertices. The clustering coefficient is relatively high, and its value stabilizes in larger networks. The degree distributions are slightly right-skewed. In the mature phase of the IB model, i.e., when the number of edges does not change significantly, most of the network properties do not change significantly either. The IB model was found to be the best of all the compared models in simulating the e-mail URV (University Rovira i Virgili of Tarragona network because the properties of the IB model more closely matched those of the e-mail URV network than the other models

  12. Artificial neural network simulator for SOFC performance prediction

    Science.gov (United States)

    Arriagada, Jaime; Olausson, Pernilla; Selimovic, Azra

    This paper describes the development of a novel modelling tool for evaluation of solid oxide fuel cell (SOFC) performance. An artificial neural network (ANN) is trained with a reduced amount of data generated by a validated cell model, and it is then capable of learning the generic functional relationship between inputs and outputs of the system. Once the network is trained, the ANN-driven simulator can predict different operational parameters of the SOFC (i.e. gas flows, operational voltages, current density, etc.) avoiding the detailed description of the fuel cell processes. The highly parallel connectivity within the ANN further reduces the computational time. In a real case, the necessary data for training the ANN simulator would be extracted from experiments. This simulator could be suitable for different applications in the fuel cell field, such as, the construction of performance maps and operating point optimisation and analysis. All this is performed with minimum time demand and good accuracy. This intelligent model together with the operational conditions may provide useful insight into SOFC operating characteristics and improved means of selecting operating conditions, reducing costs and the need for extensive experiments.

  13. Efficiently passing messages in distributed spiking neural network simulation.

    Science.gov (United States)

    Thibeault, Corey M; Minkovich, Kirill; O'Brien, Michael J; Harris, Frederick C; Srinivasa, Narayan

    2013-01-01

    Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms provided by the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for high-performance clusters with Infiniband hardware is employed. The focus is on providing information about these mechanisms for users of commodity high-performance spiking simulators. In addition, a novel hybrid method for spike exchange was implemented and benchmarked.

  14. Less Developed Countries Energy System Network Simulator, LDC-ESNS: a brief description

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, A; Malone, R

    1978-04-01

    Prepared for the Brookhaven National Laboratory Developing Countries Energy Program, this report describes the Less Developed Countries Energy System Network Simulator (LDC-ESNS), a tool which provides a quantitative representation of the energy system of an LDC. The network structure of the energy supply and demand system, the model inputs and outputs, and the possible uses of the model for analysis are described.

  15. Modeling semiflexible polymer networks

    NARCIS (Netherlands)

    Broedersz, C.P.; MacKintosh, F.C.

    2014-01-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have

  16. A computational systems biology software platform for multiscale modeling and simulation: Integrating whole-body physiology, disease biology, and molecular reaction networks

    Directory of Open Access Journals (Sweden)

    Thomas eEissing

    2011-02-01

    Full Text Available Today, in silico studies and trial simulations already complement experimental approaches in pharmaceutical R&D and have become indispensable tools for decision making and communication with regulatory agencies. While biology is multi-scale by nature, project work and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics at the organism scale or pharmacodynamic interaction on the molecular level. We present a modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building and simulating models that integrate across biological scales. A prototypical multiscale model for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor growth is driven by signal transduction leading to cell cycle transition and proliferation. Free tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome of the chemotherapeutic intervention is simulated for a large population with heterogeneous genomic background. Thereby, the platform allows efficient model building and integration of biological knowledge and prior data from all biological scales. Experimental in vitro model systems can be linked with observations in animal experiments and clinical trials. The interplay between patients, diseases, and drugs and topics with high clinical relevance such as the role of pharmacogenomics, drug-drug or drug-metabolite interactions can be addressed using this mechanistic, insight driven multiscale modeling approach.

  17. Phenomenological network models: Lessons for epilepsy surgery.

    Science.gov (United States)

    Hebbink, Jurgen; Meijer, Hil; Huiskamp, Geertjan; van Gils, Stephan; Leijten, Frans

    2017-10-01

    The current opinion in epilepsy surgery is that successful surgery is about removing pathological cortex in the anatomic sense. This contrasts with recent developments in epilepsy research, where epilepsy is seen as a network disease. Computational models offer a framework to investigate the influence of networks, as well as local tissue properties, and to explore alternative resection strategies. Here we study, using such a model, the influence of connections on seizures and how this might change our traditional views of epilepsy surgery. We use a simple network model consisting of four interconnected neuronal populations. One of these populations can be made hyperexcitable, modeling a pathological region of cortex. Using model simulations, the effect of surgery on the seizure rate is studied. We find that removal of the hyperexcitable population is, in most cases, not the best approach to reduce the seizure rate. Removal of normal populations located at a crucial spot in the network, the "driver," is typically more effective in reducing seizure rate. This work strengthens the idea that network structure and connections may be more important than localizing the pathological node. This can explain why lesionectomy may not always be sufficient. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

  18. ASPECTS ABOUT SIMULATED MODEL TRUSTINESS

    Directory of Open Access Journals (Sweden)

    CRISAN DANIELA ALEXANDRA

    2009-05-01

    Full Text Available Nowadays, grace of computing possibilities that electronic computers offer and namely, big memory volume and computing speed, there is the improving of modeling methods, an important role having complex system modeling using simulation techniques. These o

  19. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operation...... in case of such faults. The design of the controller is described and its performance assessed by simulations. The control strategies are explained and the behaviour of the turbine discussed....

  20. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. We argue that validation is part of the whole MSE system and is contingent upon 1) understanding and coping with sources...

  1. Defense Modeling and Simulation Initiative

    Science.gov (United States)

    1992-05-01

    an artificial battlefield created by computer-based simulation software. The most important constraint associated with this type of simulators is the...techniques for improving on this situation, which draw on artificial intelligence, mathematical programming, and simpler operations research methods...algoriims, data structwres for real-time represenmion and modeling • Develop a global hierarchy ofinn erable environmental models - Develop inteligent

  2. Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON.

    Science.gov (United States)

    Lytton, William W; Seidenstein, Alexandra H; Dura-Bernal, Salvador; McDougal, Robert A; Schürmann, Felix; Hines, Michael L

    2016-10-01

    Large multiscale neuronal network simulations are of increasing value as more big data are gathered about brain wiring and organization under the auspices of a current major research initiative, such as Brain Research through Advancing Innovative Neurotechnologies. The development of these models requires new simulation technologies. We describe here the current use of the NEURON simulator with message passing interface (MPI) for simulation in the domain of moderately large networks on commonly available high-performance computers (HPCs). We discuss the basic layout of such simulations, including the methods of simulation setup, the run-time spike-passing paradigm, and postsimulation data storage and data management approaches. Using the Neuroscience Gateway, a portal for computational neuroscience that provides access to large HPCs, we benchmark simulations of neuronal networks of different sizes (500-100,000 cells), and using different numbers of nodes (1-256). We compare three types of networks, composed of either Izhikevich integrate-and-fire neurons (I&F), single-compartment Hodgkin-Huxley (HH) cells, or a hybrid network with half of each. Results show simulation run time increased approximately linearly with network size and decreased almost linearly with the number of nodes. Networks with I&F neurons were faster than HH networks, although differences were small since all tested cells were point neurons with a single compartment.

  3. Simulation Of Networking Protocols On Software Emulated Network Stack

    Directory of Open Access Journals (Sweden)

    Hrushikesh Nimkar

    2015-08-01

    Full Text Available With the increasing number and complexity of network based applications the need to easy configuration development and integration of network applications has taken a high precedence. Trivial activities such as configuration can be carried out efficiently if network services are software based rather than hardware based. Project aims at enabling the network engineers to easily include network functionalities into hisher configuration and define hisher own network stack without using the kernel network stack. Having thought of this we have implemented two functionalities UPNP and MDNS. The multicast Domain Name System MDNS resolves host names to IP addresses within small ad-hoc networks and without having need of special DNS server and its configuration. MDNS application provides every host with functionality to register itself to the router make a multicast DNS request and its resolution. To make adding network devices and networked programs to a network as easy as it is to plug in a piece of hardware into a PC we make use of UPnP. The devices and programs find out about the network setup and other networked devices and programs through discovery and advertisements of services and configure themselves accordingly. UPNP application provides every host with functionality of discovering services of other hosts and serving requests on demand. To implement these applications we have used snabbswitch framework which an open source virtualized ethernet networking stack.

  4. Water distribution network modelling of a small community using ...

    African Journals Online (AJOL)

    Water distribution network modelling of a small community using watercad simulator. ... Global Journal of Engineering Research ... Pipes P-6, P-12, P-15 and P-19 expectedly have relatively low flow velocities due to the low average day ...

  5. An artifical neural network for detection of simulated dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Kositbowornchai, S. [Khon Kaen Univ. (Thailand). Dept. of Oral Diagnosis; Siriteptawee, S.; Plermkamon, S.; Bureerat, S. [Khon Kaen Univ. (Thailand). Dept. of Mechanical Engineering; Chetchotsak, D. [Khon Kaen Univ. (Thailand). Dept. of Industrial Engineering

    2006-08-15

    Objects: A neural network was developed to diagnose artificial dental caries using images from a charged-coupled device (CCD)camera and intra-oral digital radiography. The diagnostic performance of this neural network was evaluated against a gold standard. Materials and methods: The neural network design was the Learning Vector Quantization (LVQ) used to classify a tooth surface as sound or as having dental caries. The depth of the dental caries was indicated on a graphic user interface (GUI) screen developed by Matlab programming. Forty-nine images of both sound and simulated dental caries, derived from a CCD camera and by digital radiography, were used to 'train' an artificial neural network. After the 'training' process, a separate test-set comprising 322 unseen images was evaluated. Tooth sections and microscopic examinations were used to confirm the actual dental caries status.The performance of neural network was evaluated using diagnostic test. Results: The sensitivity (95%CI)/specificity (95%CI) of dental caries detection by the CCD camera and digital radiography were 0.77(0.68-0.85)/0.85(0.75-0.92) and 0.81(0.72-0.88)/0.93(0.84-0.97), respectively. The accuracy of caries depth-detection by the CCD camera and digital radiography was 58 and 40%, respectively. Conclusions: The model neural network used in this study could be a prototype for caries detection but should be improved for classifying caries depth. Our study suggests an artificial neural network can be trained to make the correct interpretations of dental caries. (orig.)

  6. Simulation and Evaluation of Ethernet Passive Optical Network

    Directory of Open Access Journals (Sweden)

    Salah A. Jaro Alabady

    2013-05-01

    Full Text Available      This paper studies simulation and evaluation of Ethernet Passive Optical Network (EPON system, IEEE802.3ah based OPTISM 3.6 simulation program. The simulation program is used in this paper to build a typical ethernet passive optical network, and to evaluate the network performance when using the (1580, 1625 nm wavelength instead of (1310, 1490 nm that used in Optical Line Terminal (OLT and Optical Network Units (ONU's in system architecture of Ethernet passive optical network at different bit rate and different fiber optic length. The results showed enhancement in network performance by increase the number of nodes (subscribers connected to the network, increase the transmission distance, reduces the received power and reduces the Bit Error Rate (BER.   

  7. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  8. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.

    Science.gov (United States)

    Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L; Nicolau, Alex; Veidenbaum, Alexander V

    2009-01-01

    Neural network simulators that take into account the spiking behavior of neurons are useful for studying brain mechanisms and for various neural engineering applications. Spiking Neural Network (SNN) simulators have been traditionally simulated on large-scale clusters, super-computers, or on dedicated hardware architectures. Alternatively, Compute Unified Device Architecture (CUDA) Graphics Processing Units (GPUs) can provide a low-cost, programmable, and high-performance computing platform for simulation of SNNs. In this paper we demonstrate an efficient, biologically realistic, large-scale SNN simulator that runs on a single GPU. The SNN model includes Izhikevich spiking neurons, detailed models of synaptic plasticity and variable axonal delay. We allow user-defined configuration of the GPU-SNN model by means of a high-level programming interface written in C++ but similar to the PyNN programming interface specification. PyNN is a common programming interface developed by the neuronal simulation community to allow a single script to run on various simulators. The GPU implementation (on NVIDIA GTX-280 with 1 GB of memory) is up to 26 times faster than a CPU version for the simulation of 100K neurons with 50 Million synaptic connections, firing at an average rate of 7 Hz. For simulation of 10 Million synaptic connections and 100K neurons, the GPU SNN model is only 1.5 times slower than real-time. Further, we present a collection of new techniques related to parallelism extraction, mapping of irregular communication, and network representation for effective simulation of SNNs on GPUs. The fidelity of the simulation results was validated on CPU simulations using firing rate, synaptic weight distribution, and inter-spike interval analysis. Our simulator is publicly available to the modeling community so that researchers will have easy access to large-scale SNN simulations.

  9. Modelling freeway networks by hybrid stochastic models

    OpenAIRE

    Boel, R.; Mihaylova, L.

    2004-01-01

    Traffic flow on freeways is a nonlinear, many-particle phenomenon, with complex interactions between the vehicles. This paper presents a stochastic hybrid model of freeway traffic at a time scale and at a level of detail suitable for on-line flow estimation, for routing and ramp metering control. The model describes the evolution of continuous and discrete state variables. The freeway is considered as a network of components, each component representing a different section of the network. The...

  10. Evaluation and Simulation of Common Video Conference Traffics in Communication Networks

    Directory of Open Access Journals (Sweden)

    Farhad faghani

    2014-01-01

    Full Text Available Multimedia traffics are the basic traffics in data communication networks. Especially Video conferences are the most desirable traffics in huge networks(wired, wireless, …. Traffic modeling can help us to evaluate the real networks. So, in order to have good services in data communication networks which provide multimedia services, QoS will be very important .In this research we tried to have an exact traffic model design and simulation to overcome QoS challenges. Also, we predict bandwidth by Kalman filter in Ethernet networks.

  11. Leader neurons in leaky integrate and fire neural network simulations.

    Science.gov (United States)

    Zbinden, Cyrille

    2011-10-01

    In this paper, we highlight the topological properties of leader neurons whose existence is an experimental fact. Several experimental studies show the existence of leader neurons in population bursts of activity in 2D living neural networks (Eytan and Marom, J Neurosci 26(33):8465-8476, 2006; Eckmann et al., New J Phys 10(015011), 2008). A leader neuron is defined as a neuron which fires at the beginning of a burst (respectively network spike) more often than we expect by chance considering its mean firing rate. This means that leader neurons have some burst triggering power beyond a chance-level statistical effect. In this study, we characterize these leader neuron properties. This naturally leads us to simulate neural 2D networks. To build our simulations, we choose the leaky integrate and fire (lIF) neuron model (Gerstner and Kistler 2002; Cessac, J Math Biol 56(3):311-345, 2008), which allows fast simulations (Izhikevich, IEEE Trans Neural Netw 15(5):1063-1070, 2004; Gerstner and Naud, Science 326:379-380, 2009). The dynamics of our lIF model has got stable leader neurons in the burst population that we simulate. These leader neurons are excitatory neurons and have a low membrane potential firing threshold. Except for these two first properties, the conditions required for a neuron to be a leader neuron are difficult to identify and seem to depend on several parameters involved in the simulations themselves. However, a detailed linear analysis shows a trend of the properties required for a neuron to be a leader neuron. Our main finding is: A leader neuron sends signals to many excitatory neurons as well as to few inhibitory neurons and a leader neuron receives only signals from few other excitatory neurons. Our linear analysis exhibits five essential properties of leader neurons each with different relative importance. This means that considering a given neural network with a fixed mean number of connections per neuron, our analysis gives us a way of

  12. Computer Simulations of Bottlebrush Melts and Soft Networks

    Science.gov (United States)

    Cao, Zhen; Carrillo, Jan-Michael; Sheiko, Sergei; Dobrynin, Andrey

    We have studied dense bottlebrush systems in a melt and network state using a combination of the molecular dynamics simulations and analytical calculations. Our simulations show that the bottlebrush macromolecules in a melt behave as ideal chains with the effective Kuhn length bK. The bottlebrush induced bending rigidity is due to redistribution of the side chains upon backbone bending. Kuhn length of the bottlebrushes increases with increasing the side-chain degree of polymerization nsc as bK ~nsc0 . 46 . This model of bottlebrush macromolecules is extended to describe mechanical properties of bottlebrush networks in linear and nonlinear deformation regimes. In the linear deformation regime, the network shear modulus scales with the degree of polymerization of the side chains as G0 ~nsc + 1 - 1 as long as the ratio of the Kuhn length to the size of the fully extended bottlebrush backbone between crosslinks, Rmax, is smaller than unity, bK /Rmax crosslinks. Nsf DMR-1409710 DMR-1436201.

  13. Topological evolution of virtual social networks by modeling social activities

    Science.gov (United States)

    Sun, Xin; Dong, Junyu; Tang, Ruichun; Xu, Mantao; Qi, Lin; Cai, Yang

    2015-09-01

    With the development of Internet and wireless communication, virtual social networks are becoming increasingly important in the formation of nowadays' social communities. Topological evolution model is foundational and critical for social network related researches. Up to present most of the related research experiments are carried out on artificial networks, however, a study of incorporating the actual social activities into the network topology model is ignored. This paper first formalizes two mathematical abstract concepts of hobbies search and friend recommendation to model the social actions people exhibit. Then a social activities based topology evolution simulation model is developed to satisfy some well-known properties that have been discovered in real-world social networks. Empirical results show that the proposed topology evolution model has embraced several key network topological properties of concern, which can be envisioned as signatures of real social networks.

  14. Network model of security system

    Directory of Open Access Journals (Sweden)

    Adamczyk Piotr

    2016-01-01

    Full Text Available The article presents the concept of building a network security model and its application in the process of risk analysis. It indicates the possibility of a new definition of the role of the network models in the safety analysis. Special attention was paid to the development of the use of an algorithm describing the process of identifying the assets, vulnerability and threats in a given context. The aim of the article is to present how this algorithm reduced the complexity of the problem by eliminating from the base model these components that have no links with others component and as a result and it was possible to build a real network model corresponding to reality.

  15. Hybrid Network Simulation for the ATLAS Trigger and Data Acquisition (TDAQ) System

    CERN Document Server

    Bonaventura, Matias Alejandro; The ATLAS collaboration; Castro, Rodrigo Daniel; Foguelman, Daniel Jacob

    2015-01-01

    The poster shows the ongoing research in the ATLAS TDAQ group in collaboration with the University of Buenos Aires in the area of hybrid data network simulations. he Data Network and Processing Cluster filters data in real-time, achieving a rejection factor in the order of 40000x and has real-time latency constrains. The dataflow between the processing units (TPUs) and Readout System (ROS) presents a “TCP Incast”-type network pathology which TCP cannot handle it efficiently. A credits system is in place which limits rate of queries and reduces latency. This large computer network, and the complex dataflow has been modelled and simulated using a PowerDEVS, a DEVS-based simulator. The simulation has been validated and used to produce what-if scenarios in the real network. Network Simulation with Hybrid Flows: Speedups and accuracy, combined • For intensive network traffic, Discrete Event simulation models (packet-level granularity) soon becomes prohibitive: Too high computing demands. • Fluid Flow simul...

  16. A Complex Network Approach to Distributional Semantic Models.

    Directory of Open Access Journals (Sweden)

    Akira Utsumi

    Full Text Available A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models.

  17. An Efficient Multitask Scheduling Model for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hongsheng Yin

    2014-01-01

    Full Text Available The sensor nodes of multitask wireless network are constrained in performance-driven computation. Theoretical studies on the data processing model of wireless sensor nodes suggest satisfying the requirements of high qualities of service (QoS of multiple application networks, thus improving the efficiency of network. In this paper, we present the priority based data processing model for multitask sensor nodes in the architecture of multitask wireless sensor network. The proposed model is deduced with the M/M/1 queuing model based on the queuing theory where the average delay of data packets passing by sensor nodes is estimated. The model is validated with the real data from the Huoerxinhe Coal Mine. By applying the proposed priority based data processing model in the multitask wireless sensor network, the average delay of data packets in a sensor nodes is reduced nearly to 50%. The simulation results show that the proposed model can improve the throughput of network efficiently.

  18. A Multilayer Model of Computer Networks

    OpenAIRE

    Shchurov, Andrey A.

    2015-01-01

    The fundamental concept of applying the system methodology to network analysis declares that network architecture should take into account services and applications which this network provides and supports. This work introduces a formal model of computer networks on the basis of the hierarchical multilayer networks. In turn, individual layers are represented as multiplex networks. The concept of layered networks provides conditions of top-down consistency of the model. Next, we determined the...

  19. Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods

    Science.gov (United States)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.

  20. Model Calibration for Ship Simulations

    NARCIS (Netherlands)

    E.F.G. van Daalen (Ed); J. Fehribach; T. van Leeuwen (Tristan); C. Reinhardt; N. Schenkels; R. Sheombarsing

    2014-01-01

    htmlabstractModel calibration is an important aspect in ship simulation. Here, ship motion is described by an ODE which includes tuning parameters that capture complex physical processes such as friction of the hull. In order for the simulations to be realistic for a wide range of

  1. Model Calibration for Ship Simulations

    NARCIS (Netherlands)

    van Daalen, Ed; Fehribach, Joseph; van Leeuwen, Tristan; Reinhardt, Christian; Schenkels, Nick; Sheombarsing, Ray

    2014-01-01

    Model calibration is an important aspect in ship simulation. Here, ship motion is described by an ODE which includes tuning parameters that capture complex physical processes such as friction of the hull. In order for the simulations to be realistic for a wide range of scenarios these tuning

  2. Climate and change: simulating flooding impacts on urban transport network

    Science.gov (United States)

    Pregnolato, Maria; Ford, Alistair; Dawson, Richard

    2015-04-01

    National-scale climate projections indicate that in the future there will be hotter and drier summers, warmer and wetter winters, together with rising sea levels. The frequency of extreme weather events is expected to increase, causing severe damage to the built environment and disruption of infrastructures (Dawson, 2007), whilst population growth and changed demographics are placing new demands on urban infrastructure. It is therefore essential to ensure infrastructure networks are robust to these changes. This research addresses these challenges by focussing on the development of probabilistic tools for managing risk by modelling urban transport networks within the context of extreme weather events. This paper presents a methodology to investigate the impacts of extreme weather events on urban environment, in particular infrastructure networks, through a combination of climate simulations and spatial representations. By overlaying spatial data on hazard thresholds from a flood model and a flood safety function, mitigated by potential adaptation strategies, different levels of disruption to commuting journeys on road networks are evaluated. The method follows the Catastrophe Modelling approach and it consists of a spatial model, combining deterministic loss models and probabilistic risk assessment techniques. It can be applied to present conditions as well as future uncertain scenarios, allowing the examination of the impacts alongside socio-economic and climate changes. The hazard is determined by simulating free surface water flooding, with the software CityCAT (Glenis et al., 2013). The outputs are overlapped to the spatial locations of a simple network model in GIS, which uses journey-to-work (JTW) observations, supplemented with speed and capacity information. To calculate the disruptive effect of flooding on transport networks, a function relating water depth to safe driving car speed has been developed by combining data from experimental reports (Morris et

  3. A versatile framework for simulating the dynamic mechanical structure of cytoskeletal networks

    CERN Document Server

    Freedman, Simon L; Hocky, Glen M; Dinner, Aaron R

    2016-01-01

    Computer simulations can aid in our understanding of how collective materials properties emerge from interactions between simple constituents. Here, we introduce a coarse- grained model of networks of actin filaments, myosin motors, and crosslinking proteins that enables simulation at biologically relevant time and length scales. We demonstrate that the model, with a consistent parameterization, qualitatively and quantitatively captures a suite of trends observed experimentally, including the statistics of filament fluctuations, mechanical responses to shear, motor motilities, and network rearrangements. The model can thus serve as a platform for interpretation and design of cytoskeletal materials experiments, as well as for further development of simulations incorporating active elements.

  4. Data modeling of network dynamics

    Science.gov (United States)

    Jaenisch, Holger M.; Handley, James W.; Faucheux, Jeffery P.; Harris, Brad

    2004-01-01

    This paper highlights Data Modeling theory and its use for text data mining as a graphical network search engine. Data Modeling is then used to create a real-time filter capable of monitoring network traffic down to the port level for unusual dynamics and changes in business as usual. This is accomplished in an unsupervised fashion without a priori knowledge of abnormal characteristics. Two novel methods for converting streaming binary data into a form amenable to graphics based search and change detection are introduced. These techniques are then successfully applied to 1999 KDD Cup network attack data log-on sessions to demonstrate that Data Modeling can detect attacks without prior training on any form of attack behavior. Finally, two new methods for data encryption using these ideas are proposed.

  5. A solvable queueing network model for railway networks and its validation and applications for the Netherlands

    NARCIS (Netherlands)

    Huisman, Tijs; Boucherie, Richardus J.; van Dijk, N.M.

    2002-01-01

    The performance of new railway networks cannot be measured or simulated, as no detailed train schedules are available. Railway infrastructure and capacities are to be determined long before the actual traffic is known. This paper therefore proposes a solvable queueing network model to compute

  6. A last updating evolution model for online social networks

    Science.gov (United States)

    Bu, Zhan; Xia, Zhengyou; Wang, Jiandong; Zhang, Chengcui

    2013-05-01

    As information technology has advanced, people are turning to electronic media more frequently for communication, and social relationships are increasingly found on online channels. However, there is very limited knowledge about the actual evolution of the online social networks. In this paper, we propose and study a novel evolution network model with the new concept of “last updating time”, which exists in many real-life online social networks. The last updating evolution network model can maintain the robustness of scale-free networks and can improve the network reliance against intentional attacks. What is more, we also found that it has the “small-world effect”, which is the inherent property of most social networks. Simulation experiment based on this model show that the results and the real-life data are consistent, which means that our model is valid.

  7. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  8. Transmission network expansion planning with simulation optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Russell W [Los Alamos National Laboratory; Berscheid, Alan [Los Alamos National Laboratory; Toole, G. Loren [Los Alamos National Laboratory

    2010-01-01

    Within the electric power literatW''e the transmi ssion expansion planning problem (TNEP) refers to the problem of how to upgrade an electric power network to meet future demands. As this problem is a complex, non-linear, and non-convex optimization problem, researchers have traditionally focused on approximate models. Often, their approaches are tightly coupled to the approximation choice. Until recently, these approximations have produced results that are straight-forward to adapt to the more complex (real) problem. However, the power grid is evolving towards a state where the adaptations are no longer easy (i.e. large amounts of limited control, renewable generation) that necessitates new optimization techniques. In this paper, we propose a generalization of the powerful Limited Discrepancy Search (LDS) that encapsulates the complexity in a black box that may be queJied for information about the quality of a proposed expansion. This allows the development of a new optimization algOlitlun that is independent of the underlying power model.

  9. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks

    Science.gov (United States)

    Vestergaard, Christian L.; Génois, Mathieu

    2015-01-01

    Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860

  10. TREAT Modeling and Simulation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  11. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock

    Science.gov (United States)

    Hadgu, Teklu; Karra, Satish; Kalinina, Elena; Makedonska, Nataliia; Hyman, Jeffrey D.; Klise, Katherine; Viswanathan, Hari S.; Wang, Yifeng

    2017-10-01

    One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. We compare DFN and ECM in terms of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. We identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.

  12. Thermal Network Modelling Handbook

    Science.gov (United States)

    1972-01-01

    Thermal mathematical modelling is discussed in detail. A three-fold purpose was established: (1) to acquaint the new user with the terminology and concepts used in thermal mathematical modelling, (2) to present the more experienced and occasional user with quick formulas and methods for solving everyday problems, coupled with study cases which lend insight into the relationships that exist among the various solution techniques and parameters, and (3) to begin to catalog in an orderly fashion the common formulas which may be applied to automated conversational language techniques.

  13. Modeling and Simulation at NASA

    Science.gov (United States)

    Steele, Martin J.

    2009-01-01

    This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.

  14. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  15. Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.

    Science.gov (United States)

    Lee, Won Hee; Bullmore, Ed; Frangou, Sophia

    2017-02-01

    There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Parallel discrete-event simulation of FCFS stochastic queueing networks

    Science.gov (United States)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  17. Molecular modeling of amorphous, non-woven polymer networks.

    Science.gov (United States)

    Krausse, Constantin A; Milek, Theodor; Zahn, Dirk

    2015-10-01

    We outline a simple and efficient approach to generating molecular models of amorphous polymer networks. Similar to established techniques of preparing woven polymer networks from quenching high-temperature molecular simulation runs, we use a molecular dynamics simulations of a generic melt as starting points. This generic melt is however only used to describe parts of the polymers, namely the cross-linker units which positions are adopted from particle positions of the quenched melt. Specific degrees of network connectivity are tuned by geometric criteria for linker-linker connections and by suitable multi-body interaction potentials applied to the generic melt simulations. Using this technique we demonstrate adjusting fourfold linker coordination in amorphous polymer networks comprising 10-20% under-coordinated linkers. Graphical Abstract Molecular modeling of amorphous, non-woven polymer networks.

  18. Implications of Simulation Conceptual Model Development for Simulation Management and Uncertainty Assessment

    Science.gov (United States)

    Pace, Dale K.

    2000-01-01

    A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.

  19. Metrics for evaluating performance and uncertainty of Bayesian network models

    Science.gov (United States)

    Bruce G. Marcot

    2012-01-01

    This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...

  20. Water distribution network modelling of a small community using ...

    African Journals Online (AJOL)

    In this study a network model was constructed for the hydraulic analysis and design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using WaterCAD simulator. The analysis included a review of pressures, velocities and head loss gradients under steady state average ...

  1. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in ...

  2. Water Distribution Network Modelling of a Small Community using ...

    African Journals Online (AJOL)

    Water Distribution Network Modelling of a Small Community using Watercad Simulator. ... Global Journal of Engineering Research ... with respect to pressure or available fire flow for the proposed service area and also that flow velocities are not excessive while head loss gradients in the network are within acceptable limits.

  3. A neural network simulation package in CLIPS

    Science.gov (United States)

    Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John

    1990-01-01

    The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.

  4. Studies on the population dynamics of a rumor-spreading model in online social networks

    Science.gov (United States)

    Dong, Suyalatu; Fan, Feng-Hua; Huang, Yong-Chang

    2018-02-01

    This paper sets up a rumor spreading model in online social networks based on the European fox rabies SIR model. The model considers the impact of changing number of online social network users, combines the transmission dynamics to set up a population dynamics of rumor spreading model in online social networks. Simulation is carried out on online social network, and results show that the new rumor spreading model is in accordance with the real propagation characteristics in online social networks.

  5. Modeling the reemergence of information diffusion in social network

    Science.gov (United States)

    Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong

    2018-01-01

    Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.

  6. Reliability assessment of restructured power systems using reliability network equivalent and pseudo-sequential simulation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi; Wang, Peng; Goel, Lalit [Nanyang Technological University, School of Electrical and Electronics Engineering, Block S1, Nanyang Avenue, Singapore 639798 (Singapore); Billinton, Roy; Karki, Rajesh [Department of Electrical Engineering, University of Saskatchewan, Saskatoon (Canada)

    2007-10-15

    This paper presents a technique to evaluate reliability of a restructured power system with a bilateral market. The proposed technique is based on the combination of the reliability network equivalent and pseudo-sequential simulation approaches. The reliability network equivalent techniques have been implemented in the Monte Carlo simulation procedure to reduce the computational burden of the analysis. Pseudo-sequential simulation has been used to increase the computational efficiency of the non-sequential simulation method and to model the chronological aspects of market trading and system operation. Multi-state Markov models for generation and transmission systems are proposed and implemented in the simulation. A new load shedding scheme is proposed during generation inadequacy and network congestion to minimize the load curtailment. The IEEE reliability test system (RTS) is used to illustrate the technique. (author)

  7. Hybrid modeling and empirical analysis of automobile supply chain network

    Science.gov (United States)

    Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying

    2017-05-01

    Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.

  8. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    OpenAIRE

    Wei-Bo Chen; Wen-Cheng Liu

    2015-01-01

    In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical ...

  9. Network Models of Mechanical Assemblies

    Science.gov (United States)

    Whitney, Daniel E.

    Recent network research has sought to characterize complex systems with a number of statistical metrics, such as power law exponent (if any), clustering coefficient, community behavior, and degree correlation. Use of such metrics represents a choice of level of abstraction, a balance of generality and detailed accuracy. It has been noted that "social networks" consistently display clustering coefficients that are higher than those of random or generalized random networks, that they have small world properties such as short path lengths, and that they have positive degree correlations (assortative mixing). "Technological" or "non-social" networks display many of these characteristics except that they generally have negative degree correlations (disassortative mixing). [Newman 2003i] In this paper we examine network models of mechanical assemblies. Such systems are well understood functionally. We show that there is a cap on their average nodal degree and that they have negative degree correlations (disassortative mixing). We identify specific constraints arising from first principles, their structural patterns, and engineering practice that suggest why they have these properties. In addition, we note that their main "motif" is closed loops (as it is for electric and electronic circuits), a pattern that conventional network analysis does not detect but which is used by software intended to aid in the design of such systems.

  10. Extended period simulation (EPS) modelling of urban water ...

    African Journals Online (AJOL)

    Water distribution network was constructed, calibrated and validated for extended period simulation studies using the network's physical, operational, calibration and validation data. The model was then applied to evaluate: (i) effects of fluctuating water demand on system storage over 24 hour period and (ii) level of service ...

  11. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......) and the North American Animal Disease Spread Model (NAADSM). The models are rather data intensive, but in varying degrees. They generally demand data on the farm level, including farm location, type, number of animals, and movement and contact frequency to other farms. To be able to generate a useful model...... of FMD spread that can provide useful and trustworthy advises, there are four important issues, which the model should represent: 1) The herd structure of the country in question, 2) the dynamics of animal movements and contacts between herds, 3) the biology of the disease, and 4) the regulations...

  12. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations

    Science.gov (United States)

    Hahne, Jan; Helias, Moritz; Kunkel, Susanne; Igarashi, Jun; Bolten, Matthias; Frommer, Andreas; Diesmann, Markus

    2015-01-01

    Contemporary simulators for networks of point and few-compartment model neurons come with a plethora of ready-to-use neuron and synapse models and support complex network topologies. Recent technological advancements have broadened the spectrum of application further to the efficient simulation of brain-scale networks on supercomputers. In distributed network simulations the amount of spike data that accrues per millisecond and process is typically low, such that a common optimization strategy is to communicate spikes at relatively long intervals, where the upper limit is given by the shortest synaptic transmission delay in the network. This approach is well-suited for simulations that employ only chemical synapses but it has so far impeded the incorporation of gap-junction models, which require instantaneous neuronal interactions. Here, we present a numerical algorithm based on a waveform-relaxation technique which allows for network simulations with gap junctions in a way that is compatible with the delayed communication strategy. Using a reference implementation in the NEST simulator, we demonstrate that the algorithm and the required data structures can be smoothly integrated with existing code such that they complement the infrastructure for spiking connections. To show that the unified framework for gap-junction and spiking interactions achieves high performance and delivers high accuracy in the presence of gap junctions, we present benchmarks for workstations, clusters, and supercomputers. Finally, we discuss limitations of the novel technology. PMID:26441628

  13. Greenhouse simulation models.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    A model is a representation of a real system to describe some properties i.e. internal factors of that system (out-puts) as function of some external factors (inputs). It is impossible to describe the relation between all internal factors (if even all internal factors could be defined) and all

  14. Performance Modeling for Heterogeneous Wireless Networks with Multiservice Overflow Traffic

    DEFF Research Database (Denmark)

    Huang, Qian; Ko, King-Tim; Iversen, Villy Bæk

    2009-01-01

    Performance modeling is important for the purpose of developing efficient dimensioning tools for large complicated networks. But it is difficult to achieve in heterogeneous wireless networks, where different networks have different statistical characteristics in service and traffic models....... Multiservice loss analysis based on multi-dimensional Markov chain becomes intractable in these networks due to intensive computations required. This paper focuses on performance modeling for heterogeneous wireless networks based on a hierarchical overlay infrastructure. A method based on decomposition...... of the correlated traffic is used to achieve an approximate performance modeling for multiservice in hierarchical heterogeneous wireless networks with overflow traffic. The accuracy of the approximate performance obtained by our proposed modeling is verified by simulations....

  15. Interfacing Network Simulations and Empirical Data

    Science.gov (United States)

    2009-05-01

    appropriate. The quadratic assignment procedure ( QAP ) (Krackhardt, 1987) could be used to compare the correlation between networks; however, the...Social roles and the evolution of networks in extreme and isolated environments. Mathematical Sociology, 27: 89-121. Krackhardt, D. (1987). QAP

  16. Complex systems models: engineering simulations

    OpenAIRE

    Polack, Fiona A. C.; Hoverd, Tim; Sampson, Adam T.; Stepney, Susan; Timmis, Jon,

    2008-01-01

    As part of research towards the CoSMoS unified infrastructure for modelling and simulating complex systems, we review uses of definitional and descriptive models in natural science and computing, and existing integrated platforms. From these, we identify requirements for engineering models of complex systems, and consider how some of the requirements could be met, using state-of-the-art model management and a mobile, process-oriented computing paradigm.

  17. Systems and methods for modeling and analyzing networks

    Science.gov (United States)

    Hill, Colin C; Church, Bruce W; McDonagh, Paul D; Khalil, Iya G; Neyarapally, Thomas A; Pitluk, Zachary W

    2013-10-29

    The systems and methods described herein utilize a probabilistic modeling framework for reverse engineering an ensemble of causal models, from data and then forward simulating the ensemble of models to analyze and predict the behavior of the network. In certain embodiments, the systems and methods described herein include data-driven techniques for developing causal models for biological networks. Causal network models include computational representations of the causal relationships between independent variables such as a compound of interest and dependent variables such as measured DNA alterations, changes in mRNA, protein, and metabolites to phenotypic readouts of efficacy and toxicity.

  18. Preliminary Modeling and Simulation Study on Olfactory Cell Sensation

    Science.gov (United States)

    Zhou, Jun; Yang, Wei; Chen, Peihua; Liu, Qingjun; Wang, Ping

    2009-05-01

    This paper introduced olfactory sensory neuron's whole-cell model with a concrete voltage-gated ionic channels and simulation. Though there are many models in olfactory sensory neuron and olfactory bulb, it remains uncertain how they express the logic of olfactory information processing. In this article, the olfactory neural network model is also introduced. This model specifies the connections among neural ensembles of the olfactory system. The simulation results of the neural network model are consistent with the observed olfactory biological characteristics such as 1/f-type power spectrum and oscillations.

  19. Integrating Visualizations into Modeling NEST Simulations

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  20. CoSimulating Communication Networks and Electrical System for Performance Evaluation in Smart Grid

    Directory of Open Access Journals (Sweden)

    Hwantae Kim

    2018-01-01

    Full Text Available In smart grid research domain, simulation study is the first choice, since the analytic complexity is too high and constructing a testbed is very expensive. However, since communication infrastructure and the power grid are tightly coupled with each other in the smart grid, a well-defined combination of simulation tools for the systems is required for the simulation study. Therefore, in this paper, we propose a cosimulation work called OOCoSim, which consists of OPNET (network simulation tool and OpenDSS (power system simulation tool. By employing the simulation tool, an organic and dynamic cosimulation can be realized since both simulators operate on the same computing platform and provide external interfaces through which the simulation can be managed dynamically. In this paper, we provide OOCoSim design principles including a synchronization scheme and detailed descriptions of its implementation. To present the effectiveness of OOCoSim, we define a smart grid application model and conduct a simulation study to see the impact of the defined application and the underlying network system on the distribution system. The simulation results show that the proposed OOCoSim can successfully simulate the integrated scenario of the power and network systems and produce the accurate effects of the networked control in the smart grid.

  1. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ameli

    2012-01-01

    Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

  2. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Target-Centric Network Modeling

    DEFF Research Database (Denmark)

    Mitchell, Dr. William L.; Clark, Dr. Robert M.

    In Target-Centric Network Modeling: Case Studies in Analyzing Complex Intelligence Issues, authors Robert Clark and William Mitchell take an entirely new approach to teaching intelligence analysis. Unlike any other book on the market, it offers case study scenarios using actual intelligence......, and collaborative sharing in the process of creating a high-quality, actionable intelligence product. The case studies reflect the complexity of twenty-first century intelligence issues by dealing with multi-layered target networks that cut across political, economic, social, technological, and military issues....... Working through these cases, students will learn to manage and evaluate realistic intelligence accounts....

  4. Brownian dynamics simulation of insulin microsphere formation from break-up of a fractal network.

    Science.gov (United States)

    Li, Wei; Gunton, J D; Khan, Siddique J; Schoelz, J K; Chakrabarti, A

    2011-01-14

    Motivated by a recent experiment on insulin microsphere formation where polyethylene glycol (PEG) is used as the precipitating agent, we have developed a simple theoretical model that can predict the formation of a fractal network of insulin monomers and the subsequent break-up of the fractal network into microsphere aggregates. In our approach the effect of PEG on insulin is modeled via a standard depletion attraction mechanism via the Asakura-Oosawa model. We show that even in the context of this simple model, it is possible to mimic important aspects of the insulin experiment in a brownian dynamics simulation. We simulate the effect of changing temperature in our model by changing the well depth of the Asakura-Oosawa potential. A fractal network is observed in a "deep quench" of the system, followed by a "heating" that results in a break-up of the network and subsequent formation of microspheres.

  5. CNEM: Cluster Based Network Evolution Model

    Directory of Open Access Journals (Sweden)

    Sarwat Nizamani

    2015-01-01

    Full Text Available This paper presents a network evolution model, which is based on the clustering approach. The proposed approach depicts the network evolution, which demonstrates the network formation from individual nodes to fully evolved network. An agglomerative hierarchical clustering method is applied for the evolution of network. In the paper, we present three case studies which show the evolution of the networks from the scratch. These case studies include: terrorist network of 9/11 incidents, terrorist network of WMD (Weapons Mass Destruction plot against France and a network of tweets discussing a topic. The network of 9/11 is also used for evaluation, using other social network analysis methods which show that the clusters created using the proposed model of network evolution are of good quality, thus the proposed method can be used by law enforcement agencies in order to further investigate the criminal networks

  6. Neural networks analysis on SSME vibration simulation data

    Science.gov (United States)

    Lo, Ching F.; Wu, Kewei

    1993-01-01

    The neural networks method is applied to investigate the feasibility in detecting anomalies in turbopump vibration of SSME to supplement the statistical method utilized in the prototype system. The investigation of neural networks analysis is conducted using SSME vibration data from a NASA developed numerical simulator. The limited application of neural networks to the HPFTP has also shown the effectiveness in diagnosing the anomalies of turbopump vibrations.

  7. Simulation of mixed switched-capacitor/digital networks with signal-driven switches

    Science.gov (United States)

    Suyama, Ken; Tsividis, Yannis P.; Fang, San-Chin

    1990-12-01

    The simulation of mixed switched-capacitor/digital (SC/D) networks containing capacitors, independent and linear-dependent voltage sources, switches controlled either by periodic or nonperiodic Boolean signals, latched comparators, and logic gates is considered. A unified linear switched-capacitor network (SCN) and mixed SC/D network simulator, SWITCAP2, and its applications to several widely used and novel nonlinear SCNs are discussed. The switches may be controlled by periodic waveforms and by nonperiodic waveforms from the outputs of comparators and logic gates. The signal-dependent modification of network topology through the comparators, logic gates, and signal-driven switches makes the modeling of various nonlinear switched-capacitor circuits possible. Simulation results for a pulse-code modulation (PCM) voice encoder, a sigma-delta modulator, a neural network, and a phase-locked loop (PLL) are presented to demonstrate the flexibility of the approach.

  8. OPNET Modeler simulations of performance for multi nodes wireless systems

    Directory of Open Access Journals (Sweden)

    Krupanek Beata

    2016-01-01

    Full Text Available Paper presents a study under the Quality of Service in modern wireless sensor networks. Such a networks are characterized by small amount of data transmitted in fixed periods. Very often this data must by transmitted in real time so data transmission delays should be well known. This article shows multimode network simulated in packet OPNET Modeler. Also nowadays the quality of services is very important especially in multi-nodes systems such a home automation or measurement systems.

  9. Modified Penna bit-string network evolution model for scale-free networks with assortative mixing

    Science.gov (United States)

    Kim, Yup; Choi, Woosik; Yook, Soon-Hyung

    2012-02-01

    Motivated by biological aging dynamics, we introduce a network evolution model for social interaction networks. In order to study the effect of social interactions originating from biological and sociological reasons on the topological properties of networks, we introduce the activitydependent rewiring process. From the numerical simulations, we show that the degree distribution of the obtained networks follows a power-law distribution with an exponentially decaying tail, P( k) ˜ ( k + c)- γ exp(- k/k 0). The obtained value of γ is in the range 2 networks. Moreover, we also show that the degree-degree correlation of the network is positive, which is a characteristic of social interaction networks. The possible applications of our model to real systems are also discussed.

  10. Innovative research of AD HOC network mobility model

    Science.gov (United States)

    Chen, Xin

    2017-08-01

    It is difficult for researchers of AD HOC network to conduct actual deployment during experimental stage as the network topology is changeable and location of nodes is unfixed. Thus simulation still remains the main research method of the network. Mobility model is an important component of AD HOC network simulation. It is used to describe the movement pattern of nodes in AD HOC network (including location and velocity, etc.) and decides the movement trail of nodes, playing as the abstraction of the movement modes of nodes. Therefore, mobility model which simulates node movement is an important foundation for simulation research. In AD HOC network research, mobility model shall reflect the movement law of nodes as truly as possible. In this paper, node generally refers to the wireless equipment people carry. The main research contents include how nodes avoid obstacles during movement process and the impacts of obstacles on the mutual relation among nodes, based on which a Node Self Avoiding Obstacle, i.e. NASO model is established in AD HOC network.

  11. neural network based model o work based model of an industrial oil

    African Journals Online (AJOL)

    eobe

    ropagation Algorithm (trainlm). The data; shows that data; shows that the simulated model the simulated model t outputs t outputs, with regression val with regression val with regression value of d to control the neural network model. , PID controller. ing processes. An additional node with ut (usually 1) is often added to the.

  12. Rejection-free stochastic simulation of BNGL-encoded models

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek, William S [Los Alamos National Laboratory; Monine, Michael I [Los Alamos National Laboratory; Colvin, Joshua [TRANSLATIONAL GENOM; Posner, Richard G [NORTHERN ARIZONA UNIV.; Von Hoff, Daniel D [TRANSLATIONAL GENOMICS RESEARCH INSTIT.

    2009-01-01

    Formal rules encoded using the BioNetGen language (BNGL) can be used to represent the system-level dynamics of molecular interactions. Rules allow one to compactly and implicitly specify the reaction network implied by a set of molecules and their interactions. Typically, the reaction network implied by a set of rules is large, which makes generation of the underlying rule-defined network expensive. Moreover, the cost of conventional simulation methods typically depends on network size. Together these factors have limited application of the rule-based modeling approach. To overcome this limitation, several methods have recently been developed for determining the reaction dynamics implied by rules while avoiding the expensive step of network generation. The cost of these 'network-free' simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is needed for the analysis of rule-based models of biochemical systems. Here, we present a software tool called RuleMonkey that implements a network-free stochastic simulation method for rule-based models. The method is rejection free, unlike other network-free methods that introduce null events (i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated), and the software is capable of simulating models encoded in BNGL, a general-purpose model-specification language. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant general-purpose simulator for rule-based models, as well as various problem-specific codes that implement network-free simulation methods. RuleMonkey enables the simulation of models defined by rule sets that imply large-scale reaction networks. It is faster than DYNSTOC for stiff problems, although it requires the use of more computer memory. RuleMonkey is freely available for non-commercial use as a stand

  13. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  14. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  15. A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations.

    Science.gov (United States)

    Frappier, Vincent; Najmanovich, Rafael J

    2014-04-01

    Normal mode analysis (NMA) methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM) methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.

  16. A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations.

    Directory of Open Access Journals (Sweden)

    Vincent Frappier

    2014-04-01

    Full Text Available Normal mode analysis (NMA methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.

  17. Mathematical Modelling Plant Signalling Networks

    KAUST Repository

    Muraro, D.

    2013-01-01

    During the last two decades, molecular genetic studies and the completion of the sequencing of the Arabidopsis thaliana genome have increased knowledge of hormonal regulation in plants. These signal transduction pathways act in concert through gene regulatory and signalling networks whose main components have begun to be elucidated. Our understanding of the resulting cellular processes is hindered by the complex, and sometimes counter-intuitive, dynamics of the networks, which may be interconnected through feedback controls and cross-regulation. Mathematical modelling provides a valuable tool to investigate such dynamics and to perform in silico experiments that may not be easily carried out in a laboratory. In this article, we firstly review general methods for modelling gene and signalling networks and their application in plants. We then describe specific models of hormonal perception and cross-talk in plants. This mathematical analysis of sub-cellular molecular mechanisms paves the way for more comprehensive modelling studies of hormonal transport and signalling in a multi-scale setting. © EDP Sciences, 2013.

  18. Modelling, simulating and optimizing Boilers

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verication as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and re tube boilers. A detailed dynamic model...... of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic- Equation system. Being able to operate...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantication of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to dene parts...

  19. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... freedom with respect to dynamic operation of the plant. By means of an objective function including as well the price of the plant as a quantification of the value of dynamic operation of the plant an optimization is carried out. The dynamic model of the boiler plant is applied to define parts...

  20. Malware Propagation and Prevention Model for Time-Varying Community Networks within Software Defined Networks

    Directory of Open Access Journals (Sweden)

    Lan Liu

    2017-01-01

    Full Text Available As the adoption of Software Defined Networks (SDNs grows, the security of SDN still has several unaddressed limitations. A key network security research area is in the study of malware propagation across the SDN-enabled networks. To analyze the spreading processes of network malware (e.g., viruses in SDN, we propose a dynamic model with a time-varying community network, inspired by research models on the spread of epidemics in complex networks across communities. We assume subnets of the network as communities and links that are dense in subnets but sparse between subnets. Using numerical simulation and theoretical analysis, we find that the efficiency of network malware propagation in this model depends on the mobility rate q of the nodes between subnets. We also find that there exists a mobility rate threshold qc. The network malware will spread in the SDN when the mobility rate q>qc. The malware will survive when q>qc and perish when qmodel is effective, and the results may help to decide the SDN control strategy to defend against network malware and provide a theoretical basis to reduce and prevent network security incidents.

  1. Validating module network learning algorithms using simulated data.

    Science.gov (United States)

    Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

    2007-05-03

    In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

  2. Intelligent Electric Power Systems with Active-Adaptive Electric Networks: Challenges for Simulation Tools

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2015-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of intelligent electric power systems with active-adaptive electric networks (IES including Flexible Alternating Current Transmission System (FACTS devices. The key requirements for the simulation were formed. The presented analysis of simulation results of IES confirms the need to use a hybrid modelling approach.

  3. Importance of simulation tools for the planning of optical network

    Science.gov (United States)

    Martins, Indayara B.; Martins, Yara; Rudge, Felipe; Moschimı, Edson

    2015-10-01

    The main proposal of this work is to show the importance of using simulation tools to project optical networks. The simulation method supports the investigation of several system and network parameters, such as bit error rate, blocking probability as well as physical layer issues, such as attenuation, dispersion, and nonlinearities, as these are all important to evaluate and validate the operability of optical networks. The work was divided into two parts: firstly, physical layer preplanning was proposed for the distribution of amplifiers and compensating for the attenuation and dispersion effects in span transmission; in this part, we also analyzed the quality of the transmitted signal. In the second part, an analysis of the transport layer was completed, proposing wavelength distribution planning, according to the total utilization of each link. The main network parameters used to evaluate the transport and physical layer design were delay (latency), blocking probability, and bit error rate (BER). This work was carried out with commercially available simulation tools.

  4. Double and multiple knockout simulations for genome-scale metabolic network reconstructions.

    Science.gov (United States)

    Goldstein, Yaron Ab; Bockmayr, Alexander

    2015-01-01

    Constraint-based modeling of genome-scale metabolic network reconstructions has become a widely used approach in computational biology. Flux coupling analysis is a constraint-based method that analyses the impact of single reaction knockouts on other reactions in the network. We present an extension of flux coupling analysis for double and multiple gene or reaction knockouts, and develop corresponding algorithms for an in silico simulation. To evaluate our method, we perform a full single and double knockout analysis on a selection of genome-scale metabolic network reconstructions and compare the results. A prototype implementation of double knockout simulation is available at http://hoverboard.io/L4FC.

  5. Probabilistic logic modeling of network reliability for hybrid network architectures

    Energy Technology Data Exchange (ETDEWEB)

    Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.

    1996-10-01

    Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.

  6. Generalization performance of regularized neural network models

    DEFF Research Database (Denmark)

    Larsen, Jan; Hansen, Lars Kai

    1994-01-01

    Architecture optimization is a fundamental problem of neural network modeling. The optimal architecture is defined as the one which minimizes the generalization error. This paper addresses estimation of the generalization performance of regularized, complete neural network models. Regularization...

  7. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  8. Introducing Synchronisation in Deterministic Network Models

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Jessen, Jan Jakob; Nielsen, Jens Frederik D.

    2006-01-01

    The paper addresses performance analysis for distributed real time systems through deterministic network modelling. Its main contribution is the introduction and analysis of models for synchronisation between tasks and/or network elements. Typical patterns of synchronisation are presented leading...

  9. An information spreading model based on online social networks

    Science.gov (United States)

    Wang, Tao; He, Juanjuan; Wang, Xiaoxia

    2018-01-01

    Online social platforms are very popular in recent years. In addition to spreading information, users could review or collect information on online social platforms. According to the information spreading rules of online social network, a new information spreading model, namely IRCSS model, is proposed in this paper. It includes sharing mechanism, reviewing mechanism, collecting mechanism and stifling mechanism. Mean-field equations are derived to describe the dynamics of the IRCSS model. Moreover, the steady states of reviewers, collectors and stiflers and the effects of parameters on the peak values of reviewers, collectors and sharers are analyzed. Finally, numerical simulations are performed on different networks. Results show that collecting mechanism and reviewing mechanism, as well as the connectivity of the network, make information travel wider and faster, and compared to WS network and ER network, the speed of reviewing, sharing and collecting information is fastest on BA network.

  10. Quantitative identification of technological discontinuities using simulation modeling

    CERN Document Server

    Park, Hyunseok

    2016-01-01

    The aim of this paper is to develop and test metrics to quantitatively identify technological discontinuities in a knowledge network. We developed five metrics based on innovation theories and tested the metrics by a simulation model-based knowledge network and hypothetically designed discontinuity. The designed discontinuity is modeled as a node which combines two different knowledge streams and whose knowledge is dominantly persistent in the knowledge network. The performances of the proposed metrics were evaluated by how well the metrics can distinguish the designed discontinuity from other nodes on the knowledge network. The simulation results show that the persistence times # of converging main paths provides the best performance in identifying the designed discontinuity: the designed discontinuity was identified as one of the top 3 patents with 96~99% probability by Metric 5 and it is, according to the size of a domain, 12~34% better than the performance of the second best metric. Beyond the simulation ...

  11. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    Science.gov (United States)

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  12. Simulating public private networks as evolving systems

    NARCIS (Netherlands)

    Deljoo, A.; Janssen, M.F.W.H.A.; Klievink, A.J.

    2013-01-01

    Public-private service networks (PPSN) consist of social and technology components. Development of PPSN is ill-understood as these are dependent on a complex mix of interactions among stakeholders and their technologies and is influenced by contemporary developments. The aim of this paper is to

  13. Adaptive Importance Sampling Simulation of Queueing Networks

    NARCIS (Netherlands)

    de Boer, Pieter-Tjerk; Nicola, V.F.; Rubinstein, N.; Rubinstein, Reuven Y.

    2000-01-01

    In this paper, a method is presented for the efficient estimation of rare-event (overflow) probabilities in Jackson queueing networks using importance sampling. The method differs in two ways from methods discussed in most earlier literature: the change of measure is state-dependent, i.e., it is a

  14. Queueing networks : Rare events and fast simulations

    NARCIS (Netherlands)

    Miretskiy, D.I.

    2009-01-01

    This monograph focuses on rare events. Even though they are extremely unlikely, they can still occur and then could have significant consequences. We mainly consider rare events in queueing networks. More precisely, we are interested in the probability of collecting some large number of jobs in the

  15. Modeling control in manufacturing simulation

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, S.; Sánchez, P.J.; Ferrin, D.; Morrice, D.J.

    2003-01-01

    A significant shortcoming of traditional simulation languages is the lack of attention paid to the modeling of control structures, i.e., the humans or systems responsible for manufacturing planning and control, their activities and the mutual tuning of their activities. Mostly they are hard coded

  16. Building a Community of Practice for Researchers: The International Network for Simulation-Based Pediatric Innovation, Research and Education.

    Science.gov (United States)

    Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David

    2017-11-08

    The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.

  17. Designing laboratory wind simulations using artificial neural networks

    Science.gov (United States)

    Križan, Josip; Gašparac, Goran; Kozmar, Hrvoje; Antonić, Oleg; Grisogono, Branko

    2015-05-01

    While experiments in boundary layer wind tunnels remain to be a major research tool in wind engineering and environmental aerodynamics, designing the modeling hardware required for a proper atmospheric boundary layer (ABL) simulation can be costly and time consuming. Hence, possibilities are sought to speed-up this process and make it more time-efficient. In this study, two artificial neural networks (ANNs) are developed to determine an optimal design of the Counihan hardware, i.e., castellated barrier wall, vortex generators, and surface roughness, in order to simulate the ABL flow developing above urban, suburban, and rural terrains, as previous ANN models were created for one terrain type only. A standard procedure is used in developing those two ANNs in order to further enhance best-practice possibilities rather than to improve existing ANN designing methodology. In total, experimental results obtained using 23 different hardware setups are used when creating ANNs. In those tests, basic barrier height, barrier castellation height, spacing density, and height of surface roughness elements are the parameters that were varied to create satisfactory ABL simulations. The first ANN was used for the estimation of mean wind velocity, turbulent Reynolds stress, turbulence intensity, and length scales, while the second one was used for the estimation of the power spectral density of velocity fluctuations. This extensive set of studied flow and turbulence parameters is unmatched in comparison to the previous relevant studies, as it includes here turbulence intensity and power spectral density of velocity fluctuations in all three directions, as well as the Reynolds stress profiles and turbulence length scales. Modeling results agree well with experiments for all terrain types, particularly in the lower ABL within the height range of the most engineering structures, while exhibiting sensitivity to abrupt changes and data scattering in profiles of wind-tunnel results. The

  18. Reconstruction of social group networks from friendship networks using a tag-based model

    Science.gov (United States)

    Guan, Yuan-Pan; You, Zhi-Qiang; Han, Xiao-Pu

    2016-12-01

    Social group is a type of mesoscopic structure that connects human individuals in microscopic level and the global structure of society. In this paper, we propose a tag-based model considering that social groups expand along the edge that connects two neighbors with a similar tag of interest. The model runs on a real-world friendship network, and its simulation results show that various properties of simulated group network can well fit the empirical analysis on real-world social groups, indicating that the model catches the major mechanism driving the evolution of social groups and successfully reconstructs the social group network from a friendship network and throws light on digging of relationships between social functional organizations.

  19. A Three-Dimensional Computational Model of Collagen Network Mechanics

    Science.gov (United States)

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  20. Model of Opinion Spreading in Social Networks

    CERN Document Server

    Kanovsky, Igor

    2011-01-01

    We proposed a new model, which capture the main difference between information and opinion spreading. In information spreading additional exposure to certain information has a small effect. Contrary, when an actor is exposed to 2 opinioned actors the probability to adopt the opinion is significant higher than in the case of contact with one such actor (called by J. Kleinberg "the 0-1-2 effect"). In each time step if an actor does not have an opinion, we randomly choose 2 his network neighbors. If one of them has an opinion, the actor adopts opinion with some low probability, if two - with a higher probability. Opinion spreading was simulated on different real world social networks and similar random scale-free networks. The results show that small world structure has a crucial impact on tipping point time. The "0-1-2" effect causes a significant difference between ability of the actors to start opinion spreading. Actor is an influencer according to his topological position in the network.

  1. Simulation model for port shunting yards

    Science.gov (United States)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  2. Integrated Circuit For Simulation Of Neural Network

    Science.gov (United States)

    Thakoor, Anilkumar P.; Moopenn, Alexander W.; Khanna, Satish K.

    1988-01-01

    Ballast resistors deposited on top of circuit structure. Cascadable, programmable binary connection matrix fabricated in VLSI form as basic building block for assembly of like units into content-addressable electronic memory matrices operating somewhat like networks of neurons. Connections formed during storage of data, and data recalled from memory by prompting matrix with approximate or partly erroneous signals. Redundancy in pattern of connections causes matrix to respond with correct stored data.

  3. Modeling and Simulation of Nanoindentation

    Science.gov (United States)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  4. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  5. A simulated annealing heuristic for maximum correlation core/periphery partitioning of binary networks.

    Science.gov (United States)

    Brusco, Michael; Stolze, Hannah J; Hoffman, Michaela; Steinley, Douglas

    2017-01-01

    A popular objective criterion for partitioning a set of actors into core and periphery subsets is the maximization of the correlation between an ideal and observed structure associated with intra-core and intra-periphery ties. The resulting optimization problem has commonly been tackled using heuristic procedures such as relocation algorithms, genetic algorithms, and simulated annealing. In this paper, we present a computationally efficient simulated annealing algorithm for maximum correlation core/periphery partitioning of binary networks. The algorithm is evaluated using simulated networks consisting of up to 2000 actors and spanning a variety of densities for the intra-core, intra-periphery, and inter-core-periphery components of the network. Core/periphery analyses of problem solving, trust, and information sharing networks for the frontline employees and managers of a consumer packaged goods manufacturer are provided to illustrate the use of the model.

  6. Modeling the propagation of mobile malware on complex networks

    Science.gov (United States)

    Liu, Wanping; Liu, Chao; Yang, Zheng; Liu, Xiaoyang; Zhang, Yihao; Wei, Zuxue

    2016-08-01

    In this paper, the spreading behavior of malware across mobile devices is addressed. By introducing complex networks to model mobile networks, which follows the power-law degree distribution, a novel epidemic model for mobile malware propagation is proposed. The spreading threshold that guarantees the dynamics of the model is calculated. Theoretically, the asymptotic stability of the malware-free equilibrium is confirmed when the threshold is below the unity, and the global stability is further proved under some sufficient conditions. The influences of different model parameters as well as the network topology on malware propagation are also analyzed. Our theoretical studies and numerical simulations show that networks with higher heterogeneity conduce to the diffusion of malware, and complex networks with lower power-law exponents benefit malware spreading.

  7. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  8. UAV Trajectory Modeling Using Neural Networks

    Science.gov (United States)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  9. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  10. Simulation, State Estimation and Control of Nonlinear Superheater Attemporator using Neural Networks

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Sørensen, O.

    2000-01-01

    This paper considers the use of neural networks for nonlinear state estimation, system identification and control. As a case study we use data taken from a nonlinear injection valve for a superheater attemporator at a power plant. One neural network is trained as a nonlinear simulation model......-by-sample linearizations and state estimates provided by the observer network. Simulation studies show that the nonlinear observer-based control loop performs better than a similar control loop based on a linear observer....... of the process, then another network is trained to act as a combined state and parameter estimator for the process. The observer network incorporates smoothing of the parameter estimates in the form of regularization. A pole placement controller is designed which takes advantage of the sample...

  11. Simulation, State Estimation and Control of Nonlinear Superheater Attemporator using Neural Networks

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Sørensen, O.

    1999-01-01

    This paper considers the use of neural networks for nonlinear state estimation, system identification and control. As a case study we use data taken from a nonlinear injection valve for a superheater attemporator at a power plant. One neural network is trained as a nonlinear simulation model......-by-sample linearizations and state estimates provided by the observer network. Simulation studies show that the nonlinear observer-based control loop performs better than a similar control loop based on a linear observer....... of the process, then another network is trained to act as a combined state and parameter estimator for the process. The observer network incorporates smoothing of the parameter estimates in the form of regularization. A pole placement controller is designed which takes advantage of the sample...

  12. Simulation Framework for Teaching in Modeling and Simulation Areas

    Science.gov (United States)

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  13. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. Network bandwidth utilization forecast model on high bandwidth networks

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Wuchert (William) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sim, Alex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-30

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  15. The Virtual Brain: a simulator of primate brain network dynamics.

    Science.gov (United States)

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

  16. Prediction of Multiphase Flow Properties from Network Models ...

    African Journals Online (AJOL)

    The prediction of multiphase transport properties of reservoir rocks has been undertaken. This was done by numerical flow simulation of relative permeability and capillary pressure curves from pore network models extracted from Pore Architecture Models (PAMs). These PAMs are three-dimensional images obtained from ...

  17. An artificial neural network based fast radiative transfer model for ...

    Indian Academy of Sciences (India)

    the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of ... in construction, purpose and design and already in use are used. The fast RT model is able to ... porates measurements from various instruments in comparison with other ...

  18. Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center.

    Science.gov (United States)

    Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed

    2016-10-01

    With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

  19. Behavioral modeling approach for optical communication network design

    Science.gov (United States)

    Vuorinen, Kimmo; Jacquemod, Gilles; Gaffiot, Frederic; Seassal, Christian

    1997-12-01

    An optical communication networks can be divided in two levels: communication level, which defines the protocols, the control and the management of the networks and physical level formed by photonic and electronic components in order to transmit and receive the data between different nodes of the network. Traditionally, these two levels are considered separately in the optical communication network design process. This can lead to an erroneous or non-ideal networks implementation, due to the fact that the communication and physical levels are not independent. For example, in WDM communication network the maximum achievable data rate is limited not only by the networks protocol, but depends also on the implementation of the physical level: tuning delay of the optical multiplexers. Also the lack of the possibilities for co-verification of the communication and the physical levels together could lead to misinterpretations between the designers of the different levels and thus induce design faults. Since the prototyping is extremely expensive and time consuming, an integrated simulation of both communication and physical levels is necessary, at least in some extend. In this paper, a behavioral modeling approach that allows a co- simulation of the communication and the physical levels is presented. It is based on the use of a VHDL-AMS-like hardware description language, dedicated to electronic system modeling, but also suitable for modeling and simulation of non- electronic and mixed-domain systems. The behavioral models for photonic and electronic components, as well as the software are integrated in a unique simulator in order to co-simulate the communication (control) and the physical level (data path) of a WDM optical communication network.

  20. A small-world network model of facial emotion recognition.

    Science.gov (United States)

    Takehara, Takuma; Ochiai, Fumio; Suzuki, Naoto

    2016-01-01

    Various models have been proposed to increase understanding of the cognitive basis of facial emotions. Despite those efforts, interactions between facial emotions have received minimal attention. If collective behaviours relating to each facial emotion in the comprehensive cognitive system could be assumed, specific facial emotion relationship patterns might emerge. In this study, we demonstrate that the frameworks of complex networks can effectively capture those patterns. We generate 81 facial emotion images (6 prototypes and 75 morphs) and then ask participants to rate degrees of similarity in 3240 facial emotion pairs in a paired comparison task. A facial emotion network constructed on the basis of similarity clearly forms a small-world network, which features an extremely short average network distance and close connectivity. Further, even if two facial emotions have opposing valences, they are connected within only two steps. In addition, we show that intermediary morphs are crucial for maintaining full network integration, whereas prototypes are not at all important. These results suggest the existence of collective behaviours in the cognitive systems of facial emotions and also describe why people can efficiently recognize facial emotions in terms of information transmission and propagation. For comparison, we construct three simulated networks--one based on the categorical model, one based on the dimensional model, and one random network. The results reveal that small-world connectivity in facial emotion networks is apparently different from those networks, suggesting that a small-world network is the most suitable model for capturing the cognitive basis of facial emotions.

  1. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  2. Simulation Models in Testing Reliability of Transport Process

    Directory of Open Access Journals (Sweden)

    Jacyna Marianna

    2016-07-01

    Full Text Available The paper touches the problem of applying simulation models to assess the reliability of services in transport networks. Investigation of the transport processes in terms of their reliability is a complex decision-making task. The paper describes a method for assessing the reliability of transport process on the base of the criterion of minimizing the normalized lost time of vehicles. The time is wasted in a result of conflict situations occurring in the transport network during the transport process. The study includes stochastic distributions of system input. It enables studying the quality parameters of the transport network equipment, including service providers working under different workload and all kinds of disturbances. The method uses simulation models. Simulation studies were performed with Java Modelling Tools.

  3. Social Network Analyses and Nutritional Behavior: An Integrated Modeling Approach

    Directory of Open Access Journals (Sweden)

    Alistair McNair Senior

    2016-01-01

    Full Text Available Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent advances in nutrition research, combining state-space models of nutritional geometry with agent-based models of systems biology, show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a tangible and practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit agent-based models that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition. Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interaction in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments.

  4. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...

  5. High Fidelity Simulations of Large-Scale Wireless Networks

    Energy Technology Data Exchange (ETDEWEB)

    Onunkwo, Uzoma [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Benz, Zachary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  6. Dynamic Interactions for Network Visualization and Simulation

    Science.gov (United States)

    2009-03-01

    Unmanned Aerial Vehicle . . . . . . . . . . . . . . . . . . 7 GUI Graphical User Interface . . . . . . . . . . . . . . . . . . . 8 MVC Model-View...applications, and web applets. Comprising a library of design algorithms, navigation and interaction techniques, prefuse aims to significantly sim- plify the...Information Visualization Reference Model of the Prefuse toolkit [15]. The prefuse toolkit is suitable for the Model-View-Controller ( MVC ) [15] soft- ware

  7. Numerical simulation of fibrous biomaterials with randomly distributed fiber network structure.

    Science.gov (United States)

    Jin, Tao; Stanciulescu, Ilinca

    2016-08-01

    This paper presents a computational framework to simulate the mechanical behavior of fibrous biomaterials with randomly distributed fiber networks. A random walk algorithm is implemented to generate the synthetic fiber network in 2D used in simulations. The embedded fiber approach is then adopted to model the fibers as embedded truss elements in the ground matrix, which is essentially equivalent to the affine fiber kinematics. The fiber-matrix interaction is partially considered in the sense that the two material components deform together, but no relative movement is considered. A variational approach is carried out to derive the element residual and stiffness matrices for finite element method (FEM), in which material and geometric nonlinearities are both included. Using a data structure proposed to record the network geometric information, the fiber network is directly incorporated into the FEM simulation without significantly increasing the computational cost. A mesh sensitivity analysis is conducted to show the influence of mesh size on various simulation results. The proposed method can be easily combined with Monte Carlo (MC) simulations to include the influence of the stochastic nature of the network and capture the material behavior in an average sense. The computational framework proposed in this work goes midway between homogenizing the fiber network into the surrounding matrix and accounting for the fully coupled fiber-matrix interaction at the segment length scale, and can be used to study the connection between the microscopic structure and the macro-mechanical behavior of fibrous biomaterials with a reasonable computational cost.

  8. Stochastic Simulation of Biomolecular Networks in Dynamic Environments.

    Science.gov (United States)

    Voliotis, Margaritis; Thomas, Philipp; Grima, Ramon; Bowsher, Clive G

    2016-06-01

    Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

  9. Stochastic Simulation of Biomolecular Networks in Dynamic Environments.

    Directory of Open Access Journals (Sweden)

    Margaritis Voliotis

    2016-06-01

    Full Text Available Simulation of biomolecular networks is now indispensable for studying biological systems, from small reaction networks to large ensembles of cells. Here we present a novel approach for stochastic simulation of networks embedded in the dynamic environment of the cell and its surroundings. We thus sample trajectories of the stochastic process described by the chemical master equation with time-varying propensities. A comparative analysis shows that existing approaches can either fail dramatically, or else can impose impractical computational burdens due to numerical integration of reaction propensities, especially when cell ensembles are studied. Here we introduce the Extrande method which, given a simulated time course of dynamic network inputs, provides a conditionally exact and several orders-of-magnitude faster simulation solution. The new approach makes it feasible to demonstrate-using decision-making by a large population of quorum sensing bacteria-that robustness to fluctuations from upstream signaling places strong constraints on the design of networks determining cell fate. Our approach has the potential to significantly advance both understanding of molecular systems biology and design of synthetic circuits.

  10. SELANSI: a toolbox for Simulation of Stochastic Gene Regulatory Networks.

    Science.gov (United States)

    Pájaro, Manuel; Otero-Muras, Irene; Vázquez, Carlos; Alonso, Antonio A

    2017-10-11

    Gene regulation is inherently stochastic. In many applications concerning Systems and Synthetic Biology such as the reverse engineering and the de novo design of genetic circuits, stochastic effects (yet potentially crucial) are often neglected due to the high computational cost of stochastic simulations. With advances in these fields there is an increasing need of tools providing accurate approximations of the stochastic dynamics of gene regulatory networks (GRNs) with reduced computational effort. This work presents SELANSI (SEmi-LAgrangian SImulation of GRNs), a software toolbox for the simulation of stochastic multidimensional gene regulatory networks. SELANSI exploits intrinsic structural properties of gene regulatory networks to accurately approximate the corresponding chemical master equation (CME) with a partial integral differential equation (PIDE) that is solved by a semi-lagrangian method with high efficiency. Networks under consideration might involve multiple genes with self and cross regulations, in which genes can be regulated by different transcription factors. Moreover, the validity of the method is not restricted to a particular type of kinetics. The tool offers total flexibility regarding network topology, kinetics and parameterization, as well as simulation options. SELANSI runs under the MATLAB environment, and is available under GPLv3 license at https://sites.google.com/view/selansi. antonio@iim.csic.es.

  11. An acoustical model based monitoring network

    NARCIS (Netherlands)

    Wessels, P.W.; Basten, T.G.H.; Eerden, F.J.M. van der

    2010-01-01

    In this paper the approach for an acoustical model based monitoring network is demonstrated. This network is capable of reconstructing a noise map, based on the combination of measured sound levels and an acoustic model of the area. By pre-calculating the sound attenuation within the network the

  12. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  13. Telco Clouds: Modelling and Simulation

    OpenAIRE

    Krzywda, Jakub; Tärneberg, William; Östberg, Per-Olov; Kihl, Maria; Elmroth, Erik

    2015-01-01

    In this paper, we propose a telco cloud meta-model that can be used to simulate different infrastructure con- figurations and explore their consequences on the system performance and costs. To achieve this, we analyse current telecommunication and data centre infrastructure paradigms, describe the architecture of the telco cloud and detail the benefits of merging both infrastructures in a unified system. Next, we detail the dynamics of the telco cloud and identify the components that are the ...

  14. An adaptive complex network model for brain functional networks.

    Directory of Open Access Journals (Sweden)

    Ignacio J Gomez Portillo

    Full Text Available Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution.

  15. A set of simulation modelling tools to evaluate alternative commercial no-take reserve network designs for shallow-water benthic invertebrates in British Columbia

    National Research Council Canada - National Science Library

    2015-01-01

    Fisheries Management (FM) Branch requested the development of a tool to inform the design of a network of commercial fishery reserves for sedentary benthic invertebrates that would be applicable to a broad range of sedentary...

  16. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Modeling gene regulatory networks: A network simplification algorithm

    Science.gov (United States)

    Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.

    2016-12-01

    Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.

  18. Modeling the Merger of the Classified Networks of the DDN (Defense Data Network): BLACKER

    Science.gov (United States)

    1988-11-01

    Cain (1983) presented ’The DoD Internet Architecture Model" approach where a common internal host-to-host packet or datagram service is proposed for...The baseline model was a simulation similar to the model of *The DoD Internet Architecture Model" presented by Cerf and Cain. (1983) Parameters for...in each network can be redirected, what would be the optimal method for allocation? Third, what are the impacts of interdomain messages? What happens

  19. Rumor spreading model with noise interference in complex social networks

    Science.gov (United States)

    Zhu, Liang; Wang, Youguo

    2017-03-01

    In this paper, a modified susceptible-infected-removed (SIR) model has been proposed to explore rumor diffusion on complex social networks. We take variation of connectivity into consideration and assume the variation as noise. On the basis of related literature on virus networks, the noise is described as standard Brownian motion while stochastic differential equations (SDE) have been derived to characterize dynamics of rumor diffusion both on homogeneous networks and heterogeneous networks. Then, theoretical analysis on homogeneous networks has been demonstrated to investigate the solution of SDE model and the steady state of rumor diffusion. Simulations both on Barabási-Albert (BA) network and Watts-Strogatz (WS) network display that the addition of noise accelerates rumor diffusion and expands diffusion size, meanwhile, the spreading speed on BA network is much faster than on WS network under the same noise intensity. In addition, there exists a rumor diffusion threshold in statistical average meaning on homogeneous network which is absent on heterogeneous network. Finally, we find a positive correlation between peak value of infected individuals and noise intensity while a negative correlation between rumor lifecycle and noise intensity overall.

  20. Multi-mode clustering model for hierarchical wireless sensor networks

    Science.gov (United States)

    Hu, Xiangdong; Li, Yongfu; Xu, Huifen

    2017-03-01

    The topology management, i.e., clusters maintenance, of wireless sensor networks (WSNs) is still a challenge due to its numerous nodes, diverse application scenarios and limited resources as well as complex dynamics. To address this issue, a multi-mode clustering model (M2 CM) is proposed to maintain the clusters for hierarchical WSNs in this study. In particular, unlike the traditional time-trigger model based on the whole-network and periodic style, the M2 CM is proposed based on the local and event-trigger operations. In addition, an adaptive local maintenance algorithm is designed for the broken clusters in the WSNs using the spatial-temporal demand changes accordingly. Numerical experiments are performed using the NS2 network simulation platform. Results validate the effectiveness of the proposed model with respect to the network maintenance costs, node energy consumption and transmitted data as well as the network lifetime.

  1. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  2. A computational model of hemodynamic parameters in cortical capillary networks.

    Science.gov (United States)

    Safaeian, Navid; Sellier, Mathieu; David, Tim

    2011-02-21

    The analysis of hemodynamic parameters and functional reactivity of cerebral capillaries is still controversial. To assess the hemodynamic parameters in the cortical capillary network, a generic model was created using 2D voronoi tessellation in which each edge represents a capillary segment. This method is capable of creating an appropriate generic model of cerebral capillary network relating to each part of the brain cortex because the geometric model is able to vary the capillary density. The modeling presented here is based on morphometric parameters extracted from physiological data of the human cortex. The pertinent hemodynamic parameters were obtained by numerical simulation based on effective blood viscosity as a function of hematocrit and microvessel diameter, phase separation and plasma skimming effects. The hemodynamic parameters of capillary networks with two different densities (consistent with the variation of the morphometric data in the human cortical capillary network) were analyzed. The results show pertinent hemodynamic parameters for each model. The heterogeneity (coefficient variation) and the mean value of hematocrits, flow rates and velocities of the both network models were specified. The distributions of blood flow throughout the both models seem to confirm the hypothesis in which all capillaries in a cortical network are recruited at rest (normal condition). The results also demonstrate a discrepancy of the network resistance between two models, which are derived from the difference in the number density of capillary segments between the models. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    Science.gov (United States)

    1994-08-10

    23 Haddock, J. and O’Keefe, R., "Using Artificial Intelligence to Facilitate Manufacturing Systems Simulation," Computers & Industrial Engineering , Vol...Feedforward Neural Networks," Computers & Industrial Engineering , Vol. 21, No. 1- 4, (1991), pp. 247-251. 87 Proceedings of the 1992 Summer Computer...Using Simulation Experiments," Computers & Industrial Engineering , Vol. 22, No. 2 (1992), pp. 195-209. 119 Kuei, C. and Madu, C., "Polynomial

  4. Double and multiple knockout simulations for genome-scale metabolic network reconstructions

    OpenAIRE

    Goldstein, Yaron AB; Bockmayr, Alexander

    2015-01-01

    Background Constraint-based modeling of genome-scale metabolic network reconstructions has become a widely used approach in computational biology. Flux coupling analysis is a constraint-based method that analyses the impact of single reaction knockouts on other reactions in the network. Results We present an extension of flux coupling analysis for double and multiple gene or reaction knockouts, and develop corresponding algorithms for an in silico simulation. To evaluate our method, we perfor...

  5. Modeling and Simulation of Amorphous Materials

    Science.gov (United States)

    Pandey, Anup

    The general and practical inversion of diffraction data - producing a computer model correctly representing the material explored - is an important unsolved problem for disordered materials. Such modeling should proceed by using our full knowledge base, both from experiment and theory. In this dissertation, we introduce a robust method, Force-Enhanced Atomic Refinement (FEAR), which jointly exploits the power of ab initio atomistic simulation along with the information carried by diffraction data. As a preliminary trial, the method has been implemented using empirical potentials for amorphous silicon (a-Si) and silica ( SiO2). The models obtained are comparable to the ones prepared by the conventional approaches as well as the experiments. Using ab initio interactions, the method is applied to two very different systems: amorphous silicon (a-Si) and two compositions of a solid electrolyte memory material silver-doped GeSe3. It is shown that the method works well for both the materials. Besides that, the technique is easy to implement, is faster and yields results much improved over conventional simulation methods for the materials explored. It offers a means to add a priori information in first principles modeling of materials, and represents a significant step toward the computational design of non-crystalline materials using accurate interatomic interactions and experimental information. Moreover, the method has also been used to create a computer model of a-Si, using highly precise X-ray diffraction data. The model predicts properties that are close to the continuous random network models but with no a priori assumptions. In addition, using the ab initio molecular dynamics simulations (AIMD) we explored the doping and transport in hydrogenated amorphous silicon a-Si:H with the most popular impurities: boron and phosphorous. We investigated doping for these impurities and the role of H in the doping process. We revealed the network motion and H hopping induced by

  6. Usage of link-level performance indicators for HSDPA network-level simulations in E-UMTS

    NARCIS (Netherlands)

    Brouwer, Frank; de Bruin, I.C.C.; Silva, João Carlos; Souto, Nuno; Cercas, Francisco; Correia, Américo

    2004-01-01

    The paper describes integration of HSDPA (high-speed downlink packet access) link-level simulation results into network-level simulations for enhanced UMTS. The link-level simulations model all physical layer features depicted in the 3GPP standards. These include: generation of transport blocks;

  7. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware

    Science.gov (United States)

    Knight, James C.; Tully, Philip J.; Kaplan, Bernhard A.; Lansner, Anders; Furber, Steve B.

    2016-01-01

    SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 2.0 × 104 neurons and 5.1 × 107 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately 45× more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models. PMID:27092061

  8. Large-scale simulations of plastic neural networks on neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-04-01

    Full Text Available SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 20000 neurons and 51200000 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

  9. The model of social crypto-network

    Directory of Open Access Journals (Sweden)

    Марк Миколайович Орел

    2015-06-01

    Full Text Available The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  10. Entropy Characterization of Random Network Models

    Directory of Open Access Journals (Sweden)

    Pedro J. Zufiria

    2017-06-01

    Full Text Available This paper elaborates on the Random Network Model (RNM as a mathematical framework for modelling and analyzing the generation of complex networks. Such framework allows the analysis of the relationship between several network characterizing features (link density, clustering coefficient, degree distribution, connectivity, etc. and entropy-based complexity measures, providing new insight on the generation and characterization of random networks. Some theoretical and computational results illustrate the utility of the proposed framework.

  11. The model of social crypto-network

    OpenAIRE

    Марк Миколайович Орел

    2015-01-01

    The article presents the theoretical model of social network with the enhanced mechanism of privacy policy. It covers the problems arising in the process of implementing the mentioned type of network. There are presented the methods of solving problems arising in the process of building the social network with privacy policy. It was built a theoretical model of social networks with enhanced information protection methods based on information and communication blocks

  12. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  13. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    Directory of Open Access Journals (Sweden)

    Bo Li

    2015-01-01

    Full Text Available Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model are developed for modeling the hybrid relational structure and complex operational processes, respectively. To intuitively elucidate this method, the agent based modeling is used to simulate the terrorist network and test the performance in diverse scenarios. Based on the experimental results, we show how the changes of operational environments affect the development of terrorist organization in terms of its recovery and capacity to perform future tasks. The potential strategies are also discussed, which can be used to restrain the activities of terrorists.

  14. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  15. A New Bayesian Gridded European Summer Temperature Reconstruction from the PAGES 2k Regional Network and Comparison to Millennium-Length Forced Model Simulations

    Science.gov (United States)

    Werner, J.; Büntgen, U.; Ljungqvist, F. C.; Esper, J.; Fernández-Donado, L.; Gonzalez-Rouco, F. J.; Luterbacher, J.; McCarroll, D.; Smerdon, J. E.; Wagner, S.; Wahl, E. R.; Wanner, H.; Zorita, E.

    2012-12-01

    We present a new gridded (5°x5°) European summer (JJA) temperature reconstruction back to 750 C.E. and compare it to an ensemble of millennium length forced transient climate model (general circulation models, GCMs) runs. The reconstruction is based on ten long, high quality tree ring records and one composite documentary record, all of them annually resolved. The spatial coverage spans the area 41°N-68°N and 1°E-25°E. Instrumental data used are the land mass grid cells of the CRUTEM4v dataset. Seasonal summer means were calculated from the data over the period 1850-2010 C.E. as anomalies wrt. the 1961-90 C.E. climatology. The climate field reconstruction was performed using Bayesian inference together with a localized stochastic description of the underlying processes (Tingley and Huybers 2010a,b; Werner et al. 2012). To this end, chains using different initial conditions as well as subsets of the data were run to estimate the posterior distributions. From these results, predictive experiments using the full proxy data were made, resulting in a multivariate distribution of temperature reconstructions from 750 - 2003 C.E. The mean of this distribution is the optimal estimate of the gridded annual summer temperature anomalies, the width delivers impartial reconstruction uncertainties. The derived reconstruction is compared with independent long instrumental and proxy data on decadal-to-centennial time scales. The simulations are grouped in two categories depending on the magnitude of change in solar forcing used to drive the model. We then compare the new gridded reconstruction with the GCM results, focusing on two key periods over the last one and a half millennia: the Little Ice Age (LIA) and the Medieval Climate Anomaly (MCA). While all data show higher medieval temperatures and cooler temperatures during the LIA, the spatial distribution of anomalies and the range of values differ. When comparing the key periods to present day climate, both periods were

  16. Trust recovery model of Ad Hoc network based on identity authentication scheme

    Science.gov (United States)

    Liu, Jie; Huan, Shuiyuan

    2017-05-01

    Mobile Ad Hoc network trust model is widely used to solve mobile Ad Hoc network security issues. Aiming at the problem of reducing the network availability caused by the processing of malicious nodes and selfish nodes in mobile Ad Hoc network routing based on trust model, an authentication mechanism based on identity authentication mobile Ad Hoc network is proposed, which uses identity authentication to identify malicious nodes, And trust the recovery of selfish nodes in order to achieve the purpose of reducing network congestion and improving network quality. The simulation results show that the implementation of the mechanism can effectively improve the network availability and security.

  17. Modeling Diagnostic Assessments with Bayesian Networks

    Science.gov (United States)

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  18. Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation.

    Science.gov (United States)

    Hambli, Ridha; Katerchi, Houda; Benhamou, Claude-Laurent

    2011-02-01

    The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate the process of bone remodelling. As whole bone simulation, including the 3D reconstruction of trabecular level bone, is time consuming, finite element calculation is only performed at the macroscopic level, whilst trained neural networks are employed as numerical substitutes for the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at the macroscopic scale depending on the morphological and mechanical adaptation at the mesoscopic scale computed by the trained neural network. The digital image-based modelling technique using μ-CT and voxel finite element analysis is used to capture volume elements representative of 2 mm³ at the mesoscale level of the femoral head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied stress. The output data are the updated bone properties and some trabecular bone factors. The current approach is the first model, to our knowledge, that incorporates both finite element analysis and neural network computation to rapidly simulate multilevel bone adaptation.

  19. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  20. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Science.gov (United States)

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia. Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  1. Simulation and evaluation of urban rail transit network based on multi-agent approach

    Directory of Open Access Journals (Sweden)

    Xiangming Yao

    2013-03-01

    Full Text Available Purpose: Urban rail transit is a complex and dynamic system, which is difficult to be described in a global mathematical model for its scale and interaction. In order to analyze the spatial and temporal characteristics of passenger flow distribution and evaluate the effectiveness of transportation strategies, a new and comprehensive method depicted such dynamic system should be given. This study therefore aims at using simulation approach to solve this problem for subway network. Design/methodology/approach: In this thesis a simulation model based on multi-agent approach has been proposed, which is a well suited method to design complex systems. The model includes the specificities of passengers’ travelling behaviors and takes into account of interactions between travelers and trains. Findings: Research limitations/implications: We developed an urban rail transit simulation tool for verification of the validity and accuracy of this model, using real passenger flow data of Beijing subway network to take a case study, results show that our simulation tool can be used to analyze the characteristic of passenger flow distribution and evaluate operation strategies well. Practical implications: The main implications of this work are to provide decision support for traffic management, making train operation plan and dispatching measures in emergency. Originality/value: A new and comprehensive method to analyze and evaluate subway network is presented, accuracy and computational efficiency of the model has been confirmed and meet with the actual needs for large-scale network.

  2. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    Science.gov (United States)

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  3. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  4. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  5. Improving a Computer Networks Course Using the Partov Simulation Engine

    Science.gov (United States)

    Momeni, B.; Kharrazi, M.

    2012-01-01

    Computer networks courses are hard to teach as there are many details in the protocols and techniques involved that are difficult to grasp. Employing programming assignments as part of the course helps students to obtain a better understanding and gain further insight into the theoretical lectures. In this paper, the Partov simulation engine and…

  6. A novel statistical spring-bead based network model for self-sensing smart polymer materials

    Science.gov (United States)

    Zhang, Jinjun; Koo, Bonsung; Liu, Yingtao; Zou, Jin; Chattopadhyay, Aditi; Dai, Lenore

    2015-08-01

    This paper presents a multiscale modeling approach to simulating the self-sensing behavior of a load sensitive smart polymer material. A statistical spring-bead based network model is developed to bridge the molecular dynamics simulations at the nanoscale and the finite element model at the macroscale. Parametric studies are conducted on the developed network model to investigate the effects of the thermoset crosslinking degree on the mechanical response of the self-sensing material. A comparison between experimental and simulation results shows that the multiscale framework is able to capture the global mechanical response with adequate accuracy and the network model is also capable of simulating the self-sensing phenomenon of the smart polymer. Finally, the molecular dynamics simulation and network model based simulation are implemented to evaluate damage initiation in the self-sensing material under monotonic loading.

  7. Fractional Diffusion Emulates a Human Mobility Network during a Simulated Disease Outbreak

    Directory of Open Access Journals (Sweden)

    Kyle B. Gustafson

    2017-04-01

    Full Text Available Mobility networks facilitate the growth of populations, the success of invasive species, and the spread of communicable diseases among social animals, including humans. Disease control and elimination efforts, especially during an outbreak, can be optimized by numerical modeling of disease dynamics on transport networks. This is especially true when incidence data from an emerging epidemic is sparse and unreliable. However, mobility networks can be complex, challenging to characterize, and expensive to simulate with agent-based models. We therefore studied a parsimonious model for spatiotemporal disease dynamics based on a fractional diffusion equation. We implemented new stochastic simulations of a prototypical influenza-like infection spreading through the United States' highly-connected air travel network. We found that the national-averaged infected fraction during an outbreak is accurately reproduced by a space-fractional diffusion equation consistent with the connectivity of airports. Fractional diffusion therefore seems to be a better model of network outbreak dynamics than a diffusive model. Our fractional reaction-diffusion method and the result could be extended to other mobility networks in a variety of applications for population dynamics.

  8. Generalized memory associativity in a network model for the neuroses

    Science.gov (United States)

    Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.

    2009-03-01

    We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.

  9. Constitutive models for rubber networks undergoing simultaneous crosslinking and scission.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan Patrick; Curro, John G.; Rottach, Dana R. (University of New Mexico, Albuquerque, NM); Grest, Gary Stephen; Budzien, Joanne L.; Lo, David Chi S.

    2006-01-01

    Constitutive models for chemically reacting networks are formulated based on a generalization of the independent network hypothesis. These models account for the coupling between chemical reaction and strain histories, and have been tested by comparison with microscopic molecular dynamics simulations. An essential feature of these models is the introduction of stress transfer functions that describe the interdependence between crosslinks formed and broken at various strains. Efforts are underway to implement these constitutive models into the finite element code Adagio. Preliminary results are shown that illustrate the effects of changing crosslinking and scission rates and history.

  10. Distributed Sensor Network Software Development Testing through Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Sean M. [Univ. of New Mexico, Albuquerque, NM (United States)

    2003-12-01

    The distributed sensor network (DSN) presents a novel and highly complex computing platform with dif culties and opportunities that are just beginning to be explored. The potential of sensor networks extends from monitoring for threat reduction, to conducting instant and remote inventories, to ecological surveys. Developing and testing for robust and scalable applications is currently practiced almost exclusively in hardware. The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for DSNs independent of hardware constraints. The exibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The user speci es the topology, the environment, the application, and any number of arbitrary failures; DSS provides the virtual environmental embedding.

  11. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  12. Simulation of large-scale rule-based models

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek, William S [Los Alamos National Laboratory; Monnie, Michael I [Los Alamos National Laboratory; Colvin, Joshua [NON LANL; Faseder, James [NON LANL

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  13. Numerical analysis of modeling based on improved Elman neural network.

    Science.gov (United States)

    Jie, Shao; Li, Wang; WeiSong, Zhao; YaQin, Zhong; Malekian, Reza

    2014-01-01

    A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance.

  14. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    Directory of Open Access Journals (Sweden)

    Shao Jie

    2014-01-01

    Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.

  15. Experimental Evaluation of Simulation Abstractions for Wireless Sensor Network MAC Protocols

    Directory of Open Access Journals (Sweden)

    G. P. Halkes

    2010-01-01

    Full Text Available The evaluation of MAC protocols for Wireless Sensor Networks (WSNs is often performed through simulation. These simulations necessarily abstract away from reality in many ways. However, the impact of these abstractions on the results of the simulations has received only limited attention. Moreover, many studies on the accuracy of simulation have studied either the physical layer and per link effects or routing protocol effects. To the best of our knowledge, no other work has focused on the study of the simulation abstractions with respect to MAC protocol performance. In this paper, we present the results of an experimental study of two often used abstractions in the simulation of WSN MAC protocols. We show that a simple SNR-based reception model can provide quite accurate results for metrics commonly used to evaluate MAC protocols. Furthermore, we provide an analysis of what the main sources of deviation are and thereby how the simulations can be improved to provide even better results.

  16. Computational modeling of signal transduction networks: a pedagogical exposition.

    Science.gov (United States)

    Prasad, Ashok

    2012-01-01

    We give a pedagogical introduction to computational modeling of signal transduction networks, starting from explaining the representations of chemical reactions by differential equations via the law of mass action. We discuss elementary biochemical reactions such as Michaelis-Menten enzyme kinetics and cooperative binding, and show how these allow the representation of large networks as systems of differential equations. We discuss the importance of looking for simpler or reduced models, such as network motifs or dynamical motifs within the larger network, and describe methods to obtain qualitative behavior by bifurcation analysis, using freely available continuation software. We then discuss stochastic kinetics and show how to implement easy-to-use methods of rule-based modeling for stochastic simulations. We finally suggest some methods for comprehensive parameter sensitivity analysis, and discuss the insights that it could yield. Examples, including code to try out, are provided based on a paper that modeled Ras kinetics in thymocytes.

  17. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  18. The Framework for Simulation of Bioinspired Security Mechanisms against Network Infrastructure Attacks

    Directory of Open Access Journals (Sweden)

    Andrey Shorov

    2014-01-01

    Full Text Available The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  19. Edge detection based on Hodgkin-Huxley neuron model simulation.

    Science.gov (United States)

    Yedjour, Hayat; Meftah, Boudjelal; Lézoray, Olivier; Benyettou, Abdelkader

    2017-08-01

    In this paper, we propose a spiking neural network model for edge detection in images. The proposed model is biologically inspired by the mechanisms employed by natural vision systems, more specifically by the biologically fulfilled function of simple cells of the human primary visual cortex that are selective for orientation. Several aspects are studied in this model according to three characteristics: feedforward spiking neural structure; conductance-based model of the Hodgkin-Huxley neuron and Gabor receptive fields structure. A visualized map is generated using the firing rate of neurons representing the orientation map of the visual cortex area. We have simulated the proposed model on different images. Successful computer simulation results are obtained. For comparison, we have chosen five methods for edge detection. We finally evaluate and compare the performances of our model toward contour detection using a public dataset of natural images with associated contour ground truths. Experimental results show the ability and high performance of the proposed network model.

  20. Modeling and Analysis of New Products Diffusion on Heterogeneous Networks

    Directory of Open Access Journals (Sweden)

    Shuping Li

    2014-01-01

    Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.