#### Sample records for network simplex algorithm

1. NETWORK SIMPLEX, ALGORITHM E IMPLEMENTATION

OpenAIRE

JOAQUIM PEDRO DE V CORDEIRO

2008-01-01

Este trabalho busca desenvolver o método Simplex para Redes na solução de problemas de Fluxo de Custo Mínimo. Este método consiste em uma adaptação do método Simplex primal em que são exploradas as características específicas da rede subjacente ao problema ao se buscar a solução ótima em um número finito de árvores geradoras. A árvore geradora ótima será obtida iterativamente através de sucessivas melhorias na estrutura de cada árvore formada. A maior ef...

2. A dual exterior point simplex type algorithm for the minimum cost network flow problem

Directory of Open Access Journals (Sweden)

Geranis George

2009-01-01

Full Text Available A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA, this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution outside the dual feasible area (exterior point - dual infeasible tree.

3. Optimization of Pressurizer Based on Genetic-Simplex Algorithm

International Nuclear Information System (INIS)

Wang, Cheng; Yan, Chang Qi; Wang, Jian Jun

2014-01-01

Pressurizer is one of key components in nuclear power system. It's important to control the dimension in the design of pressurizer through optimization techniques. In this work, a mathematic model of a vertical electric heating pressurizer was established. A new Genetic-Simplex Algorithm (GSA) that combines genetic algorithm and simplex algorithm was developed to enhance the searching ability, and the comparison among modified and original algorithms is conducted by calculating the benchmark function. Furthermore, the optimization design of pressurizer, taking minimization of volume and net weight as objectives, was carried out considering thermal-hydraulic and geometric constraints through GSA. The results indicate that the mathematical model is agreeable for the pressurizer and the new algorithm is more effective than the traditional genetic algorithm. The optimization design shows obvious validity and can provide guidance for real engineering design

4. Linear Programming, the Simplex Algorithm and Simple Polytopes

Directory of Open Access Journals (Sweden)

Das Bhusan

2010-09-01

Full Text Available In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.

5. The artificial-free technique along the objective direction for the simplex algorithm

International Nuclear Information System (INIS)

Boonperm, Aua-aree; Sinapiromsaran, Krung

2014-01-01

The simplex algorithm is a popular algorithm for solving linear programming problems. If the origin point satisfies all constraints then the simplex can be started. Otherwise, artificial variables will be introduced to start the simplex algorithm. If we can start the simplex algorithm without using artificial variables then the simplex iterate will require less time. In this paper, we present the artificial-free technique for the simplex algorithm by mapping the problem into the objective plane and splitting constraints into three groups. In the objective plane, one of variables which has a nonzero coefficient of the objective function is fixed in terms of another variable. Then it can split constraints into three groups: the positive coefficient group, the negative coefficient group and the zero coefficient group. Along the objective direction, some constraints from the positive coefficient group will form the optimal solution. If the positive coefficient group is nonempty, the algorithm starts with relaxing constraints from the negative coefficient group and the zero coefficient group. We guarantee the feasible region obtained from the positive coefficient group to be nonempty. The transformed problem is solved using the simplex algorithm. Additional constraints from the negative coefficient group and the zero coefficient group will be added to the solved problem and use the dual simplex method to determine the new optimal solution. An example shows the effectiveness of our algorithm

6. The artificial-free technique along the objective direction for the simplex algorithm

Science.gov (United States)

Boonperm, Aua-aree; Sinapiromsaran, Krung

2014-03-01

The simplex algorithm is a popular algorithm for solving linear programming problems. If the origin point satisfies all constraints then the simplex can be started. Otherwise, artificial variables will be introduced to start the simplex algorithm. If we can start the simplex algorithm without using artificial variables then the simplex iterate will require less time. In this paper, we present the artificial-free technique for the simplex algorithm by mapping the problem into the objective plane and splitting constraints into three groups. In the objective plane, one of variables which has a nonzero coefficient of the objective function is fixed in terms of another variable. Then it can split constraints into three groups: the positive coefficient group, the negative coefficient group and the zero coefficient group. Along the objective direction, some constraints from the positive coefficient group will form the optimal solution. If the positive coefficient group is nonempty, the algorithm starts with relaxing constraints from the negative coefficient group and the zero coefficient group. We guarantee the feasible region obtained from the positive coefficient group to be nonempty. The transformed problem is solved using the simplex algorithm. Additional constraints from the negative coefficient group and the zero coefficient group will be added to the solved problem and use the dual simplex method to determine the new optimal solution. An example shows the effectiveness of our algorithm.

7. Vector Network Coding Algorithms

OpenAIRE

2010-01-01

We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...

8. Network-Oblivious Algorithms

DEFF Research Database (Denmark)

Bilardi, Gianfranco; Pietracaprina, Andrea; Pucci, Geppino

2016-01-01

A framework is proposed for the design and analysis of network-oblivious algorithms, namely algorithms that can run unchanged, yet efficiently, on a variety of machines characterized by different degrees of parallelism and communication capabilities. The framework prescribes that a network......-oblivious algorithm be specified on a parallel model of computation where the only parameter is the problem’s input size, and then evaluated on a model with two parameters, capturing parallelism granularity and communication latency. It is shown that for a wide class of network-oblivious algorithms, optimality...... of cache hierarchies, to the realm of parallel computation. Its effectiveness is illustrated by providing optimal network-oblivious algorithms for a number of key problems. Some limitations of the oblivious approach are also discussed....

9. The Gas Transmission Problem Solved by an Extension of the Simplex Algorithm

OpenAIRE

Daniel De Wolf; Yves Smeers

2000-01-01

The problem of distributing gas through a network of pipelines is formulated as a cost minimization subject to nonlinear flow-pressure relations, material balances, and pressure bounds. The solution method is based on piecewise linear approximations of the nonlinear flow-pressure relations. The approximated problem is solved by an extension of the Simplex method. The solution method is tested on real-world data and compared with alternative solution methods.

10. Gossip algorithms in quantum networks

Science.gov (United States)

Siomau, Michael

2017-01-01

Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

11. Gossip algorithms in quantum networks

International Nuclear Information System (INIS)

Siomau, Michael

2017-01-01

Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.

12. Gossip algorithms in quantum networks

Energy Technology Data Exchange (ETDEWEB)

Siomau, Michael, E-mail: siomau@nld.ds.mpg.de [Physics Department, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany)

2017-01-23

Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up – in the best case exponentially – the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication. - Highlights: • We analyze the performance of gossip algorithms in quantum networks. • Local operations and classical communication (LOCC) can speed the performance up. • The speed-up is exponential in the best case; the number of LOCC is polynomial.

13. Subexponential lower bounds for randomized pivoting rules for the simplex algorithm

DEFF Research Database (Denmark)

Friedmann, Oliver; Hansen, Thomas Dueholm; Zwick, Uri

2011-01-01

The simplex algorithm is among the most widely used algorithms for solving linear programs in practice. With essentially all deterministic pivoting rules it is known, however, to require an exponential number of steps to solve some linear programs. No non-polynomial lower bounds were known, prior...... to this work, for randomized pivoting rules. We provide the first subexponential (i.e., of the form 2Ω(nα), for some α>0) lower bounds for the two most natural, and most studied, randomized pivoting rules suggested to date. The first randomized pivoting rule considered is Random-Edge, which among all improving...... pivoting steps (or edges) from the current basic feasible solution (or vertex) chooses one uniformly at random. The second randomized pivoting rule considered is Random-Facet, a more complicated randomized pivoting rule suggested by Kalai and by Matousek, Sharir and Welzl. Our lower bound for the Random...

14. Flow enforcement algorithms for ATM networks

DEFF Research Database (Denmark)

Dittmann, Lars; Jacobsen, Søren B.; Moth, Klaus

1991-01-01

Four measurement algorithms for flow enforcement in asynchronous transfer mode (ATM) networks are presented. The algorithms are the leaky bucket, the rectangular sliding window, the triangular sliding window, and the exponentially weighted moving average. A comparison, based partly on teletraffic...

15. Dynamic training algorithm for dynamic neural networks

International Nuclear Information System (INIS)

Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

1996-01-01

The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

16. Evolutionary algorithms for mobile ad hoc networks

CERN Document Server

Dorronsoro, Bernabé; Danoy, Grégoire; Pigné, Yoann; Bouvry, Pascal

2014-01-01

Describes how evolutionary algorithms (EAs) can be used to identify, model, and minimize day-to-day problems that arise for researchers in optimization and mobile networking. Mobile ad hoc networks (MANETs), vehicular networks (VANETs), sensor networks (SNs), and hybrid networks—each of these require a designer’s keen sense and knowledge of evolutionary algorithms in order to help with the common issues that plague professionals involved in optimization and mobile networking. This book introduces readers to both mobile ad hoc networks and evolutionary algorithms, presenting basic concepts as well as detailed descriptions of each. It demonstrates how metaheuristics and evolutionary algorithms (EAs) can be used to help provide low-cost operations in the optimization process—allowing designers to put some “intelligence” or sophistication into the design. It also offers efficient and accurate information on dissemination algorithms topology management, and mobility models to address challenges in the ...

17. Pinning impulsive control algorithms for complex network

International Nuclear Information System (INIS)

Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo

2014-01-01

In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms

18. Joint control algorithm in access network

Institute of Scientific and Technical Information of China (English)

2008-01-01

To deal with long probing delay and inaccurate probing results in the endpoint admission control method,a joint local and end-to-end admission control algorithm is proposed,which introduces local probing of access network besides end-to-end probing.Through local probing,the algorithm accurately estimated the resource status of the access network.Simulation shows that this algorithm can improve admission control performance and reduce users' average waiting time when the access network is heavily loaded.

19. Principal component analysis networks and algorithms

CERN Document Server

Kong, Xiangyu; Duan, Zhansheng

2017-01-01

This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

International Nuclear Information System (INIS)

Lewandowski, J.L.V.

2003-01-01

An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given

1. Genetic algorithm for neural networks optimization

Science.gov (United States)

Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

2004-11-01

This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

2. Fast, Distributed Algorithms in Deep Networks

Science.gov (United States)

2016-05-11

shallow networks, additional work will need to be done in order to allow for the application of ADMM to deep nets. The ADMM method allows for quick...Quock V Le, et al. Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pages 1223–1231, 2012. [11] Ken-Ichi...A TRIDENT SCHOLAR PROJECT REPORT NO. 446 Fast, Distributed Algorithms in Deep Networks by Midshipman 1/C Ryan J. Burmeister, USN

3. Pinning impulsive control algorithms for complex network

Energy Technology Data Exchange (ETDEWEB)

Sun, Wen [School of Information and Mathematics, Yangtze University, Jingzhou 434023 (China); Lü, Jinhu [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Chen, Shihua [College of Mathematics and Statistics, Wuhan University, Wuhan 430072 (China); Yu, Xinghuo [School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia)

2014-03-15

In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

4. ALGORITHMS FOR TETRAHEDRAL NETWORK (TEN) GENERATION

Institute of Scientific and Technical Information of China (English)

2000-01-01

The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Al though a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed.

5. Novel quantum inspired binary neural network algorithm

This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...

6. Routing algorithms in networks-on-chip

CERN Document Server

Daneshtalab, Masoud

2014-01-01

This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

7. Hybridisations of Variable Neighbourhood Search and Modified Simplex Elements to Harmony Search and Shuffled Frog Leaping Algorithms for Process Optimisations

Science.gov (United States)

Aungkulanon, P.; Luangpaiboon, P.

2010-10-01

Nowadays, the engineering problem systems are large and complicated. An effective finite sequence of instructions for solving these problems can be categorised into optimisation and meta-heuristic algorithms. Though the best decision variable levels from some sets of available alternatives cannot be done, meta-heuristics is an alternative for experience-based techniques that rapidly help in problem solving, learning and discovery in the hope of obtaining a more efficient or more robust procedure. All meta-heuristics provide auxiliary procedures in terms of their own tooled box functions. It has been shown that the effectiveness of all meta-heuristics depends almost exclusively on these auxiliary functions. In fact, the auxiliary procedure from one can be implemented into other meta-heuristics. Well-known meta-heuristics of harmony search (HSA) and shuffled frog-leaping algorithms (SFLA) are compared with their hybridisations. HSA is used to produce a near optimal solution under a consideration of the perfect state of harmony of the improvisation process of musicians. A meta-heuristic of the SFLA, based on a population, is a cooperative search metaphor inspired by natural memetics. It includes elements of local search and global information exchange. This study presents solution procedures via constrained and unconstrained problems with different natures of single and multi peak surfaces including a curved ridge surface. Both meta-heuristics are modified via variable neighbourhood search method (VNSM) philosophy including a modified simplex method (MSM). The basic idea is the change of neighbourhoods during searching for a better solution. The hybridisations proceed by a descent method to a local minimum exploring then, systematically or at random, increasingly distant neighbourhoods of this local solution. The results show that the variant of HSA with VNSM and MSM seems to be better in terms of the mean and variance of design points and yields.

8. Dynamic modeling of genetic networks using genetic algorithm and S-system.

Science.gov (United States)

Kikuchi, Shinichi; Tominaga, Daisuke; Arita, Masanori; Takahashi, Katsutoshi; Tomita, Masaru

2003-03-22

The modeling of system dynamics of genetic networks, metabolic networks or signal transduction cascades from time-course data is formulated as a reverse-problem. Previous studies focused on the estimation of only network structures, and they were ineffective in inferring a network structure with feedback loops. We previously proposed a method to predict not only the network structure but also its dynamics using a Genetic Algorithm (GA) and an S-system formalism. However, it could predict only a small number of parameters and could rarely obtain essential structures. In this work, we propose a unified extension of the basic method. Notable improvements are as follows: (1) an additional term in its evaluation function that aims at eliminating futile parameters; (2) a crossover method called Simplex Crossover (SPX) to improve its optimization ability; and (3) a gradual optimization strategy to increase the number of predictable parameters. The proposed method is implemented as a C program called PEACE1 (Predictor by Evolutionary Algorithms and Canonical Equations 1). Its performance was compared with the basic method. The comparison showed that: (1) the convergence rate increased about 5-fold; (2) the optimization speed was raised about 1.5-fold; and (3) the number of predictable parameters was increased about 5-fold. Moreover, we successfully inferred the dynamics of a small genetic network constructed with 60 parameters for 5 network variables and feedback loops using only time-course data of gene expression.

9. Network-based recommendation algorithms: A review

Science.gov (United States)

Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

2016-06-01

Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

10. Film Cooling Optimization Using Numerical Computation of the Compressible Viscous Flow Equations and Simplex Algorithm

Directory of Open Access Journals (Sweden)

Ahmed M. Elsayed

2013-01-01

Full Text Available Film cooling is vital to gas turbine blades to protect them from high temperatures and hence high thermal stresses. In the current work, optimization of film cooling parameters on a flat plate is investigated numerically. The effect of film cooling parameters such as inlet velocity direction, lateral and forward diffusion angles, blowing ratio, and streamwise angle on the cooling effectiveness is studied, and optimum cooling parameters are selected. The numerical simulation of the coolant flow through flat plate hole system is carried out using the “CFDRC package” coupled with the optimization algorithm “simplex” to maximize overall film cooling effectiveness. Unstructured finite volume technique is used to solve the steady, three-dimensional and compressible Navier-Stokes equations. The results are compared with the published numerical and experimental data of a cylindrically round-simple hole, and the results show good agreement. In addition, the results indicate that the average overall film cooling effectiveness is enhanced by decreasing the streamwise angle for high blowing ratio and by increasing the lateral and forward diffusion angles. Optimum geometry of the cooling hole on a flat plate is determined. In addition, numerical simulations of film cooling on actual turbine blade are performed using the flat plate optimal hole geometry.

11. Traffic sharing algorithms for hybrid mobile networks

Science.gov (United States)

Arcand, S.; Murthy, K. M. S.; Hafez, R.

1995-01-01

In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.

12. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

Science.gov (United States)

Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

2012-01-01

In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

13. An Improved Harmony Search Algorithm for Power Distribution Network Planning

Directory of Open Access Journals (Sweden)

Wei Sun

2015-01-01

Full Text Available Distribution network planning because of involving many variables and constraints is a multiobjective, discrete, nonlinear, and large-scale optimization problem. Harmony search (HS algorithm is a metaheuristic algorithm inspired by the improvisation process of music players. HS algorithm has several impressive advantages, such as easy implementation, less adjustable parameters, and quick convergence. But HS algorithm still has some defects such as premature convergence and slow convergence speed. According to the defects of the standard algorithm and characteristics of distribution network planning, an improved harmony search (IHS algorithm is proposed in this paper. We set up a mathematical model of distribution network structure planning, whose optimal objective function is to get the minimum annual cost and constraint conditions are overload and radial network. IHS algorithm is applied to solve the complex optimization mathematical model. The empirical results strongly indicate that IHS algorithm can effectively provide better results for solving the distribution network planning problem compared to other optimization algorithms.

14. Evolutionary Algorithms For Neural Networks Binary And Real Data Classification

Directory of Open Access Journals (Sweden)

Dr. Hanan A.R. Akkar

2015-08-01

Full Text Available Artificial neural networks are complex networks emulating the way human rational neurons process data. They have been widely used generally in prediction clustering classification and association. The training algorithms that used to determine the network weights are almost the most important factor that influence the neural networks performance. Recently many meta-heuristic and Evolutionary algorithms are employed to optimize neural networks weights to achieve better neural performance. This paper aims to use recently proposed algorithms for optimizing neural networks weights comparing these algorithms performance with other classical meta-heuristic algorithms used for the same purpose. However to evaluate the performance of such algorithms for training neural networks we examine such algorithms to classify four opposite binary XOR clusters and classification of continuous real data sets such as Iris and Ecoli.

15. The Algorithm of Link Prediction on Social Network

Directory of Open Access Journals (Sweden)

Liyan Dong

2013-01-01

Full Text Available At present, most link prediction algorithms are based on the similarity between two entities. Social network topology information is one of the main sources to design the similarity function between entities. But the existing link prediction algorithms do not apply the network topology information sufficiently. For lack of traditional link prediction algorithms, we propose two improved algorithms: CNGF algorithm based on local information and KatzGF algorithm based on global information network. For the defect of the stationary of social network, we also provide the link prediction algorithm based on nodes multiple attributes information. Finally, we verified these algorithms on DBLP data set, and the experimental results show that the performance of the improved algorithm is superior to that of the traditional link prediction algorithm.

16. A genetic algorithm for solving supply chain network design model

Science.gov (United States)

Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

2013-09-01

Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

17. A Decomposition Algorithm for Learning Bayesian Network Structures from Data

DEFF Research Database (Denmark)

Zeng, Yifeng; Cordero Hernandez, Jorge

2008-01-01

It is a challenging task of learning a large Bayesian network from a small data set. Most conventional structural learning approaches run into the computational as well as the statistical problems. We propose a decomposition algorithm for the structure construction without having to learn...... the complete network. The new learning algorithm firstly finds local components from the data, and then recover the complete network by joining the learned components. We show the empirical performance of the decomposition algorithm in several benchmark networks....

18. Optimization of heat exchanger networks using genetic algorithms

International Nuclear Information System (INIS)

Teyssedou, A.; Dipama, J.; Sorin, M.

2004-01-01

Most thermal processes encountered in the power industry (chemical, metallurgical, nuclear and thermal power stations) necessitate the transfer of large amounts of heat between fluids having different thermal potentials. A common practice applied to achieve such a requirement consists of using heat exchangers. In general, each current of fluid is conveniently cooled or heated independently from each other in the power plant. When the number of heat exchangers is large enough, however, a convenient arrangement of different flow currents may allow a considerable reduction in energy consumption to be obtained (Linnhoff and Hidmarsh, 1983). In such a case the heat exchangers form a 'Heat Exchanger Network' (HEN) that can be optimized to reduce the overall energy consumption. This type of optimization problem, involves two separates calculation procedures. First, it is necessary to optimize the topology of the HEN that will permit a reduction in energy consumption to be obtained. In a second step the power distribution across the HEN should be optimized without violating the second law of thermodynamics. The numerical treatment of this kind of problem requires the use of both discrete variables (for taking into account each heat exchanger unit) and continuous variables for handling the thermal load of each unit. It is obvious that for a large number of heat exchangers, the use of conventional calculation methods, i.e., Simplexe, becomes almost impossible. Therefore, in this paper we present a 'Genetic Algorithm' (GA), that has been implemented and successfully used to treat complex HENs, containing a large number of heat exchangers. As opposed to conventional optimization techniques that require the knowledge of the derivatives of a function, GAs start the calculation process from a large population of possible solutions of a given problem (Goldberg, 1999). Each possible solution is in turns evaluated according to a 'fitness' criterion obtained from an objective

19. Ends and Ways: The Algorithmic Politics of Network Neutrality

Directory of Open Access Journals (Sweden)

Fenwick McKelvey

2010-01-01

Full Text Available The Internet in Canada is an assemblage of private and public networks. A variety of institutions and networking codes manage these networks. Conflicts exist between these parties despite their interconnection. Tensions heightened when commercial ISPs began managing traffic on their network using sophisticated routing algorithms. Concerned parties demanded legislation based on a network neutrality principle to prevent undue discrimination. While the network neutrality controversy has been addressed as a question of public policy, the controversy also includes a conflict between various codes constituting networks in Canada. The conflict between codes involve two key networking software that manifest incongruous networks. Their algorithms, the logics embedded in code, differentiate the different types of networking code. The two types of algorithms are Quality of Service and End-to-End. These algorithms treat different modalities of Internet communication differently, in part due to their deployment by different institutions. Quality of Service allows for the tiering of traffic by carriers. Commercial carriers have popularized this algorithm to promote value-added services and prevent network congestions. End-to-end algorithms, on the other hand, enforce a strict equality between modalities of communication. Peer-to-peer applications have popularized an extreme version of the end-to-algorithm, treating all nodes as equals. The popularity and growth of both these algorithms pulls the Internet in different directions, creating conflicts over its future. Through an extended review of these two algorithms and their intersection, this paper confronts how code plays a role in the network neutrality controversy.

20. One Kind of Routing Algorithm Modified in Wireless Sensor Network

Directory of Open Access Journals (Sweden)

Wei Ni Ni

2016-01-01

Full Text Available The wireless sensor networks are the emerging next generation sensor networks, Routing technology is the wireless sensor network communication layer of the core technology. To build reliable paths in wireless sensor networks, we can consider two ways: providing multiple paths utilizing the redundancy to assure the communication reliability or constructing transmission reliability mechanism to assure the reliability of every hop. Braid multipath algorithm and ReInforM routing algorithm are the realizations of these two mechanisms. After the analysis of these two algorithms, this paper proposes a ReInforM routing algorithm based braid multipath routing algorithm.

1. Computational techniques of the simplex method

CERN Document Server

Maros, István

2003-01-01

Computational Techniques of the Simplex Method is a systematic treatment focused on the computational issues of the simplex method. It provides a comprehensive coverage of the most important and successful algorithmic and implementation techniques of the simplex method. It is a unique source of essential, never discussed details of algorithmic elements and their implementation. On the basis of the book the reader will be able to create a highly advanced implementation of the simplex method which, in turn, can be used directly or as a building block in other solution algorithms.

2. ISINA: INTEGRAL Source Identification Network Algorithm

Science.gov (United States)

Scaringi, S.; Bird, A. J.; Clark, D. J.; Dean, A. J.; Hill, A. B.; McBride, V. A.; Shaw, S. E.

2008-11-01

We give an overview of ISINA: INTEGRAL Source Identification Network Algorithm. This machine learning algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to ease the production of unbiased future soft gamma-ray source catalogues. First, we introduce the data set and the problems encountered when dealing with images obtained using the coded mask technique. The initial step of source candidate searching is introduced and an initial candidate list is created. A description of the feature extraction on the initial candidate list is then performed together with feature merging for these candidates. Three training and testing sets are created in order to deal with the diverse time-scales encountered when dealing with the gamma-ray sky. Three independent random forests are built: one dealing with faint persistent source recognition, one dealing with strong persistent sources and a final one dealing with transients. For the latter, a new transient detection technique is introduced and described: the transient matrix. Finally the performance of the network is assessed and discussed using the testing set and some illustrative source examples. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain), Czech Republic and Poland, and the participation of Russia and the USA. E-mail: simo@astro.soton.ac.uk

3. Asymmetric intimacy and algorithm for detecting communities in bipartite networks

Science.gov (United States)

Wang, Xingyuan; Qin, Xiaomeng

2016-11-01

In this paper, an algorithm to choose a good partition in bipartite networks has been proposed. Bipartite networks have more theoretical significance and broader prospect of application. In view of distinctive structure of bipartite networks, in our method, two parameters are defined to show the relationships between the same type nodes and heterogeneous nodes respectively. Moreover, our algorithm employs a new method of finding and expanding the core communities in bipartite networks. Two kinds of nodes are handled separately and merged, and then the sub-communities are obtained. After that, objective communities will be found according to the merging rule. The proposed algorithm has been simulated in real-world networks and artificial networks, and the result verifies the accuracy and reliability of the parameters on intimacy for our algorithm. Eventually, comparisons with similar algorithms depict that the proposed algorithm has better performance.

4. Extension algorithm for generic low-voltage networks

Science.gov (United States)

Marwitz, S.; Olk, C.

2018-02-01

Distributed energy resources (DERs) are increasingly penetrating the energy system which is driven by climate and sustainability goals. These technologies are mostly connected to low- voltage electrical networks and change the demand and supply situation in these networks. This can cause critical network states. Network topologies vary significantly and depend on several conditions including geography, historical development, network design or number of network connections. In the past, only some of these aspects were taken into account when estimating the network investment needs for Germany on the low-voltage level. Typically, fixed network topologies are examined or a Monte Carlo approach is used to quantify the investment needs at this voltage level. Recent research has revealed that DERs differ substantially between rural, suburban and urban regions. The low-voltage network topologies have different design concepts in these regions, so that different network topologies have to be considered when assessing the need for network extensions and investments due to DERs. An extension algorithm is needed to calculate network extensions and investment needs for the different typologies of generic low-voltage networks. We therefore present a new algorithm, which is capable of calculating the extension for generic low-voltage networks of any given topology based on voltage range deviations and thermal overloads. The algorithm requires information about line and cable lengths, their topology and the network state only. We test the algorithm on a radial, a loop, and a heavily meshed network. Here we show that the algorithm functions for electrical networks with these topologies. We found that the algorithm is able to extend different networks efficiently by placing cables between network nodes. The main value of the algorithm is that it does not require any information about routes for additional cables or positions for additional substations when it comes to estimating

5. Combinatorial optimization algorithms and complexity

CERN Document Server

1998-01-01

This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.

6. Robustness of the ATLAS pixel clustering neural network algorithm

CERN Document Server

AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

2016-01-01

Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

7. An Efficient Hierarchy Algorithm for Community Detection in Complex Networks

Directory of Open Access Journals (Sweden)

Lili Zhang

2014-01-01

Full Text Available Community structure is one of the most fundamental and important topology characteristics of complex networks. The research on community structure has wide applications and is very important for analyzing the topology structure, understanding the functions, finding the hidden properties, and forecasting the time-varying of the networks. This paper analyzes some related algorithms and proposes a new algorithm—CN agglomerative algorithm based on graph theory and the local connectedness of network to find communities in network. We show this algorithm is distributed and polynomial; meanwhile the simulations show it is accurate and fine-grained. Furthermore, we modify this algorithm to get one modified CN algorithm and apply it to dynamic complex networks, and the simulations also verify that the modified CN algorithm has high accuracy too.

8. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

Science.gov (United States)

Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

2014-01-01

Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

9. Herpes Simplex

Science.gov (United States)

... skin diseases Athlete's foot Chickenpox Cold sores Genital herpes Genital warts Head lice Herpes simplex Impetigo Molluscum contagiosum ... swollen lymph nodes (glands) in the neck (oral herpes) or groin (genital herpes) are possible. Problems urinating . People (most often ...

10. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

KAUST Repository

Mehbodniya, Abolfazl

2010-07-01

One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.

11. Effectiveness of firefly algorithm based neural network in time series ...

African Journals Online (AJOL)

Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...

12. An improved algorithm for connectivity analysis of distribution networks

International Nuclear Information System (INIS)

Kansal, M.L.; Devi, Sunita

2007-01-01

In the present paper, an efficient algorithm for connectivity analysis of moderately sized distribution networks has been suggested. Algorithm is based on generation of all possible minimal system cutsets. The algorithm is efficient as it identifies only the necessary and sufficient conditions of system failure conditions in n-out-of-n type of distribution networks. The proposed algorithm is demonstrated with the help of saturated and unsaturated distribution networks. The computational efficiency of the algorithm is justified by comparing the computational efforts with the previously suggested appended spanning tree (AST) algorithm. The proposed technique has the added advantage as it can be utilized for generation of system inequalities which is useful in reliability estimation of capacitated networks

13. A Newton-type neural network learning algorithm

International Nuclear Information System (INIS)

Ivanov, V.V.; Puzynin, I.V.; Purehvdorzh, B.

1993-01-01

First- and second-order learning methods for feed-forward multilayer networks are considered. A Newton-type algorithm is proposed and compared with the common back-propagation algorithm. It is shown that the proposed algorithm provides better learning quality. Some recommendations for their usage are given. 11 refs.; 1 fig.; 1 tab

14. Enhancements of LEACH Algorithm for Wireless Networks: A Review

Directory of Open Access Journals (Sweden)

2013-12-01

Full Text Available Low Energy Adaptive Clustering Hierarchy (LEACH protocol is the first hierarchical cluster based routing protocol successfully used in the Wireless Sensor Networks (WSN. In this paper, various enhancements used in the original LEACH protocol are examined. The basic operations, advantages and limitations of the modified LEACH algorithms are compared to identify the research issues to be solved and to give the suggestions for the future proposed routing algorithms of wireless networks based on LEACH routing algorithm.

15. A generic algorithm for layout of biological networks.

Science.gov (United States)

Schreiber, Falk; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

2009-11-12

Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

16. The application of artificial neural networks to TLD dose algorithm

International Nuclear Information System (INIS)

Moscovitch, M.

1997-01-01

We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)

17. Power control algorithms for mobile ad hoc networks

Directory of Open Access Journals (Sweden)

2011-07-01

We will also focus on an adaptive distributed power management (DISPOW algorithm as an example of the multi-parameter optimization approach which manages the transmit power of nodes in a wireless ad hoc network to preserve network connectivity and cooperatively reduce interference. We will show that the algorithm in a distributed manner builds a unique stable network topology tailored to its surrounding node density and propagation environment over random topologies in a dynamic mobile wireless channel.

18. Solving Hub Network Problem Using Genetic Algorithm

Directory of Open Access Journals (Sweden)

Mursyid Hasan Basri

2012-01-01

Full Text Available This paper addresses a network problem that described as follows. There are n ports that interact, and p of those will be designated as hubs. All hubs are fully interconnected. Each spoke will be allocated to only one of available hubs. Direct connection between two spokes is allowed only if they are allocated to the same hub. The latter is a distinct characteristic that differs it from pure hub-and-spoke system. In case of pure hub-and-spoke system, direct connection between two spokes is not allowed. The problem is where to locate hub ports and to which hub a spoke should be allocated so that total transportation cost is minimum. In the first model, there are some additional aspects are taken into consideration in order to achieve a better representation of the problem. The first, weekly service should be accomplished. Secondly, various vessel types should be considered. The last, a concept of inter-hub discount factor is introduced. Regarding the last aspect, it represents cost reduction factor at hub ports due to economies of scale. In practice, it is common that the cost rate for inter-hub movement is less than the cost rate for movement between hub and origin/destination. In this first model, inter-hub discount factor is assumed independent with amount of flows on inter-hub links (denoted as flow-independent discount policy. The results indicated that the patterns of enlargement of container ship size, to some degree, are similar with those in Kurokawa study. However, with regard to hub locations, the results have not represented the real practice. In the proposed model, unsatisfactory result on hub locations is addressed. One aspect that could possibly be improved to find better hub locations is inter-hub discount factor. Then inter-hub discount factor is assumed to depend on amount of inter-hub flows (denoted as flow-dependent discount policy. There are two discount functions examined in this paper. Both functions are characterized by

19. Congested Link Inference Algorithms in Dynamic Routing IP Network

Directory of Open Access Journals (Sweden)

Yu Chen

2017-01-01

Full Text Available The performance descending of current congested link inference algorithms is obviously in dynamic routing IP network, such as the most classical algorithm CLINK. To overcome this problem, based on the assumptions of Markov property and time homogeneity, we build a kind of Variable Structure Discrete Dynamic Bayesian (VSDDB network simplified model of dynamic routing IP network. Under the simplified VSDDB model, based on the Bayesian Maximum A Posteriori (BMAP and Rest Bayesian Network Model (RBNM, we proposed an Improved CLINK (ICLINK algorithm. Considering the concurrent phenomenon of multiple link congestion usually happens, we also proposed algorithm CLILRS (Congested Link Inference algorithm based on Lagrangian Relaxation Subgradient to infer the set of congested links. We validated our results by the experiments of analogy, simulation, and actual Internet.

20. A practical algorithm for reconstructing level-1 phylogenetic networks

NARCIS (Netherlands)

Huber, K.T.; Iersel, van L.J.J.; Kelk, S.M.; Suchecki, R.

2011-01-01

Recently, much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here, we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks-a type of network

1. A new algorithm to construct phylogenetic networks from trees.

Science.gov (United States)

Wang, J

2014-03-06

Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.

2. Multidimensional Scaling Localization Algorithm in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Zhang Dongyang

2014-02-01

Full Text Available Due to the localization algorithm in large-scale wireless sensor network exists shortcomings both in positioning accuracy and time complexity compared to traditional localization algorithm, this paper presents a fast multidimensional scaling location algorithm. By positioning algorithm for fast multidimensional scaling, fast mapping initialization, fast mapping and coordinate transform can get schematic coordinates of node, coordinates Initialize of MDS algorithm, an accurate estimate of the node coordinates and using the PRORUSTES to analysis alignment of the coordinate and final position coordinates of nodes etc. There are four steps, and the thesis gives specific implementation steps of the algorithm. Finally, compared with stochastic algorithms and classical MDS algorithm experiment, the thesis takes application of specific examples. Experimental results show that: the proposed localization algorithm has fast multidimensional scaling positioning accuracy in ensuring certain circumstances, but also greatly improves the speed of operation.

3. An algorithm for link restoration of wavelength routing optical networks

DEFF Research Database (Denmark)

Limal, Emmanuel; Stubkjær, Kristian

1999-01-01

We present an algorithm for restoration of single link failure in wavelength routing multihop optical networks. The algorithm is based on an innovative study of networks using graph theory. It has the following original features: it (i) assigns working and spare channels simultaneously, (ii......) prevents the search for unacceptable routing paths by pointing out channels required for restoration, (iii) offers a high utilization of the capacity resources and (iv) allows a trivial search for the restoration paths. The algorithm is for link restoration of networks without wavelength translation. Its...

4. Real-world experimentation of distributed DSA network algorithms

DEFF Research Database (Denmark)

Tonelli, Oscar; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

2013-01-01

such as a dynamic propagation environment, human presence impact and terminals mobility. This chapter focuses on the practical aspects related to the real world-experimentation with distributed DSA network algorithms over a testbed network. Challenges and solutions are extensively discussed, from the testbed design......The problem of spectrum scarcity in uncoordinated and/or heterogeneous wireless networks is the key aspect driving the research in the field of flexible management of frequency resources. In particular, distributed dynamic spectrum access (DSA) algorithms enable an efficient sharing...... to the setup of experiments. A practical example of experimentation process with a DSA algorithm is also provided....

5. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

Directory of Open Access Journals (Sweden)

V. E. Marley

2015-01-01

Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

6. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

Science.gov (United States)

Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

2017-12-01

Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

7. Improved Degree Search Algorithms in Unstructured P2P Networks

Directory of Open Access Journals (Sweden)

Guole Liu

2012-01-01

Full Text Available Searching and retrieving the demanded correct information is one important problem in networks; especially, designing an efficient search algorithm is a key challenge in unstructured peer-to-peer (P2P networks. Breadth-first search (BFS and depth-first search (DFS are the current two typical search methods. BFS-based algorithms show the perfect performance in the aspect of search success rate of network resources, while bringing the huge search messages. On the contrary, DFS-based algorithms reduce the search message quantity and also cause the dropping of search success ratio. To address the problem that only one of performances is excellent, we propose two memory function degree search algorithms: memory function maximum degree algorithm (MD and memory function preference degree algorithm (PD. We study their performance including the search success rate and the search message quantity in different networks, which are scale-free networks, random graph networks, and small-world networks. Simulations show that the two performances are both excellent at the same time, and the performances are improved at least 10 times.

8. Genetic Algorithm Optimized Neural Networks Ensemble as ...

African Journals Online (AJOL)

NJD

Improvements in neural network calibration models by a novel approach using neural network ensemble (NNE) for the simultaneous ... process by training a number of neural networks. .... Matlab® version 6.1 was employed for building principal component ... provide a fair simulation of calibration data set with some degree.

9. Optimization of multicast optical networks with genetic algorithm

Science.gov (United States)

Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

2007-11-01

In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

10. Energy Aware Clustering Algorithms for Wireless Sensor Networks

Science.gov (United States)

Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

2011-09-01

The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

11. The Forward-Reverse Algorithm for Stochastic Reaction Networks

KAUST Repository

Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

2015-01-01

In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem

12. Regular Network Class Features Enhancement Using an Evolutionary Synthesis Algorithm

Directory of Open Access Journals (Sweden)

O. G. Monahov

2014-01-01

Full Text Available This paper investigates a solution of the optimization problem concerning the construction of diameter-optimal regular networks (graphs. Regular networks are of practical interest as the graph-theoretical models of reliable communication networks of parallel supercomputer systems, as a basis of the structure in a model of small world in optical and neural networks. It presents a new class of parametrically described regular networks - hypercirculant networks (graphs. An approach that uses evolutionary algorithms for the automatic generation of parametric descriptions of optimal hypercirculant networks is developed. Synthesis of optimal hypercirculant networks is based on the optimal circulant networks with smaller degree of nodes. To construct optimal hypercirculant networks is used a template of circulant network from the known optimal families of circulant networks with desired number of nodes and with smaller degree of nodes. Thus, a generating set of the circulant network is used as a generating subset of the hypercirculant network, and the missing generators are synthesized by means of the evolutionary algorithm, which is carrying out minimization of diameter (average diameter of networks. A comparative analysis of the structural characteristics of hypercirculant, toroidal, and circulant networks is conducted. The advantage hypercirculant networks under such structural characteristics, as diameter, average diameter, and the width of bisection, with comparable costs of the number of nodes and the number of connections is demonstrated. It should be noted the advantage of hypercirculant networks of dimension three over four higher-dimensional tori. Thus, the optimization of hypercirculant networks of dimension three is more efficient than the introduction of an additional dimension for the corresponding toroidal structures. The paper also notes the best structural parameters of hypercirculant networks in comparison with iBT-networks previously

13. Recommending Learning Activities in Social Network Using Data Mining Algorithms

Science.gov (United States)

Mahnane, Lamia

2017-01-01

In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the…

14. Research of Ad Hoc Networks Access Algorithm

Science.gov (United States)

Xiang, Ma

With the continuous development of mobile communication technology, Ad Hoc access network has become a hot research, Ad Hoc access network nodes can be used to expand capacity of multi-hop communication range of mobile communication system, even business adjacent to the community, improve edge data rates. When the ad hoc network is the access network of the internet, the gateway discovery protocol is very important to choose the most appropriate gateway to guarantee the connectivity between ad hoc network and IP based fixed networks. The paper proposes a QoS gateway discovery protocol which uses the time delay and stable route to the gateway selection conditions. And according to the gateway discovery protocol, it also proposes a fast handover scheme which can decrease the handover time and improve the handover efficiency.

15. Genetic Algorithm Optimized Neural Networks Ensemble as ...

African Journals Online (AJOL)

Marquardt algorithm by varying conditions such as inputs, hidden neurons, initialization, training sets and random Gaussian noise injection to ... Several such ensembles formed the population which was evolved to generate the fittest ensemble.

16. A TLD dose algorithm using artificial neural networks

International Nuclear Information System (INIS)

Moscovitch, M.; Rotunda, J.E.; Tawil, R.A.; Rathbone, B.A.

1995-01-01

An artificial neural network was designed and used to develop a dose algorithm for a multi-element thermoluminescence dosimeter (TLD). The neural network architecture is based on the concept of functional links network (FLN). Neural network is an information processing method inspired by the biological nervous system. A dose algorithm based on neural networks is fundamentally different as compared to conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with given responses of a multi-element dosimeter (input) many times. The algorithm, being trained that way, eventually is capable to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personal dosimetry, the output consists of the desired dose components: deep dose, shallow dose and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. The neural network approach was applied to the Harshaw Type 8825 TLD, and was shown to significantly improve the performance of this dosimeter, well within the U.S. accreditation requirements for personnel dosimeters

17. Behavioural modelling using the MOESP algorithm, dynamic neural networks and the Bartels-Stewart algorithm

NARCIS (Netherlands)

Schilders, W.H.A.; Meijer, P.B.L.; Ciggaar, E.

2008-01-01

In this paper we discuss the use of the state-space modelling MOESP algorithm to generate precise information about the number of neurons and hidden layers in dynamic neural networks developed for the behavioural modelling of electronic circuits. The Bartels–Stewart algorithm is used to transform

18. Wireless Sensor Networks : Structure and Algorithms

NARCIS (Netherlands)

van Dijk, T.C.

2014-01-01

In this thesis we look at various problems in wireless networking. First we consider two problems in physical-model networks. We introduce a new model for localisation. The model is based on a range-free model of radio transmissions. The first scheme is randomised and we analyse its expected

19. Insertion algorithms for network model database management systems

Science.gov (United States)

2017-12-01

The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

20. A Practical Algorithm for Reconstructing Level-1 Phylogenetic Networks

NARCIS (Netherlands)

K.T. Huber; L.J.J. van Iersel (Leo); S.M. Kelk (Steven); R. Suchecki

2010-01-01

htmlabstractRecently much attention has been devoted to the construction of phylogenetic networks which generalize phylogenetic trees in order to accommodate complex evolutionary processes. Here we present an efficient, practical algorithm for reconstructing level-1 phylogenetic networks - a type of

1. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

Science.gov (United States)

Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

2018-04-16

Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

2. A range-based predictive localization algorithm for WSID networks

Science.gov (United States)

Liu, Yuan; Chen, Junjie; Li, Gang

2017-11-01

Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.

3. A network flow algorithm to position tiles for LAMOST

International Nuclear Information System (INIS)

Li Guangwei; Zhao Gang

2009-01-01

We introduce the network flow algorithm used by the Sloan Digital Sky Survey (SDSS) into the sky survey of the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) to position tiles. Because fibers in LAMOST's focal plane are distributed uniformly, we cannot use SDSS' method directly. To solve this problem, firstly we divide the sky into many small blocks, and we also assume that all the targets that are in the same block have the same position, which is the center of the block. Secondly, we give a value to limit the number of the targets that the LAMOST focal plane can collect in one square degree so that it cannot collect too many targets in one small block. Thirdly, because the network flow algorithm used in this paper is a bipartite network, we do not use the general solution algorithm that was used by SDSS. Instead, we give our new faster solution method for this special network. Compared with the Convergent Mean Shift Algorithm, the network flow algorithm can decrease observation times with improved mean imaging quality. This algorithm also has a very fast running speed. It can distribute millions of targets in a few minutes using a common personal computer.

4. Incremental Centrality Algorithms for Dynamic Network Analysis

Science.gov (United States)

2013-08-01

literature.   7.1.3 Small World Networks In 1998, Watts and Strogatz introduced a model that starts with a regular lattice (ring) of n nodes and...and S. Strogatz , "Collective Dynamics of ‘Small-World’ Networks," Nature, vol. 393, pp. 440-442, 1998. [13] T. Opsahl, "Structure and Evolution of...34On Random Graphs," Publicationes Mathematicae, vol. 6, 1959. [167] D.J. Watts and S.H. Strogatz , "Collective Dynamics of ‘Small-World’ Networks

5. Practical Algorithms for Subgroup Detection in Covert Networks

DEFF Research Database (Denmark)

Memon, Nasrullah; Wiil, Uffe Kock; Qureshi, Pir Abdul Rasool

2010-01-01

In this paper, we present algorithms for subgroup detection and demonstrated them with a real-time case study of USS Cole bombing terrorist network. The algorithms are demonstrated in an application by a prototype system. The system finds associations between terrorist and terrorist organisations...... and is capable of determining links between terrorism plots occurred in the past, their affiliation with terrorist camps, travel record, funds transfer, etc. The findings are represented by a network in the form of an Attributed Relational Graph (ARG). Paths from a node to any other node in the network indicate...

6. ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM

Directory of Open Access Journals (Sweden)

D. Amutha Guka

2012-01-01

Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.

7. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

DEFF Research Database (Denmark)

Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

2014-01-01

An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

8. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.

Science.gov (United States)

Smith, Robert W; van Sluijs, Bob; Fleck, Christian

2017-12-02

Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.

9. Using network properties to evaluate targeted immunization algorithms

Directory of Open Access Journals (Sweden)

Bita Shams

2014-09-01

Full Text Available Immunization of complex network with minimal or limited budget is a challenging issue for research community. In spite of much literature in network immunization, no comprehensive research has been conducted for evaluation and comparison of immunization algorithms. In this paper, we propose an evaluation framework for immunization algorithms regarding available amount of vaccination resources, goal of immunization program, and time complexity. The evaluation framework is designed based on network topological metrics which is extensible to all epidemic spreading model. Exploiting evaluation framework on well-known targeted immunization algorithms shows that in general, immunization based on PageRank centrality outperforms other targeting strategies in various types of networks, whereas, closeness and eigenvector centrality exhibit the worst case performance.

10. Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks

Directory of Open Access Journals (Sweden)

Ruiyun Yu

2014-01-01

Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.

11. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

Directory of Open Access Journals (Sweden)

Jin Qi

2015-01-01

Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

12. Algorithms for optimization of branching gravity-driven water networks

Science.gov (United States)

Dardani, Ian; Jones, Gerard F.

2018-05-01

The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.

13. Algorithms for optimization of branching gravity-driven water networks

Directory of Open Access Journals (Sweden)

I. Dardani

2018-05-01

Full Text Available The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs, this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011 to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel

14. Algorithms for Scheduling and Network Problems

Science.gov (United States)

1991-09-01

time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and

15. The guitar chord-generating algorithm based on complex network

Science.gov (United States)

Ren, Tao; Wang, Yi-fan; Du, Dan; Liu, Miao-miao; Siddiqi, Awais

2016-02-01

This paper aims to generate chords for popular songs automatically based on complex network. Firstly, according to the characteristics of guitar tablature, six chord networks of popular songs by six pop singers are constructed and the properties of all networks are concluded. By analyzing the diverse chord networks, the accompaniment regulations and features are shown, with which the chords can be generated automatically. Secondly, in terms of the characteristics of popular songs, a two-tiered network containing a verse network and a chorus network is constructed. With this network, the verse and chorus can be composed respectively with the random walk algorithm. Thirdly, the musical motif is considered for generating chords, with which the bad chord progressions can be revised. This method can make the accompaniments sound more melodious. Finally, a popular song is chosen for generating chords and the new generated accompaniment sounds better than those done by the composers.

16. Non-euclidean simplex optimization

International Nuclear Information System (INIS)

Silver, G.L.

1977-01-01

Geometric optimization techniques useful for studying chemical equilibrium traditionally rely upon principles of euclidean geometry, but such algorithms may also be based upon principles of a non-euclidean geometry. The sequential simplex method is adapted to the hyperbolic plane, and application of optimization to problems such as the potentiometric titration of plutonium is suggested

17. Quantum Google algorithm. Construction and application to complex networks

Science.gov (United States)

Paparo, G. D.; Müller, M.; Comellas, F.; Martin-Delgado, M. A.

2014-07-01

We review the main findings on the ranking capabilities of the recently proposed Quantum PageRank algorithm (G.D. Paparo et al., Sci. Rep. 2, 444 (2012) and G.D. Paparo et al., Sci. Rep. 3, 2773 (2013)) applied to large complex networks. The algorithm has been shown to identify unambiguously the underlying topology of the network and to be capable of clearly highlighting the structure of secondary hubs of networks. Furthermore, it can resolve the degeneracy in importance of the low-lying part of the list of rankings. Examples of applications include real-world instances from the WWW, which typically display a scale-free network structure and models of hierarchical networks. The quantum algorithm has been shown to display an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance among the nodes, as compared to the classical algorithm.

18. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

Directory of Open Access Journals (Sweden)

Kai Hu

2013-01-01

Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

19. Block Least Mean Squares Algorithm over Distributed Wireless Sensor Network

Directory of Open Access Journals (Sweden)

T. Panigrahi

2012-01-01

Full Text Available In a distributed parameter estimation problem, during each sampling instant, a typical sensor node communicates its estimate either by the diffusion algorithm or by the incremental algorithm. Both these conventional distributed algorithms involve significant communication overheads and, consequently, defeat the basic purpose of wireless sensor networks. In the present paper, we therefore propose two new distributed algorithms, namely, block diffusion least mean square (BDLMS and block incremental least mean square (BILMS by extending the concept of block adaptive filtering techniques to the distributed adaptation scenario. The performance analysis of the proposed BDLMS and BILMS algorithms has been carried out and found to have similar performances to those offered by conventional diffusion LMS and incremental LMS algorithms, respectively. The convergence analyses of the proposed algorithms obtained from the simulation study are also found to be in agreement with the theoretical analysis. The remarkable and interesting aspect of the proposed block-based algorithms is that their communication overheads per node and latencies are less than those of the conventional algorithms by a factor as high as the block size used in the algorithms.

20. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

Directory of Open Access Journals (Sweden)

Yunpeng Wang

2014-01-01

Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

1. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

KAUST Repository

Zenil, Hector; Kiani, Narsis A.; Shang, Ming-mei; Tegner, Jesper

2018-01-01

Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

2. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

KAUST Repository

Zenil, Hector

2018-04-02

Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

3. Algorithmic Complexity and Reprogrammability of Chemical Structure Networks

KAUST Repository

Zenil, Hector

2018-02-16

Here we address the challenge of profiling causal properties and tracking the transformation of chemical compounds from an algorithmic perspective. We explore the potential of applying a computational interventional calculus based on the principles of algorithmic probability to chemical structure networks. We profile the sensitivity of the elements and covalent bonds in a chemical structure network algorithmically, asking whether reprogrammability affords information about thermodynamic and chemical processes involved in the transformation of different compound classes. We arrive at numerical results suggesting a correspondence between some physical, structural and functional properties. Our methods are capable of separating chemical classes that reflect functional and natural differences without considering any information about atomic and molecular properties. We conclude that these methods, with their links to chemoinformatics via algorithmic, probability hold promise for future research.

4. Robustness of the ATLAS pixel clustering neural network algorithm

CERN Document Server

AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

2016-01-01

Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

5. Decoding Algorithms for Random Linear Network Codes

DEFF Research Database (Denmark)

Heide, Janus; Pedersen, Morten Videbæk; Fitzek, Frank

2011-01-01

We consider the problem of efficient decoding of a random linear code over a finite field. In particular we are interested in the case where the code is random, relatively sparse, and use the binary finite field as an example. The goal is to decode the data using fewer operations to potentially...... achieve a high coding throughput, and reduce energy consumption.We use an on-the-fly version of the Gauss-Jordan algorithm as a baseline, and provide several simple improvements to reduce the number of operations needed to perform decoding. Our tests show that the improvements can reduce the number...

6. Algorithm for Wireless Sensor Networks Based on Grid Management

Directory of Open Access Journals (Sweden)

Geng Zhang

2014-05-01

Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.

7. Models and algorithms for biomolecules and molecular networks

CERN Document Server

2016-01-01

By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. * Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms * Sampling techniques for estimating evolutionary rates and generating molecular structures * Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations * End-of-chapter exercises

8. Fault location algorithms for optical networks

OpenAIRE

Mas Machuca, Carmen; Thiran, Patrick

2005-01-01

Today, there is no doubt that optical networks are the solution to the explosion of Internet traffic that two decades ago we only dreamed about. They offer high capacity with the use of Wavelength Division Multiplexing (WDM) techniques among others. However, this increase of available capacity can be betrayed by the high quantity of information that can be lost when a failure occurs because not only one, but several channels will then be interrupted. Efficient fault detection and location mec...

9. Evaluation of Topology-Aware Broadcast Algorithms for Dragonfly Networks

Energy Technology Data Exchange (ETDEWEB)

Dorier, Matthieu; Mubarak, Misbah; Ross, Rob; Li, Jianping Kelvin; Carothers, Christopher D.; Ma, Kwan-Liu

2016-09-12

Two-tiered direct network topologies such as Dragonflies have been proposed for future post-petascale and exascale machines, since they provide a high-radix, low-diameter, fast interconnection network. Such topologies call for redesigning MPI collective communication algorithms in order to attain the best performance. Yet as increasingly more applications share a machine, it is not clear how these topology-aware algorithms will react to interference with concurrent jobs accessing the same network. In this paper, we study three topology-aware broadcast algorithms, including one designed by ourselves. We evaluate their performance through event-driven simulation for small- and large-sized broadcasts (in terms of both data size and number of processes). We study the effect of different routing mechanisms on the topology-aware collective algorithms, as well as their sensitivity to network contention with other jobs. Our results show that while topology-aware algorithms dramatically reduce link utilization, their advantage in terms of latency is more limited.

10. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

Directory of Open Access Journals (Sweden)

Jianyong Liu

2015-01-01

Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

11. An Optimal Routing Algorithm in Service Customized 5G Networks

Directory of Open Access Journals (Sweden)

Haipeng Yao

2016-01-01

Full Text Available With the widespread use of Internet, the scale of mobile data traffic grows explosively, which makes 5G networks in cellular networks become a growing concern. Recently, the ideas related to future network, for example, Software Defined Networking (SDN, Content-Centric Networking (CCN, and Big Data, have drawn more and more attention. In this paper, we propose a service-customized 5G network architecture by introducing the ideas of separation between control plane and data plane, in-network caching, and Big Data processing and analysis to resolve the problems traditional cellular radio networks face. Moreover, we design an optimal routing algorithm for this architecture, which can minimize average response hops in the network. Simulation results reveal that, by introducing the cache, the network performance can be obviously improved in different network conditions compared to the scenario without a cache. In addition, we explore the change of cache hit rate and average response hops under different cache replacement policies, cache sizes, content popularity, and network topologies, respectively.

12. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

Directory of Open Access Journals (Sweden)

Christian L Barrett

2006-05-01

Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

13. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

Directory of Open Access Journals (Sweden)

Haizhou Wu

2016-01-01

Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

14. Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design

Science.gov (United States)

Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.

2014-01-01

In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057

15. AdaBoost-based algorithm for network intrusion detection.

Science.gov (United States)

Hu, Weiming; Hu, Wei; Maybank, Steve

2008-04-01

Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

16. ZAP: a distributed channel assignment algorithm for cognitive radio networks

OpenAIRE

Junior , Paulo Roberto ,; Fonseca , Mauro; Munaretto , Anelise; Viana , Aline ,; Ziviani , Artur

2011-01-01

Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR) networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another ...

17. Sensor and ad-hoc networks theoretical and algorithmic aspects

CERN Document Server

Makki, S Kami; Pissinou, Niki; Makki, Shamila; Karimi, Masoumeh; Makki, Kia

2008-01-01

This book brings together leading researchers and developers in the field of wireless sensor networks to explain the special problems and challenges of the algorithmic aspects of sensor and ad-hoc networks. The book also fosters communication not only between the different sensor and ad-hoc communities, but also between those communities and the distributed systems and information systems communities. The topics addressed pertain to the sensors and mobile environment.

18. Behavioral Profiling of Scada Network Traffic Using Machine Learning Algorithms

Science.gov (United States)

2014-03-27

Acquisition ( SCADA ) System Overview SCADA systems control and monitor processes for water distribution, oil and natural gas pipelines , electrical...the desire for remote control and monitoring of industrial processes. The ability to identify SCADA devices on a mixed traffic network with zero...optimal attribute subset, while maintaining the desired TPR of .99 for SCADA network traffic. The attributes and ML algorithms chosen for

19. Distributed Multi-Commodity Network Flow Algorithm for Energy Optimal Routing in Wireless Sensor Networks.

Directory of Open Access Journals (Sweden)

J. Trdlicka

2010-12-01

Full Text Available This work proposes a distributed algorithm for energy optimal routing in a wireless sensor network. The routing problem is described as a mathematical problem by the minimum-cost multi-commodity network flow problem. Due to the separability of the problem, we use the duality theorem to derive the distributed algorithm. The algorithm computes the energy optimal routing in the network without any central node or knowledge of the whole network structure. Each node only needs to know the flow which is supposed to send or receive and the costs and capacities of the neighboring links. An evaluation of the presented algorithm on benchmarks for the energy optimal data flow routing in sensor networks with up to 100 nodes is presented.

20. Fast grid layout algorithm for biological networks with sweep calculation.

Science.gov (United States)

Kojima, Kaname; Nagasaki, Masao; Miyano, Satoru

2008-06-15

Properly drawn biological networks are of great help in the comprehension of their characteristics. The quality of the layouts for retrieved biological networks is critical for pathway databases. However, since it is unrealistic to manually draw biological networks for every retrieval, automatic drawing algorithms are essential. Grid layout algorithms handle various biological properties such as aligning vertices having the same attributes and complicated positional constraints according to their subcellular localizations; thus, they succeed in providing biologically comprehensible layouts. However, existing grid layout algorithms are not suitable for real-time drawing, which is one of requisites for applications to pathway databases, due to their high-computational cost. In addition, they do not consider edge directions and their resulting layouts lack traceability for biochemical reactions and gene regulations, which are the most important features in biological networks. We devise a new calculation method termed sweep calculation and reduce the time complexity of the current grid layout algorithms through its encoding and decoding processes. We conduct practical experiments by using 95 pathway models of various sizes from TRANSPATH and show that our new grid layout algorithm is much faster than existing grid layout algorithms. For the cost function, we introduce a new component that penalizes undesirable edge directions to avoid the lack of traceability in pathways due to the differences in direction between in-edges and out-edges of each vertex. Java implementations of our layout algorithms are available in Cell Illustrator. masao@ims.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online.

1. A new mutually reinforcing network node and link ranking algorithm.

Science.gov (United States)

Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E

2015-10-23

This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.

2. A new mutually reinforcing network node and link ranking algorithm

Science.gov (United States)

Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

2015-10-01

This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity.

3. A new mutually reinforcing network node and link ranking algorithm

Science.gov (United States)

Wang, Zhenghua; Dueñas-Osorio, Leonardo; Padgett, Jamie E.

2015-01-01

This study proposes a novel Normalized Wide network Ranking algorithm (NWRank) that has the advantage of ranking nodes and links of a network simultaneously. This algorithm combines the mutual reinforcement feature of Hypertext Induced Topic Selection (HITS) and the weight normalization feature of PageRank. Relative weights are assigned to links based on the degree of the adjacent neighbors and the Betweenness Centrality instead of assigning the same weight to every link as assumed in PageRank. Numerical experiment results show that NWRank performs consistently better than HITS, PageRank, eigenvector centrality, and edge betweenness from the perspective of network connectivity and approximate network flow, which is also supported by comparisons with the expensive N-1 benchmark removal criteria based on network efficiency. Furthermore, it can avoid some problems, such as the Tightly Knit Community effect, which exists in HITS. NWRank provides a new inexpensive way to rank nodes and links of a network, which has practical applications, particularly to prioritize resource allocation for upgrade of hierarchical and distributed networks, as well as to support decision making in the design of networks, where node and link importance depend on a balance of local and global integrity. PMID:26492958

4. Ripple-Spreading Network Model Optimization by Genetic Algorithm

Directory of Open Access Journals (Sweden)

Xiao-Bing Hu

2013-01-01

Full Text Available Small-world and scale-free properties are widely acknowledged in many real-world complex network systems, and many network models have been developed to capture these network properties. The ripple-spreading network model (RSNM is a newly reported complex network model, which is inspired by the natural ripple-spreading phenomenon on clam water surface. The RSNM exhibits good potential for describing both spatial and temporal features in the development of many real-world networks where the influence of a few local events spreads out through nodes and then largely determines the final network topology. However, the relationships between ripple-spreading related parameters (RSRPs of RSNM and small-world and scale-free topologies are not as obvious or straightforward as in many other network models. This paper attempts to apply genetic algorithm (GA to tune the values of RSRPs, so that the RSNM may generate these two most important network topologies. The study demonstrates that, once RSRPs are properly tuned by GA, the RSNM is capable of generating both network topologies and therefore has a great flexibility to study many real-world complex network systems.

5. A similarity based agglomerative clustering algorithm in networks

Science.gov (United States)

Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

2018-04-01

The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

6. Optimization of composite panels using neural networks and genetic algorithms

NARCIS (Netherlands)

Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

2003-01-01

The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

7. Back propagation and Monte Carlo algorithms for neural network computations

International Nuclear Information System (INIS)

Junczys, R.; Wit, R.

1996-01-01

Results of teaching procedures for neural network for two different algorithms are presented. The first one is based on the well known back-propagation technique, the second is an adopted version of the Monte Carlo global minimum seeking method. Combination of these two, different in nature, approaches provides promising results. (author) nature, approaches provides promising results. (author)

8. An Algorithm for the Mixed Transportation Network Design Problem.

Science.gov (United States)

Liu, Xinyu; Chen, Qun

2016-01-01

This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA), for solving a mixed transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. The idea of the proposed solution algorithm (DDIA) is to reduce the dimensions of the problem. A group of variables (discrete/continuous) is fixed to optimize another group of variables (continuous/discrete) alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems) and DNDPs (discrete network design problems) repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions). Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.

9. An Algorithm for the Mixed Transportation Network Design Problem.

Directory of Open Access Journals (Sweden)

Xinyu Liu

Full Text Available This paper proposes an optimization algorithm, the dimension-down iterative algorithm (DDIA, for solving a mixed transportation network design problem (MNDP, which is generally expressed as a mathematical programming with equilibrium constraint (MPEC. The upper level of the MNDP aims to optimize the network performance via both the expansion of the existing links and the addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE problem. The idea of the proposed solution algorithm (DDIA is to reduce the dimensions of the problem. A group of variables (discrete/continuous is fixed to optimize another group of variables (continuous/discrete alternately; then, the problem is transformed into solving a series of CNDPs (continuous network design problems and DNDPs (discrete network design problems repeatedly until the problem converges to the optimal solution. The advantage of the proposed algorithm is that its solution process is very simple and easy to apply. Numerical examples show that for the MNDP without budget constraint, the optimal solution can be found within a few iterations with DDIA. For the MNDP with budget constraint, however, the result depends on the selection of initial values, which leads to different optimal solutions (i.e., different local optimal solutions. Some thoughts are given on how to derive meaningful initial values, such as by considering the budgets of new and reconstruction projects separately.

10. Multimedia over cognitive radio networks algorithms, protocols, and experiments

CERN Document Server

Hu, Fei

2014-01-01

PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

11. A Compression Algorithm in Wireless Sensor Networks of Bearing Monitoring

International Nuclear Information System (INIS)

Zheng Bin; Meng Qingfeng; Wang Nan; Li Zhi

2011-01-01

The energy consumption of wireless sensor networks (WSNs) is always an important problem in the application of wireless sensor networks. This paper proposes a data compression algorithm to reduce amount of data and energy consumption during the data transmission process in the on-line WSNs-based bearing monitoring system. The proposed compression algorithm is based on lifting wavelets, Zerotree coding and Hoffman coding. Among of that, 5/3 lifting wavelets is used for dividing data into different frequency bands to extract signal characteristics. Zerotree coding is applied to calculate the dynamic thresholds to retain the attribute data. The attribute data are then encoded by Hoffman coding to further enhance the compression ratio. In order to validate the algorithm, simulation is carried out by using Matlab. The result of simulation shows that the proposed algorithm is very suitable for the compression of bearing monitoring data. The algorithm has been successfully used in online WSNs-based bearing monitoring system, in which TI DSP TMS320F2812 is used to realize the algorithm.

12. Metaheuristic Algorithms for Convolution Neural Network.

Science.gov (United States)

Rere, L M Rasdi; Fanany, Mohamad Ivan; Arymurthy, Aniati Murni

2016-01-01

A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN), a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent).

13. Metaheuristic Algorithms for Convolution Neural Network

Directory of Open Access Journals (Sweden)

L. M. Rasdi Rere

2016-01-01

Full Text Available A typical modern optimization technique is usually either heuristic or metaheuristic. This technique has managed to solve some optimization problems in the research area of science, engineering, and industry. However, implementation strategy of metaheuristic for accuracy improvement on convolution neural networks (CNN, a famous deep learning method, is still rarely investigated. Deep learning relates to a type of machine learning technique, where its aim is to move closer to the goal of artificial intelligence of creating a machine that could successfully perform any intellectual tasks that can be carried out by a human. In this paper, we propose the implementation strategy of three popular metaheuristic approaches, that is, simulated annealing, differential evolution, and harmony search, to optimize CNN. The performances of these metaheuristic methods in optimizing CNN on classifying MNIST and CIFAR dataset were evaluated and compared. Furthermore, the proposed methods are also compared with the original CNN. Although the proposed methods show an increase in the computation time, their accuracy has also been improved (up to 7.14 percent.

14. Information dynamics algorithm for detecting communities in networks

Science.gov (United States)

Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

2012-11-01

The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

15. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.

Science.gov (United States)

Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

2016-01-01

The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper.

16. Development of target-tracking algorithms using neural network

Energy Technology Data Exchange (ETDEWEB)

Park, Dong Sun; Lee, Joon Whaoan; Yoon, Sook; Baek, Seong Hyun; Lee, Myung Jae [Chonbuk National University, Chonjoo (Korea)

1998-04-01

The utilization of remote-control robot system in atomic power plants or nuclear-related facilities grows rapidly, to protect workers form high radiation environments. Such applications require complete stability of the robot system, so that precisely tracking the robot is essential for the whole system. This research is to accomplish the goal by developing appropriate algorithms for remote-control robot systems. A neural network tracking system is designed and experimented to trace a robot Endpoint. This model is aimed to utilized the excellent capabilities of neural networks; nonlinear mapping between inputs and outputs, learning capability, and generalization capability. The neural tracker consists of two networks for position detection and prediction. Tracking algorithms are developed and experimented for the two models. Results of the experiments show that both models are promising as real-time target-tracking systems for remote-control robot systems. (author). 10 refs., 47 figs.

17. Algorithm for queueing networks with multi-rate traffic

DEFF Research Database (Denmark)

Iversen, Villy Bæk; Ko, King-Tim

2011-01-01

the nodes behave as independent nodes. For closed queueing networks with multiple servers in every node and multi-rate services we may apply multidimensional convolution algorithm to aggregate the nodes so that we end up with two nodes, the aggregated node and a single node, for which we can calculate......In this paper we present a new algorithm for evaluating queueing networks with multi-rate traffic. The detailed state space of a node is evaluated by explicit formulæ. We consider reversible nodes with multi-rate traffic and find the state probabilities by taking advantage of local balance. Theory...... of queueing networks in general, presumes that we have product form between the nodes. Otherwise, we have the state space explosion. Even so, the detailed state space of each node may become very large because there is no product form between chains inside a node. A prerequisite for product form...

18. A blind matching algorithm for cognitive radio networks

KAUST Repository

Hamza, Doha R.

2016-08-15

We consider a cognitive radio network where secondary users (SUs) are allowed access time to the spectrum belonging to the primary users (PUs) provided that they relay primary messages. PUs and SUs negotiate over allocations of the secondary power that will be used to relay PU data. We formulate the problem as a generalized assignment market to find an epsilon pairwise stable matching. We propose a distributed blind matching algorithm (BLMA) to produce the pairwise-stable matching plus the associated power allocations. We stipulate a limited information exchange in the network so that agents only calculate their own utilities but no information is available about the utilities of any other users in the network. We establish convergence to epsilon pairwise stable matchings in finite time. Finally we show that our algorithm exhibits a limited degradation in PU utility when compared with the Pareto optimal results attained using perfect information assumptions. © 2016 IEEE.

19. District Heating Network Design and Configuration Optimization with Genetic Algorithm

DEFF Research Database (Denmark)

Li, Hongwei; Svendsen, Svend

2013-01-01

In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

20. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

Directory of Open Access Journals (Sweden)

Ashish Jain

2012-07-01

Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

1. Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks

CERN Document Server

2012-01-01

This book introduces resource-aware data fusion algorithms to gather and combine data from multiple sources (e.g., sensors) in order to achieve inferences.  These techniques can be used in centralized and distributed systems to overcome sensor failure, technological limitation, and spatial and temporal coverage problems. The algorithms described in this book are evaluated with simulation and experimental results to show they will maintain data integrity and make data useful and informative.   Describes techniques to overcome real problems posed by wireless sensor networks deployed in circumstances that might interfere with measurements provided, such as strong variations of pressure, temperature, radiation, and electromagnetic noise; Uses simulation and experimental results to evaluate algorithms presented and includes real test-bed; Includes case study implementing data fusion algorithms on a remote monitoring framework for sand production in oil pipelines.

2. Consensus algorithm in smart grid and communication networks

Science.gov (United States)

Alfagee, Husain Abdulaziz

On a daily basis, consensus theory attracts more and more researches from different areas of interest, to apply its techniques to solve technical problems in a way that is faster, more reliable, and even more precise than ever before. A power system network is one of those fields that consensus theory employs extensively. The use of the consensus algorithm to solve the Economic Dispatch and Load Restoration Problems is a good example. Instead of a conventional central controller, some researchers have explored an algorithm to solve the above mentioned problems, in a distribution manner, using the consensus algorithm, which is based on calculation methods, i.e., non estimation methods, for updating the information consensus matrix. Starting from this point of solving these types of problems mentioned, specifically, in a distribution fashion, using the consensus algorithm, we have implemented a new advanced consensus algorithm. It is based on the adaptive estimation techniques, such as the Gradient Algorithm and the Recursive Least Square Algorithm, to solve the same problems. This advanced work was tested on different case studies that had formerly been explored, as seen in references 5, 7, and 18. Three and five generators, or agents, with different topologies, correspond to the Economic Dispatch Problem and the IEEE 16-Bus power system corresponds to the Load Restoration Problem. In all the cases we have studied, the results met our expectations with extreme accuracy, and completely matched the results of the previous researchers. There is little question that this research proves the capability and dependability of using the consensus algorithm, based on the estimation methods as the Gradient Algorithm and the Recursive Least Square Algorithm to solve such power problems.

3. Properties of healthcare teaming networks as a function of network construction algorithms.

Directory of Open Access Journals (Sweden)

Martin S Zand

Full Text Available Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106-108 individual claims per year, making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast

4. Neural network fusion capabilities for efficient implementation of tracking algorithms

Science.gov (United States)

Sundareshan, Malur K.; Amoozegar, Farid

1997-03-01

The ability to efficiently fuse information of different forms to facilitate intelligent decision making is one of the major capabilities of trained multilayer neural networks that is now being recognized. While development of innovative adaptive control algorithms for nonlinear dynamical plants that attempt to exploit these capabilities seems to be more popular, a corresponding development of nonlinear estimation algorithms using these approaches, particularly for application in target surveillance and guidance operations, has not received similar attention. We describe the capabilities and functionality of neural network algorithms for data fusion and implementation of tracking filters. To discuss details and to serve as a vehicle for quantitative performance evaluations, the illustrative case of estimating the position and velocity of surveillance targets is considered. Efficient target- tracking algorithms that can utilize data from a host of sensing modalities and are capable of reliably tracking even uncooperative targets executing fast and complex maneuvers are of interest in a number of applications. The primary motivation for employing neural networks in these applications comes from the efficiency with which more features extracted from different sensor measurements can be utilized as inputs for estimating target maneuvers. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The innovation lies in the way the fusion of multisensor data is accomplished to facilitate improved estimation without increasing the computational complexity of the dynamical state estimator itself.

5. GPS-Free Localization Algorithm for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Lei Wang

2010-06-01

Full Text Available Localization is one of the most fundamental problems in wireless sensor networks, since the locations of the sensor nodes are critical to both network operations and most application level tasks. A GPS-free localization scheme for wireless sensor networks is presented in this paper. First, we develop a standardized clustering-based approach for the local coordinate system formation wherein a multiplication factor is introduced to regulate the number of master and slave nodes and the degree of connectivity among master nodes. Second, using homogeneous coordinates, we derive a transformation matrix between two Cartesian coordinate systems to efficiently merge them into a global coordinate system and effectively overcome the flip ambiguity problem. The algorithm operates asynchronously without a centralized controller; and does not require that the location of the sensors be known a priori. A set of parameter-setting guidelines for the proposed algorithm is derived based on a probability model and the energy requirements are also investigated. A simulation analysis on a specific numerical example is conducted to validate the mathematical analytical results. We also compare the performance of the proposed algorithm under a variety multiplication factor, node density and node communication radius scenario. Experiments show that our algorithm outperforms existing mechanisms in terms of accuracy and convergence time.

6. Distributed interference alignment iterative algorithms in symmetric wireless network

Directory of Open Access Journals (Sweden)

YANG Jingwen

2015-02-01

Full Text Available Interference alignment is a novel interference alignment way,which is widely noted all of the world.Interference alignment overlaps interference in the same signal space at receiving terminal by precoding so as to thoroughly eliminate the influence of interference impacted on expected signals,thus making the desire user achieve the maximum degree of freedom.In this paper we research three typical algorithms for realizing interference alignment,including minimizing the leakage interference,maximizing Signal to Interference plus Noise Ratio (SINR and minimizing mean square error(MSE.All of these algorithms utilize the reciprocity of wireless network,and iterate the precoders between original network and the reverse network so as to achieve interference alignment.We use the uplink transmit rate to analyze the performance of these three algorithms.Numerical simulation results show the advantages of these algorithms.which is the foundation for the further study in the future.The feasibility and future of interference alignment are also discussed at last.

7. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

Directory of Open Access Journals (Sweden)

Kai Lin

2016-07-01

Full Text Available With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC. The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

8. An Adaptive Power Efficient Packet Scheduling Algorithm for Wimax Networks

OpenAIRE

R Murali Prasad; P. Satish Kumar

2010-01-01

Admission control schemes and scheduling algorithms are designed to offer QoS services in 802.16/802.16e networks and a number of studies have investigated these issues. But the channel condition and priority of traffic classes are very rarely considered in the existing scheduling algorithms. Although a number of energy saving mechanisms have been proposed for the IEEE 802.16e, to minimize the power consumption of IEEE 802.16e mobile stations with multiple real-time connections has not yet be...

9. Software-Defined Congestion Control Algorithm for IP Networks

Directory of Open Access Journals (Sweden)

Yao Hu

2017-01-01

Full Text Available The rapid evolution of computer networks, increase in the number of Internet users, and popularity of multimedia applications have exacerbated the congestion control problem. Congestion control is a key factor in ensuring network stability and robustness. When the underlying network and flow information are unknown, the transmission control protocol (TCP must increase or reduce the size of the congestion window to adjust to the changes of traffic in the Internet Protocol (IP network. However, it is possible that a software-defined approach can relieve the network congestion problem more efficiently. This approach has the characteristic of centralized control and can obtain a global topology for unified network management. In this paper, we propose a software-defined congestion control (SDCC algorithm for an IP network. We consider the difference between TCP and the user datagram protocol (UDP and propose a new method to judge node congestion. We initially apply the congestion control mechanism in the congested nodes and then optimize the link utilization to control network congestion.

10. District Heating Network Design and Configuration Optimization with Genetic Algorithm

DEFF Research Database (Denmark)

Li, Hongwei; Svendsen, Svend

2011-01-01

In this paper, the configuration of a district heating (DH) network which connects from the heating plant to the end users was optimized with emphasizing the network thermal performance. Each end user in the network represents a building block. The locations of the building blocks are fixed while...... the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...... by multi factors as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding pressure and temperature limitation, as well as the corresponding network heat loss....

11. ZAP: a distributed channel assignment algorithm for cognitive radio networks

Directory of Open Access Journals (Sweden)

Munaretto Anelise

2011-01-01

Full Text Available Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another challenge is the optimization of network capacity through interference minimization. In contrast to related work, ZAP addresses these challenges with a fully distributed approach based only on local (neighborhood knowledge, while significantly reducing computational costs and the number of messages required for channel assignment. Simulations confirm the efficiency of ZAP in terms of (i the performance tradeoff between different metrics and (ii the fast achievement of a suitable assignment solution regardless of network size and density.

12. VSMURF: A Novel Sliding Window Cleaning Algorithm for RFID Networks

Directory of Open Access Journals (Sweden)

He Xu

2017-01-01

Full Text Available Radio Frequency Identification (RFID is one of the key technologies of the Internet of Things (IoT and is used in many areas, such as mobile payments, public transportation, smart lock, and environment protection. However, the performance of RFID equipment can be easily affected by the surrounding environment, such as electronic productions and metal appliances. These can impose an impact on the RF signal, which makes the collection of RFID data unreliable. Usually, the unreliability of RFID source data includes three aspects: false negatives, false positives, and dirty data. False negatives are the key problem, as the probability of false positives and dirty data occurrence is relatively small. This paper proposes a novel sliding window cleaning algorithm called VSMURF, which is based on the traditional SMURF algorithm which combines the dynamic change of tags and the value analysis of confidence. Experimental results show that VSMURF algorithm performs better in most conditions and when the tag’s speed is low or high. In particular, if the velocity parameter is set to 2 m/epoch, our proposed VSMURF algorithm performs better than SMURF. The results also show that VSMURF algorithm has better performance than other algorithms in solving the problem of false negatives for RFID networks.

13. A HYBRID HOPFIELD NEURAL NETWORK AND TABU SEARCH ALGORITHM TO SOLVE ROUTING PROBLEM IN COMMUNICATION NETWORK

Directory of Open Access Journals (Sweden)

MANAR Y. KASHMOLA

2012-06-01

Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.

14. Transmission network expansion planning based on hybridization model of neural networks and harmony search algorithm

Directory of Open Access Journals (Sweden)

2012-01-01

Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.

15. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

Energy Technology Data Exchange (ETDEWEB)

Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

1993-07-01

A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

16. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

International Nuclear Information System (INIS)

Bornholdt, S.

1993-07-01

A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

17. ID card number detection algorithm based on convolutional neural network

Science.gov (United States)

Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

2018-04-01

In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

18. On system behaviour using complex networks of a compression algorithm

Science.gov (United States)

Walker, David M.; Correa, Debora C.; Small, Michael

2018-01-01

We construct complex networks of scalar time series using a data compression algorithm. The structure and statistics of the resulting networks can be used to help characterize complex systems, and one property, in particular, appears to be a useful discriminating statistic in surrogate data hypothesis tests. We demonstrate these ideas on systems with known dynamical behaviour and also show that our approach is capable of identifying behavioural transitions within electroencephalogram recordings as well as changes due to a bifurcation parameter of a chaotic system. The technique we propose is dependent on a coarse grained quantization of the original time series and therefore provides potential for a spatial scale-dependent characterization of the data. Finally the method is as computationally efficient as the underlying compression algorithm and provides a compression of the salient features of long time series.

19. Energy Efficient Distributed Fault Identification Algorithm in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Meenakshi Panda

2014-01-01

Full Text Available A distributed fault identification algorithm is proposed here to find both hard and soft faulty sensor nodes present in wireless sensor networks. The algorithm is distributed, self-detectable, and can detect the most common byzantine faults such as stuck at zero, stuck at one, and random data. In the proposed approach, each sensor node gathered the observed data from the neighbors and computed the mean to check whether faulty sensor node is present or not. If a node found the presence of faulty sensor node, then compares observed data with the data of the neighbors and predict probable fault status. The final fault status is determined by diffusing the fault information from the neighbors. The accuracy and completeness of the algorithm are verified with the help of statistical model of the sensors data. The performance is evaluated in terms of detection accuracy, false alarm rate, detection latency and message complexity.

20. Using neural networks to speed up optimization algorithms

CERN Document Server

Bazan, M

2000-01-01

The paper presents the application of radial-basis-function (RBF) neural networks to speed up deterministic search algorithms used for the design and optimization of superconducting LHC magnets. The optimization of the iron yoke of the main dipoles requires a number of numerical field computations per trial solution as the field quality depends on the excitation of the magnets. This results in computation times of about 30 minutes for each objective function evaluation (on a DEC-Alpha 600/333) and only the most robust (deterministic) optimization algorithms can be applied. Using a RBF function approximator, the achieved speed-up of the search algorithm is in the order of 25% for problems with two parameters and about 18% for problems with three and five design variables. (13 refs).

1. Two-phase hybrid cryptography algorithm for wireless sensor networks

Directory of Open Access Journals (Sweden)

Rawya Rizk

2015-12-01

Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.

2. Improved Differential Evolution Algorithm for Wireless Sensor Network Coverage Optimization

Directory of Open Access Journals (Sweden)

Xing Xu

2014-04-01

Full Text Available In order to serve for the ecological monitoring efficiency of Poyang Lake, an improved hybrid algorithm, mixed with differential evolution and particle swarm optimization, is proposed and applied to optimize the coverage problem of wireless sensor network. And then, the affect of the population size and the number of iterations on the coverage performance are both discussed and analyzed. The four kinds of statistical results about the coverage rate are obtained through lots of simulation experiments.

3. High performance simplex solver

OpenAIRE

Huangfu, Qi

2013-01-01

The dual simplex method is frequently the most efficient technique for solving linear programming (LP) problems. This thesis describes an efficient implementation of the sequential dual simplex method and the design and development of two parallel dual simplex solvers. In serial, many advanced techniques for the (dual) simplex method are implemented, including sparse LU factorization, hyper-sparse linear system solution technique, efficient approaches to updating LU factors and...

4. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

Science.gov (United States)

Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

2014-01-01

The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

5. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

Directory of Open Access Journals (Sweden)

Omar Elizarraras

2014-01-01

Full Text Available The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15% compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput.

6. Energy Aware Simple Ant Routing Algorithm for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Sohail Jabbar

2015-01-01

Full Text Available Network lifetime is one of the most prominent barriers in deploying wireless sensor networks for large-scale applications because these networks employ sensors with nonrenewable scarce energy resources. Sensor nodes dissipate most of their energy in complex routing mechanisms. To cope with limited energy problem, we present EASARA, an energy aware simple ant routing algorithm based on ant colony optimization. Unlike most algorithms, EASARA strives to avoid low energy routes and optimizes the routing process through selection of least hop count path with more energy. It consists of three phases, that is, route discovery, forwarding node, and route selection. We have improved the route discovery procedure and mainly concentrate on energy efficient forwarding node and route selection, so that the network lifetime can be prolonged. The four possible cases of forwarding node and route selection are presented. The performance of EASARA is validated through simulation. Simulation results demonstrate the performance supremacy of EASARA over contemporary scheme in terms of various metrics.

7. A reverse engineering algorithm for neural networks, applied to the subthalamopallidal network of basal ganglia.

Science.gov (United States)

Floares, Alexandru George

2008-01-01

Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.

8. MODA: an efficient algorithm for network motif discovery in biological networks.

Science.gov (United States)

Omidi, Saeed; Schreiber, Falk; Masoudi-Nejad, Ali

2009-10-01

In recent years, interest has been growing in the study of complex networks. Since Erdös and Rényi (1960) proposed their random graph model about 50 years ago, many researchers have investigated and shaped this field. Many indicators have been proposed to assess the global features of networks. Recently, an active research area has developed in studying local features named motifs as the building blocks of networks. Unfortunately, network motif discovery is a computationally hard problem and finding rather large motifs (larger than 8 nodes) by means of current algorithms is impractical as it demands too much computational effort. In this paper, we present a new algorithm (MODA) that incorporates techniques such as a pattern growth approach for extracting larger motifs efficiently. We have tested our algorithm and found it able to identify larger motifs with more than 8 nodes more efficiently than most of the current state-of-the-art motif discovery algorithms. While most of the algorithms rely on induced subgraphs as motifs of the networks, MODA is able to extract both induced and non-induced subgraphs simultaneously. The MODA source code is freely available at: http://LBB.ut.ac.ir/Download/LBBsoft/MODA/

9. Algorithm for queueing networks with multi-rate traffic

DEFF Research Database (Denmark)

Iversen, Villy Bæk; King-Tim, Ko

2011-01-01

the nodes behave as independent nodes. For closed queueing networks with multiple servers in every node and multi-rate services we may apply multidimensional convolutions to aggregate the nodes so that we end up with two nodes, the aggregated node and a single node, for which we can calculate the detailed......In this paper we present a new algorithm for evaluating queueing networks with multi-rate traffic. The detailed state space of a node is evaluated by explicit formulæ. We consider reversible nodes with multi-rate traffic and find the state probabilities by taking advantage of local balance. Theory...... of queueing networks in general presumes that we have product form between the nodes. Other ways we have the state space explosion. Even so the detailed state space of each node may easily become very large because there is no product form between chains inside a node. A prerequisite for product form...

10. Secure Multicast Routing Algorithm for Wireless Mesh Networks

Directory of Open Access Journals (Sweden)

Rakesh Matam

2016-01-01

Full Text Available Multicast is an indispensable communication technique in wireless mesh network (WMN. Many applications in WMN including multicast TV, audio and video conferencing, and multiplayer social gaming use multicast transmission. On the other hand, security in multicast transmissions is crucial, without which the network services are significantly disrupted. Existing secure routing protocols that address different active attacks are still vulnerable due to subtle nature of flaws in protocol design. Moreover, existing secure routing protocols assume that adversarial nodes cannot share an out-of-band communication channel which rules out the possibility of wormhole attack. In this paper, we propose SEMRAW (SEcure Multicast Routing Algorithm for Wireless mesh network that is resistant against all known active threats including wormhole attack. SEMRAW employs digital signatures to prevent a malicious node from gaining illegitimate access to the message contents. Security of SEMRAW is evaluated using the simulation paradigm approach.

11. A gene network simulator to assess reverse engineering algorithms.

Science.gov (United States)

Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

2009-03-01

In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

12. Algorithms for energy efficiency in wireless sensor networks

Energy Technology Data Exchange (ETDEWEB)

Busse, M

2007-01-21

The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

13. Algorithms for energy efficiency in wireless sensor networks

Energy Technology Data Exchange (ETDEWEB)

Busse, M.

2007-01-21

The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

14. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

Science.gov (United States)

Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

2018-01-01

This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

15. Comparison of evolutionary algorithms in gene regulatory network model inference.

LENUS (Irish Health Repository)

2010-01-01

ABSTRACT: BACKGROUND: The evolution of high throughput technologies that measure gene expression levels has created a data base for inferring GRNs (a process also known as reverse engineering of GRNs). However, the nature of these data has made this process very difficult. At the moment, several methods of discovering qualitative causal relationships between genes with high accuracy from microarray data exist, but large scale quantitative analysis on real biological datasets cannot be performed, to date, as existing approaches are not suitable for real microarray data which are noisy and insufficient. RESULTS: This paper performs an analysis of several existing evolutionary algorithms for quantitative gene regulatory network modelling. The aim is to present the techniques used and offer a comprehensive comparison of approaches, under a common framework. Algorithms are applied to both synthetic and real gene expression data from DNA microarrays, and ability to reproduce biological behaviour, scalability and robustness to noise are assessed and compared. CONCLUSIONS: Presented is a comparison framework for assessment of evolutionary algorithms, used to infer gene regulatory networks. Promising methods are identified and a platform for development of appropriate model formalisms is established.

16. A Nodes Deployment Algorithm in Wireless Sensor Network Based on Distribution

Directory of Open Access Journals (Sweden)

Song Yuli

2014-07-01

Full Text Available Wireless sensor network coverage is a basic problem of wireless sensor network. In this paper, we propose a wireless sensor network node deployment algorithm base on distribution in order to form an efficient wireless sensor network. The iteratively greedy algorithm is used in this paper to choose priority nodes into active until the entire network is covered by wireless sensor nodes, the whole network to multiply connected. The simulation results show that the distributed wireless sensor network node deployment algorithm can form a multiply connected wireless sensor network.

17. A Flexible Reservation Algorithm for Advance Network Provisioning

Energy Technology Data Exchange (ETDEWEB)

Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

2010-04-12

Many scientific applications need support from a communication infrastructure that provides predictable performance, which requires effective algorithms for bandwidth reservations. Network reservation systems such as ESnet's OSCARS, establish guaranteed bandwidth of secure virtual circuits for a certain bandwidth and length of time. However, users currently cannot inquire about bandwidth availability, nor have alternative suggestions when reservation requests fail. In general, the number of reservation options is exponential with the number of nodes n, and current reservation commitments. We present a novel approach for path finding in time-dependent networks taking advantage of user-provided parameters of total volume and time constraints, which produces options for earliest completion and shortest duration. The theoretical complexity is only O(n2r2) in the worst-case, where r is the number of reservations in the desired time interval. We have implemented our algorithm and developed efficient methodologies for incorporation into network reservation frameworks. Performance measurements confirm the theoretical predictions.

18. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

Science.gov (United States)

Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

2015-06-15

Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

19. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

Science.gov (United States)

Garro, Beatriz A; Vázquez, Roberto A

2015-01-01

Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

20. The Forward-Reverse Algorithm for Stochastic Reaction Networks

KAUST Repository

Bayer, Christian

2015-01-07

In this work, we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which we solve a set of deterministic optimization problems where the SRNs are replaced by the classical ODE rates; then, during the second phase, the Monte Carlo version of the EM algorithm is applied starting from the output of the previous phase. Starting from a set of over-dispersed seeds, the output of our two-phase method is a cluster of maximum likelihood estimates obtained by using convergence assessment techniques from the theory of Markov chain Monte Carlo.

1. APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION

Energy Technology Data Exchange (ETDEWEB)

Musson, John C. [JLAB; Seaton, Chad [JLAB; Spata, Mike F. [JLAB; Yan, Jianxun [JLAB

2012-11-01

Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementation of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.

2. Optimization of neural network algorithm of the land market description

Directory of Open Access Journals (Sweden)

M. A. Karpovich

2016-01-01

Full Text Available The advantages of neural network technology is shown in comparison of traditional descriptions of dynamically changing systems, which include a modern land market. The basic difficulty arising in the practical implementation of neural network models of the land market and construction products is revealed It is the formation of a representative set of training and test examples. The requirements which are necessary for the correct description of the current economic situation has been determined, it consists in the fact that Train-paid-set in the feature space should not has the ranges with a low density of observations. The methods of optimization of empirical array, which allow to avoid the long-range extrapolation of data from range of concentration of the set of examples are formulated. It is shown that a radical method of optimization a set of training and test examples enclosing to collect supplemantary information, is associated with significant costs time and resources for the economic problems and the ratio of cost / efficiency is less efficient than an algorithm optimization neural network models the earth market fixed set of empirical data. Algorithm of optimization based on the transformation of arrays of information which represents the expansion of the ranges of concentration of the set of examples and compression the ranges of low density of observations is analyzed in details. The significant reduction in the relative error of land price description is demonstrated on the specific example of Voronezh region market of lands which intend for road construction, it makes the using of radical method of empirical optimization of the array costeffective with accounting the significant absolute value of the land. The high economic efficiency of the proposed algorithms is demonstrated.

3. The production route selection algorithm in virtual manufacturing networks

Science.gov (United States)

Krenczyk, D.; Skolud, B.; Olender, M.

2017-08-01

The increasing requirements and competition in the global market are challenges for the companies profitability in production and supply chain management. This situation became the basis for construction of virtual organizations, which are created in response to temporary needs. The problem of the production flow planning in virtual manufacturing networks is considered. In the paper the algorithm of the production route selection from the set of admissible routes, which meets the technology and resource requirements and in the context of the criterion of minimum cost is proposed.

4. Path searching in switching networks using cellular algorithm

Energy Technology Data Exchange (ETDEWEB)

Koczy, L T; Langer, J; Legendi, T

1981-01-01

After a survey of the important statements in the paper A Mathematical Model of Path Searching in General Type Switching Networks (see IBID., vol.25, no.1, p.31-43, 1981) the authors consider the possible implementation for cellular automata of the algorithm introduced there. The cellular field used consists of 5 neighbour 8 state cells. Running times required by a traditional serial processor and by the cellular field, respectively, are compared. By parallel processing this running time can be reduced. 5 references.

5. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

Science.gov (United States)

Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

2016-10-13

The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

6. Robustness and Optimization of Complex Networks : Reconstructability, Algorithms and Modeling

NARCIS (Netherlands)

Liu, D.

2013-01-01

The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our

7. Evaluation of clustering algorithms for protein-protein interaction networks

Directory of Open Access Journals (Sweden)

van Helden Jacques

2006-11-01

Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

8. An algorithm of opinion leaders mining based on signed network

Science.gov (United States)

Cao, Linlin; Zheng, Mingchun; Zhang, Yuanyuan; Zhang, Fuming

2018-04-01

With the rapid development of mobile Internet, user gradually become the leader of social media, the abruptly rise of new media has changed the traditional information's dissemination pattern and regularity. There is new era significance of opinion leaders, gatekeepers in the classical theory of mass communication, and it has further expansion and extension to a certain extent. In the existing mining of opinion leaders, it is mainly from the research of network structure and user behavior without considering an important attribute: whether the user has a real impact. In this paper, we take the symbolic network as the research tool, by giving symbol which correspondingly represents support or oppose to the link about point of view relationship between users and combining traditional algorithms of mining with symbolism which can describe the change of view between users, we will get the opinion leader who has real impact on users, then the result is more accurate and effective.

9. Validating module network learning algorithms using simulated data.

Science.gov (United States)

Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves

2007-05-03

In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network

10. Unwinding the hairball graph: Pruning algorithms for weighted complex networks

Science.gov (United States)

Dianati, Navid

2016-01-01

Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.

11. Function-Oriented Networking and On-Demand Routing System in Network Using Ant Colony Optimization Algorithm

Directory of Open Access Journals (Sweden)

Young-Bo Sim

2017-11-01

Full Text Available In this paper, we proposed and developed Function-Oriented Networking (FON, a platform for network users. It has a different philosophy as opposed to technologies for network managers of Software-Defined Networking technology, OpenFlow. It is a technology that can immediately reflect the demands of the network users in the network, unlike the existing OpenFlow and Network Functions Virtualization (NFV, which do not reflect directly the needs of the network users. It allows the network user to determine the policy of the direct network, so it can be applied more precisely than the policy applied by the network manager. This is expected to increase the satisfaction of the service users when the network users try to provide new services. We developed FON function that performs on-demand routing for Low-Delay Required service. We analyzed the characteristics of the Ant Colony Optimization (ACO algorithm and found that the algorithm is suitable for low-delay required services. It was also the first in the world to implement the routing software using ACO Algorithm in the real Ethernet network. In order to improve the routing performance, several algorithms of the ACO Algorithm have been developed to enable faster path search-routing and path recovery. The relationship between the network performance index and the ACO routing parameters is derived, and the results are compared and analyzed. Through this, it was possible to develop the ACO algorithm.

12. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

Science.gov (United States)

Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

2017-08-01

Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

13. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

Science.gov (United States)

Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

2014-12-01

Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

14. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

Directory of Open Access Journals (Sweden)

Lianbo Ma

2014-01-01

Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

15. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

Science.gov (United States)

Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

2014-01-01

This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

16. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

Science.gov (United States)

Li, Yuhong; Gong, Guanghong; Li, Ni

2018-01-01

In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

17. Combining neural networks and genetic algorithms for hydrological flow forecasting

Science.gov (United States)

Neruda, Roman; Srejber, Jan; Neruda, Martin; Pascenko, Petr

2010-05-01

We present a neural network approach to rainfall-runoff modeling for small size river basins based on several time series of hourly measured data. Different neural networks are considered for short time runoff predictions (from one to six hours lead time) based on runoff and rainfall data observed in previous time steps. Correlation analysis shows that runoff data, short time rainfall history, and aggregated API values are the most significant data for the prediction. Neural models of multilayer perceptron and radial basis function networks with different numbers of units are used and compared with more traditional linear time series predictors. Out of possible 48 hours of relevant history of all the input variables, the most important ones are selected by means of input filters created by a genetic algorithm. The genetic algorithm works with population of binary encoded vectors defining input selection patterns. Standard genetic operators of two-point crossover, random bit-flipping mutation, and tournament selection were used. The evaluation of objective function of each individual consists of several rounds of building and testing a particular neural network model. The whole procedure is rather computational exacting (taking hours to days on a desktop PC), thus a high-performance mainframe computer has been used for our experiments. Results based on two years worth data from the Ploucnice river in Northern Bohemia suggest that main problems connected with this approach to modeling are ovetraining that can lead to poor generalization, and relatively small number of extreme events which makes it difficult for a model to predict the amplitude of the event. Thus, experiments with both absolute and relative runoff predictions were carried out. In general it can be concluded that the neural models show about 5 per cent improvement in terms of efficiency coefficient over liner models. Multilayer perceptrons with one hidden layer trained by back propagation algorithm and

18. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

International Nuclear Information System (INIS)

Zu Yun-Xiao; Zhou Jie

2012-01-01

Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate. (geophysics, astronomy, and astrophysics)

19. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

Science.gov (United States)

Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

2018-03-01

Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

20. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

DEFF Research Database (Denmark)

Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

2013-01-01

This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

1. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network.

Science.gov (United States)

Rahman, Ziaur; Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A; Othman, Mohamed

2018-01-01

Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

2. Totally opportunistic routing algorithm (TORA) for underwater wireless sensor network

Science.gov (United States)

Hashim, Fazirulhisyam; Rasid, Mohd Fadlee A.; Othman, Mohamed

2018-01-01

Underwater Wireless Sensor Network (UWSN) has emerged as promising networking techniques to monitor and explore oceans. Research on acoustic communication has been conducted for decades, but had focused mostly on issues related to physical layer such as high latency, low bandwidth, and high bit error. However, data gathering process is still severely limited in UWSN due to channel impairment. One way to improve data collection in UWSN is the design of routing protocol. Opportunistic Routing (OR) is an emerging technique that has the ability to improve the performance of wireless network, notably acoustic network. In this paper, we propose an anycast, geographical and totally opportunistic routing algorithm for UWSN, called TORA. Our proposed scheme is designed to avoid horizontal transmission, reduce end to end delay, overcome the problem of void nodes and maximize throughput and energy efficiency. We use TOA (Time of Arrival) and range based equation to localize nodes recursively within a network. Once nodes are localized, their location coordinates and residual energy are used as a matrix to select the best available forwarder. All data packets may or may not be acknowledged based on the status of sender and receiver. Thus, the number of acknowledgments for a particular data packet may vary from zero to 2-hop. Extensive simulations were performed to evaluate the performance of the proposed scheme for high network traffic load under very sparse and very dense network scenarios. Simulation results show that TORA significantly improves the network performance when compared to some relevant existing routing protocols, such as VBF, HHVBF, VAPR, and H2DAB, for energy consumption, packet delivery ratio, average end-to-end delay, average hop-count and propagation deviation factor. TORA reduces energy consumption by an average of 35% of VBF, 40% of HH-VBF, 15% of VAPR, and 29% of H2DAB, whereas the packet delivery ratio has been improved by an average of 43% of VBF, 26

3. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

Directory of Open Access Journals (Sweden)

Wensheng Guo

Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

4. Radioactivity nuclide identification based on BP and LM algorithm neural network

International Nuclear Information System (INIS)

Wang Jihong; Sun Jian; Wang Lianghou

2012-01-01

The paper provides the method which can identify radioactive nuclide based on the BP and LM algorithm neural network. Then, this paper compares the above-mentioned method with FR algorithm. Through the result of the Matlab simulation, the method of radioactivity nuclide identification based on the BP and LM algorithm neural network is superior to the FR algorithm. With the better effect and the higher accuracy, it will be the best choice. (authors)

5. Improved Artificial Fish Algorithm for Parameters Optimization of PID Neural Network

OpenAIRE

Jing Wang; Yourui Huang

2013-01-01

In order to solve problems such as initial weights are difficult to be determined, training results are easy to trap in local minima in optimization process of PID neural network parameters by traditional BP algorithm, this paper proposed a new method based on improved artificial fish algorithm for parameters optimization of PID neural network. This improved artificial fish algorithm uses a composite adaptive artificial fish algorithm based on optimal artificial fish and nearest artificial fi...

6. Genetic Algorithms vs. Artificial Neural Networks in Economic Forecasting Process

Directory of Open Access Journals (Sweden)

Nicolae Morariu

2008-01-01

Full Text Available This paper aims to describe the implementa-tion of a neural network and a genetic algorithm system in order to forecast certain economic indicators of a free market economy. In a free market economy forecasting process precedes the economic planning (a management function, providing important information for the result of the last process. Forecasting represents a starting point in setting of target for a firm, an organization or even a branch of the economy. Thus, the forecasting method used can influence in a significant mode the evolution of an entity. In the following we will describe the forecasting of an economic indicator using two intelligent systems. The difference between the results obtained by this two systems are described in chapter IV.

7. Novel Simplex Unscented Transform and Filter

Institute of Scientific and Technical Information of China (English)

Wan-Chun Li; Ping Wei; Xian-Ci Xiao

2008-01-01

In this paper, a new simplex unscented transform (UT) based Schmidt orthogonal algorithm and a new filter method based on this transform are proposed. This filter has less computation consumption than UKF (unscented Kalman filter), SUKF (simplex unscented Kalman filter) and EKF (extended Kalman filter). Computer simulation shows that this filter has the same performance as UKF and SUKF, and according to the analysis of the computational requirements of EKF, UKF and SUKF, this filter has preferable practicality value. Finally, the appendix shows the efficiency for this UT.

8. Novel maximum-margin training algorithms for supervised neural networks.

Science.gov (United States)

Ludwig, Oswaldo; Nunes, Urbano

2010-06-01

This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by

9. Algorithm for solving multicriteria problem of appointments on the networks

Directory of Open Access Journals (Sweden)

Yu. V. Bugaeev

2017-01-01

Full Text Available To describe complex projects or various jobs that make up a set of interrelated activities, use the network schedule. Several variants of network models are used. 1. For practical use, the Gantt chart is the most widely used - it is a graphical representation of consecutive intervals of time and the use of resources. 2. The network graph is represented as a graph, where the vertices are an event (or its state at a certain point in time, and the connecting arcs (or edges are works. The graph model is used in the work. In this case, the events (the fact of the completion or the beginning of the work correspond to the vertices of the graph, and the work to the arcs, the orientation of which corresponds to the technology of this process. An important role in the project management model is played by the optimal assignment of performers to the existing list of works. With this formulation of the problem, the total implementation time or the length of the critical path on the graph can be used as a criterion. In this case, the criterion is imposed a restriction on the deadline for the execution of work (or the project as a whole. Thus, the total time spent on the project and the length of the critical path are represented by equally important characteristics of the project implementation, and they should be considered as two equivalent criteria for the multicriteria project management task. We have proposed an algorithm, in general, an approximate determination of the set of Pareto-optimal solutions of a given problem.

10. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

International Nuclear Information System (INIS)

Liu, Hui; Tian, Hong-qi; Li, Yan-fei; Zhang, Lei

2015-01-01

11. Automatic optimisation of beam orientations using the simplex algorithm and optimisation of quality control using statistical process control (S.P.C.) for intensity modulated radiation therapy (I.M.R.T.)

International Nuclear Information System (INIS)

Gerard, K.

2008-11-01

Intensity Modulated Radiation Therapy (I.M.R.T.) is currently considered as a technique of choice to increase the local control of the tumour while reducing the dose to surrounding organs at risk. However, its routine clinical implementation is partially held back by the excessive amount of work required to prepare the patient treatment. In order to increase the efficiency of the treatment preparation, two axes of work have been defined. The first axis concerned the automatic optimisation of beam orientations. We integrated the simplex algorithm in the treatment planning system. Starting from the dosimetric objectives set by the user, it can automatically determine the optimal beam orientations that best cover the target volume while sparing organs at risk. In addition to time sparing, the simplex results of three patients with a cancer of the oropharynx, showed that the quality of the plan is also increased compared to a manual beam selection. Indeed, for an equivalent or even a better target coverage, it reduces the dose received by the organs at risk. The second axis of work concerned the optimisation of pre-treatment quality control. We used an industrial method: Statistical Process Control (S.P.C.) to retrospectively analyse the absolute dose quality control results performed using an ionisation chamber at Centre Alexis Vautrin (C.A.V.). This study showed that S.P.C. is an efficient method to reinforce treatment security using control charts. It also showed that our dose delivery process was stable and statistically capable for prostate treatments, which implies that a reduction of the number of controls can be considered for this type of treatment at the C.A.V.. (author)

12. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

Science.gov (United States)

Walter, Florian; Röhrbein, Florian; Knoll, Alois

2015-12-01

The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

13. Distributed k-Means Algorithm and Fuzzy c-Means Algorithm for Sensor Networks Based on Multiagent Consensus Theory.

Science.gov (United States)

Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing

2016-03-03

This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.

14. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

Science.gov (United States)

Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.

2009-01-01

Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207

15. LEARNING ALGORITHM EFFECT ON MULTILAYER FEED FORWARD ARTIFICIAL NEURAL NETWORK PERFORMANCE IN IMAGE CODING

Directory of Open Access Journals (Sweden)

OMER MAHMOUD

2007-08-01

Full Text Available One of the essential factors that affect the performance of Artificial Neural Networks is the learning algorithm. The performance of Multilayer Feed Forward Artificial Neural Network performance in image compression using different learning algorithms is examined in this paper. Based on Gradient Descent, Conjugate Gradient, Quasi-Newton techniques three different error back propagation algorithms have been developed for use in training two types of neural networks, a single hidden layer network and three hidden layers network. The essence of this study is to investigate the most efficient and effective training methods for use in image compression and its subsequent applications. The obtained results show that the Quasi-Newton based algorithm has better performance as compared to the other two algorithms.

16. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

Science.gov (United States)

Du, Tingsong; Hu, Yang; Ke, Xianting

2015-01-01

An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

17. Herpes simplex encephalitis

International Nuclear Information System (INIS)

Bakken, J.S.; Camenga, D.L.; Glazier, M.C.; Coughlan, J.D.

1989-01-01

Early institution of therapy with acyclovir is essential for the successful outcome in herpes simplex encephalitis. Brain biopsy remains the only conclusive means of establishing the diagnosis, but many fear possible biobsy complications. Thus, therapy is often instituted when the diagnosis is clinically suspected, even though cerebral computed tomography and other diagnostic studies may be inconclusive. Nuclear magnetic resonance imaging (NMR) has proven to be a sensitive tool for diagnosing presumptive herpes simplex encephalitis. This case presentation demonstrates the superiority of cerebral NMR over computerized tomography for detecting early temporal lobe changes consistent with acute herpes simplex encephalitis

18. Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network

Science.gov (United States)

Xu, Xiao-Feng

2018-03-01

Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.

19. Wavelength converter placement for different RWA algorithms in wavelength-routed all-optical networks

Science.gov (United States)

Chu, Xiaowen; Li, Bo; Chlamtac, Imrich

2002-07-01

Sparse wavelength conversion and appropriate routing and wavelength assignment (RWA) algorithms are the two key factors in improving the blocking performance in wavelength-routed all-optical networks. It has been shown that the optimal placement of a limited number of wavelength converters in an arbitrary mesh network is an NP complete problem. There have been various heuristic algorithms proposed in the literature, in which most of them assume that a static routing and random wavelength assignment RWA algorithm is employed. However, the existing work shows that fixed-alternate routing and dynamic routing RWA algorithms can achieve much better blocking performance. Our study in this paper further demonstrates that the wavelength converter placement and RWA algorithms are closely related in the sense that a well designed wavelength converter placement mechanism for a particular RWA algorithm might not work well with a different RWA algorithm. Therefore, the wavelength converter placement and the RWA have to be considered jointly. The objective of this paper is to investigate the wavelength converter placement problem under fixed-alternate routing algorithm and least-loaded routing algorithm. Under the fixed-alternate routing algorithm, we propose a heuristic algorithm called Minimum Blocking Probability First (MBPF) algorithm for wavelength converter placement. Under the least-loaded routing algorithm, we propose a heuristic converter placement algorithm called Weighted Maximum Segment Length (WMSL) algorithm. The objective of the converter placement algorithm is to minimize the overall blocking probability. Extensive simulation studies have been carried out over three typical mesh networks, including the 14-node NSFNET, 19-node EON and 38-node CTNET. We observe that the proposed algorithms not only outperform existing wavelength converter placement algorithms by a large margin, but they also can achieve almost the same performance comparing with full wavelength

20. Energy-efficient algorithm for classification of states of wireless sensor network using machine learning methods

Science.gov (United States)

Yuldashev, M. N.; Vlasov, A. I.; Novikov, A. N.

2018-05-01

This paper focuses on the development of an energy-efficient algorithm for classification of states of a wireless sensor network using machine learning methods. The proposed algorithm reduces energy consumption by: 1) elimination of monitoring of parameters that do not affect the state of the sensor network, 2) reduction of communication sessions over the network (the data are transmitted only if their values can affect the state of the sensor network). The studies of the proposed algorithm have shown that at classification accuracy close to 100%, the number of communication sessions can be reduced by 80%.

1. An improved algorithm for finding all minimal paths in a network

International Nuclear Information System (INIS)

Bai, Guanghan; Tian, Zhigang; Zuo, Ming J.

2016-01-01

Minimal paths (MPs) play an important role in network reliability evaluation. In this paper, we report an efficient recursive algorithm for finding all MPs in two-terminal networks, which consist of a source node and a sink node. A linked path structure indexed by nodes is introduced, which accepts both directed and undirected form of networks. The distance between each node and the sink node is defined, and a simple recursive algorithm is presented for labeling the distance for each node. Based on the distance between each node and the sink node, additional conditions for backtracking are incorporated to reduce the number of search branches. With the newly introduced linked node structure, the distances between each node and the sink node, and the additional backtracking conditions, an improved backtracking algorithm for searching for all MPs is developed. In addition, the proposed algorithm can be adapted to search for all minimal paths for each source–sink pair in networks consisting of multiple source nodes and/or multiple sink nodes. Through computational experiments, it is demonstrated that the proposed algorithm is more efficient than existing algorithms when the network size is not too small. The proposed algorithm becomes more advantageous as the size of the network grows. - Highlights: • A linked path structure indexed by nodes is introduced to represent networks. • Additional conditions for backtracking are proposed based on the distance of each node. • An efficient algorithm is developed to find all MPs for two-terminal networks. • The computational efficiency of the algorithm for two-terminal networks is investigated. • The computational efficiency of the algorithm for multi-terminal networks is investigated.

2. Automatic optimisation of beam orientations using the simplex algorithm and optimisation of quality control using statistical process control (S.P.C.) for intensity modulated radiation therapy (I.M.R.T.); Optimisation automatique des incidences des faisceaux par l'algorithme du simplexe et optimisation des controles qualite par la Maitrise Statistique des Processus (MSP) en Radiotherapie Conformationnelle par Modulation d'Intensite (RCMI)

Energy Technology Data Exchange (ETDEWEB)

Gerard, K

2008-11-15

Intensity Modulated Radiation Therapy (I.M.R.T.) is currently considered as a technique of choice to increase the local control of the tumour while reducing the dose to surrounding organs at risk. However, its routine clinical implementation is partially held back by the excessive amount of work required to prepare the patient treatment. In order to increase the efficiency of the treatment preparation, two axes of work have been defined. The first axis concerned the automatic optimisation of beam orientations. We integrated the simplex algorithm in the treatment planning system. Starting from the dosimetric objectives set by the user, it can automatically determine the optimal beam orientations that best cover the target volume while sparing organs at risk. In addition to time sparing, the simplex results of three patients with a cancer of the oropharynx, showed that the quality of the plan is also increased compared to a manual beam selection. Indeed, for an equivalent or even a better target coverage, it reduces the dose received by the organs at risk. The second axis of work concerned the optimisation of pre-treatment quality control. We used an industrial method: Statistical Process Control (S.P.C.) to retrospectively analyse the absolute dose quality control results performed using an ionisation chamber at Centre Alexis Vautrin (C.A.V.). This study showed that S.P.C. is an efficient method to reinforce treatment security using control charts. It also showed that our dose delivery process was stable and statistically capable for prostate treatments, which implies that a reduction of the number of controls can be considered for this type of treatment at the C.A.V.. (author)

3. Efficient Online Learning Algorithms Based on LSTM Neural Networks.

Science.gov (United States)

Ergen, Tolga; Kozat, Suleyman Serdar

2017-09-13

We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.

4. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks

Science.gov (United States)

Li, Yuhong

2018-01-01

In this paper, we propose a novel algorithm—parallel adaptive quantum genetic algorithm—which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes. PMID:29554140

5. Matching algorithm of missile tail flame based on back-propagation neural network

Science.gov (United States)

Huang, Da; Huang, Shucai; Tang, Yidong; Zhao, Wei; Cao, Wenhuan

2018-02-01

This work presents a spectral matching algorithm of missile plume detection that based on neural network. The radiation value of the characteristic spectrum of the missile tail flame is taken as the input of the network. The network's structure including the number of nodes and layers is determined according to the number of characteristic spectral bands and missile types. We can get the network weight matrixes and threshold vectors through training the network using training samples, and we can determine the performance of the network through testing the network using the test samples. A small amount of data cause the network has the advantages of simple structure and practicality. Network structure composed of weight matrix and threshold vector can complete task of spectrum matching without large database support. Network can achieve real-time requirements with a small quantity of data. Experiment results show that the algorithm has the ability to match the precise spectrum and strong robustness.

6. A Location-Aware Vertical Handoff Algorithm for Hybrid Networks

KAUST Repository

Mehbodniya, Abolfazl; Aissa, Sonia; Chitizadeh, Jalil

2010-01-01

. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user's active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network

7. Analysis and Enhancements of Leader Elections algorithms in Mobile Ad Hoc Networks

OpenAIRE

Shayeji, Mohammad H. Al; Al-Azmi, AbdulRahman R.; Al-Azmi, AbdulAziz R.; Samrajesh, M. D.

2012-01-01

Mobile Ad Hoc networks (MANET), distinct from traditional distributed systems, are dynamic and self-organizing networks. MANET requires a leader to coordinate and organize tasks. The challenge is to have the right election algorithm that chooses the right leader based on various factors in MANET. In this paper, we analyze four leader election algorithms used in mobile Ad Hoc Networks. Factors considered in our analysis are time complexity, message complexity, assumptions considered, fault tol...

8. Near-Optimal Resource Allocation in Cooperative Cellular Networks Using Genetic Algorithms

OpenAIRE

Luo, Zihan; Armour, Simon; McGeehan, Joe

2015-01-01

This paper shows how a genetic algorithm can be used as a method of obtaining the near-optimal solution of the resource block scheduling problem in a cooperative cellular network. An exhaustive search is initially implementedto guarantee that the optimal result, in terms of maximizing the bandwidth efficiency of the overall network, is found, and then the genetic algorithm with the properly selected termination conditions is used in the same network. The simulation results show that the genet...

9. Parameterized Algorithms for Survivable Network Design with Uniform Demands

DEFF Research Database (Denmark)

Bang-Jensen, Jørgen; Klinkby Knudsen, Kristine Vitting; Saurabh, Saket

2018-01-01

problem in combinatorial optimization that captures numerous well-studied problems in graph theory and graph algorithms. Consequently, there is a long line of research into exact-polynomial time algorithms as well as approximation algorithms for various restrictions of this problem. An important...... that SNDP is W[1]-hard for both arc and vertex connectivity versions on digraphs. The core of our algorithms is composed of new combinatorial results on connectivity in digraphs and undirected graphs....

10. Serum herpes simplex antibodies

Science.gov (United States)

... causes cold sores (oral herpes). HSV-2 causes genital herpes. How the Test is Performed A blood sample ... person has ever been infected with oral or genital herpes . It looks for antibodies to herpes simplex virus ...

11. DISTRIBUTION NETWORK RECONFIGURATION FOR POWER LOSS MINIMIZATION AND VOLTAGE PROFILE ENHANCEMENT USING ANT LION ALGORITHM

Directory of Open Access Journals (Sweden)

Maryam Shokouhi

2017-06-01

Full Text Available Distribution networks are designed as a ring and operated as a radial form. Therefore, the reconfiguration is a simple and cost-effective way to use existing facilities without the need for any new equipment in distribution networks to achieve various objectives such as: power loss reduction, feeder overload reduction, load balancing, voltage profile improvement, reducing the number of switching considering constraints that ultimately result in the power loss reduction. In this paper, a new method based on the Ant Lion algorithm (a modern meta-heuristic algorithm is provided for the reconfiguration of distribution networks. Considering the extension of the distribution networks and complexity of their communications networks, and the various parameters, using smart techniques is inevitable. The proposed approach is tested on the IEEE 33 & 69-bus radial standard distribution networks. The Evaluation of results in MATLAB software shows the effectiveness of the Ant Lion algorithm in the distribution network reconfiguration.

12. Reliable Ant Colony Routing Algorithm for Dual-Channel Mobile Ad Hoc Networks

Directory of Open Access Journals (Sweden)

YongQiang Li

2018-01-01

Full Text Available For the problem of poor link reliability caused by high-speed dynamic changes and congestion owing to low network bandwidth in ad hoc networks, an ant colony routing algorithm, based on reliable path under dual-channel condition (DSAR, is proposed. First, dual-channel communication mode is used to improve network bandwidth, and a hierarchical network model is proposed to optimize the dual-layer network. Thus, we reduce network congestion and communication delay. Second, a comprehensive reliable path selection strategy is designed, and the reliable path is selected ahead of time to reduce the probability of routing restart. Finally, the ant colony algorithm is used to improve the adaptability of the routing algorithm to changes of network topology. Simulation results show that DSAR improves the reliability of routing, packet delivery, and throughput.

13. Color Image Encryption Algorithm Based on TD-ERCS System and Wavelet Neural Network

Directory of Open Access Journals (Sweden)

Kun Zhang

2015-01-01

Full Text Available In order to solve the security problem of transmission image across public networks, a new image encryption algorithm based on TD-ERCS system and wavelet neural network is proposed in this paper. According to the permutation process and the binary XOR operation from the chaotic series by producing TD-ERCS system and wavelet neural network, it can achieve image encryption. This encryption algorithm is a reversible algorithm, and it can achieve original image in the rule inverse process of encryption algorithm. Finally, through computer simulation, the experiment results show that the new chaotic encryption algorithm based on TD-ERCS system and wavelet neural network is valid and has higher security.

14. A Scheduling Algorithm for Minimizing the Packet Error Probability in Clusterized TDMA Networks

Directory of Open Access Journals (Sweden)

Arash T. Toyserkani

2009-01-01

Full Text Available We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA to access a wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for networks with one or more mutually interfering clusters in Rayleigh fading environments, and the approximation is shown to be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling algorithms.

15. A Wavelet Analysis-Based Dynamic Prediction Algorithm to Network Traffic

Directory of Open Access Journals (Sweden)

Meng Fan-Bo

2016-01-01

Full Text Available Network traffic is a significantly important parameter for network traffic engineering, while it holds highly dynamic nature in the network. Accordingly, it is difficult and impossible to directly predict traffic amount of end-to-end flows. This paper proposes a new prediction algorithm to network traffic using the wavelet analysis. Firstly, network traffic is converted into the time-frequency domain to capture time-frequency feature of network traffic. Secondly, in different frequency components, we model network traffic in the time-frequency domain. Finally, we build the prediction model about network traffic. At the same time, the corresponding prediction algorithm is presented to attain network traffic prediction. Simulation results indicates that our approach is promising.

16. The Dynamic Enterprise Network Composition Algorithm for Efficient Operation in Cloud Manufacturing

Directory of Open Access Journals (Sweden)

Gilseung Ahn

2016-11-01

Full Text Available As a service oriented and networked model, cloud manufacturing (CM has been proposed recently for solving a variety of manufacturing problems, including diverse requirements from customers. In CM, on-demand manufacturing services are provided by a temporary production network composed of several enterprises participating within an enterprise network. In other words, the production network is the main agent of production and a subset of an enterprise network. Therefore, it is essential to compose the enterprise network in a way that can respond to demands properly. A properly-composed enterprise network means the network can handle demands that arrive at the CM, with minimal costs, such as network composition and operation costs, such as participation contract costs, system maintenance costs, and so forth. Due to trade-offs among costs (e.g., contract cost and opportunity cost of production, it is a non-trivial problem to find the optimal network enterprise composition. In addition, this includes probabilistic constraints, such as forecasted demand. In this paper, we propose an algorithm, named the dynamic enterprise network composition algorithm (DENCA, based on a genetic algorithm to solve the enterprise network composition problem. A numerical simulation result is provided to demonstrate the performance of the proposed algorithm.

17. Design of Supply Chain Networks with Supply Disruptions using Genetic Algorithm

OpenAIRE

Taha, Raghda; Abdallah, Khaled; Sadek, Yomma; El-Kharbotly, Amin; Afia, Nahid

2014-01-01

The design of supply chain networks subject to disruptions is tackled. A genetic algorithm with the objective of minimizing the design cost and regret cost is developed to achieve a reliable supply chain network. The improvement of supply chain network reliability is measured against the supply chain cost.

18. Leakage detection and estimation algorithm for loss reduction in water piping networks

CSIR Research Space (South Africa)

2017-10-01

Full Text Available the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exact...

19. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

Science.gov (United States)

Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

2017-03-08

Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

20. Upper-Lower Bounds Candidate Sets Searching Algorithm for Bayesian Network Structure Learning

Directory of Open Access Journals (Sweden)

Guangyi Liu

2014-01-01

Full Text Available Bayesian network is an important theoretical model in artificial intelligence field and also a powerful tool for processing uncertainty issues. Considering the slow convergence speed of current Bayesian network structure learning algorithms, a fast hybrid learning method is proposed in this paper. We start with further analysis of information provided by low-order conditional independence testing, and then two methods are given for constructing graph model of network, which is theoretically proved to be upper and lower bounds of the structure space of target network, so that candidate sets are given as a result; after that a search and scoring algorithm is operated based on the candidate sets to find the final structure of the network. Simulation results show that the algorithm proposed in this paper is more efficient than similar algorithms with the same learning precision.

1. The spectral positioning algorithm of new spectrum vehicle based on convex programming in wireless sensor network

Science.gov (United States)

Zhang, Yongjun; Lu, Zhixin

2017-10-01

Spectrum resources are very precious, so it is increasingly important to locate interference signals rapidly. Convex programming algorithms in wireless sensor networks are often used as localization algorithms. But in view of the traditional convex programming algorithm is too much overlap of wireless sensor nodes that bring low positioning accuracy, the paper proposed a new algorithm. Which is mainly based on the traditional convex programming algorithm, the spectrum car sends unmanned aerial vehicles (uses) that can be used to record data periodically along different trajectories. According to the probability density distribution, the positioning area is segmented to further reduce the location area. Because the algorithm only increases the communication process of the power value of the unknown node and the sensor node, the advantages of the convex programming algorithm are basically preserved to realize the simple and real-time performance. The experimental results show that the improved algorithm has a better positioning accuracy than the original convex programming algorithm.

2. Hybrid fuzzy charged system search algorithm based state estimation in distribution networks

Directory of Open Access Journals (Sweden)

2017-06-01

Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.

3. A Multicast Sparse-Grooming Algorithm Based on Network Coding in WDM Networks

Science.gov (United States)

Zhang, Shengfeng; Peng, Han; Sui, Meng; Liu, Huanlin

2015-03-01

To improve the limited number of wavelength utilization and decrease the traffic blocking probability in sparse-grooming wavelength-division multiplexing (WDM) networks, a multicast sparse-grooming algorithm based on network coding (MCSA-NC) is put forward to solve the routing problem for dynamic multicast requests in this paper. In the proposed algorithm, a traffic partition strategy, that the coarse-granularity multicast request with grooming capability on the source node is split into several fine-granularity multicast requests, is designed so as to increase the probability for traffic grooming successfully in MCSA-NC. Besides considering that multiple destinations should receive the data from source of the multicast request at the same time, the traditional transmission mechanism is improved by constructing edge-disjoint paths for each split multicast request. Moreover, in order to reduce the number of wavelengths required and further decrease the traffic blocking probability, a light-tree reconfiguration mechanism is presented in the MCSA-NC, which can select a minimal cost light tree from the established edge-disjoint paths for a new multicast request.

4. Designing a parallel evolutionary algorithm for inferring gene networks on the cloud computing environment.

Science.gov (United States)

Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che

2014-01-16

To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high

5. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

Directory of Open Access Journals (Sweden)

Khalid Qaraqe

2008-10-01

Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

6. Handoff Triggering and Network Selection Algorithms for Load-Balancing Handoff in CDMA-WLAN Integrated Networks

Directory of Open Access Journals (Sweden)

Kim Jang-Sub

2008-01-01

Full Text Available This paper proposes a novel vertical handoff algorithm between WLAN and CDMA networks to enable the integration of these networks. The proposed vertical handoff algorithm assumes a handoff decision process (handoff triggering and network selection. The handoff trigger is decided based on the received signal strength (RSS. To reduce the likelihood of unnecessary false handoffs, the distance criterion is also considered. As a network selection mechanism, based on the wireless channel assignment algorithm, this paper proposes a context-based network selection algorithm and the corresponding communication algorithms between WLAN and CDMA networks. This paper focuses on a handoff triggering criterion which uses both the RSS and distance information, and a network selection method which uses context information such as the dropping probability, blocking probability, GoS (grade of service, and number of handoff attempts. As a decision making criterion, the velocity threshold is determined to optimize the system performance. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations. The optimal velocity threshold is adjusted to assign the available channels to the mobile stations using four handoff strategies. The four handoff strategies are evaluated and compared with each other in terms of GOS. Finally, the proposed scheme is validated by computer simulations.

7. A Topology Visualization Early Warning Distribution Algorithm for Large-Scale Network Security Incidents

Directory of Open Access Journals (Sweden)

Hui He

2013-01-01

Full Text Available It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system’s emergency response capabilities, alleviate the cyber attacks’ damage, and strengthen the system’s counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system’s plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks’ topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

8. BFL: a node and edge betweenness based fast layout algorithm for large scale networks

Science.gov (United States)

Hashimoto, Tatsunori B; Nagasaki, Masao; Kojima, Kaname; Miyano, Satoru

2009-01-01

Background Network visualization would serve as a useful first step for analysis. However, current graph layout algorithms for biological pathways are insensitive to biologically important information, e.g. subcellular localization, biological node and graph attributes, or/and not available for large scale networks, e.g. more than 10000 elements. Results To overcome these problems, we propose the use of a biologically important graph metric, betweenness, a measure of network flow. This metric is highly correlated with many biological phenomena such as lethality and clusters. We devise a new fast parallel algorithm calculating betweenness to minimize the preprocessing cost. Using this metric, we also invent a node and edge betweenness based fast layout algorithm (BFL). BFL places the high-betweenness nodes to optimal positions and allows the low-betweenness nodes to reach suboptimal positions. Furthermore, BFL reduces the runtime by combining a sequential insertion algorim with betweenness. For a graph with n nodes, this approach reduces the expected runtime of the algorithm to O(n2) when considering edge crossings, and to O(n log n) when considering only density and edge lengths. Conclusion Our BFL algorithm is compared against fast graph layout algorithms and approaches requiring intensive optimizations. For gene networks, we show that our algorithm is faster than all layout algorithms tested while providing readability on par with intensive optimization algorithms. We achieve a 1.4 second runtime for a graph with 4000 nodes and 12000 edges on a standard desktop computer. PMID:19146673

9. A Partitioning and Bounded Variable Algorithm for Linear Programming

Science.gov (United States)

Sheskin, Theodore J.

2006-01-01

An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does…

10. Energy efficient topology control algorithm for wireless mesh networks

CSIR Research Space (South Africa)

Aron, FO

2008-08-01

Full Text Available The control of the topology of a network makes it possible for the network nodes to reduce their power of transmission while ensuring that network connectivity is preserved. This paper explains the need for energy consumption control in Wireless...

11. Multiobjecitve Sampling Design for Calibration of Water Distribution Network Model Using Genetic Algorithm and Neural Network

Directory of Open Access Journals (Sweden)

2008-03-01

Full Text Available In this paper, a novel multiobjective optimization model is presented for selecting optimal locations in the water distribution network (WDN with the aim of installing pressure loggers. The pressure data collected at optimal locations will be used later on in the calibration of the proposed WDN model. Objective functions consist of maximization of calibrated model prediction accuracy and minimization of the total cost for sampling design. In order to decrease the model run time, an optimization model has been developed using multiobjective genetic algorithm and adaptive neural network (MOGA-ANN. Neural networks (NNs are initially trained after a number of initial GA generations and periodically retrained and updated after generation of a specified number of full model-analyzed solutions. Trained NNs are replaced with the fitness evaluation of some chromosomes within the GA progress. Using cache prevents objective function evaluation of repetitive chromosomes within GA. Optimal solutions are obtained through pareto-optimal front with respect to the two objective functions. Results show that jointing NNs in MOGA for approximating portions of chromosomes’ fitness in each generation leads to considerable savings in model run time and can be promising for reducing run-time in optimization models with significant computational effort.

12. PSO-RBF Neural Network PID Control Algorithm of Electric Gas Pressure Regulator

Directory of Open Access Journals (Sweden)

Yuanchang Zhong

2014-01-01

Full Text Available The current electric gas pressure regulator often adopts the conventional PID control algorithm to take drive control of the core part (micromotor of electric gas pressure regulator. In order to further improve tracking performance and to shorten response time, this paper presents an improved PID intelligent control algorithm which applies to the electric gas pressure regulator. The algorithm uses the improved RBF neural network based on PSO algorithm to make online adjustment on PID parameters. Theoretical analysis and simulation result show that the algorithm shortens the step response time and improves tracking performance.

13. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

Science.gov (United States)

Yuniarto, Budi; Kurniawan, Robert

2017-03-01

PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

14. Seamless Vertical Handoff using Invasive Weed Optimization (IWO algorithm for heterogeneous wireless networks

Directory of Open Access Journals (Sweden)

T. Velmurugan

2016-03-01

Full Text Available Heterogeneous wireless networks are an integration of two different networks. For better performance, connections are to be exchanged among the different networks using seamless Vertical Handoff. The evolutionary algorithm of invasive weed optimization algorithm popularly known as the IWO has been used in this paper, to solve the Vertical Handoff (VHO and Horizontal Handoff (HHO problems. This integer coded algorithm is based on the colonizing behavior of weed plants and has been developed to optimize the system load and reduce the battery power consumption of the Mobile Node (MN. Constraints such as Receiver Signal Strength (RSS, battery lifetime, mobility, load and so on are taken into account. Individual as well as a combination of a number of factors are considered during decision process to make it more effective. This paper brings out the novel method of IWO algorithm for decision making during Vertical Handoff. Therefore the proposed VHO decision making algorithm is compared with the existing SSF and OPTG methods.

15. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

Directory of Open Access Journals (Sweden)

Afaz Uddin Ahmed

2014-01-01

Full Text Available An artificial neural network (ANN and affinity propagation (AP algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

16. A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

Science.gov (United States)

Ahmed, Afaz Uddin; Tariqul Islam, Mohammad; Ismail, Mahamod; Kibria, Salehin; Arshad, Haslina

2014-01-01

An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation. PMID:25133214

17. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

Directory of Open Access Journals (Sweden)

Hong SeungHo

2011-01-01

Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

18. An efficient distributed localisation algorithm for wireless sensor networks: based on smart reference-selection method

CSIR Research Space (South Africa)

2013-05-01

Full Text Available Determining the location of nodes is a key part of wireless sensor networks (WSNs). Many WSN applications require knowledge of nodes’ locations to perform their functions successfully. Several localisation algorithms rely on using all or most...

19. Elements of an algorithm for optimizing a parameter-structural neural network

Science.gov (United States)

Mrówczyńska, Maria

2016-06-01

The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.

20. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

KAUST Repository

Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

2016-01-01

In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem

1. A fast identification algorithm for Box-Cox transformation based radial basis function neural network.

Science.gov (United States)

Hong, Xia

2006-07-01

In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

2. Cellular Protein WDR11 Interacts with Specific Herpes Simplex Virus Proteins at the trans-Golgi Network To Promote Virus Replication

Science.gov (United States)

Taylor, Kathryne E.

2015-01-01

ABSTRACT It has recently been proposed that the herpes simplex virus (HSV) protein ICP0 has cytoplasmic roles in blocking antiviral signaling and in promoting viral replication in addition to its well-known proteasome-dependent functions in the nucleus. However, the mechanisms through which it produces these effects remain unclear. While investigating this further, we identified a novel cytoplasmic interaction between ICP0 and the poorly characterized cellular protein WDR11. During an HSV infection, WDR11 undergoes a dramatic change in localization at late times in the viral replication cycle, moving from defined perinuclear structures to a dispersed cytoplasmic distribution. While this relocation was not observed during infection with viruses other than HSV-1 and correlated with efficient HSV-1 replication, the redistribution was found to occur independently of ICP0 expression, instead requiring viral late gene expression. We demonstrate for the first time that WDR11 is localized to the trans-Golgi network (TGN), where it interacts specifically with some, but not all, HSV virion components, in addition to ICP0. Knockdown of WDR11 in cultured human cells resulted in a modest but consistent decrease in yields of both wild-type and ICP0-null viruses, in the supernatant and cell-associated fractions, without affecting viral gene expression. Although further study is required, we propose that WDR11 participates in viral assembly and/or secondary envelopment. IMPORTANCE While the TGN has been proposed to be the major site of HSV-1 secondary envelopment, this process is incompletely understood, and in particular, the role of cellular TGN components in this pathway is unknown. Additionally, little is known about the cellular functions of WDR11, although the disruption of this protein has been implicated in multiple human diseases. Therefore, our finding that WDR11 is a TGN-resident protein that interacts with specific viral proteins to enhance viral yields improves both

3. A Family of Algorithms for Computing Consensus about Node State from Network Data

Science.gov (United States)

Brush, Eleanor R.; Krakauer, David C.; Flack, Jessica C.

2013-01-01

Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which

4. Computationally efficient model predictive control algorithms a neural network approach

CERN Document Server

Ławryńczuk, Maciej

2014-01-01

This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: ·         A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is successively calculated on-line and used for prediction. ·         Implementation details of the MPC algorithms for feedforward perceptron neural models, neural Hammerstein models, neural Wiener models and state-space neural models. ·         The MPC algorithms based on neural multi-models (inspired by the idea of predictive control). ·         The MPC algorithms with neural approximation with no on-line linearization. ·         The MPC algorithms with guaranteed stability and robustness. ·         Cooperation between the MPC algorithms and set-point optimization. Thanks to linearization (or neural approximation), the presented suboptimal algorithms do not require d...

5. Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

International Nuclear Information System (INIS)

Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine; Minca, Eugenia; Filip, Florin

2009-01-01

In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

6. Sequential Uniformly Reweighted Sum-Product Algorithm for Cooperative Localization in Wireless Networks

OpenAIRE

Li, Wei; Yang, Zhen; Hu, Haifeng

2014-01-01

Graphical models have been widely applied in solving distributed inference problems in wireless networks. In this paper, we formulate the cooperative localization problem in a mobile network as an inference problem on a factor graph. Using a sequential schedule of message updates, a sequential uniformly reweighted sum-product algorithm (SURW-SPA) is developed for mobile localization problems. The proposed algorithm combines the distributed nature of belief propagation (BP) with the improved p...

7. Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems

International Nuclear Information System (INIS)

Tien, Iris; Der Kiureghian, Armen

2016-01-01

Novel algorithms are developed to enable the modeling of large, complex infrastructure systems as Bayesian networks (BNs). These include a compression algorithm that significantly reduces the memory storage required to construct the BN model, and an updating algorithm that performs inference on compressed matrices. These algorithms address one of the major obstacles to widespread use of BNs for system reliability assessment, namely the exponentially increasing amount of information that needs to be stored as the number of components in the system increases. The proposed compression and inference algorithms are described and applied to example systems to investigate their performance compared to that of existing algorithms. Orders of magnitude savings in memory storage requirement are demonstrated using the new algorithms, enabling BN modeling and reliability analysis of larger infrastructure systems. - Highlights: • Novel algorithms developed for Bayesian network modeling of infrastructure systems. • Algorithm presented to compress information in conditional probability tables. • Updating algorithm presented to perform inference on compressed matrices. • Algorithms applied to example systems to investigate their performance. • Orders of magnitude savings in memory storage requirement demonstrated.

8. Node localization algorithm of wireless sensor networks for large electrical equipment monitoring application

DEFF Research Database (Denmark)

Chen, Qinyin; Hu, Y.; Chen, Zhe

2016-01-01

Node localization technology is an important technology for the Wireless Sensor Networks (WSNs) applications. An improved 3D node localization algorithm is proposed in this paper, which is based on a Multi-dimensional Scaling (MDS) node localization algorithm for large electrical equipment monito...

9. Evaluation of Opportunistic Routing Algorithms on Opportunistic Mobile Sensor Networks with Infrastructure Assistance

NARCIS (Netherlands)

Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

2012-01-01

Recently the increasing number of sensors integrated in smartphones, especially the iPhone and Android phones, has motivated the development of routing algorithms for Opportunistic Mobile Sensor Networks (OppMSNs). Although there are many existing opportunistic routing algorithms, researchers still

10. Identification of chaotic systems by neural network with hybrid learning algorithm

International Nuclear Information System (INIS)

Pan, S.-T.; Lai, C.-C.

2008-01-01

Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods

11. An Overlapping Communities Detection Algorithm via Maxing Modularity in Opportunistic Networks

Directory of Open Access Journals (Sweden)

Gao Zhi-Peng

2016-01-01

Full Text Available Community detection in opportunistic networks has been a significant and hot issue, which is used to understand characteristics of networks through analyzing structure of it. Community is used to represent a group of nodes in a network where nodes inside the community have more internal connections than external connections. However, most of the existing community detection algorithms focus on binary networks or disjoint community detection. In this paper, we propose a novel algorithm via maxing modularity of communities (MMCto find overlapping community structure in opportunistic networks. It utilizes contact history of nodes to calculate the relation intensity between nodes. It finds nodes with high relation intensity as the initial community and extend the community with nodes of higher belong degree. The algorithm achieves a rapid and efficient overlapping community detection method by maxing the modularity of community continuously. The experiments prove that MMC is effective for uncovering overlapping communities and it achieves better performance than COPRA and Conductance.

12. Improved algorithms for circuit fault diagnosis based on wavelet packet and neural network

International Nuclear Information System (INIS)

Zhang, W-Q; Xu, C

2008-01-01

In this paper, two improved BP neural network algorithms of fault diagnosis for analog circuit are presented through using optimal wavelet packet transform(OWPT) or incomplete wavelet packet transform(IWPT) as preprocessor. The purpose of preprocessing is to reduce the nodes in input layer and hidden layer of BP neural network, so that the neural network gains faster training and convergence speed. At first, we apply OWPT or IWPT to the response signal of circuit under test(CUT), and then calculate the normalization energy of each frequency band. The normalization energy is used to train the BP neural network to diagnose faulty components in the analog circuit. These two algorithms need small network size, while have faster learning and convergence speed. Finally, simulation results illustrate the two algorithms are effective for fault diagnosis

13. Algorithms

polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

14. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

OpenAIRE

Zeng, Yong; Liu, Dacheng; Lei, Zhou

2014-01-01

The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history si...

15. Parameter-free Network Sparsification and Data Reduction by Minimal Algorithmic Information Loss

KAUST Repository

Zenil, Hector

2018-02-16

The study of large and complex datasets, or big data, organized as networks has emerged as one of the central challenges in most areas of science and technology. Cellular and molecular networks in biology is one of the prime examples. Henceforth, a number of techniques for data dimensionality reduction, especially in the context of networks, have been developed. Yet, current techniques require a predefined metric upon which to minimize the data size. Here we introduce a family of parameter-free algorithms based on (algorithmic) information theory that are designed to minimize the loss of any (enumerable computable) property contributing to the object\\'s algorithmic content and thus important to preserve in a process of data dimension reduction when forcing the algorithm to delete first the least important features. Being independent of any particular criterion, they are universal in a fundamental mathematical sense. Using suboptimal approximations of efficient (polynomial) estimations we demonstrate how to preserve network properties outperforming other (leading) algorithms for network dimension reduction. Our method preserves all graph-theoretic indices measured, ranging from degree distribution, clustering-coefficient, edge betweenness, and degree and eigenvector centralities. We conclude and demonstrate numerically that our parameter-free, Minimal Information Loss Sparsification (MILS) method is robust, has the potential to maximize the preservation of all recursively enumerable features in data and networks, and achieves equal to significantly better results than other data reduction and network sparsification methods.

16. JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly

Science.gov (United States)

Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon

2011-01-01

JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…

17. Efficient Algorithms for Network-Wide Road Traffic Control

NARCIS (Netherlands)

van de Weg, G.S.

2017-01-01

Controlling road traffic networks is a complex problem. One of the difficulties is the coordination of actuators, such as traffic lights, variables speed limits, ramp metering and route guidance, with the aim to improve the network performance over a near-future time horizon. This dissertation

18. Influence Maximization in Social Networks with Genetic Algorithms

NARCIS (Netherlands)

Bucur, Doina; Iacca, Giovanni; Squillero, Giovanni; Burelli, Paolo

We live in a world of social networks. Our everyday choices are often influenced by social interactions. Word of mouth, meme diffusion on the Internet, and viral marketing are all examples of how social networks can affect our behaviour. In many practical applications, it is of great interest to

19. Cell outage compensation in LTE networks: Algorithms and performance assessment

NARCIS (Netherlands)

Amirijoo, M.; Jorguseski, L.; Litjens, R.; Schmelz, L.C.

2011-01-01

Cell outage compensation is a self-healing function and as such part of the Self-Organising Networks concept for mobile wireless networks. It aims at mitigating the degradation of coverage, capacity and service quality caused by a cell or site level outage. Upon detection of such an outage, cell

20. Collaborative Algorithms for Communication in Wireless Sensor Networks

NARCIS (Netherlands)

Nieberg, T.; Dulman, S.O.; Havinga, Paul J.M.; van Hoesel, L.F.W.; Wu Jian, W.J.; Basten, Twan; Geilen, Marc; de Groot, Harmke

2003-01-01

In this paper, we present the design of the communication in a wireless sensor network. The resource limitations of a wireless sensor network, especially in terms of energy, require an integrated, and collaborative approach for the different layers of communication. In particular, energy-efficient

1. Multi-objective ant algorithm for wireless sensor network positioning

International Nuclear Information System (INIS)

Fidanova, S.; Shindarov, M.; Marinov, P.

2013-01-01

It is impossible to imagine our modern life without telecommunications. Wireless networks are a part of telecommunications. Wireless sensor networks (WSN) consist of spatially distributed sensors, which communicate in wireless way. This network monitors physical or environmental conditions. The objective is the full coverage of the monitoring region and less energy consumption of the network. The most appropriate approach to solve the problem is metaheuristics. In this paper the full coverage of the area is treated as a constrain. The objectives which are optimized are a minimal number of sensors and energy (lifetime) of the network. We apply multi-objective Ant Colony Optimization to solve this important telecommunication problem. We chose MAX-MIN Ant System approach, because it is proven to converge to the global optima

2. Transmission Scheduling and Routing Algorithms for Delay Tolerant Networks

Science.gov (United States)

Dudukovich, Rachel; Raible, Daniel E.

2016-01-01

The challenges of data processing, transmission scheduling and routing within a space network present a multi-criteria optimization problem. Long delays, intermittent connectivity, asymmetric data rates and potentially high error rates make traditional networking approaches unsuitable. The delay tolerant networking architecture and protocols attempt to mitigate many of these issues, yet transmission scheduling is largely manually configured and routes are determined by a static contact routing graph. A high level of variability exists among the requirements and environmental characteristics of different missions, some of which may allow for the use of more opportunistic routing methods. In all cases, resource allocation and constraints must be balanced with the optimization of data throughput and quality of service. Much work has been done researching routing techniques for terrestrial-based challenged networks in an attempt to optimize contact opportunities and resource usage. This paper examines several popular methods to determine their potential applicability to space networks.

3. A polynomial time algorithm for solving the maximum flow problem in directed networks

International Nuclear Information System (INIS)

Tlas, M.

2015-01-01

An efficient polynomial time algorithm for solving maximum flow problems has been proposed in this paper. The algorithm is basically based on the binary representation of capacities; it solves the maximum flow problem as a sequence of O(m) shortest path problems on residual networks with nodes and m arcs. It runs in O(m"2r) time, where is the smallest integer greater than or equal to log B , and B is the largest arc capacity of the network. A numerical example has been illustrated using this proposed algorithm.(author)

4. A Research of RSSI-AM Localization Algorithm Based on Data Encryption in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Wang Wei

2014-07-01

Full Text Available In practical application of wireless sensor networks, because of open environment, signal is easy to be attacked and traditional RSSI location technology produces errors. By analyzing the location modal of RSSI, this paper proposes a new encryption modulation algorithm: RSSI-AM, which is unlike most approaches. The location algorithm has the following advantages: simple calculation, strong security, powerful anti-interference ability and no hardware expansion required. Besides, the simulation experiment shows the location precision of ranging method based on RSSI-AM has obvious improvement compared with traditional algorithm. It can be used in the environment of wireless sensor network nodes with low cost and performance of hardware.

5. Distributed Algorithm for Voronoi Partition of Wireless Sensor Networks with a Limited Sensing Range.

Science.gov (United States)

He, Chenlong; Feng, Zuren; Ren, Zhigang

2018-02-03

For Wireless Sensor Networks (WSNs), the Voronoi partition of a region is a challenging problem owing to the limited sensing ability of each sensor and the distributed organization of the network. In this paper, an algorithm is proposed for each sensor having a limited sensing range to compute its limited Voronoi cell autonomously, so that the limited Voronoi partition of the entire WSN is generated in a distributed manner. Inspired by Graham's Scan (GS) algorithm used to compute the convex hull of a point set, the limited Voronoi cell of each sensor is obtained by sequentially scanning two consecutive bisectors between the sensor and its neighbors. The proposed algorithm called the Boundary Scan (BS) algorithm has a lower computational complexity than the existing Range-Constrained Voronoi Cell (RCVC) algorithm and reaches the lower bound of the computational complexity of the algorithms used to solve the problem of this kind. Moreover, it also improves the time efficiency of a key step in the Adjust-Sensing-Radius (ASR) algorithm used to compute the exact Voronoi cell. Extensive numerical simulations are performed to demonstrate the correctness and effectiveness of the BS algorithm. The distributed realization of the BS combined with a localization algorithm in WSNs is used to justify the WSN nature of the proposed algorithm.

6. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

KAUST Repository

Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim; Abu-Dayya, Adnan A.

2012-01-01

, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network

7. The Hidden Flow Structure and Metric Space of Network Embedding Algorithms Based on Random Walks.

Science.gov (United States)

Gu, Weiwei; Gong, Li; Lou, Xiaodan; Zhang, Jiang

2017-10-13

Network embedding which encodes all vertices in a network as a set of numerical vectors in accordance with it's local and global structures, has drawn widespread attention. Network embedding not only learns significant features of a network, such as the clustering and linking prediction but also learns the latent vector representation of the nodes which provides theoretical support for a variety of applications, such as visualization, link prediction, node classification, and recommendation. As the latest progress of the research, several algorithms based on random walks have been devised. Although those algorithms have drawn much attention for their high scores in learning efficiency and accuracy, there is still a lack of theoretical explanation, and the transparency of those algorithms has been doubted. Here, we propose an approach based on the open-flow network model to reveal the underlying flow structure and its hidden metric space of different random walk strategies on networks. We show that the essence of embedding based on random walks is the latent metric structure defined on the open-flow network. This not only deepens our understanding of random- walk-based embedding algorithms but also helps in finding new potential applications in network embedding.

8. Algorithms for finding optimal paths in network games with p players

Directory of Open Access Journals (Sweden)

R. Boliac

1997-08-01

Full Text Available We study the problem of finding optimal paths in network games with p players. Some polynomial-time algorithms for finding optimal paths and optimal by Nash strategies of the players in network games with p players are proposed.

9. COM-LOC: A Distributed Range-Free Localization Algorithm in Wireless Networks

NARCIS (Netherlands)

Dil, B.J.; Havinga, Paul J.M.; Marusic, S; Palaniswami, M; Gubbi, J.; Law, Y.W.

2009-01-01

This paper investigates distributed range-free localization in wireless networks using a communication protocol called sum-dist which is commonly employed by localization algorithms. With this protocol, the reference nodes flood the network in order to estimate the shortest distance between the

10. ISTA-Net: Iterative Shrinkage-Thresholding Algorithm Inspired Deep Network for Image Compressive Sensing

KAUST Repository

Zhang, Jian; Ghanem, Bernard

2017-01-01

and the performance/speed of network-based ones. We propose a novel structured deep network, dubbed ISTA-Net, which is inspired by the Iterative Shrinkage-Thresholding Algorithm (ISTA) for optimizing a general \$l_1\$ norm CS reconstruction model. ISTA-Net essentially

11. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.

Science.gov (United States)

Li, Ning; Cürüklü, Baran; Bastos, Joaquim; Sucasas, Victor; Fernandez, Jose Antonio Sanchez; Rodriguez, Jonathan

2017-05-04

The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) project is to make autonomous underwater vehicles (AUVs), remote operated vehicles (ROVs) and unmanned surface vehicles (USVs) more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC) algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV's parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC) algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the transmission power

12. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks

Directory of Open Access Journals (Sweden)

Ning Li

2017-05-01

Full Text Available The aim of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs project is to make autonomous underwater vehicles (AUVs, remote operated vehicles (ROVs and unmanned surface vehicles (USVs more accessible and useful. To achieve cooperation and communication between different AUVs, these must be able to exchange messages, so an efficient and reliable communication network is necessary for SWARMs. In order to provide an efficient and reliable communication network for mission execution, one of the important and necessary issues is the topology control of the network of AUVs that are cooperating underwater. However, due to the specific properties of an underwater AUV cooperation network, such as the high mobility of AUVs, large transmission delays, low bandwidth, etc., the traditional topology control algorithms primarily designed for terrestrial wireless sensor networks cannot be used directly in the underwater environment. Moreover, these algorithms, in which the nodes adjust their transmission power once the current transmission power does not equal an optimal one, are costly in an underwater cooperating AUV network. Considering these facts, in this paper, we propose a Probabilistic Topology Control (PTC algorithm for an underwater cooperating AUV network. In PTC, when the transmission power of an AUV is not equal to the optimal transmission power, then whether the transmission power needs to be adjusted or not will be determined based on the AUV’s parameters. Each AUV determines their own transmission power adjustment probability based on the parameter deviations. The larger the deviation, the higher the transmission power adjustment probability is, and vice versa. For evaluating the performance of PTC, we combine the PTC algorithm with the Fuzzy logic Topology Control (FTC algorithm and compare the performance of these two algorithms. The simulation results have demonstrated that the PTC is efficient at reducing the

13. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

Directory of Open Access Journals (Sweden)

2017-10-01

Full Text Available Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s of the network and the exact leaking pipelines connected to this segment(s where higher background leakage outflow occurs is a challenging task. Background leakage concerns the outflow from small cracks or deteriorated joints. In addition, because they are diffuse flow, they are not characterised by quick pressure drop and are not detectable by measuring instruments. Consequently, they go unreported for a long period of time posing a threat to water loss volume. Most of the existing research focuses on the detection and localisation of burst type leakages which are characterised by a sudden pressure drop. In this work, an algorithm for detecting and estimating background leakage in water distribution networks is presented. The algorithm integrates a leakage model into a classical WDN hydraulic model for solving the network leakage flows. The applicability of the developed algorithm is demonstrated on two different water networks. The results of the tested networks are discussed and the solutions obtained show the benefits of the proposed algorithm. A noteworthy evidence is that the algorithm permits the detection of critical segments or pipes of the network experiencing higher leakage outflow and indicates the probable pipes of the network where pressure control can be performed. However, the possible position of pressure control elements along such critical pipes will be addressed in future work.

14. An Improved Routing Optimization Algorithm Based on Travelling Salesman Problem for Social Networks

Directory of Open Access Journals (Sweden)

Naixue Xiong

2017-06-01

Full Text Available A social network is a social structure, which is organized by the relationships or interactions between individuals or groups. Humans link the physical network with social network, and the services in the social world are based on data and analysis, which directly influence decision making in the physical network. In this paper, we focus on a routing optimization algorithm, which solves a well-known and popular problem. Ant colony algorithm is proposed to solve this problem effectively, but random selection strategy of the traditional algorithm causes evolution speed to be slow. Meanwhile, positive feedback and distributed computing model make the algorithm quickly converge. Therefore, how to improve convergence speed and search ability of algorithm is the focus of the current research. The paper proposes the improved scheme. Considering the difficulty about searching for next better city, new parameters are introduced to improve probability of selection, and delay convergence speed of algorithm. To avoid the shortest path being submerged, and improve sensitive speed of finding the shortest path, it updates pheromone regulation formula. The results show that the improved algorithm can effectively improve convergence speed and search ability for achieving higher accuracy and optimal results.

15. Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms With Directed Gossip Communication

Science.gov (United States)

Jakovetic, Dusan; Xavier, João; Moura, José M. F.

2011-08-01

We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.

16. A Decision Processing Algorithm for CDC Location Under Minimum Cost SCM Network

Science.gov (United States)

Park, N. K.; Kim, J. Y.; Choi, W. Y.; Tian, Z. M.; Kim, D. J.

Location of CDC in the matter of network on Supply Chain is becoming on the high concern these days. Present status of methods on CDC has been mainly based on the calculation manually by the spread sheet to achieve the goal of minimum logistics cost. This study is focused on the development of new processing algorithm to overcome the limit of present methods, and examination of the propriety of this algorithm by case study. The algorithm suggested by this study is based on the principle of optimization on the directive GRAPH of SCM model and suggest the algorithm utilizing the traditionally introduced MST, shortest paths finding methods, etc. By the aftermath of this study, it helps to assess suitability of the present on-going SCM network and could be the criterion on the decision-making process for the optimal SCM network building-up for the demand prospect in the future.

17. Study on distributed re-clustering algorithm for moblie wireless sensor networks

Directory of Open Access Journals (Sweden)

XU Chaojie

2016-04-01

Full Text Available In mobile wireless sensor networks,node mobility influences the topology of the hierarchically clustered network,thus affects packet delivery ratio and energy consumption of communications in clusters.To reduce the influence of node mobility,a distributed re-clustering algorithm is proposed in this paper.In this algorithm,basing on the clustered network,nodes estimate their current locations with particle algorithm and predict the most possible locations of next time basing on the mobility model.Each boundary node of a cluster periodically estimates the need for re-clustering and re-cluster itself to the optimal cluster through communicating with the cluster headers when needed.The simulation results indicate that,with small re-clustering periods,the proposed algorithm can be effective to keep appropriate communication distance and outperforms existing schemes on packet delivery ratio and energy consumption.

18. Active Engine Mounting Control Algorithm Using Neural Network

Directory of Open Access Journals (Sweden)

2009-01-01

Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

19. Analysis Resilient Algorithm on Artificial Neural Network Backpropagation

Science.gov (United States)

Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy

2017-12-01

Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.

20. A Balancing Algorithm in Wireless Sensor Network Based on the Assistance of Approaching Nodes

Directory of Open Access Journals (Sweden)

Chengpei Tang

2013-03-01

Full Text Available Sensor node in wireless sensor network is a micro-embedded system with limited memory, energy and communication capabilities. Some nodes will run out of energy and exit the network earlier than other nodes because of the uneven energy consumption. This will lead to partial or complete paralysis of the whole wireless sensor network. A balancing algorithm based on the assistance of approaching nodes is proposed. Via the set theory, notes are divided into neighbor nodes set and approaching nodes set. Approaching nodes will help weaker nodes forward part of massages to balance energy consumption. Simulation result has verified the rationality and feasibility of the balancing algorithm.

1. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

CERN Document Server

Uhr, Leonard

1984-01-01

Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

2. Algorithm for detection of the broken phase conductor in the radial networks

Directory of Open Access Journals (Sweden)

2016-01-01

Full Text Available The paper presents an algorithm for a directional relay to be used for a detection of the broken phase conductor in the radial networks. The algorithm would use synchronized voltages, measured at the beginning and at the end of the line, as input signals. During the process, the measured voltages would be phase-compared. On the basis of the normalized energy, the direction of the phase conductor, with a broken point, would be detected. Software tool Matlab/Simulink package has developed a radial network model which simulates the broken phase conductor. The simulations generated required input signals by which the algorithm was tested. Development of the algorithm along with the formation of the simulation model and the test results of the proposed algorithm are presented in this paper.

3. DARAL: A Dynamic and Adaptive Routing Algorithm for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Francisco José Estévez

2016-06-01

Full Text Available The evolution of Smart City projects is pushing researchers and companies to develop more efficient embedded hardware and also more efficient communication technologies. These communication technologies are the focus of this work, presenting a new routing algorithm based on dynamically-allocated sub-networks and node roles. Among these features, our algorithm presents a fast set-up time, a reduced overhead and a hierarchical organization, which allows for the application of complex management techniques. This work presents a routing algorithm based on a dynamically-allocated hierarchical clustering, which uses the link quality indicator as a reference parameter, maximizing the network coverage and minimizing the control message overhead and the convergence time. The present work based its test scenario and analysis in the density measure, considered as a node degree. The routing algorithm is compared with some of the most well known routing algorithms for different scenario densities.

4. An improved recommended algorithm for network structure based on two partial graphs

Directory of Open Access Journals (Sweden)

Deng Song

2017-08-01

Full Text Available In this thesis,we introduce an improved algorithm based on network structure.Based on the standard material diffusion algorithm,considering the influence of the user's score on the recommendation,the adjustment factor of the initial resource allocation vector and the resource transfer matrix in the recommendation algorithm is improved.Using the practical data set from GroupLens webite to evaluate the performance of the proposed algorithm,we performed a series of experiments.The experimental results reveal that it can yield better recommendation accuracy and has higher hitting rate than collaborative filtering,network-based inference.It can solve the problem of cold start and scalability in the standard material diffusion algorithm.And it also can make the recommendation results diversified.

5. Energy Balance Routing Algorithm Based on Virtual MIMO Scheme for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Jianpo Li

2014-01-01

Full Text Available Wireless sensor networks are usually energy limited and therefore an energy-efficient routing algorithm is desired for prolonging the network lifetime. In this paper, we propose a new energy balance routing algorithm which has the following three improvements over the conventional LEACH algorithm. Firstly, we propose a new cluster head selection scheme by taking into consideration the remaining energy and the most recent energy consumption of the nodes and the entire network. In this way, the sensor nodes with smaller remaining energy or larger energy consumption will be much less likely to be chosen as cluster heads. Secondly, according to the ratio of remaining energy to distance, cooperative nodes are selected to form virtual MIMO structures. It mitigates the uneven distribution of clusters and the unbalanced energy consumption of the whole network. Thirdly, we construct a comprehensive energy consumption model, which can reflect more realistically the practical energy consumption. Numerical simulations analyze the influences of cooperative node numbers and cluster head node numbers on the network lifetime. It is shown that the energy consumption of the proposed routing algorithm is lower than the conventional LEACH algorithm and for the simulation example the network lifetime is prolonged about 25%.

6. Joint NetWork Reconfiguration and Capacitor Placement by Bactrial Foraging Algorithm

Directory of Open Access Journals (Sweden)

2011-01-01

Full Text Available Power system engineers are forced to place more emphasis on reducing losses at the distribution level. From an economic perspective, Joint network reconfiguration and capacitor placement is one of the best ways to save energy. Application of heuristic technique is unavoidable, because of expansion of distribution networks and becoming more complex connections in these grids. In view of this, for the first this paper investigates the ability of Bacterial Foraging Algorithm (BFA for Joint network reconfiguration and capacitor placement.

7. Distributed Energy-Efficient Topology Control Algorithm in Home M2M Networks

OpenAIRE

Lee, Chao-Yang; Yang, Chu-Sing

2012-01-01

Because machine-to-machine (M2M) technology enables machines to communicate with each other without human intervention, it could play a big role in sensor network systems. Through wireless sensor network (WSN) gateways, various information can be collected by sensors for M2M systems. For home M2M networks, this study proposes a distributed energy-efficient topology control algorithm for both topology construction and topology maintenance. Topology control is an effective method of enhancing e...

8. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

Science.gov (United States)

Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

2017-07-25

Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

9. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks

OpenAIRE

2017-01-01

Water loss through leaking pipes constitutes a major challenge to the operational service of water utilities. In recent years, increasing concern about the financial loss and environmental pollution caused by leaking pipes has been driving the development of efficient algorithms for detecting leakage in water piping networks. Water distribution networks (WDNs) are disperse in nature with numerous number of nodes and branches. Consequently, identifying the segment(s) of the network and the exa...

10. Predictive Control of Hydronic Floor Heating Systems using Neural Networks and Genetic Algorithms

DEFF Research Database (Denmark)

Vinther, Kasper; Green, Torben; Østergaard, Søren

2017-01-01

This paper presents the use a neural network and a micro genetic algorithm to optimize future set-points in existing hydronic floor heating systems for improved energy efficiency. The neural network can be trained to predict the impact of changes in set-points on future room temperatures. Additio...... space is not guaranteed. Evaluation of the performance of multiple neural networks is performed, using different levels of information, and optimization results are presented on a detailed house simulation model....

11. Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms.

Science.gov (United States)

Wang, Huiwei; Liao, Xiaofeng; Wang, Zidong; Huang, Tingwen; Chen, Guo

2016-01-01

In this paper, we present an asynchronous algorithm to estimate the unknown parameter under an unreliable network which allows new sensors to join and old sensors to leave, and can tolerate link failures. Each sensor has access to partially informative measurements when it is awakened. In addition, the proposed algorithm can avoid the interference among messages and effectively reduce the accumulated measurement and quantization errors. Based on the theory of stochastic approximation, we prove that our proposed algorithm almost surely converges to the unknown parameter. Finally, we present a numerical example to assess the performance and the communication cost of the algorithm. Copyright © 2015 Elsevier Ltd. All rights reserved.

12. Herpes simplex-encefalitis

DEFF Research Database (Denmark)

Jørgensen, Laura Krogh; Mogensen, Trine Hyrup

2017-01-01

Herpes simplex encephalitis (HSE) is a rare disease, although it is the most common form of sporadic encephalitis worldwide. Recently, studies have provided important new insight into the genetic and immunological basis of HSE. However, even in the presence of antiviral treatment, mortality...

13. Change Detection Algorithms for Information Assurance of Computer Networks

National Research Council Canada - National Science Library

Cardenas, Alvaro A

2002-01-01

.... In this thesis, the author will focus on the detection of three attack scenarios: the spreading of active worms throughout the Internet, distributed denial of service attacks, and routing attacks to wireless ad hoc networks...

14. light-weight digital signature algorithm for wireless sensor networks

M LAVANYA

2017-09-14

Sep 14, 2017 ... WSN applications do not even consider the security aspects because of the heavy ...... security scheme in wireless sensor networks with mobile sinks. IEEE Trans. ... security protocols. PhD Thesis, Eindhoven University of.

15. Efficient Reactive Power Compensation Algorithm for Distribution Network

Directory of Open Access Journals (Sweden)

J. Jerome

2017-12-01

Full Text Available The use of automation and energy efficient equipment with electronic control would greatly improve industrial production.  These new devices are more sensitive to supply voltage deviation and the characteristics of the power system that was previously ignored are now very important. Hence the benefits of distribution automation have been widely acknowledged in recent years. This paper proposes an efficient load flow solution technique extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks.  This is required as a part of the distribution automation system (DAS for taking various control and operation decisions.  The method exploits the radial nature of the network and uses forward and backward propagation technique to calculate branch currents and node voltages.  The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R/X ratio.

16. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

Science.gov (United States)

Vimalarani, C; Subramanian, R; Sivanandam, S N

2016-01-01

Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

17. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

Directory of Open Access Journals (Sweden)

C. Vimalarani

2016-01-01

Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

18. Nuclear reactors project optimization based on neural network and genetic algorithm

International Nuclear Information System (INIS)

Pereira, Claudio M.N.A.; Schirru, Roberto; Martinez, Aquilino S.

1997-01-01

This work presents a prototype of a system for nuclear reactor core design optimization based on genetic algorithms and artificial neural networks. A neural network is modeled and trained in order to predict the flux and the neutron multiplication factor values based in the enrichment, network pitch and cladding thickness, with average error less than 2%. The values predicted by the neural network are used by a genetic algorithm in this heuristic search, guided by an objective function that rewards the high flux values and penalizes multiplication factors far from the required value. Associating the quick prediction - that may substitute the reactor physics calculation code - with the global optimization capacity of the genetic algorithm, it was obtained a quick and effective system for nuclear reactor core design optimization. (author). 11 refs., 8 figs., 3 tabs

19. 3 x 3 free-space optical router based on crossbar network and its control algorithm

Science.gov (United States)

Hou, Peipei; Sun, Jianfeng; Yu, Zhou; Lu, Wei; Wang, Lijuan; Liu, Liren

2015-08-01

A 3 × 3 free-space optical router, which comprises optical switches and polarizing beam splitter (PBS) and based on crossbar network, is proposed in this paper. A control algorithm for the 3 × 3 free-space optical router is also developed to achieve rapid control without rearrangement. In order to test the performance of the network based on 3 × 3 free-space optical router and that of the algorithm developed for the optical router, experiments are designed. The experiment results show that the interconnection network based on the 3 × 3 free-space optical router has low cross talk, fast connection speed. Under the control of the algorithm developed, a non-block and real free interconnection network is obtained based on the 3 × 3 free-space optical router we proposed.

20. Algorithm Design on Network Game of Chinese Chess

Science.gov (United States)

Xianmei, Fang

This paper describes the current situation of domestic network game. Contact the present condition of the local network game currently, we inquired to face to a multithread tcp client and server, such as Chinese chess, according to the information, and study the contents and meanings. Combining the Java of basic knowledge, the article study the compiling procedure facing to the object according to the information in Java Swing usage, and the method of the network procedure. The article researched the method and processes of the network procedure carry on the use of Sprocket under the Java Swing. Understood the basic process of compiling procedure using Java and how to compile a network procedure. The most importance is how a pair of machines correspondence-C/S the service system-is carried out. From here, we put forward the data structure,the basic calculate way of the network game- Chinese chess, and how to design and realize the server and client of that procedure. The online games -- chess design can be divided into several modules as follows: server module, client module and the control module.

1. A blind matching algorithm for cognitive radio networks

KAUST Repository

Hamza, Doha R.; Shamma, Jeff S.

2016-01-01

that will be used to relay PU data. We formulate the problem as a generalized assignment market to find an epsilon pairwise stable matching. We propose a distributed blind matching algorithm (BLMA) to produce the pairwise-stable matching plus the associated power

2. Epidemic Processes on Complex Networks : Modelling, Simulation and Algorithms

NARCIS (Netherlands)

Van de Bovenkamp, R.

2015-01-01

Local interactions on a graph will lead to global dynamic behaviour. In this thesis we focus on two types of dynamic processes on graphs: the Susceptible-Infected-Susceptilbe (SIS) virus spreading model, and gossip style epidemic algorithms. The largest part of this thesis is devoted to the SIS

3. Effect of training algorithms on neural networks aided pavement ...

African Journals Online (AJOL)

Especially, the use of Finite Element (FE) based pavement modeling results for training the NN aided inverse analysis is considered to be accurate in realistically characterizing the non-linear stress-sensitive response of underlying pavement layers in real-time. Efficient NN learning algorithms have been developed and ...

4. Bilevel programming problems theory, algorithms and applications to energy networks

CERN Document Server

Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya

2015-01-01

This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.

5. Historical feature pattern extraction based network attack situation sensing algorithm.

Science.gov (United States)

Zeng, Yong; Liu, Dacheng; Lei, Zhou

2014-01-01

The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

6. Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm

Directory of Open Access Journals (Sweden)

Yong Zeng

2014-01-01

Full Text Available The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE. First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.

7. Comparison of order reduction algorithms for application to electrical networks

Directory of Open Access Journals (Sweden)

2009-05-01

Full Text Available This paper addresses issues related to the minimization of the computational burden in terms of both memory and speed during the simulation of electrical models. In order to achieve a simple and computational fast model the order reduction of its reducible part is proposed. In this paper the overview of the order reduction algorithms and their application are discussed.

8. An improved algorithm for searching all minimal cuts in modified networks

International Nuclear Information System (INIS)

Yeh, W.-C.

2008-01-01

A modified network is an updated network after inserting a branch string (a special path) between two nodes in the original network. Modifications are common for network expansion or reinforcement evaluation and planning. The problem of searching all minimal cuts (MCs) in a modified network is discussed and solved in this study. The existing best-known methods for solving this problem either needed extensive comparison and verification or failed to solve some special but important cases. Therefore, a more efficient, intuitive and generalized method for searching all MCs without an extensive research procedure is proposed. In this study, we first develop an intuitive algorithm based upon the reformation of all MCs in the original network to search for all MCs in a modified network. Next, the correctness of the proposed algorithm will be analyzed and proven. The computational complexity of the proposed algorithm is analyzed and compared with the existing best-known methods. Finally, two examples illustrate how all MCs are generated in a modified network using the information of all of the MCs in the corresponding original network

9. Large-Scale Recurrent Neural Network Based Modelling of Gene Regulatory Network Using Cuckoo Search-Flower Pollination Algorithm.

Science.gov (United States)

Mandal, Sudip; Khan, Abhinandan; Saha, Goutam; Pal, Rajat K

2016-01-01

The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly, the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization process.

10. An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks

Science.gov (United States)

Zheng, Desheng; Yang, Guowu; Li, Xiaoyu; Wang, Zhicai; Liu, Feng; He, Lei

2013-01-01

Biological networks, such as genetic regulatory networks, often contain positive and negative feedback loops that settle down to dynamically stable patterns. Identifying these patterns, the so-called attractors, can provide important insights for biologists to understand the molecular mechanisms underlying many coordinated cellular processes such as cellular division, differentiation, and homeostasis. Both synchronous and asynchronous Boolean networks have been used to simulate genetic regulatory networks and identify their attractors. The common methods of computing attractors are that start with a randomly selected initial state and finish with exhaustive search of the state space of a network. However, the time complexity of these methods grows exponentially with respect to the number and length of attractors. Here, we build two algorithms to achieve the computation of attractors in synchronous and asynchronous Boolean networks. For the synchronous scenario, combing with iterative methods and reduced order binary decision diagrams (ROBDD), we propose an improved algorithm to compute attractors. For another algorithm, the attractors of synchronous Boolean networks are utilized in asynchronous Boolean translation functions to derive attractors of asynchronous scenario. The proposed algorithms are implemented in a procedure called geneFAtt. Compared to existing tools such as genYsis, geneFAtt is significantly faster in computing attractors for empirical experimental systems. Availability The software package is available at https://sites.google.com/site/desheng619/download. PMID:23585840

11. A hybrid neural network – world cup optimization algorithm for melanoma detection

Directory of Open Access Journals (Sweden)

Razmjooy Navid

2018-03-01

Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.

12. An Efficient Distributed Algorithm for Constructing Spanning Trees in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Rosana Lachowski

2015-01-01

Full Text Available Monitoring and data collection are the two main functions in wireless sensor networks (WSNs. Collected data are generally transmitted via multihop communication to a special node, called the sink. While in a typical WSN, nodes have a sink node as the final destination for the data traffic, in an ad hoc network, nodes need to communicate with each other. For this reason, routing protocols for ad hoc networks are inefficient for WSNs. Trees, on the other hand, are classic routing structures explicitly or implicitly used in WSNs. In this work, we implement and evaluate distributed algorithms for constructing routing trees in WSNs described in the literature. After identifying the drawbacks and advantages of these algorithms, we propose a new algorithm for constructing spanning trees in WSNs. The performance of the proposed algorithm and the quality of the constructed tree were evaluated in different network scenarios. The results showed that the proposed algorithm is a more efficient solution. Furthermore, the algorithm provides multiple routes to the sensor nodes to be used as mechanisms for fault tolerance and load balancing.

13. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

Science.gov (United States)

Ren, Shengwei; Zhang, Li; Zhang, Shibing

2016-10-01

Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

14. Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks

Science.gov (United States)

Zhang, Ling; Cai, Yunlong; Li, Chunguang; de Lamare, Rodrigo C.

2017-12-01

In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.

15. Frequency-Domain Adaptive Algorithm for Network Echo Cancellation in VoIP

Directory of Open Access Journals (Sweden)

Patrick A. Naylor

2008-05-01

Full Text Available We propose a new low complexity, low delay, and fast converging frequency-domain adaptive algorithm for network echo cancellation in VoIP exploiting MMax and sparse partial (SP tap-selection criteria in the frequency domain. We incorporate these tap-selection techniques into the multidelay filtering (MDF algorithm in order to mitigate the delay inherent in frequency-domain algorithms. We illustrate two such approaches and discuss their tradeoff between convergence performance and computational complexity. Simulation results show an improvement in convergence rate for the proposed algorithm over MDF and significantly reduced complexity. The proposed algorithm achieves a convergence performance close to that of the recently proposed, but substantially more complex improved proportionate MDF (IPMDF algorithm.

16. A stochastic learning algorithm for layered neural networks

International Nuclear Information System (INIS)

Bartlett, E.B.; Uhrig, R.E.

1992-01-01

The random optimization method typically uses a Gaussian probability density function (PDF) to generate a random search vector. In this paper the random search technique is applied to the neural network training problem and is modified to dynamically seek out the optimal probability density function (OPDF) from which to select the search vector. The dynamic OPDF search process, combined with an auto-adaptive stratified sampling technique and a dynamic node architecture (DNA) learning scheme, completes the modifications of the basic method. The DNA technique determines the appropriate number of hidden nodes needed for a given training problem. By using DNA, researchers do not have to set the neural network architectures before training is initiated. The approach is applied to networks of generalized, fully interconnected, continuous perceptions. Computer simulation results are given

17. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

Directory of Open Access Journals (Sweden)

Lin Zhang

2017-03-01

Full Text Available With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR. This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service.

18. A Multi-Attribute Pheromone Ant Secure Routing Algorithm Based on Reputation Value for Sensor Networks

Science.gov (United States)

Zhang, Lin; Yin, Na; Fu, Xiong; Lin, Qiaomin; Wang, Ruchuan

2017-01-01

With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes’ reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes’ communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service. PMID:28282894

19. Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.

Science.gov (United States)

Vestergaard, Christian L; Génois, Mathieu

2015-10-01

Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.

20. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

Directory of Open Access Journals (Sweden)

Ying Zhang

2018-01-01

Full Text Available With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

1. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

Science.gov (United States)

Zhang, Ying; Wang, Jun; Hao, Guan

2018-01-08

With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

2. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

Science.gov (United States)

Zhang, Ying; Wang, Jun; Hao, Guan

2018-01-01

With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

3. Development of traffic light control algorithm in smart municipal network

OpenAIRE

Kuzminykh, Ievgeniia

2016-01-01

This paper presents smart system that bypasses the normal functioning algorithm of traffic lights, triggers a green light when the lights are red or reset the timer of the traffic lights when they are about to turn red. Different pieces of hardware like microcontroller units, transceivers, resistors, diodes, LEDs, a digital compass and accelerometer will be coupled together and programed to create unified complex intelligent system.

4. Artificial neural networks and evolutionary algorithms in engineering design

OpenAIRE

T. Velsker; M. Eerme; J. Majak; M. Pohlak; K. Karjust

2011-01-01

Purpose: Purpose of this paper is investigation of optimization strategies eligible for solving complex engineering design problems. An aim is to develop numerical algorithms for solving optimal design problems which may contain real and integer variables, a number of local extremes, linear- and non-linear constraints and multiple optimality criteria.Design/methodology/approach: The methodology proposed for solving optimal design problems is based on integrated use of meta-modeling techniques...

5. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

Directory of Open Access Journals (Sweden)

Mohd Taufiq Muslim

Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

6. Efficient Geo-Computational Algorithms for Constructing Space-Time Prisms in Road Networks

Directory of Open Access Journals (Sweden)

Hui-Ping Chen

2016-11-01

Full Text Available The Space-time prism (STP is a key concept in time geography for analyzing human activity-travel behavior under various Space-time constraints. Most existing time-geographic studies use a straightforward algorithm to construct STPs in road networks by using two one-to-all shortest path searches. However, this straightforward algorithm can introduce considerable computational overhead, given the fact that accessible links in a STP are generally a small portion of the whole network. To address this issue, an efficient geo-computational algorithm, called NTP-A*, is proposed. The proposed NTP-A* algorithm employs the A* and branch-and-bound techniques to discard inaccessible links during two shortest path searches, and thereby improves the STP construction performance. Comprehensive computational experiments are carried out to demonstrate the computational advantage of the proposed algorithm. Several implementation techniques, including the label-correcting technique and the hybrid link-node labeling technique, are discussed and analyzed. Experimental results show that the proposed NTP-A* algorithm can significantly improve STP construction performance in large-scale road networks by a factor of 100, compared with existing algorithms.

7. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

Directory of Open Access Journals (Sweden)

Tingsong Du

2015-01-01

Full Text Available An improved quantum artificial fish swarm algorithm (IQAFSA for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA, the basic artificial fish swarm algorithm (BAFSA, and the global edition artificial fish swarm algorithm (GAFSA to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

8. Manifold absolute pressure estimation using neural network with hybrid training algorithm.

Science.gov (United States)

2017-01-01

In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.

9. Investigating the performance of neural network backpropagation algorithms for TEC estimations using South African GPS data

Science.gov (United States)

Habarulema, J. B.; McKinnell, L.-A.

2012-05-01

In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.

10. A Particle Swarm Optimization Algorithm for Neural Networks in Recognition of Maize Leaf Diseases

Directory of Open Access Journals (Sweden)

Zhiyong ZHANG

2014-03-01

Full Text Available The neural networks have significance on recognition of crops disease diagnosis? but it has disadvantage of slow convergent speed and shortcoming of local optimum. In order to identify the maize leaf diseases by using machine vision more accurately, we propose an improved particle swarm optimization algorithm for neural networks. With the algorithm, the neural network property is improved. It reasonably confirms threshold and connection weight of neural network, and improves capability of solving problems in the image recognition. At last, an example of the emulation shows that neural network model based on recognizes significantly better than without optimization. Model accuracy has been improved to a certain extent to meet the actual needs of maize leaf diseases recognition.

11. Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

Directory of Open Access Journals (Sweden)

Yimin Yu

2011-06-01

Full Text Available In wireless sensor networks (WSNs, the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas, the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT, which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms.

12. A Hybrid Fuzzy Multi-hop Unequal Clustering Algorithm for Dense Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Shawkat K. Guirguis

2017-01-01

Full Text Available Clustering is carried out to explore and solve power dissipation problem in wireless sensor network (WSN. Hierarchical network architecture, based on clustering, can reduce energy consumption, balance traffic load, improve scalability, and prolong network lifetime. However, clustering faces two main challenges: hotspot problem and searching for effective techniques to perform clustering. This paper introduces a fuzzy unequal clustering technique for heterogeneous dense WSNs to determine both final cluster heads and their radii. Proposed fuzzy system blends three effective parameters together which are: the distance to the base station, the density of the cluster, and the deviation of the noders residual energy from the average network energy. Our objectives are achieving gain for network lifetime, energy distribution, and energy consumption. To evaluate the proposed algorithm, WSN clustering based routing algorithms are analyzed, simulated, and compared with obtained results. These protocols are LEACH, SEP, HEED, EEUC, and MOFCA.

13. NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms.

Directory of Open Access Journals (Sweden)

Joeri Ruyssinck

Full Text Available One of the long-standing open challenges in computational systems biology is the topology inference of gene regulatory networks from high-throughput omics data. Recently, two community-wide efforts, DREAM4 and DREAM5, have been established to benchmark network inference techniques using gene expression measurements. In these challenges the overall top performer was the GENIE3 algorithm. This method decomposes the network inference task into separate regression problems for each gene in the network in which the expression values of a particular target gene are predicted using all other genes as possible predictors. Next, using tree-based ensemble methods, an importance measure for each predictor gene is calculated with respect to the target gene and a high feature importance is considered as putative evidence of a regulatory link existing between both genes. The contribution of this work is twofold. First, we generalize the regression decomposition strategy of GENIE3 to other feature importance methods. We compare the performance of support vector regression, the elastic net, random forest regression, symbolic regression and their ensemble variants in this setting to the original GENIE3 algorithm. To create the ensemble variants, we propose a subsampling approach which allows us to cast any feature selection algorithm that produces a feature ranking into an ensemble feature importance algorithm. We demonstrate that the ensemble setting is key to the network inference task, as only ensemble variants achieve top performance. As second contribution, we explore the effect of using rankwise averaged predictions of multiple ensemble algorithms as opposed to only one. We name this approach NIMEFI (Network Inference using Multiple Ensemble Feature Importance algorithms and show that this approach outperforms all individual methods in general, although on a specific network a single method can perform better. An implementation of NIMEFI has been made

14. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

Directory of Open Access Journals (Sweden)

Chemmangattuvalappil Nishanth

2012-09-01

Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

15. Algorithms for Fast Aggregated Convergecast in Sensor Networks

NARCIS (Netherlands)

Ghosh, A.; Durmaz, O.; Anil Kumar, V.S.; Krishnamachari, B.

Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop

16. Algorithms for the Network Analysis of Bilateral Tax Treaties

NARCIS (Netherlands)

S.C. Polak (Sven)

2014-01-01

htmlabstractIn this thesis we conduct a network analysis of bilateral tax treaties. We are given tax data of 108 countries. Companies often send money from country to country via indirect routes, because then the tax that must be paid might be lower. In the thesis we will study the most important

17. Leakage detection algorithm integrating water distribution networks hydraulic model

CSIR Research Space (South Africa)

2017-06-01

Full Text Available Water loss through leaking pipes is inexorable in water distribution networks (WDNs) and has been recognized as a major challenge facing the operation of municipal water services. This is strongly linked with financial costs due to economic loss...

18. Requirements and Algorithms for Cooperation of Heterogeneous Radio Access Networks

DEFF Research Database (Denmark)

Mihovska, Albena D.; Tragos, Elias; Mino, Emilio

2009-01-01

systems.The RRM mechanisms are evaluated for the scenario of intra-RAN and inter-RAN user mobility. The RRM framework incorporates as novelty improved triggering mechanisms, a network-controlledmobility management scheme with policy enforcement on different levels in the RANarchitecture, and a distributed...

19. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

Science.gov (United States)

Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

2013-01-01

Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

20. Intelligent QoS routing algorithm based on improved AODV protocol for Ad Hoc networks

Science.gov (United States)

Huibin, Liu; Jun, Zhang

2016-04-01

Mobile Ad Hoc Networks were playing an increasingly important part in disaster reliefs, military battlefields and scientific explorations. However, networks routing difficulties are more and more outstanding due to inherent structures. This paper proposed an improved cuckoo searching-based Ad hoc On-Demand Distance Vector Routing protocol (CSAODV). It elaborately designs the calculation methods of optimal routing algorithm used by protocol and transmission mechanism of communication-package. In calculation of optimal routing algorithm by CS Algorithm, by increasing QoS constraint, the found optimal routing algorithm can conform to the requirements of specified bandwidth and time delay, and a certain balance can be obtained among computation spending, bandwidth and time delay. Take advantage of NS2 simulation software to take performance test on protocol in three circumstances and validate the feasibility and validity of CSAODV protocol. In results, CSAODV routing protocol is more adapt to the change of network topological structure than AODV protocol, which improves package delivery fraction of protocol effectively, reduce the transmission time delay of network, reduce the extra burden to network brought by controlling information, and improve the routing efficiency of network.

1. Algorithms

to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

2. On the use of harmony search algorithm in the training of wavelet neural networks

Science.gov (United States)

Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

2015-10-01

Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

3. Optimizing Transmission Network Expansion Planning With The Mean Of Chaotic Differential Evolution Algorithm

Directory of Open Access Journals (Sweden)

Ahmed R. Abdelaziz

2015-08-01

Full Text Available This paper presents an application of Chaotic differential evolution optimization approach meta-heuristics in solving transmission network expansion planning TNEP using an AC model associated with reactive power planning RPP. The reliabilityredundancy of network analysis optimization problems implicate selection of components with multiple choices and redundancy levels that produce maximum benefits can be subject to the cost weight and volume constraints is presented in this paper. Classical mathematical methods have failed in handling non-convexities and non-smoothness in optimization problems. As an alternative to the classical optimization approaches the meta-heuristics have attracted lot of attention due to their ability to find an almost global optimal solution in reliabilityredundancy optimization problems. Evolutionary algorithms EAs paradigms of evolutionary computation field are stochastic and robust meta-heuristics useful to solve reliabilityredundancy optimization problems. EAs such as genetic algorithm evolutionary programming evolution strategies and differential evolution are being used to find global or near global optimal solution. The Differential Evolution Algorithm DEA population-based algorithm is an optimal algorithm with powerful global searching capability but it is usually in low convergence speed and presents bad searching capability in the later evolution stage. A new Chaotic Differential Evolution algorithm CDE based on the cat map is recommended which combines DE and chaotic searching algorithm. Simulation results and comparisons show that the chaotic differential evolution algorithm using Cat map is competitive and stable in performance with other optimization approaches and other maps.

4. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Lihui Jiang

2015-07-01

Full Text Available Interference alignment (IA is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs when the signal-to-noise ratio (SNR is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.

5. A Rapid Convergent Low Complexity Interference Alignment Algorithm for Wireless Sensor Networks.

Science.gov (United States)

Jiang, Lihui; Wu, Zhilu; Ren, Guanghui; Wang, Gangyi; Zhao, Nan

2015-07-29

Interference alignment (IA) is a novel technique that can effectively eliminate the interference and approach the sum capacity of wireless sensor networks (WSNs) when the signal-to-noise ratio (SNR) is high, by casting the desired signal and interference into different signal subspaces. The traditional alternating minimization interference leakage (AMIL) algorithm for IA shows good performance in high SNR regimes, however, the complexity of the AMIL algorithm increases dramatically as the number of users and antennas increases, posing limits to its applications in the practical systems. In this paper, a novel IA algorithm, called directional quartic optimal (DQO) algorithm, is proposed to minimize the interference leakage with rapid convergence and low complexity. The properties of the AMIL algorithm are investigated, and it is discovered that the difference between the two consecutive iteration results of the AMIL algorithm will approximately point to the convergence solution when the precoding and decoding matrices obtained from the intermediate iterations are sufficiently close to their convergence values. Based on this important property, the proposed DQO algorithm employs the line search procedure so that it can converge to the destination directly. In addition, the optimal step size can be determined analytically by optimizing a quartic function. Numerical results show that the proposed DQO algorithm can suppress the interference leakage more rapidly than the traditional AMIL algorithm, and can achieve the same level of sum rate as that of AMIL algorithm with far less iterations and execution time.

6. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

KAUST Repository

Ghazzai, Hakim

2012-01-01

The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.

7. A New Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Complex Networks

Directory of Open Access Journals (Sweden)

Guoqiang Chen

2013-01-01

Full Text Available Community detection in dynamic networks is an important research topic and has received an enormous amount of attention in recent years. Modularity is selected as a measure to quantify the quality of the community partition in previous detection methods. But, the modularity has been exposed to resolution limits. In this paper, we propose a novel multiobjective evolutionary algorithm for dynamic networks community detection based on the framework of nondominated sorting genetic algorithm. Modularity density which can address the limitations of modularity function is adopted to measure the snapshot cost, and normalized mutual information is selected to measure temporal cost, respectively. The characteristics knowledge of the problem is used in designing the genetic operators. Furthermore, a local search operator was designed, which can improve the effectiveness and efficiency of community detection. Experimental studies based on synthetic datasets show that the proposed algorithm can obtain better performance than the compared algorithms.

8. Artificial Neural Network In Maximum Power Point Tracking Algorithm Of Photovoltaic Systems

Directory of Open Access Journals (Sweden)

Modestas Pikutis

2014-05-01

Full Text Available Scientists are looking for ways to improve the efficiency of solar cells all the time. The efficiency of solar cells which are available to the general public is up to 20%. Part of the solar energy is unused and a capacity of solar power plant is significantly reduced – if slow controller or controller which cannot stay at maximum power point of solar modules is used. Various algorithms of maximum power point tracking were created, but mostly algorithms are slow or make mistakes. In the literature more and more oftenartificial neural networks (ANN in maximum power point tracking process are mentioned, in order to improve performance of the controller. Self-learner artificial neural network and IncCond algorithm were used for maximum power point tracking in created solar power plant model. The algorithm for control was created. Solar power plant model is implemented in Matlab/Simulink environment.

9. Parallel algorithms for network routing problems and recurrences

International Nuclear Information System (INIS)

Wisniewski, J.A.; Sameh, A.H.

1982-01-01

In this paper, we consider the parallel solution of recurrences, and linear systems in the regular algebra of Carre. These problems are equivalent to solving the shortest path problem in graph theory, and they also arise in the analysis of Fortran programs. Our methods for solving linear systems in the regular algebra are analogues of well-known methods for solving systems of linear algebraic equations. A parallel version of Dijkstra's method, which has no linear algebraic analogue, is presented. Considerations for choosing an algorithm when the problem is large and sparse are also discussed

10. Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Young-Jae Song

2009-07-01

Full Text Available Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

11. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

Science.gov (United States)

Kobayashi, Takahisa; Simon, Donald L.

2001-01-01

In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

12. Heuristic Artificial Bee Colony Algorithm for Uncovering Community in Complex Networks

Directory of Open Access Journals (Sweden)

Yuquan Guo

2017-01-01

Full Text Available Community structure is important for us to understand the functions and structure of the complex networks. In this paper, Heuristic Artificial Bee Colony (HABC algorithm based on swarm intelligence is proposed for uncovering community. The proposed HABC includes initialization, employed bee searching, onlooker searching, and scout bee searching. In initialization stage, the nectar sources with simple community structure are generated through network dynamic algorithm associated with complete subgraph. In employed bee searching and onlooker searching stages, the searching function is redefined to address the community problem. The efficiency of searching progress can be improved by a heuristic function which is an average agglomerate probability of two neighbor communities. Experiments are carried out on artificial and real world networks, and the results demonstrate that HABC will have better performance in terms of comparing with the state-of-the-art algorithms.

Directory of Open Access Journals (Sweden)

M. Chitra

2018-03-01

14. The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees

OpenAIRE

Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet

2013-01-01

Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are inve...

15. ARCHITECTURES AND ALGORITHMS FOR COGNITIVE NETWORKS ENABLED BY QUALITATIVE MODELS

DEFF Research Database (Denmark)

Balamuralidhar, P.

2013-01-01

traditional limitations and potentially achieving better performance. The vision is that, networks should be able to monitor themselves, reason upon changes in self and environment, act towards the achievement of specific goals and learn from experience. The concept of a Cognitive Engine (CE) supporting...... cognitive functions, as part of network elements, enabling above said autonomic capabilities is gathering attention. Awareness of the self and the world is an important aspect of the cognitive engine to be autonomic. This is achieved through embedding their models in the engine, but the complexity...... of the cognitive engine that incorporates a context space based information structure to its knowledge model. I propose a set of guiding principles behind a cognitive system to be autonomic and use them with additional requirements to build a detailed architecture for the cognitive engine. I define a context space...

16. Optimal Parameter for the Training of Multilayer Perceptron Neural Networks by Using Hierarchical Genetic Algorithm

International Nuclear Information System (INIS)

Orozco-Monteagudo, Maykel; Taboada-Crispi, Alberto; Gutierrez-Hernandez, Liliana

2008-01-01

This paper deals with the controversial topic of the selection of the parameters of a genetic algorithm, in this case hierarchical, used for training of multilayer perceptron neural networks for the binary classification. The parameters to select are the crossover and mutation probabilities of the control and parametric genes and the permanency percent. The results can be considered as a guide for using this kind of algorithm.

17. Convergence of Batch Split-Complex Backpropagation Algorithm for Complex-Valued Neural Networks

Directory of Open Access Journals (Sweden)

Huisheng Zhang

2009-01-01

Full Text Available The batch split-complex backpropagation (BSCBP algorithm for training complex-valued neural networks is considered. For constant learning rate, it is proved that the error function of BSCBP algorithm is monotone during the training iteration process, and the gradient of the error function tends to zero. By adding a moderate condition, the weights sequence itself is also proved to be convergent. A numerical example is given to support the theoretical analysis.

18. Genetic algorithm and neural network hybrid approach for job-shop scheduling

OpenAIRE

Zhao, Kai; Yang, Shengxiang; Wang, Dingwei

1998-01-01

Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...

19. An Improved Ant Colony Broadcasting Algorithm for Wireless Sensor Networks

OpenAIRE

Nan Jiang; Rigui Zhou; Shuqun Yang; Qiulin Ding

2009-01-01

Recent advances in nano-technology have made it possible to develop a large variety of Micro Electro-Mechanical Systems (MEMS)-miniaturized low-power devices that integrate sensing, special-purpose computing, and wireless communications capabilities. A sensor network is a collection of many small devices, each with sensing, computation, and communication capability. It has many potential applications, such as building surveillance and environmental monitoring. Broadcasting is defined that com...

20. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Qingguo Zhang

2017-01-01

Full Text Available Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches.

1. A Hardware-Supported Algorithm for Self-Managed and Choreographed Task Execution in Sensor Networks

Directory of Open Access Journals (Sweden)

Borja Bordel

2018-03-01

Full Text Available Nowadays, sensor networks are composed of a great number of tiny resource-constraint nodes, whose management is increasingly more complex. In fact, although collaborative or choreographic task execution schemes are which fit in the most perfect way with the nature of sensor networks, they are rarely implemented because of the high resource consumption of these algorithms (especially if networks include many resource-constrained devices. On the contrary, hierarchical networks are usually designed, in whose cusp it is included a heavy orchestrator with a remarkable processing power, being able to implement any necessary management solution. However, although this orchestration approach solves most practical management problems of sensor networks, a great amount of the operation time is wasted while nodes request the orchestrator to address a conflict and they obtain the required instructions to operate. Therefore, in this paper it is proposed a new mechanism for self-managed and choreographed task execution in sensor networks. The proposed solution considers only a lightweight gateway instead of traditional heavy orchestrators and a hardware-supported algorithm, which consume a negligible amount of resources in sensor nodes. The gateway avoids the congestion of the entire sensor network and the hardware-supported algorithm enables a choreographed task execution scheme, so no particular node is overloaded. The performance of the proposed solution is evaluated through numerical and electronic ModelSim-based simulations.

2. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

Science.gov (United States)

Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander

2011-01-01

This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806

3. Clustering in Hilbert simplex geometry

KAUST Repository

Nielsen, Frank

2017-04-03

Clustering categorical distributions in the probability simplex is a fundamental primitive often met in applications dealing with histograms or mixtures of multinomials. Traditionally, the differential-geometric structure of the probability simplex has been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the information-geometric structure induced by a smooth dissimilarity measure, called a divergence. In this paper, we introduce a novel computationally-friendly non-Riemannian framework for modeling the probability simplex: Hilbert simplex geometry. We discuss the pros and cons of those three statistical modelings, and compare them experimentally for clustering tasks.

4. A new cut-based algorithm for the multi-state flow network reliability problem

International Nuclear Information System (INIS)

Yeh, Wei-Chang; Bae, Changseok; Huang, Chia-Ling

2015-01-01

Many real-world systems can be modeled as multi-state network systems in which reliability can be derived in terms of the lower bound points of level d, called d-minimal cuts (d-MCs). This study proposes a new method to find and verify obtained d-MCs with simple and useful found properties for the multi-state flow network reliability problem. The proposed algorithm runs in O(mσp) time, which represents a significant improvement over the previous O(mp 2 σ) time bound based on max-flow/min-cut, where p, σ and m denote the number of MCs, d-MC candidates and edges, respectively. The proposed algorithm also conquers the weakness of some existing methods, which failed to remove duplicate d-MCs in special cases. A step-by-step example is given to demonstrate how the proposed algorithm locates and verifies all d-MC candidates. As evidence of the utility of the proposed approach, we present extensive computational results on 20 benchmark networks in another example. The computational results compare favorably with a previously developed algorithm in the literature. - Highlights: • A new method is proposed to find all d-MCs for the multi-state flow networks. • The proposed method can prevent the generation of d-MC duplicates. • The proposed method is simpler and more efficient than the best-known algorithms

5. Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.

Science.gov (United States)

Huson, Daniel H; Linz, Simone

2018-01-01

A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.

6. An Intuitive Dominant Test Algorithm of CP-nets Applied on Wireless Sensor Network

Directory of Open Access Journals (Sweden)

Liu Zhaowei

2014-07-01

Full Text Available A wireless sensor network is of spatially distributed with autonomous sensors, just like a multi-Agent system with single Agent. Conditional Preference networks is a qualitative tool for representing ceteris paribus (all other things being equal preference statements, it has been a research hotspot in artificial intelligence recently. But the algorithm and complexity of strong dominant test with respect to binary-valued structure CP-nets have not been solved, and few researchers address the application to other domain. In this paper, strong dominant test and application of CP-nets are studied in detail. Firstly, by constructing induced graph of CP-nets and studying its properties, we make a conclusion that the problem of strong dominant test on binary-valued CP-nets is single source shortest path problem essentially, so strong dominant test problem can be solved by improved Dijkstra’s algorithm. Secondly, we apply the algorithm above mentioned to the completeness of wireless sensor network, and design a completeness judging algorithm based on strong dominant test. Thirdly, we apply the algorithm on wireless sensor network to solve routing problem. In the end, we point out some interesting work in the future.

7. A Biologically-Inspired Power Control Algorithm for Energy-Efficient Cellular Networks

Directory of Open Access Journals (Sweden)

Hyun-Ho Choi

2016-03-01

Full Text Available Most of the energy used to operate a cellular network is consumed by a base station (BS, and reducing the transmission power of a BS can therefore afford a substantial reduction in the amount of energy used in a network. In this paper, we propose a distributed transmit power control (TPC algorithm inspired by bird flocking behavior as a means of improving the energy efficiency of a cellular network. Just as each bird in a flock attempts to match its velocity with the average velocity of adjacent birds, in the proposed algorithm, each mobile station (MS in a cell matches its rate with the average rate of the co-channel MSs in adjacent cells by controlling the transmit power of its serving BS. We verify that this bio-inspired TPC algorithm using a local rate-average process achieves an exponential convergence and maximizes the minimum rate of the MSs concerned. Simulation results show that the proposed TPC algorithm follows the same convergence properties as the flocking algorithm and also effectively reduces the power consumption at the BSs while maintaining a low outage probability as the inter-cell interference increases; in so doing, it significantly improves the energy efficiency of a cellular network.

8. Genital herpes simplex.

OpenAIRE

Tummon, I. S.; Dudley, D. K.; Walters, J. H.

1981-01-01

Genital herpes is a sexually transmitted disease caused by the herpes simplex virus. Following the initial infection the virus becomes latent in the sacral ganglia. Approximately 80% of patients are then subject to milder but unpredictable recurrences and may shed the virus even when they are asymptomatic. The disorder causes concern because genital herpes in the mother can result in rare but catastrophic neonatal infection and because of a possible association between genital herpes and canc...

9. Algorithm for protecting light-trees in survivable mesh wavelength-division-multiplexing networks

Science.gov (United States)

Luo, Hongbin; Li, Lemin; Yu, Hongfang

2006-12-01

Wavelength-division-multiplexing (WDM) technology is expected to facilitate bandwidth-intensive multicast applications such as high-definition television. A single fiber cut in a WDM mesh network, however, can disrupt the dissemination of information to several destinations on a light-tree based multicast session. Thus it is imperative to protect multicast sessions by reserving redundant resources. We propose a novel and efficient algorithm for protecting light-trees in survivable WDM mesh networks. The algorithm is called segment-based protection with sister node first (SSNF), whose basic idea is to protect a light-tree using a set of backup segments with a higher priority to protect the segments from a branch point to its children (sister nodes). The SSNF algorithm differs from the segment protection scheme proposed in the literature in how the segments are identified and protected. Our objective is to minimize the network resources used for protecting each primary light-tree such that the blocking probability can be minimized. To verify the effectiveness of the SSNF algorithm, we conduct extensive simulation experiments. The simulation results demonstrate that the SSNF algorithm outperforms existing algorithms for the same problem.

10. Distributed topology control algorithm to conserve energy in heterogeneous wireless mesh networks

CSIR Research Space (South Africa)

Aron, FO

2008-07-01

Full Text Available in performance with the resulting topology being a sub-network of the one generated by [11]. Li and Halpern [13] further propose the small minimum energy communication network (SMECN). In this algorithm, each node u initially broadcasts a “hello” message... algorithm that runs in each node is presented as follows:- Phase1: Establishing the accessible neighbourhood topology. In this stage, node u broadcasts a “hello” message using its full power, max uP . The nodes that receive the “hello” message form...

11. Experimental validation of a distributed algorithm for dynamic spectrum access in local area networks

DEFF Research Database (Denmark)

Tonelli, Oscar; Berardinelli, Gilberto; Tavares, Fernando Menezes Leitão

2013-01-01

Next generation wireless networks aim at a significant improvement of the spectral efficiency in order to meet the dramatic increase in data service demand. In local area scenarios user-deployed base stations are expected to take place, thus making the centralized planning of frequency resources...... activities with the Autonomous Component Carrier Selection (ACCS) algorithm, a distributed solution for interference management among small neighboring cells. A preliminary evaluation of the algorithm performance is provided considering its live execution on a software defined radio network testbed...

12. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

Directory of Open Access Journals (Sweden)

Valentin Potapov

2016-12-01

Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

13. Pap-smear Classification Using Efficient Second Order Neural Network Training Algorithms

DEFF Research Database (Denmark)

Ampazis, Nikolaos; Dounias, George; Jantzen, Jan

2004-01-01

In this paper we make use of two highly efficient second order neural network training algorithms, namely the LMAM (Levenberg-Marquardt with Adaptive Momentum) and OLMAM (Optimized Levenberg-Marquardt with Adaptive Momentum), for the construction of an efficient pap-smear test classifier. The alg......In this paper we make use of two highly efficient second order neural network training algorithms, namely the LMAM (Levenberg-Marquardt with Adaptive Momentum) and OLMAM (Optimized Levenberg-Marquardt with Adaptive Momentum), for the construction of an efficient pap-smear test classifier...

14. Mouse obesity network reconstruction with a variational Bayes algorithm to employ aggressive false positive control

Directory of Open Access Journals (Sweden)

Logsdon Benjamin A

2012-04-01

Full Text Available Abstract Background We propose a novel variational Bayes network reconstruction algorithm to extract the most relevant disease factors from high-throughput genomic data-sets. Our algorithm is the only scalable method for regularized network recovery that employs Bayesian model averaging and that can internally estimate an appropriate level of sparsity to ensure few false positives enter the model without the need for cross-validation or a model selection criterion. We use our algorithm to characterize the effect of genetic markers and liver gene expression traits on mouse obesity related phenotypes, including weight, cholesterol, glucose, and free fatty acid levels, in an experiment previously used for discovery and validation of network connections: an F2 intercross between the C57BL/6 J and C3H/HeJ mouse strains, where apolipoprotein E is null on the background. Results We identified eleven genes, Gch1, Zfp69, Dlgap1, Gna14, Yy1, Gabarapl1, Folr2, Fdft1, Cnr2, Slc24a3, and Ccl19, and a quantitative trait locus directly connected to weight, glucose, cholesterol, or free fatty acid levels in our network. None of these genes were identified by other network analyses of this mouse intercross data-set, but all have been previously associated with obesity or related pathologies in independent studies. In addition, through both simulations and data analysis we demonstrate that our algorithm achieves superior performance in terms of power and type I error control than other network recovery algorithms that use the lasso and have bounds on type I error control. Conclusions Our final network contains 118 previously associated and novel genes affecting weight, cholesterol, glucose, and free fatty acid levels that are excellent obesity risk candidates.

15. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

Science.gov (United States)

Schaffer, J. David

2015-06-01

Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

16. A method for classification of network traffic based on C5.0 Machine Learning Algorithm

DEFF Research Database (Denmark)

Bujlow, Tomasz; Riaz, M. Tahir; Pedersen, Jens Myrup

2012-01-01

current network traffic. To overcome the drawbacks of existing methods for traffic classification, usage of C5.0 Machine Learning Algorithm (MLA) was proposed. On the basis of statistical traffic information received from volunteers and C5.0 algorithm we constructed a boosted classifier, which was shown...... and classification, an algorithm for recognizing flow direction and the C5.0 itself. Classified applications include Skype, FTP, torrent, web browser traffic, web radio, interactive gaming and SSH. We performed subsequent tries using different sets of parameters and both training and classification options...

17. Numerical Algorithms for Personalized Search in Self-organizing Information Networks

CERN Document Server

Kamvar, Sep

2010-01-01

This book lays out the theoretical groundwork for personalized search and reputation management, both on the Web and in peer-to-peer and social networks. Representing much of the foundational research in this field, the book develops scalable algorithms that exploit the graphlike properties underlying personalized search and reputation management, and delves into realistic scenarios regarding Web-scale data. Sep Kamvar focuses on eigenvector-based techniques in Web search, introducing a personalized variant of Google's PageRank algorithm, and he outlines algorithms--such as the now-famous quad

18. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

KAUST Repository

Makki, Behrooz

2016-12-29

We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

19. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

KAUST Repository

Bayer, Christian

2016-01-06

In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce an efficient two-phase algorithm in which the first phase is deterministic and it is intended to provide a starting point for the second phase which is the Monte Carlo EM Algorithm.

20. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

KAUST Repository

Makki, Behrooz; Ide, Anatole; Svensson, Tommy; Eriksson, Thomas; Alouini, Mohamed-Slim

2016-01-01

We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

1. Single Allocation Hub-and-spoke Networks Design Based on Ant Colony Optimization Algorithm

Directory of Open Access Journals (Sweden)

Yang Pingle

2014-10-01

Full Text Available Capacitated single allocation hub-and-spoke networks can be abstracted as a mixed integer linear programming model equation with three variables. Introducing an improved ant colony algorithm, which has six local search operators. Meanwhile, introducing the "Solution Pair" concept to decompose and optimize the composition of the problem, the problem can become more specific and effectively meet the premise and advantages of using ant colony algorithm. Finally, location simulation experiment is made according to Australia Post data to demonstrate this algorithm has good efficiency and stability for solving this problem.

2. A Fast and Scalable Algorithm for Calculating the Achievable Capacity of a Wireless Mesh Network

Science.gov (United States)

2016-05-09

increase the speed of the proposed algorithm with only limited decrease in the solution quality. One of the primary motivations of our work is to have a...outline of the scheduling algorithm. Afterwards, each step is discussed in more detail, and potential speed improvements are explored. 1) Algorithm...GHz ISM band has been considered for future 5G network design [33]. Atmospheric absorption loss at 24 GHz is around 0.1 dB/km [34], while at 2.4 GHz

3. Extension to HiRLoc Algorithm for Localization Error Computation in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Swati Saxena

2013-09-01

Full Text Available Wireless sensor networks (WSNs have gained importance in recent years as this support a large spectrum of applications such as automotive, health, military, environmental, home and office. Various algorithms have been proposed for making this technology more adaptive the existing algorithms address issues such as safety, security, power consumption, lifetime and localization. This paper presents an extension to HiRLoc algorithm and highlights its benefits. Extended HiRLoc significantly reduce the average localization error by suggesting a new method directional antenna based scheme.

4. A New Recommendation Algorithm Based on User’s Dynamic Information in Complex Social Network

Directory of Open Access Journals (Sweden)

Jiujun Cheng

2015-01-01

Full Text Available The development of recommendation system comes with the research of data sparsity, cold start, scalability, and privacy protection problems. Even though many papers proposed different improved recommendation algorithms to solve those problems, there is still plenty of room for improvement. In the complex social network, we can take full advantage of dynamic information such as user’s hobby, social relationship, and historical log to improve the performance of recommendation system. In this paper, we proposed a new recommendation algorithm which is based on social user’s dynamic information to solve the cold start problem of traditional collaborative filtering algorithm and also considered the dynamic factors. The algorithm takes user’s response information, dynamic interest, and the classic similar measurement of collaborative filtering algorithm into account. Then, we compared the new proposed recommendation algorithm with the traditional user based collaborative filtering algorithm and also presented some of the findings from experiment. The results of experiment demonstrate that the new proposed algorithm has a better recommended performance than the collaborative filtering algorithm in cold start scenario.

5. DATA SECURITY IN LOCAL AREA NETWORK BASED ON FAST ENCRYPTION ALGORITHM

Directory of Open Access Journals (Sweden)

G. Ramesh

2010-06-01

Full Text Available Hacking is one of the greatest problems in the wireless local area networks. Many algorithms have been used to prevent the outside attacks to eavesdrop or prevent the data to be transferred to the end-user safely and correctly. In this paper, a new symmetrical encryption algorithm is proposed that prevents the outside attacks. The new algorithm avoids key exchange between users and reduces the time taken for the encryption and decryption. It operates at high data rate in comparison with The Data Encryption Standard (DES, Triple DES (TDES, Advanced Encryption Standard (AES-256, and RC6 algorithms. The new algorithm is applied successfully on both text file and voice message.

6. A Probability-based Evolutionary Algorithm with Mutations to Learn Bayesian Networks

Directory of Open Access Journals (Sweden)

Sho Fukuda

2014-12-01

Full Text Available Bayesian networks are regarded as one of the essential tools to analyze causal relationship between events from data. To learn the structure of highly-reliable Bayesian networks from data as quickly as possible is one of the important problems that several studies have been tried to achieve. In recent years, probability-based evolutionary algorithms have been proposed as a new efficient approach to learn Bayesian networks. In this paper, we target on one of the probability-based evolutionary algorithms called PBIL (Probability-Based Incremental Learning, and propose a new mutation operator. Through performance evaluation, we found that the proposed mutation operator has a good performance in learning Bayesian networks

7. On Directed Edge-Disjoint Spanning Trees in Product Networks, An Algorithmic Approach

Directory of Open Access Journals (Sweden)

A.R. Touzene

2014-12-01

Full Text Available In (Ku et al. 2003, the authors have proposed a construction of edge-disjoint spanning trees EDSTs in undirected product networks. Their construction method focuses more on showing the existence of a maximum number (n1+n2-1 of EDSTs in product network of two graphs, where factor graphs have respectively n1 and n2 EDSTs. In this paper, we propose a new systematic and algorithmic approach to construct (n1+n2 directed routed EDST in the product networks. The direction of an edge is added to support bidirectional links in interconnection networks. Our EDSTs can be used straightforward to develop efficient collective communication algorithms for both models store-and-forward and wormhole.

8. Training algorithms evaluation for artificial neural network to temporal prediction of photovoltaic generation

International Nuclear Information System (INIS)

Arantes Monteiro, Raul Vitor; Caixeta Guimarães, Geraldo; Rocio Castillo, Madeleine; Matheus Moura, Fabrício Augusto; Tamashiro, Márcio Augusto

2016-01-01

Current energy policies are encouraging the connection of power generation based on low-polluting technologies, mainly those using renewable sources, to distribution networks. Hence, it becomes increasingly important to understand technical challenges, facing high penetration of PV systems at the grid, especially considering the effects of intermittence of this source on the power quality, reliability and stability of the electric distribution system. This fact can affect the distribution networks on which they are attached causing overvoltage, undervoltage and frequency oscillations. In order to predict these disturbs, artificial neural networks are used. This article aims to analyze 3 training algorithms used in artificial neural networks for temporal prediction of the generated active power thru photovoltaic panels. As a result it was concluded that the algorithm with the best performance among the 3 analyzed was the Levenberg-Marquadrt.

9. Optimization of the Compensation of a Meshed MV Network by a Modified Genetic Algorithm

DEFF Research Database (Denmark)

Nielsen, Hans; Paar, M.; Toman, P.

2007-01-01

The article discusses the utilization of a modified genetic algorithm (GA) for the optimization of the shunt compensation in meshed and radial MV distribution networks. The algorithm looks for minimum costs of the network power losses and minimum capital and operating costs of applied capacitors......, all of this under limitations specified by a multicriteria penalization function. The parallel evolution branches in the GA are used for the purpose of the optimization accelaration. The application of this GA has been implemented in Matlab. The evaluation part of the GA implementation is based...... on the steady-state analysis using a linear one-line diagram model of a power network. The results of steady-state solutions are compared with the results from the DIgSILENT PowerFactory program. Its practical applicability is demonstrated on examples of 22 kV and meshed overhead distribution networks....

10. Multilayer PV-storage Microgrids Algorithm for the Dispatch of Distributed Network

Directory of Open Access Journals (Sweden)

Yang Ping

2016-01-01

Full Text Available In recent years, due to the support of our country, PV-storage microgrid develops rapidly. However, the flexible network operation modes of PV-storage microgrid change flexibly and the operating characteristics with a large amout of sources is highly complicated. Based on the existing microgrid coordinate control methods, this paper proposes multilayer PV-storage microgrid algorithm for fitting dispatch of distributed network, which achieves maximum output of renewable energy when meeting the scheduling requirements of network, by building PV-storage microgrid type dynamic simulation system in a variety of conditions in PSCAD. Simulation results show that the heuristic algorithm proposed can achieve microgrid stable operation and satisfy the demands of the dispatch in distributed network.

11. Systems approach to modeling the Token Bucket algorithm in computer networks

Directory of Open Access Journals (Sweden)

Ahmed N. U.

2002-01-01

Full Text Available In this paper, we construct a new dynamic model for the Token Bucket (TB algorithm used in computer networks and use systems approach for its analysis. This model is then augmented by adding a dynamic model for a multiplexor at an access node where the TB exercises a policing function. In the model, traffic policing, multiplexing and network utilization are formally defined. Based on the model, we study such issues as (quality of service QoS, traffic sizing and network dimensioning. Also we propose an algorithm using feedback control to improve QoS and network utilization. Applying MPEG video traces as the input traffic to the model, we verify the usefulness and effectiveness of our model.

12. Prediction of Aerodynamic Coefficients for Wind Tunnel Data using a Genetic Algorithm Optimized Neural Network

Science.gov (United States)

Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy

2002-01-01

A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.

13. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

Directory of Open Access Journals (Sweden)

Xiaomin Wang

2011-01-01

Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

14. Decision Diagram Based Symbolic Algorithm for Evaluating the Reliability of a Multistate Flow Network

Directory of Open Access Journals (Sweden)

Rongsheng Dong

2016-01-01

Full Text Available Evaluating the reliability of Multistate Flow Network (MFN is an NP-hard problem. Ordered binary decision diagram (OBDD or variants thereof, such as multivalued decision diagram (MDD, are compact and efficient data structures suitable for dealing with large-scale problems. Two symbolic algorithms for evaluating the reliability of MFN, MFN_OBDD and MFN_MDD, are proposed in this paper. In the algorithms, several operating functions are defined to prune the generated decision diagrams. Thereby the state space of capacity combinations is further compressed and the operational complexity of the decision diagrams is further reduced. Meanwhile, the related theoretical proofs and complexity analysis are carried out. Experimental results show the following: (1 compared to the existing decomposition algorithm, the proposed algorithms take less memory space and fewer loops. (2 The number of nodes and the number of variables of MDD generated in MFN_MDD algorithm are much smaller than those of OBDD built in the MFN_OBDD algorithm. (3 In two cases with the same number of arcs, the proposed algorithms are more suitable for calculating the reliability of sparse networks.

15. Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks.

Science.gov (United States)

Lee, Seungseob; Lee, SuKyoung; Kim, Kyungsoo; Kim, Yoon Hyuk

2015-01-01

Data traffic demands in cellular networks today are increasing at an exponential rate, giving rise to the development of heterogeneous networks (HetNets), in which small cells complement traditional macro cells by extending coverage to indoor areas. However, the deployment of small cells as parts of HetNets creates a key challenge for operators' careful network planning. In particular, massive and unplanned deployment of base stations can cause high interference, resulting in highly degrading network performance. Although different mathematical modeling and optimization methods have been used to approach various problems related to this issue, most traditional network planning models are ill-equipped to deal with HetNet-specific characteristics due to their focus on classical cellular network designs. Furthermore, increased wireless data demands have driven mobile operators to roll out large-scale networks of small long term evolution (LTE) cells. Therefore, in this paper, we aim to derive an optimum network planning algorithm for large-scale LTE HetNets. Recently, attempts have been made to apply evolutionary algorithms (EAs) to the field of radio network planning, since they are characterized as global optimization methods. Yet, EA performance often deteriorates rapidly with the growth of search space dimensionality. To overcome this limitation when designing optimum network deployments for large-scale LTE HetNets, we attempt to decompose the problem and tackle its subcomponents individually. Particularly noting that some HetNet cells have strong correlations due to inter-cell interference, we propose a correlation grouping approach in which cells are grouped together according to their mutual interference. Both the simulation and analytical results indicate that the proposed solution outperforms the random-grouping based EA as well as an EA that detects interacting variables by monitoring the changes in the objective function algorithm in terms of system

16. A High-Efficiency Uneven Cluster Deployment Algorithm Based on Network Layered for Event Coverage in UWSNs

Directory of Open Access Journals (Sweden)

Shanen Yu

2016-12-01

Full Text Available Most existing deployment algorithms for event coverage in underwater wireless sensor networks (UWSNs usually do not consider that network communication has non-uniform characteristics on three-dimensional underwater environments. Such deployment algorithms ignore that the nodes are distributed at different depths and have different probabilities for data acquisition, thereby leading to imbalances in the overall network energy consumption, decreasing the network performance, and resulting in poor and unreliable late network operation. Therefore, in this study, we proposed an uneven cluster deployment algorithm based network layered for event coverage. First, according to the energy consumption requirement of the communication load at different depths of the underwater network, we obtained the expected value of deployment nodes and the distribution density of each layer network after theoretical analysis and deduction. Afterward, the network is divided into multilayers based on uneven clusters, and the heterogeneous communication radius of nodes can improve the network connectivity rate. The recovery strategy is used to balance the energy consumption of nodes in the cluster and can efficiently reconstruct the network topology, which ensures that the network has a high network coverage and connectivity rate in a long period of data acquisition. Simulation results show that the proposed algorithm improves network reliability and prolongs network lifetime by significantly reducing the blind movement of overall network nodes while maintaining a high network coverage and connectivity rate.

17. Evaluation of multilayer perceptron algorithms for an analysis of network flow data

Science.gov (United States)

Bieniasz, Jedrzej; Rawski, Mariusz; Skowron, Krzysztof; Trzepiński, Mateusz

2016-09-01

The volume of exchanged information through IP networks is larger than ever and still growing. It creates a space for both benign and malicious activities. The second one raises awareness on security network devices, as well as network infrastructure and a system as a whole. One of the basic tools to prevent cyber attacks is Network Instrusion Detection System (NIDS). NIDS could be realized as a signature-based detector or an anomaly-based one. In the last few years the emphasis has been placed on the latter type, because of the possibility of applying smart and intelligent solutions. An ideal NIDS of next generation should be composed of self-learning algorithms that could react on known and unknown malicious network activities respectively. In this paper we evaluated a machine learning approach for detection of anomalies in IP network data represented as NetFlow records. We considered Multilayer Perceptron (MLP) as the classifier and we used two types of learning algorithms - Backpropagation (BP) and Particle Swarm Optimization (PSO). This paper includes a comprehensive survey on determining the most optimal MLP learning algorithm for the classification problem in application to network flow data. The performance, training time and convergence of BP and PSO methods were compared. The results show that PSO algorithm implemented by the authors outperformed other solutions if accuracy of classifications is considered. The major disadvantage of PSO is training time, which could be not acceptable for larger data sets or in real network applications. At the end we compared some key findings with the results from the other papers to show that in all cases results from this study outperformed them.

18. Mobility based energy efficient and multi-sink algorithms for consumer home networks

OpenAIRE

Wang, Jin; Yin, Yue; Zhang, Jianwei; Lee, Sungyoung; Sherratt, R. Simon

2013-01-01

With the fast development of the Internet, wireless communications and semiconductor devices, home networking has received significant attention. Consumer products can collect and transmit various types of data in the home environment. Typical consumer sensors are often equipped with tiny, irreplaceable batteries and it therefore of the utmost importance to design energy efficient algorithms to prolong the home network lifetime and reduce devices going to landfill. Sink mobility is an importa...

19. [A wavelet neural network algorithm of EEG signals data compression and spikes recognition].

Science.gov (United States)

Zhang, Y; Liu, A; Yu, K

1999-06-01

A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.

20. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

Science.gov (United States)

Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

1. A learning algorithm for oscillatory cellular neural networks.

Science.gov (United States)

Ho, C Y.; Kurokawa, H

1999-07-01

We present a cellular type oscillatory neural network for temporal segregation of stationary input patterns. The model comprises an array of locally connected neural oscillators with connections limited to a 4-connected neighborhood. The architecture is reminiscent of the well-known cellular neural network that consists of local connection for feature extraction. By means of a novel learning rule and an initialization scheme, global synchronization can be accomplished without incurring any erroneous synchrony among uncorrelated objects. Each oscillator comprises two mutually coupled neurons, and neurons share a piecewise-linear activation function characteristic. The dynamics of traditional oscillatory models is simplified by using only one plastic synapse, and the overall complexity for hardware implementation is reduced. Based on the connectedness of image segments, it is shown that global synchronization and desynchronization can be achieved by means of locally connected synapses, and this opens up a tremendous application potential for the proposed architecture. Furthermore, by using special grouping synapses it is demonstrated that temporal segregation of overlapping gray-level and color segments can also be achieved. Finally, simulation results show that the learning rule proposed circumvents the problem of component mismatches, and hence facilitates a large-scale integration.

2. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks.

Science.gov (United States)

Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X

2015-12-26

Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.

3. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Liu Yang

2015-12-01

Full Text Available Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs in the network act as routers to transmit data to base station (BS cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.

4. Controller Placement Algorithms in Software Defined Network - A Review of Trends and Challenges

Directory of Open Access Journals (Sweden)

Yoon Si-Kee

2017-01-01

Full Text Available Traditional network architectures are complex to manage, comparatively static, rigid and difficult to make changes for new innovation. The proprietary devices in such architectures are based on manual configuration which are unwieldy and error-prone. Software Defined Network (SDN which is described as a new network paradigm that decouple the control plane from data plane are capable to solve today's network issues and improve the network performance. Nevertheless, among so many challenges and research opportunity in SDN, Controller Placement Problem (CPP is said to be the most important issues which can directly affect the overall network performance. Thus far, the issue regarding the CPP and its challenge has not been completely reviewed and discussed properly in any other papers. In this paper, we provide a comprehensive review on several optimized controller placement problem algorithms in SDN. This paper also highlights some limitations of the reviewed methods and also emphasizes on suitable approach to address the aforementioned problems.

5. Improvement of Networked Control Systems Performance Using a New Encryption Algorithm

Directory of Open Access Journals (Sweden)

Seyed Ali Mesbahifard

2014-07-01

Full Text Available Networked control systems are control systems which controllers and plants are connected via telecommunication network. One of the most important challenges in networked control systems is the problem of network time delay. Increasing of time delay may affect on control system performance extremely. Other important issue in networked control systems is the security problems. Since it is possible that unknown people access to network especially Internet, the probability of terrible attacks such as deception attacks is greater, therefore presentation of methods which could decrease time delay and increase system immunity are desired. In this paper a symmetric encryption with low data volume against deception attacks is proposed. This method has high security and low time delay rather than the other encryption algorithms and could improve the control system performance against deception attacks.

6. Efficient second order Algorithms for Function Approximation with Neural Networks. Application to Sextic Potentials

International Nuclear Information System (INIS)

Gougam, L.A.; Taibi, H.; Chikhi, A.; Mekideche-Chafa, F.

2009-01-01

The problem of determining the analytical description for a set of data arises in numerous sciences and applications and can be referred to as data modeling or system identification. Neural networks are a convenient means of representation because they are known to be universal approximates that can learn data. The desired task is usually obtained by a learning procedure which consists in adjusting the s ynaptic weights . For this purpose, many learning algorithms have been proposed to update these weights. The convergence for these learning algorithms is a crucial criterion for neural networks to be useful in different applications. The aim of the present contribution is to use a training algorithm for feed forward wavelet networks used for function approximation. The training is based on the minimization of the least-square cost function. The minimization is performed by iterative second order gradient-based methods. We make use of the Levenberg-Marquardt algorithm to train the architecture of the chosen network and, then, the training procedure starts with a simple gradient method which is followed by a BFGS (Broyden, Fletcher, Glodfarb et Shanno) algorithm. The performances of the two algorithms are then compared. Our method is then applied to determine the energy of the ground state associated to a sextic potential. In fact, the Schrodinger equation does not always admit an exact solution and one has, generally, to solve it numerically. To this end, the sextic potential is, firstly, approximated with the above outlined wavelet network and, secondly, implemented into a numerical scheme. Our results are in good agreement with the ones found in the literature.

7. A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis

International Nuclear Information System (INIS)

Xiao, Yuan; Cui, Guomin

2017-01-01

Highlights: • A novel Random Walk Algorithm with Compulsive Evolution is proposed for HENS. • A simple and feasible evolution strategy is presented in RWCE algorithm. • The integer and continuous variables of HEN are optimized simultaneously in RWCE. • RWCE is demonstrated a relatively strong global search ability in HEN optimization. - Abstract: The heat exchanger network (HEN) synthesis can be characterized as highly combinatorial, nonlinear and nonconvex, contributing to unmanageable computational time and a challenge in identifying the global optimal network design. Stochastic methods are robust and show a powerful global optimizing ability. Based on the common characteristic of different stochastic methods, namely randomness, a novel Random Walk algorithm with Compulsive Evolution (RWCE) is proposed to achieve the best possible total annual cost of heat exchanger network with the relatively simple and feasible evolution strategy. A population of heat exchanger networks is first randomly initialized. Next, the heat load of heat exchanger for each individual is randomly expanded or contracted in order to optimize both the integer and continuous variables simultaneously and to obtain the lowest total annual cost. Besides, when individuals approach to local optima, there is a certain probability for them to compulsively accept the imperfect networks in order to keep the population diversity and ability of global optimization. The presented method is then applied to heat exchanger network synthesis cases from the literature to compare the best results published. RWCE consistently has a lower computed total annual cost compared to previously published results.

8. Localization Algorithm Based on a Spring Model (LASM for Large Scale Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Shuai Li

2008-03-01

Full Text Available A navigation method for a lunar rover based on large scale wireless sensornetworks is proposed. To obtain high navigation accuracy and large exploration area, highnode localization accuracy and large network scale are required. However, thecomputational and communication complexity and time consumption are greatly increasedwith the increase of the network scales. A localization algorithm based on a spring model(LASM method is proposed to reduce the computational complexity, while maintainingthe localization accuracy in large scale sensor networks. The algorithm simulates thedynamics of physical spring system to estimate the positions of nodes. The sensor nodesare set as particles with masses and connected with neighbor nodes by virtual springs. Thevirtual springs will force the particles move to the original positions, the node positionscorrespondingly, from the randomly set positions. Therefore, a blind node position can bedetermined from the LASM algorithm by calculating the related forces with the neighbornodes. The computational and communication complexity are O(1 for each node, since thenumber of the neighbor nodes does not increase proportionally with the network scale size.Three patches are proposed to avoid local optimization, kick out bad nodes and deal withnode variation. Simulation results show that the computational and communicationcomplexity are almost constant despite of the increase of the network scale size. The time consumption has also been proven to remain almost constant since the calculation steps arealmost unrelated with the network scale size.

9. Probabilistic neural network algorithm for using radon emanations as an earthquake precursor

International Nuclear Information System (INIS)

Gupta, Dhawal; Shahani, D.T.

2014-01-01

The investigation throughout the world in past two decades provides evidence which indicate that significance variation of radon and other soil gases occur in association with major geophysical events such as earthquake. The traditional statistical algorithm includes regression to remove the effect of the meteorological parameters from the raw radon and anomalies are calculated either taking the periodicity in seasonal variations or periodicity computed using Fast Fourier Transform. In case of neural networks the regression step is avoided. A neural network model can be found which can learn the behavior of radon with respect to meteorological parameter in order that changing emission patterns may be adapted to by the model on its own. The output of this neural model is the estimated radon values. This estimated radon value is used to decide whether anomalous behavior of radon has occurred and a valid precursor may be identified. The neural network model developed using Radial Basis function network gave a prediction rate of 87.7%. The same was accompanied by huge false alarms. The present paper deals with improved neural network algorithm using Probabilistic Neural Networks that requires neither an explicit step of regression nor use of any specific period. This neural network model reduces the false alarms to zero and gave same prediction rate as RBF networks. (author)

Science.gov (United States)

Xiong, Naixue; Huang, Xingbo; Cheng, Hongju; Wan, Zheng

2013-04-12

11. Cost-Based Vertical Handover Decision Algorithm for WWAN/WLAN Integrated Networks

Directory of Open Access Journals (Sweden)

Kim LaeYoung

2009-01-01

Full Text Available Abstract Next generation wireless communications are expected to rely on integrated networks consisting of multiple wireless technologies. Heterogeneous networks based on Wireless Local Area Networks (WLANs and Wireless Wide Area Networks (WWANs can combine their respective advantages on coverage and data rates, offering a high Quality of Service (QoS to mobile users. In such environment, multi-interface terminals should seamlessly switch from one network to another in order to obtain improved performance or at least to maintain a continuous wireless connection. Therefore, network selection algorithm is important in providing better performance to the multi-interface terminals in the integrated networks. In this paper, we propose a cost-based vertical handover decision algorithm that triggers the Vertical Handover (VHO based on a cost function for WWAN/WLAN integrated networks. For the cost function, we focus on developing an analytical model of the expected cost of WLAN for the mobile users that enter the double-coverage area while having a connection in the WWAN. Our simulation results show that the proposed scheme achieves better performance in terms of power consumption and throughput than typical approach where WLANs are always preferred whenever the WLAN access is available.

12. An evaluation of the multi-state node networks reliability using the traditional binary-state networks reliability algorithm

International Nuclear Information System (INIS)

Yeh, W.-C.

2003-01-01

A system where the components and system itself are allowed to have a number of performance levels is called the Multi-state system (MSS). A multi-state node network (MNN) is a generalization of the MSS without satisfying the flow conservation law. Evaluating the MNN reliability arises at the design and exploitation stage of many types of technical systems. Up to now, the known existing methods can only evaluate a special MNN reliability called the multi-state node acyclic network (MNAN) in which no cyclic is allowed. However, no method exists for evaluating the general MNN reliability. The main purpose of this article is to show first that each MNN reliability can be solved using any the traditional binary-state networks (TBSN) reliability algorithm with a special code for the state probability. A simple heuristic SDP algorithm based on minimal cuts (MC) for estimating the MNN reliability is presented as an example to show how the TBSN reliability algorithm is revised to solve the MNN reliability problem. To the author's knowledge, this study is the first to discuss the relationships between MNN and TBSN and also the first to present methods to solve the exact and approximated MNN reliability. One example is illustrated to show how the exact MNN reliability is obtained using the proposed algorithm

13. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Rajeev Kumar

2016-01-01

Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

14. The index-based subgraph matching algorithm (ISMA: fast subgraph enumeration in large networks using optimized search trees.

Directory of Open Access Journals (Sweden)

Sofie Demeyer

Full Text Available Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA, a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/.

15. The Index-Based Subgraph Matching Algorithm (ISMA): Fast Subgraph Enumeration in Large Networks Using Optimized Search Trees

Science.gov (United States)

Demeyer, Sofie; Michoel, Tom; Fostier, Jan; Audenaert, Pieter; Pickavet, Mario; Demeester, Piet

2013-01-01

Subgraph matching algorithms are designed to find all instances of predefined subgraphs in a large graph or network and play an important role in the discovery and analysis of so-called network motifs, subgraph patterns which occur more often than expected by chance. We present the index-based subgraph matching algorithm (ISMA), a novel tree-based algorithm. ISMA realizes a speedup compared to existing algorithms by carefully selecting the order in which the nodes of a query subgraph are investigated. In order to achieve this, we developed a number of data structures and maximally exploited symmetry characteristics of the subgraph. We compared ISMA to a naive recursive tree-based algorithm and to a number of well-known subgraph matching algorithms. Our algorithm outperforms the other algorithms, especially on large networks and with large query subgraphs. An implementation of ISMA in Java is freely available at http://sourceforge.net/projects/isma/. PMID:23620730

16. Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm

Science.gov (United States)

Hao, Yufang; Xie, Shaodong

2018-03-01

Air quality monitoring networks play a significant role in identifying the spatiotemporal patterns of air pollution, and they need to be deployed efficiently, with a minimum number of sites. The revision and optimal adjustment of existing monitoring networks is crucial for cities that have undergone rapid urban expansion and experience temporal variations in pollution patterns. The approach based on the Weather Research and Forecasting-California PUFF (WRF-CALPUFF) model and genetic algorithm (GA) was developed to design an optimal monitoring network. The maximization of coverage with minimum overlap and the ability to detect violations of standards were developed as the design objectives for redistributed networks. The non-dominated sorting genetic algorithm was applied to optimize the network size and site locations simultaneously for Shijiazhuang city, one of the most polluted cities in China. The assessment on the current network identified the insufficient spatial coverage of SO2 and NO2 monitoring for the expanding city. The optimization results showed that significant improvements were achieved in multiple objectives by redistributing the original network. Efficient coverage of the resulting designs improved to 60.99% and 76.06% of the urban area for SO2 and NO2, respectively. The redistributing design for multi-pollutant including 8 sites was also proposed, with the spatial representation covered 52.30% of the urban area and the overlapped areas decreased by 85.87% compared with the original network. The abilities to detect violations of standards were not improved as much as the other two objectives due to the conflicting nature between the multiple objectives. Additionally, the results demonstrated that the algorithm was slightly sensitive to the parameter settings, with the number of generations presented the most significant effect. Overall, our study presents an effective and feasible procedure for air quality network optimization at a city scale.

17. An Effective Recommender Algorithm for Cold-Start Problem in Academic Social Networks

Directory of Open Access Journals (Sweden)

Vala Ali Rohani

2014-01-01

Full Text Available Abundance of information in recent years has become a serious challenge for web users. Recommender systems (RSs have been often utilized to alleviate this issue. RSs prune large information spaces to recommend the most relevant items to users by considering their preferences. Nonetheless, in situations where users or items have few opinions, the recommendations cannot be made properly. This notable shortcoming in practical RSs is called cold-start problem. In the present study, we propose a novel approach to address this problem by incorporating social networking features. Coined as enhanced content-based algorithm using social networking (ECSN, the proposed algorithm considers the submitted ratings of faculty mates and friends besides user’s own preferences. The effectiveness of ECSN algorithm was evaluated by implementing it in MyExpert, a newly designed academic social network (ASN for academics in Malaysia. Real feedbacks from live interactions of MyExpert users with the recommended items are recorded for 12 consecutive weeks in which four different algorithms, namely, random, collaborative, content-based, and ECSN were applied every three weeks. The empirical results show significant performance of ECSN in mitigating the cold-start problem besides improving the prediction accuracy of recommendations when compared with other studied recommender algorithms.

18. Mobile Ad Hoc Network Energy Cost Algorithm Based on Artificial Bee Colony

Directory of Open Access Journals (Sweden)

Mustafa Tareq

2017-01-01

Full Text Available A mobile ad hoc network (MANET is a collection of mobile nodes that dynamically form a temporary network without using any existing network infrastructure. MANET selects a path with minimal number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission power increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This study utilizes the swarm intelligence technique through the artificial bee colony (ABC algorithm to optimize the energy consumption in a dynamic source routing (DSR protocol in MANET. The proposed algorithm is called bee DSR (BEEDSR. The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the BEEDSR algorithm is compared with DSR and bee-inspired protocols (BeeIP. The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The BEEDSR algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size.

19. Super-resolution reconstruction of MR image with a novel residual learning network algorithm

Science.gov (United States)

Shi, Jun; Liu, Qingping; Wang, Chaofeng; Zhang, Qi; Ying, Shihui; Xu, Haoyu

2018-04-01

Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.

20. An extensive assessment of network alignment algorithms for comparison of brain connectomes.

Science.gov (United States)

Milano, Marianna; Guzzi, Pietro Hiram; Tymofieva, Olga; Xu, Duan; Hess, Christofer; Veltri, Pierangelo; Cannataro, Mario

2017-06-06

Recently the study of the complex system of connections in neural systems, i.e. the connectome, has gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels. Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of graphs. The latter step may be modeled as a network alignment (NA) problem. In this work, we first define the problem formally, then we test six existing state of the art of network aligners on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological measures. We also evaluated the robustness of algorithms to alterations of the dataset. The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm. The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation brain connectomes. The methodology has been experimented on several brain datasets.

1. Novel Navigation Algorithm for Wireless Sensor Networks without Information of Locations

NARCIS (Netherlands)

Guo, Peng; Jiang, Tao; Yi, Youwen; Zhang, Qian; Zhang, Kui

2011-01-01

In this paper, we propose a novel algorithm of distributed navigation for people to escape from critical event region in wireless sensor networks (WSNs). Unlike existing works, the scenario discussed in the paper has no goal or exit as guidance, leading to a big challenge for the navigation problem.

2. Bottom-up GGM algorithm for constructing multiple layered hierarchical gene regulatory networks

Science.gov (United States)

Multilayered hierarchical gene regulatory networks (ML-hGRNs) are very important for understanding genetics regulation of biological pathways. However, there are currently no computational algorithms available for directly building ML-hGRNs that regulate biological pathways. A bottom-up graphic Gaus...

3. DANoC: An Efficient Algorithm and Hardware Codesign of Deep Neural Networks on Chip.

Science.gov (United States)

Zhou, Xichuan; Li, Shengli; Tang, Fang; Hu, Shengdong; Lin, Zhi; Zhang, Lei

2017-07-18

Deep neural networks (NNs) are the state-of-the-art models for understanding the content of images and videos. However, implementing deep NNs in embedded systems is a challenging task, e.g., a typical deep belief network could exhaust gigabytes of memory and result in bandwidth and computational bottlenecks. To address this challenge, this paper presents an algorithm and hardware codesign for efficient deep neural computation. A hardware-oriented deep learning algorithm, named the deep adaptive network, is proposed to explore the sparsity of neural connections. By adaptively removing the majority of neural connections and robustly representing the reserved connections using binary integers, the proposed algorithm could save up to 99.9% memory utility and computational resources without undermining classification accuracy. An efficient sparse-mapping-memory-based hardware architecture is proposed to fully take advantage of the algorithmic optimization. Different from traditional Von Neumann architecture, the deep-adaptive network on chip (DANoC) brings communication and computation in close proximity to avoid power-hungry parameter transfers between on-board memory and on-chip computational units. Experiments over different image classification benchmarks show that the DANoC system achieves competitively high accuracy and efficiency comparing with the state-of-the-art approaches.

4. Hardware realization of a fast neural network algorithm for real-time tracking in HEP experiments

International Nuclear Information System (INIS)

Leimgruber, F.R.; Pavlopoulos, P.; Steinacher, M.; Tauscher, L.; Vlachos, S.; Wendler, H.

1995-01-01

A fast pattern recognition system for HEP experiments, based on artificial neural network algorithms (ANN), has been realized with standard electronics. The multiplicity and location of tracks in an event are determined in less than 75 ns. Hardware modules of this first level trigger were extensively tested for performance and reliability with data from the CPLEAR experiment. (orig.)

5. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

Science.gov (United States)

Ferentinos, Konstantinos P

2005-09-01

Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

6. A study of routing algorithms for SCI-Based multistage networks

International Nuclear Information System (INIS)

Wu Bin; Kristiansen, E.; Skaali, B.; Bogaerts, A.; )

1994-03-01

The report deals with a particular class of multistage Scalable Coherent Interface (SCI) network systems and two important routing algorithms, namely self-routing and table-look up routing. The effect of routing delay on system performance is investigated by simulations. Adaptive routing and deadlock-free routing are studied. 8 refs., 11 figs., 1 tab

7. A hybrid Genetic and Simulated Annealing Algorithm for Chordal Ring implementation in large-scale networks

DEFF Research Database (Denmark)

Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup

2011-01-01

The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...

8. Geometry on the parameter space of the belief propagation algorithm on Bayesian networks

Energy Technology Data Exchange (ETDEWEB)

Watanabe, Yodai [National Institute of Informatics, Research Organization of Information and Systems, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 (Japan); Laboratory for Mathematical Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan)

2006-01-30

This Letter considers a geometrical structure on the parameter space of the belief propagation algorithm on Bayesian networks. The statistical manifold of posterior distributions is introduced, and the expression for the information metric on the manifold is derived. The expression is used to construct a cost function which can be regarded as a measure of the distance in the parameter space.

9. Review of Recommender Systems Algorithms Utilized in Social Networks based e-Learning Systems & Neutrosophic System

Directory of Open Access Journals (Sweden)

A. A. Salama

2015-03-01

Full Text Available In this paper, we present a review of different recommender system algorithms that are utilized in social networks based e-Learning systems. Future research will include our proposed our e-Learning system that utilizes Recommender System and Social Network. Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache in [21, 22, 23] and Salama et al. in [24-66].The purpose of this paper is to utilize a neutrosophic set to analyze social networks data conducted through learning activities.

10. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

Science.gov (United States)

Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

2007-01-01

To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

11. A novel gene network inference algorithm using predictive minimum description length approach.

Science.gov (United States)

Chaitankar, Vijender; Ghosh, Preetam; Perkins, Edward J; Gong, Ping; Deng, Youping; Zhang, Chaoyang

2010-05-28

Reverse engineering of gene regulatory networks using information theory models has received much attention due to its simplicity, low computational cost, and capability of inferring large networks. One of the major problems with information theory models is to determine the threshold which defines the regulatory relationships between genes. The minimum description length (MDL) principle has been implemented to overcome this problem. The description length of the MDL principle is the sum of model length and data encoding length. A user-specified fine tuning parameter is used as control mechanism between model and data encoding, but it is difficult to find the optimal parameter. In this work, we proposed a new inference algorithm which incorporated mutual information (MI), conditional mutual information (CMI) and predictive minimum description length (PMDL) principle to infer gene regulatory networks from DNA microarray data. In this algorithm, the information theoretic quantities MI and CMI determine the regulatory relationships between genes and the PMDL principle method attempts to determine the best MI threshold without the need of a user-specified fine tuning parameter. The performance of the proposed algorithm was evaluated using both synthetic time series data sets and a biological time series data set for the yeast Saccharomyces cerevisiae. The benchmark quantities precision and recall were used as performance measures. The results show that the proposed algorithm produced less false edges and significantly improved the precision, as compared to the existing algorithm. For further analysis the performance of the algorithms was observed over different sizes of data. We have proposed a new algorithm that implements the PMDL principle for inferring gene regulatory networks from time series DNA microarray data that eliminates the need of a fine tuning parameter. The evaluation results obtained from both synthetic and actual biological data sets show that the

12. Genetic algorithm-based neural network for accidents diagnosis of research reactors on FPGA

International Nuclear Information System (INIS)

Ghuname, A.A.A.

2012-01-01

The Nuclear Research Reactors plants are expected to be operated with high levels of reliability, availability and safety. In order to achieve and maintain system stability and assure satisfactory and safe operation, there is increasing demand for automated systems to detect and diagnose such failures. Artificial Neural Networks (ANNs) are one of the most popular solutions because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. The genetic algorithms (GAs) which are search algorithms (optimization techniques), in recent years, have been used to find the optimum construction of a neural network for definite application, as one of the advantages of its usage. Nowadays, Field Programmable Gate Arrays (FPGAs) are being an important implementation method of neural networks due to their high performance and they can easily be made parallel. The VHDL, which stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description Language, have been used to describe the design behaviorally in addition to schematic and other description languages. The description of designs in synthesizable language such as VHDL make them reusable and be implemented in upgradeable systems like the Nuclear Research Reactors plants. In this thesis, the work was carried out through three main parts.In the first part, the Nuclear Research Reactors accident's pattern recognition is tackled within the artificial neural network approach. Such patterns are introduced initially without noise. And, to increase the reliability of such neural network, the noise ratio up to 50% was added for training in order to ensure the recognition of these patterns if it introduced with noise.The second part is concerned with the construction of Artificial Neural Networks (ANNs) using Genetic algorithms (GAs) for the nuclear accidents diagnosis. MATLAB ANNs toolbox and GAs toolbox are employed to optimize an ANN for this purpose. The results obtained show

13. Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization

Science.gov (United States)

Sochi, Taha

2016-09-01

Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.

14. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

Science.gov (United States)

Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

2018-05-01

3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

15. Pap-smear Classification Using Efficient Second Order Neural Network Training Algorithms

DEFF Research Database (Denmark)

Ampazis, Nikolaos; Dounias, George; Jantzen, Jan

2004-01-01

In this paper we make use of two highly efficient second order neural network training algorithms, namely the LMAM (Levenberg-Marquardt with Adaptive Momentum) and OLMAM (Optimized Levenberg-Marquardt with Adaptive Momentum), for the construction of an efficient pap-smear test classifier. The alg......In this paper we make use of two highly efficient second order neural network training algorithms, namely the LMAM (Levenberg-Marquardt with Adaptive Momentum) and OLMAM (Optimized Levenberg-Marquardt with Adaptive Momentum), for the construction of an efficient pap-smear test classifier....... The algorithms are methodologically similar, and are based on iterations of the form employed in the Levenberg-Marquardt (LM) method for non-linear least squares problems with the inclusion of an additional adaptive momentum term arising from the formulation of the training task as a constrained optimization...

16. Unified compression and encryption algorithm for fast and secure network communications

International Nuclear Information System (INIS)

Rizvi, S.M.J.; Hussain, M.; Qaiser, N.

2005-01-01

Compression and encryption of data are two vital requirements for the fast and secure transmission of data in the network based communications. In this paper an algorithm is presented based on adaptive Huffman encoding for unified compression and encryption of Unicode encoded textual data. The Huffman encoding weakness that same tree is needed for decoding is utilized in the algorithm presented as an extra layer of security, which is updated whenever the frequency change is above the specified threshold level. The results show that we get compression comparable to popular zip format and in addition to that data has got an additional layer of encryption that makes it more secure. Thus unified algorithm presented here can be used for network communications between different branches of banks, e- Government programs and national database and registration centers where data transmission requires both compression and encryption. (author)

17. DENSE MATCHING COMPARISON BETWEEN CENSUS AND A CONVOLUTIONAL NEURAL NETWORK ALGORITHM FOR PLANT RECONSTRUCTION

Directory of Open Access Journals (Sweden)

Y. Xia

2018-05-01

Full Text Available 3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

18. Neural network algorithm for image reconstruction using the grid friendly projections

International Nuclear Information System (INIS)

Cierniak, R.

2011-01-01

Full text: The presented paper describes a development of original approach to the reconstruction problem using a recurrent neural network. Particularly, the 'grid-friendly' angles of performed projections are selected according to the discrete Radon transform (DRT) concept to decrease the number of projections required. The methodology of our approach is consistent with analytical reconstruction algorithms. Reconstruction problem is reformulated in our approach to optimization problem. This problem is solved in present concept using method based on the maximum likelihood methodology. The reconstruction algorithm proposed in this work is consequently adapted for more practical discrete fan beam projections. Computer simulation results show that the neural network reconstruction algorithm designed to work in this way improves obtained results and outperforms conventional methods in reconstructed image quality. (author)

19. A Neural Network: Family Competition Genetic Algorithm and Its Applications in Electromagnetic Optimization

Directory of Open Access Journals (Sweden)

P.-Y. Chen

2009-01-01

Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.

20. Team Cooperation in a Network of Multi-Vehicle Unmanned Systems Synthesis of Consensus Algorithms

CERN Document Server

Semsar-Kazerooni, Elham

2013-01-01

Team Cooperation in a Network of Multi-Vehicle Unmanned Systems develops a framework for modeling and control of a network of multi-agent unmanned systems in a cooperative manner and with consideration of non-ideal and practical considerations. The main focus of this book is the development of “synthesis-based” algorithms rather than on conventional “analysis-based” approaches to the team cooperation, specifically the team consensus problems. The authors provide a set of modified “design-based” consensus algorithms whose optimality is verified through introduction of performance indices. This book also: Provides synthesis-based methodology for team cooperation Introduces a consensus-protocol optimized performance index  Offers comparisons for use of proper indices in measuring team performance Analyzes and predicts  performance of  previously designed consensus algorithms Analyses and predicts team behavior in the presence of non-ideal considerations such as actuator anomalies and faults as wel...

1. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

Science.gov (United States)

Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

2014-08-18

Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

2. A P2P Query Algorithm for Opportunistic Networks Utilizing betweenness Centrality Forwarding

Directory of Open Access Journals (Sweden)

Jianwei Niu

2013-01-01

Full Text Available With the proliferation of high-end mobile devices that feature wireless interfaces, many promising applications are enabled in opportunistic networks. In contrary to traditional networks, opportunistic networks utilize the mobility of nodes to relay messages in a store-carry-forward paradigm. Thus, the relay process in opportunistic networks faces several practical challenges in terms of delay and delivery rate. In this paper, we propose a novel P2P Query algorithm, namely Betweenness Centrality Forwarding (PQBCF, for opportunistic networking. PQBCF adopts a forwarding metric called Betweenness Centrality (BC, which is borrowed from social network, to quantify the active degree of nodes in the networks. In PQBCF, nodes with a higher BC are preferable to serve as relays, leading to higher query success rate and lower query delay. A comparison with the state-of-the-art algorithms reveals that PQBCF can provide better performance on both the query success Ratio and query delay, and approaches the performance of Epidemic Routing (ER with much less resource consumption.

3. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Jin Wang

2014-08-01

Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

4. An Improved Neural Network Training Algorithm for Wi-Fi Fingerprinting Positioning

Directory of Open Access Journals (Sweden)

Esmond Mok

2013-09-01

Full Text Available Ubiquitous positioning provides continuous positional information in both indoor and outdoor environments for a wide spectrum of location based service (LBS applications. With the rapid development of the low-cost and high speed data communication, Wi-Fi networks in many metropolitan cities, strength of signals propagated from the Wi-Fi access points (APs namely received signal strength (RSS have been cleverly adopted for indoor positioning. In this paper, a Wi-Fi positioning algorithm based on neural network modeling of Wi-Fi signal patterns is proposed. This algorithm is based on the correlation between the initial parameter setting for neural network training and output of the mean square error to obtain better modeling of the nonlinear highly complex Wi-Fi signal power propagation surface. The test results show that this neural network based data processing algorithm can significantly improve the neural network training surface to achieve the highest possible accuracy of the Wi-Fi fingerprinting positioning method.

5. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

Science.gov (United States)

2010-05-01

Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

6. A Dependable Localization Algorithm for Survivable Belt-Type Sensor Networks.

Science.gov (United States)

Zhu, Mingqiang; Song, Fei; Xu, Lei; Seo, Jung Taek; You, Ilsun

2017-11-29

As the key element, sensor networks are widely investigated by the Internet of Things (IoT) community. When massive numbers of devices are well connected, malicious attackers may deliberately propagate fake position information to confuse the ordinary users and lower the network survivability in belt-type situation. However, most existing positioning solutions only focus on the algorithm accuracy and do not consider any security aspects. In this paper, we propose a comprehensive scheme for node localization protection, which aims to improve the energy-efficient, reliability and accuracy. To handle the unbalanced resource consumption, a node deployment mechanism is presented to satisfy the energy balancing strategy in resource-constrained scenarios. According to cooperation localization theory and network connection property, the parameter estimation model is established. To achieve reliable estimations and eliminate large errors, an improved localization algorithm is created based on modified average hop distances. In order to further improve the algorithms, the node positioning accuracy is enhanced by using the steepest descent method. The experimental simulations illustrate the performance of new scheme can meet the previous targets. The results also demonstrate that it improves the belt-type sensor networks' survivability, in terms of anti-interference, network energy saving, etc.

7. An Energy Efficient Stable Election-Based Routing Algorithm for Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Weiwei Yuan

2013-10-01

Full Text Available Sensor nodes usually have limited energy supply and they are impractical to recharge. How to balance traffic load in sensors in order to increase network lifetime is a very challenging research issue. Many clustering algorithms have been proposed recently for wireless sensor networks (WSNs. However, sensor networks with one fixed sink node often suffer from a hot spots problem since nodes near sinks have more traffic burden to forward during a multi-hop transmission process. The use of mobile sinks has been shown to be an effective technique to enhance network performance features such as latency, energy efficiency, network lifetime, etc. In this paper, a modified Stable Election Protocol (SEP, which employs a mobile sink, has been proposed for WSNs with non-uniform node distribution. The decision of selecting cluster heads by the sink is based on the minimization of the associated additional energy and residual energy at each node. Besides, the cluster head selects the shortest path to reach the sink between the direct approach and the indirect approach with the use of the nearest cluster head. Simulation results demonstrate that our algorithm has better performance than traditional routing algorithms, such as LEACH and SEP.

8. Intrusion Detection Algorithm for Mitigating Sinkhole Attack on LEACH Protocol in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Ranjeeth Kumar Sundararajan

2015-01-01

Full Text Available In wireless sensor network (WSN, the sensors are deployed and placed uniformly to transmit the sensed data to a centralized station periodically. So, the major threat of the WSN network layer is sinkhole attack and it is still being a challenging issue on the sensor networks, where the malicious node attracts the packets from the other normal sensor nodes and drops the packets. Thus, this paper proposes an Intrusion Detection System (IDS mechanism to detect the intruder in the network which uses Low Energy Adaptive Clustering Hierarchy (LEACH protocol for its routing operation. In the proposed algorithm, the detection metrics, such as number of packets transmitted and received, are used to compute the intrusion ratio (IR by the IDS agent. The computed numeric or nonnumeric value represents the normal or malicious activity. As and when the sinkhole attack is captured, the IDS agent alerts the network to stop the data transmission. Thus, it can be a resilient to the vulnerable attack of sinkhole. Above all, the simulation result is shown for the proposed algorithm which is proven to be efficient compared with the existing work, namely, MS-LEACH, in terms of minimum computational complexity and low energy consumption. Moreover, the algorithm was numerically analyzed using TETCOS NETSIM.

9. Development of test algorithm for semiconductor package with defects by using probabilistic neural network

International Nuclear Information System (INIS)

Kim, Jae Yeol; Sim, Jae Gi; Ko, Myoung Soo; Kim, Chang Hyun; Kim, Hun Cho

2001-01-01

In this study, researchers developing the estimative algorithm for artificial defects in semiconductor packages and performing it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Probabilistic Neural Network. Self-Organizing Map and Probabilistic Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages. This study presumes probability density function from a sample of learning and present which is automatically determine method. PNN can distinguish flaws very difficult distinction as well as. This can do parallel process to stand in a row we confirm that is very efficiently classifier if we applied many data real the process.

10. Planning of distributed generation in distribution network based on improved particle swarm optimization algorithm

Science.gov (United States)

Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng

2018-02-01

Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.

11. Identifying groups of critical edges in a realistic electrical network by multi-objective genetic algorithms

International Nuclear Information System (INIS)

Zio, E.; Golea, L.R.; Rocco S, C.M.

2012-01-01

In this paper, an analysis of the vulnerability of the Italian high-voltage (380 kV) electrical transmission network (HVIET) is carried out for the identification of the groups of links (or edges, or arcs) most critical considering the network structure and flow. Betweenness centrality and network connection efficiency variations are considered as measures of the importance of the network links. The search of the most critical ones is carried out within a multi-objective optimization problem aimed at the maximization of the importance of the groups and minimization of their dimension. The problem is solved using a genetic algorithm. The analysis is based only on information on the topology of the network and leads to the identification of the most important single component, couples of components, triplets and so forth. The comparison of the results obtained with those reported by previous analyses indicates that the proposed approach provides useful complementary information.

12. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

Directory of Open Access Journals (Sweden)

Shi Chen-guang

2014-08-01

Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

13. Using variants of CHC Algorithms in the Design of Radio Frequency Networks in Wireless Communications.

Directory of Open Access Journals (Sweden)

Daniel Antonio Molina

2015-09-01

Full Text Available In this paper we apply to solve the Radio Network Design problem (RND a series  of the non-conventional genetic algorithms called Cross generational elitist selection Heterogeneous recombination Cataclysmic mutation (CHC. A set of genetic algorithms is used to perform a comparative performance of the proposed algorithms. An objective function based on signal coverage efficiency is used. Genetic variability of the population is used for both, as a parameter of convergence and detection of incest. Furthermore the variability of the best individual is proposed as a shaking mechanism. This allows generating dynamic populations according to the most promising solutions generating different search spaces. The results obtained by the proposed algorithms are satisfactory.

14. Neural Network Blind Equalization Algorithm Applied in Medical CT Image Restoration

Directory of Open Access Journals (Sweden)

Yunshan Sun

2013-01-01

Full Text Available A new algorithm for iterative blind image restoration is presented in this paper. The method extends blind equalization found in the signal case to the image. A neural network blind equalization algorithm is derived and used in conjunction with Zigzag coding to restore the original image. As a result, the effect of PSF can be removed by using the proposed algorithm, which contributes to eliminate intersymbol interference (ISI. In order to obtain the estimation of the original image, what is proposed in this method is to optimize constant modulus blind equalization cost function applied to grayscale CT image by using conjugate gradient method. Analysis of convergence performance of the algorithm verifies the feasibility of this method theoretically; meanwhile, simulation results and performance evaluations of recent image quality metrics are provided to assess the effectiveness of the proposed method.

15. Algorithms

ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

16. Road network selection for small-scale maps using an improved centrality-based algorithm

Directory of Open Access Journals (Sweden)

Roy Weiss

2014-12-01

17. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.

Science.gov (United States)

Chen, Chi-Kan

2017-07-26

The identification of genetic regulatory networks (GRNs) provides insights into complex cellular processes. A class of recurrent neural networks (RNNs) captures the dynamics of GRN. Algorithms combining the RNN and machine learning schemes were proposed to reconstruct small-scale GRNs using gene expression time series. We present new GRN reconstruction methods with neural networks. The RNN is extended to a class of recurrent multilayer perceptrons (RMLPs) with latent nodes. Our methods contain two steps: the edge rank assignment step and the network construction step. The former assigns ranks to all possible edges by a recursive procedure based on the estimated weights of wires of RNN/RMLP (RE RNN /RE RMLP ), and the latter constructs a network consisting of top-ranked edges under which the optimized RNN simulates the gene expression time series. The particle swarm optimization (PSO) is applied to optimize the parameters of RNNs and RMLPs in a two-step algorithm. The proposed RE RNN -RNN and RE RMLP -RNN algorithms are tested on synthetic and experimental gene expression time series of small GRNs of about 10 genes. The experimental time series are from the studies of yeast cell cycle regulated genes and E. coli DNA repair genes. The unstable estimation of RNN using experimental time series having limited data points can lead to fairly arbitrary predicted GRNs. Our methods incorporate RNN and RMLP into a two-step structure learning procedure. Results show that the RE RMLP using the RMLP with a suitable number of latent nodes to reduce the parameter dimension often result in more accurate edge ranks than the RE RNN using the regularized RNN on short simulated time series. Combining by a weighted majority voting rule the networks derived by the RE RMLP -RNN using different numbers of latent nodes in step one to infer the GRN, the method performs consistently and outperforms published algorithms for GRN reconstruction on most benchmark time series. The framework of two

18. An Adaptive Connectivity-based Centroid Algorithm for Node Positioning in Wireless Sensor Networks

Directory of Open Access Journals (Sweden)

Aries Pratiarso

2015-06-01

Full Text Available In wireless sensor network applications, the position of nodes is randomly distributed following the contour of the observation area. A simple solution without any measurement tools is provided by range-free method. However, this method yields the coarse estimating position of the nodes. In this paper, we propose Adaptive Connectivity-based (ACC algorithm. This algorithm is a combination of Centroid as range-free based algorithm, and hop-based connectivity algorithm. Nodes have a possibility to estimate their own position based on the connectivity level between them and their reference nodes. Each node divides its communication range into several regions where each of them has a certain weight depends on the received signal strength. The weighted value is used to obtain the estimated position of nodes. Simulation result shows that the proposed algorithm has up to 3 meter error of estimated position on 100x100 square meter observation area, and up to 3 hop counts for 80 meters' communication range. The proposed algorithm performs an average error positioning up to 10 meters better than Weighted Centroid algorithm. Keywords: adaptive, connectivity, centroid, range-free.

19. Using Metaheuristic Algorithms for Solving a Hub Location Problem: Application in Passive Optical Network Planning

Directory of Open Access Journals (Sweden)

Masoud Rabbani

2017-02-01

Full Text Available Nowadays, fiber-optic due to having greater bandwidth and being more efficient compared with other similar technologies, are counted as one the most important tools for data transfer. In this article, an integrated mathematical model for a three-level fiber-optic distribution network with consideration of simultaneous backbone and local access networks is presented in which the backbone network is a ring and the access networks has a star-star topology. The aim of the model is to determine the location of the central offices and splitters, how connections are made between central offices, and allocation of each demand node to a splitter or central office in a way that the wiring cost of fiber optical and concentrator installation are minimized. Moreover, each user’s desired bandwidth should be provided efficiently. Then, the proposed model is validated by GAMS software in small-sized problems, afterwards the model is solved by two meta-heuristic methods including differential evolution (DE and genetic algorithm (GA in large-scaled problems and the results of two algorithms are compared with respect to computational time and objective function obtained value. Finally, a sensitivity analysis is provided. Keyword: Fiber-optic, telecommunication network, hub-location, passive splitter, three-level network.

20. The congestion control algorithm based on queue management of each node in mobile ad hoc networks

Science.gov (United States)

Wei, Yifei; Chang, Lin; Wang, Yali; Wang, Gaoping

2016-12-01

This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. As the network load increases, local congestion of mobile ad hoc network may lead to network performance degradation, hot node's energy consumption increase even failure. If small energy nodes congested because of forwarding data packets, then when it is used as the source node will cause a lot of packet loss. This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. Controlling nodes buffer queue in different levels of congestion area probability by adjusting the upper limits and lower limits, thus nodes can adjust responsibility of forwarding data packets according to their own situation. The proposed algorithm will slow down the send rate hop by hop along the data package transmission direction from congestion node to source node so that to prevent further congestion from the source node. The simulation results show that, the algorithm can better play the data forwarding ability of strong nodes, protect the weak nodes, can effectively alleviate the network congestion situation.

1. A local adaptive algorithm for emerging scale-free hierarchical networks

International Nuclear Information System (INIS)

Gomez Portillo, I J; Gleiser, P M

2010-01-01

In this work we study a growing network model with chaotic dynamical units that evolves using a local adaptive rewiring algorithm. Using numerical simulations we show that the model allows for the emergence of hierarchical networks. First, we show that the networks that emerge with the algorithm present a wide degree distribution that can be fitted by a power law function, and thus are scale-free networks. Using the LaNet-vi visualization tool we present a graphical representation that reveals a central core formed only by hubs, and also show the presence of a preferential attachment mechanism. In order to present a quantitative analysis of the hierarchical structure we analyze the clustering coefficient. In particular, we show that as the network grows the clustering becomes independent of system size, and also presents a power law decay as a function of the degree. Finally, we compare our results with a similar version of the model that has continuous non-linear phase oscillators as dynamical units. The results show that local interactions play a fundamental role in the emergence of hierarchical networks.

2. Highway Passenger Transport Based Express Parcel Service Network Design: Model and Algorithm

Directory of Open Access Journals (Sweden)

Yuan Jiang

2017-01-01

Full Text Available Highway passenger transport based express parcel service (HPTB-EPS is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.

3. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

Directory of Open Access Journals (Sweden)

Aydin Azizi

2017-01-01

Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

4. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

Directory of Open Access Journals (Sweden)

Juan Pardo

2015-04-01

Full Text Available Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

5. Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

Science.gov (United States)

Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

2015-01-01

Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources. PMID:25905698

6. On the rejection-based algorithm for simulation and analysis of large-scale reaction networks

Energy Technology Data Exchange (ETDEWEB)

Thanh, Vo Hong, E-mail: vo@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Zunino, Roberto, E-mail: roberto.zunino@unitn.it [Department of Mathematics, University of Trento, Trento (Italy); Priami, Corrado, E-mail: priami@cosbi.eu [The Microsoft Research-University of Trento Centre for Computational and Systems Biology, Piazza Manifattura 1, Rovereto 38068 (Italy); Department of Mathematics, University of Trento, Trento (Italy)

2015-06-28

Stochastic simulation for in silico studies of large biochemical networks requires a great amount of computational time. We recently proposed a new exact simulation algorithm, called the rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)], to improve simulation performance by postponing and collapsing as much as possible the propensity updates. In this paper, we analyze the performance of this algorithm in detail, and improve it for simulating large-scale biochemical reaction networks. We also present a new algorithm, called simultaneous RSSA (SRSSA), which generates many independent trajectories simultaneously for the analysis of the biochemical behavior. SRSSA improves simulation performance by utilizing a single data structure across simulations to select reaction firings and forming trajectories. The memory requirement for building and storing the data structure is thus independent of the number of trajectories. The updating of the data structure when needed is performed collectively in a single operation across the simulations. The trajectories generated by SRSSA are exact and independent of each other by exploiting the rejection-based mechanism. We test our new improvement on real biological systems with a wide range of reaction networks to demonstrate its applicability and efficiency.

7. An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks.

Science.gov (United States)

Yoon, Yourim; Kim, Yong-Hyuk

2013-10-01

Sensor networks have a lot of applications such as battlefield surveillance, environmental monitoring, and industrial diagnostics. Coverage is one of the most important performance metrics for sensor networks since it reflects how well a sensor field is monitored. In this paper, we introduce the maximum coverage deployment problem in wireless sensor networks and analyze the properties of the problem and its solution space. Random deployment is the simplest way to deploy sensor nodes but may cause unbalanced deployment and therefore, we need a more intelligent way for sensor deployment. We found that the phenotype space of the problem is a quotient space of the genotype space in a mathematical view. Based on this property, we propose an efficient genetic algorithm using a novel normalization method. A Monte Carlo method is adopted to design an efficient evaluation function, and its computation time is decreased without loss of solution quality using a method that starts from a small number of random samples and gradually increases the number for subsequent generations. The proposed genetic algorithms could be further improved by combining with a well-designed local search. The performance of the proposed genetic algorithm is shown by a comparative experimental study. When compared with random deployment and existing methods, our genetic algorithm was not only about twice faster, but also showed significant performance improvement in quality.

8. Online learning algorithm for time series forecasting suitable for low cost wireless sensor networks nodes.

Science.gov (United States)

Pardo, Juan; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma

2015-04-21

Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.

9. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

Science.gov (United States)

Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

2016-01-01

A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

10. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

Science.gov (United States)

Bouchard, M

2001-01-01

In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

11. An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.

Science.gov (United States)

Cheng, Jing; Xia, Linyuan

2016-08-31

Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

12. Application of Dynamic Mutated Particle Swarm Optimization Algorithm to Design Water Distribution Networks

Directory of Open Access Journals (Sweden)

2015-10-01

Full Text Available This paper proposes the application of a new version of the heuristic particle swarm optimization (PSO method for designing water distribution networks (WDNs. The optimization problem of looped water distribution networks is recognized as an NP-hard combinatorial problem which cannot be easily solved using traditional mathematical optimization techniques. In this paper, the concept of dynamic swarm size is considered in an attempt to increase the convergence speed of the original PSO algorithm. In this strategy, the size of the swarm is dynamically changed according to the iteration number of the algorithm. Furthermore, a novel mutation approach is introduced to increase the diversification property of the PSO and to help the algorithm to avoid trapping in local optima. The new version of the PSO algorithm is called dynamic mutated particle swarm optimization (DMPSO. The proposed DMPSO is then applied to solve WDN design problems. Finally, two illustrative examples are used for comparison to verify the efficiency of the proposed DMPSO as compared to other intelligent algorithms.

13. A Distributed and Energy-Efficient Algorithm for Event K-Coverage in Underwater Sensor Networks

Directory of Open Access Journals (Sweden)

Peng Jiang

2017-01-01

Full Text Available For event dynamic K-coverage algorithms, each management node selects its assistant node by using a greedy algorithm without considering the residual energy and situations in which a node is selected by several events. This approach affects network energy consumption and balance. Therefore, this study proposes a distributed and energy-efficient event K-coverage algorithm (DEEKA. After the network achieves 1-coverage, the nodes that detect the same event compete for the event management node with the number of candidate nodes and the average residual energy, as well as the distance to the event. Second, each management node estimates the probability of its neighbor nodes’ being selected by the event it manages with the distance level, the residual energy level, and the number of dynamic coverage event of these nodes. Third, each management node establishes an optimization model that uses expectation energy consumption and the residual energy variance of its neighbor nodes and detects the performance of the events it manages as targets. Finally, each management node uses a constrained non-dominated sorting genetic algorithm (NSGA-II to obtain the Pareto set of the model and the best strategy via technique for order preference by similarity to an ideal solution (TOPSIS. The algorithm first considers the effect of harsh underwater environments on information collection and transmission. It also considers the residual energy of a node and a situation in which the node is selected by several other events. Simulation results show that, unlike the on-demand variable sensing K-coverage algorithm, DEEKA balances and reduces network energy consumption, thereby prolonging the network’s best service quality and lifetime.

14. Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm

Directory of Open Access Journals (Sweden)

Ruiying Li

2014-01-01

Full Text Available It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov model is introduced to determine that on the component level. A heuristic algorithm is proposed to obtain the reliability and maintainability allocation values of components. The principles applied in the AGREE reliability allocation method, proposed by the Advisory Group on Reliability of Electronic Equipment, and failure rate-based maintainability allocation method persist in our allocation method. A series system is used to verify the new algorithm, and the result shows that the allocation based on the heuristic algorithm is quite accurate compared to the traditional one. Moreover, our case study of a signaling system number 7 shows that the proposed allocation method is quite efficient for networked systems.

15. Reconfiguration of distribution networks to minimize loss and disruption costs using genetic algorithms

Energy Technology Data Exchange (ETDEWEB)

Cebrian, Juan Carlos; Kagan, Nelson [Department of Electrical Engineering, University of Sao Paulo, Escola Politecnica, Av. Prof. Luciano Gualberto, travessa 3 n 380 - CEP - 05508-970 - Sao Paulo (Brazil)

2010-01-15

In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (author)

16. Securing mobile ad hoc networks using danger theory-based artificial immune algorithm.

Science.gov (United States)

Abdelhaq, Maha; Alsaqour, Raed; Abdelhaq, Shawkat

2015-01-01

A mobile ad hoc network (MANET) is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA) to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA) to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA) using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs.

17. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization

OpenAIRE

Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero

2012-01-01

Abstract Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, suc...

18. [Algorithms of artificial neural networks--practical application in medical science].

Science.gov (United States)

Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

2005-12-01

Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

19. Optimization of China Crude Oil Transportation Network with Genetic Ant Colony Algorithm

Directory of Open Access Journals (Sweden)

Yao Wang

2015-08-01

Full Text Available Taking into consideration both shipping and pipeline transport, this paper first analysed the risk factors for different modes of crude oil import transportation. Then, based on the minimum of both transportation cost and overall risk, a multi-objective programming model was established to optimize the transportation network of crude oil import, and the genetic algorithm and ant colony algorithm were employed to solve the problem. The optimized result shows that VLCC (Very Large Crude Carrier is superior in long distance sea transportation, whereas pipeline transport is more secure than sea transport. Finally, this paper provides related safeguard suggestions on crude oil import transportation.

20. Sequential Classification of Palm Gestures Based on A* Algorithm and MLP Neural Network for Quadrocopter Control

Directory of Open Access Journals (Sweden)

Wodziński Marek

2017-06-01

Full Text Available This paper presents an alternative approach to the sequential data classification, based on traditional machine learning algorithms (neural networks, principal component analysis, multivariate Gaussian anomaly detector and finding the shortest path in a directed acyclic graph, using A* algorithm with a regression-based heuristic. Palm gestures were used as an example of the sequential data and a quadrocopter was the controlled object. The study includes creation of a conceptual model and practical construction of a system using the GPU to ensure the realtime operation. The results present the classification accuracy of chosen gestures and comparison of the computation time between the CPU- and GPU-based solutions.