WorldWideScience

Sample records for network regulating energy

  1. Deployment strategy for battery energy storage system in distribution network based on voltage violation regulation

    Science.gov (United States)

    Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.

    2017-11-01

    In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.

  2. Distributed Control of Battery Energy Storage Systems for Voltage Regulation in Distribution Networks with High PV Penetration

    DEFF Research Database (Denmark)

    Zeraati, Mehdi; Golshan, Mohamad Esmaeil Hamedani; Guerrero, Josep M.

    2017-01-01

    issues of distribution networks. In this paper, the battery energy storage (BES) systems are used in order to solve the voltage rise during the peak PV generation as well as the voltage drop while meeting the peak load. A coordinated control strategy is proposed to regulate the charge/discharge of BESs......The voltage rise problem in low voltage (LV) distribution networks with high penetration of photovoltaic (PV) resources is one of the most important challenges in the development of these renewable resources since it may prevent the maximum PV penetration considering the reliability and security...... using a combination of the local droop based control method and a distributed control scheme which ensures the voltages of feeder remain within allowed limits. Therefore, two different consensus algorithms are used: The first algorithm determines the BESs participation in voltage regulation in terms...

  3. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator

    DEFF Research Database (Denmark)

    Usaite, Renata; Jewett, Michael Christopher; Soberano de Oliveira, Ana Paula

    2009-01-01

    Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite le...... findings showed that Snf1 is a low-energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases.......Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite...... identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our...

  4. Energy Efficient Digital Networks

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-01-01

    Digital networks are the foundation of the information services, and play an expanding and indispensable role in our lives, via the Internet, email, mobile phones, etc. However, these networks consume energy, both through the direct energy use of the network interfaces and equipment that comprise the network, and in the effect they have on the operating patterns of devices connected to the network. The purpose of this research was to investigate a variety of technology and policy issues related to the energy use caused by digital networks, and to further develop several energy-efficiency technologies targeted at networks.

  5. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator

    Science.gov (United States)

    Usaite, Renata; Jewett, Michael C; Oliveira, Ana Paula; Yates, John R; Olsson, Lisbeth; Nielsen, Jens

    2009-01-01

    Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite levels in wild type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 knockout strains. Using four newly developed computational tools, including novel DOGMA sub-network analysis, we showed the benefits of three-level ome-data integration to uncover the global Snf1 kinase role in yeast. We for the first time identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our findings showed that Snf1 is a low-energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases. PMID:19888214

  6. Optimal Voltage Regulation for Unbalanced Distribution Networks Considering Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2015-01-01

    With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative quadratic constrained quadratic programming model to minimize voltage deviations and maximize distributed energy resource (DER) active power output in a three phase unbalanced distribution system is developed. The optimization model is based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DERs). To avoid the oscillation of solution when it is close to the optimum, a golden search method is introduced to control the step size. Numerical simulations on modified IEEE 13 nodes test feeders show the efficiency of the proposed model. Compared to the results solved by heuristic search (harmony algorithm), the proposed model converges quickly to the global optimum.

  7. Energy Sciences Network (ESnet)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Sciences Network is the Department of Energy’s high-speed network that provides the high-bandwidth, reliable connections that link scientists at national...

  8. Integrated renewable energy networks

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Spencer, L.

    2015-12-01

    This multidisciplinary research is focused on studying implementation of diverse renewable energy networks. Our modern economy now depends heavily on large-scale, energy-intensive technologies. A transition to low carbon, renewable sources of energy is needed. We will develop a procedure for designing and analyzing renewable energy systems based on the magnitude, distribution, temporal characteristics, reliability and costs of the various renewable resources (including biomass waste streams) in combination with various measures to control the magnitude and timing of energy demand. The southern Canadian prairies are an ideal location for developing renewable energy networks. The region is blessed with steady, westerly winds and bright sunshine for more hours annually than Houston Texas. Extensive irrigation agriculture provides huge waste streams that can be processed biologically and chemically to create a range of biofuels. The first stage involves mapping existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation, such as ridges, rooftops and valley walls, will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids.

  9. Synergies between energy supply networks

    DEFF Research Database (Denmark)

    Wu, Jianzhnog; Yan, Jinyue; Desideri, Umberto

    2017-01-01

    Energy system integration uses a whole-system approach to optimize the synergies between energy supply networks to facilitate and coordinate the grid integration of distributed energy resources while enabling the synergies and conflicts between the local distribution networks and the national lev...... and integration of local renewables including solar energy wind geothermal waste heat and biomass is presented.......Energy system integration uses a whole-system approach to optimize the synergies between energy supply networks to facilitate and coordinate the grid integration of distributed energy resources while enabling the synergies and conflicts between the local distribution networks and the national level...... objectives to be understood and optimally coordinated. The latest research on the network coupling technologies analysis of synergies between energy supply networks and optimal use of synergies in network operation is discussed. A diagram on the possible interactions between different energy networks...

  10. Network Regulation and Support Schemes

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Schröder, Sascha Thorsten; Jacobsen, Henrik

    2009-01-01

    -in tariffs to market-based quota systems, and network regulation approaches, comprising rate-of-return and incentive regulation. National regulation and the vertical structure of the electricity sector shape the incentives of market agents, notably of distributed generators and network operators....... This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect the deployment of distributed generation. Firstly, a conceptual analysis examines how the incentives of the different market agents are affected. In particular......At present, there exists no explicit European policy framework on distributed generation. Various Directives encompass distributed generation; inherently, their implementation is to the discretion of the Member States. The latter have adopted different kinds of support schemes, ranging from feed...

  11. Energy efficiency in wireless networks

    CERN Document Server

    Jumira, Oswald

    2013-01-01

    The last decade has witnessed an unprecedented development and growth in global wireless communications systems, technologies and network "traffic" generated over network infrastructures.This book presents state-of-the-art energy-efficient techniques, designs and implementations that pertain to wireless communication networks such as cellular networks, wireless local area networks (WLANs) and wireless ad hoc networks (WAHNs) including mobile ad hoc networks (MANETs), and wireless sensor networks (WSNs) as they are deployed across the world to facilitate "always on" reliable high-speed

  12. Tariff proposal of the Commission of energy regulation from February 28, 2008 for the use of public natural gas distribution networks; Proposition tarifaire de la Commission de regulation de l'energie du 28 fevrier 2008 pour l'utilisation des reseaux publics de distribution de gaz naturel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    With the complete opening of natural gas markets to competition and the legal separation of distribution networks, Gaz de France Reseau Distribution requested the implementation of a new tariff of use of gas distribution networks to the Commission of energy regulation (CRE). A new tariff of networks utilisation has thus been proposed by CRE after a public consultation and the audition of gas suppliers. This tariff foresees a 5.6% increase of the present day tariff by July 1, 2008. The impact on the end-users' gas retail price will be a 1.5% rise of the regulated tariff. (J.S.)

  13. Fusion Energy Sciences Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [ESNet, Berkeley, CA (United States); Tierney, Brian [ESNet, Berkeley, CA (United States)

    2012-09-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In December 2011, ESnet and the Office of Fusion Energy Sciences (FES), of the DOE Office of Science (SC), organized a workshop to characterize the networking requirements of the programs funded by FES. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  14. ENERGY REGULATION IN YOUNG PEOPLE

    Directory of Open Access Journals (Sweden)

    Caroline J. Dodd

    2007-09-01

    Full Text Available Obesity in young people is now realised as a worldwide crisis of epidemic proportion. The aetiology of this disease suggests a disruption in regulation of energy at the population level, leading to a positive energy balance and excess adiposity. The relative contribution of food intake and physical inactivity remains to be elucidated. Treatment interventions have aimed to create a deficit in energy balance through manipulation of physical activity, behavioural components or, to a lesser extent, dietary modification. Whether such intervention is maintained in the long-term is as yet unclear, however it seems a combination of therapies is optimal. Mindful of a mismatch between energy intake and expenditure, recent work has begun to examine the acute relationship between physical activity and food intake in children. Initial findings suggest a short-term delay in compensation through energy intake for exercise- induced energy expenditure. The overarching study of energy regulation in children and adolescents is clearly multifaceted in nature and variables to be assessed or manipulated require careful consideration. The collection of paediatric physical activity, energy expenditure and food intake data is a time-consuming process, fraught with potential sources of error. Investigators should consider the validity and reliability of these and other issues, alongside the logistics of any proposed study. Despite these areas of concern, recent advances in the field should provide exciting opportunities for future research in paediatric energy regulation on a variety of levels

  15. Energy saving statutes and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Rado, L.

    1981-11-01

    The West German Federal government and the state governments are endeavouring to introduce energy saving measures with the aid of statutes, regulations, and ordinances. In his introductory remarks, the author briefly refers to the various activities since 1974 and on the basis of a 1976 report subjects the present status of statutes and ordinances on energy saving measures to a critical analysis. Special emphasis is placed on the interest of the gas supply industry.

  16. Requirements of the integration of renewable energy into network charge regulation. Proposals for the further development of the network charge system. Final report; Anforderungen der Integration der erneuerbaren Energien an die Netzentgeltregulierung. Vorschlaege zur Weiterentwicklung des Netzentgeltsystems. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichsen, Nele; Klobasa, Marian; Marwitz, Simon [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany); Hilpert, Johannes; Sailer, Frank [Stiftung Umweltenergierecht, Wuerzburg (Germany)

    2016-11-15

    In this project we analyzed options to advance the network tariff system to support the German energy transition. A power system with high shares of renewables, requires more flexibility of supply and demand than the traditional system based on centralized, fossil power plants. Further, the power networks need to be adjusted and expanded. The transformation should aim at system efficiency i.e. look at both generation and network development. Network tariffs allocate the network cost towards network users. They also should provide incentives, e.g. to reduce peak load in periods of network congestion. Inappropriate network tariffs can hinder the provision of flexibility and thereby become a barrier towards system integration of renewable. Against this background, this report presents a systematic review of the German network tariff system and a discussion of several options to adapt the network tarif system in order to support the energy transition. The following aspects are analyzed: An adjustment of the privileges for industrial users to increase potential network benefits and reduce barriers towards a more market oriented behaviour. The payments for avoided network charges to distributed generation, that do not reflect cost reality in distribution networks anymore. Uniform transmission network tariffs as an option for a more appropriate allocation of cost associated with the energy transition. Increased standing fees in low voltage networks as an option to increase the cost-contribution of users with self-generation to network financing. Generator tariffs, to allocate a share of network cost to generators and provide incentives for network oriented location choice and/or feed-in.

  17. Energy modelling in sensor networks

    Directory of Open Access Journals (Sweden)

    D. Schmidt

    2007-06-01

    Full Text Available Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  18. Designing Networked Energy Infrastructures with Architectural Flexibility

    NARCIS (Netherlands)

    Melese, Y.G.; Heijnen, P.W.; Stikkelman, R.M.

    2014-01-01

    Development of networked energy infrastructures (like gas pipe networks), generally requires a significant amount of capital investment under resources, market and institutional uncertainties. Several independent suppliers and consumers are to be connected into these networks. However, the actual

  19. Vision of future energy networks

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.; Arnold, M.; Favre-Perrod, P.; Geidl, M.; Kienzle, F.; Koeppel, G.; Schulze, M.

    2006-11-15

    This annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reviews the work done in 2006 in the area of electricity distribution networks and the effects resulting from decentralised and stochastic power generation. This includes modelling to provide new approaches for the optimisation of structures, distributed storage, combined operation of gas and electricity mains systems and the development of models for the description of the reliability and availability of such systems. A model distribution system for electrical, chemical and thermal energy is presented and theoretical considerations concerning the storage of energy are examined. Co-operation in industrial and academic areas is discussed and the dynamic modelling and control of so-called 'energy-hubs' is examined. Finally, a plan for further work to be carried out in 2007 is presented.

  20. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  1. The Regulation of Energy Medicine

    Science.gov (United States)

    Kosovich, Judy; Esq

    This paper describes the laws and regulations that affect the practice of energy medicine. State law often has more impact on a health care practice than federal law, but federal law provides a common denominator among states. Device law is emphasized here because practitioners of energy medicine are more likely to use devices than drugs. For purposes of this paper, energy medicine is defined as practices that measure or benefit energy flow and overall energy in the body. This broad definition encompasses things as diverse as certain forms of exercise, measurement of meridian resistance, the use of electrical current or magnetic pulses to relieve pain, and the use of light, sound, scent, touch, position, or movement to stimulate the body's own electrical systems. What is of greatest importance in determining legal implications of a practice is whether there are any health-related claims. Two federal entities are pivotal. The Food and Drug Administration ("FDA") is authorized to protect health and safety and the Federal Trade Commission ("FTC") is authorized to protect consumers from false or misleading advertising. There are 5 things that FDA looks at: 1) intended use, 2) claims made in advertising and in labeling, 3) substantial equivalence to a predicate, 4) safety, and 5) effectiveness. A concern regarding any one of these can be the basis for denying clearance to market a device. The FTC looks at whether statements are true and substantiated and whether they might be misleading. The FTC often consults with the FDA on the interpretation of technical information.

  2. Gene Regulation Networks for Modeling Drosophila Development

    Science.gov (United States)

    Mjolsness, E.

    1999-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila Melanogaster.

  3. Energy markets - investment, competition, and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Franz, W.; Winkelmann, R.; Zimmermann, K.F. (eds.)

    2007-07-01

    Within the scope of the 70th Annual Meeting of the Association of German Economic Research Institutes with the topic ''Energy markets - investment, competition, and regulation'' in Berlin (Federal Republic of Germany) on 19th April, 2007, the following lectures were held: (a) Alternative strategies for promoting renewable energy in EU electricity markets (Christoph Boehringer, Tim Hoffmann, Thomas F. Rutherford); (b) Biofuels and climate policy (Gernot Klepper); (c) Investments of the German electricity-supply industry (Hans-Dieter Karl); (d) Asymmetric strategic investment behaviour in network industries: the case of natural gas distribution in Norway (Till Requate); (e) How dominant is Russia on the European natural gas market? Results from modelling exercises (Franziska Holz).

  4. Inventor networks in renewable energies

    DEFF Research Database (Denmark)

    Cantner, Uwe; Graf, Holger; Herrmann, Johannes

    2016-01-01

    Technological change and gains in efficiency of renewable power generation technologies are to a large extent driven by governmental support. Various policy instruments that can broadly be categorized as technology push, demand pull or systemic constitute part of the policy mix for renewable...... energies. Our goal is to gain insights into the influence of this policy mix on the intensity and organization of inventive activities for wind power and photovoltaics in Germany since the 1980s. We examine the effect of different instruments on the size and structure of co-inventor networks based...

  5. Energy efficient sensor network implementations

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA

    2009-01-01

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  6. Wireless Sensor Networks Framework for Indoor Temperature Regulation

    DEFF Research Database (Denmark)

    Stojkoska, Biljana; Popovska Avramova, Andrijana

    2013-01-01

    Wireless Sensor Networks take a major part in our everyday lives by enhancing systems for home automation, health-care, temperature control, energy consumption monitoring etc. In this paper we focus on a system used for temperature regulation for homes, educational, industrial, commercial premises...

  7. The fallacies of network neutrality regulation

    OpenAIRE

    Knieps, Günter; Zenhäusern, Patrick

    2008-01-01

    In this paper, historical functionalities of the traditional Internet are contrasted with today's Internet functionalities of the 'smart' Internet architecture. It is shown that network neutrality regulation prohibiting congestion management and traffic quality differentiation is contrary to economically founded allocation mechanisms. By access regulation of local loop bottleneck components the transfer of market power from the telecommunications infrastructure into the complementary Internet...

  8. Energy efficiency networks; Energieeffizienz-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Anna [Forschungsgesellschaft fuer Energiewirtschaft mbH (FfE GmbH), Muenchen (Germany)

    2011-07-01

    Energy efficiency networks are an attractive method to increase the energy efficiency and to reduce the costs and CO{sub 2} emissions of the companies operating in this network. A special feature of the energy efficiency networks is the exchange of experiences and training of the energy managers. Energy efficiency networks consist of about ten to fifteen locally domiciled companies. During the project period of three to four years, there are two main phases. In the first phase, the initial consultation phase, the actual state of a company is captured, and measures to increase the efficiency and energy conservation are identified. Parallel to this, in the second phase every three months a meeting with the participating companies takes place. Experience exchange and implementation of energy efficiency measures are the focus of these meetings. Initial studies show that the increase of the energy efficiency during participating in the energy efficiency network almost can be doubled in comparison to the average of the industry.

  9. The effect of energy performance regulations on energy consumption

    NARCIS (Netherlands)

    Guerra-Santin, O.; Itard, L.

    2012-01-01

    Governments have developed energy performance regulations in order to lower energy consumption in the housing stock. Most of these regulations are based on the thermal quality of the buildings. In the Netherlands, the energy efficiency for new buildings is expressed as the EPC (energy performance

  10. Application of Wireless Sensor Networks for Indoor Temperature Regulation

    DEFF Research Database (Denmark)

    Stojkoska, Biljana Risteska; Popovska Avramova, Andrijana; Chatzimisios, Periklis

    2014-01-01

    Wireless sensor networks take a major part in our everyday lives by enhancing systems for home automation, healthcare, temperature control, energy consumption monitoring, and so forth. In this paper we focus on a system used for temperature regulation for residential, educational, industrial......, and commercial premises, and so forth. We propose a framework for indoor temperature regulation and optimization using wireless sensor networks based on ZigBee platform. This paper considers architectural design of the system, as well as implementation guidelines. The proposed system favors methods that provide...

  11. Balancing of Network Energy using Observer Approach

    OpenAIRE

    Patharlapati, Sai Ram Charan

    2016-01-01

    Efficient energy use is primarily for any sensor networks to function for a longer time period. There have been many efficient schemes with various progress levels proposed by many researchers. Yet, there still more improvements are needed. This thesis is an attempt to make wireless sensor networks with further efficient on energy usage in the network with respect to rate of delivery of the messages. In sensor network architecture radio, sensing and actuators have influence over the power ...

  12. ENERGY STAR Certified Small Network Equipment

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Small Networking Equipment that are effective as...

  13. Energy Efficient Network Function Virtualization in 5G Networks

    OpenAIRE

    Al-Quzweeni, AN; El-Gorashi, TEH; Nonde, L; Elmirghani, JMH

    2015-01-01

    A Number of merits could be brought by network function virtualization (NFV) such as scalability, on demand allocation of resources, and the efficient utilization of network resources. In this paper, we introduce a framework for designing an energy efficient architecture for 5G mobile network function virtualization. In the proposed architecture, the main functionalities of the mobile core network which include the packet gateway (P-GW), serving gateway (S-GW), mobility management entity (MME...

  14. Energy Efficient Routing in Nomadic Networks

    DEFF Research Database (Denmark)

    Kristensen, Mads Darø; Bouvin, Niels Olof

    2007-01-01

    We present an evaluation of a novel energy-efficient routing protocol for mobile ad-hoc networks. We combine two techniques for optimizing energy levels with a well-known routing protocol. We examine the behavior of this combination in a nomadic network setting, where some nodes are stationary...

  15. Energy-efficient adaptive wireless network design

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Smit, Gerardus Johannes Maria; Bos, M.

    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse

  16. Energy efficiency in future wireless broadband networks

    CSIR Research Space (South Africa)

    Masonta, MT

    2012-10-01

    Full Text Available . An increase in the number of BSs is directly proportional to an increase in energy consumption and carbon dioxide (CO2) emissions. To deal with these challenges, network operators and vendors are embarking on building energy efficient networks to support a...

  17. Pollution Under Environmental Regulation in Energy Markets

    CERN Document Server

    Gullì, Francesco

    2013-01-01

    Pollution Under Environmental Regulation in Energy Markets provides a study of environmental regulation when energy markets are imperfectly competitive. This theoretical treatment focuses on three relevant cases of energy markets. First, the residential space heating sector where hybrid regulation such as taxation and emissions trading together are possible. Second, the electricity market where transactions are organized in the form of multi-period auctions. Third, namely natural gas (input) and electricity (output) markets where there is combined imperfect competition in vertical related energy markets.   The development of free or low carbon technologies supported by energy policies, aiming at increasing security of supply, is also explored whilst considering competition policies that reduce market power in energy markets thus improving market efficiency. Pollution Under Environmental Regulation in Energy Markets discusses the key issues of whether imperfect competition can lessen the ability of environmen...

  18. Scalable Energy Networks to Promote Energy Security

    Science.gov (United States)

    2011-07-01

    commodity. Consider current challenges of converting energy and synchronizing sources with loads—for example, capturing solar energy to provide hot water...distributed micro-generation1 (for example, roof-mounted solar panels) and plug-in elec- tric/hybrid vehicles. The imperative extends to our national...systems will gradually incorporate more closed cycles—for example, capturing energy from renewable sources (wind, sun) or waste heat (stove, dryer

  19. ENERGY AWARE NETWORK: BAYESIAN BELIEF NETWORKS BASED DECISION MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Chaudhari

    2011-06-01

    Full Text Available A Network Management System (NMS plays a very important role in managing an ever-evolving telecommunication network. Generally an NMS monitors & maintains the health of network elements. The growing size of the network warrants extra functionalities from the NMS. An NMS provides all kinds of information about networks which can be used for other purposes apart from monitoring & maintaining networks like improving QoS & saving energy in the network. In this paper, we add another dimension to NMS services, namely, making an NMS energy aware. We propose a Decision Management System (DMS framework which uses a machine learning technique called Bayesian Belief Networks (BBN, to make the NMS energy aware. The DMS is capable of analysing and making control decisions based on network traffic. We factor in the cost of rerouting and power saving per port. Simulations are performed on standard network topologies, namely, ARPANet and IndiaNet. It is found that ~2.5-6.5% power can be saved.

  20. ENERGY EFFICIENCY AND ROUTING IN SENSOR NETWORKS

    DEFF Research Database (Denmark)

    Cetin, Bilge Kartal

    for long time' or 'long network lifetime' can be determined as a common performance requirement for the most of the applications. Energy depletion of the nodes can interrupt communication and, in a worse case, it could cause network partitioning which leads the interruption of monitoring. Unlike ad......-hoc networks, recharging or replacing of the sen- sors battery may be inconvenient, or even impossible in some monitoring environments. Therefore, the key challenge in the design of wireless sen- sor network protocols is how to maximize the network lifetime, which is limited by battery energy in sensor nodes......, while providing the application requirement. In sensor networks, there are two important energy consuming pro- cesses, the rst is transmission-reception phase and the second is listening the radio for any possible event. Therefore, there are two strategies for en- ergy saving. The rst is reducing...

  1. Interlaced Energy Linac with Smooth Energy Regulation

    CERN Document Server

    Wronka, Sławomir

    2016-01-01

    2 A bstract Radiation is commonly used in many branches of every d ay life. Applications of ionization radiation sources in wide range of energy as well as precise detectors cover a number of areas, from basic research, medical treatment, industrial processing, environmental protection, non - destructive testing to safety a nd security. Accelerator and X - ray tube based techniques are increasingly used in luggage and cargo inspection, smuggling detection of explosives and of nuclear materials. The development of new technologies and new features of “classical” machines can be observed recently with the same, well known physics inside. This report is intended to provide the readers with newly developed at NCBJ experimental stand for cargo screening tests, equipped with linear interlaced - energy accelerator.

  2. Noncommutative Biology: Sequential Regulation of Complex Networks.

    Directory of Open Access Journals (Sweden)

    William Letsou

    2016-08-01

    Full Text Available Single-cell variability in gene expression is important for generating distinct cell types, but it is unclear how cells use the same set of regulatory molecules to specifically control similarly regulated genes. While combinatorial binding of transcription factors at promoters has been proposed as a solution for cell-type specific gene expression, we found that such models resulted in substantial information bottlenecks. We sought to understand the consequences of adopting sequential logic wherein the time-ordering of factors informs the final outcome. We showed that with noncommutative control, it is possible to independently control targets that would otherwise be activated simultaneously using combinatorial logic. Consequently, sequential logic overcomes the information bottleneck inherent in complex networks. We derived scaling laws for two noncommutative models of regulation, motivated by phosphorylation/neural networks and chromosome folding, respectively, and showed that they scale super-exponentially in the number of regulators. We also showed that specificity in control is robust to the loss of a regulator. Lastly, we connected these theoretical results to real biological networks that demonstrate specificity in the context of promiscuity. These results show that achieving a desired outcome often necessitates roundabout steps.

  3. Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Vuckovic, Dusan; Di Mauro, Alessio

    2012-01-01

    Energy Harvesting comprises a promising solution to one of the key problems faced by battery-powered Wireless Sensor Networks, namely the limited nature of the energy supply (finite battery capacity). By harvesting energy from the surrounding environment, the sensors can have a continuous lifetime...... Sensor Networks with energy harvesting capability....... without any needs for battery recharge or replacement. However, energy harvesting introduces a change to the fundamental principles based on which WSNs are designed and realized. In this poster we sketch some of the key research challenges as well as our ongoing work in designing and realizing Wireless...

  4. Bluetooth Low Energy Mesh Networks: A Survey.

    Science.gov (United States)

    Darroudi, Seyed Mahdi; Gomez, Carles

    2017-06-22

    Bluetooth Low Energy (BLE) has gained significant momentum. However, the original design of BLE focused on star topology networking, which limits network coverage range and precludes end-to-end path diversity. In contrast, other competing technologies overcome such constraints by supporting the mesh network topology. For these reasons, academia, industry, and standards development organizations have been designing solutions to enable BLE mesh networks. Nevertheless, the literature lacks a consolidated view on this emerging area. This paper comprehensively surveys state of the art BLE mesh networking. We first provide a taxonomy of BLE mesh network solutions. We then review the solutions, describing the variety of approaches that leverage existing BLE functionality to enable BLE mesh networks. We identify crucial aspects of BLE mesh network solutions and discuss their advantages and drawbacks. Finally, we highlight currently open issues.

  5. Energy Efficient Evolution of Mobile Broadband Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    network traffic. While dependent on the traffic profile, within an urban area sleep mode can reduce the daily energy consumption of the network by around 20%. In addition to the different variances of sleep mode, the potential savings of other features are also described. Selecting a power efficient...... to public commitments for reducing their energy and carbon footprint. In 2008 Vodafone stated that by the year 2020, efforts for reducing emissions are expected to halve emissions registered in the year 2006/7. In addition to presenting a more environmentally conscious brand, this is also hoped to reduce...... costs, which, based on increasing energy prices and necessary network upgrades are likely to increase. Since base station sites make up for about 75% of the power consumption in mobile networks, studies are focused on this specific network element. A number of factors believed to play a role...

  6. Reversing the Energy Trend in Mobile Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto

    2011-01-01

    consumption and cost of the network. However, irrespective of the upgrade strategy, all lead to an overall increase in the energy consumption of the network. This is based on the assumption that all sites are equipped with the same version of the equipment. In reality, it is likely to find a variety...

  7. Autophagy: Regulation by Energy Sensing

    NARCIS (Netherlands)

    Meijer, Alfred J.; Codogno, Patrice

    2011-01-01

    Autophagy is inhibited by the mTOR signaling pathway, which is stimulated by increased amino acid levels. When cellular energy production is compromised, AMP-activated protein kinase is activated, mTOR is inhibited and autophagy is stimulated. Two recent studies have shed light on the molecular

  8. Regulation of geothermal energy development in Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Forman, N.A.

    1980-01-01

    The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

  9. Energy-Efficient Routing in GMPLS Network

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2011-01-01

    In this paper, a GMPLS controlled core network model that takes energy efficiency into account is built using OPNET MODELER. By extending the standard GMPLS routing protocol -- OSPF-TE, we are able to spread desired energy related information over the local area, and subsequently use RSVP...

  10. Regulation of energy homeostasis by GPR41

    Directory of Open Access Journals (Sweden)

    Daisuke eInoue

    2014-05-01

    Full Text Available Imbalances in energy regulation lead to metabolic disorders such as obesity and diabetes. Diet plays an essential role in the maintenance of body energy homeostasis by acting not only as energy source but also as a signaling modality. Excess energy increases energy expenditure, leading to a consumption of them. In addition to glucose, mammals utilize short-chain fatty acids (SCFAs, which are produced by colonic bacterial fermentation of dietary fiber, as a metabolic fuel. The roles of SCFAs in energy regulation have remained unclear, although the roles of glucose are well studied. Recently, a G protein-coupled receptor (GPCR deorphanizing strategy successfully identified GPR41 (also called free fatty acid receptor 3 or FFAR3 as a receptor for SCFAs. GPR41 is expressed in adipose tissue, gut, and the peripheral nervous system, and it is involved in SCFA-dependent energy regulation. In this mini-review, we focus on the role of GPR41 in host energy regulation.

  11. Energy Saving: Scaling Network Energy Efficiency Faster than Traffic Growth

    NARCIS (Netherlands)

    Chen, Y.; Blume, O.; Gati, A.; Capone, A.; Wu, C.E.; Barth, U.; Marzetta, T.; Zhang, H.; Xu, S.

    2013-01-01

    As the mobile traffic is expected to continue its exponential growth in the near future, energy efficiency has gradually become a must criterion for wireless network design. Three fundamental questions need to be answered before the detailed design could be carried out, namely what energy efficiency

  12. Self-Regulated Inquiry with Networked Resources

    Directory of Open Access Journals (Sweden)

    John C. Nesbit

    2003-10-01

    Full Text Available Abstract. In the context of continued growth in the accessibility of information through the internet, recent advances in theories of self-regulated learning present an opportunity to reexamine how learners work with networked resources in constructivist approaches such as problem-based learning, project-based learning, and collaborative problem solving. We present a Resource Inquiry model consisting of five stages: (1 Set resource inquiry goals, (2 Plan for resource study, (3 Search and select resources, (4 Study and assess new knowledge, and (5 Critique and recommend resources. Our model informs designers of online tools about how to support learners' cognitive and metacognitive strategies when learning activities involve interacting with networked resources.

  13. Energy Efficient Evolution of Mobile Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben

    2011-01-01

    efficiency in Mbps/kWh is also analyzed. Furthermore, a cost analysis is carried out, to give a more complete picture of the different options being considered. Focusing on the last year of the evolution analysis, results show that deploying more pico sites reduces the energy consumption of the network......, by a maximum of 30%. With regards to the energy efficiency, high deployment of pico sites allowed the network to carry 16% more traffic for the same amount of energy. This, however, results in an increase in cost, specifically operational costs....... options for how to evolve their networks, allowing them to carry the expected increase in traffic. The best solution is generally selected based on two main criteria, performance and cost. However, pushed by a variety of environmental and energy challenges, MNOs are now also showing interest...

  14. Finite Capacity Energy Efficient Femtocell Network

    Directory of Open Access Journals (Sweden)

    Wanod Kumar

    2014-04-01

    Full Text Available This paper presents the performance analysis of a finite capacity energy efficient femtocell network. A FAP (Femtocell Access Point provides continuous connectivity for M communicating nodes in this network. The data transmission from M communicating nodes to the central entity (FAP is represented using M/M/1/K queue. To save energy, the server, in this case, takes exponentially distributed vacations during idle periods. Due to finite buffer size of FAP, this network represents a finite capacity system. The network model where sever takes vacation to save energy is solved with help of MGM (Matrix Geometric Method. For different system capacities, the network performance is analyzed in terms of power savings and QoS (Quality of Service parameters such as utilization, average packet delay, and packet blocking probability. Results show that with small traffic intensity the energy savings is high, whereas utilization, delay and blocking are low. Moreover, the maximum energy can be saved when system in quite underutilized

  15. Hormonal regulation of energy partitioning.

    Science.gov (United States)

    Rohner-Jeanrenaud, F

    2000-06-01

    A loop system exists between hypothalamic neuropeptide Y (NPY) and peripheral adipose tissue leptin to maintain normal body homeostasis. When hypothalamic NPY levels are increased by fasting or by intracerebroventricular (i.c.v.) infusion, food intake and body weight increase. NPY has genuine hormono-metabolic effects. It increases insulin and corticosterone secretion relative to controls. These hormonal changes, acting singly or combined, favor adipose tissue lipogenic activity, while producing muscle insulin resistance. They also promote leptin release from adipose tissue. When infused i.c.v. to normal rats to mimic its central effects, leptin decreases NPY levels, thus food intake and body weight. Leptin i.c.v. has also genuine hormono-metabolic effects. It decreases insulinemia and adipose tissue storage ability, enhancing glucose disposal. Leptin increases the expression of uncoupling proteins (UCP-1, -2, -3) and thus energy dissipation. Leptin-induced changes favor oxidation at the expense of storage. Circadian fluctuations of NPY and leptin levels maintain normal body homeostasis. In animal obesity, defective hypothalamic leptin receptor activation prevent leptin from acting, with resulting obesity, insulin and leptin resistance.

  16. Energy-conserving development regulations: current practice

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    Almost every aspect of land development has an effect on energy use, from minute architectural details to broad considerations of urban density. Energy-efficiency depends in part on how development is planned and carried out. Conventional development regulations, such as zoning ordinances and subdivision regulations, can be adapted in many ways to promote energy conservation at the community level. This report is about energy-efficient site and neighborhood design. It examines recent experiences of local governments that have adopted new development regulations or amended existing ones to promote energy conservation, more efficient generation and distribution, or a switch to alternative, renewable sources. Although much has been written in recent years about saving energy through community design, actual experience in applying these new ideas is still limited. To date, most communities have focused their efforts on studying the problem, documenting consumption patterns, and writing reports and plans. Only a handful have amended their land-use controls for the express purpose of saving energy. This study identifies 13 of these pioneering communities, after undertaking a survey of over 1400 local, regional, and state planning agencies. It takes a look at their experiences, to learn what has been done, how well it has worked, and what problems have been encountered.

  17. Energy prediction using spatiotemporal pattern networks

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhanhong; Liu, Chao; Akintayo, Adedotun; Henze, Gregor P.; Sarkar, Soumik

    2017-11-01

    This paper presents a novel data-driven technique based on the spatiotemporal pattern network (STPN) for energy/power prediction for complex dynamical systems. Built on symbolic dynamical filtering, the STPN framework is used to capture not only the individual system characteristics but also the pair-wise causal dependencies among different sub-systems. To quantify causal dependencies, a mutual information based metric is presented and an energy prediction approach is subsequently proposed based on the STPN framework. To validate the proposed scheme, two case studies are presented, one involving wind turbine power prediction (supply side energy) using the Western Wind Integration data set generated by the National Renewable Energy Laboratory (NREL) for identifying spatiotemporal characteristics, and the other, residential electric energy disaggregation (demand side energy) using the Building America 2010 data set from NREL for exploring temporal features. In the energy disaggregation context, convex programming techniques beyond the STPN framework are developed and applied to achieve improved disaggregation performance.

  18. Energy efficiency in future wireless networks: cognitive radio standardization requirements

    CSIR Research Space (South Africa)

    Masonta, M

    2012-09-01

    Full Text Available Energy consumption of mobile and wireless networks and devices is significant, indirectly increasing greenhouse gas emissions and energy costs for operators. Cognitive radio (CR) solutions can save energy for such networks and devices; moreover...

  19. Energy Efficiency Perspectives of PMR Networks

    Directory of Open Access Journals (Sweden)

    Marco Dolfi

    2016-12-01

    Full Text Available Recently, the concern about energy efficiency in wireless communications has been growing rapidly. Manufacturers and researchers have developed innovative solutions, highlighting the benefits in reducing operational expenditures (OPEX and carbon footprint. Professional Mobile Radio (PMR systems, like Terrestrial Trunked Radio (TETRA, have been designed to provide voice and data services to professional users. The energy consumption is one of the critical aspects of PMR broadband solutions and a major constraint for PMR services. The future convergence of PMR to the LTE system introduces a new topic in the research discussion about the energy efficiency of wireless systems. This paper focuses on the feasibility of energy efficient solutions for current and potentially future PMR networks, by providing a mathematical formulation of power consumption in TETRA base stations and assessing possible business models and energy saving solutions for enhanced mission-critical operations. The energy efficiency evaluation has been performed by taking into account the traffic load of a deployed TETRA regional network: in the considered network scenario with 150 base stations, significant OPEX savings up to 70 thousand Euros per year of operation are achieved. Moreover, the proposed solutions allow for saving more than 1 ton of CO 2 per year.

  20. Commission for Energy regulation (CRE) - Activity report June 2007

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2007 activity report of CRE. Content: A - Towards a single European energy market: Birth of a single European energy market (Origins of Europe of Energy, Emergence of a European energy policy); Main European Community guiding lines (European governance as regards energy, Guiding principles for the internal energy market); European Community activities (European Commission reports, Electricity and gas Regional Initiatives); Organisation and coordination of European regulators (Joint organisation of European regulators, CRE's relations with European Community institutions); CRE's European activities (Regional integration of gas markets, Regional integration of electricity markets, Operation of the European interconnected electricity grid and security of supply, CRE's other European activities); B - CRE action at national level: Grids/networks and infrastructures (General information, Electricity grids, Regulation of gas networks and infrastructures); Markets (Changes in the regulatory and legislative contexts of electricity and natural gas markets, Electricity markets

  1. Energy Efficiency in Self Organising Networks

    DEFF Research Database (Denmark)

    Kisielius, Edvinas; Popovska Avramova, Andrijana; Zakrzewska, Anna

    2013-01-01

    We evaluate the performance of an energy efficient algorithm that controls power emissions and the number of powered cell sites (eNBs) in overlaid Long Term Evolution (LTE) networks. Simulations are carried out in OPNET Modeler and we investigate cells cites designed to meet peak hours trac demand...

  2. Municipalities as facilitators, regulators and energy consumers

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Kjær, Tyge

    2015-01-01

    Biogas provides many potential benefits as far as renewable energy production, environmental protection and job creation etc. Insufficient initiatives from government/municipalities however hamper more biogas plants to be established, and hence that the large manure potential, and other types...... of digestible organic waste materials, are being utilized for energy purposes. By looking at municipalities as energy consumer’s, that constitutes a local market for biogas, as regulator’s, enforcing new requirements and regulations on the biogas sector, and finally as facilitator’s, assisting and helping...

  3. Energy-Efficiency in Optical Networks

    DEFF Research Database (Denmark)

    Saldaña Cercos, Silvia

    This thesis expands the state-of-the-art on the complex problem of implementing energy efficient optical networks. The main contribution of this Ph.D. thesis is providing a holistic approach in a multi-layered manner where different tools are used to tackle the urgent need of both estimating...... with current traffic demands and this dissertation tackles the trade-off between energy efficiency and quality of service in terms of latency. Another important contribution of this thesis is the novel mixed integer linear programing (MILP) formulation for internet protocol (IP) over wavelength division...... with parallel optics and WDM systems is reported. These results show the trade-off between increased capacity and both power consumption and system performance. In conclusion, an energy-efficient set of tools has been provided covering different aspects of the telecommunication network resulting in a cohesive...

  4. Energy Efficient Routing Algorithms in Dynamic Optical Core Networks with Dual Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    This paper proposes new energy efficient routing algorithms in optical core networks, with the application of solar energy sources and bundled links. A comprehensive solar energy model is described in the proposed network scenarios. Network performance in energy savings, connection blocking...... probability, resource utilization and bundled link usage are evaluated with dynamic network simulations. Results show that algorithms proposed aiming for reducing the dynamic part of the energy consumption of the network may raise the fixed part of the energy consumption meanwhile....

  5. Network switching strategy for energy conservation in heterogeneous networks.

    Science.gov (United States)

    Song, Yujae; Choi, Wooyeol; Baek, Seungjae

    2017-01-01

    In heterogeneous networks (HetNets), the large-scale deployment of small base stations (BSs) together with traditional macro BSs is an economical and efficient solution that is employed to address the exponential growth in mobile data traffic. In dense HetNets, network switching, i.e., handovers, plays a critical role in connecting a mobile terminal (MT) to the best of all accessible networks. In the existing literature, a handover decision is made using various handover metrics such as the signal-to-noise ratio, data rate, and movement speed. However, there are few studies on handovers that focus on energy efficiency in HetNets. In this paper, we propose a handover strategy that helps to minimize energy consumption at BSs in HetNets without compromising the quality of service (QoS) of each MT. The proposed handover strategy aims to capture the effect of the stochastic behavior of handover parameters and the expected energy consumption due to handover execution when making a handover decision. To identify the validity of the proposed handover strategy, we formulate a handover problem as a constrained Markov decision process (CMDP), by which the effects of the stochastic behaviors of handover parameters and consequential handover energy consumption can be accurately reflected when making a handover decision. In the CMDP, the aim is to minimize the energy consumption to service an MT over the lifetime of its connection, and the constraint is to guarantee the QoS requirements of the MT given in terms of the transmission delay and call-dropping probability. We find an optimal policy for the CMDP using a combination of the Lagrangian method and value iteration. Simulation results verify the validity of the proposed handover strategy.

  6. Network switching strategy for energy conservation in heterogeneous networks.

    Directory of Open Access Journals (Sweden)

    Yujae Song

    Full Text Available In heterogeneous networks (HetNets, the large-scale deployment of small base stations (BSs together with traditional macro BSs is an economical and efficient solution that is employed to address the exponential growth in mobile data traffic. In dense HetNets, network switching, i.e., handovers, plays a critical role in connecting a mobile terminal (MT to the best of all accessible networks. In the existing literature, a handover decision is made using various handover metrics such as the signal-to-noise ratio, data rate, and movement speed. However, there are few studies on handovers that focus on energy efficiency in HetNets. In this paper, we propose a handover strategy that helps to minimize energy consumption at BSs in HetNets without compromising the quality of service (QoS of each MT. The proposed handover strategy aims to capture the effect of the stochastic behavior of handover parameters and the expected energy consumption due to handover execution when making a handover decision. To identify the validity of the proposed handover strategy, we formulate a handover problem as a constrained Markov decision process (CMDP, by which the effects of the stochastic behaviors of handover parameters and consequential handover energy consumption can be accurately reflected when making a handover decision. In the CMDP, the aim is to minimize the energy consumption to service an MT over the lifetime of its connection, and the constraint is to guarantee the QoS requirements of the MT given in terms of the transmission delay and call-dropping probability. We find an optimal policy for the CMDP using a combination of the Lagrangian method and value iteration. Simulation results verify the validity of the proposed handover strategy.

  7. Empirical multiscale networks of cellular regulation.

    Directory of Open Access Journals (Sweden)

    Benjamin de Bivort

    2007-10-01

    Full Text Available Grouping genes by similarity of expression across multiple cellular conditions enables the identification of cellular modules. The known functions of genes enable the characterization of the aggregate biological functions of these modules. In this paper, we use a high-throughput approach to identify the effective mutual regulatory interactions between modules composed of mouse genes from the Alliance for Cell Signaling (AfCS murine B-lymphocyte database which tracks the response of approximately 15,000 genes following chemokine perturbation. This analysis reveals principles of cellular organization that we discuss along four conceptual axes. (1 Regulatory implications: the derived collection of influences between any two modules quantifies intuitive as well as unexpected regulatory interactions. (2 Behavior across scales: trends across global networks of varying resolution (composed of various numbers of modules reveal principles of assembly of high-level behaviors from smaller components. (3 Temporal behavior: tracking the mutual module influences over different time intervals provides features of regulation dynamics such as duration, persistence, and periodicity. (4 Gene Ontology correspondence: the association of modules to known biological roles of individual genes describes the organization of functions within coexpressed modules of various sizes. We present key specific results in each of these four areas, as well as derive general principles of cellular organization. At the coarsest scale, the entire transcriptional network contains five divisions: two divisions devoted to ATP production/biosynthesis and DNA replication that activate all other divisions, an "extracellular interaction" division that represses all other divisions, and two divisions (proliferation/differentiation and membrane infrastructure that activate and repress other divisions in specific ways consistent with cell cycle control.

  8. Energy efficient evolution of mobile broadband networks

    Energy Technology Data Exchange (ETDEWEB)

    Micallef, G.

    2013-04-15

    Over the last decade, the mobile communications industry has broken through some remarkable barriers, pushing further and transforming the way people communicate and access information. As the volume of traffic carried by mobile networks maintains an insatiable growth, mobile network operators are required to ensure that networks can scale accordingly. In addition to upgrading existing networks, a number of operators have already started to rollout a further radio access technology layer, Long Term Evolution, or LTE. In addition to enhancing network capacity, operators are also required to adhere to public commitments for reducing their energy and carbon footprint. In 2008 Vodafone stated that by the year 2020, efforts for reducing emissions are expected to halve emissions registered in the year 2006/7. In addition to presenting a more environmentally conscious brand, this is also hoped to reduce costs, which, based on increasing energy prices and necessary network upgrades are likely to increase. Since base station sites make up for about 75% of the power consumption in mobile networks, studies are focused on this specific network element. A number of factors believed to play a role in the power consumption of mobile networks are separately investigated and later combined, providing a realistic indication of how the consumption is expected to evolve. This is also used as an indication to determine how likely it is for operators to achieve power consumption and emission targets. In order for mobile network operators to upgrade existing infrastructure different options are available. Irrespective of the selected option, capacity upgrades are bound to increase the power consumption of the network. Carried through case studies, a first analysis compares a number of network evolution strategies, determining which provides the necessary performance while limiting the increase in power consumption. Overall, it is noted that a hybrid solution involving the upgrade of

  9. Characterization of Energy Availability in RF Energy Harvesting Networks

    Directory of Open Access Journals (Sweden)

    Daniela Oliveira

    2016-01-01

    Full Text Available The multiple nodes forming a Radio Frequency (RF Energy Harvesting Network (RF-EHN have the capability of converting received electromagnetic RF signals in energy that can be used to power a network device (the energy harvester. Traditionally the RF signals are provided by high power transmitters (e.g., base stations operating in the neighborhood of the harvesters. Admitting that the transmitters are spatially distributed according to a spatial Poisson process, we start by characterizing the distribution of the RF power received by an energy harvester node. Considering Gamma shadowing and Rayleigh fading, we show that the received RF power can be approximated by the sum of multiple Gamma distributions with different scale and shape parameters. Using the distribution of the received RF power, we derive the probability of a node having enough energy to transmit a packet after a given amount of charging time. The RF power distribution and the probability of a harvester having enough energy to transmit a packet are validated through simulation. The numerical results obtained with the proposed analysis are close to the ones obtained through simulation, which confirms the accuracy of the proposed analysis.

  10. Energy management in wireless cellular and ad-hoc networks

    CERN Document Server

    Imran, Muhammad; Qaraqe, Khalid; Alouini, Mohamed-Slim; Vasilakos, Athanasios

    2016-01-01

    This book investigates energy management approaches for energy efficient or energy-centric system design and architecture and presents end-to-end energy management in the recent heterogeneous-type wireless network medium. It also considers energy management in wireless sensor and mesh networks by exploiting energy efficient transmission techniques and protocols. and explores energy management in emerging applications, services and engineering to be facilitated with 5G networks such as WBANs, VANETS and Cognitive networks. A special focus of the book is on the examination of the energy management practices in emerging wireless cellular and ad hoc networks. Considering the broad scope of energy management in wireless cellular and ad hoc networks, this book is organized into six sections covering range of Energy efficient systems and architectures; Energy efficient transmission and techniques; Energy efficient applications and services. .

  11. Energy, Entropy and Exergy in Communication Networks

    Directory of Open Access Journals (Sweden)

    Slavisa Aleksic

    2013-10-01

    Full Text Available The information and communication technology (ICT sector is continuously growing, mainly due to the fast penetration of ICT into many areas of business and society. Growth is particularly high in the area of technologies and applications for communication networks, which can be used, among others, to optimize systems and processes. The ubiquitous application of ICT opens new perspectives and emphasizes the importance of understanding the complex interactions between ICT and other sectors. Complex and interacting heterogeneous systems can only properly be addressed by a holistic framework. Thermodynamic theory, and, in particular, the second law of thermodynamics, is a universally applicable tool to analyze flows of energy. Communication systems and their processes can be seen, similar to many other natural processes and systems, as dissipative transformations that level differences in energy density between participating subsystems and their surroundings. This paper shows how to apply thermodynamics to analyze energy flows through communication networks. Application of the second law of thermodynamics in the context of the Carnot heat engine is emphasized. The use of exergy-based lifecycle analysis to assess the sustainability of ICT systems is shown on an example of a radio access network.

  12. Traffic-aware Elastic Optical Networks to leverage Energy Savings

    DEFF Research Database (Denmark)

    Turus, Ioan; Fagertun, Anna Manolova; Dittmann, Lars

    2014-01-01

    Because of the static nature of the deployed optical networks, large energy wastage is experienced today in production networks such as Telecom networks . With power-adaptive optical interfaces and suitable grooming procedures, we propose the design of more energy efficient transport networks. Op...

  13. Silicon-embedded copper nanostructure network for high energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Tianyue

    2018-01-23

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  14. Silicon-embedded copper nanostructure network for high energy storage

    Science.gov (United States)

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  15. Trainable Gene Regulation Networks with Applications to Drosophila Pattern Formation

    Science.gov (United States)

    Mjolsness, Eric

    2000-01-01

    This chapter will very briefly introduce and review some computational experiments in using trainable gene regulation network models to simulate and understand selected episodes in the development of the fruit fly, Drosophila melanogaster. For details the reader is referred to the papers introduced below. It will then introduce a new gene regulation network model which can describe promoter-level substructure in gene regulation. As described in chapter 2, gene regulation may be thought of as a combination of cis-acting regulation by the extended promoter of a gene (including all regulatory sequences) by way of the transcription complex, and of trans-acting regulation by the transcription factor products of other genes. If we simplify the cis-action by using a phenomenological model which can be tuned to data, such as a unit or other small portion of an artificial neural network, then the full transacting interaction between multiple genes during development can be modelled as a larger network which can again be tuned or trained to data. The larger network will in general need to have recurrent (feedback) connections since at least some real gene regulation networks do. This is the basic modeling approach taken, which describes how a set of recurrent neural networks can be used as a modeling language for multiple developmental processes including gene regulation within a single cell, cell-cell communication, and cell division. Such network models have been called "gene circuits", "gene regulation networks", or "genetic regulatory networks", sometimes without distinguishing the models from the actual modeled systems.

  16. Neuronal networks and energy bursts in epilepsy.

    Science.gov (United States)

    Wu, Y; Liu, D; Song, Z

    2015-02-26

    Epilepsy can be defined as the abnormal activities of neurons. The occurrence, propagation and termination of epileptic seizures rely on the networks of neuronal cells that are connected through both synaptic- and non-synaptic interactions. These complicated interactions contain the modified functions of normal neurons and glias as well as the mediation of excitatory and inhibitory mechanisms with feedback homeostasis. Numerous spread patterns are detected in disparate networks of ictal activities. The cortical-thalamic-cortical loop is present during a general spike wave seizure. The thalamic reticular nucleus (nRT) is the major inhibitory input traversing the region, and the dentate gyrus (DG) controls CA3 excitability. The imbalance between γ-aminobutyric acid (GABA)-ergic inhibition and glutamatergic excitation is the main disorder in epilepsy. Adjustable negative feedback that mediates both inhibitory and excitatory components affects neuronal networks through neurotransmission fluctuation, receptor and transmitter signaling, and through concomitant influences on ion concentrations and field effects. Within a limited dynamic range, neurons slowly adapt to input levels and have a high sensitivity to synaptic changes. The stability of the adapting network depends on the ratio of the adaptation rates of both the excitatory and inhibitory populations. Thus, therapeutic strategies with multiple effects on seizures are required for the treatment of epilepsy, and the therapeutic functions on networks are reviewed here. Based on the high-energy burst theory of epileptic activity, we propose a potential antiepileptic therapeutic strategy to transfer the high energy and extra electricity out of the foci. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Energy management and multi-layer control of networked microgrids

    Science.gov (United States)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  18. Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Ledley, T. S.; McCaffrey, M.

    2009-12-01

    “Climate Science Literacy is an understanding of your influence on climate and climate’s influence on you and society.” In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been developed. In order to promote the implementation of these Climate Literacy Essential Principles the Climate Literacy Network (CLN, http://www.climateliteracynow.org) was formed in January 2008. Made up of a broad spectrum of stakeholders, this group addresses the complex issues involved in making climate literacy real for all citizens. Efforts within the CLN to improve climate literacy and energy awareness include: 1) the development of the Climate Literacy and Energy Awareness Network (CLEAN) Pathway project, recently funded by NSF’s National STEM Education Distributed Learning (NSDL) and Climate Change Education programs; and 2) the development of a regional model (Climate Literacy and Energy Awareness Network-New England - CLEAN-NE) to coordinate and leverage the wide range of activities focused on climate and energy that are already occurring, with plans that the model will be adapted to other regions around the country. The CLEAN Pathway project will steward a collection of resources that directly address the Climate Literacy: Essential Principles of Climate Science. In addition, it will provide a number of avenues of professional and community development opportunities to facilitate cyberlearning on climate and energy. CLEAN-NE is an initiative to educate high school and college students in the region about climate change and energy and its importance to our planet and society. Through this program, high school students will connect with college mentors, and together they will gain the foundation of climate literacy necessary to change their actions to reflect a more energy-conscious lifestyle. They will then engage their peers and communities in their mission to become climate-literate citizens and

  19. Innovation, Diffusion, and Regulation in Energy Technologies

    Science.gov (United States)

    Fetter, Theodore Robert

    The innovation and diffusion of new technologies is one of the central concerns of economics. New inventions or technological combinations do not spring fully formed into the world; as firms encounter and learn about new technologies they experiment, refine, and learn about them, improving productivity (and sometimes earning economic rents). Understanding the processes by which firms learn, and how these processes interact with regulations, is fundamental to understanding the emergence of new technologies, their contribution to growth, and the interaction of innovation and regulation. This dissertation addresses how firms learn and respond to regulations in the context of emerging technologies. Within this framework, I address several questions. When production inputs are socially controversial, do firms respond to disclosure laws by voluntarily constraining their inputs? Do these public disclosure laws facilitate knowledge transmission across firms, and if so, what are the implications for public welfare - for instance, do the gains from trade outweigh any effects of reduced incentives for innovation? I study these questions in the context of hydraulic fracturing, though the results offer insight for more general settings. Panning out to a much broader view, I also explore how energy-related technologies - in both generation and consumption - diffuse across national boundaries over time, and whether innovation and diffusion of energy-efficient technologies has led to more or less energy-efficient economic growth. In my first paper, I contribute to improved understanding of the conditions in which information-based regulations, which are increasingly common in multiple policy domains, decrease externalities such as environmental pollution. Specifically, I test whether information disclosure regulations applied to hydraulic fracturing chemicals caused firms to decrease their use of toxic inputs. Prior to these mandatory disclosure laws, some operators voluntarily

  20. Forecasting Energy Commodity Prices Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Massimo Panella

    2012-01-01

    Full Text Available A new machine learning approach for price modeling is proposed. The use of neural networks as an advanced signal processing tool may be successfully used to model and forecast energy commodity prices, such as crude oil, coal, natural gas, and electricity prices. Energy commodities have shown explosive growth in the last decade. They have become a new asset class used also for investment purposes. This creates a huge demand for better modeling as what occurred in the stock markets in the 1970s. Their price behavior presents unique features causing complex dynamics whose prediction is regarded as a challenging task. The use of a Mixture of Gaussian neural network may provide significant improvements with respect to other well-known models. We propose a computationally efficient learning of this neural network using the maximum likelihood estimation approach to calibrate the parameters. The optimal model is identified using a hierarchical constructive procedure that progressively increases the model complexity. Extensive computer simulations validate the proposed approach and provide an accurate description of commodities prices dynamics.

  1. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity

    Directory of Open Access Journals (Sweden)

    Katharina Timper

    2017-06-01

    Full Text Available The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed.

  2. The building network energy statistics 2002[Norway]; Bygningsnettverkets energistatistikk 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report surveys a Norwegian network within the construction business and the energy utilization particularly in various buildings. There are sections on the network structure, the energy use in 2002, the building aspects and various project types. The emphasis is on energy conservation aspects. Various technologies and energy systems as well as building types, are discussed. (tk)

  3. A Review of Energy Efficiency in Telecommunication Networks

    Directory of Open Access Journals (Sweden)

    G. Koutitas

    2010-06-01

    Full Text Available This paper presents the concept of green telecommunication networks and provides information about the power consumption within fixed line and wireless communication networks. It outlines the significance of energy efficiency in modern and future telecommunication networks and suggests directions for optimizing network performance in terms of energy demands. Numerous examples and reviews are also discussed. The aim is to introduce the reader to current green technologies and outline the necessity for energy efficiency in information and communication technology.

  4. MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey

    National Research Council Canada - National Science Library

    Kosunalp, Selahattin

    2015-01-01

    Energy harvesting (EH) technology in the field of wireless sensor networks (WSNs) is gaining increasing popularity through removing the burden of having to replace/recharge depleted energy sources by energy harvester devices...

  5. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  6. Vision of future energy networks - Final report; Vision of future energy networks - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, K.; Andersson, G.

    2008-07-01

    In the framework of the project 'Vision of Future Networks', models and methods have been developed that enable a greenfield approach for energy systems with multiple energy carriers. Applying a greenfield approach means that no existing infrastructure is taken into account when designing the energy system, i.e. the system is virtually put up on a green field. The developed models refer to the impacts of energy storage on power systems with stochastic generation, to the integrated modelling and optimization of multi-carrier energy systems, to reliability considerations of future energy systems as well as to possibilities of combined transmission of multiple energy carriers. Key concepts, which have been developed in the framework of this project, are the Energy Hub (for the conversion and storage of energy) and the Energy Interconnector (for energy transmission). By means of these concepts, it is possible to design structures for future energy systems being able to cope with the growing requirements regarding energy supply. (author)

  7. Energy Efficiency and Renewable Energy Network (EREN): Customer satisfaction survey

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A.V. [Information International Associates, Inc., Oak Ridge, TN (United States); Henderson, D.P. [Dept. of Energy, Oak Ridge, TN (United States). Office of Scientific and Technical Information

    1996-04-22

    The Energy Efficiency and Renewable Energy Network (EREN) Customer Satisfaction Survey was developed and executed in support of EREN`s continuous quality improvement (CQI) plan. The study was designed to provide information about the demographic make up of EREN users, the value or benefits they derive from EREN, the kinds and quality of services they want, their levels of satisfaction with existing services, their preferences in both the sources of service and the means of delivery, and to provide benchmark data for the establishment of continuous quality improvement measures. The survey was performed by soliciting voluntary participation from members of the EREN Users Group. It was executed in two phases; the first being conducted by phone using a randomly selected group; and the second being conducted electronically and which was open to all of the remaining members of the Users Group. The survey results are described.

  8. Design considerations for energy efficient, resilient, multi-layer networks

    DEFF Research Database (Denmark)

    Fagertun, Anna Manolova; Hansen, Line Pyndt; Ruepp, Sarah Renée

    2016-01-01

    This work investigates different network design considerations with respect to energy-efficiency, under green-field resilient multi-layer network deployment. The problem of energy efficient, reliable multi-layer network design is known to result in different trade-offs between key performance...... in multi-layer networks and performance measures such as network resource utilization, availability, agility to traffic fluctuations and energy consumption. A green-field network deployment scenario is considered, where different resiliency methods, design methodologies and grooming strategies are applied...

  9. Expected Transmission Energy Route Metric for Wireless Mesh Senor Networks

    Directory of Open Access Journals (Sweden)

    YanLiang Jin

    2011-01-01

    Full Text Available Mesh is a network topology that achieves high throughput and stable intercommunication. With great potential, it is expected to be the key architecture of future networks. Wireless sensor networks are an active research area with numerous workshops and conferences arranged each year. The overall performance of a WSN highly depends on the energy consumption of the network. This paper designs a new routing metric for wireless mesh sensor networks. Results from simulation experiments reveal that the new metric algorithm improves the energy balance of the whole network and extends the lifetime of wireless mesh sensor networks (WMSNs.

  10. Reciprocal regulation of bone and energy metabolism.

    Science.gov (United States)

    Baldock, Paul

    2011-01-01

    The primary relationship affecting skeletal tissue involves the association between fat mass and bone mass. However, there is some complexity in this relationship that may be explained by endocrine and neural pathways representing direct, reciprocal signalling between fat and bone tissue. For example, leptin signalling can directly stimulate osteoblastic differentiation and osteoblast proliferation and mineralization, but it also has central signalling actions in that it decreases cancellous bone volume. A novel regulatory loop between bone and adipose tissue suggests that uncarboxylated osteocalcin may affect energy homeostasis and afford a pathway by which fat mass can be regulated by bone mass. The multilayered and complex signals between fat and bone tissue involve both direct and indirect pathways. The endocrinologic nature of these signals highlights an emerging trend in medicine: identification of organ-based endocrine signals. Copyright © 2011 S. Karger AG, Basel.

  11. Balancing act: Government roles in an energy conservation network

    NARCIS (Netherlands)

    Peterman, A.; Kourula, A.; Levitt, R.

    2014-01-01

    Government-led interorganizational alliance networks present a sensible opportunity to overcome many societal challenges through collaborative governance. In particular, few researchers have studied alliance networks in the field of energy conservation in commercial buildings—a sector with unique

  12. Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    is the introduction of heterogeneous nodes regarding energy, and the other is to synchronize the local clock of the node with the global clock of the network. In this context, the paper proposes Node Heterogeneity aware Energy Efficient Synchronization Algorithm (NHES). It works on the formation of cluster......-based spanning tree (SPT). In the initial stage of the algorithm, the nodes are grouped into the cluster and form the tree. The nodes in the cluster and cluster heads in the network are synchronized with the notion of the global time scale of the network. Also, clock skews may cause the errors and be one......The energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network...

  13. Output Regulation of Large-Scale Hydraulic Networks

    NARCIS (Netherlands)

    De Persis, C.; Jensen, T.N.; Ortega, R.; Wisniewski, R.

    The problem of output regulation for a class of hydraulic networks found in district heating systems is addressed in this brief. The results show that global asymptotic and semiglobal exponential output regulation is achievable using a set of decentralized proportional-integral controllers. The fact

  14. Network Codes – European Energy Law in the Making

    Directory of Open Access Journals (Sweden)

    Grzegorz Błajszczak

    2015-06-01

    Full Text Available The European Union is preparing a series of regulations governing in detail various aspects of grid operation and free-market trade in electricity and gas, the so-called network codes. The paper reviews this process of European energy legislation development. Also discussed are the European Union bodies and major stakeholders in this process, as well as the national law making and enforcing agencies. In the past, law in Poland was created by Polish citizens. After joining the European Union the law in effect is largely created elsewhere by someone else, even if with significant participation of Polish representatives. The law on energy is not only important for producers, distributors and trading companies, but it strongly effects industrial competitiveness and hence the quality of life of the population.

  15. HAWC Energy Reconstruction via Neural Network

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2016-03-01

    The High-Altitude Water-Cherenkov (HAWC) γ-ray observatory is located at 4100 m above sea level on the Sierra Negra mountain in the state of Puebla, Mexico. Its 300 water-filled tanks are instrumented with PMTs that detect Cherenkov light produced by charged particles in atmospheric air showers induced by TeV γ-rays. The detector became fully operational in March of 2015. With a 2-sr field of view and duty cycle exceeding 90%, HAWC is a survey instrument sensitive to diverse γ-ray sources, including supernova remnants, pulsar wind nebulae, active galactic nuclei, and others. Particle-acceleration mechanisms at these sources can be inferred by studying their energy spectra, particularly at high energies. We have developed a technique for estimating primary- γ-ray energies using an artificial neural network (ANN). Input variables to the ANN are selected to characterize shower multiplicity in the detector, the fraction of the shower contained in the detector, and atmospheric attenuation of the shower. Monte Carlo simulations show that the new estimator has superior performance to the current estimator used in HAWC publications. This work was supported by the National Science Foundation.

  16. Study of Vivaldi Algorithm in Energy Constraint Networks

    Directory of Open Access Journals (Sweden)

    Tomas Handl

    2011-01-01

    Full Text Available The presented paper discusses a viability of Vivaldi localization algorithm and synthetic coordinate system in general to be used for localization purposes in energy constraint networks. Synthetic coordinate systems achieve good results in IP based networks and thus, it could be a perspective way of node localization in other types of networks. However, transfer of Vivaldi algorithm into a different kind of network is a difficult task because the different basic characteristic of the network and network nodes. In this paper we focus on the different aspects of IP based networks and networks of wireless sensors which suffer from strict energy limitation. During our work we proposed a modified version of two dimensional Vivaldi localization algorithm with height system and developed a simulator tool for initial investigation of its function in ad-hoc energy constraint networks.

  17. Nation-Wide Mobile Network Energy Evolution Analysis

    DEFF Research Database (Denmark)

    Perez, Eva; Frank, Philipp; Micallef, Gilbert

    2013-01-01

    be supported. In most cases, these upgrades increase the energy consumption of the network even further. This paper presents a nation-wide case study, based on a commercial network of a leading European operator, intended to provide a clear understanding of how the energy consumption of mobile networks......Mobile network operators are facing a challenging dilemma. While on the one hand they are committed to reducing their carbon emissions, and energy consumption, they are also required to continuously upgrade existing networks, ensuring that the relentless growth in data traffic can still...

  18. Energy Constraint Node Cache Based Routing Protocol For Adhoc Network

    OpenAIRE

    Dhiraj Nitnaware; Ajay Verma

    2010-01-01

    Mobile Adhoc Networks (MANETs) is a wireless infrastructureless network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence we require energy efficient routing protocols to optimize network performance. This paper aims to develop a new routing algorithm based on the energy status of the node cache. We have named this algorithm as ECNC_AODV (Energy Constraint Node Cache) based routing protocol which is derived from the AODV protocol. The al...

  19. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks

    OpenAIRE

    Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X.

    2015-01-01

    Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal m...

  20. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Yang, Liu; Lu, Yinzhi; Zhong, Yuanchang; Wu, Xuegang; Yang, Simon X

    2015-12-26

    Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs) because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC) algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs) in the network act as routers to transmit data to base station (BS) cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.

  1. A Multi-Hop Energy Neutral Clustering Algorithm for Maximizing Network Information Gathering in Energy Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2015-12-01

    Full Text Available Energy resource limitation is a severe problem in traditional wireless sensor networks (WSNs because it restricts the lifetime of network. Recently, the emergence of energy harvesting techniques has brought with them the expectation to overcome this problem. In particular, it is possible for a sensor node with energy harvesting abilities to work perpetually in an Energy Neutral state. In this paper, a Multi-hop Energy Neutral Clustering (MENC algorithm is proposed to construct the optimal multi-hop clustering architecture in energy harvesting WSNs, with the goal of achieving perpetual network operation. All cluster heads (CHs in the network act as routers to transmit data to base station (BS cooperatively by a multi-hop communication method. In addition, by analyzing the energy consumption of intra- and inter-cluster data transmission, we give the energy neutrality constraints. Under these constraints, every sensor node can work in an energy neutral state, which in turn provides perpetual network operation. Furthermore, the minimum network data transmission cycle is mathematically derived using convex optimization techniques while the network information gathering is maximal. Simulation results show that our protocol can achieve perpetual network operation, so that the consistent data delivery is guaranteed. In addition, substantial improvements on the performance of network throughput are also achieved as compared to the famous traditional clustering protocol LEACH and recent energy harvesting aware clustering protocols.

  2. Topsector Energy. Innovation Officers Network; Topsector Energie. Innovatie Attache Netwerk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The Top Sector policy of the Ministry of Economic Affairs, Agriculture and Innovation (ELI) has resulted in strongly worded plans with big ambitions for the various priority sectors. In this publication the Dutch Network of Innovation Officers gives an overview for the Top Sector Energy of developments taking place in the leading countries of the world in the field of Research, Development and Innovation. The information provides clues for the establishment and strengthening of international R and D strategy for the top sector and related options for cooperation with foreign parties [Dutch] Het topsectorenbeleid van onder meer het Ministerie van Economische zaken, Landbouw en Innovatie (ELI) heeft geresulteerd in scherp geformuleerde plannen met flinke ambities voor de diverse topsectoren. Het Netwerk van Innovatie Attachés geeft in deze publikatie een overzicht voor de Topsector Energie wat er in de meest toonaangevende landen van de wereld gebeurt op het terrein van Research and Development en Innovatie. De informatie biedt aanknopingspunten voor het opzetten en versterken van een internationale R and D strategie voor de topsector en daar toe behorende samenwerking met buitenlandse partijen.

  3. ENERGY OPTIMIZATION IN CLUSTER BASED WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    T. SHANKAR

    2014-04-01

    Full Text Available Wireless sensor networks (WSN are made up of sensor nodes which are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the networks lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. Optimizing energy consumption is the main concern for designing and planning the operation of the WSN. Clustering technique is one of the methods utilized to extend lifetime of the network by applying data aggregation and balancing energy consumption among sensor nodes of the network. This paper proposed new version of Low Energy Adaptive Clustering Hierarchy (LEACH, protocols called Advanced Optimized Low Energy Adaptive Clustering Hierarchy (AOLEACH, Optimal Deterministic Low Energy Adaptive Clustering Hierarchy (ODLEACH, and Varying Probability Distance Low Energy Adaptive Clustering Hierarchy (VPDL combination with Shuffled Frog Leap Algorithm (SFLA that enables selecting best optimal adaptive cluster heads using improved threshold energy distribution compared to LEACH protocol and rotating cluster head position for uniform energy dissipation based on energy levels. The proposed algorithm optimizing the life time of the network by increasing the first node death (FND time and number of alive nodes, thereby increasing the life time of the network.

  4. Regulation of burstiness by network-driven activation

    CERN Document Server

    García-Pérez, Guillermo; Serrano, M Ángeles

    2014-01-01

    We prove that complex networks of interactions have the capacity to regulate and buffer unpredictable fluctuations in production events. We show that non-bursty network-driven activation dynamics can effectively regulate the level of burstiness in the production of nodes, which can be enhanced or reduced. Burstiness can be induced even when the endogenous inter-event time distribution of nodes' production is non-bursty. We found that hubs tend to be less controllable than low degree nodes, which are more susceptible to the networked regulatory effects. Our results have important implications for the analysis and engineering of bursty activity in a range of systems, from telecommunication networks to transcription and translation of genes into proteins in cells.

  5. Fuzzy Naive Bayesian for constructing regulated network with weights.

    Science.gov (United States)

    Zhou, Xi Y; Tian, Xue W; Lim, Joon S

    2015-01-01

    In the data mining field, classification is a very crucial technology, and the Bayesian classifier has been one of the hotspots in classification research area. However, assumptions of Naive Bayesian and Tree Augmented Naive Bayesian (TAN) are unfair to attribute relations. Therefore, this paper proposes a new algorithm named Fuzzy Naive Bayesian (FNB) using neural network with weighted membership function (NEWFM) to extract regulated relations and weights. Then, we can use regulated relations and weights to construct a regulated network. Finally, we will classify the heart and Haberman datasets by the FNB network to compare with experiments of Naive Bayesian and TAN. The experiment results show that the FNB has a higher classification rate than Naive Bayesian and TAN.

  6. Local and global responses in complex gene regulation networks

    Science.gov (United States)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  7. Measuring the regulation of keratin filament network dynamics

    OpenAIRE

    Moch, Marcin; Herberich, Gerlind; Aach, Til; Leube, Rudolf E.; Windoffer, Reinhard

    2013-01-01

    The organization of the keratin intermediate filament cytoskeleton is closely linked to epithelial function. To study keratin network plasticity and its regulation at different levels, tools are needed to localize and measure local network dynamics. In this paper, we present image analysis methods designed to determine the speed and direction of keratin filament motion and to identify locations of keratin filament polymerization and depolymerization at subcellular resolution. Using these meth...

  8. Load Balancing Metric with Diversity for Energy Efficient Routing in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, Raja

    2011-01-01

    The expected number of transmission (ETX) represents a routing metric that considers the highly variable link qualities for a specific radio in Wireless Sensor Networks (WSNs). To adapt to these differences, radio diversity is a recently explored solution for WSNs. In this paper, we propose...... an energy balancing metric which explores the diversity in link qualities present at different radios. The goal is to effectively use the energy of the network and therefore extend the network lifetime. The proposed metric takes into account the transmission and reception costs for a specific radio in order...... to choose an energy efficient radio. In addition, the metric uses the remaining energy of nodes in order to regulate the traffic so that critical nodes are avoided. We show by simulations that our metric can improve the network lifetime up to 20%....

  9. Methods for Reducing the Energy Consumption of Mobile Broadband Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert

    2010-01-01

    Up until recently, very little consideration has been given towards reducing the energy consumption of the networks supporting mobile communication. This has now become an important issue since with the predicted boost in traffic, network operators are required to upgrade and extend their networks...

  10. Energy Efficiency Analysis for Dynamic Routing in Optical Transport Networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    The energy efficiency in telecommunication networks is gaining more relevance as the Internet traffic is growing. The introduction of OFDM and dynamic operation opens new horizons in the operation of optical networks, improving the network flexibility and its efficiency. In this paper, we compare...

  11. Security challenges for energy-harvesting wireless sensor networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Papini, Davide; Dragoni, Nicola

    2012-01-01

    With the recent introduction of Energy-Harvesting nodes, security is gaining more and more importance in sensor networks. By exploiting the ability of scavenging energy from the surrounding environment, the lifespan of a node has drastically increased. This is one of the reason why security needs...... networks. Finally, we present and discuss existing security solutions for EH-WSNs....

  12. Energy efficiency in elastic-bandwidth optical networks

    DEFF Research Database (Denmark)

    Vizcaino, Jorge Lopez; Ye, Yabin; Tafur Monroy, Idelfonso

    2011-01-01

    The forecasted growth in the Internet traffic has made the operators and industry to be concerned about the power consumption of the networks, and to become interested in alternatives to plan and operate the networks in a more energy efficient manner. The introduction of OFDM, and its property...... modulation formats offer in terms of energy efficiency....

  13. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  14. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jurgen

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon- Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  15. Reflections on the role of energy network companies in the energy transition

    NARCIS (Netherlands)

    Steenhuisen, B.M.; De Bruijne, M.L.C.

    2015-01-01

    Background Energy network companies are commonly attributed the public task to help society in becoming greener in the domain of energy. This extra public task has high costs and comes with high uncertainties. It may also compete with existing public tasks of network companies. When network

  16. Exercise and the regulation of energy intake

    NARCIS (Netherlands)

    Scheurink, AJW; Ammar, AA; Benthem, B; van Dijk, G; Sodersten, PAT; Södersten, Per A.T.

    Energy balance is the resultant of ingested calories and energy expenditure and is generally maintained within narrow limits over prolonged periods. Exercise leads to an increase in energy expenditure which is, in the long-term, counteracted by increased energy intake. Evidence for this comes from a

  17. Energy Monitoring and Management Mechanism for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Papadakis Andreas

    2016-01-01

    Full Text Available In this work we discuss a mechanism for the monitoring and management of energy consumption in Wireless Sensor Networks. We consider that the Wireless Sensor Network consists of nodes that operate individually and collaborate with each other. After briefly discussing the typical network topologies and associating with the expected communications needs, we describe a conceptual framework for monitoring and managing the energy consumption on per process basis.

  18. Design and control approaches for energy harvesting wireless sensor networks

    OpenAIRE

    Frezzetti, Antonio

    2016-01-01

    Wireless Networks are monitoring infrastructures composed of sensing (measuring), computing, and communication devices used to observe, supervise and monitor environmental phenomena. Energy Harvesting Wireless Sensor Networks (EH-WSN) have the additional feature to save energy from the environment in order to ensure long life autonomy of the entire network, without ideally the human intervention over long periods of time. The present work is aimed to address some of the most significant limit...

  19. Advanced Energy Storage Management in Distribution Network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong [ORNL; Ceylan, Oguzhan [ORNL; Xiao, Bailu [ORNL; Starke, Michael R [ORNL; Ollis, T Ben [ORNL; King, Daniel J [ORNL; Irminger, Philip [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.

  20. GTRF: a game theory approach for regulating node behavior in real-time wireless sensor networks.

    Science.gov (United States)

    Lin, Chi; Wu, Guowei; Pirozmand, Poria

    2015-06-04

    The selfish behaviors of nodes (or selfish nodes) cause packet loss, network congestion or even void regions in real-time wireless sensor networks, which greatly decrease the network performance. Previous methods have focused on detecting selfish nodes or avoiding selfish behavior, but little attention has been paid to regulating selfish behavior. In this paper, a Game Theory-based Real-time & Fault-tolerant (GTRF) routing protocol is proposed. GTRF is composed of two stages. In the first stage, a game theory model named VA is developed to regulate nodes' behaviors and meanwhile balance energy cost. In the second stage, a jumping transmission method is adopted, which ensures that real-time packets can be successfully delivered to the sink before a specific deadline. We prove that GTRF theoretically meets real-time requirements with low energy cost. Finally, extensive simulations are conducted to demonstrate the performance of our scheme. Simulation results show that GTRF not only balances the energy cost of the network, but also prolongs network lifetime.

  1. Incentive-Based Voltage Regulation in Distribution Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baker, Kyri A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhou, Xinyang [University of Colorado; Chen, Lijun [University of Colorado

    2017-07-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  2. Incentive-Based Voltage Regulation in Distribution Networks: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinyang; Chen, Lijun; Dall' Anese, Emiliano; Baker, Kyri

    2017-03-03

    This paper considers distribution networks fea- turing distributed energy resources, and designs incentive-based mechanisms that allow the network operator and end-customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Two different network-customer coordination mechanisms that require different amounts of information shared between the network operator and end-customers are developed to identify a solution of a well-defined social-welfare maximization prob- lem. Notably, the signals broadcast by the network operator assume the connotation of prices/incentives that induce the end- customers to adjust the generated/consumed powers in order to avoid the violation of the voltage constraints. Stability of the proposed schemes is analytically established and numerically corroborated.

  3. Dynamic energy management employing renewable energy sources in IP over DWDM networks

    DEFF Research Database (Denmark)

    Chen, Xin; Phillips, Chris; Wang, Jiayuan

    2013-01-01

    management framework employing renewable energy sources in IP over DWDM core networks. The main concept is to combine infrastructure sleeping and virtual router migration to improve the network energy efficiency. By using the energy source information provided by the smart grid, the nodes that are powered...

  4. Laboratory experiments on the regulation of European network industries

    NARCIS (Netherlands)

    Henze, B.

    2016-01-01

    The main objective of this thesis is to use economic laboratory experiments in order to evaluate the performance of regulatory schemes and market designs in addressing challenges encountered in the regulation of European network industries. Chapter 2 assesses whether regulatory holidays and Long

  5. Gene regulation: hacking the network on a sugar high.

    Science.gov (United States)

    Ellis, Tom; Wang, Xiao; Collins, James J

    2008-04-11

    In a recent issue of Molecular Cell, Kaplan et al. (2008) determine the input functions for 19 E. coli sugar-utilization genes by using a two-dimensional high-throughput approach. The resulting input-function map reveals that gene network regulation follows non-Boolean, and often nonmonotonic, logic.

  6. Robust cooperative output regulation of heterogeneous Lur'e networks

    NARCIS (Netherlands)

    Zhang, Fan; Trentelman, Harry L.; Scherpen, Jacquelien M. A.

    2017-01-01

    In this paper, we study robust cooperative output regulation problems for a directed network of Lur'e systems that consist of a nominal linear dynamics with an unknown static nonlinearity around it through negative feedback. We assume that the linear part of each agent is identical, but the

  7. Energy-aware virtual network embedding in flexi-grid networks.

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng

    2017-11-27

    Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.

  8. Energy-saving with low dimensional network in Physarum plasmodium

    Science.gov (United States)

    Takamatsu, Atsuko; Gomi, Takuma; Endo, Tatsuya; Hirai, Tomo; Sasaki, Takato

    2017-04-01

    An adaptation process in the transportation network of Physarum plasmodium was investigated by measuring oxygen consumption during network formation. Simultaneously, the fractal dimension as a measure of network structure was estimated. Oxygen consumption decreased during the development of the network, whereas the network structure changed from a thin mesh-type to a thick dendritic type. Our data suggested that the morphology of the plasmodial network governed energy consumption; a low dimensional network in the sense of the fractal dimension reduced energy consumption. These data were supported by experimental results excluding biological reasons, such as differences in starvation/nutrient-fullness states, and aspects of mitochondrial distribution. Model analysis using the Physarum algorithm with volume conservation constraints confirmed the above findings.

  9. Energy metabolism and hindbrain AMPK: regulation by estradiol.

    Science.gov (United States)

    Briski, Karen P; Ibrahim, Baher A; Tamrakar, Pratistha

    2014-03-01

    Nerve cell energy status is screened within multiple classically defined hypothalamic and hindbrain components of the energy balance control network, including the hindbrain dorsal vagal complex (DVC). Signals of caudal DVC origin have a physiological role in glucostasis, e.g., maintenance of optimal supply of the critical substrate fuel, glucose, through control of motor functions such as fuel consumption and gluco-counterregulatory hormone secretion. A2 noradrenergic neurons are a likely source of these signals as combinatory laser microdissection/high-sensitivity Western blotting reveals expression of multiple biomarkers for metabolic sensing, including adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypoglycemia elicits estradiol-dependent sex differences in A2 AMPK activation as phospho-AMPK (pAMPK) expression is augmented in male and ovariectomized (OVX) female, but not estrogen-replaced, OVX rats. This dichotomy may reflect, in part, estradiol-mediated up-regulation of glycolytic and tricarboxylic acid cycle enzyme expression during hypoglycemia. Our new model for short-term feeding abstinence has physiological relevance to planned (dieting) or unplanned (meal delay) interruption of consumption in modern life, which is negatively correlated with appetite control and obesity, and is useful for investigating how estrogen may mitigate the effects of disrupted fuel acquisition on energy balance via actions within the DVC. Estradiol reduces DVC AMPK activity after local delivery of the AMP mimic, 5-aminoimidazole-4-carboxamide-riboside, or cessation of feeding for 12 h but elevates pAMPK expression when these treatments are combined. These data suggest that estrogen maintains cellular energy stability over periods of suspended fuel acquisition and yet optimizes, by DVC AMPK-dependent mechanisms, counter-regulatory responses to metabolic challenges that occur during short-span feeding abstinence.

  10. Energy-Efficient Optimal Power Allocation in Integrated Wireless Sensor and Cognitive Satellite Terrestrial Networks.

    Science.gov (United States)

    Shi, Shengchao; Li, Guangxia; An, Kang; Gao, Bin; Zheng, Gan

    2017-09-04

    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach's method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint.

  11. An Energy-Aware Routing Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2009-01-01

    Full Text Available The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered.

  12. SDN-Enabled Communication Network Framework for Energy Internet

    Directory of Open Access Journals (Sweden)

    Zhaoming Lu

    2017-01-01

    Full Text Available To support distributed energy generators and improve energy utilization, energy Internet has attracted global research focus. In China, energy Internet has been proposed as an important issue of government and institutes. However, managing a large amount of distributed generators requires smart, low-latency, reliable, and safe networking infrastructure, which cannot be supported by traditional networks in power grids. In order to design and construct smart and flexible energy Internet, we proposed a software defined network framework with both microgrid cluster level and global grid level designed by a hierarchical manner, which will bring flexibility, efficiency, and reliability for power grid networks. Finally, we evaluate and verify the performance of this framework in terms of latency, reliability, and security by both theoretical analysis and real-world experiments.

  13. An energy-aware routing protocol in wireless sensor networks.

    Science.gov (United States)

    Liu, Ming; Cao, Jiannong; Chen, Guihai; Wang, Xiaomin

    2009-01-01

    The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS) is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP) for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered.

  14. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  15. Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction

    Science.gov (United States)

    Yeger-Lotem, Esti; Sattath, Shmuel; Kashtan, Nadav; Itzkovitz, Shalev; Milo, Ron; Pinter, Ron Y.; Alon, Uri; Margalit, Hanah

    2004-04-01

    Genes and proteins generate molecular circuitry that enables the cell to process information and respond to stimuli. A major challenge is to identify characteristic patterns in this network of interactions that may shed light on basic cellular mechanisms. Previous studies have analyzed aspects of this network, concentrating on either transcription-regulation or protein-protein interactions. Here we search for composite network motifs: characteristic network patterns consisting of both transcription-regulation and protein-protein interactions that recur significantly more often than in random networks. To this end we developed algorithms for detecting motifs in networks with two or more types of interactions and applied them to an integrated data set of protein-protein interactions and transcription regulation in Saccharomyces cerevisiae. We found a two-protein mixed-feedback loop motif, five types of three-protein motifs exhibiting coregulation and complex formation, and many motifs involving four proteins. Virtually all four-protein motifs consisted of combinations of smaller motifs. This study presents a basic framework for detecting the building blocks of networks with multiple types of interactions.

  16. Alternative oxidase in the branched mitochondrial respiratory network: an overview on structure, function, regulation, and role

    Directory of Open Access Journals (Sweden)

    Sluse F.E.

    1998-01-01

    Full Text Available Plants and some other organisms including protists possess a complex branched respiratory network in their mitochondria. Some pathways of this network are not energy-conserving and allow sites of energy conservation to be bypassed, leading to a decrease of the energy yield in the cells. It is a challenge to understand the regulation of the partitioning of electrons between the various energy-dissipating and -conserving pathways. This review is focused on the oxidase side of the respiratory chain that presents a cyanide-resistant energy-dissipating alternative oxidase (AOX besides the cytochrome pathway. The known structural properties of AOX are described including transmembrane topology, dimerization, and active sites. Regulation of the alternative oxidase activity is presented in detail because of its complexity. The alternative oxidase activity is dependent on substrate availability: total ubiquinone concentration and its redox state in the membrane and O2 concentration in the cell. The alternative oxidase activity can be long-term regulated (gene expression or short-term (post-translational modification, allosteric activation regulated. Electron distribution (partitioning between the alternative and cytochrome pathways during steady-state respiration is a crucial measurement to quantitatively analyze the effects of the various levels of regulation of the alternative oxidase. Three approaches are described with their specific domain of application and limitations: kinetic approach, oxygen isotope differential discrimination, and ADP/O method (thermokinetic approach. Lastly, the role of the alternative oxidase in non-thermogenic tissues is discussed in relation to the energy metabolism balance of the cell (supply in reducing equivalents/demand in energy and carbon and with harmful reactive oxygen species formation.

  17. Energy-aware virtual network embedding in flexi-grid optical networks

    Science.gov (United States)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng; Chen, Bin

    2018-01-01

    Virtual network embedding (VNE) problem is to map multiple heterogeneous virtual networks (VN) on a shared substrate network, which mitigate the ossification of the substrate network. Meanwhile, energy efficiency has been widely considered in the network design. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the power increment of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low energy consumption. Numerical results show the functionality of the heuristic algorithm in a 24-node network.

  18. Annual report 2011 the Norwegian energy regulator

    Energy Technology Data Exchange (ETDEWEB)

    Soeiland, Arne; Lund, Per Tore

    2012-07-01

    The report provides an overview of the current regulation of the electricity and district heating markets in Norway, and explains relevant market developments. An overview of legislative amendments, research work and international participation is also presented in the report (Author)

  19. Intracellular spatial localization regulated by the microtubule network.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available The commonly recognized mechanisms for spatial regulation inside the cell are membrane-bounded compartmentalization and biochemical association with subcellular organelles. We use computational modeling to investigate another spatial regulation mechanism mediated by the microtubule network in the cell. Our results demonstrate that the mitotic spindle can impose strong sequestration and concentration effects on molecules with binding affinity for microtubules, especially dynein-directed cargoes. The model can recapitulate the essence of three experimental observations on distinct microtubule network morphologies: the sequestration of germ plasm components by the mitotic spindles in the Drosophila syncytial embryo, the asymmetric cell division initiated by the time delay in centrosome maturation in the Drosophila neuroblast, and the diffusional block between neighboring energids in the Drosophila syncytial embryo. Our model thus suggests that the cell cycle-dependent changes in the microtubule network are critical for achieving different spatial regulation effects. The microtubule network provides a spatially extensive docking platform for molecules and gives rise to a "structured cytoplasm", in contrast to a free and fluid environment.

  20. Classification of low energy houses in Danish Building Regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Svendsen, Svend

    2005-01-01

    The new Danish Building Regulations (Building Regulations, 2005) introduces the total energy consumption, i.e. energy use for heating, ventilation, cooling and domestic hot water, for buildings as a measure for the energy efficiency of new buildings, i.e. moving away from the former U-value demands....... In addition to the minimum requirements for new buildings, the new Building Regulations also specify requirements for characterizing a building as either low energy building class 1 or low energy building class 2. This paper describes a type-house that is presently being built in Denmark. The type......-house easily meets the requirements for being categorized as a low energy building class 1, and the paper investigates how much U-values can be increased if the type-house were to fulfil the requirements for a low energy building class 2 or a building that just fulfils the minimum demands....

  1. an improved voltage regulation of a distribution network using facts

    African Journals Online (AJOL)

    OMEJE CO

    2013-07-02

    Jul 2, 2013 ... trouble free, since the TCR achieves its fundamental frequency steady-state operating point at the .... injected by the generator at bus K. PLK and. QLK represent the active and reactive powers drawn by ..... energy efficiency of the power distribution networks. Figure 10: Comparative plot of the bus voltage ...

  2. Energy scaling and reduction in controlling complex networks

    Science.gov (United States)

    Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng

    2016-01-01

    Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220

  3. Energy savings in mobile broadband network based on load predictions

    DEFF Research Database (Denmark)

    Samulevicius, Saulius; Pedersen, Torben Bach; Sørensen, Troels Bundgaard

    2012-01-01

    in wireless networks. To save energy in MBNs, one of the options is to turn off parts of the network equipment in areas where traffic falls below a specific predefined threshold. This paper looks at a methodology for identifying periods of the day when cells or sites carrying low traffic are candidates...... for being totally or partly switched off, given that the decrease in service quality can be controlled gracefully when the sites are switched off. Based on traffic data from an operational network, potential average energy savings of approximately 30% with some few low traffic cells/sites reaching up to 99......Abstract—The deployment of new network equipment is resulting in increasing energy consumption in mobile broadband networks (MBNs). This contributes to higher CO2 emissions. Over the last 10 years MBNs have grown considerably, and are still growing to meet the evolution in traffic volume carried...

  4. Serotonin and the regulation of mammalian energy balance.

    Science.gov (United States)

    Donovan, Michael H; Tecott, Laurence H

    2013-01-01

    Maintenance of energy balance requires regulation of the amount and timing of food intake. Decades of experiments utilizing pharmacological and later genetic manipulations have demonstrated the importance of serotonin signaling in this regulation. Much progress has been made in recent years in understanding how central nervous system (CNS) serotonin systems acting through a diverse array of serotonin receptors impact feeding behavior and metabolism. Particular attention has been paid to mechanisms through which serotonin impacts energy balance pathways within the hypothalamus. How upstream factors relevant to energy balance regulate the release of hypothalamic serotonin is less clear, but work addressing this issue is underway. Generally, investigation into the central serotonergic regulation of energy balance has had a predominantly "hypothalamocentric" focus, yet non-hypothalamic structures that have been implicated in energy balance regulation also receive serotonergic innervation and express multiple subtypes of serotonin receptors. Moreover, there is a growing appreciation of the diverse mechanisms through which peripheral serotonin impacts energy balance regulation. Clearly, the serotonergic regulation of energy balance is a field characterized by both rapid advances and by an extensive and diverse set of central and peripheral mechanisms yet to be delineated.

  5. Energy Cost Minimization in Heterogeneous Cellular Networks with Hybrid Energy Supplies

    Directory of Open Access Journals (Sweden)

    Bang Wang

    2016-01-01

    Full Text Available The ever increasing data demand has led to the significant increase of energy consumption in cellular mobile networks. Recent advancements in heterogeneous cellular networks and green energy supplied base stations provide promising solutions for cellular communications industry. In this article, we first review the motivations and challenges as well as approaches to address the energy cost minimization problem for such green heterogeneous networks. Owing to the diversities of mobile traffic and renewable energy, the energy cost minimization problem involves both temporal and spatial optimization of resource allocation. We next present a new solution to illustrate how to combine the optimization of the temporal green energy allocation and spatial mobile traffic distribution. The whole optimization problem is decomposed into four subproblems, and correspondingly our proposed solution is divided into four parts: energy consumption estimation, green energy allocation, user association, and green energy reallocation. Simulation results demonstrate that our proposed algorithm can significantly reduce the total energy cost.

  6. High energy density interpenetrating networks from ionic networks and silicone

    DEFF Research Database (Denmark)

    Yu, Liyun; Madsen, Frederikke Bahrt; Hvilsted, Søren

    2015-01-01

    crosslinked silicones. The system has many degrees of freedom since the ionic network is formed from two polymers (amine and carboxylic acid functional, respectively) of which the chain lengths can be varied, as well as the covalent silicone elastomer with many degrees of freedom arising from amongst many...

  7. Analysis of Energy Efficiency in Dynamic Optical Networks Employing Solar Energy Sources

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée

    2013-01-01

    The paper presents energy efficient routing in dynamic optical networks, where solar energy sources are employed for the network nodes. Different parameters are evaluated, including the number of nodes that have access to solar energy sources, the different maximum solar output power, traffic type...... and the locations of solar powered nodes. Results show a maximum 39% savings in energy consumption with different increases in connection blocking probability....

  8. Diffusion of influence in energy awareness campaigns on the online social networking site of facebook

    Energy Technology Data Exchange (ETDEWEB)

    Samaha, Kimberly

    2010-09-15

    The era of government jurisdiction based on separate and autonomous entities has been replaced with an intergovernmental and intersectoral network of industry, regulators, special interest groups and individual citizens. New forms of regulatory feedback will be inspired more by the concepts of networks- they will be flatter, leaner, and more flexible. An evaluation of new methods for the diffusion of public awareness regarding energy technologies, policies and projects, was conducted using the technology platform of Facebook. This paper reports on the results of an eighteen month formal study of the Diffusion of Influence in Online Social Networks.

  9. Modelling distributed energy resources in energy service networks

    CERN Document Server

    Acha, Salvador

    2013-01-01

    Focuses on modelling two key infrastructures (natural gas and electrical) in urban energy systems with embedded technologies (cogeneration and electric vehicles) to optimise the operation of natural gas and electrical infrastructures under the presence of distributed energy resources

  10. A Distributed Algorithm for Energy Optimization in Hydraulic Networks

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Wisniewski, Rafal; Jensen, Tom Nørgaard

    2014-01-01

    An industrial case study in the form of a large-scale hydraulic network underlying a district heating system is considered. A distributed control is developed that minimizes the aggregated electrical energy consumption of the pumps in the network without violating the control demands. The algorithm...... a Plug & Play control system as most commissioning can be done during the manufacture of the pumps. Only information on the graph-structure of the hydraulic network is needed during installation....

  11. Reducing Energy Waste Due to Idle Network Devices

    OpenAIRE

    Khan, Rafiullah; Khan, Sarmad Ullah

    2017-01-01

    Network devices always demand full time Internet connectivity for remote access, VoIP & Instant Messaging (IM) clients and other Internet based applications. Their built-in low power management features are usually disabled by users due to their incapability of maintaining network connectivity. The concept of Network Connectivity Proxy (NCP) has recently been proposed as an effective mechanism for reducing energy waste by impersonating presence of sleeping devices. However, proposed strat...

  12. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  13. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    Science.gov (United States)

    Cheng, Wenchi; Zhang, Hailin

    2017-01-01

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks. PMID:28832509

  14. Energy efficiency in hybrid mobile and wireless networks

    Energy Technology Data Exchange (ETDEWEB)

    Ziaul Haq Abbas

    2012-07-01

    Wireless Internet access is almost pervasive nowadays, and many types of wireless networks can be used to access the Internet. However, along with this growth, there is an even greater concern about the energy consumption and efficiency of mobile devices as well as of the supporting networks, triggering the appearance of the concept of green communication. While some efforts have been made towards this direction, challenges still exist and need to be tackled from diverse perspectives. Cellular networks, WLANs, and ad hoc networks in the form of wireless mesh networks are the most popular technologies for wireless Internet access. The availability of such a variety of access networks has also paved the way to explore synergistic approaches for Internet access, leading to the concept of hybrid networks and relay communications. In addition, many mobile devices are being equipped with multiple interfaces, enabling them to operate in hybrid networks. In contrast, the improvements in the battery technology itself have not matched the pace of the emerging mobile applications. The situation becomes more sophisticated when a mobile device functions also as a relay node to forward other station's data. In the literature, energy efficiency of mobile devices has been addressed from various perspectives such as protocol-level efforts, battery management efforts, etc. However, there is little work on energy efficiency in hybrid mobile and wireless networks and devices with heterogeneous connections. For example, when there are multiple networks available to a mobile device, how to achieve optimum long-term energy consumption of such a device is an open question. Furthermore, in today's cellular networks, micro-, pico-, and femto-cells are the most popular network topologies in order to support high data rate services and high user density. With the growth of such small-cell solutions, the energy consumption of these networks is also becoming an important concern for operators

  15. Evaluating Maximum Wind Energy Exploitation in Active Distribution Networks

    DEFF Research Database (Denmark)

    Siano, Pierluigi; Chen, Peiyuan; Chen, Zhe

    2010-01-01

    The increased spreading of distributed and renewable generation requires moving towards active management of distribution networks. In this paper, in order to evaluate maximum wind energy exploitation in active distribution networks, a method based on a multi-period optimal power flow (OPF...

  16. Energy Efficient Routing in Wireless Sensor Networks based on Ant ...

    African Journals Online (AJOL)

    Wireless Sensor Networks (WSN's) have become an important and challenging research area in recent years. Wireless Sensor Networks consisting of nodes with limited power are deployed to gather useful information from the field. In WSNs it is critical to collect the information in an energy efficient manner. Ant Colony ...

  17. Energy Efficiency in Underwater Sensor Networks: a Research Review

    Directory of Open Access Journals (Sweden)

    V. Kanakaris

    2010-01-01

    Full Text Available In an energy-constrained underwater system environment it is very important to find ways to improve the life expectancy ofthe sensors. Compared to the sensors of a terrestrial Ad Hoc Wireless Sensor Network (WSN, underwater sensors cannotuse solar energy to recharge the batteries, and it is difficult to replace the batteries in the sensors. This paper reviews theresearch progress made to date in the area of energy consumption in underwater sensor networks (UWSN and suggestsfurther research that needs to be carried out in order to increase the energy efficiency of the UWSN system.

  18. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  19. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Influence of embodied energy in the energy efficiency of optical transport networks

    DEFF Research Database (Denmark)

    Mata, Javier; Ye, Yabin; Lopez, Jorge

    2013-01-01

    An energy model including both operational and embodied energy is proposed to evaluate the performance evolution of optical transport networks in a multi-period study up to 15 years. Significant improvements in energy efficiency per GHz and energy reductions can be achieved for flexi-grid OFDM...

  1. Minimizing the Energy Consumption in ‎Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammed Saad Talib

    2017-12-01

    Full Text Available Energy in Wireless Sensor networks (WSNs represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. WSNs operate with battery powered sensors. Sensors batteries have not easily rechargeable even though having restricted power. Frequently the network failure occurs due to the sensors energy insufficiency. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup times. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure efficient network throughput. Prediction of the WSN lifetime previously to its installation represents a significant concern. To ensure energy efficiency the sensors duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and the idle states were also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the sensor node energy consumption. Results for these states with many performance metrics were also studied and discussed

  2. A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Li, Qiao; Cui, Lingguo; Zhang, Baihai

    2010-01-01

    LEACH (low-energy adaptive clustering hierarchy) is a well-known self-organizing, adaptive clustering protocol of wireless sensor networks. However it has some shortcomings when it faces such problems as the cluster construction and energy management. In this paper, LEICP (low energy intelligent......-head as the next hop for delivering the messages or to send the data to the base station directly, using Dijkstra algorithm to compute an optimal path. The performance of LEICP is compared with that of LEACH. Simulation results demonstrate that LEICP can prolong the lifetime of the sensor network by about 62...... clustering protocol), an improvement of the LEACH protocol is proposed to overcome the shortcomings of LEACH. LEICP aims at balancing the energy consumption in every cluster and prolonging the network lifetime. A fitness function is defined to balance the energy consumption in every cluster according...

  3. Enhancing Energy Efficiency of Wireless Sensor Network through the Design of Energy Efficient Routing Protocol

    Directory of Open Access Journals (Sweden)

    Noor Zaman

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP. PRRP is designed to minimize energy consumed in each node by (1 reducing the amount of time in which a sensor node is in an idle listening state and (2 reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.

  4. Sirtuins as regulators of the yeast metabolic network

    Directory of Open Access Journals (Sweden)

    Markus eRalser

    2012-03-01

    Full Text Available There is growing evidence that the metabolic network is an integral regulator of cellularphysiology. Dynamic changes in metabolite concentrations, metabolic flux, or networktopology act as reporters of biological or environmental signals, and are required for the cellto trigger an appropriate biological reaction. Changes in the metabolic network are recognizedby specific sensory macromolecules and translated into a transcriptional or translationalresponse. The protein family of sirtuins, discovered more than 30 years ago as regulators ofsilent chromatin, seems to fulfill the role of a metabolic sensor during aging and conditions ofcaloric restriction. NAD+/NADH interconverting metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase, as well as enzymes involved inNAD(H, synthesis provide or deprive NAD+ in close proximity to Sir2. This influence sirtuinactivity, and facilitates a dynamic response of the metabolic network to changes inmetabolism with effects on physiology and aging. The molecular network downstream Sir2,however, is complex. In just two orders, Sir2’s metabolism-related interactions span half ofthe yeast proteome, and are connected with virtually every physiological process. Thus,although it is fundamental to analyze single molecular mechanisms, it is at the same timecrucial to consider this genome-scale complexity when correlating single molecular eventswith phenotypes such as aging, cell growth, or stress resistance.

  5. Energy Efficient Probabilistic Broadcasting for Mobile Ad-Hoc Network

    Science.gov (United States)

    Kumar, Sumit; Mehfuz, Shabana

    2017-06-01

    In mobile ad-hoc network (MANETs) flooding method is used for broadcasting route request (RREQ) packet from one node to another node for route discovery. This is the simplest method of broadcasting of RREQ packets but it often results in broadcast storm problem, originating collisions and congestion of packets in the network. A probabilistic broadcasting is one of the widely used broadcasting scheme for route discovery in MANETs and provides solution for broadcasting storm problem. But it does not consider limited energy of the battery of the nodes. In this paper, a new energy efficient probabilistic broadcasting (EEPB) is proposed in which probability of broadcasting RREQs is calculated with respect to remaining energy of nodes. The analysis of simulation results clearly indicate that an EEPB route discovery scheme in ad-hoc on demand distance vector (AODV) can increase the network lifetime with a decrease in the average power consumption and RREQ packet overhead. It also decreases the number of dropped packets in the network, in comparison to other EEPB schemes like energy constraint gossip (ECG), energy aware gossip (EAG), energy based gossip (EBG) and network lifetime through energy efficient broadcast gossip (NEBG).

  6. Energy coding in neural network with inhibitory neurons.

    Science.gov (United States)

    Wang, Ziyin; Wang, Rubin; Fang, Ruiyan

    2015-04-01

    This paper aimed at assessing and comparing the effects of the inhibitory neurons in the neural network on the neural energy distribution, and the network activities in the absence of the inhibitory neurons to understand the nature of neural energy distribution and neural energy coding. Stimulus, synchronous oscillation has significant difference between neural networks with and without inhibitory neurons, and this difference can be quantitatively evaluated by the characteristic energy distribution. In addition, the synchronous oscillation difference of the neural activity can be quantitatively described by change of the energy distribution if the network parameters are gradually adjusted. Compared with traditional method of correlation coefficient analysis, the quantitative indicators based on nervous energy distribution characteristics are more effective in reflecting the dynamic features of the neural network activities. Meanwhile, this neural coding method from a global perspective of neural activity effectively avoids the current defects of neural encoding and decoding theory and enormous difficulties encountered. Our studies have shown that neural energy coding is a new coding theory with high efficiency and great potential.

  7. Wireless network interface energy consumption implications of popular streaming formats

    Science.gov (United States)

    Chandra, Surendar

    2001-12-01

    With the proliferation of mobile streaming multimedia, available battery capacity constrains the end-user experience. Since streaming applications tend to be long running, wireless network interface card's (WNIC) energy consumption is particularly an acute problem. In this work, we explore the WNIC energy consumption implications of popular multimedia streaming formats from Microsoft (Windows media), Real (Real media) and Apple (Quick Time). We investigate the energy consumption under varying stream bandwidth and network loss rates. We also explore history-based client-side strategies to reduce the energy consumed by transitioning the WNICs to a lower power consuming sleep state. We show that Microsoft media tends to transmit packets at regular intervals; streams optimized for 28.8 Kbps can save over 80% in energy consumption with 2% data loss. A high bandwidth stream (768 Kbps) can still save 57% in energy consumption with less than 0.3% data loss. For high bandwidth streams, Microsoft media exploits network-level packet fragmentation, which can lead to excessive packet loss (and wasted energy) in a lossy network. Real stream packets tend to be sent closer to each other, especially at higher bandwidths. Quicktime packets sometimes arrive in quick succession; most likely an application level fragmentation mechanism. Such packets are harder to predict at the network level without understanding the packet semantics.

  8. Energy Aware Cluster Based Routing Scheme For Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Roy Sohini

    2015-09-01

    Full Text Available Wireless Sensor Network (WSN has emerged as an important supplement to the modern wireless communication systems due to its wide range of applications. The recent researches are facing the various challenges of the sensor network more gracefully. However, energy efficiency has still remained a matter of concern for the researches. Meeting the countless security needs, timely data delivery and taking a quick action, efficient route selection and multi-path routing etc. can only be achieved at the cost of energy. Hierarchical routing is more useful in this regard. The proposed algorithm Energy Aware Cluster Based Routing Scheme (EACBRS aims at conserving energy with the help of hierarchical routing by calculating the optimum number of cluster heads for the network, selecting energy-efficient route to the sink and by offering congestion control. Simulation results prove that EACBRS performs better than existing hierarchical routing algorithms like Distributed Energy-Efficient Clustering (DEEC algorithm for heterogeneous wireless sensor networks and Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network (EEHC.

  9. Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    is the introduction of heterogeneous nodes regarding energy, and the other is to synchronize the local clock of the node with the global clock of the network. In this context, the paper proposes Node Heterogeneity aware Energy Efficient Synchronization Algorithm (NHES). It works on the formation of cluster......-based spanning tree (SPT). In the initial stage of the algorithm, the nodes are grouped into the cluster and form the tree. The nodes in the cluster and cluster heads in the network are synchronized with the notion of the global time scale of the network. Also, clock skews may cause the errors and be one...

  10. Secure energy efficient routing protocol for wireless sensor network

    Directory of Open Access Journals (Sweden)

    Das Ayan Kumar

    2016-03-01

    Full Text Available The ease of deployment of economic sensor networks has always been a boon to disaster management applications. However, their vulnerability to a number of security threats makes communication a challenging task. This paper proposes a new routing technique to prevent from both external threats and internal threats like hello flooding, eavesdropping and wormhole attack. In this approach one way hash chain is used to reduce the energy drainage. Level based event driven clustering also helps to save energy. The simulation results show that the proposed scheme extends network lifetime even when the cluster based wireless sensor network is under attack.

  11. Role of the microbiome in energy regulation and metabolism

    NARCIS (Netherlands)

    Nieuwdorp, Max; Gilijamse, Pim W.; Pai, Nikhil; Kaplan, Lee M.

    2014-01-01

    Intestinal microbes regulate metabolic function and energy balance; an altered microbial ecology is believed to contribute to the development of several metabolic diseases. Relative species abundance and metabolic characteristics of the intestinal microbiota change substantially in those who are

  12. G protein-coupled receptors as regulators of energy homeostasis.

    Science.gov (United States)

    Tao, Ya-Xiong; Yuan, Zong-Hui; Xie, Jun

    2013-01-01

    G protein-coupled receptors (GPCRs) are versatile regulators of physiological processes. They are also important drug targets. Many of the molecules controlling energy homeostasis act through GPCRs. This article summarizes the regulators of energy homeostasis in the central nervous system: those secreted by the gastrointestinal peptides and those secreted by the endocrine pancreas. Some examples of orphan GPCRs are also given. The regulation of energy homeostasis is conserved in other mammals, including those species relevant in veterinary medicine, and fish. Finally, the genetics of human obesity is briefly summarized. Genetic susceptibility in the current obesogenic environment is likely causing the obesity pandemic. A better understanding of the regulation of energy homeostasis will lead to novel pharmacotherapy for obesity treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Energy landscapes of resting-state brain networks

    Directory of Open Access Journals (Sweden)

    Takamitsu eWatanabe

    2014-02-01

    Full Text Available During rest, the human brain performs essential functions such as memory maintenance, which are associated with resting-state brain networks (RSNs including the default-mode network (DMN and frontoparietal network (FPN. Previous studies based on spiking-neuron network models and their reduced models, as well as those based on imaging data, suggest that resting-state network activity can be captured as attractor dynamics, i.e., dynamics of the brain state toward an attractive state and transitions between different attractors. Here, we analyze the energy landscapes of the RSNs by applying the maximum entropy model, or equivalently the Ising spin model, to human RSN data. We use the previously estimated parameter values to define the energy landscape, and the disconnectivity graph method to estimate the number of local energy minima (equivalent to attractors in attractor dynamics, the basin size, and hierarchical relationships among the different local minima. In both of the DMN and FPN, low-energy local minima tended to have large basins. A majority of the network states belonged to a basin of one of a few local minima. Therefore, a small number of local minima constituted the backbone of each RSN. In the DMN, the energy landscape consisted of two groups of low-energy local minima that are separated by a relatively high energy barrier. Within each group, the activity patterns of the local minima were similar, and different minima were connected by relatively low energy barriers. In the FPN, all dominant energy were separated by relatively low energy barriers such that they formed a single coarse-grained global minimum. Our results indicate that multistable attractor dynamics may underlie the DMN, but not the FPN, and assist memory maintenance with different memory states.

  14. Evaluating the Value of Flexibility in Energy Regulation Markets

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2015-01-01

    prices. Further, we analyze the benefit for various types of flexibility and market objectives, to detect the type of energy flexibility that maximizes the benefits. Results show that if 3.87% of total demand is flexible, market can reduce the regulation cost by 49% and the regulation volume by 29.4%.......In this paper, we perform an econometric analysis on the benefits of introducing flexibility in the Danish/Nordic regulating power market. The paper investigates the relationships between market power prices and regulation volumes, in order to quantify the effects of flexibility on regulating power...

  15. Managing the energy efficiency of a process sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Karjalainen, S.; Karjalainen, T. (Univ. of Oulu, Measurement and Sensor Lab., Kajaani (Finland)). email: seppo.karjalainen@oulu.fi

    2009-07-01

    A wireless data transfer is nowadays quite easy and affordable to implement in most cases. If the wireless sensor network (Wsrn) is deployed in a very difficult environment or requires great data transfer speeds, as in many industrial and process environments, this might not always be the case. The main reason slowing the deployment of WSNs is the difficulty of supplying enough energy to the sensor nodes. In most cases all of the energy the node consumes must be stored or produced at the node. The difficulty of supplying enough energy for the nodes can shorten the maintenance interval of the nodes to an unpractical level. In this research project we study the possibilities of managing the energy efficiency (saving energy, producing energy) of a wireless process measurement system. The main focus areas of the project are saving and producing energy at the network nodes. Energy consumption is the main limitation while designing WSNs. To extend each sensor node's lifetime it is necessary to reduce power dissipation as much as possible. A sensor node is a complex device comprising of various parts, each of which must be carefully selected and utilized in order to reach the lowest possible energy consumption. The level of energy efficiency of a sensor network is greatly affected by the way we balance the goal of low energy consumption with the other requirements placed on the network. The requirements for a deployed WSN depend on the application and the operating environment. Hence, the generalization of the requirements in detail is not practical. Nonetheless sensor network applications possess several characteristics, based on which general requirements for the node platforms, protocols and applications can be defined. The relative importance of each requirement depends heavily on the application area. In this project we produce a report covering all the various aspects of managing the energy efficiency in a wireless sensor network. The physical components and

  16. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  17. Public opinion poll on safety and regulations of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Park, M. I.; Park, B. I.; Lee, S. M. [Gallup Korea, Seoul (Korea, Republic of)

    2004-02-15

    The purpose of this poll is not only to research understanding on safety and regulations of nuclear energy and to compare the result by time series followed 2003 to 2002 years, also to establish the public relations strategies and to offer information for developing long-term policies. The contents of the study are on the general perception, safety, management of nuclear power station, regulations and surroundings about nuclear energy.

  18. Energy-efficient wireless mesh networks

    CSIR Research Space (South Africa)

    Ntlatlapa, N

    2007-06-01

    Full Text Available . As a result energy consumption must be minimized while achieving high throughput and low delay. In this context, they are engaged in various projects to design transmission strategy to minimize the total energy consumption. They apply known modelling...

  19. Pricing and Capacity Planning Problems in Energy Transmission Networks

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer

    and transmission pricing problems in energy transmission networks. Although the modelling framework applies to energy networks in general, most of the applications discussed concern the transmission of electricity. A number of the problems presented involves transmission switching, which allows the operator...... of an electricity transmission network to switch lines in and out in an operational context in order to optimise the network flow. We show that transmission switching in systems with large-scale wind power may alleviate network congestions and reduce curtailment of wind power leading to higher utilisation...... of installed wind power capacity. We present formulations of — and efficient solution methods for— the transmission line capacity expansion problem and the unit commitment problem with transmission switching. We also show that transmission switching may radically change the optimal line capacity expansion...

  20. Energy and exergy analysis of low temperature district heating network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2012-01-01

    Low temperature district heating with reduced network supply and return temperature provides better match of the low quality building heating demand and the low quality heating supply from waste heat or renewable energy. In this paper, a hypothetical low temperature district heating network...... is designed to supply heating for 30 low energy detached residential houses. The network operational supply/return temperature is set as 55 °C/25 °C, which is in line with a pilot project carried out in Denmark. Two types of in-house substations are analyzed to supply the consumer domestic hot water demand...... optimization procedure and the network simultaneous factor. Through the simulation, the overall system energy and exergy efficiencies are calculated and the exergy losses for the major district heating system components are identified. Based on the results, suggestions are given to further reduce the system...

  1. Energy Efficient Networks for Monitoring Water Quality in Subterranean Rivers

    Directory of Open Access Journals (Sweden)

    Fei Ge

    2016-05-01

    Full Text Available The fresh water in rivers beneath the Earth’s surface is as significant to humans as that on the surface. However, the water quality is difficult to monitor due to its unapproachable nature. In this work, we consider building networks to monitor water quality in subterranean rivers. The network node is designed to have limited functions of floating and staying in these rivers when necessary. We provide the necessary conditions to set up such networks and a topology building method, as well as the communication process between nodes. Furthermore, we provide every an node’s energy consumption model in the network building stage, the data acquiring and transmission stage. The numerical results show that the energy consumption in every node is different, and the node number should be moderate to ensure energy efficiency.

  2. Optimizing Cellular Networks Enabled with Renewal Energy via Strategic Learning.

    Science.gov (United States)

    Sohn, Insoo; Liu, Huaping; Ansari, Nirwan

    2015-01-01

    An important issue in the cellular industry is the rising energy cost and carbon footprint due to the rapid expansion of the cellular infrastructure. Greening cellular networks has thus attracted attention. Among the promising green cellular network techniques, the renewable energy-powered cellular network has drawn increasing attention as a critical element towards reducing carbon emissions due to massive energy consumption in the base stations deployed in cellular networks. Game theory is a branch of mathematics that is used to evaluate and optimize systems with multiple players with conflicting objectives and has been successfully used to solve various problems in cellular networks. In this paper, we model the green energy utilization and power consumption optimization problem of a green cellular network as a pilot power selection strategic game and propose a novel distributed algorithm based on a strategic learning method. The simulation results indicate that the proposed algorithm achieves correlated equilibrium of the pilot power selection game, resulting in optimum green energy utilization and power consumption reduction.

  3. Consumer attitudes toward potentially restrictive energy conservation regulations

    Energy Technology Data Exchange (ETDEWEB)

    Merfeld, M.K.

    1984-01-01

    A sample of 893 Oregon individuals from a Western Regional Agricultural Experiment Station Project (W-159 Consequences of Energy Conservation Policies for Western Region Households) was used to analyze consumer attitudes toward potentially restrictive energy conservation regulations. Belief in the seriousness of the energy problem, a psychological measure of internal control (internality), and eight socio-demographic characteristics were examined in relation to consumer attitudes toward these regulations. Those who did not believe in the seriousness of the energy problem were over 50 years of age, male, had less than a college degree, and opposed mandatory energy conservation regulations related to home thermostat settings. Homeowners opposed the regulation requiring their homes to pass an energy audit. Opposition to regulations appeared to be related only to an individual's perception of the consequences of the regulation, and not to belief in the enregy problem or locus of control. Those with low internality scores included females, rural residents, respondents over 50, and those with less than a college degree.

  4. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...... or environmental perturbations. We find that cells respond to perturbations by changing the expression pattern of several genes involved in the specific part(s) of the metabolism in which a perturbation is introduced. These changes then are propagated through the metabolic network because of the highly connected......Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...

  5. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Dmitry A Rodionov

    2013-08-01

    Full Text Available Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with the UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.

  6. Sustainable Performance in Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Dragoni, Nicola

    2013-01-01

    In this practical demo we illustrate the concept of "sustainable performance" in Energy-Harvesting Wireless Sensor Networks (EH-WSNs). In particular, for different classes of applications and under several energy harvesting scenarios, we show how it is possible to have sustainable performance when...

  7. Assessing Security in Energy-Efficient Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Etalle, Sandro; Dulman, S.O.; Hartel, Pieter H.; Havinga, Paul J.M.; Gritzalis, D.; De Capitani di Vimercati, S.; Samarati, P.; Katsikas, S.K.

    In the EYES project, we are investigating self-organizing, collaborative, energy-efficient sensor networks. This study is devoted to the security aspects of the project. Our contribution is three-fold: firstly, we present a survey, where we discuss the dominant issues of energy-security trade-off in

  8. Adaptive Media Access Control for Energy Harvesting - Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Dragoni, Nicola

    2012-01-01

    ODMAC (On-Demand Media Access Control) is a recently proposed MAC protocol designed to support individual duty cycles for Energy Harvesting — Wireless Sensor Networks (EH-WSNs). Individual duty cycles are vital for EH-WSNs, because they allow nodes to adapt their energy consumption to the ever...

  9. Leader Election Protocol for Energy Efficient Mobile Sensor Networks (EYES)

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.; Hurink, Johann L.

    In this paper we develop and analyze a wireless wave leader election protocol (WWLE) for wireless mobile ad hoc networks, with emphasis on the resulting energy consumption. Within the operating system of the EYES architecture we apply a power model to schedule tasks in order to minimize energy

  10. Energy Aware GPSR Routing Protocol in a Wireless Sensor Network ...

    African Journals Online (AJOL)

    Energy is the scarce resource in wireless sensor networks (WSNs), and it determines the lifetime of WSNs. For this reason, WSN algorithms and routing protocols should be selected in a manner which fulfills these energy requirements. This paper presents a solution to increase the lifetime of WSNs by decreasing their ...

  11. Climate Literacy and Energy Awareness Network releases search widget

    Science.gov (United States)

    Showstack, Randy

    2011-11-01

    The Climate Literacy and Energy Awareness Network (CLEAN) has launched a widget that can be embedded in any Web site to search the network's catalog of online resources relating to climate and energy topics for students in grades 6-12 and for general audiences. The catalog includes more than 300 high-quality existing digital resources, including learning activities, videos, visualizations, and short investigations that have been reviewed and annotated for scientific accuracy and pedagogical potential. The widget allows users to search keywords and then access the full catalog record of resources from the search. The CLEAN Web site includes a section on teaching climate and energy topics.

  12. Commission for Energy regulation (CRE) - Activity report June 2005; Commission de regulation de l'energie (CRE) - Rapport d'activite juin 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2005 activity report of CRE. Content: A - The opening of the markets in France and in Europe: The opening of the markets one year after 1 July 2004 (An especially important step, Electricity and gas: a common framework with structural differences, The coexistence of market prices and regulated tariffs); The European texts of 26 June 2003 (Texts to give new impetus, Texts to harmonize the role and powers of national regulators, Texts to guarantee the independence of system operators, Texts to ensure transparent and non-discriminatory access to networks, Texts providing for strengthening of interconnections); The outlook for 2007, a fully open market (1 July 2007: a date set by the directives, Priority given to informing and protecting consumers); B - Regulation of the natural gas market: The gas market in the European context (Europe's dependency on imports is increasing, Gas prices increased considerably across the whole of Europe in 2004, The European gas scene continues to be dominated by a small number of players, Gas infrastructures need to be developed in Europe, The new

  13. Energy Harvesting Wireless Strain Networks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Prime Research LC (PPLC) and Virginia Tech (VT) propose to develop an energy harvesting wireless strain node technology that utilizes single-crystal piezoelectric...

  14. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  15. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  16. Energy Efficiency Challenges of 5G Small Cell Networks.

    Science.gov (United States)

    Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang

    2017-05-01

    The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks.

  17. Energy-Efficient and Robust In-Network Inference in Wireless Sensor Networks.

    Science.gov (United States)

    Zhao, Wei; Liang, Yao

    2015-10-01

    Distributed in-network inference plays a significant role in large-scale wireless sensor networks (WSNs) in various applications for distributed detection and estimation. While belief propagation (BP) holds great potential for forming a powerful underlying mechanism for such distributed in-network inferences in WSNs, one major challenge is how to systematically improve the energy efficiency of BP-based in-network inference in WSNs. In this paper, we first propose a systematic and rigorous data-driven approach to building information models for WSN applications upon which BP-based in-network inference can be effectively and efficiently performed. We then present a wavelet-based BP framework for multiresolution inference, with respect to our WSN information modeling, to further reduce WSNs' energy. We empirically evaluate our proposed WSN information modeling and wavelet-based BP framework/multiresolution inference using real-world sensor network data. The results demonstrate the merits of our proposed approaches.

  18. Neurotrophins and the regulation of energy balance and body weight.

    Science.gov (United States)

    Rios, M

    2014-01-01

    Complex interactions between the brain and peripheral tissues mediate the effective control of energy balance and body weight. Hypothalamic and hindbrain neural circuits integrate peripheral signals informing the nutritional status of the animal and in response regulate nutrient intake and energy utilization. Obesity and its many medical complications emerge from the dysregulation of energy homeostasis. Excessive weight gain might also arise from alterations in reward systems of the brain that drive consumption of calorie dense, palatable foods in the absence of an energy requirement. Several neurotrophins, most notably brain-derived neurotrophic factor, have been implicated in the molecular and cellular processes underlying body weight regulation. Here, we review investigations interrogating their roles in energy balance and reward centers of the brain impacting feeding behavior and energy expenditure.

  19. An Energy Conservative Wireless Sensor Networks Approach for Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Jing Li

    2013-12-01

    Full Text Available Reducing energy consumption of sensor nodes to prolong the lifetime of finite-capacity batteries and how to enhance the fault-tolerant ability of networks are the major challenges in design of Wireless Sensor Networks (WSNs. In this paper, we present an energy-efficient system of WSNs for black pepper monitoring in tropical areas. At first, we optimized the base station antenna height in order to facilitate reliable communication, after which the Energy-efficient Sensor Protocol for Information via Negotiation (ESPIN routing protocol was utilized to solve the energy saving challenge. We conducted radio propagation experiments in actual black pepper fields. The practical test results illustrate that the ESPIN protocol reduces redundant data transmission and whole energy consumption of network, and enhances the success rate of data transmission compared with traditional Sensor Protocol for Information via Negotiation (SPIN protocol. To further optimize topology for improving the network lifetime, we designed a symmetrical double-chain (SDC topology which is suitable to be deployed in farmland and compared the lifetime with traditional tree topology. Experiment results indicate SDC topology has a longer network lifetime than traditional tree topology. The system we designed will greatly help farmers to make more informed decisions on the efficient use of resources and hence improve black pepper productivity.

  20. Energy Efficient MAC for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pekka KOSKELA

    2010-10-01

    Full Text Available This paper considers an overlay solution for asynchronous Medium Access Control (MAC protocols in a duty-cycled wireless sensor network (WSN. The solution extends sleeping times and corrects time drift when the sampling rate is low. The sleeping time is adjusted according to the requisite data sampling rate and the delay requirements of the prevailing application. This and the time drift correction considerably reduced idle listening and thus also decreased power consumption. When the power consumption is reduced, the life of wireless sensor nodes extends.

  1. Energy policy conference on the regulation of energy industries; Conference de politique energetique sur la regulation des industries energetiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    This document is the report of the conference meeting jointly organized by the French general plan commission and the general direction of energy and raw materials on the regulation of energy industries: 1 - the changes in the regulation of public utilities in competition: harmonization, respect of impartiality and social cohesion, organization of a loyal competition, specialized regulation and regulation of competition, open debates; 2 - towards an homogenous model of regulatory authority?: the US model (collegial and hybrid organizations), the UK model (individual and independent), missions of regulation and institutional 'meccano', theory and practice, draft classification of the institutional approaches of IEA countries (role of ministries and regulatory agencies), independent regulatory authorities or not, significant differences in converging models, dominant types of regulation in the different sectors, situation of the French energy regulatory system (institutional plan, regulation processes, relations of the regulation authority with the government), reasons of the differences between different countries, expected evolution of the regulation systems in the coming years. (J.S.)

  2. Distribution System Voltage Regulation by Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Oguzhan [ORNL; Liu, Guodong [ORNL; Xu, Yan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  3. Energy Aware Computing in Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Olsen, Anders Brødløs; Fitzek, Frank H. P.; Koch, Peter

    2005-01-01

    the unreliable wireless link. Principles of multi–processor energy aware task scheduling are used exploiting performance scalable technologies such as Dynamic Voltage Scaling (DVS). We introduce a novel mechanism referred to as D2VS and here it is shown by means of simulation that savings of 40% can be achieved....

  4. Mechatronic Hydraulic Drive with Regulator, Based on Artificial Neural Network

    Science.gov (United States)

    Burennikov, Y.; Kozlov, L.; Pyliavets, V.; Piontkevych, O.

    2017-06-01

    Mechatronic hydraulic drives, based on variable pump, proportional hydraulics and controllers find wide application in technological machines and testing equipment. Mechatronic hydraulic drives provide necessary parameters of actuating elements motion with the possibility of their correction in case of external loads change. This enables to improve the quality of working operations, increase the capacity of machines. The scheme of mechatronic hydraulic drive, based on the pump, hydraulic cylinder, proportional valve with electrohydraulic control and programmable controller is suggested. Algorithm for the control of mechatronic hydraulic drive to provide necessary pressure change law in hydraulic cylinder is developed. For the realization of control algorithm in the controller artificial neural networks are used. Mathematical model of mechatronic hydraulic drive, enabling to create the training base for adjustment of artificial neural networks of the regulator is developed.

  5. Coherent organization in gene regulation: a study on six networks

    Science.gov (United States)

    Aral, Neşe; Kabakçıoğlu, Alkan

    2016-04-01

    Structural and dynamical fingerprints of evolutionary optimization in biological networks are still unclear. Here we analyze the dynamics of genetic regulatory networks responsible for the regulation of cell cycle and cell differentiation in three organisms or cell types each, and show that they follow a version of Hebb's rule which we have termed coherence. More precisely, we find that simultaneously expressed genes with a common target are less likely to act antagonistically at the attractors of the regulatory dynamics. We then investigate the dependence of coherence on structural parameters, such as the mean number of inputs per node and the activatory/repressory interaction ratio, as well as on dynamically determined quantities, such as the basin size and the number of expressed genes.

  6. Commission for Energy regulation (CRE) - Activity report june 2008; Commission de regulation de l'energie (CRE) - Rapport d'activite juin 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Package, Infringement proceedings initiated against France by the European Commission); D - CRE action at national level: Regulation of systems and infrastructures (General information, Electricity grids, Natural gas networks and other infrastructures); Electricity and natural gas markets (Changes in the regulatory and legislative context, Electricity markets, Natural gas markets, Monitoring open market operations); Support measures: electricity generation, vulnerable customers and TaRTAM (Supporting cogeneration and renewable energy sources, Public electricity service costs, Collection of public electricity service contributions (CSPE), TaRTAM-related costs, Costs related to the special solidarity tariff for natural gas supply); E - Appendices: Glossary, Acronyms, Council of European Energy Regulators, Units and conversions.

  7. Introduction to neural networks in high energy physics

    Science.gov (United States)

    Therhaag, Jan

    2013-07-01

    Artificial neural networks are a well established tool in high energy physics, playing an important role in both online and offline data analysis. Nevertheless they are often perceived as black boxes which perform obscure operations beyond the control of the user, resulting in a skepticism against any results that may be obtained using them. The situation is not helped by common explanations which try to draw analogies between artificial neural networks and the human brain, for the brain is an even more complex black box itself. In this introductory text, I will take a problem-oriented approach to neural network techniques, showing how the fundamental concepts arise naturally from the demand to solve classification tasks which are frequently encountered in high energy physics. Particular attention is devoted to the question how probability theory can be used to control the complexity of neural networks.

  8. Introduction to neural networks in high energy physics

    Directory of Open Access Journals (Sweden)

    Therhaag Jan

    2013-07-01

    Full Text Available Artificial neural networks are a well established tool in high energy physics, playing an important role in both online and offline data analysis. Nevertheless they are often perceived as black boxes which perform obscure operations beyond the control of the user, resulting in a skepticism against any results that may be obtained using them. The situation is not helped by common explanations which try to draw analogies between artificial neural networks and the human brain, for the brain is an even more complex black box itself. In this introductory text, I will take a problem-oriented approach to neural network techniques, showing how the fundamental concepts arise naturally from the demand to solve classification tasks which are frequently encountered in high energy physics. Particular attention is devoted to the question how probability theory can be used to control the complexity of neural networks.

  9. Influences of Wind Energy Integration into the Distribution Network

    Directory of Open Access Journals (Sweden)

    G. M. Shafiullah

    2013-01-01

    Full Text Available Wind energy is one of the most promising renewable energy sources due to its availability and climate-friendly attributes. Large-scale integration of wind energy sources creates potential technical challenges due to the intermittent nature that needs to be investigated and mitigated as part of developing a sustainable power system for the future. Therefore, this study developed simulation models to investigate the potential challenges, in particular voltage fluctuations, zone substation, and distribution transformer loading, power flow characteristics, and harmonic emissions with the integration of wind energy into both the high voltage (HV and low voltage (LV distribution network (DN. From model analysis, it has been clearly indicated that influences of these problems increase with the increased integration of wind energy into both the high voltage and low voltage distribution network; however, the level of adverse impacts is higher in the LV DN compared to the HV DN.

  10. Acrylic interpenetrating polymer network dielectric elastomers for energy harvesting

    Science.gov (United States)

    Brochu, Paul; Niu, Xiaofan; Pei, Qibing

    2011-04-01

    Dielectric elastomer energy harvesters are an emerging technology that promise high power density, low cost, scalability, and the capability of fitting niche markets that have yet to be exploited. To date, materials issues that limit their overall performance have hampered the full potential of these devices. In order to supplant existing technologies, even in niche markets, dielectric elastomer generators must increase their reliability and energy density. Previous work has indicated that stiffer elastomers should be capable of higher energy densities; the increased stiffness of the elastomer films should results in lower Maxwell pressure induced strains, and thus allow the elastomer to relax further, resulting in a larger swing in capacitance and larger energy gains. In this paper we examine the use of VHB-based acrylic interpenetrating polymer network dielectric elastomers with a trimethylolpropane trimethacrylate additive network for energy harvesting purposes. We test films with varying additive content and compare their performance with highly prestrained VHB acrylic elastomers. We show that by increasing additive content, Maxwell induced strains can be suppressed and larger energy gains can be achieved at higher bias fields. Moreover, the introduction of the additive network stabilizes the highly prestrained acrylic elastomers mechanically, thereby increasing their mechanical robustness. However, the interpenetrating polymer network films suffer from an increase in viscoelastic behavior that hinders their overall performance.

  11. Wireless Sensors and Networks for Advanced Energy Management

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.E.

    2005-05-06

    Numerous national studies and working groups have identified low-cost, very low-power wireless sensors and networks as a critical enabling technology for increasing energy efficiency, reducing waste, and optimizing processes. Research areas for developing such sensor and network platforms include microsensor arrays, ultra-low power electronics and signal conditioning, data/control transceivers, and robust wireless networks. A review of some of the research in the following areas will be discussed: (1) Low-cost, flexible multi-sensor array platforms (CO{sub 2}, NO{sub x}, CO, humidity, NH{sub 3}, O{sub 2}, occupancy, etc.) that enable energy and emission reductions in applications such as buildings and manufacturing; (2) Modeling investments (energy usage and savings to drive capital investment decisions) and estimated uptime improvements through pervasive gathering of equipment and process health data and its effects on energy; (3) Robust, self-configuring wireless sensor networks for energy management; and (4) Quality-of-service for secure and reliable data transmission from widely distributed sensors. Wireless communications is poised to support technical innovations in the industrial community, with widespread use of wireless sensors forecasted to improve manufacturing production and energy efficiency and reduce emissions. Progress being made in wireless system components, as described in this paper, is helping bring these projected improvements to reality.

  12. Prediction Based Energy Balancing Forwarding in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Yang Jian-Jun

    2017-01-01

    Full Text Available In the recent cellular network technologies, relay stations extend cell coverage and enhance signal strength for mobile users. However, busy traffic makes the relay stations in hot area run out of energy quickly. Energy is a very important factor in the forwarding of cellular network since mobile users(cell phones in hot cells often suffer from low throughput due to energy lack problems. In many situations, the energy lack problems take place because the energy loading is not balanced. In this paper, we present a prediction based forwarding algorithm to let a mobile node dynamically select the next relay station with highest potential energy capacity to resume communication. Key to this strategy is that a relay station only maintains three past status, and then it is able to predict the potential energy capacity. Then, the node selects the next hop with potential maximal energy. Moreover, a location based algorithm is developed to let the mobile node figure out the target region in order to avoid flooding. Simulations demonstrate that our approach significantly increase the aggregate throughput and decrease the delay in cellular network environment.

  13. Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss

    Directory of Open Access Journals (Sweden)

    Anna Gavrieli

    2016-09-01

    Full Text Available Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss.

  14. Energy networks for fossil fuel; Reti energetiche per combustibili fossili

    Energy Technology Data Exchange (ETDEWEB)

    Bologna, S.; Vignolini, M. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia

    1995-12-01

    The document, after an overview of the present national energy situation, covers in detail the actual situation of the national networks of pipelines for oil and gas transportations, with emphasis to the aspects most relevant from the technology innovation point of view. Design, construction, operation and maintenance of oil and gas networks of pipelines is quite challenging and requires very advanced engineering solutions and technologies, above all for remote control, operation, diagnostic and safety systems.

  15. Introduction to neural networks in high energy physics

    OpenAIRE

    Therhaag Jan

    2013-01-01

    Artificial neural networks are a well established tool in high energy physics, playing an important role in both online and offline data analysis. Nevertheless they are often perceived as black boxes which perform obscure operations beyond the control of the user, resulting in a skepticism against any results that may be obtained using them. The situation is not helped by common explanations which try to draw analogies between artificial neural networks and the human brain, for the brain is a...

  16. Topology Optimisation for Energy Management in Underwater Sensor Networks

    Science.gov (United States)

    2015-01-01

    sensing and communication models for underwater environment. The approximate Pareto - optimal surface is obtained as a trade-off between network...lifetime and probability of successful search over the surveillance region. Keywords: underwater sensor network; energy management; Pareto optimisation...horizon power trade-off problem with the probability π ss (Wettergren, 2008) of successful search as the cost function , where π ss is shown to be a

  17. Topology Optimization for Energy Management in Underwater Sensor Networks

    Science.gov (United States)

    2015-02-01

    and communication. This multi-objective cost functional leads to non-dominant optimization. Such a problem is formulated as a Pareto -optimal trade...K. Jha1 Thomas A. Wettergren2 Asok Ray1 Kushal Mukherjee3 Keywords: Underwater Sensor Network, Energy Management, Pareto Optimization, Adaptation...communication models for under- water environment. The approximate Pareto -optimal surface is obtained as a trade-off between network lifetime and probability

  18. Energy Efficient Content Distribution in an ISP Network

    OpenAIRE

    Modrzejewski, Remigiusz; Chiaraviglio, Luca; Tahiri, Issam; Giroire, Frédéric; Rouzic, Esther Le; Bonetto, Edoardo; Masumeci, Francesco; Gonzalez, Roberto; Guerro, Carmen

    2013-01-01

    International audience; We study the problem of reducing power consump- tion in an Internet Service Provider (ISP) network by designing the content distribution infrastructure managed by the operator. We propose an algorithm to optimally decide where to cache the content inside the ISP network. We evaluate our solution over two case studies driven by operators feedback. Results show that the energy-efficient design of the content infrastructure brings substantial savings, both in terms of ene...

  19. Comparison and Optimization of Neural Networks and Network Ensembles for Gap Filling of Wind Energy Data

    Directory of Open Access Journals (Sweden)

    Andres Schmidt

    2014-01-01

    Full Text Available Wind turbines play an important role in providing electrical energy for an ever-growing demand. Due to climate change driven by anthropogenic emissions of greenhouse gases, the exploration and use of sustainable energy sources is essential with wind energy covering a significant portion. Data of existing wind turbines is needed to reduce the uncertainty of model predictions of future energy yields for planned wind farms. Due to maintenance routines and technical issues, data gaps of reference wind parks are unavoidable. Here, we present real-world case studies using multilayer perceptron networks and radial basis function networks to reproduce electrical energy outputs of wind turbines at 3 different locations in Germany covering a range of landscapes with varying topographic complexity. The results show that the energy output values of the turbines could be modeled with high correlations ranging from 0.90 to 0.99. In complex terrain, the RBF networks outperformed the MLP networks. In addition, rare extreme values were better captured by the RBF networks in most cases. By using wind meteorological variables and operating data recorded by the wind turbines in addition to the daily energy output values, the error could be further reduced to more than 20%.

  20. Focus on networks, energy and the economy

    Science.gov (United States)

    Timme, Marc; Kocarev, Ljupco; Witthaut, Dirk

    2015-11-01

    A sustainable and reliable energy supply constitutes a fundamental prerequisite for the future of our society. The change to renewable sources comes with several systemic changes and includes, among others, smaller and more distributed producers as well as stronger and less predictable fluctuations. Parallel developments such as the transition from conventional producers and consumers to prosumers and the increasing number of electric vehicles add further complications. These changes require to extend and upgrade currently existing power grids. Yet precisely how to achieve an effective, robustly operating (electric) energy system is far from being understood. This focus issue aims to contribute to a number of these upcoming challenges from the perspective of self-organization and the collective nonlinear dynamics of power grids, interacting economic factors as well as technical restrictions and opportunities for distributed systems.

  1. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  2. Algorithms for energy efficiency in wireless sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Busse, M.

    2007-01-21

    The recent advances in microsensor and semiconductor technology have opened a new field within computer science: the networking of small-sized sensors which are capable of sensing, processing, and communicating. Such wireless sensor networks offer new applications in the areas of habitat and environment monitoring, disaster control and operation, military and intelligence control, object tracking, video surveillance, traffic control, as well as in health care and home automation. It is likely that the deployed sensors will be battery-powered, which will limit the energy capacity significantly. Thus, energy efficiency becomes one of the main challenges that need to be taken into account, and the design of energy-efficient algorithms is a major contribution of this thesis. As the wireless communication in the network is one of the main energy consumers, we first consider in detail the characteristics of wireless communication. By using the embedded sensor board (ESB) platform recently developed by the Free University of Berlin, we analyze the means of forward error correction and propose an appropriate resync mechanism, which improves the communication between two ESB nodes substantially. Afterwards, we focus on the forwarding of data packets through the network. We present the algorithms energy-efficient forwarding (EEF), lifetime-efficient forwarding (LEF), and energy-efficient aggregation forwarding (EEAF). While EEF is designed to maximize the number of data bytes delivered per energy unit, LEF additionally takes into account the residual energy of forwarding nodes. In so doing, LEF further prolongs the lifetime of the network. Energy savings due to data aggregation and in-network processing are exploited by EEAF. Besides single-link forwarding, in which data packets are sent to only one forwarding node, we also study the impact of multi-link forwarding, which exploits the broadcast characteristics of the wireless medium by sending packets to several (potential

  3. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high...

  4. Modelling electric trains energy consumption using Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, P.; Garcia Roman, C.; Insa Franco, R.

    2016-07-01

    Nowadays there is an evident concern regarding the efficiency and sustainability of the transport sector due to both the threat of climate change and the current financial crisis. This concern explains the growth of railways over the last years as they present an inherent efficiency compared to other transport means. However, in order to further expand their role, it is necessary to optimise their energy consumption so as to increase their competitiveness. Improving railways energy efficiency requires both reliable data and modelling tools that will allow the study of different variables and alternatives. With this need in mind, this paper presents the development of consumption models based on neural networks that calculate the energy consumption of electric trains. These networks have been trained based on an extensive set of consumption data measured in line 1 of the Valencia Metro Network. Once trained, the neural networks provide a reliable estimation of the vehicles consumption along a specific route when fed with input data such as train speed, acceleration or track longitudinal slope. These networks represent a useful modelling tool that may allow a deeper study of railway lines in terms of energy expenditure with the objective of reducing the costs and environmental impact associated to railways. (Author)

  5. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ya Gao

    2017-08-01

    Full Text Available Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE, which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF scheme and the Energy harvesting Channel Inversion (E-CI scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF scheme and the Truncated energy harvesting Channel Inversion (T-CI scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  6. Regulation of energy homeostasis by the NPY system.

    Science.gov (United States)

    Loh, Kim; Herzog, Herbert; Shi, Yan-Chuan

    2015-03-01

    Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Energy Efficient In-network RFID Data Filtering Scheme in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Myong-Soon Park

    2011-07-01

    Full Text Available RFID (Radio frequency identification and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes’ energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes.

  8. Energy efficient in-network RFID data filtering scheme in wireless sensor networks.

    Science.gov (United States)

    Bashir, Ali Kashif; Lim, Se-Jung; Hussain, Chauhdary Sajjad; Park, Myong-Soon

    2011-01-01

    RFID (Radio frequency identification) and wireless sensor networks are backbone technologies for pervasive environments. In integration of RFID and WSN, RFID data uses WSN protocols for multi-hop communications. Energy is a critical issue in WSNs; however, RFID data contains a lot of duplication. These duplications can be eliminated at the base station, but unnecessary transmissions of duplicate data within the network still occurs, which consumes nodes' energy and affects network lifetime. In this paper, we propose an in-network RFID data filtering scheme that efficiently eliminates the duplicate data. For this we use a clustering mechanism where cluster heads eliminate duplicate data and forward filtered data towards the base station. Simulation results prove that our approach saves considerable amounts of energy in terms of communication and computational cost, compared to existing filtering schemes.

  9. Decentralized Hypothesis Testing in Energy Harvesting Wireless Sensor Networks

    Science.gov (United States)

    Tarighati, Alla; Gross, James; Jalden, Joakim

    2017-09-01

    We consider the problem of decentralized hypothesis testing in a network of energy harvesting sensors, where sensors make noisy observations of a phenomenon and send quantized information about the phenomenon towards a fusion center. The fusion center makes a decision about the present hypothesis using the aggregate received data during a time interval. We explicitly consider a scenario under which the messages are sent through parallel access channels towards the fusion center. To avoid limited lifetime issues, we assume each sensor is capable of harvesting all the energy it needs for the communication from the environment. Each sensor has an energy buffer (battery) to save its harvested energy for use in other time intervals. Our key contribution is to formulate the problem of decentralized detection in a sensor network with energy harvesting devices. Our analysis is based on a queuing-theoretic model for the battery and we propose a sensor decision design method by considering long term energy management at the sensors. We show how the performance of the system changes for different battery capacities. We then numerically show how our findings can be used in the design of sensor networks with energy harvesting sensors.

  10. Three new players in energy regulation: preptin, adropin and irisin.

    Science.gov (United States)

    Aydin, Suleyman

    2014-06-01

    Homeostasis of energy is regulated by genetic factors, food intake, and energy expenditure. When energy input is greater than expenditure, the balance is positive, which can lead to weight gain and obesity. When the balance is negative, weight is lost. Regulation of this homeostasis is multi-factorial, involving many orexigenic (appetite-stimulating) and anorexigenic (appetite-suppressing) peptide hormones. Peripheral tissues are now known to be involved in weight regulation and research on its endocrine characteristics proceeds apace. Preptin with 34 amino acids (MW 3948 Da), adropin with 43 amino acids and a molecular weight of (4999 Da), and irisin with 112 amino acids (12587 Da), are three newly discovered peptides critical for regulating energy metabolism. Preptin is synthesized primarily in pancreatic beta cells, and adropin mainly in the liver and brain, and many peripheral tissues. Irisin, however, is synthesized principally in the heart muscle, along with peripheral tissues, including salivary glands, kidney and liver. The prime functions of preptin and adropin include regulating carbohydrate, lipid and protein metabolisms by moderating glucose-mediated insulin release. Irisin is an anti-obesitic and anti-diabetic hormone regulating adipose tissue metabolism and glucose homeostasis by converting white to brown adipose tissue. This review offers a historical account of these discovery and function of these peptides, including their structure, and physiological and biochemical properties. Their roles in energy regulation will be discussed. Their measurement in biological fluids will be considered, which will lead to further discussion of their possible clinical value. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Networking with energy. Final report; Netwerken met energie. Eindrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, G.; Noorman, K.J. [KNN Milieu, Groningen (Netherlands); Kok, R.; Benders, R.M.J.; Moll, H.C. [Centrum voor Energie en Milieukunde IVEM, Rijksuniversiteit Groningen, Groningen (Netherlands); Abrahamse, W.; Steg, L. [Basiseenhied Psychologie, Rijksuniversiteit Groningen, Groningen (Netherlands); Van der Valk, M. (ed.)

    2003-08-21

    The aim of the project was to reduce the direct (-5%) and the indirect (also -5%) consumption of energy by means of a change of behavior. One of the tools to realize this was setting up a website for advice and feedback. [Dutch] Het doel van het project was om bij circa 300 huishoudens in Groningen het directe (-5%) en indirecte (ook -5%) energiegebruik te verminderen via gedragsverandering. Een van de middelen om dit doel te bereiken was het opzetten van een website voor advies en feedback.

  12. Outage Probability Minimization for Energy Harvesting Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Zhang, Fan; Jing, Tao; Huo, Yan; Jiang, Kaiwei

    2017-01-24

    The incorporation of cognitive radio (CR) capability in wireless sensor networks yields a promising network paradigm known as CR sensor networks (CRSNs), which is able to provide spectrum efficient data communication. However, due to the high energy consumption results from spectrum sensing, as well as subsequent data transmission, the energy supply for the conventional sensor nodes powered by batteries is regarded as a severe bottleneck for sustainable operation. The energy harvesting technique, which gathers energy from the ambient environment, is regarded as a promising solution to perpetually power-up energy-limited devices with a continual source of energy. Therefore, applying the energy harvesting (EH) technique in CRSNs is able to facilitate the self-sustainability of the energy-limited sensors. The primary concern of this study is to design sensing-transmission policies to minimize the long-term outage probability of EH-powered CR sensor nodes. We formulate this problem as an infinite-horizon discounted Markov decision process and propose an ϵ-optimal sensing-transmission (ST) policy through using the value iteration algorithm. ϵ is the error bound between the ST policy and the optimal policy, which can be pre-defined according to the actual need. Moreover, for a special case that the signal-to-noise (SNR) power ratio is sufficiently high, we present an efficient transmission (ET) policy and prove that the ET policy achieves the same performance with the ST policy. Finally, extensive simulations are conducted to evaluate the performance of the proposed policies and the impaction of various network parameters.

  13. Cigarette Smoking and Brain Regulation of Energy Homeostasis

    OpenAIRE

    Chen, Hui; Saad, Sonia; Sandow, Shaun L.; Bertrand, Paul P.

    2012-01-01

    Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing...

  14. Throughput of Wireless Networks Powered by Energy Harvesting

    CERN Document Server

    Huang, Kaibin

    2011-01-01

    Designing mobile devices for harvesting ambient energy such as kinetic activities or electromagnetic radiation (EMR) will enable mobile networks to self sustain besides alleviate global warming. The throughput of a mobile ad hoc network powered by energy harvesting is analyzed in this paper using a stochastic-geometry approach. The transmitters powered by energy harvesting are modeled as a Poisson point process (PPP); each transmits to a receiver at an unit distance using either a random-access protocol or the time-hopping multiple access (THMA) and satisfying an outage-probability constraint. Consider non-EMR energy harvesting where energy packets of random sizes arrive at a transmitter following a stationary random process. By applying Mapping Theorem, the network (spatial) throughput for random access and in the limit of a long harvesting interval is derived in simple closed-form functions of the energy-arrival rate, transmitter density and coding rate. These results show that the throughput of a sparse ne...

  15. Aflatoxin regulations in a network of global maize trade.

    Directory of Open Access Journals (Sweden)

    Felicia Wu

    Full Text Available Worldwide, food supplies often contain unavoidable contaminants, many of which adversely affect health and hence are subject to regulations of maximum tolerable levels in food. These regulations differ from nation to nation, and may affect patterns of food trade. We soughtto determine whether there is an association between nations' food safety regulations and global food trade patterns, with implications for public health and policymaking. We developed a network model of maize trade around the world. From maize import/export data for 217 nations from 2000-2009, we calculated basic statistics on volumes of trade; then examined how regulations of aflatoxin, a common contaminant of maize, are similar or different between pairs of nations engaging in significant amounts of maize trade. Globally, market segregation appears to occur among clusters of nations. The United States is at the center of one cluster; European countries make up another cluster with hardly any maize trade with the US; and Argentina, Brazil, and China export maize all over the world. Pairs of nations trading large amounts of maize have very similar aflatoxin regulations: nations with strict standards tend to trade maize with each other, while nations with more relaxed standards tend to trade maize with each other. Rarely among the top pairs of maize-trading nations do total aflatoxin standards (standards based on the sum of the levels of aflatoxins B(1, B(2, G(1, and G(2 differ by more than 5 µg/kg. These results suggest that, globally, separate maize trading communities emerge; and nations tend to trade with other nations that have very similar food safety standards.

  16. Actual energy consumption in dwellings. The effect of energy performance regulations and occupant behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Santin, O.

    2010-10-19

    Residential buildings have continuously improved in energy efficiency, partly as a consequence of the introduction of energy regulations in many countries. Although better thermal properties and systems efficiency have lowered energy consumption for space heating in recent decades, substantial differences in energy consumption in similar dwellings are still being observed. These differences in consumption are thought to be caused by differences in occupancy patterns, by quality of construction and by rebound effects. This research addresses the effect of energy performance regulations and occupant behavior on energy consumption for space and water heating in dwellings built after the introduction of the energy performance regulations in the Netherlands. The results of this research show that improving the energy efficiency of buildings alone is not enough to decrease that energy consumption. The large differences found in the use of dwellings indicate that, especially in energy efficient houses, occupant behavior provides an opportunity for further reductions in the energy consumption for space heating which could boost the efforts to conserve energy worldwide.

  17. Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sohail Jabbar

    2015-01-01

    Full Text Available Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs. However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.

  18. Energy parameter estimation in solar powered wireless sensor networks

    KAUST Repository

    Mousa, Mustafa

    2014-02-24

    The operation of solar powered wireless sensor networks is associated with numerous challenges. One of the main challenges is the high variability of solar power input and battery capacity, due to factors such as weather, humidity, dust and temperature. In this article, we propose a set of tools that can be implemented onboard high power wireless sensor networks to estimate the battery condition and capacity as well as solar power availability. These parameters are very important to optimize sensing and communications operations and maximize the reliability of the complete system. Experimental results show that the performance of typical Lithium Ion batteries severely degrades outdoors in a matter of weeks or months, and that the availability of solar energy in an urban solar powered wireless sensor network is highly variable, which underlines the need for such power and energy estimation algorithms.

  19. Optimal satisfaction degree in energy harvesting cognitive radio networks

    Science.gov (United States)

    Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui

    2015-12-01

    A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).

  20. Energy efficient strategy for throughput improvement in wireless sensor networks.

    Science.gov (United States)

    Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif

    2015-01-23

    Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.

  1. A Unified Monitoring Framework for Energy Consumption and Network Traffic

    Directory of Open Access Journals (Sweden)

    Florentin Clouet

    2015-08-01

    Full Text Available Providing experimenters with deep insight about the effects of their experiments is a central feature of testbeds. In this paper, we describe Kwapi, a framework designed in the context of the Grid'5000 testbed, that unifies measurements for both energy consumption and network traffic. Because all measurements are taken at the infrastructure level (using sensors in power and network equipment, using this framework has no dependencies on the experiments themselves. Initially designed for OpenStack infrastructures, the Kwapi framework allows monitoring and reporting of energy consumption of distributed platforms. In this article, we present the extension of Kwapi to network monitoring, and outline how we overcame several challenges: scaling to a testbed the size of Grid'5000 while still providing high-frequency measurements; providing long-term loss-less storage of measurements; handling operational issues when deploying such a tool on a real infrastructure.

  2. Localization of Energy Harvesting Empowered Underwater Optical Wireless Sensor Networks

    KAUST Repository

    Saeed, Nasir

    2017-12-20

    In this paper, a received signal strength (RSS) based localization technique is developed for energy harvesting underwater optical wireless sensor networks (EH-UOWSNs), where the optical noise sources and channel impairments of seawater pose significant challenges for range estimation. Energy limitation is another major problem due to the limited battery power and difficulty in replacing or recharging the battery of an underwater sensor node. In the proposed framework, sensor nodes with insufficient battery, harvest the energy and starts communicating once it has sufficient energy storage. Network localization is carried out by measuring the RSSs of active nodes, which are modeled based on the underwater optical communication channel characteristics. Thereafter, block kernel matrices are computed for the RSS based range measurements. Unlike the traditional shortest-path approach, the proposed technique reduces the shortest path estimation for each block kernel matrix. Once the complete block kernel matrices are available, a closed form localization technique is developed to find the location of every optical sensor node in the network. Furthermore, an analytical expression for Cramer Rao lower bound (CRLB) is derived as a benchmark to compare the localization performance of the proposed technique. Finally, extensive simulations show that the proposed technique outperforms the well-known network localization techniques.

  3. Cognitive small cell networks: energy efficiency and trade-offs

    NARCIS (Netherlands)

    Wildemeersch, M.; Wildemeersch, Matthias; Quek, T.Q.S.; Slump, Cornelis H.; Rabbachin, A.

    2013-01-01

    Heterogeneous networks using a mix of macrocells and small cells are foreseen as one of the solutions to meet the ever increasing mobile traffic demand. Nevertheless, a massive deployment of small cell access points (SAPs) leads also to a considerable increase in energy consumption. Spurred by

  4. Assessing Security-Critical Energy-Efficient Sensor Networks

    NARCIS (Netherlands)

    Law, Y.W.; Dulman, S.O.; Etalle, Sandro; Havinga, Paul J.M.

    In the EYES project (http://eyes.eu.org), we are investigating self-organizing, collaborative, energy-efficient sensor networks. This study is devoted to the security aspects of the project. Our contribution is three-fold: firstly, we present a survey, where we discuss the dominant issues of

  5. Phospho-regulation of the Neurospora crassa septation initiation network.

    Science.gov (United States)

    Heilig, Yvonne; Schmitt, Kerstin; Seiler, Stephan

    2013-01-01

    Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi.

  6. A Hybrid Energy Sharing Framework for Green Cellular Networks

    KAUST Repository

    Farooq, Muhammad Junaid

    2016-12-09

    Cellular operators are increasingly turning towards renewable energy (RE) as an alternative to using traditional electricity in order to reduce operational expenditure and carbon footprint. Due to the randomness in both RE generation and mobile traffic at each base station (BS), a surplus or shortfall of energy may occur at any given time. To increase energy selfreliance and minimize the network’s energy cost, the operator needs to efficiently exploit the RE generated across all BSs. In this paper, a hybrid energy sharing framework for cellular network is proposed, where a combination of physical power lines and energy trading with other BSs using smart grid is used. Algorithms for physical power lines deployment between BSs, based on average and complete statistics of the net RE available, are developed. Afterwards, an energy management framework is formulated to optimally determine the quantities of electricity and RE to be procured and exchanged among BSs, respectively, while considering battery capacities and real-time energy pricing. Three cases are investigated where RE generation is unknown, perfectly known, and partially known ahead of time. Results investigate the time varying energy management of BSs and demonstrate considerable reduction in average energy cost thanks to the hybrid energy sharing scheme.

  7. Energy Efficient Wireless Vehicular-Guided Actuator Network

    KAUST Repository

    Boudellioua, Imene

    2013-06-09

    In this paper, we present an energy-efficient vehicular guided system for environmental disaster management using wireless sensor/actuator networks. Sensor nodes within clusters are controlled by a master node that is dynamically selected. Actuators support mobility for every sensor node in the area of interest. The system maintains energy efficiency using statistical, correlation, and confidence for determining actuator actions and implements an adaptive energy scheme to prolong the system lifespan. Experimental results show that the system is capable of saving up to 2.7Watt for every 28KByte of data exchanged. We also show that actuator actions are correct with a 90% confidence.

  8. Polyphosphate--an ancient energy source and active metabolic regulator.

    Science.gov (United States)

    Achbergerová, Lucia; Nahálka, Jozef

    2011-08-04

    There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate.

  9. Polyphosphate - an ancient energy source and active metabolic regulator

    Science.gov (United States)

    2011-01-01

    There are a several molecules on Earth that effectively store energy within their covalent bonds, and one of these energy-rich molecules is polyphosphate. In microbial cells, polyphosphate granules are synthesised for both energy and phosphate storage and are degraded to produce nucleotide triphosphate or phosphate. Energy released from these energetic carriers is used by the cell for production of all vital molecules such as amino acids, nucleobases, sugars and lipids. Polyphosphate chains directly regulate some processes in the cell and are used as phosphate donors in gene regulation. These two processes, energetic metabolism and regulation, are orchestrated by polyphosphate kinases. Polyphosphate kinases (PPKs) can currently be categorized into three groups (PPK1, PPK2 and PPK3) according their functionality; they can also be divided into three groups according their homology (EcPPK1, PaPPK2 and ScVTC). This review discusses historical information, similarities and differences, biochemical characteristics, roles in stress response regulation and possible applications in the biotechnology industry of these enzymes. At the end of the review, a hypothesis is discussed in view of synthetic biology applications that states polyphosphate and calcium-rich organelles have endosymbiotic origins from ancient protocells that metabolized polyphosphate. PMID:21816086

  10. Marine Hydrokinetic Energy Regulators Workshop: Lessons from Wind

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E. Ian

    2015-09-03

    Ian Baring-Gould presented these lessons learned from wind energy to an audience of marine hydrokinetic regulators. Lessons learned spanned the areas of technology advances, using collaborative approaches to involve key stakeholders; using baseline studies to measure and prioritize wildlife impacts, and look at avoidance and mitigation options early in the process.

  11. Exploiting node mobility for energy optimization in wireless sensor networks

    Science.gov (United States)

    El-Moukaddem, Fatme Mohammad

    Wireless Sensor Networks (WSNs) have become increasingly available for data-intensive applications such as micro-climate monitoring, precision agriculture, and audio/video surveillance. A key challenge faced by data-intensive WSNs is to transmit the sheer amount of data generated within an application's lifetime to the base station despite the fact that sensor nodes have limited power supplies such as batteries or small solar panels. The availability of numerous low-cost robotic units (e.g. Robomote and Khepera) has made it possible to construct sensor networks consisting of mobile sensor nodes. It has been shown that the controlled mobility offered by mobile sensors can be exploited to improve the energy efficiency of a network. In this thesis, we propose schemes that use mobile sensor nodes to reduce the energy consumption of data-intensive WSNs. Our approaches differ from previous work in two main aspects. First, our approaches do not require complex motion planning of mobile nodes, and hence can be implemented on a number of low-cost mobile sensor platforms. Second, we integrate the energy consumption due to both mobility and wireless communications into a holistic optimization framework. We consider three problems arising from the limited energy in the sensor nodes. In the first problem, the network consists of mostly static nodes and contains only a few mobile nodes. In the second and third problems, we assume essentially that all nodes in the WSN are mobile. We first study a new problem called max-data mobile relay configuration (MMRC ) that finds the positions of a set of mobile sensors, referred to as relays, that maximize the total amount of data gathered by the network during its lifetime. We show that the MMRC problem is surprisingly complex even for a trivial network topology due to the joint consideration of the energy consumption of both wireless communication and mechanical locomotion. We present optimal MMRC algorithms and practical distributed

  12. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    OpenAIRE

    Ehsan Ahvar; Shohreh Ahvar; Gyu Myoung Lee; Noel Crespi

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, ener...

  13. Energy cost saving strategies in distributed power networks

    Directory of Open Access Journals (Sweden)

    Tcheukam Alain

    2016-01-01

    Full Text Available In this paper we study energy cost saving strategies in power networks in presence of prosumers. Three tips are considered: (i distributed power network architecture, (ii peak energy shaving with the integration of prosumers’ contribution, (iii Electric vehicles self-charging by means of prosumers’ production. The proposed distributed power network architecture reduces significantly the transmission costs and can reduce significantly the global energy cost up to 42 percent. Different types of prosumer who use self-charging photovoltaic systems, are able to intelligently buy energy from, or sell it, to the power grid. Therein, prosumers interact in a distributed environment during the purchase or sale of electric power using a double auction with negotiation mechanism. Using a two-step combined learning and optimization scheme, each prosumer can learn its optimal bidding strategy and forecast its energy production, consumption and storage. Our simulation results, conducted for the region of Sicily in Italy, show that the integration of prosumers can reduce peak hour costs up to 19 percent and 6 percent for eligible prosumers with electric vehicles.

  14. Commission for Energy regulation (CRE) - Activity report June 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2004 activity report of CRE. Content: A - Opening of the gas and electricity markets for professional customers on 1 July 2004; B - Regulation of the gas market: Gas markets and players (The European environment, The French gas market); Regulation of the gas market (Implementing regulation, Works planned for the coming year; C - Regulation of the electricity market: The electricity markets and players (The European electricity markets, The French electricity market, Monitoring the electricity market); Regulation of the French electricity market (Access to public grid, Cross-border exchanges, Un-bundled accounting principles); The public electricity service in the regulated market (Content of the public service, Public service charges, Electricity production public service financing, Electricity sales tariffs) D - The working of CRE: How CRE exercises its jurisdiction, Tools; E - Appendices: Glossary, Units and conversions, Council of European Energy Regulators, Index of tables and figures.

  15. Economic growth and energy regulation in the environmental Kuznets curve.

    Science.gov (United States)

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.

  16. Pseudo paths towards minimum energy states in network dynamics

    Science.gov (United States)

    Hedayatifar, L.; Hassanibesheli, F.; Shirazi, A. H.; Vasheghani Farahani, S.; Jafari, G. R.

    2017-10-01

    The dynamics of networks forming on Heider balance theory moves towards lower tension states. The condition derived from this theory enforces agents to reevaluate and modify their interactions to achieve equilibrium. These possible changes in network's topology can be considered as various paths that guide systems to minimum energy states. Based on this theory the final destination of a system could reside on a local minimum energy, ;jammed state;, or the global minimum energy, balanced states. The question we would like to address is whether jammed states just appear by chance? Or there exist some pseudo paths that bound a system towards a jammed state. We introduce an indicator to suspect the location of a jammed state based on the Inverse Participation Ratio method (IPR). We provide a margin before a local minimum where the number of possible paths dramatically drastically decreases. This is a condition that proves adequate for ending up on a jammed states.

  17. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Science.gov (United States)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  18. Energy neutral protocol based on hierarchical routing techniques for energy harvesting wireless sensor network

    Science.gov (United States)

    Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.

    2017-06-01

    Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.

  19. Energy Harvesting Based Body Area Networks for Smart Health.

    Science.gov (United States)

    Hao, Yixue; Peng, Limei; Lu, Huimin; Hassan, Mohammad Mehedi; Alamri, Atif

    2017-07-10

    Body area networks (BANs) are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device's battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.

  20. Energy Harvesting Based Body Area Networks for Smart Health

    Directory of Open Access Journals (Sweden)

    Yixue Hao

    2017-07-01

    Full Text Available Body area networks (BANs are configured with a great number of ultra-low power consumption wearable devices, which constantly monitor physiological signals of the human body and thus realize intelligent monitoring. However, the collection and transfer of human body signals consume energy, and considering the comfort demand of wearable devices, both the size and the capacity of a wearable device’s battery are limited. Thus, minimizing the energy consumption of wearable devices and optimizing the BAN energy efficiency is still a challenging problem. Therefore, in this paper, we propose an energy harvesting-based BAN for smart health and discuss an optimal resource allocation scheme to improve BAN energy efficiency. Specifically, firstly, considering energy harvesting in a BAN and the time limits of human body signal transfer, we formulate the energy efficiency optimization problem of time division for wireless energy transfer and wireless information transfer. Secondly, we convert the optimization problem into a convex optimization problem under a linear constraint and propose a closed-form solution to the problem. Finally, simulation results proved that when the size of data acquired by the wearable devices is small, the proportion of energy consumed by the circuit and signal acquisition of the wearable devices is big, and when the size of data acquired by the wearable devices is big, the energy consumed by the signal transfer of the wearable device is decisive.

  1. MILP model for energy optimization in EIP water networks

    Energy Technology Data Exchange (ETDEWEB)

    Taskhiri, Mohammad Sadegh [De La Salle University, Industrial Engineering Department, Manila (Philippines); Tan, Raymond R. [De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines); Chiu, Anthony S.F. [De La Salle University, Industrial Engineering Department, Manila (Philippines); De La Salle University, Center for Engineering and Sustainable Development Research, Manila (Philippines)

    2011-10-15

    The eco-industrial park (EIP) concept provides a framework in which several plants can cooperate with each other and exchange their wastewater to minimize total freshwater consumption. Energy analysis is a methodology that considers the total, cumulative energy which has been consumed within a system; thus, by minimizing energy, an environmentally optimal EIP can be designed. This article presents a mixed-integer linear programming (MILP) model for minimizing energy of an interplant water network in an EIP. The methodology accounts for the environmental impacts of water use, energy consumption, and capital goods within the EIP in a balanced manner. The proposed technique is then demonstrated by solving a case study from literature. (orig.)

  2. Power Grid Network Evolutions for Local Energy Trading

    CERN Document Server

    Pagani, Giuliano Andrea

    2012-01-01

    The shift towards a energy Grid dominated by prosumers (consumers and producers of energy) will inevitably have repercussions on the distribution infrastructure. Today it is a hierarchical one designed to deliver energy from large scale facilities to end-users. Tomorrow it will be a capillary infrastructure at the medium and Low Voltage levels that will support local energy trading among prosumers. In our previous work, we analyzed the Dutch Power Grid and made an initial analysis of the economic impact topological properties have on decentralized energy trading. In this paper, we go one step further and investigate how different networks topologies and growth models facilitate the emergence of a decentralized market. In particular, we show how the connectivity plays an important role in improving the properties of reliability and path-cost reduction. From the economic point of view, we estimate how the topological evolutions facilitate local electricity distribution, taking into account the main cost ingredi...

  3. Appetite regulation in response to sitting and energy imbalance.

    Science.gov (United States)

    Granados, Kirsten; Stephens, Brooke R; Malin, Steven K; Zderic, Theodore W; Hamilton, Marc T; Braun, Barry

    2012-04-01

    The impact of sitting and energy imbalance on appetite and appetite-regulating hormones (acylated ghrelin and leptin) was assessed in response to 1 day of sitting, with and without changes in energy intake. Fourteen men and women completed each of three 24-h conditions: high energy expenditure (standing) with energy balance (STAND), low energy expenditure (sitting) with energy surplus (SIT), and sitting with energy balance (SIT-BAL). Ghrelin, leptin, and appetite were measured in the fasted state and following a standardized meal. In the fasted state, there were no differences among conditions. Following the meal, ghrelin was lower in SIT than in STAND, with no change in appetite. When intake was reduced (SIT-BAL), the decrease in ghrelin when sitting was attenuated, hunger increased, and fullness decreased. SIT led to lower ghrelin concentrations in the men, whereas in the women, leptin increased. SIT-BAL led to an increase in ghrelin in the men but attenuated the leptin response, reduced ghrelin, increased hunger, and decreased fullness in the women. Because a dramatic reduction in energy expenditure was not accompanied by reduced appetite, prolonged sitting may promote excess energy intake, leading to weight gain in both men and women.

  4. Energy-efficient scheduling under delay constraints for wireless networks

    CERN Document Server

    Berry, Randal; Zafer, Murtaza

    2012-01-01

    Packet delay and energy consumption are important considerations in wireless and sensor networks as these metrics directly affect the quality of service of the application and the resource consumption of the network; especially, for a rapidly growing class of real-time applications that impose strict restrictions on packet delays. Dynamic rate control is a novel technique for adapting the transmission rate of wireless devices, almost in real-time, to opportunistically exploit time-varying channel conditions as well as changing traffic patterns. Since power consumption is not a linear function

  5. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  6. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    Energy Technology Data Exchange (ETDEWEB)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  7. Optimal Scheduling of an Regional Integrated Energy System with Energy Storage Systems for Service Regulation

    Directory of Open Access Journals (Sweden)

    Hengrui Ma

    2018-01-01

    Full Text Available Ancillary services are critical to maintaining the safe and stable operation of power systems that contain a high penetration level of renewable energy resources. As a high-quality regulation resource, the regional integrated energy system (RIES with energy storage system (ESS can effectively adjust the non-negligible frequency offset caused by the renewable energy integration into the power system, and help solve the problem of power system frequency stability. In this paper, the optimization model aiming at regional integrated energy system as a participant in the regulation market based on pay-for-performance is established. Meanwhile YALMIP + CPLEX is used to simulate and analyze the total operating cost under different dispatch modes. This paper uses the actual operation model of the PJM regulation market to guide the optimal allocation of regulation resource in the regional integrated energy system, and provides a balance between the power trading revenue and regulation market revenue in order to achieve the maximum profit.

  8. Energy Efficiency Challenges of 5G Small Cell Networks

    Science.gov (United States)

    Ge, Xiaohu; Yang, Jing; Gharavi, Hamid; Sun, Yang

    2017-01-01

    The deployment of a large number of small cells poses new challenges to energy efficiency, which has often been ignored in fifth generation (5G) cellular networks. While massive multiple-input multiple outputs (MIMO) will reduce the transmission power at the expense of higher computational cost, the question remains as to which computation or transmission power is more important in the energy efficiency of 5G small cell networks. Thus, the main objective in this paper is to investigate the computation power based on the Landauer principle. Simulation results reveal that more than 50% of the energy is consumed by the computation power at 5G small cell base stations (BSs). Moreover, the computation power of 5G small cell BS can approach 800 watt when the massive MIMO (e.g., 128 antennas) is deployed to transmit high volume traffic. This clearly indicates that computation power optimization can play a major role in the energy efficiency of small cell networks. PMID:28757670

  9. Energy Harvesting for Structural Health Monitoring Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  10. Identification of yeast transcriptional regulation networks using multivariate random forests.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Xiao

    2009-06-01

    Full Text Available The recent availability of whole-genome scale data sets that investigate complementary and diverse aspects of transcriptional regulation has spawned an increased need for new and effective computational approaches to analyze and integrate these large scale assays. Here, we propose a novel algorithm, based on random forest methodology, to relate gene expression (as derived from expression microarrays to sequence features residing in gene promoters (as derived from DNA motif data and transcription factor binding to gene promoters (as derived from tiling microarrays. We extend the random forest approach to model a multivariate response as represented, for example, by time-course gene expression measures. An analysis of the multivariate random forest output reveals complex regulatory networks, which consist of cohesive, condition-dependent regulatory cliques. Each regulatory clique features homogeneous gene expression profiles and common motifs or synergistic motif groups. We apply our method to several yeast physiological processes: cell cycle, sporulation, and various stress conditions. Our technique displays excellent performance with regard to identifying known regulatory motifs, including high order interactions. In addition, we present evidence of the existence of an alternative MCB-binding pathway, which we confirm using data from two independent cell cycle studies and two other physioloigical processes. Finally, we have uncovered elaborate transcription regulation refinement mechanisms involving PAC and mRRPE motifs that govern essential rRNA processing. These include intriguing instances of differing motif dosages and differing combinatorial motif control that promote regulatory specificity in rRNA metabolism under differing physiological processes.

  11. Energy Consumption Model and Measurement Results for Network Coding-enabled IEEE 802.11 Meshed Wireless Networks

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Rasmussen, Ulrik Wilken; Hundebøll, Martin

    2012-01-01

    This paper presents an energy model and energy measurements for network coding enabled wireless meshed networks based on IEEE 802.11 technology. The energy model and the energy measurement testbed is limited to a simple Alice and Bob scenario. For this toy scenario we compare the energy usages...... a flexible, low cost tool to be able to measure at any given node in a meshed network. We verify the precision of our tool by comparing it to a sophisticated device. Our main results in this paper are the derivation of an analytical energy model, the implementation of a distributed energy measurement testbed...

  12. Brain regulation of energy balance and body weight.

    Science.gov (United States)

    Rui, Liangyou

    2013-12-01

    Body weight is determined by a balance between food intake and energy expenditure. Multiple neural circuits in the brain have evolved to process information about food, food-related cues and food consumption to control feeding behavior. Numerous gastrointestinal endocrine cells produce and secrete satiety hormones in response to food consumption and digestion. These hormones suppress hunger and promote satiation and satiety mainly through hindbrain circuits, thus governing meal-by-meal eating behavior. In contrast, the hypothalamus integrates adiposity signals to regulate long-term energy balance and body weight. Distinct hypothalamic areas and various orexigenic and anorexigenic neurons have been identified to homeostatically regulate food intake. The hypothalamic circuits regulate food intake in part by modulating the sensitivity of the hindbrain to short-term satiety hormones. The hedonic and incentive properties of foods and food-related cues are processed by the corticolimbic reward circuits. The mesolimbic dopamine system encodes subjective "liking" and "wanting" of palatable foods, which is subjected to modulation by the hindbrain and the hypothalamic homeostatic circuits and by satiety and adiposity hormones. Satiety and adiposity hormones also promote energy expenditure by stimulating brown adipose tissue (BAT) activity. They stimulate BAT thermogenesis mainly by increasing the sympathetic outflow to BAT. Many defects in satiety and/or adiposity hormone signaling and in the hindbrain and the hypothalamic circuits have been described and are believed to contribute to the pathogenesis of energy imbalance and obesity.

  13. Dcf1 regulates neuropeptide expression and maintains energy balance.

    Science.gov (United States)

    Liu, Qiang; Chen, Yu; Li, Qian; Wu, Liang; Wen, Tieqiao

    2017-05-22

    Neuropeptide Y (NPY) is an important neurotransmitter in the brain that plays a pivotal role in food intake and energy storage. Although many studies have focused on these functions, the regulation of NPY expression remains unclear. Here we showed that dendritic cell factor 1 (Dcf1) regulates NPY expression and maintains energy balance. We found that NPY expression is significantly reduced in the hypothalamus of Dcf1 knockout (Dcf1-/-, KO) mice. In contrast, Dcf1 overexpression significantly increases NPY expression in the cell line. We also found that Dcf1 acts upstream of the NPY gene to regulate NPY expression and modulates the NPY-NPY receptor 1-GABA signal. Notably, we observed a significant increase in the ATP concentration in Dcf1-/- mice, suggesting a greater demand for energy in the absence of Dcf1. We studied the relationship between Dcf1 and NPY and revealed that Dcf1 plays a critical role in energy balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of Energy Storage Systems Grid Code Requirements on Interface Protection Performances in Low Voltage Networks

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-03-01

    Full Text Available The ever-growing penetration of local generation in distribution networks and the large diffusion of energy storage systems (ESSs foreseen in the near future are bound to affect the effectiveness of interface protection systems (IPSs, with negative impact on the safety of medium voltage (MV and low voltage (LV systems. With the scope of preserving the main network stability, international and national grid connection codes have been updated recently. Consequently, distributed generators (DGs and storage units are increasingly called to provide stabilizing functions according to local voltage and frequency. This can be achieved by suitably controlling the electronic power converters interfacing small-scale generators and storage units to the network. The paper focuses on the regulating functions required to storage units by grid codes currently in force in the European area. Indeed, even if such regulating actions would enable local units in participating to network stability under normal steady-state operating conditions, it is shown through dynamic simulations that they may increase the risk of unintentional islanding occurrence. This means that dangerous operating conditions may arise in LV networks in case dispersed generators and storage systems are present, even if all the end-users are compliant with currently applied connection standards.

  15. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  16. Regulation of energy metabolism by the extracytoplasmic function (ECF σ factors of Arcobacter butzleri.

    Directory of Open Access Journals (Sweden)

    Irati Martinez-Malaxetxebarria

    Full Text Available The extracytoplasmic function (ECF σ factors are fundamental for bacterial adaptation to distinct environments and for survival under different stress conditions. The emerging pathogen Arcobacter butzleri possesses seven putative pairs of σ/anti-σ factors belonging to the ECF family. Here, we report the identification of the genes regulated by five out of the seven A. butzleri ECF σ factors. Three of the ECF σ factors play an apparent role in transport, energy generation and the maintenance of redox balance. Several genes like the nap, sox and tct genes are regulated by more than one ECF σ factor, indicating that the A. butzleri ECF σ factors form a network of overlapping regulons. In contrast to other eubacteria, these A. butzleri ECF regulons appear to primarily regulate responses to changing environments in order to meet metabolic needs instead of an obvious role in stress adaptation.

  17. Energy-Efficient Channel Coding Strategy for Underwater Acoustic Networks.

    Science.gov (United States)

    Barreto, Grasielli; Simão, Daniel H; Pellenz, Marcelo E; Souza, Richard D; Jamhour, Edgard; Penna, Manoel C; Brante, Glauber; Chang, Bruno S

    2017-03-31

    Underwater acoustic networks (UAN) allow for efficiently exploiting and monitoring the sub-aquatic environment. These networks are characterized by long propagation delays, error-prone channels and half-duplex communication. In this paper, we address the problem of energy-efficient communication through the use of optimized channel coding parameters. We consider a two-layer encoding scheme employing forward error correction (FEC) codes and fountain codes (FC) for UAN scenarios without feedback channels. We model and evaluate the energy consumption of different channel coding schemes for a K -distributed multipath channel. The parameters of the FEC encoding layer are optimized by selecting the optimal error correction capability and the code block size. The results show the best parameter choice as a function of the link distance and received signal-to-noise ratio.

  18. Energy-Efficient Channel Coding Strategy for Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Grasielli Barreto

    2017-03-01

    Full Text Available Underwater acoustic networks (UAN allow for efficiently exploiting and monitoring the sub-aquatic environment. These networks are characterized by long propagation delays, error-prone channels and half-duplex communication. In this paper, we address the problem of energy-efficient communication through the use of optimized channel coding parameters. We consider a two-layer encoding scheme employing forward error correction (FEC codes and fountain codes (FC for UAN scenarios without feedback channels. We model and evaluate the energy consumption of different channel coding schemes for a K-distributed multipath channel. The parameters of the FEC encoding layer are optimized by selecting the optimal error correction capability and the code block size. The results show the best parameter choice as a function of the link distance and received signal-to-noise ratio.

  19. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  20. Prolonging the Lifetime of Wireless Sensor Networks Interconnected to Fixed Network Using Hierarchical Energy Tree Based Routing Algorithm

    Directory of Open Access Journals (Sweden)

    M. Kalpana

    2014-01-01

    Full Text Available This research work proposes a mathematical model for the lifetime of wireless sensor networks (WSN. It also proposes an energy efficient routing algorithm for WSN called hierarchical energy tree based routing algorithm (HETRA based on hierarchical energy tree constructed using the available energy in each node. The energy efficiency is further augmented by reducing the packet drops using exponential congestion control algorithm (TCP/EXP. The algorithms are evaluated in WSNs interconnected to fixed network with seven distribution patterns, simulated in ns2 and compared with the existing algorithms based on the parameters such as number of data packets, throughput, network lifetime, and data packets average network lifetime product. Evaluation and simulation results show that the combination of HETRA and TCP/EXP maximizes longer network lifetime in all the patterns. The lifetime of the network with HETRA algorithm has increased approximately 3.2 times that of the network implemented with AODV.

  1. Prolonging the lifetime of wireless sensor networks interconnected to fixed network using hierarchical energy tree based routing algorithm.

    Science.gov (United States)

    Kalpana, M; Dhanalakshmi, R; Parthiban, P

    2014-01-01

    This research work proposes a mathematical model for the lifetime of wireless sensor networks (WSN). It also proposes an energy efficient routing algorithm for WSN called hierarchical energy tree based routing algorithm (HETRA) based on hierarchical energy tree constructed using the available energy in each node. The energy efficiency is further augmented by reducing the packet drops using exponential congestion control algorithm (TCP/EXP). The algorithms are evaluated in WSNs interconnected to fixed network with seven distribution patterns, simulated in ns2 and compared with the existing algorithms based on the parameters such as number of data packets, throughput, network lifetime, and data packets average network lifetime product. Evaluation and simulation results show that the combination of HETRA and TCP/EXP maximizes longer network lifetime in all the patterns. The lifetime of the network with HETRA algorithm has increased approximately 3.2 times that of the network implemented with AODV.

  2. Iterative free-energy optimization for recurrent neural networks (INFERNO)

    Science.gov (United States)

    2017-01-01

    The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes’ synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle. PMID:28282439

  3. Iterative free-energy optimization for recurrent neural networks (INFERNO).

    Science.gov (United States)

    Pitti, Alexandre; Gaussier, Philippe; Quoy, Mathias

    2017-01-01

    The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.

  4. Iterative free-energy optimization for recurrent neural networks (INFERNO.

    Directory of Open Access Journals (Sweden)

    Alexandre Pitti

    Full Text Available The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.

  5. Energy model for rumor propagation on social networks

    Science.gov (United States)

    Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang

    2014-01-01

    With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.

  6. Hypothalamic AMPK: a canonical regulator of whole-body energy balance.

    Science.gov (United States)

    López, Miguel; Nogueiras, Rubén; Tena-Sempere, Manuel; Diéguez, Carlos

    2016-07-01

    AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.

  7. Patterns of energy drink advertising over US television networks.

    Science.gov (United States)

    Emond, Jennifer A; Sargent, James D; Gilbert-Diamond, Diane

    2015-01-01

    To describe programming themes and the inclusion of adolescents in the base audience for television channels with high levels of energy drink advertising airtime. Secondary analysis of energy drink advertising airtime over US network and cable television channels (n = 139) from March, 2012 to February, 2013. Programming themes and the inclusion of adolescents in each channel's base audience were extracted from cable television trade reports. Energy drink advertising airtime. Channels were ranked by airtime; programming themes and the inclusion of adolescents in the base audience were summarized for the 10 channels with the most airtime. Over the study year, 36,501 minutes (608 hours) were devoted to energy drink advertisements; the top 10 channels accounted for 46.5% of such airtime. Programming themes for the top 10 channels were music (n = 3), sports (n = 3), action-adventure lifestyle (n = 2), African American lifestyle (n = 1), and comedy (n = 1). MTV2 ranked first in airtime devoted to energy drink advertisements. Six of the 10 channels with the most airtime included adolescents aged 12-17 years in their base audience. Energy drink manufacturers primarily advertise on channels that likely appeal to adolescents. Nutritionists may wish to consider energy drink media literacy when advising adolescents about energy drink consumption. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  8. On Hybrid Energy Utilization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mohammad Tala’t

    2017-11-01

    Full Text Available In a wireless sensor network (WSN, many applications have limited energy resources for data transmission. In order to accomplish a better green communication for WSN, a hybrid energy scheme can supply a more reliable energy source. In this article, hybrid energy utilization—which consists of constant energy source and solar harvested energy—is considered for WSN. To minimize constant energy usage from the hybrid source, a Markov decision process (MDP is designed to find the optimal transmission policy. With a finite packet buffer and a finite battery size, an MDP model is presented to define the states, actions, state transition probabilities, and the cost function including the cost values for all actions. A weighted sum of constant energy source consumption and a packet dropping probability (PDP are adopted as the cost value, enabling us to find the optimal solution for balancing the minimization of the constant energy source utilization and the PDP using a value iteration algorithm. As shown in the simulation results, the performance of optimal solution using MDP achieves a significant improvement compared to solution without its use.

  9. Workshop on environmental and energy applications of neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, S.

    1995-03-01

    This report consists of the abstracts for the papers given at the conference. Applications of neural networks in the environmental, energy and biomedical fields are discussed. Some of the topics covered are: predicting atmospheric pollutant concentrations due to fossil-fired electric power generation; hazardous waste characterization; nondestructive TRU (transuranic) waste assay; risk analysis; load forecasting for electric utilities; design of a wind power storage and generation system; nuclear fuel management; etc.

  10. Neuropeptide Y: a central regulator of energy homeostasis.

    Science.gov (United States)

    White, J D

    1993-12-10

    Neuropeptide Y (NPY) is a 36 amino acid peptide belonging to the pancreatic polypeptide family of neuroendocrine hormones. It is the most abundant peptide yet discovered in the mammalian brain and is widely expressed by neurons in the central and peripheral nervous systems as well as adrenal medullary cells. Recently, a large number of studies have focussed on the potential roles played by NPY within the hypothalamus and pituitary with respect to the control of food intake and energy homeostasis. It is now clear that NPY is a potent stimulator of food intake in models of hyperphagia, that hypothalamic NPY also regulates sympathetic neural activity and it appears that NPY may also influence the glucocorticoid, growth hormone and thyroid hormone axes. Taken together, current data suggest that hypothalamic and pituitary NPY-expressing cells represent an important and critical site of integration of peripheral hormonal signals with regulation of energy homeostasis.

  11. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network.

    Science.gov (United States)

    Usman, Muhammad; Khan, Muhammad Sajjad; Vu-Van, Hiep; Insoo, Koo

    2015-07-23

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question "Should we switch the channel?" The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU.

  12. Chronobiology and obesity: Interactions between circadian rhythms and energy regulation.

    Science.gov (United States)

    Summa, Keith C; Turek, Fred W

    2014-05-01

    Recent advances in the understanding of the molecular, genetic, neural, and physiologic basis for the generation and organization of circadian clocks in mammals have revealed profound bidirectional interactions between the circadian clock system and pathways critical for the regulation of metabolism and energy balance. The discovery that mice harboring a mutation in the core circadian gene circadian locomotor output cycles kaput (Clock) develop obesity and evidence of the metabolic syndrome represented a seminal moment for the field, clearly establishing a link between circadian rhythms, energy balance, and metabolism at the genetic level. Subsequent studies have characterized in great detail the depth and magnitude of the circadian clock's crucial role in regulating body weight and other metabolic processes. Dietary nutrients have been shown to influence circadian rhythms at both molecular and behavioral levels; and many nuclear hormone receptors, which bind nutrients as well as other circulating ligands, have been observed to exhibit robust circadian rhythms of expression in peripheral metabolic tissues. Furthermore, the daily timing of food intake has itself been shown to affect body weight regulation in mammals, likely through, at least in part, regulation of the temporal expression patterns of metabolic genes. Taken together, these and other related findings have transformed our understanding of the important role of time, on a 24-h scale, in the complex physiologic processes of energy balance and coordinated regulation of metabolism. This research has implications for human metabolic disease and may provide unique and novel insights into the development of new therapeutic strategies to control and combat the epidemic of obesity. © 2014 American Society for Nutrition.

  13. Hypothalamic Wnt Signalling and its Role in Energy Balance Regulation.

    Science.gov (United States)

    Helfer, G; Tups, A

    2016-03-01

    Wnt signalling and its downstream effectors are well known for their roles in embryogenesis and tumourigenesis, including the regulation of cell proliferation, survival and differentiation. In the nervous system, Wnt signalling has been described mainly during embryonic development, although accumulating evidence suggests that it also plays a major role in adult brain morphogenesis and function. Studies have predominantly concentrated on memory formation in the hippocampus, although recent data indicate that Wnt signalling is also critical for neuroendocrine control of the developed hypothalamus, a brain centre that is key in energy balance regulation and whose dysfunction is implicated in metabolic disorders such as type 2 diabetes and obesity. Based on scattered findings that report the presence of Wnt molecules in the tanycytes and ependymal cells lining the third ventricle and arcuate nucleus neurones of the hypothalamus, their potential importance in key regions of food intake and body weight regulation has been investigated in recent studies. The present review brings together current knowledge on Wnt signalling in the hypothalamus of adult animals and discusses the evidence suggesting a key role for members of the Wnt signalling family in glucose and energy balance regulation in the hypothalamus in diet-induced and genetically obese (leptin deficient) mice. Aspects of Wnt signalling in seasonal (photoperiod sensitive) rodents are also highlighted, given the recent evidence indicating that the Wnt pathway in the hypothalamus is not only regulated by diet and leptin, but also by photoperiod in seasonal animals, which is connected to natural adaptive changes in food intake and body weight. Thus, Wnt signalling appears to be critical as a modulator for normal functioning of the physiological state in the healthy adult brain, and is also crucial for normal glucose and energy homeostasis where its dysregulation can lead to a range of metabolic disorders. © 2016

  14. ENERGY EFFICIENT DATA COLLECTION IN WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Nandhini B

    2013-09-01

    Full Text Available Wireless Sensor Network has wide range of applications in the field of networks. The sink nodes need to communicate effectively with other sensor nodes, for effective communication. The facts such as cluster size, energy and lifetime of the nodes should be considered to make the communication effective. While transmitting, the nodes are grouped in clusters with one head per cluster. The cluster, nearer to the sink nodes may run out of energy due to continuous utilization. So an intermediate node for communication is used, called as AGM node. The sensor nodes in the clusters, first send the information to their cluster head (chosen on the basis higher residual energy, the cluster head in turn sends the information to the AGM node whereas the AGM transmits it to the respective sensor node and vice versa. Selection of AGM among many nodes and the entire process is carried out on the basis of the maneuver algorithm, which has 6 phases like compact clustering, AGM selection, Interclustering, Load balancing and data distribution, Communication and replenishment and Reconcile algorithm. In this process the CH transmits data after eliminating redundancy in it. In case of massive damage, Reconcile algorithm is used for the efficient usage of available AGM nodes to regain from the relapsed network.

  15. High Energy Physics and Nuclear Physics Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli; Bauerdick, Lothar; Bell, Greg; Ciuffo, Leandro; Dasu, Sridhara; Dattoria, Vince; De, Kaushik; Ernst, Michael; Finkelson, Dale; Gottleib, Steven; Gutsche, Oliver; Habib, Salman; Hoeche, Stefan; Hughes-Jones, Richard; Ibarra, Julio; Johnston, William; Kisner, Theodore; Kowalski, Andy; Lauret, Jerome; Luitz, Steffen; Mackenzie, Paul; Maguire, Chales; Metzger, Joe; Monga, Inder; Ng, Cho-Kuen; Nielsen, Jason; Price, Larry; Porter, Jeff; Purschke, Martin; Rai, Gulshan; Roser, Rob; Schram, Malachi; Tull, Craig; Watson, Chip; Zurawski, Jason

    2014-03-02

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements needed by instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In August 2013, ESnet and the DOE SC Offices of High Energy Physics (HEP) and Nuclear Physics (NP) organized a review to characterize the networking requirements of the programs funded by the HEP and NP program offices. Several key findings resulted from the review. Among them: 1. The Large Hadron Collider?s ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) experiments are adopting remote input/output (I/O) as a core component of their data analysis infrastructure. This will significantly increase their demands on the network from both a reliability perspective and a performance perspective. 2. The Large Hadron Collider (LHC) experiments (particularly ATLAS and CMS) are working to integrate network awareness into the workflow systems that manage the large number of daily analysis jobs (1 million analysis jobs per day for ATLAS), which are an integral part of the experiments. Collaboration with networking organizations such as ESnet, and the consumption of performance data (e.g., from perfSONAR [PERformance Service Oriented Network monitoring Architecture]) are critical to the success of these efforts. 3. The international aspects of HEP and NP collaborations continue to expand. This includes the LHC experiments, the Relativistic Heavy Ion Collider (RHIC) experiments, the Belle II Collaboration, the Large Synoptic Survey Telescope (LSST), and others. The international nature of these collaborations makes them heavily

  16. MicroRNA networks regulate development of brown adipocytes.

    Science.gov (United States)

    Trajkovski, Mirko; Lodish, Harvey

    2013-09-01

    Brown adipose tissue (BAT) is specialized for heat generation and energy expenditure as a defense against cold and obesity; in both humans and mice increased amounts of BAT are associated with a lean phenotype and resistance to development of the metabolic syndrome and its complications. Here we summarize recent research showing that several BAT-expressed microRNAs (miRNAs) play important roles in regulating differentiation and metabolism of brown and beige adipocytes; we discuss the key mRNA targets downregulated by these miRNAs and show how these miRNAs affect directly or indirectly transcription factors important for BAT development. We suggest that these miRNAs could be part of novel therapeutics to increase BAT in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The Climate Literacy and Energy Awareness Network (CLEAN) - Enabling Collective Impact on Climate and Energy Literacy

    Science.gov (United States)

    Ledley, T. S.; Gold, A. U.; Niepold, F., III

    2015-12-01

    Numerous climate change education efforts exist that aim to enable citizens and society to make informed decisions addressing environmental and societal issues arising from climate change. To extend the reach and impact of these efforts, it is necessary to coordinate them in order to reach a greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network, as an example of a rudimentary form of such an organization, engages in continuous communication through weekly teleconferences, an active listserv and other activities to share resources, activities, and ideas that is moving the network to develop common understandings that will likely lead to the development of effective collective impact on increasing climate and energy literacy. A Spring 2013 survey of the CLEAN Network provided insight as to how the CLEAN Network was addressing member needs and identified what other support was needed to increase its collective impact. In addition, community discussions identified the components needed for an effective overarching backbone support organization. A Fall 2015 survey of the CLEAN Network and the broader climate change education community is being conducted to examine 1) how the CLEAN Network make up and needs have evolved and how they compare to the broader community, and 2) to gather further input into the shaping of the elements of collective impact on climate and energy literacy. This presentation will describe the results from the 2015 survey and compare them to the 2013 survey and the community discussions. This will include describing the CLEAN Network's evolving professional make up, engagement of its members network activities, the importance of the network to members; how the findings compare with the broader climate

  18. p75 neurotrophin receptor regulates energy balance in obesity

    Science.gov (United States)

    Baeza-Raja, Bernat; Sachs, Benjamin D.; Li, Pingping; Christian, Frank; Vagena, Eirini; Davalos, Dimitrios; Le Moan, Natacha; Ryu, Jae Kyu; Sikorski, Shoana L.; Chan, Justin P.; Scadeng, Miriam; Taylor, Susan S.; Houslay, Miles D.; Baillie, George S.; Saltiel, Alan R.; Olefsky, Jerrold M.; Akassoglou, Katerina

    2015-01-01

    Summary Obesity and metabolic syndrome reflect the dysregulation of molecular pathways that control energy homeostasis. Here we show that upon high-fat diet (HFD), the p75 neurotrophin receptor (p75NTR) controls energy expenditure in obese mice. Despite no changes in food intake, p75NTR-null mice were protected from HFD-induced obesity and remained lean due to increased energy expenditure, without developing insulin resistance or liver steatosis. p75NTR directly interacts with the catalytic subunit of protein kinase A (PKA) and regulates cAMP signaling in adipocytes, leading to decreased lipolysis and thermogenesis. Adipocyte-specific depletion of p75NTR or transplantation of p75NTR-null white adipose tissue (WAT) into wild-type mice fed a HFD protected against weight gain and insulin resistance. Our results reveal that signaling from p75NTR to cAMP/PKA regulates energy balance and suggest that non-neuronal functions of neurotrophin receptor signaling could be a new target for treating obesity and the metabolic syndrome. PMID:26748707

  19. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure

    National Research Council Canada - National Science Library

    St-Onge, Marie-Pierre

    2013-01-01

    .... Clinical intervention studies have examined whether reducing sleep in normal sleepers, typically sleeping 7-9 h/night, can affect energy intake, energy expenditure, and endocrine regulators of energy balance...

  20. Compensatory Changes in Energy Balance Regulation over One Athletic Season.

    Science.gov (United States)

    Silva, Analiza M; Matias, Catarina N; Santos, Diana A; Thomas, Diana; Bosy-Westphal, Anja; MüLLER, Manfred J; Heymsfield, Steven B; Sardinha, LUíS B

    2017-06-01

    Mechanisms in energy balance (EB) regulation may include compensatory changes in energy intake (EI) and metabolic adaption (MA), but information is unavailable in athletes who often change EB components. We aim to investigate EB regulation compensatory mechanisms over one athletic season. Fifty-seven athletes (39 males/18 females; handball, volleyball, basketball, triathlon, and swimming) were evaluated from the beginning to the competitive phase of the season. Resting and total energy expenditure (REE and TEE, respectively) were assessed by indirect calorimetry and doubly labeled water, respectively, and physical activity energy expenditure was determined as TEE - 0.1(TEE) - REE. Fat mass (FM) and fat-free mass (FFM) were evaluated by dual-energy x-ray absorptiometry and changed body energy stores was determined by 1.0(ΔFFM/Δtime) + 9.5(ΔFM/Δtime). EI was derived as TEE + EB. REE was predicted from baseline FFM, FM, sex, and sports. %MA was calculated as 100(measured REE/predicted REE-1) and MA (kcal) as %MA/100 multiplied by baseline measured REE. Average EI minus average physical activity energy expenditure was computed as a proxy of average energy availability, assuming that a constant nonexercise EE occurred over the season. Body mass increased by 0.8 ± 2.5 kg (P < 0.05), but a large individual variability was found ranging from -6.1 to 5.2 kg. The TEE raise (16.8% ± 11.7%) was compensated by an increase EI change (16.3% ± 12.0%) for the whole group (P < 0.05). MA was found in triathletes, sparing 128 ± 168 kcal·d, and basketball players, dissipating 168 ± 205 kcal·d (P < 0.05). MA was associated (P < 0.05) with EB and energy availability (r = 0.356 and r = 0.0644, respectively). TEE increased over the season without relevant mean changes in weight, suggesting that EI compensation likely occurred. The thrifty or spendthrift phenotypes observed among sports and the demanding workloads these athletes are exposed to highlight the need for sport

  1. Equalized Energy Consumption in Wireless Body Area Networks for a Prolonged Network Lifetime

    Directory of Open Access Journals (Sweden)

    Maryam El Azhari

    2017-01-01

    Full Text Available The phenomenal advances in electronics contributed to a widespread use of distributed sensors in wireless communications. A set of biosensors can be deployed or implanted in the human body to form a Wireless Body Area Network (WBAN, where various WBAN PHY layers are utilized. The WBAN allows the measurement of physiological data, which is forwarded by the gateway to the base station for analysis purposes. The main issue in conceiving a WBAN communication mechanism is to manage the residual energy of sensors. The mobile agent system has been widely applied for surveillance applications in Wireless Sensor Networks (WSNs. It consists in dispatching one or more mobile agents simultaneously to collect data, while following a predetermined optimum itinerary. The continuous use of the optimal itinerary leads to a rapid depletion of sensor nodes batteries, which minimizes the network lifetime. This paper presents a new algorithm to equalize the energy consumption among sensor motes. The algorithm exploits all the available paths towards the destination and classifies them with respect to the end-to-end delay and the overall energy consumption. The proposed algorithm performs better compared to the optimal routing path. It increases the network lifetime to the maximum by postponing routing of data via the most-recently used path, and it also maintains data delivery within the delay interval threshold.

  2. REDUCING THE BOOSTER STATIONS ENERGY CONSUMPTION BY WAY OF ELIMINATING OVERPRESSURE IN THE WATER SUPPLY NETWORK

    Directory of Open Access Journals (Sweden)

    G. N. Zdor

    2015-01-01

    Full Text Available The energy efficiency improvement of the city housing-and-utilities infrastructure and watersupply and water-disposal systems poses an occurrent problem. The water-supply systems energy consumption sizable share falls on the pump plants. The article deals with the issues of the operating regime management of the existing booster stations equipped with a group of pumping units regulated with frequency converters. One of the optimization directions of their energy consumption is the reduction of over-pressure in the water-distribution network and its sustentation within the regulatory values. The authors offer the structure and methodology of the data collection-and-analysis automated system utilization for revealing and eliminating the overpressure in the water-supply network. This system is designed for the group management of booster-stations operating regimes on the ground of data obtained from the pressure controlling devices at the consumers. The data exchange in the system is realized via GSM.The paper presents results of the tests carried out at the booster stations in some major cities of the Republic of Belarus. The authors analyze dependence of overpressure in the network on the methods of the plant output pressure sustentation (daily graph or constant pressure. The authors study the elimination effect of over-pressure in the water distribution network on changing the booster station pumping units operation regimes. The study shows that eliminating over pressure in the water distributing network leads to lowering the booster station pressure. This in its turn decreases its energy consumption by 15–20 % depending on the over pressure fixed level.

  3. ARN: Analysis and Visualization System for Adipogenic Regulation Network Information.

    Science.gov (United States)

    Huang, Yan; Wang, Li; Zan, Lin-Sen

    2016-12-16

    Adipogenesis is the process of cell differentiation through which preadipocytes become adipocytes. Lots of research is currently ongoing to identify genes, including their gene products and microRNAs, that correlate with fat cell development. However, information fragmentation hampers the identification of key regulatory genes and pathways. Here, we present a database of literature-curated adipogenesis-related regulatory interactions, designated the Adipogenesis Regulation Network (ARN, http://210.27.80.93/arn/), which currently contains 3101 nodes (genes and microRNAs), 1863 regulatory interactions, and 33,969 expression records associated with adipogenesis, based on 1619 papers. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 37,000 PubMed abstracts. Additionally, we further determined 13,103 possible node relationships by searching miRGate, BioGRID, PAZAR and TRRUST. ARN also has several useful features: i) regulatory map information; ii) tests to examine the impact of a query node on adipogenesis; iii) tests for the interactions and modes of a query node; iv) prediction of interactions of a query node; and v) analysis of experimental data or the construction of hypotheses related to adipogenesis. In summary, ARN can store, retrieve and analyze adipogenesis-related information as well as support ongoing adipogenesis research and contribute to the discovery of key regulatory genes and pathways.

  4. Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2014-01-01

    Full Text Available In recent years, wireless sensor networks (WSNs have grown dramatically and made a great progress in many applications. But having limited life, batteries, as the power sources of wireless sensor nodes, have restricted the development and application of WSNs which often requires a very long lifespan for better performance. In order to make the WSNs prevalent in our lives, an alternative energy source is required. Environmental energy is an attractive power source, and it provides an approach to make the sensor nodes self-powered with the possibility of an almost infinite lifetime. The goal of this survey is to present a comprehensive review of the recent literature on the various possible energy harvesting technologies from ambient environment for WSNs.

  5. An Energy-Efficient Scheme for Multirelay Cooperative Networks with Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Dingcheng Yang

    2016-01-01

    Full Text Available This study investigates an energy-efficient scheme in multirelay cooperative networks with energy harvesting where multiple sessions need to communicate with each other via the relay node. A two-step optimal method is proposed which maximizes the system energy efficiency, while taking into account the receiver circuit energy consumption. Firstly, the optimal power allocation for relay nodes is determined to maximize the system throughput; this is based on directional water-filling algorithm. Secondly, using quantum particle swarm optimization (QPSO, a joint relay node selection and session grouping optimization is proposed. With this algorithm, sessions can be classified into multiple groups that are assisted by the specific relay node with the maximum energy efficiency. This approach leads to a better global optimization in searching ability and efficiency. Simulation results show that the proposed scheme can improve the energy efficiency effectively compared with direct transmission and opportunistic relay-selected cooperative transmission.

  6. Saving energy for the data collection point in WBAN network

    Science.gov (United States)

    Nguyen-Duc, Toan; Kamioka, Eiji

    2017-11-01

    Wireless sensor networking (WSN) has been rapidly developed and become essential in various domains including health care systems. Such systems use WSN to collect real-time medical sensed data, aiming at improving the patient safety. For instance, patients suffered from adverse events, i.e., cardiac or respiratory arrests, are monitored so as to prevent them from getting harm. Sensors are placed on, in or near the patients' body to continuously collect sensing data such as the electrocardiograms, blood oxygenation, breathing, and heart rate. In this case, the sensors form a subcategory of WSN called wireless body area network (WBAN). In WBAN, sensing data are sent to one or more data collection points called personal server (PS). The role of PS is important since it forwards sensed data, to a medical server via a Bluetooth/WLAN connection in real time to support storage of information and real-time diagnosis, the device can also issue a notification of an emergency status. Since PS is a battery-based device, when its battery is empty, it will disconnect the sensed medical data with the rest network. To best of our knowledge, very few studies that focus on saving energy for the PS. To this end, this work investigates the trade-off between energy consumption for wireless communication and the amount of sensing data. An energy consumption model for wireless communication has been proposed based on direct measurement using real testbed. According to our findings, it is possible to save energy for the PS by selecting suitable wireless technology to be used based on the amount of data to be transmitted.

  7. Small Distributed Renewable Energy Generation for Low Voltage Distribution Networks

    Directory of Open Access Journals (Sweden)

    Chindris M.

    2016-08-01

    Full Text Available Driven by the existing energy policies, the use of renewable energy has increased considerably all over the world in order to respond to the increasing energy consumption and to reduce the environmental impact of the electricity generation. Although most policy makers and companies are focusing on large applications, the use of cheap small generation units, based on local renewable resources, has become increasingly attractive for the general public, small farms and remote communities. The paper presents several results of a research project aiming to identify the power quality issues and the impact of RES based distributed generation (DG or other non-linear loads on low voltage (LV distribution networks in Romania; the final goal is to develop a Universal Power Quality Conditioner (UPQC able to diminish the existing disturbances. Basically, the work analyses the existing DG technologies and identifies possible solutions for their integration in Romania; taking into account the existent state of the art, the attention was paid on small systems, using wind and solar energy, and on possibility to integrate them into suburban and rural LV distribution networks. The presence of DG units at distribution voltage level means the transition from traditional passive to active distribution networks. In general, the relatively low penetration levels of DG does not produce problems; however, the nowadays massive increase of local power generation have led to new integration challenges in order to ensure the reliability and quality of the power supply. Power quality issues are identified and their assessment is the key element in the design of measures aiming to diminish all existing disturbances.

  8. LICORN: learning cooperative regulation networks from gene expression data

    National Research Council Canada - National Science Library

    Elati, Mohamed; Neuvial, Pierre; Bolotin-Fukuhara, Monique; Barillot, Emmanuel; Radvanyi, François; Rouveirol, Céline

    2007-01-01

    .... The goal is to identify, for each gene expressed in a particular cellular context, the regulators affecting its transcription, and the co-ordination of several regulators in specific types of regulation...

  9. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks

    Science.gov (United States)

    Aguiar, Manuela A. D.; Dias, Ana Paula S.; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  10. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    Science.gov (United States)

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  11. Optimality principles in the regulation of metabolic networks

    NARCIS (Netherlands)

    Berkhout, J.; Bruggeman, F.J.; Teusink, B.

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks

  12. Cigarette smoking and brain regulation of energy homeostasis.

    Science.gov (United States)

    Chen, Hui; Saad, Sonia; Sandow, Shaun L; Bertrand, Paul P

    2012-01-01

    Cigarette smoking is an addictive behavior, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases). Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing a negative energy state which is characterized by reduced energy intake and increased energy expenditure that are linked to low body weight. These findings have led to the public perception that smoking is associated with weight loss. However, its effects at reducing abdominal fat mass (a predisposing factor for glucose intolerance and insulin resistance) are marginal, and its promotion of lean body mass loss in animal studies suggests a limited potential for treatment in obesity. Smoking during pregnancy puts pressure on the mother's metabolic system and is a significant contributor to adverse pregnancy outcomes. Smoking is a predictor of future risk for respiratory dysfunction, social behavioral problems, cardiovascular disease, obesity, and type-2 diabetes. Catch-up growth is normally observed in children exposed to intrauterine smoke, which has been linked to subsequent childhood obesity. Nicotine can have a profound impact on the developing fetal brain, via its ability to rapidly and fully pass the placenta. In animal studies this has been linked with abnormal hypothalamic gene expression of appetite regulators such as downregulation of NPY and POMC in the arcuate nucleus of the hypothalamus. Maternal smoking or nicotine replacement leads to unhealthy eating habits (such as junk food addiction) and other behavioral disorders in the offspring.

  13. Cigarette smoking and brain regulation of energy homeostasis

    Directory of Open Access Journals (Sweden)

    Hui eChen

    2012-07-01

    Full Text Available Cigarette smoking is an addictive behaviour, and is the primary cause of cardiovascular and pulmonary disease, and cancer (among other diseases. Cigarette smoke contains thousands of components that may affect caloric intake and energy expenditure, although nicotine is the major addictive substance present, and has the best described actions. Nicotine exposure from cigarette smoke can change brain feeding regulation to reduce appetite via both energy homeostatic and reward mechanisms, causing a negative energy state which is characterized by reduced energy intake and increased energy expenditure that are linked to low body weight. These findings have led to the public perception that smoking is associated with weight loss. However, its effects at reducing abdominal fat mass (a predisposing factor for glucose intolerance and insulin resistance are marginal, and its promotion of lean body mass loss in animal studies suggests a limited potential for treatment in obesity. Smoking during pregnancy puts pressure on the mother’s metabolic system and is a significant contributor to adverse pregnancy outcomes. Smoking is a predictor of future risk for respiratory dysfunction, social behavioral problems, cardiovascular disease, obesity and type-2 diabetes. Catch-up growth is normally observed in children exposed to intrauterine smoke, which has been linked to subsequent childhood obesity. Nicotine can have a profound impact on the developing fetal brain, via its ability to rapidly and fully pass the placenta. In animal studies this has been linked with abnormal hypothalamic gene expression of appetite regulators such as downregulation of NPY and POMC in the arcuate nucleus of the hypothalamus. Maternal smoking or nicotine replacement leads to unhealthy eating habits (such as junk food addiction and other behavioral disorders in the offspring.

  14. Optimized Energy Procurement for Cellular Networks with Uncertain Renewable Energy Generation

    KAUST Repository

    Rached, Nadhir B.

    2017-02-07

    Renewable energy (RE) is an emerging solution for reducing carbon dioxide (CO2) emissions from cellular networks. One of the challenges of using RE sources is to handle its inherent uncertainty. In this paper, a RE powered cellular network is investigated. For a one-day operation cycle, the cellular network aims to reduce energy procurement costs from the smart grid by optimizing the amounts of energy procured from their locally deployed RE sources as well as from the smart grid. In addition to that, it aims to determine the extra amount of energy to be sold to the electrical grid at each time period. Chance constrained optimization is first proposed to deal with the randomness in the RE generation. Then, to make the optimization problem tractable, two well- know convex approximation methods, namely; Chernoff and Chebyshev based-approaches, are analyzed in details. Numerical results investigate the optimized energy procurement for various daily scenarios and compare between the performances of the employed convex approximation approaches.

  15. Hybrid energy system evaluation in water supply system energy production: neural network approach

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)

    2010-07-01

    Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.

  16. Parameterized neural networks for high-energy physics

    Science.gov (United States)

    Baldi, Pierre; Cranmer, Kyle; Faucett, Taylor; Sadowski, Peter; Whiteson, Daniel

    2016-05-01

    We investigate a new structure for machine learning classifiers built with neural networks and applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results.

  17. Parameterized neural networks for high-energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Pierre; Sadowski, Peter [University of California, Department of Computer Science, Irvine, CA (United States); Cranmer, Kyle [NYU, Department of Physics, New York, NY (United States); Faucett, Taylor; Whiteson, Daniel [University of California, Department of Physics and Astronomy, Irvine, CA (United States)

    2016-05-15

    We investigate a new structure for machine learning classifiers built with neural networks and applied to problems in high-energy physics by expanding the inputs to include not only measured features but also physics parameters. The physics parameters represent a smoothly varying learning task, and the resulting parameterized classifier can smoothly interpolate between them and replace sets of classifiers trained at individual values. This simplifies the training process and gives improved performance at intermediate values, even for complex problems requiring deep learning. Applications include tools parameterized in terms of theoretical model parameters, such as the mass of a particle, which allow for a single network to provide improved discrimination across a range of masses. This concept is simple to implement and allows for optimized interpolatable results. (orig.)

  18. Energy-Efficient Communication in Multi-interface Wireless Networks

    Science.gov (United States)

    Athanassopoulos, Stavros; Caragiannis, Ioannis; Kaklamanis, Christos; Papaioannou, Evi

    We study communication problems in wireless networks supporting multiple interfaces. In such networks, two nodes can communicate if they are close and share a common interface. The activation of each interface has a cost reflecting the energy consumed when a node uses this interface. We distinguish between the symmetric and non-symmetric case, depending on whether all nodes have the same activation cost for each interface or not. For the symmetric case, we present a (3/2 + ɛ)-approximation algorithm for the problem of achieving connectivity with minimum activation cost, improving a previous bound of 2. For the non-symmetric case, we show that the connectivity problem is not approximable within a sublogarithmic factor in the number of nodes and present a logarithmic approximation algorithm for a more general problem that models group communication.

  19. Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    DEFF Research Database (Denmark)

    Rasmussen, Anders

    error correction and energy efficiency. Scheduling and address lookup are key functions and potential bottle necks in high speed network nodes, as the minimum packet/frame sizes in both the popular Ethernet protocol, as well as the Internet Protocol (IP) still remains constant (84B and 40B, respectively...... to squeeze more traffic onto the existing physical transmission systems. To do this, while keeping the bit error rate (BER) below acceptable levels, more advanced FEC schemes are required. This is a challenge: Not only do we need to increase the processing speed of the FEC to handle the higher throughputs....... The more advanced schemes also require more complex calculations to process each bit. This thesis will investigate how both the standard OTN FEC as well as more advanced FEC schemes can be implemented for 100G and above operation. As the networks are expanded to run at increasingly higher speeds...

  20. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  1. Energy Density, Energy Intake, and Body Weight Regulation in Adults12345

    Science.gov (United States)

    Karl, J. Philip; Roberts, Susan B.

    2014-01-01

    The role of dietary energy density (ED) in the regulation of energy intake (EI) is controversial. Methodologically, there is also debate about whether beverages should be included in dietary ED calculations. To address these issues, studies examining the effects of ED on EI or body weight in nonelderly adults were reviewed. Different approaches to calculating dietary ED do not appear to alter the direction of reported relations between ED and body weight. Evidence that lowering dietary ED reduces EI in short-term studies is convincing, but there are currently insufficient data to determine long-term effectiveness for weight loss. The review also identified key barriers to progress in understanding the role of ED in energy regulation, in particular the absence of a standard definition of ED, and the lack of data from multiple long-term clinical trials examining the effectiveness of low-ED diet recommendations for preventing both primary weight gain and weight regain in nonobese individuals. Long-term clinical trials designed to examine the impact of dietary ED on energy regulation, and including multiple ED calculation methods within the same study, are still needed to determine the importance of ED in the regulation of EI and body weight. PMID:25398750

  2. Shale Gas, the Environment and Energy Security : A New Framework For Energy Regulation

    NARCIS (Netherlands)

    Fleming, Ruven

    2017-01-01

    `This pioneering and in-depth study into the regulation of shale gas extraction examines how changes in the constitutional set-ups of EU Member States over the last 25 years have substantially altered the legal leverage of environmental protection and energy security as state objectives. As well as

  3. Self-assembly of microcapsules regulated via the repressilator signaling network.

    Science.gov (United States)

    Shum, Henry; Yashin, Victor V; Balazs, Anna C

    2015-05-14

    One of the intriguing challenges in designing active matter is devising systems that not only self-organize, but also exhibit self-regulation. Inspired by biological regulatory networks, we design a collection of self-organizing, self-regulating microcapsules that move in response to self-generated chemical signals. Three microcapsules act as localized sources of distinct chemicals that diffuse through surrounding fluid. Production rates are modulated by the "repressilator" regulatory network motif: each chemical species represses the production of the next in a cycle. Depending on the maximum production rates and capsule separation distances, we show that immobile capsules either exhibit steady or oscillatory chemical production. We then consider movement of the microcapsules over the substrate, induced by gradients in surface energy due to adsorbed chemicals. We numerically simulate this advection-diffusion-reaction system with solid-fluid interactions by combining lattice Boltzmann, immersed boundary and finite difference methods, and thereby, construct systems where the three capsules spontaneously assemble to form a close-packed triad. Chemical oscillations are shown to be critical to this assembly. By adjusting parameters, the triad can either remain stationary or translate as a cohesive group. Stationary triads can also be made to "turn off", producing chemicals at minimal rates after assembly. These findings provide design rules for creating synthetic material systems that encompass biomimetic feedback loops, which enable dynamic collective behavior.

  4. HEPNet: A Knowledge Base Model of Human Energy Pool Network for Predicting the Energy Availability Status of an Individual.

    Directory of Open Access Journals (Sweden)

    Abhishek Sengupta

    Full Text Available HEPNet is an electronic representation of metabolic reactions occurring within human cellular organization focusing on inflow and outflow of the energy currency ATP, GTP and other energy associated moieties. The backbone of HEPNet consists of primary bio-molecules such as carbohydrates, proteins and fats which ultimately constitute the chief source for the synthesis and obliteration of energy currencies in a cell. A series of biochemical pathways and reactions constituting the catabolism and anabolism of various metabolites are portrayed through cellular compartmentalization. The depicted pathways function synchronously toward an overarching goal of producing ATP and other energy associated moieties to bring into play a variety of cellular functions. HEPNet is manually curated with raw data from experiments and is also connected to KEGG and Reactome databases. This model has been validated by simulating it with physiological states like fasting, starvation, exercise and disease conditions like glycaemia, uremia and dihydrolipoamide dehydrogenase deficiency (DLDD. The results clearly indicate that ATP is the master regulator under different metabolic conditions and physiological states. The results also highlight that energy currencies play a minor role. However, the moiety creatine phosphate has a unique character, since it is a ready-made source of phosphoryl groups for the rapid synthesis of ATP from ADP. HEPNet provides a framework for further expanding the network diverse age groups of both the sexes, followed by the understanding of energetics in more complex metabolic pathways that are related to human disorders.

  5. Donepezil regulates energy metabolism and favors bone mass accrual.

    Science.gov (United States)

    Eimar, Hazem; Alebrahim, Sharifa; Manickam, Garthiga; Al-Subaie, Ahmed; Abu-Nada, Lina; Murshed, Monzur; Tamimi, Faleh

    2016-03-01

    The autonomous nervous system regulates bone mass through the sympathetic and parasympathetic arms. The sympathetic nervous system (SNS) favors bone loss whereas the parasympathetic nervous system (PNS) promotes bone mass accrual. Donepezil, a central-acting cholinergic agonist, has been shown to down-regulate SNS and up-regulate PNS signaling tones. Accordingly, we hypothesize that the use of donepezil could have beneficial effects in regulating bone mass. To test our hypothesis, two groups of healthy female mice were treated either with donepezil or saline. Differences in body metabolism and bone mass of the treated groups were compared. Body and visceral fat weights as well as serum leptin level were increased in donepezil-treated mice compared to control, suggesting that donepezil effects on SNS influenced metabolic activity. Donepezil-treated mice had better bone quality than controls due to a decrease in osteoclasts number. These results indicate that donepezil is able to affect whole body energy metabolism and favors bone mass in young female WT mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  7. Delineating the regulation of energy homeostasis using hypothalamic cell models.

    Science.gov (United States)

    Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D

    2015-01-01

    Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Work Programme 2010. Nordic Energy Regulators (NordREG)

    Energy Technology Data Exchange (ETDEWEB)

    2010-02-15

    The Nordic regulators' cooperation through NordREG is based on a strong consensus and common understanding of the Nordic market. Through mutual efforts and contributions NordREG members identify areas of work that can create added value for the Nordic electricity market. NordREG works by exchanging information and views, mapping and analysing energy market issues and by delivering statements and reports for harmonisation and improvement. In this, the regulators aim at identifying areas where NordREG can take joint action to influence Nordic or European electricity market development. NordREGs key focus in 2010 is the work towards a common Nordic retail market and the emphasis is on promoting a legal and institutional framework that supports this goal

  9. CART in the Regulation of Appetite and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie eLau

    2014-10-01

    Full Text Available The cocaine- and amphetamine-regulated transcript (CART has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s. However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions1,2. In this review, we focus on knowledge gained on CART’s role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.

  10. Less Developed Countries Energy System Network Simulator, LDC-ESNS: a brief description

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, A; Malone, R

    1978-04-01

    Prepared for the Brookhaven National Laboratory Developing Countries Energy Program, this report describes the Less Developed Countries Energy System Network Simulator (LDC-ESNS), a tool which provides a quantitative representation of the energy system of an LDC. The network structure of the energy supply and demand system, the model inputs and outputs, and the possible uses of the model for analysis are described.

  11. Commission for Energy regulation (CRE) - Activity report june 2006

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    CRE is the French commission for energy regulation. CRE's remit is to assist in ensuring the proper operation of the electricity and natural gas markets for the benefit of the end-user. In particular, CRE ensures that the conditions of access to electricity and natural gas transmission and distribution systems do not hinder the development of competition. It monitors, for the electricity and natural gas sectors, all transactions made between suppliers, traders and producers, all transactions made on the organised markets and cross-border trading. It ensures that suppliers, traders and producers propose offers that are consistent with their financial and technical constraints. It monitors the implementation of and compliance with regulations giving consumers the right to choose their supplier in a competitive market, and allowing new suppliers to enter the market. This document is the 2006 activity report of CRE. Content: A - Opening of the electricity and natural gas markets to household consumers on 1 July 2007: CRE at the service of eligible customers (Information for eligible customers, Improved knowledge of non-household customers); Monitoring of the non-discrimination, transparency and independence of system operators (Drafting and distribution of codes of good conduct for system operators, The necessary improvement of system operator independence); Preparing the practical methods of opening: GTE 2007 and GTG 2007 (The necessary simplification of relations between operators and customers, Achieving a greater level of consumer information and protection, The clearly defined stages of the 'customer pathway', Profiling and settlement mechanisms: turning experience feedback from 2004 to good account); Persisting uncertainties and hurdles (The need for a suitable regulatory and legislative platform, Hurdles to the opening of the household market); B - Regulation of the natural gas market: The gas market in the European context (Increasing weight of

  12. Multi-source energy networks for cargo Vessels

    Directory of Open Access Journals (Sweden)

    Sanjana Ahmed

    2016-10-01

    Full Text Available The paper discusses the feasibility of installing renewable energy generation technologies on sea-going transport, taking into account the additional weight and power consumption. This study in based on the power management of a 26,198 tonne commercial chemical tanker. The management system would aim at reducing the number of generators as well as the power required from burning fossil fuels. After a process of elimination of potential technologies based on feasibility of the project and shipboard application, the work is focused towards photovoltaic and wind energy generation in combination with fossil fueled engines and Li-ion battery storage covering the higher energy density needs, and the intermittent nature of renewables. The network architecture is optimized in order to have the highest efficiency, and reduced system weight. The results show that successful management of the system can lead to reduction in generator requirement, and energy despite the weight of extra installations of photovoltaic and wind energy generation systems. By reducing the number of generators and allowing each remaining one to operate near their maximum power, the specific fuel consumption is improved, the efficiency is increased, resulting in significant fuel and cost saving, along with the mass of fuel to be carried on-board.

  13. Adhoc Wireless Network Control: Energy Efficiency and Hidden Terminal Considerations

    Science.gov (United States)

    2009-12-01

    transmitters can replenish their batteries. Two common examples are solar - paneled satellites (where the recharge process depends on the satellite’s exposure...to sunlight during its orbit and can be determined a priori with high confidence) and sensor networks [5] (which harvest solar or wind energy so that...of B(t), which implies E [B(t)|X(t)] = B̄, subtracting 2V E [ ∑L l=1 fl (γl(t)) ∣ ∣ ∣ X(t) ] from both sides and rearranging terms yields ∆(X(t))− 2V E

  14. Role of the microbiome in energy regulation and metabolism.

    Science.gov (United States)

    Nieuwdorp, Max; Gilijamse, Pim W; Pai, Nikhil; Kaplan, Lee M

    2014-05-01

    Intestinal microbes regulate metabolic function and energy balance; an altered microbial ecology is believed to contribute to the development of several metabolic diseases. Relative species abundance and metabolic characteristics of the intestinal microbiota change substantially in those who are obese or have other metabolic disorders and in response to ingested nutrients or therapeutic agents. The mechanisms through which the intestinal microbiota and its metabolites affect host homeostasis are just beginning to be understood. We review the relationships between the intestinal microbiota and host metabolism, including energy intake, use, and expenditure, in relation to glucose and lipid metabolism. These associations, along with interactions among the intestinal microbiota, mucus layer, bile acids, and mucosal immune responses, reveal potential mechanisms by which the microbiota affect metabolism. We discuss how controlled studies involving direct perturbations of microbial communities in human and animal models are required to identify effective therapeutic targets in the microbiota. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  15. Optimality principles in the regulation of metabolic networks.

    Science.gov (United States)

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  16. Regulation of international energy markets: Economic effects of political actions

    Science.gov (United States)

    Shcherbakova, Anastasia V.

    Recent increases in volatility of energy prices have led many governments to reevaluate their regard of national energy reserves and reconsider future exploration, production, and consumption patterns. The flurry of activity that has been generated by such price volatility has included large-scale nationalizations of energy sectors, unilateral renegotiations of foreign energy development contracts, and expropriations of resources from foreign energy firms on one hand, and on the other hand more rapid energy sector liberalization, intensified search for and development of renewable fuels and technologies, and development of incentives for increased energy efficiency and conservation. The aim of this dissertation is to examine and quantify the extent of positive and negative effects that have resulted from some of these activities. The first chapter focuses on quantifying the effect that nationalistic sentiment has had on economic attractiveness of energy sectors during the decade prior to the recent global economic crisis, as measured by foreign direct investment (FDI) inflows. Empirical results demonstrate that both political and economic conditions play an important role in investors' decisions. A combination of investment friendliness, corruption levels, and democracy all help to explain the trends in energy-sector investment levels over time in my sample countries, although differences in the types of corruption existing in these nations do not. Investment levels, in turn, appear to influence future levels of oil production, underscoring the significance of good investment policies for future success of energy sectors. Chapter two considers the response of energy stock prices to severe regulatory actions. It employs an event study framework to examine causal effects of critical informational announcements (i.e. events of expropriation and nationalization) on daily returns and cumulative losses in firm value of energy corporations. Results show that a firm

  17. Wireless Sensor Network for Advanced Energy Management Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Theisen; Bin Lu, Charles J. Luebke

    2009-09-23

    Eaton has developed an advanced energy management solution that has been deployed to several Industries of the Future (IoF) sites. This demonstrated energy savings and reduced unscheduled downtime through an improved means for performing predictive diagnostics and energy efficiency estimation. Eaton has developed a suite of online, continuous, and inferential algorithms that utilize motor current signature analysis (MCSA) and motor power signature analysis (MPSA) techniques to detect and predict the health condition and energy usage condition of motors and their connect loads. Eaton has also developed a hardware and software platform that provided a means to develop and test these advanced algorithms in the field. Results from lab validation and field trials have demonstrated that the developed advanced algorithms are able to detect motor and load inefficiency and performance degradation. Eaton investigated the performance of Wireless Sensor Networks (WSN) within various industrial facilities to understand concerns about topology and environmental conditions that have precluded broad adoption by the industry to date. A Wireless Link Assessment System (WLAS), was used to validate wireless performance under a variety of conditions. Results demonstrated that wireless networks can provide adequate performance in most facilities when properly specified and deployed. Customers from various IoF expressed interest in applying wireless more broadly for selected applications, but continue to prefer utilizing existing, wired field bus networks for most sensor based applications that will tie into their existing Computerized Motor Maintenance Systems (CMMS). As a result, wireless technology was de-emphasized within the project, and a greater focus placed on energy efficiency/predictive diagnostics. Commercially available wireless networks were only utilized in field test sites to facilitate collection of motor wellness information, and no wireless sensor network products were

  18. Energy Efficient Resource Allocation for Phantom Cellular Networks

    KAUST Repository

    Abdelhady, Amr

    2016-04-01

    Multi-tier heterogeneous networks have become an essential constituent for next generation cellular networks. Meanwhile, energy efficiency (EE) has been considered a critical design criterion along with the traditional spectral efficiency (SE) metric. In this context, we study power and spectrum allocation for the recently proposed two-tier network architecture known as phantom cellular networks. The optimization framework includes both EE and SE. First, we consider sparsely deployed cells experiencing negligible interference and assume perfect channel state information (CSI). For this setting, we propose an algorithm that finds the SE and EE resource allocation strategies. Then, we compare the performance of both design strategies versus number of users, and phantom cells share of the total available resource units (RUs). We aim to investigate the effect of some system parameters to achieve improved SE performance at a non-significant loss in EE performance, or vice versa. It is found that increasing phantom cells share of RUs decreases the SE performance loss due to EE optimization when compared with the optimized SE performance. Second, we consider the densely deployed phantom cellular networks and model the EE optimization problem having into consideration the inevitable interference and imperfect channel estimation. To this end, we propose three resource allocation strategies aiming at optimizing the EE performance metric of this network. Furthermore, we investigate the effect of changing some of the system parameters on the performance of the proposed strategies, such as phantom cells share of RUs, number of deployed phantom cells within a macro cell coverage, number of pilots and the maximum power available for transmission by the phantom cells BSs. It is found that increasing the number of pilots deteriorates the EE performance of the whole setup, while increasing maximum power available for phantom cells transmissions reduces the EE of the whole setup in a

  19. Energy efficient smart phones for 5G networks

    CERN Document Server

    Rodriguez, Jonathan

    2015-01-01

    This book addresses current technology trends and requirements leading towards the next era in mobile communication handsets; and beyond that the book proposes innovative solutions that could be candidate solutions for 5G phones. It adopts a multidisciplinary and interdisciplinary stance towards handset design, a necessary ingredient if 5th Generation handset and services are to really take-off. Therefore the scope of the book targets a broad range of subjects, including energy efficiency, RF design, cooperation, context-aware systems, roaming, and short-range networking, all of which working in synergy to provide seamless mobility and high speed connectivity within a HetNet environment. Specifically, the authors investigate how we can exploit the cooperation paradigm and context-aware mechanism working in synergy to provide energy compliant phones that can introduce power savings of up to 50% on state-of-the-art. Going beyond this, a chapter on business modeling approaches is also included, based on incentiv...

  20. Regulation of energy balance by the hypothalamic lipoprotein lipase regulator Angptl3.

    Science.gov (United States)

    Kim, Hyun-Kyong; Shin, Mi-Seon; Youn, Byung-Soo; Kang, Gil Myoung; Gil, So Young; Lee, Chan Hee; Choi, Jong Han; Lim, Hyo Sun; Yoo, Hyun Ju; Kim, Min-Seon

    2015-04-01

    Hypothalamic lipid sensing is important for the maintenance of energy balance. Angiopoietin-like protein 3 (Angptl3) critically regulates the clearance of circulating lipids by inhibiting lipoprotein lipase (LPL). The current study demonstrated that Angptl3 is highly expressed in the neurons of the mediobasal hypothalamus, an important area in brain lipid sensing. Suppression of hypothalamic Angptl3 increased food intake but reduced energy expenditure and fat oxidation, thereby promoting weight gain. Consistently, intracerebroventricular (ICV) administration of Angptl3 caused the opposite metabolic changes, supporting an important role for hypothalamic Angptl3 in the control of energy balance. Notably, ICV Angptl3 significantly stimulated hypothalamic LPL activity. Moreover, coadministration of the LPL inhibitor apolipoprotein C3 antagonized the effects of Angptl3 on energy metabolism, indicating that LPL activation is critical for the central metabolic actions of Angptl3. Increased LPL activity is expected to promote lipid uptake by hypothalamic neurons, leading to enhanced brain lipid sensing. Indeed, ICV injection of Angptl3 increased long-chain fatty acid (LCFA) and LCFA-CoA levels in the hypothalamus. Furthermore, inhibitors of hypothalamic lipid-sensing pathways prevented Angptl3-induced anorexia and weight loss. These findings identify Angptl3 as a novel regulator of the hypothalamic lipid-sensing pathway. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Energy substrates that fuel fast neuronal network oscillations

    Directory of Open Access Journals (Sweden)

    Lukas V. Galow

    2014-12-01

    Full Text Available Fast neuronal network oscillations in the gamma-frequency band (30-100 Hz provide a fundamental mechanism of complex neuronal information processing in the hippocampus and neocortex of mammals. Gamma oscillations have been implicated in higher brain functions such as sensory perception, motor activity and memory formation. The oscillations emerge from precise synapse interactions between excitatory principal neurons such as pyramidal cells and inhibitory GABAergic interneurons, and they are associated with high energy expenditure. However, both energy substrates and metabolic pathways that are capable to power cortical gamma oscillations have been less defined. Here, we investigated the energy sources fueling persistent gamma oscillations in the CA3 subfield of organotypic hippocampal slice cultures of the rat. This preparation permits superior oxygen supply as well as fast application of glucose, glycolytic metabolites or drugs such as glycogen phosphorylase inhibitor during extracellular recordings of the local field potential. Our findings are: (i gamma oscillations persist in the presence of glucose (10 mmol/L for greater than 60 minutes in slice cultures while (ii lowering glucose levels (2.5 mmol/L significantly reduces the amplitude of the oscillation. (iii Gamma oscillations are absent at low concentration of lactate (2 mmol/L. (iv Gamma oscillations persist at high concentration (20 mmol/L of either lactate or pyruvate, albeit showing significant reductions in the amplitude. (v The breakdown of glycogen significantly delays the decay of gamma oscillations during glucose deprivation. However, when glucose is present, the turnover of glycogen is not essential to sustain gamma oscillations. Our study shows that fast neuronal network oscillations can be fueled by different energy-rich substrates, with glucose being most effective.

  2. Optimality Principles in the Regulation of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  3. Communication Support Technology Research and Network Design of Mobile Energy Efficiency Test and Energy-saving Assessment System

    Directory of Open Access Journals (Sweden)

    Zhong Ming

    2015-01-01

    Full Text Available In order to solve the communication problems when the mobile energy efficiency and energy-saving assessment system is applied to energy monitoring, the authors introduced two schemes about building wireless network which is introduced based on the demand of the mobile energy efficiency test and energy-saving assessment system. These two schemes are based on WDS (Wireless Distribution System, WSN (Wireless Sensor Network, they effectively solved the problem that signals could not be transmitted through the net when the mobile energy efficiency test and energy-saving assessment system is used to monitor the monitoring points which are located underground or in an extensive area.

  4. An energy-aware routing protocol for query-based applications in wireless sensor networks.

    Science.gov (United States)

    Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  5. Solar Energy Prediction for Malaysia Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2012-01-01

    Full Text Available This paper presents a solar energy prediction method using artificial neural networks (ANNs. An ANN predicts a clearness index that is used to calculate global and diffuse solar irradiations. The ANN model is based on the feed forward multilayer perception model with four inputs and one output. The inputs are latitude, longitude, day number, and sunshine ratio; the output is the clearness index. Data from 28 weather stations were used in this research, and 23 stations were used to train the network, while 5 stations were used to test the network. In addition, the measured solar irradiations from the sites were used to derive an equation to calculate the diffused solar irradiation, a function of the global solar irradiation and the clearness index. The proposed equation has reduced the mean absolute percentage error (MAPE in estimating the diffused solar irradiation compared with the conventional equation. Based on the results, the average MAPE, mean bias error and root mean square error for the predicted global solar irradiation are 5.92%, 1.46%, and 7.96%. The MAPE in estimating the diffused solar irradiation is 9.8%. A comparison with previous work was done, and the proposed approach was found to be more efficient and accurate than previous methods.

  6. Green Modulations in Energy-Constrained Wireless Sensor Networks

    CERN Document Server

    Abouei, Jamshid; Pasupathy, Subbarayan

    2010-01-01

    Due to the unique characteristics of sensor devices, finding the energy-efficient modulation with a low-complexity implementation (refereed to as green modulation) poses significant challenges in the physical layer design of Wireless Sensor Networks (WSNs). Toward this goal, we present an in-depth analysis on the energy efficiency of various modulation schemes using realistic models in the IEEE 802.15.4 standard to find the optimum distance-based scheme in a WSN over Rayleigh and Rician fading channels with path-loss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis includes the effect of the channel bandwidth and the active mode duration on the energy consumption of popular modulation designs. Path-loss exponent and DC-DC converter efficiency are also taken into consideration. In considering the energy efficiency and complexity, it is demonstrated that among various sinusoidal carrier-based modulations, the optimi...

  7. Improved estimation of energy expenditure by artificial neural network modeling.

    Science.gov (United States)

    Hay, Dean Charles; Wakayama, Akinobu; Sakamura, Ken; Fukashiro, Senshi

    2008-12-01

    Estimation of energy expenditure in daily living conditions can be a tool for clinical assessment of health status, as well as a self-measure of lifestyle and general activity levels. Criterion measures are either prohibitively expensive or restricted to laboratory settings. Portable devices (heart rate monitors, pedometers) have gained recent popularity, but accuracy of the prediction equations remains questionable. This study applied an artificial neural network modeling approach to the problem of estimating energy expenditure with different dynamic inputs (accelerometry, heart rate above resting (HRar), and electromyography (EMG)). Nine feed-forward back-propagation models were trained, with the goal of minimizing the mean squared error (MSE) of the training datasets. Model 1 (accelerometry only) and model 2 (HRar only) performed poorly and had significantly greater MSE than all other models (p energy expenditure for models 3 to 9 ranged from 0.745 to 0.817. Analysis of mean error within specific movement categories indicates that EMG models may be better at predicting higher-intensity energy expenditure, but combined accelerometry and HRar provides an economical solution, with sufficient accuracy.

  8. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling.

    Directory of Open Access Journals (Sweden)

    Shang Ma

    Full Text Available The cerebral cortex performs complex cognitive functions at the expense of tremendous energy consumption. Blood vessels in the brain are known to form stereotypic patterns that facilitate efficient oxygen and nutrient delivery. Yet little is known about how vessel development in the brain is normally regulated. Radial glial neural progenitors are well known for their central role in orchestrating brain neurogenesis. Here we show that, in the late embryonic cortex, radial glial neural progenitors also play a key role in brain angiogenesis, by interacting with nascent blood vessels and regulating vessel stabilization via modulation of canonical Wnt signaling. We find that ablation of radial glia results in vessel regression, concomitant with ectopic activation of Wnt signaling in endothelial cells. Direct activation of Wnt signaling also results in similar vessel regression, while attenuation of Wnt signaling substantially suppresses regression. Radial glial ablation and ectopic Wnt pathway activation leads to elevated endothelial expression of matrix metalloproteinases, while inhibition of metalloproteinase activity significantly suppresses vessel regression. These results thus reveal a previously unrecognized role of radial glial progenitors in stabilizing nascent brain vascular network and provide novel insights into the molecular cascades through which target neural tissues regulate vessel stabilization and patterning during development and throughout life.

  9. DMPD: Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation inrespiratory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031251 Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation...l) (.csml) Show Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation inrespiratory dis...ease. PubmedID 18031251 Title Toll-like receptor (TLR)-based networks regulate neutrophilic inflammation

  10. Energy and Power Measurements for Network Coding in the Context of Green Mobile Clouds

    DEFF Research Database (Denmark)

    Paramanathan, Achuthan; Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani

    2013-01-01

    results for inter-session network coding in Open-Mesh routers underline that the energy invested in performing network coding pays off by dramatically reducing the total energy for the transmission of data over wireless links. We also show measurements for intra-session network coding in three different...

  11. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  12. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  13. A Gossip-based Energy Efficient Protocol for Robust In-network Aggregation in Wireless Sensor Networks

    Science.gov (United States)

    Fauji, Shantanu

    We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.

  14. Gene regulation network behind drought escape, avoidance and tolerance strategies in black poplar (Populus nigra L.).

    Science.gov (United States)

    Yıldırım, Kubilay; Kaya, Zeki

    2017-06-01

    Drought is the major environmental problem limiting the productivity and survival of plant species. Here, previously identified three black poplar genotypes having contrasting response to drought were subjected to gradual soil water depletion in a pot trial to identify their physiological, morphological and antioxidation related adaptations. We also performed a microarray based transcriptome analyses on the leaves of genotypes by using Affymetrix poplar Genome Array containing 56,000 transcripts. Phenotypic analyses of each genotype confirmed their differential adaptations to drought that could be classified as drought escape, avoidance and tolerance. Comparative transcriptomic analysis indicated highly divergent gene expression patterns among the genotypes in response to drought and post drought re-watering (PDR). We identified 10641, 3824 and 9411 transcripts exclusively regulated in drought escape, avoidance and tolerant genotypes, respectively. The key genes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein folding, redox homeostasis, secondary metabolic process and cell wall component biogenesis, were affected by drought stresses in the leaves of these genotypes. Transcript isoforms showed increased expression specificity in the genes coding for bark storage proteins and small heat shock proteins in drought tolerant genotype. On the other hand, drought-avoiding genotype specifically induced the transcripts annotated to the genes functional in secondary metabolite production that linked to enhanced leaf water content and growth performance under drought stress. Transcriptome profiling of drought escape genotype indicated specific regulation of the genes functional in programmed cell death and leaf senescence. Specific upregulation of GTP cyclohydrolase II and transcription factors (WRKY and ERFs) in only this genotype were associated to ROS dependent signalling

  15. Energy Management Optimization for Cellular Networks under Renewable Energy Generation Uncertainty

    KAUST Repository

    Rached, Nadhir B.

    2017-03-28

    The integration of renewable energy (RE) as an alternative power source for cellular networks has been deeply investigated in literature. However, RE generation is often assumed to be deterministic; an impractical assumption for realistic scenarios. In this paper, an efficient energy procurement strategy for cellular networks powered simultaneously by the smart grid (SG) and locally deployed RE sources characterized by uncertain processes is proposed. For a one-day operation cycle, the mobile operator aims to reduce its total energy cost by optimizing the amounts of energy to be procured from the local RE sources and SG at each time period. Additionally, it aims to determine the amount of extra generated RE to be sold back to SG. A chance constrained optimization is first proposed to deal with the RE generation uncertainty. Then, two convex approximation approaches: Chernoff and Chebyshev methods, characterized by different levels of knowledge about the RE generation, are developed to determine the energy procurement strategy for different risk levels. In addition, their performances are analyzed for various daily scenarios through selected simulation results. It is shown that the higher complex Chernoff method outperforms the Chebyshev one for different risk levels set by the operator.

  16. Ets-1 regulates energy metabolism in cancer cells.

    Directory of Open Access Journals (Sweden)

    Meghan L Verschoor

    Full Text Available Cancer cells predominantly utilize glycolysis for ATP production even in the presence of abundant oxygen, an environment that would normally result in energy production through oxidative phosphorylation. Although the molecular mechanism for this metabolic switch to aerobic glycolysis has not been fully elucidated, it is likely that mitochondrial damage to the electron transport chain and the resulting increased production of reactive oxygen species are significant driving forces. In this study, we have investigated the role of the transcription factor Ets-1 in the regulation of mitochondrial function and metabolism. Ets-1 was over-expressed using a stably-incorporated tetracycline-inducible expression vector in the ovarian cancer cell line 2008, which does not express detectable basal levels of Ets-1 protein. Microarray analysis of the effects of Ets-1 over-expression in these ovarian cancer cells shows that Ets-1 up-regulates key enzymes involved in glycolysis and associated feeder pathways, fatty acid metabolism, and antioxidant defense. In contrast, Ets-1 down-regulates genes involved in the citric acid cycle, electron transport chain, and mitochondrial proteins. At the functional level, we have found that Ets-1 expression is directly correlated with cellular oxygen consumption whereby increased expression causes decreased oxygen consumption. Ets-1 over-expression also caused increased sensitivity to glycolytic inhibitors, as well as growth inhibition in a glucose-depleted culture environment. Collectively our findings demonstrate that Ets-1 is involved in the regulation of cellular metabolism and response to oxidative stress in ovarian cancer cells.

  17. Brain lipoprotein lipase as a regulator of energy balance.

    Science.gov (United States)

    Cruciani-Guglielmacci, Céline; Magnan, Christophe

    2017-07-24

    The central nervous system is an essential actor in the control of the energy balance. Indeed, many signals of nervous (vagal afferent for example) or circulating (hormone, nutrients) origin converge towards the brain to inform it permanently of the energetic status of the organism. In turn, the brain sends information to the periphery (sympathetic vagal balance, thyroid or corticotropic axis) which allows a fine regulation of the energy fluxes by acting on the hepatic glucose production, the secretion of the pancreatic hormones (glucagon, insulin) or food behavior. Among the nutrients, increasing amount of data assigns a signal molecule role to lipids such as fatty acids. These fatty acids may originate from the bloodstream but may also be the product of the hydrolysis of lipoproteins such as chylomicrons or VLDLs. Indeed, the identification of lipoprotein lipase (LPL) in the brain has led to the hypothesis that the LPL-dependent degradation of TG-enriched particles, and the addition of fatty acids, as informative molecules, to sensitive cells (neurons and/or astrocytes), plays a key role in maintaining the energy balance at equilibrium. Other lipases could also participate in these regulatory mechanisms. This review will summarize the state of the art and open up perspectives. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Optimization based on benefit of regional energy suppliers of distributed generation in active distribution network

    Science.gov (United States)

    Huo, Xianxu; Li, Guodong; Jiang, Ling; Wang, Xudong

    2017-08-01

    With the development of electricity market, distributed generation (DG) technology and related policies, regional energy suppliers are encouraged to build DG. Under this background, the concept of active distribution network (ADN) is put forward. In this paper, a bi-level model of intermittent DG considering benefit of regional energy suppliers is proposed. The objective of the upper level is the maximization of benefit of regional energy suppliers. On this basis, the lower level is optimized for each scene. The uncertainties of DG output and load of users, as well as four active management measures, which include demand-side management, curtailing the output power of DG, regulating reactive power compensation capacity and regulating the on-load tap changer, are considered. Harmony search algorithm and particle swarm optimization are combined as a hybrid strategy to solve the model. This model and strategy are tested with IEEE-33 node system, and results of case study indicate that the model and strategy successfully increase the capacity of DG and benefit of regional energy suppliers.

  19. Parental Influences on Children's Self-Regulation of Energy Intake: Insights from Developmental Literature on Emotion Regulation

    Directory of Open Access Journals (Sweden)

    Leslie A. Frankel

    2012-01-01

    Full Text Available The following article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to children's behavior, assistance in helping children self-regulate, and motivating children through rewards and punishments. Additionally, sources of variation in parental influences on regulation are examined, including parenting style, child temperament, and child-parent attachment security. Parallels in the nature of parents' role in socializing children's regulation of emotions and energy intake are examined. Implications for future research are discussed.

  20. Parental Influences on Children's Self-Regulation of Energy Intake: Insights from Developmental Literature on Emotion Regulation.

    Science.gov (United States)

    Frankel, Leslie A; Hughes, Sheryl O; O'Connor, Teresia M; Power, Thomas G; Fisher, Jennifer O; Hazen, Nancy L

    2012-01-01

    The following article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to children's behavior, assistance in helping children self-regulate, and motivating children through rewards and punishments. Additionally, sources of variation in parental influences on regulation are examined, including parenting style, child temperament, and child-parent attachment security. Parallels in the nature of parents' role in socializing children's regulation of emotions and energy intake are examined. Implications for future research are discussed.

  1. Energy efficiency analysis for flexible-grid OFDM-based optical networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    As the Internet traffic grows, the energy efficiency gains more attention as a design factor for the planning and operation of telecommunication networks. This paper is devoted to the study of energy efficiency in optical transport networks, comparing the performance of an innovative flexible......-grid network based on Orthogonal Frequency Division Multiplexing (OFDM) with that of conventional fixed-grid Wavelength Division Multiplexing (WDM) networks with a Single Line Rate (SLR) and with a Mixed Line Rate (MLR) operation. The power consumption values of the network elements are introduced. Energy......-aware heuristic algorithms are proposed for the resource allocation both in static (offline) and dynamic (online) scenarios with time-varying demands for the Elastic-bandwidth OFDM-based network and the WDM networks (with SLR and MLR). The energy efficiency performance of the two network technologies under...

  2. 75 FR 19241 - Financial Crimes Enforcement Network; Amendment to the Bank Secrecy Act Regulations; Defining...

    Science.gov (United States)

    2010-04-14

    ... 31 CFR Part 103 RIN 1506-AA93 Financial Crimes Enforcement Network; Amendment to the Bank Secrecy Act Regulations; Defining Mutual Funds as Financial Institutions. AGENCY: Financial Crimes Enforcement Network... systems currently in place, the size of the mutual fund complex, and how the mutual fund shares are...

  3. Output regulation of large-scale hydraulic networks with minimal steady state power consumption

    NARCIS (Netherlands)

    Jensen, Tom Nørgaard; Wisniewski, Rafał; De Persis, Claudio; Kallesøe, Carsten Skovmose

    2014-01-01

    An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact that the

  4. Energy-aware Traffic Engineering in Hybrid SDN/IP Backbone Networks

    OpenAIRE

    Wei, Yunkai; Zhang, XiaoNing; Xie, Lei; Leng, Supeng

    2016-01-01

    Software Defined Networking (SDN) can effectively improve the performance of traffic engineering and has promising application foreground in backbone networks. Therefore, new energy saving schemes must take SDN into account, which is extremely important considering the rapidly increasing energy consumption from Telecom and ISP networks. At the same time, the introduction of SDN in a current network must be incremental in most cases, for both technical and economic reasons. During this period,...

  5. Regulation control and energy management scheme for wireless power transfer

    Science.gov (United States)

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  6. Lifetime Optimization of a Multiple Sink Wireless Sensor Network through Energy Balancing

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Jain

    2015-01-01

    Full Text Available The wireless sensor network consists of small limited energy sensors which are connected to one or more sinks. The maximum energy consumption takes place in communicating the data from the nodes to the sink. Multiple sink WSN has an edge over the single sink WSN where very less energy is utilized in sending the data to the sink, as the number of hops is reduced. If the energy consumed by a node is balanced between the other nodes, the lifetime of the network is considerably increased. The network lifetime optimization is achieved by restructuring the network by modifying the neighbor nodes of a sink. Only those nodes are connected to a sink which makes the total energy of the sink less than the threshold. This energy balancing through network restructuring optimizes the network lifetime. This paper depicts this fact through simulations done in MATLAB.

  7. Energy-efficient power control for OFDMA cellular networks

    KAUST Repository

    Sboui, Lokman

    2016-12-24

    In this paper, we study the energy efficiency (EE) of orthogonal frequency-division multiple access (OFDMA) cellular networks. Our objective is to present a power allocation scheme that maximizes the EE of downlink communications. We propose a novel explicit expression of the optimal power allocation to each subcarrier. We also present the power control when the transmit power is limited by power budget constraint or/and minimal rate constraint and we highlight the occurrence of some transmission outage events depending on the constraints\\' parameters. In the numerical results, we show that our proposed power control improves the EE especially at high power budget regime and low minimal rate regime. In addition, we show that having a higher number of subcarriers enhances the OFDMA EE.

  8. Utilizing HPC Network Technologies in High Energy Physics Experiments

    CERN Document Server

    AUTHOR|(CDS)2088631; The ATLAS collaboration

    2017-01-01

    Because of their performance characteristics high-performance fabrics like Infiniband or OmniPath are interesting technologies for many local area network applications, including data acquisition systems for high-energy physics experiments like the ATLAS experiment at CERN. This paper analyzes existing APIs for high-performance fabrics and evaluates their suitability for data acquisition systems in terms of performance and domain applicability. The study finds that existing software APIs for high-performance interconnects are focused on applications in high-performance computing with specific workloads and are not compatible with the requirements of data acquisition systems. To evaluate the use of high-performance interconnects in data acquisition systems a custom library, NetIO, is presented and compared against existing technologies. NetIO has a message queue-like interface which matches the ATLAS use case better than traditional HPC APIs like MPI. The architecture of NetIO is based on a interchangeable bac...

  9. Green Mobile Clouds: Network Coding and User Cooperation for Improved Energy Efficiency

    DEFF Research Database (Denmark)

    Heide, Janus; Fitzek, Frank; Pedersen, Morten Videbæk

    2012-01-01

    This paper highlights the benefits of user cooperation and network coding for energy saving in cellular networks. It is shown that these techniques allow for reliable and efficient multicast services from both a user and network perspective. The working principles and advantages in terms of energy...... and spectrum usage is explained for user cooperation, network coding and a combination of both. For multicast services it is shown that the proposed approaches can save as much as 90% of the energy on the user side and 66% on network provider side for the topologies under investigation. One interesting finding...

  10. Heparanase affects food intake and regulates energy balance in mice.

    Directory of Open Access Journals (Sweden)

    Linda Karlsson-Lindahl

    Full Text Available Mutation of the melanocortin-receptor 4 (MC4R is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.

  11. Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

    Science.gov (United States)

    Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.

    2014-01-01

    Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365

  12. Sibutramine effects on central mechanisms regulating energy homeostasis.

    Science.gov (United States)

    Araújo, João R; Martel, Fátima

    2012-03-01

    During the last 50 years the global pandemic of obesity and associated life-threatening co-morbidities strongly promoted the development of anti-obesity pharmacotherapy. Sibutramine is an anti-obesity drug that in conjunction with lifestyle modifications reduces food intake and body weight. This may result from several effects: inhibition of presynaptic reuptake of monoaminergic neurotransmitters in the central nervous system, thereby suppressing appetite, induction of an increase in anorexigenic and a decrease in orexigenic neuropeptide secretion, induction of an increase in energy expenditure, and induction of peripheral sympathomimetic effects. The effects of sibutramine on anabolic and catabolic signals that regulate energy homeostasis in the hypothalamus are not completely understood. So, the aim of this review is to summarize the central mechanisms of action of sibutramine, responsible for its weight and food intake reducing potential. Despite being a useful drug in obesity treatment, awareness about the loss of long-term effectiveness and detrimental side effects of sibutramine has recently emerged. As a consequence, new drugs that produce safer and more persistent weight loss are currently undergoing clinical trials.

  13. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  14. Advanced Distribution Network Modelling with Distributed Energy Resources

    Science.gov (United States)

    O'Connell, Alison

    The addition of new distributed energy resources, such as electric vehicles, photovoltaics, and storage, to low voltage distribution networks means that these networks will undergo major changes in the future. Traditionally, distribution systems would have been a passive part of the wider power system, delivering electricity to the customer and not needing much control or management. However, the introduction of these new technologies may cause unforeseen issues for distribution networks, due to the fact that they were not considered when the networks were originally designed. This thesis examines different types of technologies that may begin to emerge on distribution systems, as well as the resulting challenges that they may impose. Three-phase models of distribution networks are developed and subsequently utilised as test cases. Various management strategies are devised for the purposes of controlling distributed resources from a distribution network perspective. The aim of the management strategies is to mitigate those issues that distributed resources may cause, while also keeping customers' preferences in mind. A rolling optimisation formulation is proposed as an operational tool which can manage distributed resources, while also accounting for the uncertainties that these resources may present. Network sensitivities for a particular feeder are extracted from a three-phase load flow methodology and incorporated into an optimisation. Electric vehicles are the focus of the work, although the method could be applied to other types of resources. The aim is to minimise the cost of electric vehicle charging over a 24-hour time horizon by controlling the charge rates and timings of the vehicles. The results demonstrate the advantage that controlled EV charging can have over an uncontrolled case, as well as the benefits provided by the rolling formulation and updated inputs in terms of cost and energy delivered to customers. Building upon the rolling optimisation, a

  15. Output Regulation of Large-Scale Hydraulic Networks with Minimal Steady State Power Consumption

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard; Wisniewski, Rafal; De Persis, Claudio

    2014-01-01

    An industrial case study involving a large-scale hydraulic network is examined. The hydraulic network underlies a district heating system, with an arbitrary number of end-users. The problem of output regulation is addressed along with a optimization criterion for the control. The fact...... that the system is overactuated is exploited for minimizing the steady state electrical power consumption of the pumps in the system, while output regulation is maintained. The proposed control actions are decentralized in order to make changes in the structure of the hydraulic network easy to implement....

  16. A genetic algorithm solution for the operation of green LTE networks with energy and environment considerations

    KAUST Repository

    Ghazzai, Hakim

    2012-01-01

    The Base Station (BS) sleeping strategy has become a well-known technique to achieve energy savings in cellular networks by switching off redundant BSs mainly for lightly loaded networks. Besides, the exploitation of renewable energies, as additional power sources in smart grids, becomes a real challenge to network operators to reduce power costs. In this paper, we propose a method based on genetic algorithms that decreases the energy consumption of a Long-Term Evolution (LTE) cellular network by not only shutting down underutilized BSs but also by optimizing the amounts of energy procured from the smart grid without affecting the desired Quality of Service. © 2012 Springer-Verlag.

  17. Cross-Layer Design for Energy-Efficient Secure Multicast Communications in Ad Hoc Networks

    National Research Council Canada - National Science Library

    Lazos, Loukas; Poovendran, Radha

    2004-01-01

    .... They present an analytical formulation of the energy expenditure associated with the communication overhead of key management, and highlight its dependence on network topology and key distribution method...

  18. Exploring regulation in tissues with eQTL networks.

    Science.gov (United States)

    Fagny, Maud; Paulson, Joseph N; Kuijjer, Marieke L; Sonawane, Abhijeet R; Chen, Cho-Yi; Lopes-Ramos, Camila M; Glass, Kimberly; Quackenbush, John; Platig, John

    2017-09-12

    Characterizing the collective regulatory impact of genetic variants on complex phenotypes is a major challenge in developing a genotype to phenotype map. Using expression quantitative trait locus (eQTL) analyses, we constructed bipartite networks in which edges represent significant associations between genetic variants and gene expression levels and found that the network structure informs regulatory function. We show, in 13 tissues, that these eQTL networks are organized into dense, highly modular communities grouping genes often involved in coherent biological processes. We find communities representing shared processes across tissues, as well as communities associated with tissue-specific processes that coalesce around variants in tissue-specific active chromatin regions. Node centrality is also highly informative, with the global and community hubs differing in regulatory potential and likelihood of being disease associated.

  19. HAND2 targets define a network of transcriptional regulators that compartmentalize the early limb bud mesenchyme

    NARCIS (Netherlands)

    Osterwalder, Marco; Speziale, Dario; Shoukry, Malak; Mohan, Rajiv; Ivanek, Robert; Kohler, Manuel; Beisel, Christian; Wen, Xiaohui; Scales, Suzie J.; Christoffels, Vincent M.; Visel, Axel; Lopez-Rios, Javier; Zeller, Rolf

    2014-01-01

    The genetic networks that govern vertebrate development are well studied, but how the interactions of trans-acting factors with cis-regulatory modules (CRMs) are integrated into spatiotemporal regulation of gene expression is not clear. The transcriptional regulator HAND2 is required during limb,

  20. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Bai

    2017-08-01

    Full Text Available Enhancing brown fat activity and promoting white fat browning are attractive therapeutic strategies for treating obesity and associated metabolic disorders. To provide a comprehensive picture of the gene regulatory network in these processes, we conducted a series of transcriptome studies by RNA sequencing (RNA-seq and quantified the mRNA and long noncoding RNA (lncRNA changes during white fat browning (chronic cold exposure, beta-adrenergic agonist treatment, and intense exercise and brown fat activation or inactivation (acute cold exposure or thermoneutrality, respectively. mRNA-lncRNA coexpression networks revealed dynamically regulated lncRNAs to be largely embedded in nutrient and energy metabolism pathways. We identified a brown adipose tissue-enriched lncRNA, lncBATE10, that was governed by the cAMP-cAMP response element-binding protein (Creb axis and required for a full brown fat differentiation and white fat browning program. Mechanistically, lncBATE10 can decoy Celf1 from Pgc1α, thereby protecting Pgc1α mRNA from repression by Celf1. Together, these studies provide a comprehensive data framework to interrogate the transcriptomic changes accompanying energy homeostasis transition in adipose tissue.

  1. A Distributed Routing Scheme for Energy Management in Solar Powered Sensor Networks

    KAUST Repository

    Dehwah, Ahmad H.

    2017-10-11

    Energy management is critical for solar-powered sensor networks. In this article, we consider data routing policies to optimize the energy in solar powered networks. Motivated by multipurpose sensor networks, the objective is to find the best network policy that maximizes the minimal energy among nodes in a sensor network, over a finite time horizon, given uncertain energy input forecasts. First, we derive the optimal policy in certain special cases using forward dynamic programming. We then introduce a greedy policy that is distributed and exhibits significantly lower complexity. When computationally feasible, we compare the performance of the optimal policy with the greedy policy. We also demonstrate the performance and computational complexity of the greedy policy over randomly simulated networks, and show that it yields results that are almost identical to the optimal policy, for greatly reduced worst-case computational costs and memory requirements. Finally, we demonstrate the implementation of the greedy policy on an experimental sensor network.

  2. Design and Performance Analysis of Multi-tier Heterogeneous Network through Coverage, Throughput and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    A. Shabbir,

    2017-12-01

    Full Text Available The unprecedented acceleration in wireless industry strongly compels wireless operators to increase their data network throughput, capacity and coverage on emergent basis. In upcoming 5G heterogeneous networks inclusion of low power nodes (LPNs like pico cells and femto cells for increasing network’s throughput, capacity and coverage are getting momentum. Addition of LPNs in such a massive level will eventually make a network populated in terms of base stations (BSs.The dense deployments of BSs will leads towards high operating expenditures (Op-Ex, capital expenditure (Cap-Ex and most importantly high energy consumption in future generation networks. Recognizing theses networks issues this research work investigates data throughput and energy efficiency of 5G multi-tier heterogeneous network. The network is modeled using tools from stochastic geometry. Monte Carlo results confirmed that rational deployment of LPNs can contribute towards increased throughput along with better energy efficiency of overall network.

  3. Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks.

    Science.gov (United States)

    Sripada, Chandra; Angstadt, Michael; Kessler, Daniel; Phan, K Luan; Liberzon, Israel; Evans, Gary W; Welsh, Robert C; Kim, Pilyoung; Swain, James E

    2014-04-01

    The ability to volitionally regulate emotions is critical to health and well-being. While patterns of neural activation during emotion regulation have been well characterized, patterns of connectivity between regions remain less explored. It is increasingly recognized that the human brain is organized into large-scale intrinsic connectivity networks (ICNs) whose interrelationships are altered in characteristic ways during psychological tasks. In this fMRI study of 54 healthy individuals, we investigated alterations in connectivity within and between ICNs produced by the emotion regulation strategy of reappraisal. In order to gain a comprehensive picture of connectivity changes, we utilized connectomic psychophysiological interactions (PPI), a whole-brain generalization of standard single-seed PPI methods. In particular, we quantified PPI connectivity pair-wise across 837 ROIs placed throughout the cortex. We found that compared to maintaining one's emotional responses, engaging in reappraisal produced robust and distributed alterations in functional connections involving visual, dorsal attention, frontoparietal, and default networks. Visual network in particular increased connectivity with multiple ICNs including dorsal attention and default networks. We interpret these findings in terms of the role of these networks in mediating critical constituent processes in emotion regulation, including visual processing, stimulus salience, attention control, and interpretation and contextualization of stimuli. Our results add a new network perspective to our understanding of the neural underpinnings of emotion regulation, and highlight that connectomic methods can play a valuable role in comprehensively investigating modulation of connectivity across task conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Integration of available regenerative energy sources in community networks for both electricity and heating

    Energy Technology Data Exchange (ETDEWEB)

    Alcalde Melo, Henrique

    2013-03-06

    . Water can be heated up to 70 C at least once a week preventing the bacterium Legionella to grow. The community is able to supply 99% of the uncontrollable load group demand and 97% of the controllable load group demand. There is enough energy available to heat space during the cold months, if heat pumps with a coefficient of performance greater than two are used. The electric vehicles can be charged using the energy generated in the community via grid or extra battery banks. If energy prices continue to increase, German households will try to find solutions to reduce their energy bills. The integration of several households forming a community network is a solution that optimizes the energy use and space (especially taking wind turbines in consideration), and reduces investments. However, the implementation of such a community still depends on the availability of space, improvement and price reduction of energy storage systems, regulations for energy exchange as well as willingness of the people living in such a community to adapt their daily routine according to the availability of energy.

  5. Energy-Aware Topology Evolution Model with Link and Node Deletion in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaojuan Luo

    2012-01-01

    Full Text Available Based on the complex network theory, a new topological evolving model is proposed. In the evolution of the topology of sensor networks, the energy-aware mechanism is taken into account, and the phenomenon of change of the link and node in the network is discussed. Theoretical analysis and numerical simulation are conducted to explore the topology characteristics and network performance with different node energy distribution. We find that node energy distribution has the weak effect on the degree distribution P(k that evolves into the scale-free state, nodes with more energy carry more connections, and degree correlation is nontrivial disassortative. Moreover, the results show that, when nodes energy is more heterogeneous, the network is better clustered and enjoys higher performance in terms of the network efficiency and the average path length for transmitting data.

  6. Activation energy of the disruption of gel networks in relation to elastically stored energy in fine-stranded ovalbumin gels

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Jongh, de H.H.J.

    2016-01-01

    The aim of this study was to relate the activation energy of the disruption of ovalbumin networks to elastically stored energy (i.e. recoverable energy, RE) obtained from mechanical deformation tests. To this end, heat-set ovalbumin gels were prepared at a fixed volume fraction and pH, but varying

  7. Output Regulation of Large-Scale Hydraulic Networks

    DEFF Research Database (Denmark)

    De Persis, Claudio; Jensen, Tom Nørgaard; Ortega, Romeo

    2014-01-01

    . The fact that the result is global and independent of the number of end users has the consequence that structural changes such as end-user addition and removal can be made in the network while maintaining the stability properties of the system. Furthermore, the decentralized nature of the control...

  8. Revealing gene regulation and association through biological networks

    Science.gov (United States)

    This review had first summarized traditional methods used by plant breeders for genetic improvement, such as QTL analysis and transcriptomic analysis. With accumulating data, we can draw a network that comprises all possible links between members of a community, including protein–protein interaction...

  9. An Improved Voltage Regulation of a Distribution Network Using ...

    African Journals Online (AJOL)

    The Newton-Raphson Load flow equation modeling was a veritable tool applied in this analysis to determine the convergence points for the voltage magnitude, power (load) angle, power losses along the lines, sending end and receiving end power values at the various buses that make up the thirteen bus network.

  10. Brain insulin signalling in the regulation of energy balance and peripheral metabolism.

    Science.gov (United States)

    Diamant, Michaela

    2007-03-30

    The unparalleled global rates of obesity and type 2 diabetes, together with the associated cardiovascular morbidity and mortality, are referred to as the "diabesity pandemic". Changes in lifestyle occurring worldwide, including the increased consumption of high-caloric foods and reduced exercise, are regarded as the main causal factors. Central obesity and insulin resistance have emerged as important linking components. Understanding the aetiology of the cluster of pathologies that leads to the increased risk is instrumental in the development of preventive and therapeutic strategies. Historically, skeletal muscle, adipose tissue and liver were regarded as key insulin target organs involved in insulin-mediated regulation of peripheral carbohydrate, lipid and protein metabolism. The consequences of impaired insulin action in these organs were deemed to explain the functional and structural abnormalities associated with insulin resistance. The discovery of insulin receptors in the central nervous system, the detection of insulin in the cerebrospinal fluid after peripheral insulin administration and the well-documented effects of intracerebroventricularly injected insulin on energy homeostasis, have identified the brain as an important target for insulin action. In addition to its critical role as a peripheral signal integrating the complex network of hypothalamic neuropeptides and neurotransmitters that influence parameters of energy balance, central nervous insulin signalling is also implicated in the regulation of peripheral glucose metabolism. This review summarizes the evidence of insulin action in the brain as part of the multifaceted circuit involved in the central regulation of energy and glucose homeostasis, and discuss the role of impaired central nervous insulin signalling as a pathogenic factor in the obesity and type 2 diabetes epidemic.

  11. Energy - photovoltaic: network-linked systems. 5. ed.; Energie - Photovoltaik: Netzgekoppelte Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H.P.

    2000-09-01

    The new brochure called ''Photovoltaics - network-linked systems'' published by the Energy Information Center (IE) of the state of Baden-Wuerttemberg gives a comprehensive general view at the various aspects of photovoltaics. How a network-linked photovoltaics systems is built and how it functions, which quality criteria exist.. all this information is given to potential operators of systems, planners and installers. The question of rentability is also discussed, pointing at avoidable expenditures during installation. For future operators, a project is carried out virtually, starting from the designing stage over agreements with the energy supplier up to the licencing procedures and insurance matters. Tax issued are also taken into consideration. Various incentives and support methods are discussed. Other subjects are the integration of network-linked photovoltaics systems into the power supply - also under the new conditions of the liberalized power market. [German] Einen umfassenden Ueberblick ueber die verschiedenen Aspekte der Photovoltaik bietet die neue Broschuere 'Photovoltaik - netzgekoppelte Anlagen', die das Informationszentrum Energie (IE) des Landesgewerbeamts Baden-Wuerttemberg herausgegeben hat. Wie eine netzgekoppelte Photovoltaik-Anlage aufgebaut ist und funktioniert, welche Kriterien fuer Qualitaet es gibt - darueber koennen sich potentielle Betreiber von Anlagen, Planer und Installateure informieren. Es wird auch die Frage der Rentabilitaet diskutiert und auf vermeidbaren Installationsaufwand hingewiesen. Fuer kuenftige Anlagenbetreiber wird die Realisierung eines Projektes durchgespielt - von der Auslegung der Anlage ueber die Abstimmung mit dem Energieversorger bis hin zu Genehmigungs- und Versicherungsfragen. Zudem werden steuerrechtliche Aspekte beruecksichtigt sowie verschiedene Foerderverfahren diskutiert. Weitere Themen sind die Integration netzgekoppelter Photovoltaik-Anlagen in die Stromversorgung - auch

  12. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    Science.gov (United States)

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  13. Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder.

    Science.gov (United States)

    Wu, Huawang; Sun, Hui; Wang, Chao; Yu, Lin; Li, Yilan; Peng, Hongjun; Lu, Xiaobing; Hu, Qingmao; Ning, Yuping; Jiang, Tianzi; Xu, Jinping; Wang, Jiaojian

    2017-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that is characterized by cognitive deficits and affective symptoms. To date, an increasing number of neuroimaging studies have focused on emotion regulation and have consistently shown that emotion dysregulation is one of the central features and underlying mechanisms of MDD. Although gray matter morphological abnormalities in regions within emotion regulation networks have been identified in MDD, the interactions and relationships between these gray matter structures remain largely unknown. Thus, in this study, we adopted a structural covariance method based on gray matter volume to investigate the brain morphological abnormalities within the emotion regulation networks in a large cohort of 65 MDD patients and 65 age- and gender-matched healthy controls. A permutation test with p emotion dysregulation is an underlying mechanism of MDD by revealing disrupted structural covariance patterns in the emotion regulation network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Energy-Efficient Fault-Tolerant Dynamic Event Region Detection in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Enemark, Hans-Jacob; Zhang, Yue; Dragoni, Nicola

    2015-01-01

    Fault-tolerant event detection is fundamental to wireless sensor network applications. Existing approaches usually adopt neighborhood collaboration for better detection accuracy, while need more energy consumption due to communication. Focusing on energy efficiency, this paper makes an improvement...

  15. An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Science.gov (United States)

    Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung

    2012-01-01

    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes. PMID:22368459

  16. An energy efficient cooperative hierarchical MIMO clustering scheme for wireless sensor networks.

    Science.gov (United States)

    Nasim, Mehwish; Qaisar, Saad; Lee, Sungyoung

    2012-01-01

    In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO) communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO) clustering scheme and traditional multihop Single-Input-Single-Output (SISO) routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes.

  17. An Energy Efficient Cooperative Hierarchical MIMO Clustering Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungyoung Lee

    2011-12-01

    Full Text Available In this work, we present an energy efficient hierarchical cooperative clustering scheme for wireless sensor networks. Communication cost is a crucial factor in depleting the energy of sensor nodes. In the proposed scheme, nodes cooperate to form clusters at each level of network hierarchy ensuring maximal coverage and minimal energy expenditure with relatively uniform distribution of load within the network. Performance is enhanced by cooperative multiple-input multiple-output (MIMO communication ensuring energy efficiency for WSN deployments over large geographical areas. We test our scheme using TOSSIM and compare the proposed scheme with cooperative multiple-input multiple-output (CMIMO clustering scheme and traditional multihop Single-Input-Single-Output (SISO routing approach. Performance is evaluated on the basis of number of clusters, number of hops, energy consumption and network lifetime. Experimental results show significant energy conservation and increase in network lifetime as compared to existing schemes.

  18. Performance Analysis of an Energy Efficient Femtocell Network Using Queuing Theory

    Directory of Open Access Journals (Sweden)

    Wanod Kumar

    2013-07-01

    Full Text Available The energy expenditure of cellular networks is increasing rapidly due to high demand of data services by the subscribers. This subsequently gives rise to the CO2 emission which is a critical issue nowadays. A hybrid cellular network comprised of macrocell and several femtocells is required to achieve reliability, continuous connectivity, and energy efficiency. To address the issue of energy efficiency, in this paper we present a queuing model of an energy efficient femtocell network. The transmission of data traffic in this type of network is modeled using M/M/1 queue where server FAP (Femtocell Access Point takes vacation to save energy during inactivity period. The network model is solved using a MGM (Matrix Geometric Method. The performance of the system is evaluated in terms of average system delay and power savings for different sleep cycle durations. Results reveal that the maximum energy can be saved with higher sleep cycle duration at a cost of increased system delay

  19. Network Centrality Analysis in Fungi Reveals Complex Regulation of Lost and Gained Genes.

    Science.gov (United States)

    Coulombe-Huntington, Jasmin; Xia, Yu

    2017-01-01

    Gene gain and loss shape both proteomes and the networks they form. The increasing availability of closely related sequenced genomes and of genome-wide network data should enable a better understanding of the evolutionary forces driving gene gain, gene loss and evolutionary network rewiring. Using orthology mappings across 23 ascomycete fungi genomes, we identified proteins that were lost, gained or universally conserved across the tree, enabling us to compare genes across all stages of their life-cycle. Based on a collection of genome-wide network and gene expression datasets from baker's yeast, as well as a few from fission yeast, we found that gene loss is more strongly associated with network and expression features of closely related species than that of distant species, consistent with the evolutionary modulation of gene loss propensity through network rewiring. We also discovered that lost and gained genes, as compared to universally conserved "core" genes, have more regulators, more complex expression patterns and are much more likely to encode for transcription factors. Finally, we found that the relative rate of network integration of new genes into the different types of networks agrees with experimentally measured rates of network rewiring. This systems-level view of the life-cycle of eukaryotic genes suggests that the gain and loss of genes is tightly coupled to the gain and loss of network interactions, that lineage-specific adaptations drive regulatory complexity and that the relative rates of integration of new genes are consistent with network rewiring rates.

  20. Strategical incoherence regulates cooperation in social dilemmas on multiplex networks

    CERN Document Server

    Matamalas, Joan T; Gómez, Sergio; Arenas, Alex

    2015-01-01

    Cooperation is a very common, yet not fully-understood phenomenon in natural and human systems. The introduction of a network within the population is known to affect the outcome of cooperative dynamics, allowing for the survival of cooperation in adverse scenarios. Recently, the introduction of multiplex networks has yet again modified the expectations for the outcome of the Prisoner's Dilemma game, compared to the monoplex case. However, much remains unstudied regarding other social dilemmas on multiplex, as well as the unexplored microscopic underpinnings of it. In this paper, we systematically study the evolution of cooperation in all four games in the $T-S$ plane on multiplex. More importantly, we find some remarkable and previously unknown features in the microscopic organization of the strategies, that are responsible for the important differences between cooperative dynamics in monoplex and multiplex. Specifically, we find that in the stationary state, there are individuals that play the same strategy...

  1. Modeling the Drosophila gene cluster regulation network for muscle development.

    Science.gov (United States)

    Haye, Alexandre; Albert, Jaroslav; Rooman, Marianne

    2014-01-01

    The development of accurate and reliable dynamical modeling procedures that describe the time evolution of gene expression levels is a prerequisite to understanding and controlling the transcription process. We focused on data from DNA microarray time series for 20 Drosophila genes involved in muscle development during the embryonic stage. Genes with similar expression profiles were clustered on the basis of a translation-invariant and scale-invariant distance measure. The time evolution of these clusters was modeled using coupled differential equations. Three model structures involving a transcription term and a degradation term were tested. The parameters were identified in successive steps: network construction, parameter optimization, and parameter reduction. The solutions were evaluated on the basis of the data reproduction and the number of parameters, as well as on two biology-based requirements: the robustness with respect to parameter variations and the values of the expression levels not being unrealistically large upon extrapolation in time. Various solutions were obtained that satisfied all our evaluation criteria. The regulatory networks inferred from these solutions were compared with experimental data. The best solution has half of the experimental connections, which compares favorably with previous approaches. Biasing the network toward the experimental connections led to the identification of a model that is only slightly less good on the basis of the evaluation criteria. The non-uniqueness of the solutions and the variable agreement with experimental connections were discussed in the context of the different hypotheses underlying this type of approach.

  2. Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks.

    Science.gov (United States)

    Luo, Hanjiang; Guo, Zhongwen; Wu, Kaishun; Hong, Feng; Feng, Yuan

    2009-01-01

    Underwater acoustic sensor networks (UWA-SNs) are envisioned to perform monitoring tasks over the large portion of the world covered by oceans. Due to economics and the large area of the ocean, UWA-SNs are mainly sparsely deployed networks nowadays. The limited battery resources is a big challenge for the deployment of such long-term sensor networks. Unbalanced battery energy consumption will lead to early energy depletion of nodes, which partitions the whole networks and impairs the integrity of the monitoring datasets or even results in the collapse of the entire networks. On the contrary, balanced energy dissipation of nodes can prolong the lifetime of such networks. In this paper, we focus on the energy balance dissipation problem of two types of sparsely deployed UWA-SNs: underwater moored monitoring systems and sparsely deployed two-dimensional UWA-SNs. We first analyze the reasons of unbalanced energy consumption in such networks, then we propose two energy balanced strategies to maximize the lifetime of networks both in shallow and deep water. Finally, we evaluate our methods by simulations and the results show that the two strategies can achieve balanced energy consumption per node while at the same time prolong the networks lifetime.

  3. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Directory of Open Access Journals (Sweden)

    Bhavnani Suresh K

    2010-11-01

    Full Text Available Abstract Background In a recent study, two-dimensional (2D network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method revealed that genes implicated in many diseases (non-specific genes tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.

  4. Energy Management Action Network (EMAK). A scoping study investigating the establishment and support of an international and domestic action network of energy management in industry. Information paper

    Energy Technology Data Exchange (ETDEWEB)

    Jollands, Nigel; Tanaka, Kanako; Gasc, Emilien

    2009-12-15

    The IEA has identified energy efficiency as essential to achieving a sustainable energy future. In order to improve energy efficiency in industry one of the priority areas for further action is the promotion of more and higher quality energy management (EM) activity. However, there are significant gaps in the current implementation of EM. One method of bridging these gaps would be the creation of an EM Action NetworK (EMAK) to bring practical support to energy managers, connect energy managers to energy policy makers, and interconnect these networks globally. The paper describes possible aims, activities, scope, structure, timelines and approaches related to EMAK and looks at specific tasks that would be important in the set-up and implementation.

  5. Multichannel-Sensing Scheduling and Transmission-Energy Optimizing in Cognitive Radio Networks with Energy Harvesting.

    Science.gov (United States)

    Hoan, Tran-Nhut-Khai; Hiep, Vu-Van; Koo, In-Soo

    2016-03-31

    This paper considers cognitive radio networks (CRNs) utilizing multiple time-slotted primary channels in which cognitive users (CUs) are powered by energy harvesters. The CUs are under the consideration that hardware constraints on radio devices only allow them to sense and transmit on one channel at a time. For a scenario where the arrival of harvested energy packets and the battery capacity are finite, we propose a scheme to optimize (i) the channel-sensing schedule (consisting of finding the optimal action (silent or active) and sensing order of channels) and (ii) the optimal transmission energy set corresponding to the channels in the sensing order for the operation of the CU in order to maximize the expected throughput of the CRN over multiple time slots. Frequency-switching delay, energy-switching cost, correlation in spectrum occupancy across time and frequency and errors in spectrum sensing are also considered in this work. The performance of the proposed scheme is evaluated via simulation. The simulation results show that the throughput of the proposed scheme is greatly improved, in comparison to related schemes in the literature. The collision ratio on the primary channels is also investigated.

  6. A New Energy-Efficient Topology for Wireless Body Area Networks.

    Science.gov (United States)

    Rostampour, Ameneh; Moghim, Neda; Kaedi, Marjan

    2017-01-01

    Wireless body area networks consist of several devices placed on the human body, sensing vital signs and providing remote recognition of health disorders. Low power consumption is crucial in these networks. A new energy-efficient topology is provided in this paper, considering relay and sensor nodes' energy consumption and network maintenance costs. In this topology design, relay nodes, placed on the cloth, are used to help the sensor nodes forwarding data to the sink. Relay nodes' situation is determined such that the relay nodes' energy consumption merges the uniform distribution. Simulation results show that the proposed method increases the lifetime of the network with nearly uniform distribution of the relay nodes' energy consumption. Furthermore, this technique simultaneously reduces network maintenance costs and continuous replacements of the designer clothing. The proposed method also determines the way by which the network traffic is split and multipath routed to the sink.

  7. On the Design of Energy Efficient Optical Networks with Software Defined Networking Control Across Core and Access Networks

    DEFF Research Database (Denmark)

    Wang, Jiayuan; Yan, Ying; Dittmann, Lars

    2013-01-01

    This paper presents a Software Defined Networking (SDN) control plane based on an overlay GMPLS control model. The SDN control platform manages optical core networks (WDM/DWDM networks) and the associated access networks (GPON networks), which makes it possible to gather global information...

  8. Parental influences on children's self-regulation of energy intake: Insights from developmental literature on emotion regulation

    Science.gov (United States)

    This article examines the role of parents in the development of children's self-regulation of energy intake. Various paths of parental influence are offered based on the literature on parental influences on children's emotion self-regulation. The parental paths include modeling, responses to childre...

  9. Hydra: an Energy-efficient and Reconfigurable Network Interface

    NARCIS (Netherlands)

    van de Burgwal, M.D.; Smit, Gerardus Johannes Maria; Rauwerda, G.K.; Heysters, P.M.

    In heterogeneous tiled System-on-Chip architectures a Network-on-Chip is used to transport messages between processing elements. A reconfigurable network interface is used to connect the processing elements to the Network-on-Chip, converting the messages between both domains. This paper introduces

  10. Simple, Reliable, Scalable and Energy Efficient Wireless Sensor Networks

    NARCIS (Netherlands)

    Guo, C.

    2010-01-01

    Wireless communication and networking technology has facilitated people to be connected with each other closely. Cellular network is evolving now from the third generation to the fourth generation. In the meanwhile we are experiencing the demand for wireless networks which can facilitate the

  11. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    Science.gov (United States)

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  12. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Directory of Open Access Journals (Sweden)

    E. Golden Julie

    2016-01-01

    Full Text Available Wireless sensor networks (WSNs consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  13. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Science.gov (United States)

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  14. AN ENERGY EFFICIENT FITNESS BASED ROUTING PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    A. Balamurugan

    2014-03-01

    Full Text Available A wireless sensor network is a self-organized multi hop network that consists of a large number of sensor nodes. The efficiency of the sensor networks depends upon the routing protocol used. There are different routing protocols exists to extend the network lifetime by efficiently consuming the energy of the nodes. The nodes have limited energy resources and are battery powered. Therefore, designing an effective routing protocol that conserve scarce energy resources is the major critical issue in WSN. In this paper, a Fitness based Routing Protocol (FRP is proposed to optimize energy efficient data transmission. The energy consumption of nodes is reduced by selecting the nodes with minimum hop count and distance. Genetic algorithm is used as an optimization technique to find the fitted node based on its fitness value. The FRP could increase the network lifetime and throughput comparing to the other protocols. The protocol could also reduce the packet loss and end – end delay.

  15. OPEN: Optimized Path Planning Algorithm with Energy Efficiency and Extending Network - Lifetime in WSN

    Directory of Open Access Journals (Sweden)

    Syed Bilal Hussain Shah

    2017-01-01

    Full Text Available In Wireless Sensors Networks (WSNs, researcher’s main focus is on energy preservation and prolonging network lifetime. More energy resources are required in case of remote applications of WSNs, where some of the nodes die early that shorten the lifetime and decrease the stability of the network. It is mainly caused due to the non-optimal Cluster Heads (CHs selection based on single criterion and uneven distribution of energy. We propose a new clustering protocol for both homogeneous and heterogeneous environments, named as Optimized Path planning algorithm with Energy efficiency and Extending Network lifetime in WSN (OPEN. In the proposed protocol, timer value concept is used for CH selection based on multiple criteria. Simulation results prove that OPEN performs better than the existing protocols in terms of the network lifetime, throughput and stability. The results explicitly explain the cluster head selection of OPEN protocol and efficient solution of uneven energy distribution problem.

  16. Reliable monitoring and controling of energy transport networks; Energietransportnetze zuverlaessig ueberwachen und steuern

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Hans-Joachim [Keymile GmbH, Hannover (Germany). Consulting and Projects

    2013-06-01

    Energy suppliers distribute their products often over long distances. For a long time, monitoring data and control data are exchanged in supply networks and transport networks. The necessary data lines and data networks are typically arranged in parallel to the power supply routes. Increasing demands on the transmission rate and hence the bandwidth of such remote systems are not easy to fulfill. But the today's broadcast technology provides cost-effective solutions also for cable networks which exist for decades.

  17. Public utilities in networks: competition perspectives and new regulations; Services publics en reseau: perspectives de concurrence et nouvelles regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bergougnoux, J

    2000-07-01

    This report makes first a status about the historical specificities, the present day situation and the perspectives of evolution of public utilities in networks with respect to the European directive of 1996 and to the 4 sectors of electricity, gas, railway transport and postal service. Then, it wonders about the new institutions and regulation procedures to implement to conciliate the public utility mission with the honest competition. (J.S.)

  18. Systems glycobiology: biochemical reaction networks regulating glycan structure and function.

    Science.gov (United States)

    Neelamegham, Sriram; Liu, Gang

    2011-12-01

    There is a growing use of bioinformatics based methods in the field of Glycobiology. These have been used largely to curate glycan structures, organize array-based experimental data and display existing knowledge of glycosylation-related pathways in silico. Although the cataloging of vast amounts of data is beneficial, it is often a challenge to gain meaningful mechanistic insight from this exercise alone. The development of specific analysis tools to query the database is necessary. If these queries can integrate existing knowledge of glycobiology, new insights may be gained. Such queries that couple biochemical knowledge and mathematics have been developed in the field of Systems Biology. The current review summarizes the current state of the art in the application of computational modeling in the field of Glycobiology. It provides (i) an overview of experimental and online resources that can be used to construct glycosylation reaction networks, (ii) mathematical methods to formulate the problem including a description of ordinary differential equation and logic-based reaction networks, (iii) optimization techniques that can be applied to fit experimental data for the purpose of model reconstruction and for evaluating unknown model parameters, (iv) post-simulation analysis methods that yield experimentally testable hypotheses and (v) a summary of available software tools that can be used by non-specialists to perform many of the above functions. © The Author 2011. Published by Oxford University Press. All rights reserved.

  19. Systems glycobiology: biochemical reaction networks regulating glycan structure and function

    Science.gov (United States)

    Neelamegham, Sriram; Liu, Gang

    2011-01-01

    There is a growing use of bioinformatics based methods in the field of Glycobiology. These have been used largely to curate glycan structures, organize array-based experimental data and display existing knowledge of glycosylation-related pathways in silico. Although the cataloging of vast amounts of data is beneficial, it is often a challenge to gain meaningful mechanistic insight from this exercise alone. The development of specific analysis tools to query the database is necessary. If these queries can integrate existing knowledge of glycobiology, new insights may be gained. Such queries that couple biochemical knowledge and mathematics have been developed in the field of Systems Biology. The current review summarizes the current state of the art in the application of computational modeling in the field of Glycobiology. It provides (i) an overview of experimental and online resources that can be used to construct glycosylation reaction networks, (ii) mathematical methods to formulate the problem including a description of ordinary differential equation and logic-based reaction networks, (iii) optimization techniques that can be applied to fit experimental data for the purpose of model reconstruction and for evaluating unknown model parameters, (iv) post-simulation analysis methods that yield experimentally testable hypotheses and (v) a summary of available software tools that can be used by non-specialists to perform many of the above functions. PMID:21436236

  20. Regulation of Energy Balance by Inflammation: Common Theme in Physiology and Pathology

    OpenAIRE

    Wang, Hui; Ye, Jianping

    2015-01-01

    Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and ...

  1. Prediction of Industrial Electric Energy Consumption in Anhui Province Based on GA-BP Neural Network

    Science.gov (United States)

    Zhang, Jiajing; Yin, Guodong; Ni, Youcong; Chen, Jinlan

    2018-01-01

    In order to improve the prediction accuracy of industrial electrical energy consumption, a prediction model of industrial electrical energy consumption was proposed based on genetic algorithm and neural network. The model use genetic algorithm to optimize the weights and thresholds of BP neural network, and the model is used to predict the energy consumption of industrial power in Anhui Province, to improve the prediction accuracy of industrial electric energy consumption in Anhui province. By comparing experiment of GA-BP prediction model and BP neural network model, the GA-BP model is more accurate with smaller number of neurons in the hidden layer.

  2. Pacemaker neuron and network oscillations depend on a neuromodulator-regulated linear current

    Directory of Open Access Journals (Sweden)

    Shunbing Zhao

    2010-05-01

    Full Text Available Linear leak currents have been implicated in the regulation of neuronal excitability, generation of neuronal and network oscillations, and network state transitions. Yet, few studies have directly tested the dependence of network oscillations on leak currents or explored the role of leak currents on network activity. In the oscillatory pyloric network of decapod crustaceans neuromodulatory inputs are necessary for pacemaker activity. A large subset of neuromodulators is known to activate a single voltage-gated inward current IMI, which has been shown to regulate the rhythmic activity of the network and its pacemaker neurons. Using the dynamic clamp technique, we show that the crucial component of IMI for the generation of oscillatory activity is only a close-to-linear portion of the current-voltage relationship. The nature of this conductance is such that the presence or the absence of neuromodulators effectively regulates the amount of leak current and the input resistance in the pacemaker neurons. When deprived of neuromodulatory inputs, pyloric oscillations are disrupted; yet, a linear reduction of the total conductance in a single neuron within the pacemaker group recovers not only the pacemaker activity in that neuron, but also leads to a recovery of oscillations in the entire pyloric network. The recovered activity produces proper frequency and phasing that is similar to that induced by neuromodulators. These results show that the passive properties of pacemaker neurons can significantly affect their capacity to generate and regulate the oscillatory activity of an entire network, and that this feature is exploited by neuromodulatory inputs.

  3. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    Science.gov (United States)

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  4. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-04-07

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes.

  5. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  6. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ehsan Ahvar

    2014-01-01

    attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  7. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  8. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  9. Energy Efficient Four Level Cooperative Opportunistic Communication for Wireless Personal Area Networks (WPAN)

    DEFF Research Database (Denmark)

    Rohokale, Vandana M.; Inamdar, Sandeep; Prasad, Neeli R.

    2013-01-01

    For wireless sensor networks (WSN),energy is a scarce resource. Due to limited battery resources, the energy consumption is the critical issue for the transmission as well as reception of the signals in the wireless communication. WSNs are infrastructure-less shared network demanding more energy ...... the proposed mechanism to be energy efficient. This paper further proposes four levels of cooperative data transmission from source to destination to improve network coverage with energy efficiency....... consumption due to collaborative transmissions. This paper proposes a new cooperative opportunistic four level model for IEEE 802.15.4 Wireless Personal Area Network (WPAN).The average per node energy consumption is observed merely about 0.17mJ for the cooperative wireless communication which proves...

  10. Model Analysis of Energy Network System in Zero Emission Industrial Park

    Science.gov (United States)

    Shimazaki, Yoichi

    The aim of this study was to evaluate energy saving in cases of introducing both a cogeneration system and an energy network in Kokubo Industrial Park. The industrial park has implemented zero emission activities since 1992. The energy data of 22 factories were classified into steam, hot water, heating, cooling and electric power on the basis of interviews. The author developed an energy network model based on linear programming, so as to minimize the total system cost. The industrial park was divided into a 10,000 square meter mesh in order to take steam transport into consideration. Three cases were investigated. The ratio of energy saving to demand reached 22% compared with the reference system. It was found that the energy network system could correspond to the energy demand seasonally. This is useful for the stable supply of energy, prevention of air pollution, and improvement of urban design.

  11. Bayesian networks applied to process diagnostics. Applications in energy industry

    Energy Technology Data Exchange (ETDEWEB)

    Widarsson, Bjoern (ed.); Karlsson, Christer; Dahlquist, Erik [Maelardalen Univ., Vaesteraas (Sweden); Nielsen, Thomas D.; Jensen, Finn V. [Aalborg Univ. (Denmark)

    2004-10-01

    Uncertainty in process operation occurs frequently in heat and power industry. This makes it hard to find the occurrence of an abnormal process state from a number of process signals (measurements) or find the correct cause to an abnormality. Among several other methods, Bayesian Networks (BN) is a method to build a model which can handle uncertainty in both process signals and the process itself. The purpose of this project is to investigate the possibilities to use BN for fault detection and diagnostics in combined heat and power industries through execution of two different applications. Participants from Aalborg University represent the knowledge of BN and participants from Maelardalen University have the experience from modelling heat and power applications. The co-operation also includes two energy companies; Elsam A/S (Nordjyllandsverket) and Maelarenergi AB (Vaesteraas CHP-plant), where the two applications are made with support from the plant personnel. The project ended out in two quite different applications. At Nordjyllandsverket, an application based (due to the lack of process knowledge) on pure operation data is build with capability to detect an abnormal process state in a coal mill. Detection is made through a conflict analysis when entering process signals into a model built by analysing the operation database. The application at Maelarenergi is built with a combination of process knowledge and operation data and can detect various faults caused by the fuel. The process knowledge is used to build a causal network structure and the structure is then trained by data from the operation database. Both applications are made as off-online applications, but they are ready for being run on-line. The performance of fault detection and diagnostics are good, but a lack of abnormal process states with known cause reduces the evaluation possibilities. Advantages with combining expert knowledge of the process with operation data are the possibility to represent

  12. Molecular signaling networks in regulation of immunity and disease

    DEFF Research Database (Denmark)

    Laursen, Janne Marie; Jensen, Stina Rikke; Sørensen, Morten

    The gut microbiota, host tissues, and the immune system form a complex network where extensive crosstalk and molecular interactions substantially impact the overall state of the system. Concomitantly, modulation of host immune function is recurrently a result of the interaction of complex......), plays a crucial role in shaping the nature of the adaptive/memorybased immune response after encountering inflammatory compounds. In the gut, the DC is continuously exposed to microbial and dietary components that are recognized by its innate pattern recognition receptors, and the phenotype developed...... and dynamic microbial communities with the immune cell compartment in the gut, and therefore the interaction between components from different gut bacteria can efficiently shape the phenotype of the immune response. A specialized antigenpresenting cell present at mucosal surfaces, the dendritic cell (DC...

  13. Bi-directional astrocytic regulation of neuronal activity within a network

    Science.gov (United States)

    Gordleeva, S. Yu; Stasenko, S. V.; Semyanov, A. V.; Dityatev, A. E.; Kazantsev, V. B.

    2012-01-01

    The concept of a tripartite synapse holds that astrocytes can affect both the pre- and post-synaptic compartments through the Ca2+-dependent release of gliotransmitters. Because astrocytic Ca2+ transients usually last for a few seconds, we assumed that astrocytic regulation of synaptic transmission may also occur on the scale of seconds. Here, we considered the basic physiological functions of tripartite synapses and investigated astrocytic regulation at the level of neural network activity. The firing dynamics of individual neurons in a spontaneous firing network was described by the Hodgkin–Huxley model. The neurons received excitatory synaptic input driven by the Poisson spike train with variable frequency. The mean field concentration of the released neurotransmitter was used to describe the presynaptic dynamics. The amplitudes of the excitatory postsynaptic currents (PSCs) obeyed the gamma distribution law. In our model, astrocytes depressed the presynaptic release and enhanced the PSCs. As a result, low frequency synaptic input was suppressed while high frequency input was amplified. The analysis of the neuron spiking frequency as an indicator of network activity revealed that tripartite synaptic transmission dramatically changed the local network operation compared to bipartite synapses. Specifically, the astrocytes supported homeostatic regulation of the network activity by increasing or decreasing firing of the neurons. Thus, the astrocyte activation may modulate a transition of neural network into bistable regime of activity with two stable firing levels and spontaneous transitions between them. PMID:23129997

  14. Energy- and Cost-Efficient 5G Networks in Rural Areas

    OpenAIRE

    Yu, Yiting

    2016-01-01

    Energy- and cost-efficiency is becoming a criteria of ever increasing importance in the design of 5G wireless solutions, especially for suburban and rural areas where the realistic barrier of providing mobile broadband service lies in the economic drawback of low revenue potential. Thus net-work operators are highly sensitive to the energy performance and economic affordability of potential solutions in futuristic 5G wireless network.In this thesis, we investigate the energy performance of 5G...

  15. Energy saving techniques applied over a nation-wide mobile network

    DEFF Research Database (Denmark)

    Perez, Eva; Frank, Philipp; Micallef, Gilbert

    2014-01-01

    Traffic carried over wireless networks has grown significantly in recent years and actual forecasts show that this trend is expected to continue. However, the rapid mobile data explosion and the need for higher data rates comes at a cost of increased complexity and energy consumption of the mobile...... on the energy consumption based on a nation-wide network of a leading European operator. By means of an extensive analysis, we show that with the proposed techniques significant energy savings can be realized....

  16. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Science.gov (United States)

    Xiao, Fei; Gao, Lin; Ye, Yusen; Hu, Yuxuan; He, Ruijie

    2016-01-01

    Combining path consistency (PC) algorithms with conditional mutual information (CMI) are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference), to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  17. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...... for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly...

  18. Counter-Based Broadcast Scheme Considering Reachability, Network Density, and Energy Efficiency for Wireless Sensor Networks.

    Science.gov (United States)

    Jung, Ji-Young; Seo, Dong-Yoon; Lee, Jung-Ryun

    2018-01-04

    A wireless sensor network (WSN) is emerging as an innovative method for gathering information that will significantly improve the reliability and efficiency of infrastructure systems. Broadcast is a common method to disseminate information in WSNs. A variety of counter-based broadcast schemes have been proposed to mitigate the broadcast-storm problems, using the count threshold value and a random access delay. However, because of the limited propagation of the broadcast-message, there exists a trade-off in a sense that redundant retransmissions of the broadcast-message become low and energy efficiency of a node is enhanced, but reachability become low. Therefore, it is necessary to study an efficient counter-based broadcast scheme that can dynamically adjust the random access delay and count threshold value to ensure high reachability, low redundant of broadcast-messages, and low energy consumption of nodes. Thus, in this paper, we first measure the additional coverage provided by a node that receives the same broadcast-message from two neighbor nodes, in order to achieve high reachability with low redundant retransmissions of broadcast-messages. Second, we propose a new counter-based broadcast scheme considering the size of the additional coverage area, distance between the node and the broadcasting node, remaining battery of the node, and variations of the node density. Finally, we evaluate performance of the proposed scheme compared with the existing counter-based broadcast schemes. Simulation results show that the proposed scheme outperforms the existing schemes in terms of saved rebroadcasts, reachability, and total energy consumption.

  19. Analyzing fixed points of intracellular regulation networks with interrelated feedback topology

    Directory of Open Access Journals (Sweden)

    Radde Nicole

    2012-06-01

    Full Text Available Abstract Background Modeling the dynamics of intracellular regulation networks by systems of ordinary differential equations has become a standard method in systems biology, and it has been shown that the behavior of these networks is often tightly connected to the network topology. We have recently introduced the circuit-breaking algorithm, a method that uses the network topology to construct a one-dimensional circuit-characteristic of the system. It was shown that this characteristic can be used for an efficient calculation of the system’s fixed points. Results Here we extend previous work and show several connections between the circuit-characteristic and the stability of fixed points. In particular, we derive a sufficient condition on the characteristic for a fixed point to be unstable for certain graph structures and demonstrate that the characteristic does not contain the information to decide whether a fixed point is asymptotically stable. All statements are illustrated on biological network models. Conclusions Single feedback circuits and their role for complex dynamic behavior of biological networks have extensively been investigated, but a transfer of most of these concepts to more complex topologies is difficult. In this context, our algorithm is a powerful new approach for the analysis of regulation networks that goes beyond single isolated feedback circuits.

  20. EPMOSt: An Energy-Efficient Passive Monitoring System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Fernando P. Garcia

    2014-06-01

    Full Text Available Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN. In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios.

  1. EPMOSt: an energy-efficient passive monitoring system for wireless sensor networks.

    Science.gov (United States)

    Garcia, Fernando P; Andrade, Rossana M C; Oliveira, Carina T; de Souza, José Neuman

    2014-06-19

    Monitoring systems are important for debugging and analyzing Wireless Sensor Networks (WSN). In passive monitoring, a monitoring network needs to be deployed in addition to the network to be monitored, named the target network. The monitoring network captures and analyzes packets transmitted by the target network. An energy-efficient passive monitoring system is necessary when we need to monitor a WSN in a real scenario because the lifetime of the monitoring network is extended and, consequently, the target network benefits from the monitoring for a longer time. In this work, we have identified, analyzed and compared the main passive monitoring systems proposed for WSN. During our research, we did not identify any passive monitoring system for WSN that aims to reduce the energy consumption of the monitoring network. Therefore, we propose an Energy-efficient Passive MOnitoring SysTem for WSN named EPMOSt that provides monitoring information using a Simple Network Management Protocol (SNMP) agent. Thus, any management tool that supports the SNMP protocol can be integrated with this monitoring system. Experiments with real sensors were performed in several scenarios. The results obtained show the energy efficiency of the proposed monitoring system and the viability of using it to monitor WSN in real scenarios.

  2. Improvement and rationalization of nuclear energy laws and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chum; Kim, Hak Man; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2002-03-15

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea.

  3. Improvement and rationalization of nuclear energy laws and regulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mo Sung; Chung, Gum Chun; Kim, Hak Man; Oh, Ho Chul [Cheongju Univ., Cheongju (Korea, Republic of)

    2001-03-15

    Since the present legal system on nuclear safety regulation has some problems that refer to contents of regulatory provisions, this mid-report has preformed research on the legal basic theory of nuclear safety regulation. And then secondly this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation. In order to interpret easily this report finally took the cases of judicial precedents on nuclear safety regulation in USA, Germany, Japan and Korea.

  4. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes

    Science.gov (United States)

    Aoh, Quyen L.; Graves, Lee M.; Duncan, Mara C.

    2011-01-01

    Glucose is a rich source of energy and the raw material for biomass increase. Many eukaryotic cells remodel their physiology in the presence and absence of glucose. The yeast Saccharomyces cerevisiae undergoes changes in transcription, translation, metabolism, and cell polarity in response to glucose availability. Upon glucose starvation, translation initiation and cell polarity are immediately inhibited, and then gradually recover. In this paper, we provide evidence that, as in cell polarity and translation, traffic at the trans-Golgi network (TGN) and endosomes is regulated by glucose via an unknown mechanism that depends on protein kinase A (PKA). Upon glucose withdrawal, clathrin adaptors exhibit a biphasic change in localization: they initially delocalize from the membrane within minutes and later partially recover onto membranes. Additionally, the removal of glucose induces changes in posttranslational modifications of adaptors. Ras and Gpr1 signaling pathways, which converge on PKA, are required for changes in adaptor localization and changes in posttranslational modifications. Acute inhibition of PKA demonstrates that inhibition of PKA prior to glucose withdrawal prevents several adaptor responses to starvation. This study demonstrates that PKA activity prior to glucose starvation primes membrane traffic at the TGN and endosomes in response to glucose starvation. PMID:21832155

  5. Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Liaqat, Misbah; Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram; Ali, Rana Liaqat

    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results.

  6. GRAdient Cost Establishment (GRACE for an Energy-Aware Routing in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Noor M. Khan

    2009-01-01

    Full Text Available In Wireless Sensor Network (WSN, the nodes have limitations in terms of energy-constraint, unreliable links, and frequent topology change. In this paper we propose an energy-aware routing protocol, that outperforms the existing ones with an enhanced network lifetime and more reliable data delivery. Major issues in the design of a routing strategy in wireless sensor networks are to make efficient use of energy and to increase reliability in data delivery. The proposed approach reduces both energy consumption and communication-bandwidth requirements and prolongs the lifetime of the wireless sensor network. Using both analysis and extensive simulations, we show that the proposed dynamic routing helps achieve the desired system performance under dynamically changing network conditions. The proposed algorithm is compared with one of the best existing routing algorithms, GRAB. Moreover, a modification in GRAB is proposed which not only improves its performance but also prolongs its lifetime.

  7. Statistical analysis of the spatial distribution of operons in the transcriptional regulation network of Escherichia coli

    OpenAIRE

    Warren, P. B.; Wolde, P.R. ten

    2003-01-01

    We have performed a statistical analysis of the spatial distribution of operons in the transcriptional regulation network of Escherichia coli. The analysis reveals that operons that regulate each other and operons that are coregulated tend to lie next to each other on the genome. Moreover, these pairs of operons tend to be transcribed in diverging directions. This spatial arrangement of operons allows the upstream regulatory regions to interfere with each other. This affords additional regula...

  8. Effects of continuous positive airway pressure on energy balance regulation: a systematic review

    OpenAIRE

    Shechter, Ari

    2016-01-01

    Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in weight gain.

  9. Inside the black box: incentive regulation and incentive channeling on energy markets

    NARCIS (Netherlands)

    K. Heine (Klaus)

    2013-01-01

    textabstractThis paper aims to achieve more insight into the complex interplay between the "external" market regulations and "internal" regulations (corporate governance) of energy firms. In recent years, many countries have deregulated the incumbent energy monopolies and have introduced new modes

  10. Craving Facebook? Behavioral addiction to online social networking and its association with emotion regulation deficits.

    Science.gov (United States)

    Hormes, Julia M; Kearns, Brianna; Timko, C Alix

    2014-12-01

    To assess disordered online social networking use via modified diagnostic criteria for substance dependence, and to examine its association with difficulties with emotion regulation and substance use. Cross-sectional survey study targeting undergraduate students. Associations between disordered online social networking use, internet addiction, deficits in emotion regulation and alcohol use problems were examined using univariate and multivariate analyses of covariance. A large University in the Northeastern United States. Undergraduate students (n = 253, 62.8% female, 60.9% white, age mean = 19.68, standard deviation = 2.85), largely representative of the target population. The response rate was 100%. Disordered online social networking use, determined via modified measures of alcohol abuse and dependence, including DSM-IV-TR diagnostic criteria for alcohol dependence, the Penn Alcohol Craving Scale and the Cut-down, Annoyed, Guilt, Eye-opener (CAGE) screen, along with the Young Internet Addiction Test, Alcohol Use Disorders Identification Test, Acceptance and Action Questionnaire-II, White Bear Suppression Inventory and Difficulties in Emotion Regulation Scale. Disordered online social networking use was present in 9.7% [n = 23; 95% confidence interval (5.9, 13.4)] of the sample surveyed, and significantly and positively associated with scores on the Young Internet Addiction Test (P social networking sites is potentially addictive. Modified measures of substance abuse and dependence are suitable in assessing disordered online social networking use. Disordered online social networking use seems to arise as part of a cluster of symptoms of poor emotion regulation skills and heightened susceptibility to both substance and non-substance addiction. © 2014 Society for the Study of Addiction.

  11. Regulatory feedback loops bridge the human gene regulatory network and regulate carcinogenesis.

    Science.gov (United States)

    Chen, Yun-Ru; Huang, Hsuan-Cheng; Lin, Chen-Ching

    2017-11-29

    The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Stimulus-Specific Transcriptional Regulation Within the p53 Network

    Science.gov (United States)

    Donner, Aaron Joseph; Hoover, Jennifer Michelle; Szostek, Stephanie Aspen; Espinosa, Joaquín Maximiliano

    2010-01-01

    The p53 transcriptional network is composed of hundreds of effector genes involved in varied stress-response pathways, including cell cycle arrest and apoptosis. It is not clear how distinct p53 target genes are differentially activated to trigger stress-specific biological responses. We analyzed the p53 transcriptional program upon activation by two DNA-damaging agents, UVC and doxorubicin, versus the non-genotoxic molecule Nutlin-3. In colorectal cancer cells, UVC triggers apoptosis, doxorubicin induces transient cell cycle arrest followed by apoptosis, and Nutlin-3 leads to cell cycle arrest with no significant apoptosis. Quantitative gene expression analysis allowed us to group p53 target genes into three main classes according to their activation profiles in each scenario. The CDK-inhibitor p21 was classified as a Class I gene, being significantly activated under cell cycle arrest conditions (i.e., doxorubicin and Nutlin-3) but not during UVC-induced apoptosis. Chromatin immunoprecipitation analysis of the p21 locus indicates that the level of p53-dependent transcription is determined by the effects of stimulus-specific transcriptional coregulators acting downstream of p53 binding and histone acetylation. In particular, our analysis indicates that the subunits of the CDK-module of the human Mediator complex function as stimulus-specific positive coregulators of p21 transcription. PMID:17957141

  13. Dopamine Autoreceptor Regulation of a Hypothalamic Dopaminergic Network

    Directory of Open Access Journals (Sweden)

    Stefanos Stagkourakis

    2016-04-01

    Full Text Available How autoreceptors contribute to maintaining a stable output of rhythmically active neuronal circuits is poorly understood. Here, we examine this issue in a dopamine population, spontaneously oscillating hypothalamic rat (TIDA neurons, that underlie neuroendocrine control of reproduction and neuroleptic side effects. Activation of dopamine receptors of the type 2 family (D2Rs at the cell-body level slowed TIDA oscillations through two mechanisms. First, they prolonged the depolarizing phase through a combination of presynaptic increases in inhibition and postsynaptic hyperpolarization. Second, they extended the discharge phase through presynaptic attenuation of calcium currents and decreased synaptic inhibition. Dopamine reuptake blockade similarly reconfigured the oscillation, indicating that ambient somatodendritic transmitter concentration determines electrical behavior. In the absence of D2R feedback, however, discharge was abolished by depolarization block. These results indicate the existence of an ultra-short feedback loop whereby neuroendocrine dopamine neurons tune network behavior to echoes of their own activity, reflected in ambient somatodendritic dopamine, and also suggest a mechanism for antipsychotic side effects.

  14. An evolutionary triple helix to strengthen energy regulation: Implications for management

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Francesco; Borzoni, Matteo

    2010-09-15

    Regulation is the basic tool to implement energy policy. The evolution of the regulation is influenced by its impacts on the industrial activities. Consequently, entrepreneurs acts in a continuously adapting-by-interacting environment. Both from a systemic and an atomistic perspective, this paper provides a theoretical framework for energy regulation development in order to support management implications. This work builds on the triple helix model and extends it to energy regulation development processes. It concludes that the analysis of intangible resources and their related services at inter-organizational level is fundamental to guide companies in designing win-win corporate strategies and in their operazionalization.

  15. HypoxamiRs : Regulators of cardiac hypoxia and energy metabolism

    NARCIS (Netherlands)

    Azzouzi, Hamid el; Leptidis, Stefanos; Doevendans, Pieter A.; De Windt, Leon J.

    2015-01-01

    Hypoxia and its intricate regulation are at the epicenter of cardiovascular research. Mediated by hypoxia-inducible factors as well as by several microRNAs, recently termed 'hypoxamiRs', hypoxia affects several cardiac pathophysiological processes. Hypoxia is the driving force behind the regulation

  16. Energy Savings through Site Renewal in an HSPA/LTE Network Evolution Scenario

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben

    Mobile network operators are committing themselves to reduce the energy consumption of their networks. However, the expected growth in traffic and the upgrades required to sustain this growth pose a serious question on whether these targets are achievable. Through a case study, this paper looks...... at how the energy consumption of a mobile network is likely to develop over a period of nine years, considering the evolution of an existing HSPA layer into a multi-layered (HSPA+LTE) network. Besides, this study also considers four different equipment versions released throughout the years, which...

  17. The Kinetic Energy of Hydrocarbons as a Function of Electron Density and Convolutional Neural Networks

    CERN Document Server

    Yao, Kun

    2015-01-01

    We demonstrate a convolutional neural network trained to reproduce the Kohn-Sham kinetic energy of hydrocarbons from electron density. The output of the network is used as a non-local correction to the conventional local and semi-local kinetic functionals. We show that this approximation qualitatively reproduces Kohn-Sham potential energy surfaces when used with conventional exchange correlation functionals. Numerical noise inherited from the non-linearity of the neural network is identified as the major challenge for the model. Finally we examine the features in the density learned by the neural network to anticipate the prospects of generalizing these models.

  18. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer.

    Science.gov (United States)

    Dong, Bo; Biswas, Subir; Montoye, Alexander; Pfeiffer, Karin

    2013-01-01

    This paper presents the implementation details, system architecture and performance of a wearable sensor network that was designed for human activity recognition and energy expenditure estimation. We also included ActiGraph GT3X+ as a popular single sensor solution for detailed comparison with the proposed wearable sensor network. Linear regression and Artificial Neural Network are implemented and tested. Through a rigorous system study and experiment, it is shown that the wearable multi-sensor network outperforms the single sensor solution in terms of energy expenditure estimation.

  19. Energy Efficient Interest Forwarding in NDN-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shuai Gao

    2016-01-01

    Full Text Available Recently there has been a new emerging trend in integrating Named Data Networking (NDN and wireless sensor networks (WSNs together to implement real data-centric Internet of Things (IoT. However, the main solutions in current literature lack energy efficient design to meet the severely limited energy resources in WSNs. In this paper, we propose a dual mode Interest forwarding scheme (called DMIF in short for NDN-based WSNs. The DMIF consists of two combined forwarding modes, in which several energy efficient mechanisms including flexible mode shift, flooding scope control, broadcast storm avoidance, packet suppression, and energy weight factors are designed to save and balance the energy consumption. We extend the ndnSIM to support wireless multihop communication to validate the proposed scheme. Simulation experiments show that the DMIF outperforms the baseline schemes in terms of total energy consumption, energy equilibrium rate, and network lifetime.

  20. The effect of building regulations on energy consumption in single family houses in Denmark

    DEFF Research Database (Denmark)

    Kjærbye, Vibeke; Larsen, Anders; Togeby, Mikael

    advanced econometric methods we examine differences in heating energy consumption due to different building regulation requirements at the time of house construction. As for the effect of the building regulation, we find that changes in Danish building regulations have led to significant reductions...

  1. An Empirical Approach Towards Zero Energy Networks (ZEN)

    NARCIS (Netherlands)

    Tamma, V.P.

    2012-01-01

    Information and Communication Technology (ICT) is changing the way we live and has become an essential part of our life. With the advent of Internet of Things (IoT), and Wireless Sensor Networks (WSN) in particular, the number of devices that are networked is increasing exponentially over the years.

  2. Exergy and Energy Analysis of Low Temperature District Heating Network

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    . The network thermal and hydraulic conditions were simulated under steady state with an in-house district heating network design and simulation code. Through simulation, the overall system energetic and exergetic efficiencies were calculated and the exergy losses for the major district heating system...

  3. Energy-aware Wireless Multi-hop Networks

    NARCIS (Netherlands)

    Vazifehdan, J.

    2011-01-01

    Wireless networks have provided us a variety of services which facilitate communication between people beyond the physical boundaries. Mobile telephony, mobile Internet and high-deffnition video calls are examples of services supported by modern networks nowadays. Beyond this, enhancements in

  4. On the Throughput and Energy Benefits of Network Coded Cooperation

    DEFF Research Database (Denmark)

    Hernandez, Nestor; Heide, Janus; Roetter, Daniel Enrique Lucani

    2014-01-01

    Cooperative techniques in wireless mobile networks typically leverage short-range communication technologies, e.g., WiFi, to allow data exchange between devices forming a mobile cloud. These mobile clouds have been considered as a key to reduce the cost of multicast services for the network opera...

  5. Protocol of networks using energy sharing collisions of bright solitons

    Indian Academy of Sciences (India)

    Soliton network; coupled nonlinear Schrödinger system; bright soliton; soliton collision. PACS Nos 42.65.Tg; 02.30. .... CNLS equations, we shall explore the dynamics of solitons in simple networks, i.e., PSG. In §4, the conclusion is ...... KS thank the Principal and management of Bishop Heber College for constant support.

  6. Stability-Aware Geographic Routing in Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Hieu, Tran Dinh; Dung, Le The; Kim, Byung-Seo

    2016-05-14

    A new generation of wireless sensor networks that harvest energy from environmental sources such as solar, vibration, and thermoelectric to power sensor nodes is emerging to solve the problem of energy limitation. Based on the photo-voltaic model, this research proposes a stability-aware geographic routing for reliable data transmissions in energy-harvesting wireless sensor networks (EH-WSNs) to provide a reliable routes selection method and potentially achieve an unlimited network lifetime. Specifically, the influences of link quality, represented by the estimated packet reception rate, on network performance is investigated. Simulation results show that the proposed method outperforms an energy-harvesting-aware method in terms of energy consumption, the average number of hops, and the packet delivery ratio.

  7. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li

    2013-06-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  8. IMPROVING THE TRANSMISSION PERFORMANCE BASED ON MINIMIZING ENERGY IN MOBILE ADHOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Gundala Swathi

    2015-06-01

    Full Text Available Networking is collectively no of mobile nodes allocate users to correctly detect a distant environment. These wireless mobile networks want strong but simple, scalable, energy efficient and also self organize routing algorithms. In Mobile technology small quantity of power electronics and less power radio frequency have permit the expansion of small, comparatively economical and less power nodes, are associated in a wireless mobile networkIn this study we proposed method are: energy effectiveness, energetic occurrence zone and multiple hop TRANSMIT, taking into concern between the energy of transmit nodes and distance from the transmit node to the trusted neighbor node, link weight energy utilization and distance are measured as most important constraint for decide on greatest possible path from Zone Head (ZH to the neighbor node. In this we use the different constraints and lessen the quantity of distribution messages during the Transmit node choice point to decrease the energy utilization of the complete network.

  9. Low energy class 1 typehouses according to the Danish building regulations

    DEFF Research Database (Denmark)

    Rose, Jørgen; Kragh, Jesper; Svendsen, Svend

    2008-01-01

    In 2005 the Danish Building regulations introduced two low energy classes for buildings in addition to tightened minimum requirements. The low energy class 1 and low energy class 2 correspond to total energy use, i.e. energy use for heating, ventilation, cooling and domestic hot water, as 50...... it is expected that the minimum demand will correspond to the low energy class 1 demands of today. In order to secure this development in the building regulations, it is essential to support the development of low energy solutions and demonstrate that the goal is well within reach of the Danish building industry....... This paper describes the development of a low energy class 1 typehouse. The house is based on a standard typehouse, and through an optimization process of the building constructions and heating and ventilation systems, the total energy use for the typehouse has been reduced in order to meet the low energy...

  10. Developmental gene x environment interactions affecting systems regulating energy homeostasis and obesity.

    Science.gov (United States)

    Levin, Barry E

    2010-07-01

    Most human obesity is inherited as a polygenic trait which is largely refractory to medical therapy because obese individuals avidly defend their elevated body weight set-point. This set-point is mediated by an integrated neural network that controls energy homeostasis. Epidemiological studies suggest that perinatal and pre-pubertal environmental factors can promote offspring obesity. Rodent studies demonstrate the important interactions between genetic predisposition and environmental factors in promoting obesity. This review covers issues of development and function of neural systems involved in the regulation of energy homeostasis and the roles of leptin and insulin in these processes, the ways in which interventions at various phases from gestation, lactation and pre-pubertal stages of development can favorably and unfavorably alter the development of obesity n offspring. These studies suggest that early identification of obesity-prone humans and of the factors that can prevent them from becoming obese could provide an effective strategy for preventing the world-wide epidemic of obesity. Published by Elsevier Inc.

  11. EDOVE: Energy and Depth Variance-Based Opportunistic Void Avoidance Scheme for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Bouk, Safdar Hussain; Ahmed, Syed Hassan; Park, Kyung-Joon; Eun, Yongsoon

    2017-09-26

    Underwater Acoustic Sensor Network (UASN) comes with intrinsic constraints because it is deployed in the aquatic environment and uses the acoustic signals to communicate. The examples of those constraints are long propagation delay, very limited bandwidth, high energy cost for transmission, very high signal attenuation, costly deployment and battery replacement, and so forth. Therefore, the routing schemes for UASN must take into account those characteristics to achieve energy fairness, avoid energy holes, and improve the network lifetime. The depth based forwarding schemes in literature use node's depth information to forward data towards the sink. They minimize the data packet duplication by employing the holding time strategy. However, to avoid void holes in the network, they use two hop node proximity information. In this paper, we propose the Energy and Depth variance-based Opportunistic Void avoidance (EDOVE) scheme to gain energy balancing and void avoidance in the network. EDOVE considers not only the depth parameter, but also the normalized residual energy of the one-hop nodes and the normalized depth variance of the second hop neighbors. Hence, it avoids the void regions as well as balances the network energy and increases the network lifetime. The simulation results show that the EDOVE gains more than 15 % packet delivery ratio, propagates 50 % less copies of data packet, consumes less energy, and has more lifetime than the state of the art forwarding schemes.

  12. Green cooperative communication network using solar energy sources

    OpenAIRE

    Sanjay kumar; jaya diptilal; S.V charhate

    2016-01-01

    Solar energy has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies supportive of renewable energy development and utilization. This study analyzes the technical, economic and policy aspects of solar energy development and deployment. While the cost of solar energy has declined rapidly in the recent past, it still remains much higher than the cost of conventional energy technologies. Like other ...

  13. The regulation of social recognition, social communication and aggression: vasopressin in the social behavior neural network.

    Science.gov (United States)

    Albers, H Elliott

    2012-03-01

    Neuropeptides in the arginine vasotocin/arginine vasopressin (AVT/AVP) family play a major role in the regulation of social behavior by their actions in the brain. In mammals, AVP is found within a circuit of recriprocally connected limbic structures that form the social behavior neural network. This review examines the role played by AVP within this network in controlling social processes that are critical for the formation and maintenance of social relationships: social recognition, social communication and aggression. Studies in a number of mammalian species indicate that AVP and AVP V1a receptors are ideally suited to regulate the expression of social processes because of their plasticity in response to factors that influence social behavior. The pattern of AVP innervation and V1a receptors across the social behavior neural network may determine the potential range and intensity of social responses that individuals display in different social situations. Although fundamental information on how social behavior is wired in the brain is still lacking, it is clear that different social behaviors can be influenced by the actions of AVP in the same region of the network and that AVP can act within multiple regions of this network to regulate the expression of individual social behaviors. The existing data suggest that AVP can influence social behavior by modulating the interpretation of sensory information, by influencing decision making and by triggering complex motor outputs. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. A Biologically Inspired Energy-Efficient Duty Cycle Design Method for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    2017-01-01

    Full Text Available The recent success of emerging wireless sensor networks technology has encouraged researchers to develop new energy-efficient duty cycle design algorithm in this field. The energy-efficient duty cycle design problem is a typical NP-hard combinatorial optimization problem. In this paper, we investigate an improved elite immune evolutionary algorithm (IEIEA strategy to optimize energy-efficient duty cycle design scheme and monitored area jointly to enhance the network lifetimes. Simulation results show that the network lifetime of the proposed IEIEA method increased compared to the other two methods, which means that the proposed method improves the full coverage constraints.

  15. EHRA: Specification and Analysis of Energy-Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Dung, Phan Anh; Hansen, Michael Reichhardt; Madsen, Jan

    2014-01-01

    to study wireless sensor networks (WSN) with energy-harvesting capabilities. The purpose of the framework is to analyze WSNs at a high level of abstraction, that is, before the protocols are implemented and before the WSN is deployed. The conceptual basis of EHRA comprises the environment, the medium...... is developed as a simulator implemented using the functional programming language F#. This simulator is used to analyze global properties of WSNs such as network fragmentation,routing trends, and energy profiles for the nodes. Three routing protocols, with a progression in the energy-harvesting awareness......, are analyzed on a network that is placed in a heterogeneous environment....

  16. Economic Assessment of Network-Constrained Transactive Energy for Managing Flexible Demand in Distribution Systems

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Xue, Yusheng

    2017-01-01

    The increasing number of distributed energy resources such as electric vehicles and heat pumps connected to power systems raises operational challenges to the network operator, for example, introducing grid congestion and voltage deviations in the distribution network level if their operations...... are not properly coordinated. Coordination and control of a large number of distributed energy resources requires innovative approaches. In this paper, we follow up on a recently proposed network-constrained transactive energy (NCTE) method for scheduling of electric vehicles and heat pumps within a retailer...

  17. Limiting Energy Consumption by Decreasing Packets Retransmissions in 5G Network

    Directory of Open Access Journals (Sweden)

    Łukasz Apiecionek

    2017-01-01

    Full Text Available This article presents the potential of using Multipath Transmission Control Protocol for limiting the energy consumption in 5G network. The number of errors occurring during packet transmissions and in effect the number of retransmissions affect the consumption of energy by the devices in the network. The paper analyzes the potential energy savings from implementing an algorithm for detecting problems and predicting the future retransmissions. Although this is the main object of the paper, it must be emphasized that the proposed method also allows increasing the speed of transmission and improving the security of the data and it is easy to implement in 5G networks.

  18. Predicting the parameters of energy installations with laser ignition: Neural network models

    Directory of Open Access Journals (Sweden)

    Alexey A. Pastukhov

    2015-06-01

    Full Text Available This article considers the possibility of using artificial neural networks for predicting the parameters of the model energy installation with laser ignition. The main stages of creating a prognostic model based on an artificial neural network have been presented. Input data were analyzed by principal component method. The synthesized neural network was designed to predict the parameter value of the model in question. The artificial neural network was trained by a back-propagation algorithm. The efficiency of the artificial neural networks and their applicability to predicting parameter values of various rocket engine elements were demonstrated.

  19. Energy Efficient Link Aware Routing with Power Control in Wireless Ad Hoc Networks.

    Science.gov (United States)

    Katiravan, Jeevaa; Sylvia, D; Rao, D Srinivasa

    2015-01-01

    In wireless ad hoc networks, the traditional routing protocols make the route selection based on minimum distance between the nodes and the minimum number of hop counts. Most of the routing decisions do not consider the condition of the network such as link quality and residual energy of the nodes. Also, when a link failure occurs, a route discovery mechanism is initiated which incurs high routing overhead. If the broadcast nature and the spatial diversity of the wireless communication are utilized efficiently it becomes possible to achieve improvement in the performance of the wireless networks. In contrast to the traditional routing scheme which makes use of a predetermined route for packet transmission, such an opportunistic routing scheme defines a predefined forwarding candidate list formed by using single network metrics. In this paper, a protocol is proposed which uses multiple metrics such as residual energy and link quality for route selection and also includes a monitoring mechanism which initiates a route discovery for a poor link, thereby reducing the overhead involved and improving the throughput of the network while maintaining network connectivity. Power control is also implemented not only to save energy but also to improve the network performance. Using simulations, we show the performance improvement attained in the network in terms of packet delivery ratio, routing overhead, and residual energy of the network.

  20. Recovery Act: Energy Efficiency of Data Networks through Rate Adaptation (EEDNRA) - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Andrews; Spyridon Antonakopoulos; Steve Fortune; Andrea Francini; Lisa Zhang

    2011-07-12

    This Concept Definition Study focused on developing a scientific understanding of methods to reduce energy consumption in data networks using rate adaptation. Rate adaptation is a collection of techniques that reduce energy consumption when traffic is light, and only require full energy when traffic is at full provisioned capacity. Rate adaptation is a very promising technique for saving energy: modern data networks are typically operated at average rates well below capacity, but network equipment has not yet been designed to incorporate rate adaptation. The Study concerns packet-switching equipment, routers and switches; such equipment forms the backbone of the modern Internet. The focus of the study is on algorithms and protocols that can be implemented in software or firmware to exploit hardware power-control mechanisms. Hardware power-control mechanisms are widely used in the computer industry, and are beginning to be available for networking equipment as well. Network equipment has different performance requirements than computer equipment because of the very fast rate of packet arrival; hence novel power-control algorithms are required for networking. This study resulted in five published papers, one internal report, and two patent applications, documented below. The specific technical accomplishments are the following: • A model for the power consumption of switching equipment used in service-provider telecommunication networks as a function of operating state, and measured power-consumption values for typical current equipment. • An algorithm for use in a router that adapts packet processing rate and hence power consumption to traffic load while maintaining performance guarantees on delay and throughput. • An algorithm that performs network-wide traffic routing with the objective of minimizing energy consumption, assuming that routers have less-than-ideal rate adaptivity. • An estimate of the potential energy savings in service-provider networks

  1. Current trends in targeting the hormonal regulation of appetite and energy balance to treat obesity

    OpenAIRE

    Valentino, Michael A; Colon-Gonzalez, Francheska; Lin, Jieru E.; Waldman, Scott A.

    2010-01-01

    With the eruption of the obesity pandemic over the past few decades, much research has been devoted to understanding the molecular mechanisms by which the human body regulates energy balance. These studies have revealed several mediators, including gut/pancreatic/adipose hormones and neuropeptides that control both short- and long-term energy balance by regulating appetite and/or metabolism. These endogenous mediators of energy balance have been the focus of many anti-obesity drug-development...

  2. Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation.

    Science.gov (United States)

    Pietak, Alexis; Levin, Michael

    2017-09-01

    Gene regulatory networks (GRNs) describe interactions between gene products and transcription factors that control gene expression. In combination with reaction-diffusion models, GRNs have enhanced comprehension of biological pattern formation. However, although it is well known that biological systems exploit an interplay of genetic and physical mechanisms, instructive factors such as transmembrane potential (Vmem) have not been integrated into full GRN models. Here we extend regulatory networks to include bioelectric signalling, developing a novel synthesis: the bioelectricity-integrated gene and reaction (BIGR) network. Using in silico simulations, we highlight the capacity for Vmem to alter steady-state concentrations of key signalling molecules inside and out of cells. We characterize fundamental feedbacks where Vmem both controls, and is in turn regulated by, biochemical signals and thereby demonstrate Vmem homeostatic control, Vmem memory and Vmem controlled state switching. BIGR networks demonstrating hysteresis are identified as a mechanisms through which more complex patterns of stable Vmem spots and stripes, along with correlated concentration patterns, can spontaneously emerge. As further proof of principle, we present and analyse a BIGR network model that mechanistically explains key aspects of the remarkable regenerative powers of creatures such as planarian flatworms. The functional properties of BIGR networks generate the first testable, quantitative hypotheses for biophysical mechanisms underlying the stability and adaptive regulation of anatomical bioelectric pattern. © 2017 The Author(s).

  3. Survey of energy harvesting and energy scavenging approaches for on-site powering of wireless sensor- and microinstrument-networks

    Science.gov (United States)

    Lee, D.; Dulai, G.; Karanassios, Vassili

    2013-05-01

    Energy (or power) harvesting can be defined as the gathering and either storing or immediately using energy "freely" available in a local environment. Examples include harvesting energy from obvious sources such as photon-fluxes (e.g., solar), or wind or water waves, or from unusual sources such as naturally occurring pH differences. Energy scavenging can be defined as gathering and storing or immediately re-using energy that has been discarded, for instance, waste heat from air conditioning units, from in-door lights or from everyday actions such as walking or from body-heat. Although the power levels that can be harvested or scavenged are typically low (e.g., from nWatt/cm2 to mWatt/cm2), the key motivation is to harvest or to scavenge energy for a wide variety of applications. Example applications include powering devices in remote weather stations, or wireless Bluetooth headsets, or wearable computing devices or for sensor networks for health and bio-medical applications. Beyond sensors and sensor networks, there is a need to power compete systems, such as portable and energy-autonomous chemical analysis microinstruments for use on-site. A portable microinstrument is one that offers the same functionality as a large one but one that has at least one critical component in the micrometer regime. This paper surveys continuous or discontinuous energy harvesting and energy scavenging approaches (with particular emphasis on sensor and microinstrument networks) and it discusses current trends. It also briefly explores potential future directions, for example, for nature-inspired (e.g., photosynthesis), for human-power driven (e.g., for biomedical applications, or for wearable sensor networks) or for nanotechnology-enabled energy harvesting and energy scavenging approaches.

  4. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  5. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  6. Energy Efficiency and Network Performance: A Reality Check in SDN-Based 5G Systems

    Directory of Open Access Journals (Sweden)

    Leonardo Ochoa-Aday

    2017-12-01

    Full Text Available The increasing power consumption and related environmental implications currently generated by large data networks have become a major concern over the last decade. Given the drastic traffic increase expected in 5G dense environments, the energy consumption problem becomes even more concerning and challenging. In this context, Software-Defined Networks (SDN, a key technology enabler for 5G systems, can be seen as an attractive solution. In these programmable networks, an energy-aware solution could be easily implemented leveraging the capabilities provided by control and data plane separation. This paper investigates the impact of energy-aware routing on network performance. To that end, we propose a novel energy-aware mechanism that reduces the number of active links in SDN with multiple controllers, considering in-band control traffic. The proposed strategy exploits knowledge of the network topology combined with traffic engineering techniques to reduce the overall power consumption. Therefore, two heuristic algorithms are designed: a static network configuration and a dynamic energy-aware routing. Significant values of switched-off links are reached in the simulations where real topologies and demands data are used. Moreover, the obtained results confirm that crucial network parameters such as control traffic delay, data path latency, link utilization and Ternary Content Addressable Memory (TCAM occupation are affected by the performance-agnostic energy-aware model.

  7. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  8. Issues in federal preemption of state appliance energy efficiency regulations

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.M.; Balistocky, S.; Schaefler, A.M.

    1982-12-01

    The findings and conclusions of the analysis of the various issues involved in the federal preemption of state regulations for the DOE no standard rule on covered appliances are summarized. The covered products are: refrigerators, refrigerator-freezers, freezers, clothes dryers, kitchen ranges and ovens, water heaters (excluding heat pump water heaters), room air conditioners, central air conditioners (excluding heat pumps), and furnaces. A detailed discussion of the rationale for the positions of groups offering comment for the record is presneted. The pertinent categories of state and local regulations and programs are explained, then detailed analysis is conducted on the covered products and regulations. Issues relating to the timing of preemption of state regulations are discussed, as well as issues relating to burden of proof, contents of petitions for exemptions from preemption, criteria for evaluating petitions, and procedural and other issues. (LEW)

  9. ENERGY EFFICIENCY ANALYSIS OF ERROR CORRECTION TECHNIQUES IN UNDERWATER WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    M. NORDIN B. ZAKARIA

    2011-02-01

    Full Text Available Research in underwater acoustic networks has been developed rapidly to support large variety of applications such as mining equipment and environmental monitoring. As in terrestrial sensor networks; reliable data transport is demanded in underwater sensor networks. The energy efficiency of error correction technique should be considered because of the severe energy constraints of underwater wireless sensor networks. Forward error correction (FEC andautomatic repeat request (ARQ are the two main error correction techniques in underwater networks. In this paper, a mathematical energy efficiency analysis for FEC and ARQ techniques in underwater environment has been done based on communication distance and packet size. The effects of wind speed, and shipping factor are studied. A comparison between FEC and ARQ in terms of energy efficiency is performed; it is found that energy efficiency of both techniquesincreases with increasing packet size in short distances, but decreases in longer distances. There is also a cut-off distance below which ARQ is more energy efficient than FEC, and after which FEC is more energy efficient than ARQ. This cut-off distance decreases by increasing wind speed. Wind speed has great effecton energy efficiency where as shipping factor has unnoticeable effect on energy efficiency for both techniques.

  10. A Distance-Based Energy Aware Routing Algorithm for Wireless Sensor Networks

    Science.gov (United States)

    Wang, Jin; Kim, Jeong-Uk; Shu, Lei; Niu, Yu; Lee, Sungyoung

    2010-01-01

    Energy efficiency and balancing is one of the primary challenges for wireless sensor networks (WSNs) since the tiny sensor nodes cannot be easily recharged once they are deployed. Up to now, many energy efficient routing algorithms or protocols have been proposed with techniques like clustering, data aggregation and location tracking etc. However, many of them aim to minimize parameters like total energy consumption, latency etc., which cause hotspot nodes and partitioned network due to the overuse of certain nodes. In this paper, a Distance-based Energy Aware Routing (DEAR) algorithm is proposed to ensure energy efficiency and energy balancing based on theoretical analysis of different energy and traffic models. During the routing process, we consider individual distance as the primary parameter in order to adjust and equalize the energy consumption among involved sensors. The residual energy is also considered as a secondary factor. In this way, all the intermediate nodes will consume their energy at similar rate, which maximizes network lifetime. Simulation results show that the DEAR algorithm can reduce and balance the energy consumption for all sensor nodes so network lifetime is greatly prolonged compared to other routing algorithms. PMID:22163422

  11. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin

    OpenAIRE

    Asakawa, A; Inui, A; Fujimiya, M; Sakamaki, R; Shinfuku, N; Ueta, Y; Meguid, M M; Kasuga, M

    2005-01-01

    Background/Aims: The gastric peptide ghrelin, an endogenous ligand for growth-hormone secretagogue receptor, has two major molecular forms: acylated ghrelin and desacyl ghrelin. Acylated ghrelin induces a positive energy balance, while desacyl ghrelin has been reported to be devoid of any endocrine activities. The authors examined the effects of desacyl ghrelin on energy balance.

  12. Adaptive Security in ODMAC for Multihop Energy Harvesting Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Di Mauro, Alessio; Fafoutis, Xenofon; Dragoni, Nicola

    2015-01-01

    Energy Harvesting Wireless Sensor Networks (EH-WSNs) represent an interesting new paradigm where individual nodes forming a network are powered by energy sources scavenged from the surrounding environment. This technique provides numerous advantages, but also new design challenges. Securing...... the communications under energy constraints represents one of these key challenges. The amount of energy available is theoretically infinite in the long run but highly variable over short periods of time, and managing it is a crucial aspect. In this paper we present an adaptive approach for security in multihop EH......-WSNs which allows different nodes to dynamically choose the most appropriate energy-affecting parameters such as encryption algorithm and key size, providing in this way energy savings. In order to provide evidence of the approach's feasibility in a real-world network, we have designed and implemented...

  13. Analysing Renewable Energy Source Impacts on Power System National Network Code

    Directory of Open Access Journals (Sweden)

    Georgiana Balaban

    2017-08-01

    Full Text Available This paper analyses the impact on renewable energy sources integrated into the Romanian power system on the electrical network operation considering the reduction of electricity consumption with respect to the 1990s. This decrease has led to increased difficulties in integrating the renewable energy sources into the power system (network reinforcements, as well as issues concerning the balance of production/consumption. Following the excess of certain proportions of the energy mix, intermittent renewable energy sources require the expansion of networks, storage, back-up capacities and efforts for a flexible consumption, in the absence of which renewable energy sources cannot be used or the grid can be overloaded. To highlight the difficulty of connecting some significant capacities installed in wind power plants and photovoltaic installation, the paper presents a case study for Dobrogea area that has the most installed capacity from renewable energy sources in operation.

  14. A Framework for the Estimation and Validation of Energy Consumption in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Alexandros Karagiannis

    2015-01-01

    Full Text Available Body sensor networks and implantable and ingestible medical devices energy efficiency is a substantial key factor in network lifetime and functionality. This work confronts the nodes’ energy problem by establishing a unified energy consumption framework comprised of theoretical model, energy simulator model, and electronic metering modules that can be attached to the nodes. A theoretical analysis, a simulation procedure, and the design and development of three prototype electronic metering modules are presented in this paper. We discuss the accuracy of the proposed techniques, towards a unified framework for the a priori estimation of the energy consumption in commercial sensor nodes, taking into account the application functionality and the energy properties of the incorporated electronics. Moreover, body network nodes are considered for the application and the measurements of the proposed framework.

  15. Energy Efficient AODV Routing in CDMA Ad Hoc Networks Using Beamforming

    Directory of Open Access Journals (Sweden)

    Nie Nie

    2006-01-01

    Full Text Available We propose an energy aware on-demand routing protocol for CDMA mobile ad hoc networks, for which improvements in the energy consumption are realized by both introducing an energy-based routing measure and by enhancing the physical layer performance using beamforming. Exploiting the cross-layer interactions between the network and the physical layer leads to a significant improvement in the energy efficiency compared with the traditional AODV protocol, and provides an alternative solution of link breakage detection in traditional AODV protocol. Several performance measures are considered for evaluating the network performance, such as data energy consumption, latency, and overhead energy consumption. An optimum SIR threshold range is determined experimentally for various implementation scenarios.

  16. A Low Energy Algorithm of Wireless Sensor Networks Based on Fractal Dimension

    Directory of Open Access Journals (Sweden)

    Ting Dong

    2014-05-01

    Full Text Available For the energy limitation of nodes and imbalance energy consuming among nodes, this paper proposes an optimization algorithm --Low Energy Algorithm-- of wireless sensor networks based on fractal dimension algorithm for the purpose of reduction of the energy consumption. The nodes in WSN cannot be located evenly, and cannot move with the monitoring environment changed once be located. Considering the characteristics of WSN, the paper designs an optimized clustering method accompany with dimension by calculating the dimension of each cluster to determine the cluster which needs to be adjusted dynamically. If the cluster with high value of dimension, increasing more nodes in this cluster. If the cluster with low value of dimension, reducing more nodes in the cluster. The simulation results show that the LEA algorithm improves energy efficiency, prolongs the network lifetime, and balances energy consumption in the sensor network.

  17. ENERGY EFFICIENT ROUTING IN COGNITIVE RADIO NETWORKS: CHALLENGES AND EXISTING SOLUTIONS

    Directory of Open Access Journals (Sweden)

    K. Lakshmana Rao

    2015-03-01

    Full Text Available Dynamic Spectrum Allocation using Cognitive Radio (CR is a promising solution to the spectrum availability problem in wireless networks. Cognitive Radio, however, opens up certain new issues, mainly at the physical, medium access control and routing layer levels. Several solutions have been proposed to tackle these issues and use dynamic spectrum allocation to improve the performance of wireless networks. The focus of most of these has been to improve the throughput and other Quality of Service (QoS metrics. However, energy spent by a node is also an important matter of concern in most wireless networks e.g. wireless sensor networks. In this paper, we focus on the challenges posed by CR in routing data in an energy efficient manner. We then study some existing solutions to route data energy efficiently in CR networks and suggest some directions for future research.

  18. Realistic Energy Saving Potential of Sleep Mode for Existing and Future Mobile Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Saker, Louai; Elayoubi, Salah Eddine

    2012-01-01

    This paper presents an extensive overview on an energy saving feature referred to as ‘site sleep mode’, designed for existing and future mobile broadband networks. In addition to providing a detailed understanding of the main concept, the paper also provides various studies and results to highlight...... potential savings, and emphasize some of the expected limitations. Since site measurements show that the energy consumption of base station sites is largely load-independent, this makes such a feature highly effective for reducing the energy consumption of mobile networks during hours of low traffic. After...... going through a number of different alternatives of the feature, this is applied to different network topologies, macro-only based networks, and a set of heterogeneous networks that employ the use of small cells in traffic hotspots. Results obtained through detailed case studies show that sleep mode can...

  19. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC.

    Science.gov (United States)

    Vallardi, Giulia; Cordeiro, Marilia Henriques; Saurin, Adrian Thomas

    2017-01-01

    The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.

  20. Endocrine-disrupting chemicals and the regulation of energy balance.

    Science.gov (United States)

    Nadal, Angel; Quesada, Ivan; Tudurí, Eva; Nogueiras, Rubén; Alonso-Magdalena, Paloma

    2017-09-01

    Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.