WorldWideScience

Sample records for network protocol suite

  1. Telemetry Standards, IRIG Standard 106-17, Chapter 22, Network Based Protocol Suite

    Science.gov (United States)

    2017-07-01

    frames shall support 48-bit locally and universally administered addresses in a manner consistent with IEEE 802.3-2012, Section 1, Clause 3, Paragraph ...3.2.3, and Clause 4, Paragraph 4.2. Data link frame structures shall support type-encapsulated and length-encapsulated frames as specified in IEEE...802.3-2012, Section 1, Clause 3, Paragraph 3.2.6. 22.2.2.2 Media Access Control NetworkNodes shall support the MAC protocols specified in IEEE 802.3

  2. QoS signaling across heterogeneous wired/wireless networks: resource management in diffserv using the NSIS protocol suite

    NARCIS (Netherlands)

    Bader, Attila; Karagiannis, Georgios; Westberg, Lars; Kappler, Cornelia; Phelan, Tom; Tschofenig, Hannes; Heijenk, Geert; Shen, S.

    2005-01-01

    Reservation-based Quality of Service (QoS) in a mixed wireless and wireline environment requires an end-to-end signaling protocol that is capable of adapting to the idiosyncrasies of the different networks. The QoS NSIS Signaling Protocol (QoSNSLP) has been created by the Next Steps In Signaling

  3. Network Protocols

    NARCIS (Netherlands)

    Tanenbaum, A.S.

    1981-01-01

    Dunng the last ten years, many computer networks have been designed, implemented, and put into service in the United States, Canada, Europe, Japan, and elsewhere. From the experience obtamed with these networks, certain key design principles have begun to emerge, principles that can be used to

  4. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Angelica Lo Duca

    2012-11-01

    Full Text Available In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead.

  5. A secure communication suite for underwater acoustic sensor networks.

    Science.gov (United States)

    Dini, Gianluca; Lo Duca, Angelica

    2012-11-07

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead.

  6. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  7. ANTP Protocol Suite Software Implementation Architecture in Python

    Science.gov (United States)

    2011-06-03

    lasting stable end-to-end paths do not exist. The remainder of this paper is organized as follows: Section II gives the background of the ANTP suite...and gives future directions for this work. II . BACKGROUND This section gives an overview of the protocols found in the ANTP suite, as well as the...represented as GeolocationTuple. The AeroRP class has two public functions designed to be used by AeroNP clases : • next–hop is a function that determines the

  8. An Authentication Protocol for Future Sensor Networks.

    Science.gov (United States)

    Bilal, Muhammad; Kang, Shin-Gak

    2017-04-28

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN

  9. Internet protocol network mapper

    Science.gov (United States)

    Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.

    2016-02-23

    A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.

  10. Network Virtualization Protocols

    OpenAIRE

    Fornazarič, Nejc

    2014-01-01

    Server virtualization is a widespread and well known technology that has fundamentally changed the operations in data centers. Virtual servers and data storage can be fast and easily provisioned. On the other hand network requires a lot of administrative changes and configurations that increase time of adoption. The consequences of server virtualization are changed requirements for network resources therefore the next logical step is network virtualization. The different approaches for netwo...

  11. Network Coding Designs Suited for the Real World

    DEFF Research Database (Denmark)

    Pedersen, Morten Videbæk; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2013-01-01

    Network coding (NC) has attracted tremendous attention from the research community due to its potential to significantly improve networks' throughput, delay, and energy performance as well as a means to simplify protocol design and naturally providing security support. The possibilities in code d...... practical pitfalls, this paper seeks to identify key ingredients to a successful design, critical and common limitations to most intra-session NC systems as well as promising techniques and ideas to guide future models and research problems grounded on practical concerns....

  12. Embedded Network Protocols for Mobile Devices

    Science.gov (United States)

    Galataki, Despo; Radulescu, Andrei; Verstoep, Kees; Fokkink, Wan

    Embedded networks for chip-to-chip networks are emerging as communication infrastructure in mobile devices. We present three novel embedded network protocols: a sliding window protocol, a protocol for opening and closing connections, and a bandwidth reservation protocol. The design of these protocols is tailored to the low power and low cost requirements of mobile devices. The model checker SPIN played an important role in the design and analysis of these protocols. Large instances of the protocols could be analyzed successfully using the distributed model checker DiVinE.

  13. Rationale, Scenarios, and Profiles for the Application of the Internet Protocol Suite (IPS) in Space Operations

    Science.gov (United States)

    Benbenek, Daniel B.; Walsh, William

    2010-01-01

    This greenbook captures some of the current, planned and possible future uses of the Internet Protocol (IP) as part of Space Operations. It attempts to describe how the Internet Protocol is used in specific scenarios. Of primary focus is low-earth-orbit space operations, which is referred to here as the design reference mission (DRM). This is because most of the program experience drawn upon derives from this type of mission. Application profiles are provided. This includes parameter settings programs have proposed for sending IP datagrams over CCSDS links, the minimal subsets and features of the IP protocol suite and applications expected for interoperability between projects, and the configuration, operations and maintenance of these IP functions. Of special interest is capturing the lessons learned from the Constellation Program in this area, since that program included a fairly ambitious use of the Internet Protocol.

  14. Effective Protocols for Mobile Communications and Networking

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, J.; Sholander, P.; Van Leeuwen, B,

    1998-12-01

    This report examines methods of mobile communications with an emphasis on mobile computing and wireless communications. Many of the advances in communications involve the use of Internet Protocol (IP), Asynchronous Transfer Mode (ATM), and ad hoc network protocols. However, many of the advances in these protocols have been focused on wired communications. Recently much focus has been directed at advancing communication technology in the area of mobile wireless networks. This report discusses various protocols used in mobile communications and proposes a number of extensions to existing protocols. A detailed discussion is also included on desirable protocol characteristics and evaluation criteria. In addition, the report includes a discussion on several network simulation tools that maybe used to evaluate network protocols.

  15. Protocols for multi-satellite networks

    Science.gov (United States)

    Shacham, Nachum

    The unique features of a multisatellite network, which distinguish it from ordinary terrestrial networks, are the large propagation delay on the links, the constant changes in the network topology, and additional constraints such as limitation on power consumption. It is noted that ordinary protocols, which are designed to operate in stable, benign environments, will perform poorly under the dynamic conditions of multisatellite network. The author analyzes the limitations to existing protocols and describes protocols, such as routing, topology control, and reliable transport, that are suitable for multisatellite networks.

  16. Generalized routing protocols for multihop relay networks

    KAUST Repository

    Khan, Fahd Ahmed

    2011-07-01

    Performance of multihop cooperative networks depends on the routing protocols employed. In this paper we propose the last-n-hop selection protocol, the dual path protocol, the forward-backward last-n-hop selection protocol and the forward-backward dual path protocol for the routing of data through multihop relay networks. The average symbol error probability performance of the schemes is analysed by simulations. It is shown that close to optimal performance can be achieved by using the last-n-hop selection protocol and its forward-backward variant. Furthermore we also compute the complexity of the protocols in terms of number of channel state information required and the number of comparisons required for routing the signal through the network. © 2011 IEEE.

  17. Network Coding Protocols for Smart Grid Communications

    DEFF Research Database (Denmark)

    Prior, Rui; Roetter, Daniel Enrique Lucani; Phulpin, Yannick

    2014-01-01

    We propose a robust network coding protocol for enhancing the reliability and speed of data gathering in smart grids. At the heart of our protocol lies the idea of tunable sparse network coding, which adopts the transmission of sparsely coded packets at the beginning of the transmission process b...

  18. Modeling Oxygen Prebreathe Protocols for Exploration Extravehicular Activities Using Variable Pressure Suits

    Science.gov (United States)

    Abercromby, Andrew F. J.; Conkin, Johnny; Gernhardt, Michael L.

    2017-01-01

    Exploration missions are expected to use variable pressure extravehicular activity (EVA) spacesuits as well as a spacecraft "exploration atmosphere" of 56.5 kPa (8.2 psia), 34% O2, both of which provide the possibility of reducing the oxygen prebreathe times necessary to reduce decompression sickness (DCS) risk. Previous modeling work predicted 8.4% DCS risk for an EVA beginning at the exploration atmosphere, followed by 15 minutes of in-suit O2 prebreathe, and 6 hours of EVA at 29.6 kPa (4.3 psia). In this study we model notional prebreathe protocols for a variable pressure suit where the exploration atmosphere is unavailable.

  19. In-Suit Light Exercise (ISLE) Prebreathe Protocol Peer Review Assessment. Volume 1

    Science.gov (United States)

    Brady, Timothy K.; Polk, James D.

    2011-01-01

    The performance of extravehicular activity (EVA) by National Aeronautics and Space Administration astronauts involves the risk of decompression sickness. This risk has been mitigated by the use of oxygen "prebreathe" to effectively wash out tissue nitrogen prior to each EVA. Now that the Space Shuttle Program (SSP) is being retired, high-pressure oxygen will become a limited resource. The In-Suit Light Exercise (ISLE) Prebreathe Protocol offers several potential benefits including its potential to save 6 pounds of oxygen per EVA. At the request of the NASA Engineering and Safety Center, the peer review convened on October 14, 2010. The major recommendation of the Review Committee was that the ISLE protocol was acceptable for operational use as a prebreathe option prior to EVA. The results from the peer review are contained in this document.

  20. Network Coding Protocols for Smart Grid Communications

    DEFF Research Database (Denmark)

    Prior, Rui; Roetter, Daniel Enrique Lucani; Phulpin, Yannick

    2014-01-01

    We propose a robust network coding protocol for enhancing the reliability and speed of data gathering in smart grids. At the heart of our protocol lies the idea of tunable sparse network coding, which adopts the transmission of sparsely coded packets at the beginning of the transmission process...... but then switches to a denser coding structure towards the end. Our systematic mechanism maintains the sparse structure during the recombination of packets at the intermediate nodes. The performance of our protocol is compared by means of simulations of IEEE reference grids against standard master-slave protocols...

  1. WDM network and multicasting protocol strategies.

    Science.gov (United States)

    Kirci, Pinar; Zaim, Abdul Halim

    2014-01-01

    Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM), it is easier to take the advantage of optical networks and optical burst switching (OBS) and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET) and Just In Time (JIT) reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes.

  2. WDM Network and Multicasting Protocol Strategies

    Directory of Open Access Journals (Sweden)

    Pinar Kirci

    2014-01-01

    Full Text Available Optical technology gains extensive attention and ever increasing improvement because of the huge amount of network traffic caused by the growing number of internet users and their rising demands. However, with wavelength division multiplexing (WDM, it is easier to take the advantage of optical networks and optical burst switching (OBS and to construct WDM networks with low delay rates and better data transparency these technologies are the best choices. Furthermore, multicasting in WDM is an urgent solution for bandwidth-intensive applications. In the paper, a new multicasting protocol with OBS is proposed. The protocol depends on a leaf initiated structure. The network is composed of source, ingress switches, intermediate switches, edge switches, and client nodes. The performance of the protocol is examined with Just Enough Time (JET and Just In Time (JIT reservation protocols. Also, the paper involves most of the recent advances about WDM multicasting in optical networks. WDM multicasting in optical networks is given as three common subtitles: Broadcast and-select networks, wavelength-routed networks, and OBS networks. Also, in the paper, multicast routing protocols are briefly summarized and optical burst switched WDM networks are investigated with the proposed multicast schemes.

  3. Analyzing security protocols in hierarchical networks

    DEFF Research Database (Denmark)

    Zhang, Ye; Nielson, Hanne Riis

    2006-01-01

    Validating security protocols is a well-known hard problem even in a simple setting of a single global network. But a real network often consists of, besides the public-accessed part, several sub-networks and thereby forms a hierarchical structure. In this paper we first present a process calculus...

  4. Protocols for Robotic Telescope Networks

    Directory of Open Access Journals (Sweden)

    Alain Klotz

    2010-01-01

    This paper is addressed to astronomers who are not specialists in computer science. We give explanations of some basic and advanced protocols to receive events and how to implement them in a robotic observatory software. We describe messages such as GCN notices, VOEvents or RTML, and protocols such as CGI, HTTP, SOAP, RSS, and XMPP.

  5. Delay tolerant networks protocols and applications

    CERN Document Server

    Vasilakos, Athanasios V; Spyropoulos, Thrasyvoulos

    2011-01-01

    Delay Tolerant Networks (DTN) - which include terrestrial mobile networks, exotic media networks, ad-hoc networks, and sensor networks - are becoming more important and may not be well served by the current end-to-end TCP/IP model. This book provides a self-contained, one-stop reference for researchers and practitioners who are looking toward the future of networking. The text presents a systematic exploration of DTN concepts, architectures, protocols, enabling technologies, and applications. It also discusses various challenges associated with DTN. The author includes a wealth of illustrative

  6. Protocol for Communication Networking for Formation Flying

    Science.gov (United States)

    Jennings, Esther; Okino, Clayton; Gao, Jay; Clare, Loren

    2009-01-01

    An application-layer protocol and a network architecture have been proposed for data communications among multiple autonomous spacecraft that are required to fly in a precise formation in order to perform scientific observations. The protocol could also be applied to other autonomous vehicles operating in formation, including robotic aircraft, robotic land vehicles, and robotic underwater vehicles. A group of spacecraft or other vehicles to which the protocol applies could be characterized as a precision-formation- flying (PFF) network, and each vehicle could be characterized as a node in the PFF network. In order to support precise formation flying, it would be necessary to establish a corresponding communication network, through which the vehicles could exchange position and orientation data and formation-control commands. The communication network must enable communication during early phases of a mission, when little positional knowledge is available. Particularly during early mission phases, the distances among vehicles may be so large that communication could be achieved only by relaying across multiple links. The large distances and need for omnidirectional coverage would limit communication links to operation at low bandwidth during these mission phases. Once the vehicles were in formation and distances were shorter, the communication network would be required to provide high-bandwidth, low-jitter service to support tight formation-control loops. The proposed protocol and architecture, intended to satisfy the aforementioned and other requirements, are based on a standard layered-reference-model concept. The proposed application protocol would be used in conjunction with conventional network, data-link, and physical-layer protocols. The proposed protocol includes the ubiquitous Institute of Electrical and Electronics Engineers (IEEE) 802.11 medium access control (MAC) protocol to be used in the datalink layer. In addition to its widespread and proven use in

  7. Operating systems and network protocols for wireless sensor networks.

    Science.gov (United States)

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  8. Mobile opportunistic networks architectures, protocols and applications

    CERN Document Server

    Denko, Mieso K

    2011-01-01

    Widespread availability of pervasive and mobile devices coupled with recent advances in networking technologies make opportunistic networks one of the most promising communication technologies for a growing number of future mobile applications. Covering the basics as well as advanced concepts, this book introduces state-of-the-art research findings, technologies, tools, and innovations. Prominent researchers from academia and industry report on communication architectures, network algorithms and protocols, emerging applications, experimental studies, simulation tools, implementation test beds,

  9. Transport Protocols for Wireless Mesh Networks

    Science.gov (United States)

    Eddie Law, K. L.

    Transmission control protocol (TCP) provides reliable connection-oriented services between any two end systems on the Internet. With TCP congestion control algorithm, multiple TCP connections can share network and link resources simultaneously. These TCP congestion control mechanisms have been operating effectively in wired networks. However, performance of TCP connections degrades rapidly in wireless and lossy networks. To sustain the throughput performance of TCP connections in wireless networks, design modifications may be required accordingly in the TCP flow control algorithm, and potentially, in association with other protocols in other layers for proper adaptations. In this chapter, we explain the limitations of the latest TCP congestion control algorithm, and then review some popular designs for TCP connections to operate effectively in wireless mesh network infrastructure.

  10. Computer network time synchronization the network time protocol

    CERN Document Server

    Mills, David L

    2006-01-01

    What started with the sundial has, thus far, been refined to a level of precision based on atomic resonance: Time. Our obsession with time is evident in this continued scaling down to nanosecond resolution and beyond. But this obsession is not without warrant. Precision and time synchronization are critical in many applications, such as air traffic control and stock trading, and pose complex and important challenges in modern information networks.Penned by David L. Mills, the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol

  11. Advanced routing protocols for wireless networks

    CERN Document Server

    Campista , Miguel Elias Mitre

    2014-01-01

    This text introduces the principles of routing protocols and metrics as they affect wireless networking environments, specifically in urban areas. Timely because of the recent rise in small city life, this topic includes the consideration of ad hoc, mesh, vehicular, sensor, and delay tolerant networks. These approaches are each unique, and author Miguel Mitre Campista provides a thorough, but accessible, explanation of their individual characteristics for engineers, computer scientists, IT professionals, and curious Internet users.

  12. Protocol and networking design issues for local access WDM networks

    NARCIS (Netherlands)

    Salvador, M.R.; Heemstra de Groot, S.M.; Niemegeers, I.G.M.M.

    This report gives an overview of some of the protocol and networking design issues that have been addressed in Flamingo, a major ongoing project which investigates the use of WDM optical technology in local access networks. Quality of service delivery and wavelength assignment are focused on in this

  13. Automatic Generation of Network Protocol Gateways

    DEFF Research Database (Denmark)

    Bromberg, Yérom-David; Réveillère, Laurent; Lawall, Julia

    2009-01-01

    The emergence of networked devices in the home has made it possible to develop applications that control a variety of household functions. However, current devices communicate via a multitude of incompatible protocols, and thus gateways are needed to translate between them.  Gateway construction......, however, requires an intimate knowledge of the relevant protocols and a substantial understanding of low-level network programming, which can be a challenge for many application programmers. This paper presents a generative approach to gateway construction, z2z, based on a domain-specific language...... for describing protocol behaviors, message structures, and the gateway logic.  Z2z includes a compiler that checks essential correctness properties and produces efficient code. We have used z2z to develop a number of gateways, including SIP to RTSP, SLP to UPnP, and SMTP to SMTP via HTTP, involving a range...

  14. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Guan

    2012-04-01

    Full Text Available Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs. Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR.We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  15. A network coding based routing protocol for underwater sensor networks.

    Science.gov (United States)

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  16. A Real-Time Multimedia Streaming Protocol for Wireless Networks

    NARCIS (Netherlands)

    Scholten, Johan; Jansen, P.G.; Hanssen, F.T.Y.; Mank, Wietse; Zwikker, Arjan

    This paper describes a new token-based medium access protocol for real-time networks and its implementation on a wireless network. Originally, the protocol is developed for use in low cost domestic or home networks that are based on Ethernet hardware. In contrast to existing protocols the token is

  17. Internet Core Protocols Help for Network Administrators

    CERN Document Server

    Hall, Eric

    2000-01-01

    If you've ever been responsible for a network, you know that sinkingfeeling: your pager has gone off at 2 a.m., the network is broken, and you can't figure out why by using a dial-in connection from home. You drive into the office, dig out your protocol analyzer, and spend the next fourhours trying to put things back together before the staff shows up for work. When this happens, you often find yourself looking at the low-level guts of the Internet protocols: you're deciphering individual packets, trying to figure out what is (or isn't) happening. Until now, the only real guide to the protoc

  18. Network protocols. Special issue; Netwerkprotocollen. Themanummer

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, G.A. [RTB Van Heugten, Nijmegen (Netherlands); Rooijakkers, G.W.J. [GTI Building Automation, Amsterdam (Netherlands); Peterse, A. [Regel Partners, Hoevelaken (Netherlands); Smits, P. [Konnex Nederland, Valkenswaard (Netherlands); Hamers, E.P. [Van Dorp Installaties, Breda (Netherlands); Van der Velden, J.A.J. [Kropman, Rijswijk (Netherlands); Van Lingen, G.; Wijn, D.M. [Engineer Johnson Controls, Gorinchem (Netherlands); Deckere, W.J.M.A. [Deerns raadgevende ingenieurs, Rijswijk (Netherlands); Driessen, B. [Saia Burgess, Gouda (Netherlands); Van Olst, K. [K en R Consultants, Deventer (Netherlands); Mosterman, F. [Wago Building Technology, Harderwijk (Netherlands); Staub, R. [BUS-House, Zuerich (Switzerland); Meiring, O.B.; Hut, W.H. [Sauter Building Control Nederland, Amsterdam (Netherlands); Tukker, A. [Webeasy Products, Sliedrecht (Netherlands); Bakker, L.G.; Soethout, L.L.; Elkhuizen, P.A. [TNO Bouw en Ondergrond, Delft (Netherlands); Haeseler, U. [TAC GmbH, Berlin (Germany); Kerdel, J.F. [Siemens Building Technologies, Zoetermeer (Netherlands); Lugt, G.L.; Draijer, G.W.

    2007-11-15

    In 20 articles attention is paid to several aspects of network protocols by means of which building automation systems can exchange data: building automation and management, history of technical installations management, the open communication standard BACnet (Building Automation and Control network), the so-called ISO/IEC domotics and communication standard KNX or Konnex, the integration of electrotechnical and engineering installations by the LonWorks technology, other standard protocols as Modbus, M-bus, OPC (OLE for Process Control), an outline of TCP/IP, smart design of networks, automation and networks and building owners, the use of BACnet and Ethernet in a renovated office building, the use of an open management network in buildings, wireless open integrated systems, terminology in network communication, the use of BACnet in combination with KNX, the impact of BACnet on building automation, the role of the installation sector in the ICT-environment, knowledge of building automation and management, regulations with respect to building automation, and BACnet MSTP (Multiple Spanning Tree Protocol) [Dutch] In 20 artikelen wordt in dit themanummer aandacht besteed aan diverse aspecten m.b.t. netwerkprotocollen waarmee verschillende automatiseringssystemen gegevens met elkaar uitwisselen: gebouwautomatisering en beheer, geschiedenis van technisch installatie beheer, de open communicatie standaard BACnet (Building Automation and Control network), de zogenaamde ISO/IEC domotica en communicatie standaard KNX of Konnex, de integratie van electrotechnische en werktuigbouwkundige installaties met behulp van de LonWorks technologie, andere standaard protocollen zoals Modbus, M-bus, OPC (OLE for Process Control), uitleg over TCP/IP, slim ontwerpen van netwerken, gebouweigenaren over automatisering en netwerken, het gebruik van BACnet en Ethernet in een tot kantoorgebouw gerenoveerd monumentaal gebouw, het gebruik van een open management netwerk in gebouwen, draadloos met

  19. Opportunistic Hybrid Transport Protocol (OHTP) for Cognitive Radio Ad Hoc Sensor Networks.

    Science.gov (United States)

    Bin Zikria, Yousaf; Nosheen, Summera; Ishmanov, Farruh; Kim, Sung Won

    2015-12-15

    The inefficient assignment of spectrum for different communications purposes, plus technology enhancements and ever-increasing usage of wireless technology is causing spectrum scarcity. To address this issue, one of the proposed solutions in the literature is to access the spectrum dynamically or opportunistically. Therefore, the concept of cognitive radio appeared, which opens up a new research paradigm. There is extensive research on the physical, medium access control and network layers. The impact of the transport layer on the performance of cognitive radio ad hoc sensor networks is still unknown/unexplored. The Internet's de facto transport protocol is not well suited to wireless networks because of its congestion control mechanism. We propose an opportunistic hybrid transport protocol for cognitive radio ad hoc sensor networks. We developed a new congestion control mechanism to differentiate true congestion from interruption loss. After such detection and differentiation, we propose methods to handle them opportunistically. There are several benefits to window- and rate-based protocols. To exploit the benefits of both in order to enhance overall system performance, we propose a hybrid transport protocol. We empirically calculate the optimal threshold value to switch between window- and rate-based mechanisms. We then compare our proposed transport protocol to Transmission Control Protocol (TCP)-friendly rate control, TCP-friendly rate control for cognitive radio, and TCP-friendly window-based control. We ran an extensive set of simulations in Network Simulator 2. The results indicate that the proposed transport protocol performs better than all the others.

  20. A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Alvarez, Fernando; Plum, Christian Edinger Munk

    2014-01-01

    . The potential for making cost-effective and energy-efficient liner-shipping networks using operations research (OR) is huge and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of airlines, railways, and general transportation companies, but within the field...... problem to be strongly NP-hard. A benchmark suite of data instances to reflect the business structure of a global liner shipping network is presented. The design of the benchmark suite is discussed in relation to industry standards, business rules, and mathematical programming. The data are based on real......-life data from the largest global liner-shipping company, Maersk Line, and supplemented by data from several industry and public stakeholders. Computational results yielding the first best known solutions for six of the seven benchmark instances is provided using a heuristic combining tabu search...

  1. Data aggregation in wireless sensor networks using the SOAP protocol

    Energy Technology Data Exchange (ETDEWEB)

    Al-Yasiri, A; Sunley, A [School of Computing, Science and Engineering, University of Salford, Greater Manchester, M5 4WT (United Kingdom)

    2007-07-15

    Wireless sensor networks (WSN) offer an increasingly attractive method of data gathering in distributed system architectures and dynamic access via wireless connectivity. Wireless sensor networks have physical and resource limitations, this leads to increased complexity for application developers and often results in applications that are closely coupled with network protocols. In this paper, a data aggregation framework using SOAP (Simple Object Access Protocol) on wireless sensor networks is presented. The framework works as a middleware for aggregating data measured by a number of nodes within a network. The aim of the study is to assess the suitability of the protocol in such environments where resources are limited compared to traditional networks.

  2. Energy Constraint Node Cache Based Routing Protocol For Adhoc Network

    OpenAIRE

    Dhiraj Nitnaware; Ajay Verma

    2010-01-01

    Mobile Adhoc Networks (MANETs) is a wireless infrastructureless network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence we require energy efficient routing protocols to optimize network performance. This paper aims to develop a new routing algorithm based on the energy status of the node cache. We have named this algorithm as ECNC_AODV (Energy Constraint Node Cache) based routing protocol which is derived from the AODV protocol. The al...

  3. Auto-configuration protocols in mobile ad hoc networks.

    Science.gov (United States)

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    The TCP/IP protocol allows the different nodes in a network to communicate by associating a different IP address to each node. In wired or wireless networks with infrastructure, we have a server or node acting as such which correctly assigns IP addresses, but in mobile ad hoc networks there is no such centralized entity capable of carrying out this function. Therefore, a protocol is needed to perform the network configuration automatically and in a dynamic way, which will use all nodes in the network (or part thereof) as if they were servers that manage IP addresses. This article reviews the major proposed auto-configuration protocols for mobile ad hoc networks, with particular emphasis on one of the most recent: D2HCP. This work also includes a comparison of auto-configuration protocols for mobile ad hoc networks by specifying the most relevant metrics, such as a guarantee of uniqueness, overhead, latency, dependency on the routing protocol and uniformity.

  4. Detailed analysis of routing protocols with different network limitations

    Science.gov (United States)

    Masood, Mohsin; Abuhelala, Mohamed; Glesk, Ivan

    2016-12-01

    In network communication field, routing protocols have got a significant role which are not only used in networks to handle the user data but also to monitor the different network environments. Dynamic routing protocols such as OSPF, EIGRP and RIP are used for forwarding user data to its destination by instantly detecting the dynamic changes across the network. The dynamic changes in the network can be in the form of topological changes, congestions, links failure etc. Therefore, it becomes a challenge to develop and implement dynamic routing protocols that fulfills the network requirements. Hence, each routing protocol has its own characteristics such as convergence activity, routing metric, routing table etc. and will perform differently in various network environments. This paper presents a comprehensive study of static and dynamic routing, along with dynamic routing protocols. Experiments that are conducted under various network limitations are presented using the OPNET tool. The performance of each of dynamic routing protocols are monitored and explained in the form of simulated results using network parameters. The results are analyzed, in order to provide a clear understanding of each protocol performance for the selection of the proper protocol for a given network environment.

  5. Ad hoc mobile wireless networks principles, protocols, and applications

    CERN Document Server

    Sarkar, Subir Kumar

    2013-01-01

    The military, the research community, emergency services, and industrial environments all rely on ad hoc mobile wireless networks because of their simple infrastructure and minimal central administration. Now in its second edition, Ad Hoc Mobile Wireless Networks: Principles, Protocols, and Applications explains the concepts, mechanism, design, and performance of these highly valued systems. Following an overview of wireless network fundamentals, the book explores MAC layer, routing, multicast, and transport layer protocols for ad hoc mobile wireless networks. Next, it examines quality of serv

  6. Enhanced SWEET protocol for energy efficient wireless sensor networks

    CSIR Research Space (South Africa)

    Dludla, AG

    2013-10-01

    Full Text Available SWEET routing protocol is one of the many pro- tocols developed for cluster formation and routing in wireless sensor networks. The SWEET protocol is a decentralized clus- tering protocol, it uses timers and interim updated cluster head estimation...

  7. Routing protocol extension for resilient GMPLS multi-domain networks

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Ruepp, Sarah Renée; Romeral, Ricardo

    2010-01-01

    This paper evaluates the performance of multi-domain networks under the Generalized Multi-Protocol Label Switching control framework in case of a single inter-domain link failure. We propose and evaluate a routing protocol extension for the Border Gateway Protocol, which allows domains to obtain...

  8. New Heterogeneous Clustering Protocol for Prolonging Wireless Sensor Networks Lifetime

    Directory of Open Access Journals (Sweden)

    Md. Golam Rashed

    2014-06-01

    Full Text Available Clustering in wireless sensor networks is one of the crucial methods for increasing of network lifetime. The network characteristics of existing classical clustering protocols for wireless sensor network are homogeneous. Clustering protocols fail to maintain the stability of the system, especially when nodes are heterogeneous. We have seen that the behavior of Heterogeneous-Hierarchical Energy Aware Routing Protocol (H-HEARP becomes very unstable once the first node dies, especially in the presence of node heterogeneity. In this paper we assume a new clustering protocol whose network characteristics is heterogeneous for prolonging of network lifetime. The computer simulation results demonstrate that the proposed clustering algorithm outperforms than other clustering algorithms in terms of the time interval before the death of the first node (we refer to as stability period. The simulation results also show the high performance of the proposed clustering algorithm for higher values of extra energy brought by more powerful nodes.

  9. Wireless sensor networks architectures and protocols

    CERN Document Server

    Callaway, Jr, Edgar H

    2003-01-01

    Introduction to Wireless Sensor NetworksApplications and MotivationNetwork Performance ObjectivesContributions of this BookOrganization of this BookThe Development of Wireless Sensor NetworksEarly Wireless NetworksWireless Data NetworksWireless Sensor and Related NetworksConclusionThe Physical LayerSome Physical Layer ExamplesA Practical Physical Layer for Wireless Sensor NetworksSimulations and ResultsConclusionThe Data Link LayerMedium Access Control TechniquesThe Mediation DeviceSystem Analysis and SimulationConclusionThe Network LayerSome Network Design ExamplesA Wireless Sensor Network De

  10. A case for evaluating sensor network protocols concurrently

    KAUST Repository

    Gnawali, Omprakash

    2010-01-01

    Researchers typically evaluate and compare protocols on the testbeds by running them one at a time. This methodology ignores the variation in link qualities and wireless environment across these experiments. These variations can introduce significant noise in the results. Evaluating two protocols concurrently, however, suffers from inter-protocol interactions. These interactions can perturb performance even under very light load, especially timing and timing sensitive protocols. We argue that the benefits of running protocols concurrently greatly outweigh the disadvantages. Protocols rarely run in isolation in real networks, and so considering such interactions is valuable. Although the wireless environment is still uncontrolled, concurrent evaluations make comparisons fair and more statistically sound. Through experiments on two testbeds, we make the case for evaluating and comparing low data-rate sensor network protocols by running them concurrently. Copyright 2010 ACM.

  11. An Efficient Congestion Control Protocol for Wired/Wireless Networks

    OpenAIRE

    Hanaa Torkey; Gamal ATTIYA; Ahmed Abdel Nabi

    2014-01-01

    Recently, wide spectrum of heterogeneous wireless access networks integrate with high speed wired networks to deliver Internet services. End-to-end service delivery with satisfactory quality is challenging issue in such network architectures. Although the Internet transport control protocol (TCP) addresses such challenge, it has poor performance with high speed wired networks (i.e. high bandwidth-delay product). Moreover, it behaves badly with wireless access networks (i.e. misinterpretation ...

  12. Performance enhancement of OSPF protocol in the private network

    Science.gov (United States)

    Yang, Yang; Lu, Yang; Lin, Xiaokang

    2005-11-01

    The private network serves as an information exchange platform to support the integrated services via microwave channels and accordingly selects the open shortest path first (OSPF) as the IP routing protocol. But the existing OSPF can't fit the private network very well for its special characteristics. This paper presents our modifications to the standard protocol in such aspects as the single-area scheme, link state advertisement (LSA) types and formats, OSPF packet formats, important state machines, setting of protocol parameters and link flap damping. Finally simulations are performed in various scenarios and the results indicate that our modifications can enhance the OSPF performance in the private network effectively.

  13. OPTICAL BURST SWITCHING PROTOCOLS IN ALL-OPTICAL NETWORKS

    OpenAIRE

    KIRCI, Pınar; ZAİM, A.Halim

    2012-01-01

    In this paper, all optical network's  general structure  is briefly described  and all optical network's optical switching methods is concantrated on. All  optical network's  classification is presented according to switching methods  and burst switching methods studied carefully.The protocols which are defined for burst switching are studied. One of these protocols JET (Just-Enough-Time) which is mostly studied, is introduced. And the other protocol JIT (Just-In-Time) is prese...

  14. Initial Characterization of Optical Communications with Disruption-Tolerant Network Protocols

    Science.gov (United States)

    Schoolcraft, Joshua; Wilson, Keith

    2011-01-01

    Disruption-tolerant networks (DTNs) are groups of network assets connected with a suite of communication protocol technologies designed to mitigate the effects of link delay and disruption. Application of DTN protocols to diverse groups of network resources in multiple sub-networks results in an overlay network-of-networks with autonomous data routing capability. In space environments where delay or disruption is expected, performance of this type of architecture (such as an interplanetary internet) can increase with the inclusion of new communications mediums and techniques. Space-based optical communication links are therefore an excellent building block of space DTN architectures. When compared to traditional radio frequency (RF) communications, optical systems can provide extremely power-efficient and high bandwidth links bridging sub-networks. Because optical links are more susceptible to link disruption and experience the same light-speed delays as RF, optical-enabled DTN architectures can lessen potential drawbacks and maintain the benefits of autonomous optical communications over deep space distances. These environment-driven expectations - link delay and interruption, along with asymmetric data rates - are the purpose of the proof-of-concept experiment outlined herein. In recognizing the potential of these two technologies, we report an initial experiment and characterization of the performance of a DTN-enabled space optical link. The experiment design employs a point-to-point free-space optical link configured to have asymmetric bandwidth. This link connects two networked systems running a DTN protocol implementation designed and written at JPL for use on spacecraft, and further configured for higher bandwidth performance. Comparing baseline data transmission metrics with and without periodic optical link interruptions, the experiment confirmed the DTN protocols' ability to handle real-world unexpected link outages while maintaining capability of

  15. Opportunistic Hybrid Transport Protocol (OHTP for Cognitive Radio Ad Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yousaf Bin Zikria

    2015-12-01

    Full Text Available The inefficient assignment of spectrum for different communications purposes, plus technology enhancements and ever-increasing usage of wireless technology is causing spectrum scarcity. To address this issue, one of the proposed solutions in the literature is to access the spectrum dynamically or opportunistically. Therefore, the concept of cognitive radio appeared, which opens up a new research paradigm. There is extensive research on the physical, medium access control and network layers. The impact of the transport layer on the performance of cognitive radio ad hoc sensor networks is still unknown/unexplored. The Internet’s de facto transport protocol is not well suited to wireless networks because of its congestion control mechanism. We propose an opportunistic hybrid transport protocol for cognitive radio ad hoc sensor networks. We developed a new congestion control mechanism to differentiate true congestion from interruption loss. After such detection and differentiation, we propose methods to handle them opportunistically. There are several benefits to window- and rate-based protocols. To exploit the benefits of both in order to enhance overall system performance, we propose a hybrid transport protocol. We empirically calculate the optimal threshold value to switch between window- and rate-based mechanisms. We then compare our proposed transport protocol to Transmission Control Protocol (TCP-friendly rate control, TCP-friendly rate control for cognitive radio, and TCP-friendly window-based control. We ran an extensive set of simulations in Network Simulator 2. The results indicate that the proposed transport protocol performs better than all the others.

  16. IDENTIFICATION OF THE TYPE OF AGRICULTURE SUITED FOR APPLICATION OF WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Ahsan Abdullah

    2012-12-01

    Full Text Available The world's population is expected to double by 2050; world food supply is unlikely to double by doubling the area under cultivation or by doubling the availability of water. There are other challenges too, such as decline in the number of farms and a decline in the number of agriculture workforce. Climate change is expected to further aggravate the existing situation. Therefore, for the humanity to survive agriculture has to become smart - one way is by integrating Wireless Sensor Networks (WSN in agriculture. In this paper, we will present the application of WSN in agriculture and discuss different types of sensors, different types of WSN and their application in 13 different types of traditional agriculture. We identify the type of agriculture most suited for WSN in terms of applications. We will also review some recent applications of WSN in agriculture; identify challenges and present possible future directions.

  17. Network Coding to Enhance Standard Routing Protocols in Wireless Mesh Networks

    DEFF Research Database (Denmark)

    Pahlevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank

    2013-01-01

    This paper introduces a design and simulation of a locally optimized network coding protocol, called PlayNCool, for wireless mesh networks. PlayN-Cool is easy to implement and compatible with existing routing protocols and devices. This allows the system to gain from network coding capabilities...

  18. User-friendly matching protocol for online social networks

    NARCIS (Netherlands)

    Tang, Qiang

    2010-01-01

    In this paper, we outline a privacy-preserving matching protocol for OSN (online social network) users to find their potential friends. With the proposed protocol, a logged-in user can match her profile with that of an off-line stranger, while both profiles are maximally protected. Our solution

  19. Evaluation of SVR: A Wireless Sensor Network Routing Protocol

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2014-07-01

    Full Text Available The advancement in technology has made it possible to create small in size, low cost sensor nodes. However, the small size and low cost of such nodes comesat at price that is, reduced processing power, low memory and significantly small battery energy storage. WSNs (Wireless Sensor Networks are inherently ad hoc in nature and are assumed to work in the toughest terrain. The network lifetime plays a pivotal role in a wireless sensor network. A long network lifetime, could be achieved by either making significant changes in these low cost devices, which is not a feasible solution or by improving the means of communication throughout the network. The communication in such networks could be improved by employing energy efficient routing protocols, to route the data throughout the network. In this paper the SVR (Spatial Vector Routing protocol is compared against the most common WSN routing protocols, and from the results it could be inferred that the SVR protocol out performs its counterparts. The protocol provides an energy efficient means of communication in the network

  20. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-03-01

    Full Text Available Underwater acoustic sensor networks (UASNs have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research.

  1. Auto-Configuration Protocols in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Julián García Matesanz

    2011-03-01

    Full Text Available The TCP/IP protocol allows the different nodes in a network to communicate by associating a different IP address to each node. In wired or wireless networks with infrastructure, we have a server or node acting as such which correctly assigns IP addresses, but in mobile ad hoc networks there is no such centralized entity capable of carrying out this function. Therefore, a protocol is needed to perform the network configuration automatically and in a dynamic way, which will use all nodes in the network (or part thereof as if they were servers that manage IP addresses. This article reviews the major proposed auto-configuration protocols for mobile ad hoc networks, with particular emphasis on one of the most recent: D2HCP. This work also includes a comparison of auto-configuration protocols for mobile ad hoc networks by specifying the most relevant metrics, such as a guarantee of uniqueness, overhead, latency, dependency on the routing protocol and uniformity.

  2. Auto-Configuration Protocols in Mobile Ad Hoc Networks

    Science.gov (United States)

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    The TCP/IP protocol allows the different nodes in a network to communicate by associating a different IP address to each node. In wired or wireless networks with infrastructure, we have a server or node acting as such which correctly assigns IP addresses, but in mobile ad hoc networks there is no such centralized entity capable of carrying out this function. Therefore, a protocol is needed to perform the network configuration automatically and in a dynamic way, which will use all nodes in the network (or part thereof) as if they were servers that manage IP addresses. This article reviews the major proposed auto-configuration protocols for mobile ad hoc networks, with particular emphasis on one of the most recent: D2HCP. This work also includes a comparison of auto-configuration protocols for mobile ad hoc networks by specifying the most relevant metrics, such as a guarantee of uniqueness, overhead, latency, dependency on the routing protocol and uniformity. PMID:22163814

  3. Architecture of a consent management suite and integration into IHE-based regional health information networks

    Science.gov (United States)

    2011-01-01

    Background The University Hospital Heidelberg is implementing a Regional Health Information Network (RHIN) in the Rhine-Neckar-Region in order to establish a shared-care environment, which is based on established Health IT standards and in particular Integrating the Healthcare Enterprise (IHE). Similar to all other Electronic Health Record (EHR) and Personal Health Record (PHR) approaches the chosen Personal Electronic Health Record (PEHR) architecture relies on the patient's consent in order to share documents and medical data with other care delivery organizations, with the additional requirement that the German legislation explicitly demands a patients' opt-in and does not allow opt-out solutions. This creates two issues: firstly the current IHE consent profile does not address this approach properly and secondly none of the employed intra- and inter-institutional information systems, like almost all systems on the market, offers consent management solutions at all. Hence, the objective of our work is to develop and introduce an extensible architecture for creating, managing and querying patient consents in an IHE-based environment. Methods Based on the features offered by the IHE profile Basic Patient Privacy Consent (BPPC) and literature, the functionalities and components to meet the requirements of a centralized opt-in consent management solution compliant with German legislation have been analyzed. Two services have been developed and integrated into the Heidelberg PEHR. Results The standard-based Consent Management Suite consists of two services. The Consent Management Service is able to receive and store consent documents. It can receive queries concerning a dedicated patient consent, process it and return an answer. It represents a centralized policy enforcement point. The Consent Creator Service allows patients to create their consents electronically. Interfaces to a Master Patient Index (MPI) and a provider index allow to dynamically generate XACML

  4. Architecture of a consent management suite and integration into IHE-based Regional Health Information Networks.

    Science.gov (United States)

    Heinze, Oliver; Birkle, Markus; Köster, Lennart; Bergh, Björn

    2011-10-04

    The University Hospital Heidelberg is implementing a Regional Health Information Network (RHIN) in the Rhine-Neckar-Region in order to establish a shared-care environment, which is based on established Health IT standards and in particular Integrating the Healthcare Enterprise (IHE). Similar to all other Electronic Health Record (EHR) and Personal Health Record (PHR) approaches the chosen Personal Electronic Health Record (PEHR) architecture relies on the patient's consent in order to share documents and medical data with other care delivery organizations, with the additional requirement that the German legislation explicitly demands a patients' opt-in and does not allow opt-out solutions. This creates two issues: firstly the current IHE consent profile does not address this approach properly and secondly none of the employed intra- and inter-institutional information systems, like almost all systems on the market, offers consent management solutions at all. Hence, the objective of our work is to develop and introduce an extensible architecture for creating, managing and querying patient consents in an IHE-based environment. Based on the features offered by the IHE profile Basic Patient Privacy Consent (BPPC) and literature, the functionalities and components to meet the requirements of a centralized opt-in consent management solution compliant with German legislation have been analyzed. Two services have been developed and integrated into the Heidelberg PEHR. The standard-based Consent Management Suite consists of two services. The Consent Management Service is able to receive and store consent documents. It can receive queries concerning a dedicated patient consent, process it and return an answer. It represents a centralized policy enforcement point. The Consent Creator Service allows patients to create their consents electronically. Interfaces to a Master Patient Index (MPI) and a provider index allow to dynamically generate XACML-based policies which are

  5. A Secure and Efficient Handover Authentication Protocol for Wireless Networks

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2014-06-01

    Full Text Available Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an effcient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable effciency features of PairHand, but enjoys the provable security in the random oracle model.

  6. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Nenad Kojić

    2012-06-01

    Full Text Available The networking infrastructure of wireless mesh networks (WMNs is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs. This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission. The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  7. A neural networks-based hybrid routing protocol for wireless mesh networks.

    Science.gov (United States)

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  8. Protocol independent transmission method in software defined optical network

    Science.gov (United States)

    Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng

    2016-10-01

    With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.

  9. The case for a network protocol isolation layer

    KAUST Repository

    Il Choi, Jung

    2009-01-01

    Network protocols are typically designed and tested individually. In practice, however, applications use multiple protocols concurrently. This discrepancy can lead to failures from unanticipated interactions between protocols. In this paper, we argue that sensor network communication stacks should have an isolation layer, whose purpose is to make each protocol\\'s perception of the wireless channel independent of what other protocols are running. We identify two key mechanisms the isolation layer must provide: shared collision avoidance and fair channel allocation. We present an example design of an isolation layer that builds on the existing algorithms of grant-to-send and fair queueing. However, the complexities of wireless make these mechanisms insufficient by themselves. We therefore propose two new mechanisms that address these limitations: channel decay and fair cancellation. Incorporating these new mechanisms reduces the increase in end-to-end delivery cost associated with concurrently operating two protocols by more than 60%. The isolation layer improves median protocol fairness from 0.52 to 0.96 in Jain\\'s fairness index. Together, these results show that using an isolation layer makes protocols more efficient and robust. Copyright 2009 ACM.

  10. Controlled Delegation Protocol in Mobile RFID Networks

    Directory of Open Access Journals (Sweden)

    Yang MingHour

    2010-01-01

    Full Text Available To achieve off-line delegation for mobile readers, we propose a delegation protocol for mobile RFID allowing its readers access to specific tags through back-end server. That is to say, reader-tag mutual authentication can be performed without readers being connected to back-end server. Readers are also allowed off-line access to tags' data. Compared with other delegation protocols, our scheme uniquely enables back-end server to limit each reader's reading times during delegation. Even in a multireader situation, our protocol can limit reading times and reading time periods for each of them and therefore makes back-end server's delegation more flexible. Besides, our protocol can prevent authorized readers from transferring their authority to the unauthorized, declining invalid access to tags. Our scheme is proved viable and secure with GNY logic; it is against certain security threats, such as replay attacks, denial of service (DoS attacks, Man-in-the-Middle attacks, counterfeit tags, and breaches of location and data privacy. Also, the performance analysis of our protocol proves that current tags can afford the computation load required in this scheme.

  11. Enhanced reliable transmission control protocol for spatial information networks

    Science.gov (United States)

    Qin, Zhihong; Zhang, Juan; Wang, Junfeng

    2009-12-01

    Satellites channels are generally featured by high bit error rate (BER), long propagation delay, large bandwidth-delay product (BDP) and so on. This tends to make the traditional TCP suffer from serious performance degradation in satellite networks. Therefore, a TCP-compatible reliable transmission protocol (i.e., TCP-AX) for spatial information networks is proposed in this paper. And a bandwidth probing mechanism is designed to distinguish network congestion and link error. Simulation results show that TCP-AX has better performance than some popular enhanced TCP protocols.

  12. Ad hoc mobile wireless networks principles, protocols and applications

    CERN Document Server

    Sarkar, Subir Kumar; Puttamadappa, C

    2007-01-01

    Ad hoc mobile wireless networks have seen increased adaptation in a variety of disciplines because they can be deployed with simple infrastructures and virtually no central administration. In particular, the development of ad hoc wireless and sensor networks provides tremendous opportunities in areas including disaster recovery, defense, health care, and industrial environments. Ad Hoc Mobile Wireless Networks: Principles, Protocols and Applications explains the concepts, mechanisms, design, and performance of these systems. It presents in-depth explanations of the latest wireless technologies

  13. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  14. Network Coding Protocols for Data Gathering Applications

    DEFF Research Database (Denmark)

    Nistor, Maricica; Lucani Rötter, Daniel Enrique; Barros, joao

    2014-01-01

    Tunable sparse network coding (TSNC) with various sparsity levels of the coded packets and different feedback mechanisms is analysed in the context of data gathering applications in multi-hop networks. The goal is to minimize the completion time, i.e., the total time required to collect all data...

  15. implementation of internet protocol network architecture

    African Journals Online (AJOL)

    User

    ABSTRACT. Advances in multimedia technologies and development of overlay networks foster the opportu- nity for creating new value-added services over the current Internet. In this paper, a new service network architecture that supports multiparty multimedia conferencing applications, character- istics of which include ...

  16. The Annotation, Mapping, Expression and Network (AMEN suite of tools for molecular systems biology

    Directory of Open Access Journals (Sweden)

    Primig Michael

    2008-02-01

    Full Text Available Abstract Background High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently. Results We developed the Annotation, Mapping, Expression and Network (AMEN software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i uploading and pre-processing data from microarray expression profiling experiments, (ii detecting groups of significantly co-expressed genes, and (iii searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human. Conclusion AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.

  17. ZEA-TDMA: design and system level implementation of a TDMA protocol for anonymous wireless networks

    Science.gov (United States)

    Banerjee, Debasmit; Dong, Bo; Biswas, Subir

    2013-05-01

    Wireless sensor network used in military applications may be deployed in hostile environments, where privacy and security is of primary concern. This can lead to the formation of a trust-based sub-network among mutually-trusting nodes. However, designing a TDMA MAC protocol is very challenging in situations where such multiple sub-networks coexist, since TDMA protocols require node identity information for slot assignments. This paper introduces a novel distributed TDMA MAC protocol, ZEA-TDMA (Zero Exposure Anonymous TDMA), for anonymous wireless networks. ZEA-TDMA achieves slot allocation with strict anonymity constraints, i.e. without nodes having to exchange any identity revealing information. By using just the relative time of arrival of packets and a novel technique of wireless collision-detection and resolution for fixed packetsizes, ZEA-TDMA is able to achieve MAC slot-allocation which is described as follows. Initially, a newly joined node listens to its one-hop neighborhood channel usage and creates a slot allocation table based on its own relative time, and finally, selects a slot that is collision free within its one-hop neighborhood. The selected slot can however cause hidden collisions with a two-hop neighbor of the node. These collisions are resolved by a common neighbor of the colliding nodes, which first detects the collision, and then resolve them using an interrupt packet. ZEA-TDMA provides the following features: a) it is a TDMA protocol ideally suited for highly secure or strictly anonymous environments b) it can be used in heterogeneous environments where devices use different packet structures c) it does not require network time-synchronization, and d) it is insensitive to channel errors. We have implemented ZEA-TDMA on the MICA2 hardware platform running TinyOS and evaluated the protocol functionality and performance on a MICA2 test-bed.

  18. Designing Network Protocols for Good Equilibria

    Science.gov (United States)

    2009-05-25

    Introduction Most modern-day networks dear to computer science—from the Internet , to the Web, to peer-to- peer and social networks—are created and used by a...equilibria, a much stronger requirement than stability (2). A second parallel is provided by work in the networking community on the BGP interdomain ...Theory of Computing (STOC), pages 663–670, 2006. 36 [19] L. Gao and J. Rexford. Stable Internet routing without global coordination. IEEE/ACM

  19. A Low Energy Intelligent Clustering Protocol for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Li, Qiao; Cui, Lingguo; Zhang, Baihai

    2010-01-01

    LEACH (low-energy adaptive clustering hierarchy) is a well-known self-organizing, adaptive clustering protocol of wireless sensor networks. However it has some shortcomings when it faces such problems as the cluster construction and energy management. In this paper, LEICP (low energy intelligent......-head as the next hop for delivering the messages or to send the data to the base station directly, using Dijkstra algorithm to compute an optimal path. The performance of LEICP is compared with that of LEACH. Simulation results demonstrate that LEICP can prolong the lifetime of the sensor network by about 62...... clustering protocol), an improvement of the LEACH protocol is proposed to overcome the shortcomings of LEACH. LEICP aims at balancing the energy consumption in every cluster and prolonging the network lifetime. A fitness function is defined to balance the energy consumption in every cluster according...

  20. Simulation Of Networking Protocols On Software Emulated Network Stack

    Directory of Open Access Journals (Sweden)

    Hrushikesh Nimkar

    2015-08-01

    Full Text Available With the increasing number and complexity of network based applications the need to easy configuration development and integration of network applications has taken a high precedence. Trivial activities such as configuration can be carried out efficiently if network services are software based rather than hardware based. Project aims at enabling the network engineers to easily include network functionalities into hisher configuration and define hisher own network stack without using the kernel network stack. Having thought of this we have implemented two functionalities UPNP and MDNS. The multicast Domain Name System MDNS resolves host names to IP addresses within small ad-hoc networks and without having need of special DNS server and its configuration. MDNS application provides every host with functionality to register itself to the router make a multicast DNS request and its resolution. To make adding network devices and networked programs to a network as easy as it is to plug in a piece of hardware into a PC we make use of UPnP. The devices and programs find out about the network setup and other networked devices and programs through discovery and advertisements of services and configure themselves accordingly. UPNP application provides every host with functionality of discovering services of other hosts and serving requests on demand. To implement these applications we have used snabbswitch framework which an open source virtualized ethernet networking stack.

  1. Emulation Platform for Cyber Analysis of Wireless Communication Network Protocols

    Energy Technology Data Exchange (ETDEWEB)

    Van Leeuwen, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eldridge, John M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Wireless networking and mobile communications is increasing around the world and in all sectors of our lives. With increasing use, the density and complexity of the systems increase with more base stations and advanced protocols to enable higher data throughputs. The security of data transported over wireless networks must also evolve with the advances in technologies enabling more capable wireless networks. However, means for analysis of the effectiveness of security approaches and implementations used on wireless networks are lacking. More specifically a capability to analyze the lower-layer protocols (i.e., Link and Physical layers) is a major challenge. An analysis approach that incorporates protocol implementations without the need for RF emissions is necessary. In this research paper several emulation tools and custom extensions that enable an analysis platform to perform cyber security analysis of lower layer wireless networks is presented. A use case of a published exploit in the 802.11 (i.e., WiFi) protocol family is provided to demonstrate the effectiveness of the described emulation platform.

  2. Frameless ALOHA Protocol for Wireless Networks

    DEFF Research Database (Denmark)

    Stefanovic, Cedomir; Popovski, Petar; Vukobratovic, Dejan

    2012-01-01

    We propose a novel distributed random access scheme for wireless networks based on slotted ALOHA, motivated by the analogies between successive interference cancellation and iterative belief-propagation decoding on erasure channels. The proposed scheme assumes that each user independently accesse...

  3. An Energy-Aware Routing Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2009-01-01

    Full Text Available The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered.

  4. An energy-aware routing protocol in wireless sensor networks.

    Science.gov (United States)

    Liu, Ming; Cao, Jiannong; Chen, Guihai; Wang, Xiaomin

    2009-01-01

    The most important issue that must be solved in designing a data gathering algorithm for wireless sensor networks (WSNS) is how to save sensor node energy while meeting the needs of applications/users. In this paper, we propose a novel energy-aware routing protocol (EAP) for a long-lived sensor network. EAP achieves a good performance in terms of lifetime by minimizing energy consumption for in-network communications and balancing the energy load among all the nodes. EAP introduces a new clustering parameter for cluster head election, which can better handle the heterogeneous energy capacities. Furthermore, it also introduces a simple but efficient approach, namely, intra-cluster coverage to cope with the area coverage problem. We use a simple temperature sensing application to evaluate the performance of EAP and results show that our protocol significantly outperforms LEACH and HEED in terms of network lifetime and the amount of data gathered.

  5. An efficient and reliable geographic routing protocol based on partial network coding for underwater sensor networks.

    Science.gov (United States)

    Hao, Kun; Jin, Zhigang; Shen, Haifeng; Wang, Ying

    2015-05-28

    Efficient routing protocols for data packet delivery are crucial to underwater sensor networks (UWSNs). However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. Network coding is a promising technique for efficient data packet delivery thanks to the broadcast nature of acoustic channels and the relatively high computation capabilities of the sensor nodes. In this work, we present GPNC, a novel geographic routing protocol for UWSNs that incorporates partial network coding to encode data packets and uses sensor nodes' location information to greedily forward data packets to sink nodes. GPNC can effectively reduce network delays and retransmissions of redundant packets causing additional network energy consumption. Simulation results show that GPNC can significantly improve network throughput and packet delivery ratio, while reducing energy consumption and network latency when compared with other routing protocols.

  6. MetaNetwork : A computational protocol for the genetic study of metabolic networks

    NARCIS (Netherlands)

    Fu, Jingyuan; Swertz, Morris A.; Keurentjes, Joost J. B.; Jansen, Ritsert C.

    2007-01-01

    We here describe the MetaNetwork protocol to reconstruct metabolic networks using metabolite abundance data from segregating populations. MetaNetwork maps metabolite quantitative trait loci (mQTLs) underlying variation in metabolite abundance in individuals of a segregating population using a

  7. MetaNetwork: a computational protocol for the genetic study of metabolic networks

    NARCIS (Netherlands)

    Fu, J.; Swertz, M.A.; Keurentjes, J.J.B.; Jansen, R.C.

    2007-01-01

    We here describe the MetaNetwork protocol to reconstruct metabolic networks using metabolite abundance data from segregating populations. MetaNetwork maps metabolite quantitative trait loci (mQTLs) underlying variation in metabolite abundance in individuals of a segregating population using a

  8. Comparative Study on Various Authentication Protocols in Wireless Sensor Networks

    Science.gov (United States)

    Rajeswari, S. Raja; Seenivasagam, V.

    2016-01-01

    Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated. PMID:26881272

  9. A Passive Testing Approach for Protocols in Wireless Sensor Networks.

    Science.gov (United States)

    Che, Xiaoping; Maag, Stephane; Tan, Hwee-Xian; Tan, Hwee-Pink; Zhou, Zhangbing

    2015-11-19

    Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN). However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  10. A Passive Testing Approach for Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoping Che

    2015-11-01

    Full Text Available Smart systems are today increasingly developed with the number of wireless sensor devices drastically increasing. They are implemented within several contexts throughout our environment. Thus, sensed data transported in ubiquitous systems are important, and the way to carry them must be efficient and reliable. For that purpose, several routing protocols have been proposed for wireless sensor networks (WSN. However, one stage that is often neglected before their deployment is the conformance testing process, a crucial and challenging step. Compared to active testing techniques commonly used in wired networks, passive approaches are more suitable to the WSN environment. While some works propose to specify the protocol with state models or to analyze them with simulators and emulators, we here propose a logic-based approach for formally specifying some functional requirements of a novel WSN routing protocol. We provide an algorithm to evaluate these properties on collected protocol execution traces. Further, we demonstrate the efficiency and suitability of our approach by its application into common WSN functional properties, as well as specific ones designed from our own routing protocol. We provide relevant testing verdicts through a real indoor testbed and the implementation of our protocol. Furthermore, the flexibility, genericity and practicability of our approach have been proven by the experimental results.

  11. PHI: Path-Hidden Lightweight Anonymity Protocol at Network Layer

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2017-01-01

    Full Text Available We identify two vulnerabilities for existing highspeed network-layer anonymity protocols, such as LAP and Dovetail. First, the header formats of LAP and Dovetail leak path information, reducing the anonymity-set size when an adversary launches topological attacks. Second, ASes can launch session hijacking attacks to deanonymize destinations. HORNET addresses these problems but incurs additional bandwidth overhead and latency.

  12. Implementation of Internet Protocol Network Architecture for Effective ...

    African Journals Online (AJOL)

    Implementation of Internet Protocol Network Architecture for Effective bandwidth Allocation in a Multiparty, Multimedia Conferencing. ... as M/G/∞ input processes and divided into several classes, with the constraint that the aggregate effective bandwidth is within the link capacity times a prescribed utilization threshold.

  13. Leader Election Protocol for Energy Efficient Mobile Sensor Networks (EYES)

    NARCIS (Netherlands)

    Dulman, S.O.; Havinga, Paul J.M.; Hurink, Johann L.

    In this paper we develop and analyze a wireless wave leader election protocol (WWLE) for wireless mobile ad hoc networks, with emphasis on the resulting energy consumption. Within the operating system of the EYES architecture we apply a power model to schedule tasks in order to minimize energy

  14. Energy Aware GPSR Routing Protocol in a Wireless Sensor Network ...

    African Journals Online (AJOL)

    Energy is the scarce resource in wireless sensor networks (WSNs), and it determines the lifetime of WSNs. For this reason, WSN algorithms and routing protocols should be selected in a manner which fulfills these energy requirements. This paper presents a solution to increase the lifetime of WSNs by decreasing their ...

  15. A survey on clustering routing protocols in wireless sensor networks.

    Science.gov (United States)

    Liu, Xuxun

    2012-01-01

    The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs) in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

  16. A Survey on Clustering Routing Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xuxun Liu

    2012-08-01

    Full Text Available The past few years have witnessed increased interest in the potential use of wireless sensor networks (WSNs in a wide range of applications and it has become a hot research area. Based on network structure, routing protocols in WSNs can be divided into two categories: flat routing and hierarchical or clustering routing. Owing to a variety of advantages, clustering is becoming an active branch of routing technology in WSNs. In this paper, we present a comprehensive and fine grained survey on clustering routing protocols proposed in the literature for WSNs. We outline the advantages and objectives of clustering for WSNs, and develop a novel taxonomy of WSN clustering routing methods based on complete and detailed clustering attributes. In particular, we systematically analyze a few prominent WSN clustering routing protocols and compare these different approaches according to our taxonomy and several significant metrics. Finally, we summarize and conclude the paper with some future directions.

  17. Hardware Abstraction and Protocol Optimization for Coded Sensor Networks

    DEFF Research Database (Denmark)

    Nistor, Maricica; Lucani Rötter, Daniel Enrique; Barros, joao

    2014-01-01

    The design of the communication protocols in wireless sensor networks (WSNs) often neglects several key characteristics of the sensor's hardware, while assuming that the number of transmitted bits is the dominating factor behind the system's energy consumption. A closer look at the hardware...... specifications of common sensors reveals, however, that other equally important culprits exist, such as the reception and processing energy. Hence, there is a need for a more complete hardware abstraction of a sensor node to reduce effectively the total energy consumption of the network by designing energy......-efficient protocols that use such an abstraction, as well as mechanisms to optimize a communication protocol in terms of energy consumption. The problem is modeled for different feedback-based techniques, where sensors are connected to a base station, either directly or through relays. We show that for four example...

  18. Method and apparatus to enhance routing protocols in wireless mesh networks

    DEFF Research Database (Denmark)

    2014-01-01

    A protocol for use in wireless mesh networks (PlayNCool) uses helper nodes to improve data flow in the network. The protocol is compatible with traditional mesh network routing algorithms. Techniques, systems, devices, and circuits for implementing the protocol are described.......A protocol for use in wireless mesh networks (PlayNCool) uses helper nodes to improve data flow in the network. The protocol is compatible with traditional mesh network routing algorithms. Techniques, systems, devices, and circuits for implementing the protocol are described....

  19. Protocol design and analysis for cooperative wireless networks

    CERN Document Server

    Song, Wei; Jin, A-Long

    2017-01-01

    This book focuses on the design and analysis of protocols for cooperative wireless networks, especially at the medium access control (MAC) layer and for crosslayer design between the MAC layer and the physical layer. It highlights two main points that are often neglected in other books: energy-efficiency and spatial random distribution of wireless devices. Effective methods in stochastic geometry for the design and analysis of wireless networks are also explored. After providing a comprehensive review of existing studies in the literature, the authors point out the challenges that are worth further investigation. Then, they introduce several novel solutions for cooperative wireless network protocols that reduce energy consumption and address spatial random distribution of wireless nodes. For each solution, the book offers a clear system model and problem formulation, details of the proposed cooperative schemes, comprehensive performance analysis, and extensive numerical and simulation results that validate th...

  20. Computer network time synchronization the network time protocol on earth and in space

    CERN Document Server

    Mills, David L

    2010-01-01

    Carefully coordinated, reliable, and accurate time synchronization is vital to a wide spectrum of fields-from air and ground traffic control, to buying and selling goods and services, to TV network programming. Ill-gotten time could even lead to the unimaginable and cause DNS caches to expire, leaving the entire Internet to implode on the root servers.Written by the original developer of the Network Time Protocol (NTP), Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, Second Edition addresses the technological infrastructure of time dissemination, distrib

  1. Wireless Power Transfer Protocols in Sensor Networks: Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Sotiris Nikoletseas

    2017-04-01

    Full Text Available Rapid technological advances in the domain of Wireless Power Transfer pave the way for novel methods for power management in systems of wireless devices, and recent research works have already started considering algorithmic solutions for tackling emerging problems. In this paper, we investigate the problem of efficient and balanced Wireless Power Transfer in Wireless Sensor Networks. We employ wireless chargers that replenish the energy of network nodes. We propose two protocols that configure the activity of the chargers. One protocol performs wireless charging focused on the charging efficiency, while the other aims at proper balance of the chargers’ residual energy. We conduct detailed experiments using real devices and we validate the experimental results via larger scale simulations. We observe that, in both the experimental evaluation and the evaluation through detailed simulations, both protocols achieve their main goals. The Charging Oriented protocol achieves good charging efficiency throughout the experiment, while the Energy Balancing protocol achieves a uniform distribution of energy within the chargers.

  2. A comparative view of routing protocols for underwater wireless sensor networks

    NARCIS (Netherlands)

    Bayrakdar, Y.; Meratnia, Nirvana; Kantarci, Aylin

    2011-01-01

    Design of efficient routing protocols for underwater sensor networks is challenging because of the distinctive characteristics of the water medium. Currently, many routing protocols are available for terrestrial wireless sensor networks. However, specific properties of underwater medium such as

  3. Mobile-host-centric transport protocol for wireless networks

    Science.gov (United States)

    Zhang, Liang; Shu, Yantai; Yang, Zhenyu

    2005-10-01

    Reliable transport protocols such as TCP are tuned to perform well in traditional networks where packet losses occur mostly because of congestion. However, networks with wireless and other lossy links also suffer from significant non-congestion-related losses due to reasons such as bit errors and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy networks. In case of wired-wireless interaction (WLANs), the wireless link is assumed to be the last hop where most of the loss and delay occurs. Since the mobile host is adjacent to the wireless hops, it is obviously better equipped to obtain first-hand knowledge of the wireless links. In the paper, we proposed a mobile-host-centric transport protocol called MCP (Mobile-host Control Protocol) that is like TCP in its general behavior, but allows for better congestion control and loss recovery in mobile wireless networks. The MCP shifts most transport layer control policies to the mobile host side under all cases (mobile host is a sender or receiver, fixed or mobile, and so on). Therefore, mobile stations can make better transport layer control in time based on the condition of wireless link.

  4. A Fatigue Measuring Protocol for Wireless Body Area Sensor Networks.

    Science.gov (United States)

    Akram, Sana; Javaid, Nadeem; Ahmad, Ashfaq; Khan, Zahoor Ali; Imran, Muhammad; Guizani, Mohsen; Hayat, Amir; Ilahi, Manzoor

    2015-12-01

    As players and soldiers preform strenuous exercises and do difficult and tiring duties, they are usually the common victims of muscular fatigue. Keeping this in mind, we propose FAtigue MEasurement (FAME) protocol for soccer players and soldiers using in-vivo sensors for Wireless Body Area Sensor Networks (WBASNs). In FAME, we introduce a composite parameter for fatigue measurement by setting a threshold level for each sensor. Whenever, any sensed data exceeds its threshold level, the players or soldiers are declared to be in a state of fatigue. Moreover, we use a vibration pad for the relaxation of fatigued muscles, and then utilize the vibrational energy by means of vibration detection circuit to recharge the in-vivo sensors. The induction circuit achieves about 68 % link efficiency. Simulation results show better performance of the proposed FAME protocol, in the chosen scenarios, as compared to an existing Wireless Soccer Team Monitoring (WSTM) protocol in terms of the selected metrics.

  5. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deepthi Chander

    2009-01-01

    Full Text Available Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  6. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jagyasi Bhushan

    2009-01-01

    Full Text Available Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN. DVD is based on a novel form of connectivity determined by the waiting time of nodes for a Random Waypoint (RWP distribution of cell phone users. This paper analyzes the time-stationary and spatial distribution of the proposed waiting time to explain the superior event localization and delay performances of DVD over the existing Randomized Waiting (RW protocol. A sensitivity analysis is also performed to compare the performance of DVD with RW and the existing Centralized approach.

  7. Computational Aspects of Sensor Network Protocols (Distributed Sensor Network Simulator

    Directory of Open Access Journals (Sweden)

    Vasanth Iyer

    2009-08-01

    Full Text Available In this work, we model the sensor networks as an unsupervised learning and clustering process. We classify nodes according to its static distribution to form known class densities (CCPD. These densities are chosen from specific cross-layer features which maximizes lifetime of power-aware routing algorithms. To circumvent computational complexities of a power-ware communication STACK we introduce path-loss models at the nodes only for high density deployments. We study the cluster heads and formulate the data handling capacity for an expected deployment and use localized probability models to fuse the data with its side information before transmission. So each cluster head has a unique Pmax but not all cluster heads have the same measured value. In a lossless mode if there are no faults in the sensor network then we can show that the highest probability given by Pmax is ambiguous if its frequency is ≤ n/2 otherwise it can be determined by a local function. We further show that the event detection at the cluster heads can be modelled with a pattern 2m and m, the number of bits can be a correlated pattern of 2 bits and for a tight lower bound we use 3-bit Huffman codes which have entropy < 1. These local algorithms are further studied to optimize on power, fault detection and to maximize on the distributed routing algorithm used at the higher layers. From these bounds in large network, it is observed that the power dissipation is network size invariant. The performance of the routing algorithms solely based on success of finding healthy nodes in a large distribution. It is also observed that if the network size is kept constant and the density of the nodes is kept closer then the local pathloss model effects the performance of the routing algorithms. We also obtain the maximum intensity of transmitting nodes for a given category of routing algorithms for an outage constraint, i.e., the lifetime of sensor network.

  8. A survey of routing protocols in wireless body sensor networks.

    Science.gov (United States)

    Bangash, Javed Iqbal; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Khan, Abdul Waheed

    2014-01-13

    Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.

  9. Distributed Velocity-Dependent Protocol for Multihop Cellular Sensor Networks

    OpenAIRE

    Deepthi Chander; Bhushan Jagyasi; Desai, U. B.; Merchant, S N

    2009-01-01

    Abstract Cell phones are embedded with sensors form a Cellular Sensor Network which can be used to localize a moving event. The inherent mobility of the application and of the cell phone users warrants distributed structure-free data aggregation and on-the-fly routing. We propose a Distributed Velocity-Dependent (DVD) protocol to localize a moving event using a Multihop Cellular Sensor Network (MCSN). DVD is based on a novel form of connectivity determined by the waiting time of nodes for a R...

  10. A Survey of MAC Protocols on Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Khalid Khushbu

    2017-01-01

    Full Text Available Wireless sensor networks have traditionally been used for military purposes but now its usage has widened in different areas of life including medical terms which are called wireless body area network (WBAN. WBAN is playing a vital role in every aspect of medical science for monitoring the continuous health of patients’ body without hindering the normal physiological activities in human body. All physiological data like a heartbeat, blood pressure and body temperature can be collected and then transferred to the data servers for further monitoring through WBAN. In this paper we will discuss about WBAN and some MAC protocols that has been designed to improve energy efficiency in WBAN

  11. Improved-Coverage Preserving Clustering Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Manju

    2016-01-01

    Full Text Available Coverage maintenance for longer period is crucial problem in wireless sensor network (WSNs due to limited inbuilt battery in sensors. Coverage maintenance can be prolonged by using the network energy efficiently, which can be done by keeping sufficient number of sensors in sensor covers. There has been discussed a Coverage-Preserving Clustering Protocol (CPCP to increase the network lifetime in clustered WSNs. It selects sensors for various roles such as cluster heads and sensor cover members by considering various coverage aware cost metrics. In this paper, we propose a new heuristic called Improved-Coverage-Preserving Clustering Protocol (I-CPCP to maximize the total network lifetime. In our proposed method, minimal numbers of sensor are selected to construct a sensor covers based on various coverage aware cost metrics. These cost metrics are evaluated by using residual energy of a sensor and their coverage. The simulation results show that our method has longer network lifetime as compared to generic CPCP.

  12. An Efficient Route Maintenance Protocol for Dynamic Bluetooth Networks

    Directory of Open Access Journals (Sweden)

    Sabeen Tahir

    2017-10-01

    Full Text Available Bluetooth is a widespread technology for small wireless networks that permits Bluetooth devices to construct a multi-hop network called scatternet. Routing in multi-hop dynamic Bluetooth network, where a number of masters and bridges exist creates technical hitches. It is observed that frequent link disconnections and a new route construction consume extra system resources that degrade the whole network performance. Therefore, in this paper an Efficient Route Maintenance Protocol for Dynamic Bluetooth Networks (ERMP is proposed that repairs the weak routing paths based on the prediction of weak links and weak devices. The ERMP predicts the weak links through the signal strength and weak devices through low energy levels. During the main route construction, routing masters and bridges keep the information of the Fall Back Devices (FBDs for route maintenance. On the prediction of a weak link, the ERMP activates an alternate link, on the other hand, for a weak device it activates the FBD. The proposed ERMP is compared with some existing closely related protocols, and the simulation results show that the proposed ERMP successfully recovers the weak paths and improves the system performance.

  13. A Sensing Error Aware MAC Protocol for Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Donglin Hu

    2012-08-01

    Full Text Available Cognitive radios (CR are intelligent radio devices that can sense the radio environment and adapt to changes in the radio environment. Spectrum sensing and spectrum access are the two key CR functions. In this paper, we present a spectrum sensing error aware MAC protocol for a CR network collocated with multiple primary networks. We explicitly consider both types of sensing errors in the CR MAC design, since such errors are inevitable for practical spectrum sensors and more importantly, such errors could have significant impact on the performance of the CR MAC protocol. Two spectrum sensing polices are presented, with which secondary users collaboratively sense the licensed channels. The sensing policies are then incorporated into p-Persistent CSMA to coordinate opportunistic spectrum access for CR network users.We present an analysis of the interference and throughput performance of the proposed CR MAC, and find the analysis highly accurate in our simulation studies. The proposed sensing error aware CR MAC protocol outperforms two existing approaches with considerable margins in our simulations, which justify the importance of considering spectrum sensing errors in CR MAC design.

  14. A tree routing protocol for cognitive radio network

    Directory of Open Access Journals (Sweden)

    Mohammed Hashem

    2017-07-01

    Full Text Available Cognitive Radio (CR technology is an agile solution for spectrum congestion and spectrum access utilization problems that result from the legacy fixed spectrum management policies. CR technology can exploit unused licensed band to meet the increasing demand for radio frequency. The routing process faces many challenges in CR Network (CRN such as the absence of centralized infrastructure, the coordination between the routing module and spectrum management module, in addition to the frequent link failure due to the sudden appearance of PUs. In this paper we propose a Tree routing protocol for cognitive radio network (C-TRP that jointly utilizes the tree routing algorithm with a spectrum management module in routing decisions, and also we proposed a new metric used in taking the best route decisions. In addition, we enhance the traditional tree routing algorithm by using a neighbor table technique that speeds up the forwarding data packets. Moreover, we add a robust recovery module to C-TRP to resume the network in case of the link failure. The main motivation in the design of C-TRP is quick data transmission and maximization of date rates. The performance evaluation is carried out in NS2 simulator. The simulation results proved that C-TRP protocol achieves better performance in terms of average “PDR”, “end-to-end delay” and “routing overhead ratio “compared to “CTBR” and “STOD-RP” routing protocols.

  15. MAC Protocol for Ad Hoc Networks Using a Genetic Algorithm

    Science.gov (United States)

    Elizarraras, Omar; Panduro, Marco; Méndez, Aldo L.

    2014-01-01

    The problem of obtaining the transmission rate in an ad hoc network consists in adjusting the power of each node to ensure the signal to interference ratio (SIR) and the energy required to transmit from one node to another is obtained at the same time. Therefore, an optimal transmission rate for each node in a medium access control (MAC) protocol based on CSMA-CDMA (carrier sense multiple access-code division multiple access) for ad hoc networks can be obtained using evolutionary optimization. This work proposes a genetic algorithm for the transmission rate election considering a perfect power control, and our proposition achieves improvement of 10% compared with the scheme that handles the handshaking phase to adjust the transmission rate. Furthermore, this paper proposes a genetic algorithm that solves the problem of power combining, interference, data rate, and energy ensuring the signal to interference ratio in an ad hoc network. The result of the proposed genetic algorithm has a better performance (15%) compared to the CSMA-CDMA protocol without optimizing. Therefore, we show by simulation the effectiveness of the proposed protocol in terms of the throughput. PMID:25140339

  16. A Novel Cross-Layer Routing Protocol Based on Network Coding for Underwater Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Bu, Renfei; Zhang, Eryang

    2017-08-08

    Underwater wireless sensor networks (UWSNs) have attracted increasing attention in recent years because of their numerous applications in ocean monitoring, resource discovery and tactical surveillance. However, the design of reliable and efficient transmission and routing protocols is a challenge due to the low acoustic propagation speed and complex channel environment in UWSNs. In this paper, we propose a novel cross-layer routing protocol based on network coding (NCRP) for UWSNs, which utilizes network coding and cross-layer design to greedily forward data packets to sink nodes efficiently. The proposed NCRP takes full advantages of multicast transmission and decode packets jointly with encoded packets received from multiple potential nodes in the entire network. The transmission power is optimized in our design to extend the life cycle of the network. Moreover, we design a real-time routing maintenance protocol to update the route when detecting inefficient relay nodes. Substantial simulations in underwater environment by Network Simulator 3 (NS-3) show that NCRP significantly improves the network performance in terms of energy consumption, end-to-end delay and packet delivery ratio compared with other routing protocols for UWSNs.

  17. FUZZY LOGIC BASED ENERGY EFFICIENT PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Zhan Wei Siew

    2012-12-01

    Full Text Available Wireless sensor networks (WSNs have been vastly developed due to the advances in microelectromechanical systems (MEMS using WSN to study and monitor the environments towards climates changes. In environmental monitoring, sensors are randomly deployed over the interest area to periodically sense the physical environments for a few months or even a year. Therefore, to prolong the network lifetime with limited battery capacity becomes a challenging issue. Low energy adaptive cluster hierarchical (LEACH is the common clustering protocol that aim to reduce the energy consumption by rotating the heavy workload cluster heads (CHs. The CHs election in LEACH is based on probability model which will lead to inefficient in energy consumption due to least desired CHs location in the network. In WSNs, the CHs location can directly influence the network energy consumption and further affect the network lifetime. In this paper, factors which will affect the network lifetime will be presented and the demonstration of fuzzy logic based CH selection conducted in base station (BS will also be carried out. To select suitable CHs that will prolong the network first node dies (FND round and consistent throughput to the BS, energy level and distance to the BS are selected as fuzzy inputs.

  18. Optimization of Multicast Protocols for Heterogeneous Satellite Networks

    Science.gov (United States)

    Ehlert, Sven; Firrincieli, Rosario; Corazza, Giovanni E.

    2003-07-01

    With the growing need for context aware information delivery to groups and the increasing importance of streaming media distribution, the telecommunications research community is examining and evaluating different means for point-to- multipoint content delivery to end users, exploiting multicasting-broadcasting transport means. Traditionally, terrestrial networks are the main carriers for point-to-point content delivery, but satellite systems are at a prime when it comes to efficiently broadcast data to a wide user population. In this paper, we evaluate a heterogeneous satellite/terrestrial network in terms of content distribution capacity, using different multicast transport protocols. We focus our attention on reliable point- to-multipoint data delivery, our goal being to optimize quality of service while preserving capacity. We considered Scalable Reliable Multicast (SRM) and Pragmatic General Multicast (PGM) protocols. The results show that SRM does not perform very well, especially at high BER. On the other hand, PGM improves bandwidth exploitation by minimizing retransmission redundancy. However, PGM works optimally if and only if all routers are PGM-aware, which may be an unreasonable assumption when using a part of the public Internet for transportation. Therefore, we have augmented the PGM protocol by adding a Designated Local Repairer (DLR) node in order to counteract the effects of a mixed PGM-aware/unaware environment.

  19. Secure Data Network System (SDNS) network, transport, and message security protocols

    Science.gov (United States)

    Dinkel, C.

    1990-03-01

    The Secure Data Network System (SDNS) project, implements computer to computer communications security for distributed applications. The internationally accepted Open Systems Interconnection (OSI) computer networking architecture provides the framework for SDNS. SDNS uses the layering principles of OSI to implement secure data transfers between computer nodes of local area and wide area networks. Four security protocol documents developed by the National Security Agency (NSA) as output from the SDNS project are included. SDN.301 provides the framework for security at layer 3 of the OSI Model. Cryptographic techniques to provide data protection for transport connections or for connectionless-mode transmission are described in SDN.401. Specifications for message security service and protocol are contained in SDN.701. Directory System Specifications for Message Security Protocol are covered in SDN.702.

  20. A Mac Protocol Implementation for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jamila Bhar

    2015-01-01

    Full Text Available IEEE 802.15.4 is an important standard for Low Rate Wireless Personal Area Network (LRWPAN. The IEEE 802.15.4 presents a flexible MAC protocol that provides good efficiency for data transmission by adapting its parameters according to characteristics of different applications. In this research work, some restrictions of this standard are explained and an improvement of traffic efficiency by optimizing MAC layer is proposed. Implementation details for several blocks of communication system are carefully modeled. The protocol implementation is done using VHDL language. The analysis gives a full understanding of the behavior of the MAC protocol with regard to backoff delay, data loss probability, congestion probability, slot effectiveness, and traffic distribution for terminals. Two ideas are proposed and tested to improve efficiency of CSMA/CA mechanism for IEEE 802.15.4 MAC Layer. Primarily, we dynamically adjust the backoff exponent (BE according to queue level of each node. Secondly, we vary the number of consecutive clear channel assessment (CCA for packet transmission. We demonstrate also that slot compensation provided by the enhanced MAC protocol can greatly avoid unused slots. The results show the significant improvements expected by our approach among the IEEE 802.15.4 MAC standards. Synthesis results show also hardware performances of our proposed architecture.

  1. Traffic Adaptive MAC Protocols in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Farhan Masud

    2017-01-01

    Full Text Available In Wireless Body Area Networks (WBANs, every healthcare application that is based on physical sensors is responsible for monitoring the vital signs data of patient. WBANs applications consist of heterogeneous and dynamic traffic loads. Routine patient’s observation is described as low-load traffic while an alarming situation that is unpredictable by nature is referred to as high-load traffic. This paper offers a thematic review of traffic adaptive Medium Access Control (MAC protocols in WBANs. First, we have categorized them based on their goals, methods, and metrics of evaluation. The Zigbee standard IEEE 802.15.4 and the baseline MAC IEEE 802.15.6 are also reviewed in terms of traffic adaptive approaches. Furthermore, a comparative analysis of the protocols is made and their performances are analyzed in terms of delay, packet delivery ratio (PDR, and energy consumption. The literature shows that no review work has been done on traffic adaptive MAC protocols in WBANs. This review work, therefore, could add enhancement to traffic adaptive MAC protocols and will stimulate a better way of solving the traffic adaptivity problem.

  2. Self-Adaptive Contention Aware Routing Protocol for Intermittently Connected Mobile Networks

    KAUST Repository

    Elwhishi, Ahmed

    2013-07-01

    This paper introduces a novel multicopy routing protocol, called Self-Adaptive Utility-based Routing Protocol (SAURP), for Delay Tolerant Networks (DTNs) that are possibly composed of a vast number of devices in miniature such as smart phones of heterogeneous capacities in terms of energy resources and buffer spaces. SAURP is characterized by the ability of identifying potential opportunities for forwarding messages to their destinations via a novel utility function-based mechanism, in which a suite of environment parameters, such as wireless channel condition, nodal buffer occupancy, and encounter statistics, are jointly considered. Thus, SAURP can reroute messages around nodes experiencing high-buffer occupancy, wireless interference, and/or congestion, while taking a considerably small number of transmissions. The developed utility function in SAURP is proved to be able to achieve optimal performance, which is further analyzed via a stochastic modeling approach. Extensive simulations are conducted to verify the developed analytical model and compare the proposed SAURP with a number of recently reported encounter-based routing approaches in terms of delivery ratio, delivery delay, and the number of transmissions required for each message delivery. The simulation results show that SAURP outperforms all the counterpart multicopy encounter-based routing protocols considered in the study.

  3. Messaging Performance of FIPA Interaction Protocols in Networked Embedded Controllers

    Directory of Open Access Journals (Sweden)

    Omar Jehovani López Orozco

    2007-12-01

    Full Text Available Agent-based technologies in production control systems could facilitate seamless reconfiguration and integration of mechatronic devices/modules into systems. Advances in embedded controllers which are continuously improving computational capabilities allow for software modularization and distribution of decisions. Agent platforms running on embedded controllers could hide the complexity of bootstrap and communication. Therefore, it is important to investigate the messaging performance of the agents whose main motivation is the resource allocation in manufacturing systems (i.e., conveyor system. The tests were implemented using the FIPA-compliant JADE-LEAP agent platform. Agent containers were distributed through networked embedded controllers, and agents were communicating using request and contract-net FIPA interaction protocols. The test scenarios are organized in intercontainer and intracontainer communications. The work shows the messaging performance for the different test scenarios using both interaction protocols.

  4. Reliable Asynchronous Image Transfer Protocol in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    In-Bum Jung

    2010-02-01

    Full Text Available In the paper, we propose a reliable asynchronous image transfer protocol, RAIT. RAIT applies a double sliding window method to node-to-node transfer, with one sliding window for the receiving queue, which is used to prevent packet loss caused by communication failure between nodes, and another sliding window for the sending queue, which prevents packet loss caused by network congestion. The routing node prevents packet loss between nodes by preemptive scheduling of multiple packets for a given image. RAIT implements a double sliding window method by means of a cross-layer design between the RAIT layer, routing layer, and queue layer. We demonstrate that RAIT guarantees a higher reliability of image transmission compared to the existing protocols.

  5. Reliable asynchronous image transfer protocol in wireless multimedia sensor networks.

    Science.gov (United States)

    Lee, Joa-Hyoung; Jung, In-Bum

    2010-01-01

    In the paper, we propose a reliable asynchronous image transfer protocol, RAIT. RAIT applies a double sliding window method to node-to-node transfer, with one sliding window for the receiving queue, which is used to prevent packet loss caused by communication failure between nodes, and another sliding window for the sending queue, which prevents packet loss caused by network congestion. The routing node prevents packet loss between nodes by preemptive scheduling of multiple packets for a given image. RAIT implements a double sliding window method by means of a cross-layer design between the RAIT layer, routing layer, and queue layer. We demonstrate that RAIT guarantees a higher reliability of image transmission compared to the existing protocols.

  6. A security analysis of the 802.11s wireless mesh network routing protocol and its secure routing protocols.

    Science.gov (United States)

    Tan, Whye Kit; Lee, Sang-Gon; Lam, Jun Huy; Yoo, Seong-Moo

    2013-09-02

    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP.

  7. FTUC: A Flooding Tree Uneven Clustering Protocol for a Wireless Sensor Network.

    Science.gov (United States)

    He, Wei; Pillement, Sebastien; Xu, Du

    2017-11-23

    Clustering is an efficient approach in a wireless sensor network (WSN) to reduce the energy consumption of nodes and to extend the lifetime of the network. Unfortunately, this approach requires that all cluster heads (CHs) transmit their data to the base station (BS), which gives rise to the long distance communications problem, and in multi-hop routing, the CHs near the BS have to forward data from other nodes that lead those CHs to die prematurely, creating the hot zones problem. Unequal clustering has been proposed to solve these problems. Most of the current algorithms elect CH only by considering their competition radius, leading to unevenly distributed cluster heads. Furthermore, global distances values are needed when calculating the competition radius, which is a tedious task in large networks. To face these problems, we propose a flooding tree uneven clustering protocol (FTUC) suited for large networks. Based on the construction of a tree type sub-network to calculate the minimum and maximum distances values of the network, we then apply the unequal cluster theory. We also introduce referenced position circles to evenly elect cluster heads. Therefore, cluster heads are elected depending on the node's residual energy and their distance to a referenced circle. FTUC builds the best inter-cluster communications route by evaluating a cluster head cost function to find the best next hop to the BS. The simulation results show that the FTUC algorithm decreases the energy consumption of the nodes and balances the global energy consumption effectively, thus extending the lifetime of the network.

  8. Wireless Sensor Networks for Space Applications: Network Architecture and Protocol Enhancements

    Directory of Open Access Journals (Sweden)

    Driss BENHADDOU

    2009-10-01

    Full Text Available The application of Wireless Sensor Networks (WSNs in time-sensitive space applications, such as astronaut health monitoring and environment-risk monitoring, demands exclusive investigation of network design and protocols for optimized operation in geo-station environments. The continuous monitoring of physiological condition of crew members, spaceflight equipments and habitat during long space missions is of paramount importance to NASA for mitigating performance risks. Continual performance tracking and local response advisory capabilities, within space environments, are crucial to ensure overall mission success. This paper will present challenges and opportunities of wireless sensor networks in space applications, and the investigation of system and protocol design for efficient performance monitoring. We describe a flexible WSN architecture and the required system components for reliable communications. We also investigate crucial network algorithms including link quality adaptation, energy efficiency and quality-of-service that are essential for efficient performance monitoring in geo-station environments.

  9. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Science.gov (United States)

    Wen, Shameng; Meng, Qingkun; Feng, Chao; Tang, Chaojing

    2017-01-01

    Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  10. Protocol vulnerability detection based on network traffic analysis and binary reverse engineering.

    Directory of Open Access Journals (Sweden)

    Shameng Wen

    Full Text Available Network protocol vulnerability detection plays an important role in many domains, including protocol security analysis, application security, and network intrusion detection. In this study, by analyzing the general fuzzing method of network protocols, we propose a novel approach that combines network traffic analysis with the binary reverse engineering method. For network traffic analysis, the block-based protocol description language is introduced to construct test scripts, while the binary reverse engineering method employs the genetic algorithm with a fitness function designed to focus on code coverage. This combination leads to a substantial improvement in fuzz testing for network protocols. We build a prototype system and use it to test several real-world network protocol implementations. The experimental results show that the proposed approach detects vulnerabilities more efficiently and effectively than general fuzzing methods such as SPIKE.

  11. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  12. Constructing Cost-Effective and Targetable ICS Honeypots Suited for Production Networks

    Science.gov (United States)

    2015-03-26

    attacker connects to a target computer using a secure shell (i.e., ssh ) to the IP ad- dress 10.1.10.12. If the attacker were to then query the target...Privacy , vol. 2, no. 2, pp.77-79, March-April 2004. 9. The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP. Open DeviceNet Vendor

  13. RSBP: a reliable slotted broadcast protocol in wireless sensor networks.

    Science.gov (United States)

    Vinh, Phan Van; Oh, Hoon

    2012-10-31

    In wireless sensor networks for monitoring and control applications, a sink node needs to disseminate messages to all nodes to acquire monitoring data or to control the operation of sensor nodes. The basic flooding protocol suffers from low transmission reliability in broadcasting messages due to the hidden terminal problem. Besides, it can cause the broadcast storm problem by having many nodes rebroadcast the received message simultaneously. In order to resolve these problems while minimizing energy consumption in delivery of broadcast messages, we propose a reliable slotted broadcast protocol (RSBP) that allocates broadcast time slots to nodes based on their slot demands and then allows every node to transmit its broadcast message within the allocated slots. Then, every node can broadcast messages safely in a contention-free manner. Moreover, RSBP can be deployed easily since it does not have any specific requirements such as GPS, multi-channels and directional antennas that may not be always available in real scenarios. We show by experimental study that RSBP significantly outperforms other broadcast protocols in terms of safety-critical packet delivery and energy consumption.

  14. On the security of an anonymous roaming protocol in UMTS mobile networks

    Directory of Open Access Journals (Sweden)

    Shuhua Wu

    2012-02-01

    Full Text Available In this communication, we first show that the privacy-preserving roaming protocol recently proposed for mobile networks cannot achieve the claimed security level. Then we suggest an improved protocol to remedy its security problems.

  15. Enhanced Key Management Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Baojiang Cui

    2015-01-01

    Full Text Available With rapid development and extensive use of wireless sensor networks (WSNs, it is urgent to enhance the security for WSNs, in which key management is an effective way to protect WSNs from various attacks. However, different types of messages exchanged in WSNs typically have different security requirements which cannot be satisfied by a single keying mechanism. In this study, a basic key management protocol is described for WSNs based on four kinds of keys, which can be derived from an initial master key, and an enhanced protocol is proposed based on Diffie-Hellman algorithm. The proposed scheme restricts the adverse security impact of a captured node to the rest of WSNs and meets the requirement of energy efficiency by supporting in-network processing. The master key protection, key revocation mechanism, and the authentication mechanism based on one-way hash function are, respectively, discussed. Finally, the performance of the proposed scheme is analyzed from the aspects of computational efficiency, storage requirement and communication cost, and its antiattack capability in protecting WSNs is discussed under various attack models. In this paper, promising research directions are also discussed.

  16. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    OpenAIRE

    Ehsan Ahvar; Shohreh Ahvar; Gyu Myoung Lee; Noel Crespi

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, ener...

  17. An integer programming model and benchmark suite for liner shipping network design

    DEFF Research Database (Denmark)

    Løfstedt, Berit; Alvarez, Jose Fernando; Plum, Christian Edinger Munk

    Maritime transportation is accountable for 2.7% of the worlds CO2 emissions and the liner shipping industry is committed to a slow steaming policy to provide low cost and environmentally conscious global transport of goods without compromising the level of service. The potential for making cost...... effective and energy efficient liner shipping networks using operations research is huge and neglected. The implementation of logistic planning tools based upon operations research has enhanced performance of both airlines, railways and general transportation companies, but within the field of liner...

  18. TMAC: Timestamp-Ordered MAC Protocol for Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2011-05-01

    Wireless Mesh Networks (WMNs) have emerged to meet a need for a self-organized and self-configured multi-hop wireless network infrastructure. Low cost infrastructure and ease of deployment have made WMNs an attractive technology for last mile access. However, 802.11 based WMNs are subject to serious fairness issues. With backlogged TCP traffic, nodes which are two or more hops away from the gateway are subject to starvation, while the one-hop away node saturates the channel with its own local traffic. We study the interactions of TCP and IEEE 802.11 MAC in WMNs to aid us in understanding and overcoming the unfairness problem. We propose a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput performance due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically derive the throughput. Based on the developed model, we propose a distributed MAC protocol called Timestamp-ordered MAC (TMAC), aiming to alleviate the unfairness problem in WMNs via a manipulative per-node scheduling mechanism which takes advantage of the age of each packet as a priority metric. Simulation is conducted to validate our model and to illustrate the fairness characteristics of TMAC. Our results show that TMAC achieves excellent resource allocation fairness while maintaining above 90% of maximum link capacity in parking lot and large grid topologies. Our work illuminates the factors affecting TCP fairness in WMNs. Our theoretical and empirical findings can be used in future research to develop more fairness-aware protocols for WMNs.

  19. A Study on the Distributed Antenna Based Heterogeneous Cognitive Wireless Network Synchronous MAC Protocol

    Directory of Open Access Journals (Sweden)

    Lian-Fen Huang

    2015-01-01

    Full Text Available This paper introduces distributed antennas into a cognitive radio network and presents a heterogeneous network. The best contribution of this paper is that it designs a synchronous cognitive MAC protocol (DAHCWNS-MAC protocol: distributed antenna based heterogeneous cognitive wireless network synchronous MAC protocol. The novel protocol aims at combining the advantages of cognitive radio and distributed antennas to fully utilize the licensed spectrum, broaden the communication range, and improve throughput. This paper carries out the mathematical modeling and performance simulation to demonstrate its superiority in improving the network throughput at the cost of increasing antenna hardware costs.

  20. AN ENERGY EFFICIENT FITNESS BASED ROUTING PROTOCOL IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    A. Balamurugan

    2014-03-01

    Full Text Available A wireless sensor network is a self-organized multi hop network that consists of a large number of sensor nodes. The efficiency of the sensor networks depends upon the routing protocol used. There are different routing protocols exists to extend the network lifetime by efficiently consuming the energy of the nodes. The nodes have limited energy resources and are battery powered. Therefore, designing an effective routing protocol that conserve scarce energy resources is the major critical issue in WSN. In this paper, a Fitness based Routing Protocol (FRP is proposed to optimize energy efficient data transmission. The energy consumption of nodes is reduced by selecting the nodes with minimum hop count and distance. Genetic algorithm is used as an optimization technique to find the fitted node based on its fitness value. The FRP could increase the network lifetime and throughput comparing to the other protocols. The protocol could also reduce the packet loss and end – end delay.

  1. Intelligent Broadcasting in Mobile Ad Hoc Networks: Three Classes of Adaptive Protocols

    Directory of Open Access Journals (Sweden)

    Colagrosso Michael D

    2007-01-01

    Full Text Available Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning can be applied to broadcasting in a mobile ad hoc network (MANET. We chose broadcasting because it functions as a foundation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be immediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed, no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol: the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN builds a classifier and trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and examine its performance in simulation.

  2. Intelligent Broadcasting in Mobile Ad Hoc Networks: Three Classes of Adaptive Protocols

    Directory of Open Access Journals (Sweden)

    Michael D. Colagrosso

    2006-11-01

    Full Text Available Because adaptability greatly improves the performance of a broadcast protocol, we identify three ways in which machine learning can be applied to broadcasting in a mobile ad hoc network (MANET. We chose broadcasting because it functions as a foundation of MANET communication. Unicast, multicast, and geocast protocols utilize broadcasting as a building block, providing important control and route establishment functionality. Therefore, any improvements to the process of broadcasting can be immediately realized by higher-level MANET functionality and applications. While efficient broadcast protocols have been proposed, no single broadcasting protocol works well in all possible MANET conditions. Furthermore, protocols tend to fail catastrophically in severe network environments. Our three classes of adaptive protocols are pure machine learning, intra-protocol learning, and inter-protocol learning. In the pure machine learning approach, we exhibit a new approach to the design of a broadcast protocol: the decision of whether to rebroadcast a packet is cast as a classification problem. Each mobile node (MN builds a classifier and trains it on data collected from the network environment. Using intra-protocol learning, each MN consults a simple machine model for the optimal value of one of its free parameters. Lastly, in inter-protocol learning, MNs learn to switch between different broadcasting protocols based on network conditions. For each class of learning method, we create a prototypical protocol and examine its performance in simulation.

  3. Secure Group Formation Protocol for a Medical Sensor Network Prototype

    DEFF Research Database (Denmark)

    Andersen, Jacob

    2009-01-01

    Designing security mechanisms such as privacy and access control for medical sensor networks is a challenging task; as such systems may be operated very frequently, at a quick pace, and at times in emergency situations. Understandably, clinicians hold extra unproductive tasks in low regard......, and experience from user workshops and observations of clinicians at work on a hospital ward show that if the security mechanisms are not well designed, the technology is either rejected altogether, or they are circumvented leaving the system wide open to attacks. Our work targets the problem of designing...... wireless sensors to be both secure and usable by exploring different solutions on a fully functional prototype platform. In this paper, we present an Elliptic Curve Cryptography (ECC) based protocol, which offers fully secure sensor set-up in a few seconds on standard (Telos) hardware. We evaluate...

  4. Wireless Plug and Play Control Systems: Hardware, Networks, and Protocols

    DEFF Research Database (Denmark)

    Meybodi, Soroush Afkhami

    2012-01-01

    D project are presented in two distinct areas which are: 1) Signal propagation in underground and confined areas, and 2) Access and Networking protocols that accommodate the required flexibility, scalability, and quality of services for plug and play control systems. The first category finds application...... the damp soil medium. To overcome the challenge, all potentially useful signal propagation methods are surveyed either by reviewing the open literature, or by doing simulations, or even running experiments. At the end, Magnetic Induction (MI) is chosen as the winning candidate. New findings are achieved...... in antenna design of magneto-inductive communication systems. They are verified by simulations and experiments. It is shown, via simulations, that MI is a reliable signal propagation technique for the full-scale case study: Distributed Control of the New Generation of District Heating Systems...

  5. Relaying Strategies and Protocols for Efficient Wireless Networks

    KAUST Repository

    Zafar, Ammar

    2014-10-01

    Next generation wireless networks are expected to provide high data rate and satisfy the Quality-of-Service (QoS) constraints of the users. A significant component of achieving these goals is to increase the effi ciency of wireless networks by either optimizing current architectures or exploring new technologies which achieve that. The latter includes revisiting technologies which were previously proposed, but due to a multitude of reasons were ignored at that time. One such technology is relaying which was initially proposed in the latter half of the 1960s and then was revived in the early 2000s. In this dissertation, we study relaying in conjunction with resource allocation to increase the effi ciency of wireless networks. In this regard, we differentiate between conventional relaying and relaying with buffers. Conventional relaying is traditional relaying where the relay forwards the signal it received immediately. On the other hand, in relaying with buffers or buffer-aided relaying as it is called, the relay can store received data in its buffer and forward it later on. This gives the benefit of taking advantage of good channel conditions as the relay can only transmit when the channel conditions are good. The dissertation starts with conventional relaying and considers the problem of minimizing the total consumed power while maintaining system QoS. After upper bounding the system performance, more practical algorithms which require reduced feedback overhead are explored. Buffer-aided relaying is then considered and the joint user-and-hop scheduler is introduced which exploits multi-user diversity (MUD) and 5 multi-hop diversity (MHD) gains together in dual-hop broadcast channels. Next joint user-and-hop scheduling is extended to the shared relay channel where two source-destination pairs share a single relay. The benefits of buffer-aided relaying in the bidirectional relay channel utilizing network coding are then explored. Finally, a new transmission protocol

  6. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-09-07

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  7. A Low-Latency, Information-Centric Medium Access Protocol for Wireless Sensor Networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.; Havinga, Paul J.M.; Chatterjea, Supriyo

    In this paper we present a novel TDMA-based medium access control (MAC) protocol for wireless sensor networks. Unlike conventional MAC protocols which function independently of the application, we introduce an Adaptive, Information-centric and Lightweight MAC(AI-LMAC) protocol that adapts its

  8. Communicating systems with UML 2 modeling and analysis of network protocols

    CERN Document Server

    Barrera, David Garduno

    2013-01-01

    This book gives a practical approach to modeling and analyzing communication protocols using UML 2. Network protocols are always presented with a point of view focusing on partial mechanisms and starting models. This book aims at giving the basis needed for anybody to model and validate their own protocols. It follows a practical approach and gives many examples for the description and analysis of well known basic network mechanisms for protocols.The book firstly shows how to describe and validate the main protocol issues (such as synchronization problems, client-server interactions, layer

  9. Modelling and Initial Validation of the DYMO Routing Protocol for Mobile Ad-Hoc Networks

    DEFF Research Database (Denmark)

    Espensen, Kristian Asbjørn Leth; Kjeldsen, Mads Keblov; Kristensen, Lars Michael

    2008-01-01

    A mobile ad-hoc network (MANET) is an infrastructureless network established by a set of mobile devices using wireless communication. The Dynamic MANET On-demand (DYMO) protocol is a routing protocol for multi-hop communication in MANETs currently under development by the Internet Engineering Task...

  10. Efficient cluster mobility support for tdma-based mac protocols in wireless sensor networks

    NARCIS (Netherlands)

    Nabi, M.; Geilen, M.; Basten, A.A.; Blagojevic, M.

    2014-01-01

    Node mobility is a key feature of using Wireless Sensor Networks (WSNs) in many sensory applications, such as healthcare. The Medium Access Control (MAC) protocol should properly support the mobility in the network. In particular, mobility is complicated for contention-free protocols like Time

  11. Persistent RCSMA: A MAC Protocol for a Distributed Cooperative ARQ Scheme in Wireless Networks

    Directory of Open Access Journals (Sweden)

    J. Alonso-Zárate

    2008-05-01

    Full Text Available The persistent relay carrier sensing multiple access (PRCSMA protocol is presented in this paper as a novel medium access control (MAC protocol that allows for the execution of a distributed cooperative automatic retransmission request (ARQ scheme in IEEE 802.11 wireless networks. The underlying idea of the PRCSMA protocol is to modify the basic rules of the IEEE 802.11 MAC protocol to execute a distributed cooperative ARQ scheme in wireless networks in order to enhance their performance and to extend coverage. A closed formulation of the distributed cooperative ARQ average packet transmission delay in a saturated network is derived in the paper. The analytical equations are then used to evaluate the performance of the protocol under different network configurations. Both the accuracy of the analysis and the performance evaluation of the protocol are supported and validated through computer simulations.

  12. A comparative study of routing protocols of heterogeneous wireless sensor networks.

    Science.gov (United States)

    Han, Guangjie; Jiang, Xu; Qian, Aihua; Rodrigues, Joel J P C; Cheng, Long

    2014-01-01

    Recently, heterogeneous wireless sensor network (HWSN) routing protocols have drawn more and more attention. Various HWSN routing protocols have been proposed to improve the performance of HWSNs. Among these protocols, hierarchical HWSN routing protocols can improve the performance of the network significantly. In this paper, we will evaluate three hierarchical HWSN protocols proposed recently--EDFCM, MCR, and EEPCA--together with two previous classical routing protocols--LEACH and SEP. We mainly focus on the round of the first node dies (also called the stable period) and the number of packets sent to sink, which is an important aspect to evaluate the monitoring ability of a protocol. We conduct a lot of experiments and simulations on Matlab to analyze the performance of the five routing protocols.

  13. A Novel Re-keying Function Protocol (NRFP For Wireless Sensor Network Security

    Directory of Open Access Journals (Sweden)

    Naif Alsharabi

    2008-12-01

    Full Text Available This paper describes a novel re-keying function protocol (NRFP for wireless sensor network security. A re-keying process management system for sensor networks is designed to support in-network processing. The design of the protocol is motivated by decentralization key management for wireless sensor networks (WSNs, covering key deployment, key refreshment, and key establishment. NRFP supports the establishment of novel administrative functions for sensor nodes that derive/re-derive a session key for each communication session. The protocol proposes direct connection, in-direct connection and hybrid connection. NRFP also includes an efficient protocol for local broadcast authentication based on the use of one-way key chains. A salient feature of the authentication protocol is that it supports source authentication without precluding in-network processing. Security and performance analysis shows that it is very efficient in computation, communication and storage and, that NRFP is also effective in defending against many sophisticated attacks.

  14. Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Liaqat, Misbah; Gani, Abdullah; Anisi, Mohammad Hossein; Ab Hamid, Siti Hafizah; Akhunzada, Adnan; Khan, Muhammad Khurram; Ali, Rana Liaqat

    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results.

  15. On the security and energy consumption estimation of wireless sensor network protocols

    OpenAIRE

    Zhang, Fan

    2012-01-01

    peer-reviewed Along with the recent rapid development of Wireless Sensor Network (WSN) systems, the range of attacks against WSN routing protocols have grown. As a result, there is an increased need for secure WSN routing protocols. WSN routing protocols should be secured once they are involved in sensitive data transmission. However, secure routing protocols require extra time and energy for security computations. Further, due to the limited power supply of WSN nodes, it is useful to theo...

  16. Performance Analysis of On-Demand Routing Protocols in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Arafatur RAHMAN

    2009-01-01

    Full Text Available Wireless Mesh Networks (WMNs have recently gained a lot of popularity due to their rapid deployment and instant communication capabilities. WMNs are dynamically self-organizing, self-configuring and self-healing with the nodes in the network automatically establishing an adiej hoc network and preserving the mesh connectivity. Designing a routing protocol for WMNs requires several aspects to consider, such as wireless networks, fixed applications, mobile applications, scalability, better performance metrics, efficient routing within infrastructure, load balancing, throughput enhancement, interference, robustness etc. To support communication, various routing protocols are designed for various networks (e.g. ad hoc, sensor, wired etc.. However, all these protocols are not suitable for WMNs, because of the architectural differences among the networks. In this paper, a detailed simulation based performance study and analysis is performed on the reactive routing protocols to verify the suitability of these protocols over such kind of networks. Ad Hoc On-Demand Distance Vector (AODV, Dynamic Source Routing (DSR and Dynamic MANET On-demand (DYMO routing protocol are considered as the representative of reactive routing protocols. The performance differentials are investigated using varying traffic load and number of source. Based on the simulation results, how the performance of each protocol can be improved is also recommended.

  17. Proposal and Performance Evaluation of a Multicast Routing Protocol for Wireless Mesh Networks Based on Network Load

    Directory of Open Access Journals (Sweden)

    Kiyotaka Oe

    2015-01-01

    Full Text Available Wireless Mesh Networks (WMNs can provide wide range Wireless Local Area Networks (WLANs area by connecting Access Points (APs of WLANs with each other using radio communications. A routing protocol is very important to keep communication quality over radio multihop communications because radio waves are impacted much by surrounding environment. When we use multiuser shared applications like a video conference and an IP phone, it is predicted that large amount of traffic flows on network. Therefore, we should consider network loads to use these applications. In this paper, we propose a multicast routing protocol for WMNs which considers network loads and hop count. Furthermore, we evaluate performance by simulation. In the simulation results, we show that the proposed protocol has better performance than a conventional protocol (MAODV at high loaded scenario.

  18. Decentralized session initiation protocol solution in ad hoc networks

    Science.gov (United States)

    Han, Lu; Jin, Zhigang; Shu, Yantai; Dong, Linfang

    2006-10-01

    With the fast development of ad hoc networks, SIP has attracted more and more attention in multimedia service. This paper proposes a new architecture to provide SIP service for ad hoc users, although there is no centralized SIP server deployed. In this solution, we provide the SIP service by the introduction of two nodes: Designated SIP Server (DS) and its Backup Server (BDS). The nodes of ad hoc network designate DS and BDS when they join the session nodes set and when some pre-defined events occur. A new sip message type called REGISTRAR is presented so nodes can send others REGISTRAR message to declare they want to be DS. According to the IP information taken in the message, an algorithm works like the election of DR and BDR in OSPF protocol is used to vote DS and BDS SIP servers. Naturally, the DS will be replaced by BDS when the DS is down for predicable or unpredictable reasons. To facilitate this, the DS should register to the BDS and transfer a backup of the SIP users' database. Considering the possibility DS or BDS may abruptly go down, a special policy is given. When there is no DS and BDS, a new election procedure is triggered just like the startup phase. The paper also describes how SIP works normally in the decentralized model as well as the evaluation of its performance. All sessions based on SIP in ad hoc such as DS voting have been tested in the real experiments within a 500m*500m square area where about 30 random nodes are placed.

  19. A Hierarchical Energy Efficient Reliable Transport Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prabhudutta Mohanty

    2014-12-01

    Full Text Available The two important requirements for many Wireless Senor Networks (WSNs are prolonged network lifetime and end-to-end reliability. The sensor nodes consume more energy during data transmission than the data sensing. In WSN, the redundant data increase the energy consumption, latency and reduce reliability during data transmission. Therefore, it is important to support energy efficient reliable data transport in WSNs. In this paper, we present a Hierarchical Energy Efficient Reliable Transport Protocol (HEERTP for the data transmission within the WSN. This protocol maximises the network lifetime by controlling the redundant data transmission with the co-ordination of Base Station (BS. The proposed protocol also achieves end-to-end reliability using a hop-by-hop acknowledgement scheme. We evaluate the performance of the proposed protocol through simulation. The simulation results reveal that our proposed protocol achieves better performance in terms of energy efficiency, latency and reliability than the existing protocols.

  20. Disjoint Key Establishment Protocol for Wireless Sensor and Actor Networks

    Directory of Open Access Journals (Sweden)

    AtaUllah Ghafoor

    2016-01-01

    Full Text Available Key distribution is essential for providing secure communication between commercial and sensitive applications of wireless sensor and actor networks (WSANs. It becomes more challenging when any of the intermediate sensor nodes is compromised by the adversaries as the messages carrying secure keys will be exposed and links will be unreliable. This paper presents a Disjoint Key Establishment Protocol (DKEP that does not require transmitting keys across the nodes. In DKEP, each node is preloaded with one row and one column from a matrix. After the deployment, indices for row and column are exchanged between the two nodes and values at intersection of row and column index will be used to calculate the key on each node. DKEP is verified by performing formal analysis using Rubin Logic and validated using simulations in NS-2. Simulation results demonstrate the effectiveness and efficiency of DKEP compared to contemporary schemes in terms of reducing storage and communication cost and improving resilience against node compromise attacks. Moreover, the proposed scheme is implemented in a group-based mobile application scenario for secure message exchange.

  1. An energy-aware routing protocol for query-based applications in wireless sensor networks.

    Science.gov (United States)

    Ahvar, Ehsan; Ahvar, Shohreh; Lee, Gyu Myoung; Crespi, Noel

    2014-01-01

    Wireless sensor network (WSN) typically has energy consumption restriction. Designing energy-aware routing protocol can significantly reduce energy consumption in WSNs. Energy-aware routing protocols can be classified into two categories, energy savers and energy balancers. Energy saving protocols are used to minimize the overall energy consumed by a WSN, while energy balancing protocols attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP) for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  2. Development of high-reliable real-time communication network protocol for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Sang; Kim, Young Sik [Korea National University of Education, Chongwon (Korea); No, Hee Chon [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    In this research, we first define protocol subsets for SMART(System-integrated Modular Advanced Reactor) communication network based on the requirement of SMART MMIS transmission delay and traffic requirements and OSI(Open System Interconnection) 7 layers' network protocol functions. Also, current industrial purpose LAN protocols are analyzed and the applicability of commercialized protocols are checked. For the suitability test, we have applied approximated SMART data traffic and maximum allowable transmission delay requirement. With the simulation results, we conclude that IEEE 802.5 and FDDI which is an ANSI standard, is the most suitable for SMART. We further analyzed the FDDI and token ring protocols for SMART and nuclear plant network environment including IEEE 802.4, IEEE 802.5, and ARCnet. The most suitable protocol for SMART is FDDI and FDDI MAC and RMT protocol specifications have been verified with LOTOS and the verification results show that FDDI MAC and RMT satisfy the reachability and liveness, but does not show deadlock and livelock. Therefore, we conclude that FDDI MAC and RMT is highly reliable protocol for SMART MMIS network. After that, we consider the stacking fault of IEEE 802.5 token ring protocol and propose a fault tolerant MAM(Modified Active Monitor) protocol. The simulation results show that the MAM protocol improves lower priority traffic service rate when stacking fault occurs. Therefore, proposed MAM protocol can be applied to SMART communication network for high reliability and hard real-time communication purpose in data acquisition and inter channel network. (author). 37 refs., 79 figs., 39 tabs.

  3. Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis.

    Science.gov (United States)

    Alanazi, Adwan; Elleithy, Khaled

    2015-09-02

    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.

  4. Performance of the hybrid wireless mesh protocol for wireless mesh networks

    DEFF Research Database (Denmark)

    Boye, Magnus; Staalhagen, Lars

    2010-01-01

    Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... These challenges must first be overcome before satisfactory network stability and throughput can be achieved. This paper studies the performance of the Hybrid Wireless Mesh Protocol, the proposed routing protocol for the upcoming IEEE 802.11s standard. HWMP supports two modes of path selection: reactive...

  5. MAC Protocols for Optimal Information Retrieval Pattern in Sensor Networks with Mobile Access

    Directory of Open Access Journals (Sweden)

    Dong Min

    2005-01-01

    Full Text Available In signal field reconstruction applications of sensor network, the locations where the measurements are retrieved from affect the reconstruction performance. In this paper, we consider the design of medium access control (MAC protocols in sensor networks with mobile access for the desirable information retrieval pattern to minimize the reconstruction distortion. Taking both performance and implementation complexity into consideration, besides the optimal centralized scheduler, we propose three decentralized MAC protocols, namely, decentralized scheduling through carrier sensing, Aloha scheduling, and adaptive Aloha scheduling. Design parameters for the proposed protocols are optimized. Finally, performance comparison among these protocols is provided via simulations.

  6. A novel Smart Routing Protocol for remote health monitoring in Medical Wireless Networks.

    Science.gov (United States)

    Sundararajan, T V P; Sumithra, M G; Maheswar, R

    2014-01-01

    In a Medical Wireless Network (MWN), sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP) selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  7. A Novel Smart Routing Protocol for Remote Health Monitoring in Medical Wireless Networks

    Directory of Open Access Journals (Sweden)

    T. V. P. Sundararajan

    2014-01-01

    Full Text Available In a Medical Wireless Network (MWN, sensors constantly monitor patient's physiological condition and movement. Inter-MWN communications are set up between the Patient Server and one or more Centralized Coordinators. However, MWNs require protocols with little energy consumption and the self-organizing attribute perceived in ad-hoc networks. The proposed Smart Routing Protocol (SRP selects only the nodes with a higher residual energy and lower traffic density for routing. This approach enhances cooperation among the nodes of a Mobile Ad Hoc Network. Consequently, SRP produces better results than the existing protocols, namely Conditional Min-Max Battery Cost Routing, Min-Max Battery Cost Routing and AdHoc On-demand Distance Vector in terms of network parameters. The performance of the erstwhile schemes for routing protocols is evaluated using the network simulator Qualnet v 4.5.

  8. Proof-of-Concept Implementation of the Ahoy Discovery Protocol for Ad-hoc Networks

    NARCIS (Netherlands)

    Haarman, Robbert; Liu, F.; Goering, P.T.H.; Heijenk, Geert

    The context discovery protocol Ahoy has been proposed ear- lier for resource-limited fully-distributed ad-hoc networks. Ahoy has been proven as an efficient context discovery pro- tocol, which generates only little network traffic, in both static and dynamic ad-hoc networks. In this report, we im-

  9. A Gossip-based Energy Efficient Protocol for Robust In-network Aggregation in Wireless Sensor Networks

    Science.gov (United States)

    Fauji, Shantanu

    We consider the problem of energy efficient and fault tolerant in--network aggregation for wireless sensor networks (WSNs). In-network aggregation is the process of aggregation while collecting data from sensors to the base station. This process should be energy efficient due to the limited energy at the sensors and tolerant to the high failure rates common in sensor networks. Tree based in--network aggregation protocols, although energy efficient, are not robust to network failures. Multipath routing protocols are robust to failures to a certain degree but are not energy efficient due to the overhead in the maintenance of multiple paths. We propose a new protocol for in-network aggregation in WSNs, which is energy efficient, achieves high lifetime, and is robust to the changes in the network topology. Our protocol, gossip--based protocol for in-network aggregation (GPIA) is based on the spreading of information via gossip. GPIA is not only adaptive to failures and changes in the network topology, but is also energy efficient. Energy efficiency of GPIA comes from all the nodes being capable of selective message reception and detecting convergence of the aggregation early. We experimentally show that GPIA provides significant improvement over some other competitors like the Ridesharing, Synopsis Diffusion and the pure version of gossip. GPIA shows ten fold, five fold and two fold improvement over the pure gossip, the synopsis diffusion and Ridesharing protocols in terms of network lifetime, respectively. Further, GPIA retains gossip's robustness to failures and improves upon the accuracy of synopsis diffusion and Ridesharing.

  10. Capturing Uncertainty Information and Categorical Characteristics for Network Payload Grouping in Protocol Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Jian-Zhen Luo

    2015-01-01

    Full Text Available As a promising tool to recover the specifications of unknown protocols, protocol reverse engineering has drawn more and more attention in research over the last decade. It is a critical task of protocol reverse engineering to extract the protocol keywords from network trace. Since the messages of different types have different sets of protocol keywords, it is an effective method to improve the accuracy of protocol keyword extraction by clustering the network payload of unknown traffic into clusters and analyzing each clusters to extract the protocol keywords. Although the classic algorithms such as K-means and EM can be used for network payload clustering, the quality of resultant traffic clusters was far from satisfactory when these algorithms are applied to cluster application layer traffic with categorical attributes. In this paper, we propose a novel method to improve the accuracy of protocol reverse engineering by applying a rough set-based technique for clustering the application layer traffic. This technique analyze multidimension uncertain information in multiple categorical attributes based on rough sets theory to cluster network payload, and apply the Minimum Description Length criteria to determine the optimal number of clusters. The experiments show that our method outperforms the existing algorithms and improves the results of protocol keyword extraction.

  11. ML-IKE: a multi-layer IKE protocol for TCP performance enhancement in wireless networks

    Science.gov (United States)

    Zhang, Ya-Hang; Cheng, Bo-Wen; Qing, Si-Han; Zou, Guang-Nan; Wen, Wei-Ping

    2009-12-01

    To solve the conflict between TCP accelerating technology based on PEP middle node and IPSec protocol used in the Satellite Network, NASA and the Hughes Research Laboratory (HRL) each independently proposed a solution named Multilayer IPsec protocol which can integrate IPSec with TCP PEPs. The problem is: Traditional IKE protocol can't work with Multilayer IPSec protocol. In this study, the traditional IKE main mode and quick mode are enhanced for layered IPSec protocol, and an improved layered key distribution protocol: ML-IKE is proposed. This key distribution protocol is used for key exchange between peers and middle node, so that different nodes have different security associations (SA), and different security associations correspond to different IP packet fields, so different SA nodes have different authorization to different IP packet fields. ML-IKE protocol is suitable for layered IPSec, thus layered IPSec can be used for automatic key distribution and update.

  12. Space suit

    Science.gov (United States)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  13. A new protocol for finite-time consensus of detail-balanced multi-agent networks.

    Science.gov (United States)

    Yang, Shaofu; Cao, Jinde; Lu, Jianquan

    2012-12-01

    In this paper, a finite-time consensus protocol for multi-agent networks is discussed from a new perspective. The order β of the nonlinear function in the protocol is shown to be a crucial parameter in analyzing the finite-time consensus property of multi-agent networks with a detail-balanced communication topology. When β>0, the corresponding protocol can guarantee the consensus of the multi-agent networks. In particular, if β∈(0,1), the consensus can be realized within finite time. A leader-follow model is also investigated in this paper. Finally, several concrete protocols are proposed based on our theoretical analysis, and numerical examples are given to make a comparison among different protocols from the aspect of convergence speed.

  14. Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey.

    Science.gov (United States)

    Zareei, Mahdi; Islam, A K M Muzahidul; Baharun, Sabariah; Vargas-Rosales, Cesar; Azpilicueta, Leyre; Mansoor, Nafees

    2017-09-16

    New wireless network paradigms will demand higher spectrum use and availability to cope with emerging data-hungry devices. Traditional static spectrum allocation policies cause spectrum scarcity, and new paradigms such as Cognitive Radio (CR) and new protocols and techniques need to be developed in order to have efficient spectrum usage. Medium Access Control (MAC) protocols are accountable for recognizing free spectrum, scheduling available resources and coordinating the coexistence of heterogeneous systems and users. This paper provides an ample review of the state-of-the-art MAC protocols, which mainly focuses on Cognitive Radio Ad Hoc Networks (CRAHN). First, a description of the cognitive radio fundamental functions is presented. Next, MAC protocols are divided into three groups, which are based on their channel access mechanism, namely time-slotted protocol, random access protocol and hybrid protocol. In each group, a detailed and comprehensive explanation of the latest MAC protocols is presented, as well as the pros and cons of each protocol. A discussion on future challenges for CRAHN MAC protocols is included with a comparison of the protocols from a functional perspective.

  15. Medium Access Control Protocols for Cognitive Radio Ad Hoc Networks: A Survey

    Science.gov (United States)

    Islam, A. K. M. Muzahidul; Baharun, Sabariah; Mansoor, Nafees

    2017-01-01

    New wireless network paradigms will demand higher spectrum use and availability to cope with emerging data-hungry devices. Traditional static spectrum allocation policies cause spectrum scarcity, and new paradigms such as Cognitive Radio (CR) and new protocols and techniques need to be developed in order to have efficient spectrum usage. Medium Access Control (MAC) protocols are accountable for recognizing free spectrum, scheduling available resources and coordinating the coexistence of heterogeneous systems and users. This paper provides an ample review of the state-of-the-art MAC protocols, which mainly focuses on Cognitive Radio Ad Hoc Networks (CRAHN). First, a description of the cognitive radio fundamental functions is presented. Next, MAC protocols are divided into three groups, which are based on their channel access mechanism, namely time-slotted protocol, random access protocol and hybrid protocol. In each group, a detailed and comprehensive explanation of the latest MAC protocols is presented, as well as the pros and cons of each protocol. A discussion on future challenges for CRAHN MAC protocols is included with a comparison of the protocols from a functional perspective. PMID:28926952

  16. Physical layer bootstrapping protocol for cognitive radio networks

    NARCIS (Netherlands)

    Doost-Mohammady, R.; Paweczak, P.; Janssen, G.J.M.; Segers, J.C.M.

    2010-01-01

    In this paper a novel signaling protocol for coexistence and spectrum sharing among cognitive radio nodes is proposed. This protocol allows the radios to rendezvous with each other in a statically allocated spectrum band through on-off keying signaling and reliable spectrum sensing. It enables the

  17. A Fairness Oriented Neighbor-Channel-Aware MAC Protocol for Airborne Sensor Networks

    National Research Council Canada - National Science Library

    Xiaolin Gao; Jian Yan; Jianhua Lu

    2017-01-01

    In airborne sensor networks (ASNs), the media access control (MAC) protocol faces a serious unfairness problem due to the traditional protection mechanism of air-to-air communications among aircraft...

  18. Knowledge-Based Multiple Access Protocol in Broadband Wireless ATM Networks

    DEFF Research Database (Denmark)

    Liu, Hong; Gliese, Ulrik Bo; Dittmann, Lars

    1999-01-01

    In this paper, we propose a knowledge-based multiple access protocol for the extension of wireline ATM to wireless networks. The objective is to enable effecient transmission of all kinds of ATM traffic in the wireless channel with guaranteed QoS.The proposed protocol utilixes knowledge of the main...... guaranteed QoS requirements to a variety of ATM applications....

  19. Two-round contributory group key exchange protocol for wireless network environments

    Directory of Open Access Journals (Sweden)

    Wu Tsu-Yang

    2011-01-01

    Full Text Available Abstract With the popularity of group-oriented applications, secure group communication has recently received much attention from cryptographic researchers. A group key exchange (GKE protocol allows that participants cooperatively establish a group key that is used to encrypt and decrypt transmitted messages. Hence, GKE protocols can be used to provide secure group communication over a public network channel. However, most of the previously proposed GKE protocols deployed in wired networks are not fully suitable for wireless network environments with low-power computing devices. Subsequently, several GKE protocols suitable for mobile or wireless networks have been proposed. In this article, we will propose a more efficient group key exchange protocol with dynamic joining and leaving. Under the decision Diffie-Hellman (DDH, the computation Diffie-Hellman (CDH, and the hash function assumptions, we demonstrate that the proposed protocol is secure against passive attack and provides forward/backward secrecy for dynamic member joining/leaving. As compared with the recently proposed GKE protocols, our protocol provides better performance in terms of computational cost, round number, and communication cost.

  20. Optimization and Verification of the TR-MAC Protocol for Wireless Sensor Networks

    NARCIS (Netherlands)

    Morshed, S.; Heijenk, Geert

    2015-01-01

    Energy-efficiency is an important requirement in the design of communication protocols for wireless sensor networks (WSN). TR-MAC is an energy-efficient medium access control (MAC) layer protocol for low power WSN that exploits transmitted-reference (TR) modulation in the physical layer. The

  1. A network identity authentication protocol of bank account system based on fingerprint identification and mixed encryption

    Science.gov (United States)

    Zhu, Lijuan; Liu, Jingao

    2013-07-01

    This paper describes a network identity authentication protocol of bank account system based on fingerprint identification and mixed encryption. This protocol can provide every bank user a safe and effective way to manage his own bank account, and also can effectively prevent the hacker attacks and bank clerk crime, so that it is absolute to guarantee the legitimate rights and interests of bank users.

  2. Performance Evaluation of a Cluster-Based Service Discovery Protocol for Heterogeneous Wireless Sensor Networks

    NARCIS (Netherlands)

    Marin Perianu, Raluca; Scholten, Johan; Havinga, Paul J.M.; Hartel, Pieter H.

    2006-01-01

    Abstract—This paper evaluates the performance in terms of resource consumption of a service discovery protocol proposed for heterogeneous Wireless Sensor Networks (WSNs). The protocol is based on a clustering structure, which facilitates the construction of a distributed directory. Nodes with higher

  3. Performance Analysis of Routing Protocols in Ad-hoc and Sensor Networking Environments

    Directory of Open Access Journals (Sweden)

    L. Gavrilovska

    2009-06-01

    Full Text Available Ad-hoc and sensor networks are becoming an increasingly popular wireless networking concepts lately. This paper analyzes and compares prominent routing schemes in these networking environments. The knowledge obtained can serve users to better understand short range wireless network solutions thus leading to options for implementation in various scenarios. In addition, it should aid researchers develop protocol improvements reliable for the technologies of interest.

  4. LINK STABILITY WITH ENERGY AWARE AD HOC ON DEMAND MULTIPATH ROUTING PROTOCOL IN MOBILE AD HOC NETWORKS

    OpenAIRE

    Senthil Murugan Tamilarasan; Kannan Eswariah

    2013-01-01

    Mobile Ad Hoc Network is one of the wireless network in which mobile nodes are communicate with each other and have no infrastructure because no access point. The MANET protocols can be classified as proactive and reactive routing protocol. The proactive routing protocols, all nodes which participated in network have routing table. This table updated periodically and is used to find the path between source and destination. The reactive routing protocol, nodes are initiate route discovery proc...

  5. ETARP: An Energy Efficient Trust-Aware Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Pu Gong

    2015-01-01

    Full Text Available This paper presents a new routing protocol called Secure and Energy Aware Routing Protocol (ETARP designed for energy efficiency and security for wireless sensor networks (WSNs. ETARP attempts to deal with WSN applications operating in extreme environments such as the battlefield. The key part of the routing protocol is route selection based on utility theory. The concept of utility is a novel approach to simultaneously factor energy efficiency and trustworthiness of routes in the routing protocol. ETARP discovers and selects routes on the basis of maximum utility with incurring additional cost in overhead compared to the common AODV (Ad Hoc On Demand Distance Vector routing protocol. Simulation results show that, in comparison to previously proposed routing protocols, namely, AODV-EHA and LTB-AODV (Light-Weight Trust-Based Routing Protocol, the proposed ETARP can keep the same security level while achieving more energy efficiency for data packet delivery.

  6. A decentralized fuzzy C-means-based energy-efficient routing protocol for wireless sensor networks.

    Science.gov (United States)

    Alia, Osama Moh'd

    2014-01-01

    Energy conservation in wireless sensor networks (WSNs) is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network's lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  7. Design and application of air-conditioning suit based on eddy current cooling principle for distribution network working with power uninterrupted

    Science.gov (United States)

    Xu, Li; Liu, Lanlan; Niu, Jie; Tang, Li; Li, Jinliang; Zhou, Zhanfan; Long, Chenhai; Yang, Qi; Yi, Ziqi; Guo, Hao; Long, Yang; Fu, Yanyi

    2017-05-01

    As social requirement of power supply reliability keeps rising, distribution network working with power uninterrupted has been widely carried out, while the high - temperature operating environment in summer can easily lead to physical discomfort for the operators, and then lead to safety incidents. Aiming at above problem, air-conditioning suit for distribution network working with power uninterrupted has been putted forward in this paper, and the structure composition and cooling principle of which has been explained, and it has been ultimately put to on-site application. The results showed that, cooling effect of air-conditioning suits was remarkable, and improved the working environment for the operators effectively, which is of great significance to improve Chinese level of working with power uninterrupted, reduce the probability of accidents and enhance the reliability of power supply.

  8. A hop count based heuristic routing protocol for mobile delay tolerant networks.

    Science.gov (United States)

    You, Lei; Li, Jianbo; Wei, Changjiang; Dai, Chenqu; Xu, Jixing; Hu, Lejuan

    2014-01-01

    Routing in delay tolerant networks (DTNs) is a challenge since it must handle network partitioning, long delays, and dynamic topology. Meanwhile, routing protocols of the traditional mobile ad hoc networks (MANETs) cannot work well due to the failure of its assumption that most network connections are available. In this paper, we propose a hop count based heuristic routing protocol by utilizing the information carried by the peripatetic packets in the network. A heuristic function is defined to help in making the routing decision. We formally define a custom operation for square matrices so as to transform the heuristic value calculation into matrix manipulation. Finally, the performance of our proposed algorithm is evaluated by the simulation results, which show the advantage of such self-adaptive routing protocol in the diverse circumstance of DTNs.

  9. A survey on routing protocols for large-scale wireless sensor networks.

    Science.gov (United States)

    Li, Changle; Zhang, Hanxiao; Hao, Binbin; Li, Jiandong

    2011-01-01

    With the advances in micro-electronics, wireless sensor devices have been made much smaller and more integrated, and large-scale wireless sensor networks (WSNs) based the cooperation among the significant amount of nodes have become a hot topic. "Large-scale" means mainly large area or high density of a network. Accordingly the routing protocols must scale well to the network scope extension and node density increases. A sensor node is normally energy-limited and cannot be recharged, and thus its energy consumption has a quite significant effect on the scalability of the protocol. To the best of our knowledge, currently the mainstream methods to solve the energy problem in large-scale WSNs are the hierarchical routing protocols. In a hierarchical routing protocol, all the nodes are divided into several groups with different assignment levels. The nodes within the high level are responsible for data aggregation and management work, and the low level nodes for sensing their surroundings and collecting information. The hierarchical routing protocols are proved to be more energy-efficient than flat ones in which all the nodes play the same role, especially in terms of the data aggregation and the flooding of the control packets. With focus on the hierarchical structure, in this paper we provide an insight into routing protocols designed specifically for large-scale WSNs. According to the different objectives, the protocols are generally classified based on different criteria such as control overhead reduction, energy consumption mitigation and energy balance. In order to gain a comprehensive understanding of each protocol, we highlight their innovative ideas, describe the underlying principles in detail and analyze their advantages and disadvantages. Moreover a comparison of each routing protocol is conducted to demonstrate the differences between the protocols in terms of message complexity, memory requirements, localization, data aggregation, clustering manner and

  10. IPV6 Mobile Network Protocol Weaknesses and a Cryptosystem Approach

    Science.gov (United States)

    Balitanas, Maricel; Kim, Tai-Hoon

    This paper reviews some of the improvements associated with the new Internet protocol version 6, an emphasis on its security-related functionality particularly in its authentication and concludes with a hybrid cryptosystem for its authentication issue. Since new generation of Internet protocol is on its way to solve the growth of IP address depletion. It is in a process that may take several years to complete. Thus, as a step to effective solution and efficient implementation this review has been made.

  11. The Application of RPL Routing Protocol in Low Power Wireless Sensor and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Xun Yang

    2014-05-01

    Full Text Available With the continuous development of computer information technology, wireless sensor has been successfully changed the mode of human life, at the same time, as one of the technologies continues to improve the future life, how to better integration with the RPL routing protocols together become one of research focuses in the current climate. This paper start from the wireless sensor network, briefly discusses the concept, followed by systematic exposition of RPL routing protocol developed background, relevant standards, working principle, topology and related terms, and finally explore the RPL routing protocol in wireless sensor low power lossy network applications.

  12. On the MAC/Network/Energy Performance Evaluation of Wireless Sensor Networks: Contrasting MPH, AODV, DSR and ZTR Routing Protocols

    Science.gov (United States)

    Del-Valle-Soto, Carolina; Mex-Perera, Carlos; Orozco-Lugo, Aldo; Lara, Mauricio; Galván-Tejada, Giselle M.; Olmedo, Oscar

    2014-01-01

    Wireless Sensor Networks deliver valuable information for long periods, then it is desirable to have optimum performance, reduced delays, low overhead, and reliable delivery of information. In this work, proposed metrics that influence energy consumption are used for a performance comparison among our proposed routing protocol, called Multi-Parent Hierarchical (MPH), the well-known protocols for sensor networks, Ad hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR), and Zigbee Tree Routing (ZTR), all of them working with the IEEE 802.15.4 MAC layer. Results show how some communication metrics affect performance, throughput, reliability and energy consumption. It can be concluded that MPH is an efficient protocol since it reaches the best performance against the other three protocols under evaluation, such as 19.3% reduction of packet retransmissions, 26.9% decrease of overhead, and 41.2% improvement on the capacity of the protocol for recovering the topology from failures with respect to AODV protocol. We implemented and tested MPH in a real network of 99 nodes during ten days and analyzed parameters as number of hops, connectivity and delay, in order to validate our simulator and obtain reliable results. Moreover, an energy model of CC2530 chip is proposed and used for simulations of the four aforementioned protocols, showing that MPH has 15.9% reduction of energy consumption with respect to AODV, 13.7% versus DSR, and 5% against ZTR. PMID:25474377

  13. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.

  14. An Efficient Causal Group Communication Protocol for Free Scale Peer-to-Peer Networks

    Directory of Open Access Journals (Sweden)

    Grigory Evropeytsev

    2016-08-01

    Full Text Available In peer-to-peer (P2P overlay networks, a group of n (≥2 peer processes have to cooperate with each other. Each peer sends messages to every peer and receives messages from every peer in a group. In group communications, each message sent by a peer is required to be causally delivered to every peer. Most of the protocols designed to ensure causal message order are designed for networks with a plain architecture. These protocols can be adapted to use in free scale and hierarchical topologies; however, the amount of control information is O(n, where n is the number of peers in the system. Some protocols are designed for a free scale or hierarchical networks, but in general they force the whole system to accomplish the same order viewed by a super peer. In this paper, we present a protocol that is specifically designed to work with a free scale peer-to-peer network. By using the information about the network’s architecture and by representing message dependencies on a bit level, the proposed protocol ensures causal message ordering without enforcing super peers order. The designed protocol is simulated and compared with the Immediate Dependency Relation and the Dependency Sequences protocols to show its lower overhead.

  15. Analytical modeling of address allocation protocols in wireless ad hoc networks

    Directory of Open Access Journals (Sweden)

    Ahmad Radaideh

    2011-09-01

    Full Text Available Detailed descriptions of Internet Protocol Address Assignment (IPAA and Mobile Ad Hoc Network Configuration (MANETconf are presented and state diagrams for their behavior are constructed. Formulae for the expected latency and communication overhead of the IPAA protocol are derived, with the results being given as functions of the number of nodes in the network with message loss rate, contention window size, coverage ratio, and the counter threshold as parameters. Simulation is used to validate the analytical results and also to compare performance of the two protocols. The results show that the latency and communication overhead for MANETconf are significantly higher than the measures of the IPAA protocol. Results of extensive sensitivity analyses for the IPAA protocol are also presented.

  16. Energy neutral protocol based on hierarchical routing techniques for energy harvesting wireless sensor network

    Science.gov (United States)

    Muhammad, Umar B.; Ezugwu, Absalom E.; Ofem, Paulinus O.; Rajamäki, Jyri; Aderemi, Adewumi O.

    2017-06-01

    Recently, researchers in the field of wireless sensor networks have resorted to energy harvesting techniques that allows energy to be harvested from the ambient environment to power sensor nodes. Using such Energy harvesting techniques together with proper routing protocols, an Energy Neutral state can be achieved so that sensor nodes can run perpetually. In this paper, we propose an Energy Neutral LEACH routing protocol which is an extension to the traditional LEACH protocol. The goal of the proposed protocol is to use Gateway node in each cluster so as to reduce the data transmission ranges of cluster head nodes. Simulation results show that the proposed routing protocol achieves a higher throughput and ensure the energy neutral status of the entire network.

  17. A Decentralized Fuzzy C-Means-Based Energy-Efficient Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Osama Moh’d Alia

    2014-01-01

    Full Text Available Energy conservation in wireless sensor networks (WSNs is a vital consideration when designing wireless networking protocols. In this paper, we propose a Decentralized Fuzzy Clustering Protocol, named DCFP, which minimizes total network energy dissipation to promote maximum network lifetime. The process of constructing the infrastructure for a given WSN is performed only once at the beginning of the protocol at a base station, which remains unchanged throughout the network’s lifetime. In this initial construction step, a fuzzy C-means algorithm is adopted to allocate sensor nodes into their most appropriate clusters. Subsequently, the protocol runs its rounds where each round is divided into a CH-Election phase and a Data Transmission phase. In the CH-Election phase, the election of new cluster heads is done locally in each cluster where a new multicriteria objective function is proposed to enhance the quality of elected cluster heads. In the Data Transmission phase, the sensing and data transmission from each sensor node to their respective cluster head is performed and cluster heads in turn aggregate and send the sensed data to the base station. Simulation results demonstrate that the proposed protocol improves network lifetime, data delivery, and energy consumption compared to other well-known energy-efficient protocols.

  18. Efficient MAC Protocol for Hybrid Wireless Network with Heterogeneous Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Md. Nasre Alam

    2016-01-01

    Full Text Available Although several Directional Medium Access Control (DMAC protocols have been designed for use with homogeneous networks, it can take a substantial amount of time to change sensor nodes that are equipped with an omnidirectional antenna for sensor nodes with a directional antenna. Thus, we require a novel MAC protocol for use with an intermediate wireless network that consists of heterogeneous sensor nodes equipped with either an omnidirectional antenna or a directional antenna. The MAC protocols that have been designed for use in homogeneous networks are not suitable for use in a hybrid network due to deaf, hidden, and exposed nodes. Therefore, we propose a MAC protocol that exploits the characteristics of a directional antenna and can also work efficiently with omnidirectional nodes in a hybrid network. In order to address the deaf, hidden, and exposed node problems, we define RTS/CTS for the neighbor (RTSN/CTSN and Neighbor Information (NIP packets. The performance of the proposed MAC protocol is evaluated through a numerical analysis using a Markov model. In addition, the analytical results of the MAC protocol are verified through an OPNET simulation.

  19. Proposal for Implementation of Novel Routing Protocols for IP Radio Networks above 70 GHz in MPLS

    Directory of Open Access Journals (Sweden)

    D. B. Perić

    2013-06-01

    Full Text Available In this paper, a proposal for implementation of novel routing protocols for IP radio networks at frequencies above 70 GHz is described. The protocols are designed to improve a network performance in the presence of the rain that has an intensity that causes a link down state and/or capacity reduction of some links in the network, but a network graph remains connected. New protocols, named OSPF-BPI and OSPF-BNI, are modifications of standard OSPF routing protocol which imply traffic sharing between the main shortest path route and specially defined backup routes. It is shown that the majority of novel routing protocols' features can be achieved just with a proper configuration of routers with standardized multi protocol label switching (MPLS traffic engineering (TE capabilities. For both types of backup routes attention is paid to avoid an additional unavailability due to equipment failure. The same MTTR time is kept for the same IP network when no protection mechanism are applied.

  20. Effective Data Acquisition Protocol for Multi-Hop Heterogeneous Wireless Sensor Networks Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ahmed M. Khedr

    2015-10-01

    Full Text Available In designing wireless sensor networks (WSNs, it is important to reduce energy dissipation and prolong network lifetime. Clustering of nodes is one of the most effective approaches for conserving energy in WSNs. Cluster formation protocols generally consider the heterogeneity of sensor nodes in terms of energy difference of nodes but ignore the different transmission ranges of them. In this paper, we propose an effective data acquisition clustered protocol using compressive sensing (EDACP-CS for heterogeneous WSNs that aims to conserve the energy of sensor nodes in the presence of energy and transmission range heterogeneity. In EDACP-CS, cluster heads are selected based on the distance from the base station and sensor residual energy. Simulation results show that our protocol offers a much better performance than the existing protocols in terms of energy consumption, stability, network lifetime, and throughput.

  1. Evaluation of video transmission of MAC protocols in wireless sensor network

    Science.gov (United States)

    Maulidin, Mahmuddin, M.; Kamaruddin, L. M.; Elsaikh, Mohamed

    2016-08-01

    Wireless Sensor Network (WSN) is a wireless network which consists of sensor nodes scattered in a particular area which are used to monitor physical or environment condition. Each node in WSN is also scattered in sensor field, so an appropriate scheme of MAC protocol should have to develop communication link for data transferring. Video transmission is one of the important applications for the future that can be transmitted with low aspect in side of cost and also power consumption. In this paper, comparison of five different MAC WSN protocol for video transmission namely IEEE 802.11 standard, IEEE 802.15.4 standard, CSMA/CA, Berkeley-MAC, and Lightweight-MAC protocol are studied. Simulation experiment has been conducted in OMNeT++ with INET network simulator software to evaluate the performance. Obtained results indicate that IEEE 802.11 works better than other protocol in term of packet delivery, throughput, and latency.

  2. Directional Medium Access Control (MAC Protocols in Wireless Ad Hoc and Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    David Tung Chong Wong

    2015-06-01

    Full Text Available This survey paper presents the state-of-the-art directional medium access control (MAC protocols in wireless ad hoc and sensor networks (WAHSNs. The key benefits of directional antennas over omni-directional antennas are longer communication range, less multipath interference, more spatial reuse, more secure communications, higher throughput and reduced latency. However, directional antennas lead to single-/multi-channel directional hidden/exposed terminals, deafness and neighborhood, head-of-line blocking, and MAC-layer capture which need to be overcome. Addressing these problems and benefits for directional antennas to MAC protocols leads to many classes of directional MAC protocols in WAHSNs. These classes of directional MAC protocols presented in this survey paper include single-channel, multi-channel, cooperative and cognitive directional MACs. Single-channel directional MAC protocols can be classified as contention-based or non-contention-based or hybrid-based, while multi-channel directional MAC protocols commonly use a common control channel for control packets/tones and one or more data channels for directional data transmissions. Cooperative directional MAC protocols improve throughput in WAHSNs via directional multi-rate/single-relay/multiple-relay/two frequency channels/polarization, while cognitive directional MAC protocols leverage on conventional directional MAC protocols with new twists to address dynamic spectrum access. All of these directional MAC protocols are the pillars for the design of future directional MAC protocols in WAHSNs.

  3. Implementation of an On-Demand Routing Protocol for Wireless Sensor Networks

    NARCIS (Netherlands)

    Zhang, Y.; Wu Jian, W.J.; Havinga, Paul J.M.

    2006-01-01

    We present our experiences in implementing and validating the on-demand EYES Source Routing protocol (ESR) in a real wireless sensor network (WSN) environment. ESR has a fast recovery mechanism relying on MAC layer feedback to overcome frequent network topology changes resulting from node mobility

  4. Experimental implementation of a real-time token-based network protocol on a microcontroller

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Krikke, Robert; Baron, Bert; Jansen, P.G.; Scholten, Johan

    The real-time token-based RTnet network protocol has been implemented on a standard Ethernet network to investigate the possibility to use cheap components with strict resource limitations while preserving Quality of Service guarantees. It will be shown that the proposed implementation is feasible

  5. Experimental implementation of a real-time token-based network protocol on a microcontroller

    NARCIS (Netherlands)

    Hanssen, F.T.Y.; Krikke, Robert; Baron, Bert; Jansen, P.G.; Scholten, Johan

    2004-01-01

    The real-time token-based RTnet network protocol has been implemented on a standard Ethernet network to investigate the possibility to use cheap components with strict resource limitations while preserving Quality of Service guarantees. It will be shown that the proposed implementation is feasible

  6. Implantable Body Sensor Network MAC Protocols Using Wake-up Radio – Evaluation in Animal Tissue

    NARCIS (Netherlands)

    Karuppiah Ramachandran, Vignesh Raja; van der Zwaag, B.J.; Meratnia, Nirvana; Havinga, Paul J.M.

    Applications of implantable sensor networks in the health-care industry have increased tremendously over the last decade. There are different types of medium access control (MAC) protocols that are designed for implantable body sensor networks, using different physical layer technologies such as

  7. Performance of Implementation IBR-DTN and Batman-Adv Routing Protocol in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Herman Yuliandoko

    2016-03-01

    Full Text Available Wireless mesh networks is a network which has high mobility and flexibility network. In Wireless mesh networks nodes are free to move and able to automatically build a network connection with other nodes. High mobility, heterogeneous condition and intermittent network connectivity cause data packets drop during wireless communication and it becomes a problem in the wireless mesh networks. This condition can happen because wireless mesh networks use connectionless networking type such as IP protocol which it is not tolerant to delay. To solve this condition it is needed a technology to keep data packets when the network is disconnect. Delay tolerant technology is a technology that provides store and forward mechanism and it can prevent packet data dropping during communication. In our research, we proposed a test bed wireless mesh networks implementation by using proactive routing protocol and combining with delay tolerant technology. We used Batman-adv routing protocol and IBR-DTN on our research. We measured some particular performance aspect of networking such as packet loss, delay, and throughput of the network. We identified that delay tolerant could keep packet data from dropping better than current wireless mesh networks in the intermittent network condition. We also proved that IBR-DTN and Batman-adv could run together on the wireless mesh networks. In The experiment throughput test result of IBR-DTN was higher than Current TCP on the LoS (Line of Side and on environment with obstacle. Keywords: Delay Tolerant, IBR-DTN, Wireless Mesh, Batman-adv, Performance

  8. Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol

    Science.gov (United States)

    Huang, Xiaowan; Singh, Anu; Smolka, Scott A.

    2010-01-01

    We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution

  9. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks

    Science.gov (United States)

    2017-01-01

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities’ authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol. PMID:28946633

  10. Secure and Lightweight Cloud-Assisted Video Reporting Protocol over 5G-Enabled Vehicular Networks.

    Science.gov (United States)

    Nkenyereye, Lewis; Kwon, Joonho; Choi, Yoon-Ho

    2017-09-23

    In the vehicular networks, the real-time video reporting service is used to send the recorded videos in the vehicle to the cloud. However, when facilitating the real-time video reporting service in the vehicular networks, the usage of the fourth generation (4G) long term evolution (LTE) was proved to suffer from latency while the IEEE 802.11p standard does not offer sufficient scalability for a such congested environment. To overcome those drawbacks, the fifth-generation (5G)-enabled vehicular network is considered as a promising technology for empowering the real-time video reporting service. In this paper, we note that security and privacy related issues should also be carefully addressed to boost the early adoption of 5G-enabled vehicular networks. There exist a few research works for secure video reporting service in 5G-enabled vehicular networks. However, their usage is limited because of public key certificates and expensive pairing operations. Thus, we propose a secure and lightweight protocol for cloud-assisted video reporting service in 5G-enabled vehicular networks. Compared to the conventional public key certificates, the proposed protocol achieves entities' authorization through anonymous credential. Also, by using lightweight security primitives instead of expensive bilinear pairing operations, the proposed protocol minimizes the computational overhead. From the evaluation results, we show that the proposed protocol takes the smaller computation and communication time for the cryptographic primitives than that of the well-known Eiza-Ni-Shi protocol.

  11. A Secure Key Establishment Protocol for ZigBee Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2010-01-01

    ZigBee is a wireless sensor network standard that defines network and application layers on top of IEEE 802.15.4's physical and medium access control layers. In the latest version of ZigBee, enhancements are prescribed for the security sublayer but we show in this paper that problems persist....... In particular, we show that the end-to-end application key establishment protocol is flawed and we propose a secure protocol instead. We do so by using formal verification techniques based on static program analysis and process algebras. We present a way of using formal methods in wireless network security...

  12. A Secure Key Establishment Protocol for ZigBee Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2009-01-01

    ZigBee is a wireless sensor network standard that defines network and application layers on top of IEEE 802.15.4’s physical and medium access control layers. In the latest version of ZigBee, enhancements are prescribed for the security sublayer but we show in this paper that problems persist....... In particular we show that the End-to-End Application Key Establishment Protocol is flawed and we propose a secure protocol instead. We do so by using formal verification techniques based on static program analysis and process algebras. We present a way of using formal methods in wireless network security...

  13. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  14. Quorum system and random based asynchronous rendezvous protocol for cognitive radio ad hoc networks

    Directory of Open Access Journals (Sweden)

    Sylwia Romaszko

    2013-12-01

    Full Text Available This paper proposes a rendezvous protocol for cognitive radio ad hoc networks, RAC2E-gQS, which utilizes (1 the asynchronous and randomness properties of the RAC2E protocol, and (2 channel mapping protocol, based on a grid Quorum System (gQS, and taking into account channel heterogeneity and asymmetric channel views. We show that the combination of the RAC2E protocol with the grid-quorum based channel mapping can yield a powerful RAC2E-gQS rendezvous protocol for asynchronous operation in a distributed environment assuring a rapid rendezvous between the cognitive radio nodes having available both symmetric and asymmetric channel views. We also propose an enhancement of the protocol, which uses a torus QS for a slot allocation, dealing with the worst case scenario, a large number of channels with opposite ranking lists.

  15. Enhanced Secure Trusted AODV (ESTA Protocol to Mitigate Blackhole Attack in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Dilraj Singh

    2015-09-01

    Full Text Available The self-organizing nature of the Mobile Ad hoc Networks (MANETs provide a communication channel anywhere, anytime without any pre-existing network infrastructure. However, it is exposed to various vulnerabilities that may be exploited by the malicious nodes. One such malicious behavior is introduced by blackhole nodes, which can be easily introduced in the network and, in turn, such nodes try to crumble the working of the network by dropping the maximum data under transmission. In this paper, a new protocol is proposed which is based on the widely used Ad hoc On-Demand Distance Vector (AODV protocol, Enhanced Secure Trusted AODV (ESTA, which makes use of multiple paths along with use of trust and asymmetric cryptography to ensure data security. The results, based on NS-3 simulation, reveal that the proposed protocol is effectively able to counter the blackhole nodes in three different scenarios.

  16. DDN (Defense Data Network) Protocol Handbook. Volume 2. DARPA Internet Protocols

    Science.gov (United States)

    1985-12-01

    2. OVERVIEW 5 2.1 Relation to Other Protocols 9 2.2 Model of Operacion 5 2.3 Function Description 7 2-4 Gateways 9 3. SPECIFICATION 11 3.1...the Defense Intelligence Agency Manual DIAM 65-19, "Standard Security Markings". Transmission Control Code (TCC field): 24 bits Provides a means...operator command. If the abort timer is not implemented a manually -initiated Stop event can be used to stop the protocol. If this is done in the

  17. POWER AWARE ROUTING PROTOCOLS FOR MOBILE ADHOC NETWORKS MANETS USING MODIFIED GENETIC ALGORITHM

    OpenAIRE

    Priya Mudgal *, Dushyant Singh **

    2016-01-01

    Mobile adhoc networks MANETs are very popular networks which are having many applications in science and engineering. MANETs are very dynamic networks which does not have any infrastructure for their operation. Routing in MANETs is an area of research for many authors in recent years. Devices in MANETs are battery operated so routing protocols must be power aware which consumes less battery of nodes in transferring data. Genetic algorithm (GA) is a very common optimizing algorithm which can m...

  18. Analytical Modeling of Medium Access Control Protocols in Wireless Networks

    Science.gov (United States)

    2006-03-01

    Imperatives and chal- lenges. Ad Hoc Networks, 1(1):13–64, July 2003. [28] I. Chlamtac and A. Faragó. Making transmission schedules immune to topology changes...P. Karn. MACA - a new channel access method for packet radio. In ARRL/CRRL Amateur Radio 9th Computer Networking Conference, pages 134–140, 1990

  19. Protocol of networks using energy sharing collisions of bright solitons

    Indian Academy of Sciences (India)

    Soliton network; coupled nonlinear Schrödinger system; bright soliton; soliton collision. PACS Nos 42.65.Tg; 02.30. .... CNLS equations, we shall explore the dynamics of solitons in simple networks, i.e., PSG. In §4, the conclusion is ...... KS thank the Principal and management of Bishop Heber College for constant support.

  20. Low-Power Wireless Sensor Networks Protocols, Services and Applications

    CERN Document Server

    Suhonen, Jukka; Kaseva, Ville; Hämäläinen, Timo D; Hännikäinen, Marko

    2012-01-01

    Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data m...

  1. Dynamic Subchannel Assignment-Based Cross-Layer MAC and Network Protocol for Multihop Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Khanh Nguyen Quang

    2013-01-01

    Full Text Available The paper presents a dynamic subchannel assignment algorithm based on orthogonal frequency division multiple access technology operating in the time division duplexing and a new cross-layer design based on a proposed routing protocol jointed with the MAC protocol. The proposed dynamic sub-channel assignment algorithm provides a new interference avoidance mechanism which solves several drawbacks of existing radio resource allocation techniques in wireless networks using OFDMA/TDD, such as the hidden node and exposed node problems, mobility, and cochannels interference in frequency (CCI. Besides, in wireless networks, when a route is established, the radio resource allocation problems may decrease the end to end performance proportionally with the length of each route. The contention at MAC layer may cause the routing protocol at network layer to respond by finding new routes and routing table updates. The proposed routing protocol is jointed with the MAC protocol based on dynamic sub-channel assignment to ensure that the quality of service in multihop ad hoc networks is significantly improved.

  2. An authenticated encrypted routing protocol against attacks in mobile ad-hoc networks

    Directory of Open Access Journals (Sweden)

    C.C. Suma

    2017-01-01

    Full Text Available Mobile Ad hoc Network is stated as a cluster that contains Digital data terminals and they are furnished with the wireless transceivers which are able to communicate with each other with no need of any fixed architecture or concentrated authority. Security is one of the major issues in MANETs because of vast applications such as Military Battlefields, emergency and rescue operations[10]. In order to provide anonymous communications and to identify the malicious nodes in MANETs, many authors have proposed different secure routing protocols but each protocol have their own advantages and disadvantages. In MANTE’s each and every node in the communicating network functions like router and transmits the packets among the networking nodes for the purpose of communication[11]. Sometimes nodes may be attacked by the malicious nodes or the legitimate node will be caught by foemen there by controlling and preventing the nodes to perform the assigned task or nodes may be corrupted due to loss of energy. So, due to these drawbacks securing the network under the presence of adversaries is an important thing. The existing protocols were designed with keeping anonymity and the identification of vicious nodes in the network as the main goal. For providing better security, the anonymity factors such as Unidentifiability and Unlinkability must be fully satisfied[1]. Many anonymous routing schemes that concentrate on achieving anonymity are proposed in the past decade and they provides the security at different levels and also provides the privacy protection that is of different cost. In this paper we consider a protocol called Authenticated Secure Routing Protocol proposed which provides both security & anonymity. Anonymity is achieved in this protocol using Group signature. Over all by using this protocol performance in terms of throughput as well as the packet dropping rate is good compared to the other living protocols.

  3. An Energy-Efficient Link Layer Protocol for Reliable Transmission over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Iqbal Adnan

    2009-01-01

    Full Text Available In multihop wireless networks, hop-by-hop reliability is generally achieved through positive acknowledgments at the MAC layer. However, positive acknowledgments introduce significant energy inefficiencies on battery-constrained devices. This inefficiency becomes particularly significant on high error rate channels. We propose to reduce the energy consumption during retransmissions using a novel protocol that localizes bit-errors at the MAC layer. The proposed protocol, referred to as Selective Retransmission using Virtual Fragmentation (SRVF, requires simple modifications to the positive-ACK-based reliability mechanism but provides substantial improvements in energy efficiency. The main premise of the protocol is to localize bit-errors by performing partial checksums on disjoint parts or virtual fragments of a packet. In case of error, only the corrupted virtual fragments are retransmitted. We develop stochastic models of the Simple Positive-ACK-based reliability, the previously-proposed Packet Length Optimization (PLO protocol, and the SRVF protocol operating over an arbitrary-order Markov wireless channel. Our analytical models show that SRVF provides significant theoretical improvements in energy efficiency over existing protocols. We then use bit-error traces collected over different real networks to empirically compare the proposed and existing protocols. These experimental results further substantiate that SRVF provides considerably better energy efficiency than Simple Positive-ACK and Packet Length Optimization protocols.

  4. A secured authentication protocol for wireless sensor networks using elliptic curves cryptography.

    Science.gov (United States)

    Yeh, Hsiu-Lien; Chen, Tien-Ho; Liu, Pin-Chuan; Kim, Tai-Hoo; Wei, Hsin-Wen

    2011-01-01

    User authentication is a crucial service in wireless sensor networks (WSNs) that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das' protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.

  5. A Secured Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography

    Directory of Open Access Journals (Sweden)

    Hsin-Wen Wei

    2011-05-01

    Full Text Available User authentication is a crucial service in wireless sensor networks (WSNs that is becoming increasingly common in WSNs because wireless sensor nodes are typically deployed in an unattended environment, leaving them open to possible hostile network attack. Because wireless sensor nodes are limited in computing power, data storage and communication capabilities, any user authentication protocol must be designed to operate efficiently in a resource constrained environment. In this paper, we review several proposed WSN user authentication protocols, with a detailed review of the M.L Das protocol and a cryptanalysis of Das’ protocol that shows several security weaknesses. Furthermore, this paper proposes an ECC-based user authentication protocol that resolves these weaknesses. According to our analysis of security of the ECC-based protocol, it is suitable for applications with higher security requirements. Finally, we present a comparison of security, computation, and communication costs and performances for the proposed protocols. The ECC-based protocol is shown to be suitable for higher security WSNs.

  6. On the Routing Protocol Influence on the Resilience of Wireless Sensor Networks to Jamming Attacks

    Directory of Open Access Journals (Sweden)

    Carolina Del-Valle-Soto

    2015-03-01

    Full Text Available In this work, we compare a recently proposed routing protocol, the multi-parent hierarchical (MPH protocol, with two well-known protocols, the ad hoc on-demand distance vector (AODV and dynamic source routing (DSR. For this purpose, we have developed a simulator, which faithfully reifies the workings of a given protocol, considering a fixed, reconfigurable ad hoc network given by the number and location of participants, and general network conditions. We consider a scenario that can be found in a large number of wireless sensor network applications, a single sink node that collects all of the information generated by the sensors. The metrics used to compare the protocols were the number of packet retransmissions, carrier sense multiple access (CSMA inner loop retries, the number of nodes answering the queries from the coordinator (sink node and the energy consumption. We tested the network under ordinary (without attacks conditions (and combinations thereof and when it is subject to different types of jamming attacks (in particular, random and reactive jamming attacks, considering several positions for the jammer. Our results report that MPH has a greater ability to tolerate such attacks than DSR and AODV, since it minimizes and encapsulates the network segment under attack. The self-configuring capabilities of MPH derived from a combination of a proactive routes update, on a periodic-time basis, and a reactive behavior provide higher resilience while offering a better performance (overhead and energy consumption than AODV and DSR, as shown in our simulation results.

  7. Multimedia over cognitive radio networks algorithms, protocols, and experiments

    CERN Document Server

    Hu, Fei

    2014-01-01

    PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

  8. Secure energy efficient routing protocol for wireless sensor network

    Directory of Open Access Journals (Sweden)

    Das Ayan Kumar

    2016-03-01

    Full Text Available The ease of deployment of economic sensor networks has always been a boon to disaster management applications. However, their vulnerability to a number of security threats makes communication a challenging task. This paper proposes a new routing technique to prevent from both external threats and internal threats like hello flooding, eavesdropping and wormhole attack. In this approach one way hash chain is used to reduce the energy drainage. Level based event driven clustering also helps to save energy. The simulation results show that the proposed scheme extends network lifetime even when the cluster based wireless sensor network is under attack.

  9. MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey

    National Research Council Canada - National Science Library

    Kosunalp, Selahattin

    2015-01-01

    Energy harvesting (EH) technology in the field of wireless sensor networks (WSNs) is gaining increasing popularity through removing the burden of having to replace/recharge depleted energy sources by energy harvester devices...

  10. Performance Analysis of Authentication Protocols in Vehicular Ad Hoc Networks

    OpenAIRE

    Aboobaker, Abdul Kalam Kunnel

    2009-01-01

    Traditionally traffic safety was addressed by traffic awareness and passive safety measures like solid chassis, seat belts, air bags etc. With the recent breakthroughs in the domain of mobile ad hoc networks, the concept of vehicular ad hoc networks (VANET) was realised. Safety messaging is the most important aspect of VANETs, where the passive safety (accident readiness) in vehicles was reinforced with the idea of active safety (accident prevention). In safety messaging vehicles will message...

  11. Epidemic Network Failures in Optical Transport Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée; Katsikas, Dimitrios; Fagertun, Anna Manolova

    2013-01-01

    This paper presents a failure propagation model for transport networks which are affected by epidemic failures. The network is controlled using the GMPLS protocol suite. The Susceptible Infected Disabled (SID) epidemic model is investigated and new signaling functionality of GMPLS to support epid...... epidemic failure resolution is proposed. The results provide important input to service recovery mechanisms under epidemic failures.......This paper presents a failure propagation model for transport networks which are affected by epidemic failures. The network is controlled using the GMPLS protocol suite. The Susceptible Infected Disabled (SID) epidemic model is investigated and new signaling functionality of GMPLS to support...

  12. Enhancing Energy Efficiency of Wireless Sensor Network through the Design of Energy Efficient Routing Protocol

    Directory of Open Access Journals (Sweden)

    Noor Zaman

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP. PRRP is designed to minimize energy consumed in each node by (1 reducing the amount of time in which a sensor node is in an idle listening state and (2 reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.

  13. An integrated routing protocol in next-generation IP over WDM networks

    Science.gov (United States)

    Yin, Yong; Kuo, Geng-Sheng

    2004-09-01

    In next-generation IP over WDM networks, lightpaths are set up or torn down dynamically. Traditionally, OSPF in IP layer and OSPF-TE in optical layer disseminate routing information independently. Obviously, this 2-layer routing mechanism is complex and O&M cost is high. Furthermore, in a dynamic environment, both OSPF-TE and OSPF have very heavy control overheads when lightpaths change frequently. In this paper, an integrated routing protocol is proposed. The link state information of both IP layer and optical layer is disseminated simultaneously using the same routing protocol messages. The proposed protocol also advertises wavelength availability information if necessary in order to reduce the blocking probability of routing and wavelength assignment (RWA) algorithm. This proposed integrated protocol is very simple. Furthermore, its control overhead can be reduced from several to about ten times. In addition, RWA's performance is also improved. Hence, the performance of the IP over WDM networks will be improved greatly and significantly.

  14. A Dynamically Reconfigurable Wireless Sensor Network Testbed for Multiple Routing Protocols

    Directory of Open Access Journals (Sweden)

    Wenxian Jiang

    2017-01-01

    Full Text Available Because wireless sensor networks (WSNs are complex and difficult to deploy and manage, appropriate structures are required to make these networks more flexible. In this paper, a reconfigurable testbed is presented, which supports dynamic protocol switching by creating a novel architecture and experiments with several different protocols. The separation of the control and data planes in this testbed means that routing configuration and data transmission are independent. A programmable flow table provides the testbed with the ability to switch protocols dynamically. We experiment on various aspects of the testbed to analyze its functionality and performance. The results demonstrate that sensors in the testbed are easy to manage and can support multiple protocols. We then raise some important issues that should be investigated in future work concerning the testbed.

  15. Local networks and the Internet from protocols to interconnection

    CERN Document Server

    Toutain, Laurent

    2013-01-01

    This title covers the most commonly used elements of Internet and Intranet technology and their development. It details the latest developments in research and covers new themes such as IP6, MPLS, and IS-IS routing, as well as explaining the function of standardization committees such as IETF, IEEE, and UIT. The book is illustrated with numerous examples and applications which will help the reader to place protocols in their proper context.

  16. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-04-07

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes.

  17. Secure and fair cluster head selection protocol for enhancing security in mobile ad hoc networks.

    Science.gov (United States)

    Paramasivan, B; Kaliappan, M

    2014-01-01

    Mobile ad hoc networks (MANETs) are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP) is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP.

  18. Secure and Fair Cluster Head Selection Protocol for Enhancing Security in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    B. Paramasivan

    2014-01-01

    Full Text Available Mobile ad hoc networks (MANETs are wireless networks consisting of number of autonomous mobile devices temporarily interconnected into a network by wireless media. MANETs become one of the most prevalent areas of research in the recent years. Resource limitations, energy efficiency, scalability, and security are the great challenging issues in MANETs. Due to its deployment nature, MANETs are more vulnerable to malicious attack. The secure routing protocols perform very basic security related functions which are not sufficient to protect the network. In this paper, a secure and fair cluster head selection protocol (SFCP is proposed which integrates security factors into the clustering approach for achieving attacker identification and classification. Byzantine agreement based cooperative technique is used for attacker identification and classification to make the network more attack resistant. SFCP used to solve this issue by making the nodes that are totally surrounded by malicious neighbors adjust dynamically their belief and disbelief thresholds. The proposed protocol selects the secure and energy efficient cluster head which acts as a local detector without imposing overhead to the clustering performance. SFCP is simulated in network simulator 2 and compared with two protocols including AODV and CBRP.

  19. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  20. Cyber-security for the Controller Area Network (CAN) communication protocol

    OpenAIRE

    Lin, CW; Sangiovanni-Vincentelli, A

    2013-01-01

    We propose a security mechanism to help prevent cyber-attacks (masquerade and replay) in vehicles with architecture based on Controller Area Network (CAN). We focus on CAN as it will likely continue being used in upcoming in-vehicle architectures. The CAN protocol contains no direct support for secure communications. Retrofitting the protocol with security mechanisms poses several challenges given the very limited data rates available (e.g., 500kbps) since bus utilization may significantly in...

  1. An efficient multi-carrier position-based packet forwarding protocol for wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2012-01-01

    Beaconless position-based forwarding protocols have recently evolved as a promising solution for packet forwarding in wireless sensor networks. However, as the node density grows, the overhead incurred in the process of relay selection grows significantly. As such, end-to-end performance in terms of energy and latency is adversely impacted. With the motivation of developing a packet forwarding mechanism that is tolerant to variation in node density, an alternative position-based protocol is proposed in this paper. In contrast to existing beaconless protocols, the proposed protocol is designed such that it eliminates the need for potential relays to undergo a relay selection process. Rather, any eligible relay may decide to forward the packet ahead, thus significantly reducing the underlying overhead. The operation of the proposed protocol is empowered by exploiting favorable features of orthogonal frequency division multiplexing (OFDM) at the physical layer. The end-to-end performance of the proposed protocol is evaluated against existing beaconless position-based protocols analytically and as well by means of simulations. The proposed protocol is demonstrated in this paper to be more efficient. In particular, it is shown that for the same amount of energy the proposed protocol transports one bit from source to destination much quicker. © 2012 IEEE.

  2. Dynamic aftereffects in supplementary motor network following inhibitory transcranial magnetic stimulation protocols.

    Science.gov (United States)

    Ji, Gong-Jun; Yu, Fengqiong; Liao, Wei; Wang, Kai

    2017-04-01

    The supplementary motor area (SMA) is a key node of the motor network. Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the SMA can potentially improve movement disorders. However, the aftereffects of inhibitory rTMS on brain function remain largely unknown. Using a single-blind, crossover within-subject design, we investigated the role of aftereffects with two inhibitory rTMS protocols [1800 pulses of either 1-Hz repetitive stimulation or continuous theta burst stimulation (cTBS)] on the left SMA. A total of 19 healthy volunteers participated in the rTMS sessions on 2 separate days. Firstly, short-term aftereffects were estimated at three levels (functional connectivity, local activity, and network properties) by comparing the resting-state functional magnetic resonance imaging datasets (9min) acquired before and after each rTMS session. Local activity and network properties were not significantly altered by either protocol. Functional connectivity within the SMA network was increased (in the left paracentral gyrus) by 1-Hz stimulation and decreased (in the left inferior frontal gyrus and SMA/middle cingulate cortex) by cTBS. The subsequent three-way analysis of variance (site×time×protocol) did not show a significant interaction effect or "protocol" main effect, suggesting that the two protocols share an underlying mechanism. Secondly, sliding-window analysis was used to evaluate the dynamic features of aftereffects in the ~29min after the end of stimulation. Aftereffects were maintained for a maximum of 9.8 and 6.6min after the 1-Hz and cTBS protocols, respectively. In summary, this study revealed topographical and temporal aftereffects in the SMA network following inhibitory rTMS protocols, providing valuable information for their application in future neuroscience and clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A Protocol for Content-Based Communication in Disconnected Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Julien Haillot

    2010-01-01

    Full Text Available In content-based communication, information flows towards interested hosts rather than towards specifically set destinations. This new style of communication perfectly fits the needs of applications dedicated to information sharing, news distribution, service advertisement and discovery, etc. In this paper we address the problem of supporting content-based communication in partially or intermittently connected mobile ad hoc networks (MANETs. The protocol we designed leverages on the concepts of opportunistic networking and delay-tolerant networking in order to account for the absence of end-to-end connectivity in disconnected MANETs. The paper provides an overview of the protocol, as well as simulation results that show how this protocol can perform in realistic conditions.

  4. MAC-layer protocol for TCP fairness in Wireless Mesh Networks

    KAUST Repository

    Nawab, Faisal

    2012-08-01

    In this paper we study the interactions of TCP and IEEE 802.11 MAC in Wireless Mesh Networks (WMNs). We use a Markov chain to capture the behavior of TCP sessions, particularly the impact on network throughput performance due to the effect of queue utilization and packet relaying. A closed form solution is derived to numerically determine the throughput. Based on the developed model, we propose a distributed MAC protocol to alleviate the unfairness problem in WMNs. Our protocol uses the age of packet as a priority metric for packet scheduling. Simulation is conducted to validate our model and to illustrate the fairness characteristics of our proposed MAC protocol. We conclude that we can achieve fairness with only little impact on network capacity.

  5. Use of social network analysis in maternity care to identify the profession most suited for case manager role

    NARCIS (Netherlands)

    Groenen, C.J.M.; Duijnhoven, N.T.L. van; Faber, M.J.; Koetsenruijter, J.; Kremer, J.A.M.; Vandenbussche, F.P.H.A.

    2017-01-01

    OBJECTIVE: To improve Dutch maternity care, professionals start working in interdisciplinary patient-centred networks, which includes the patients as a member. The introduction of the case manager is expected to work positively on both the individual and the network level. However, case management

  6. Experimental Evaluation of Simulation Abstractions for Wireless Sensor Network MAC Protocols

    Directory of Open Access Journals (Sweden)

    G. P. Halkes

    2010-01-01

    Full Text Available The evaluation of MAC protocols for Wireless Sensor Networks (WSNs is often performed through simulation. These simulations necessarily abstract away from reality in many ways. However, the impact of these abstractions on the results of the simulations has received only limited attention. Moreover, many studies on the accuracy of simulation have studied either the physical layer and per link effects or routing protocol effects. To the best of our knowledge, no other work has focused on the study of the simulation abstractions with respect to MAC protocol performance. In this paper, we present the results of an experimental study of two often used abstractions in the simulation of WSN MAC protocols. We show that a simple SNR-based reception model can provide quite accurate results for metrics commonly used to evaluate MAC protocols. Furthermore, we provide an analysis of what the main sources of deviation are and thereby how the simulations can be improved to provide even better results.

  7. Multi-Hop-Enabled Energy-Efficient MAC Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Khaja Shazzad

    2015-09-01

    Full Text Available In multi-hop underwater acoustic sensor networks (UWASNs, packet collisions due to hidden and local nodes adversely affect throughput, energy efficiency and end-to-end delay. Existing medium access control (MAC protocols try to solve the problem by utilizing a single-phase contention resolution mechanism, which causes a large number of control packet exchanges and energy overhead. In this paper, we introduce a MAC protocol that splits this single-phase contention resolution mechanism into two phases to provide efficient multi-hop networking. In the first phase, local nodes are eliminated from the contention, and in the later phase, the adverse effects of hidden nodes are mitigated. This two-phased contention resolution provides higher energy efficiency, better throughput and shorter end-to-end delay, and it also enables adaptability for different network architectures. A probabilistic model of the proposed protocol is also developed to analyse the performance. The proposed protocol has been evaluated through quantitative analysis and simulation. Results obtained through quantitative analysis and simulation reveal that the proposed protocol achieves significantly better energy efficiency, higher and more stable throughput and lower end-to-end delay compared to existing protocols, namely T-Lohi and slotted floor acquisition multiple access (S-FAMA.

  8. A survey on energy efficient coverage protocols in wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Avinash More

    2017-10-01

    Full Text Available A Wireless Sensor Network (WSN is used to monitor an area for events. Each node in the WSN has a sensing range and a communication range. The sensing coverage of a sensor node is the area determined by the sensing range of the sensor node. Sensing coverage of the network is the collective coverage of the sensor nodes in a WSN. Sufficient number of sensor nodes need to be deployed to ensure adequate coverage of a region. Further, since sensor nodes have limited battery life, it is also essential to reduce the energy consumption. This would help improve the network lifetime and thus the coverage lifetime. To reduce energy consumption in the WSN, some of the nodes with overlapping sensing areas could be turned off using a coverage optimization protocol. In this paper, we discuss various coverage optimization protocols. These protocols are broadly classified as clustering and distributed protocols. Further, these protocols are classified based on the type of sensing model used, node location information, and mechanism used to determine neighboring node information (based on probe or computational geometry. In this paper, we review the key coverage optimization protocols and present open research issues related to energy efficient coverage.

  9. A Centralized Energy Efficient Distance Based Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rohit D. Gawade

    2016-01-01

    Full Text Available Wireless sensor network (WSN typically consists of a large number of low cost wireless sensor nodes which collect and send various messages to a base station (BS. WSN nodes are small battery powered devices having limited energy resources. Replacement of such energy resources is not easy for thousands of nodes as they are inaccessible to users after their deployment. This generates a requirement of energy efficient routing protocol for increasing network lifetime while minimizing energy consumption. Low Energy Adaptive Clustering Hierarchy (LEACH is a widely used classic clustering algorithm in WSNs. In this paper, we propose a Centralized Energy Efficient Distance (CEED based routing protocol to evenly distribute energy dissipation among all sensor nodes. We calculate optimum number of cluster heads based on LEACH’s energy dissipation model. We propose a distributed cluster head selection algorithm based on dissipated energy of a node and its distance to BS. Moreover, we extend our protocol by multihop routing scheme to reduce energy dissipated by nodes located far away from base station. The performance of CEED is compared with other protocols such as LEACH and LEACH with Distance Based Thresholds (LEACH-DT. Simulation results show that CEED is more energy efficient as compared to other protocols. Also it improves the network lifetime and stability period over the other protocols.

  10. An Energy-Aware Routing Protocol for Query-Based Applications in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ehsan Ahvar

    2014-01-01

    attempt to efficiently distribute the consumption of energy throughout the network. In general terms, energy saving protocols are not necessarily good at balancing energy consumption and energy balancing protocols are not always good at reducing energy consumption. In this paper, we propose an energy-aware routing protocol (ERP for query-based applications in WSNs, which offers a good trade-off between traditional energy balancing and energy saving objectives and supports a soft real time packet delivery. This is achieved by means of fuzzy sets and learning automata techniques along with zonal broadcasting to decrease total energy consumption.

  11. A Swarm Intelligent Algorithm Based Route Maintaining Protocol for Mobile Sink Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoming Wu

    2015-01-01

    Full Text Available Recent studies have shown that mobile sink can be a solution to solve the problem that energy consumption of sensor nodes is not balanced in wireless sensor networks (WSNs. Caused by the sink mobility, the paths between the sensor nodes and the sink change frequently and have profound influence on the lifetime of WSN. It is necessary to design a protocol that can find efficient routings between the mobile sink and nodes but does not consume too many network resources. In this paper, we propose a swarm intelligent algorithm based route maintaining protocol to resolve this issue. The protocol utilizes the concentric ring mechanism to guide the route researching direction and adopts the optimal routing selection to maintain the data delivery route in mobile sink WSN. Using the immune based artificial bee colony (IABC algorithm to optimize the forwarding path, the routing maintaining protocol could find an alternative routing path quickly and efficiently when the coordinate of sink is changed in WSN. The results of our extensive experiments demonstrate that our proposed route maintaining protocol is able to balance the network traffic load and prolong the network lifetime.

  12. Multiple access protocol for supporting multimedia services in wireless ATM networks

    DEFF Research Database (Denmark)

    Liu, Hong; Dittmann, Lars; Gliese, Ulrik Bo

    1999-01-01

    The furture broadband wireless asynchronous transfer mode (ATM) networks must provide seamless extension of multimedia services from the wireline ATM networks. This requires an effecient wireless access protocol to fulfill varying Quality-og-Service (QoS) requirements for multimedia applications....... In this paper, we propose a multiple access protocol using centralized and distributed channel access control techniques to provide QoS guarantees for multimedia services by taking advantage of the characteristics of different kinds of ATM traffics. Multimedia traffic, including constant bit rate (CBR...

  13. Use of social network analysis in maternity care to identify the profession most suited for case manager role.

    Science.gov (United States)

    Groenen, Carola J M; van Duijnhoven, Noortje T L; Faber, Marjan J; Koetsenruijter, Jan; Kremer, Jan A M; Vandenbussche, Frank P H A

    2017-02-01

    To improve Dutch maternity care, professionals start working in interdisciplinary patient-centred networks, which includes the patients as a member. The introduction of the case manager is expected to work positively on both the individual and the network level. However, case management is new in Dutch maternity care. The present study aims to define the profession that would be most suitable to fulfil the role of case manager. The maternal care network in the Nijmegen region was determined by using Social Network Analysis (SNA). SNA is a quantitative methodology that measures and analyses patient-related connections between different professionals working in a network. To identify the case manager we focused on the position, reach, and connections in the network of the maternal care professionals. Maternity healthcare professionals in a single region of the Netherlands with an average of 4,500 births/year. The participants were 214 individual healthcare workers from eight different professions. The total network showed 3948 connections between 214 maternity healthcare professionals with a density of 0.08. Each profession had some central individuals in the network. The 52 community-based midwives were responsible for 51% of all measured connections. The youth health doctors and nurses were mostly situated on the periphery and less connected. The betweenness centrality had the highest score in obstetricians and community-based midwives. Only the community-based midwives had connections with all other groups of professions. Almost all professionals in the network could reach other professionals in two steps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Analysis of GMPLS OSPF-TE protocol and its enhancement for routing in optical networks

    Science.gov (United States)

    Liu, Hang; Bouillet, E.; Pendarakis, Dimitrios; Komaee, Nooshin; Labourdette, J.; Chaudhuri, Sid

    2004-10-01

    For distributed control, network topology and link resource information is required at the ingress nodes to compute and route optical paths. It is the responsibility of routing protocols to disseminate this information. Generalized MPLS has extended traditional IP routing protocols such as OSPF for explicit path computation and traffic engineering (TE) in optical transport networks. However it is noted that the current version of GMPLS-extended OSPF-TE does not carry sufficient link state information to compute shared mesh restored paths. This paper describes the new extensions to the GMPLS OSPF-TE protocol to support the path computation for shared mesh restoration in optical networks. The efficient methods for aggregation and dissemination of link resource availability and sharing information are proposed. Especially these new extensions support both Shared Risk Link Group (SRLG) disjoint and node disjoint restoration paths, which provides more flexibility to the network operators. The network operators can choose to guarantee recovery from a SRLG failure or from a node/SRLG failure based upon the applications and the service level agreements with their customers. Furthermore, the paper presents an analytical model to estimate the performance of the GMPLS OSPF-TE protocol and the proposed extensions, including control bandwidth and memory requirements.

  15. Research and application of ARP protocol vulnerability attack and defense technology based on trusted network

    Science.gov (United States)

    Xi, Huixing

    2017-03-01

    With the continuous development of network technology and the rapid spread of the Internet, computer networks have been around the world every corner. However, the network attacks frequently occur. The ARP protocol vulnerability is one of the most common vulnerabilities in the TCP / IP four-layer architecture. The network protocol vulnerabilities can lead to the intrusion and attack of the information system, and disable or disable the normal defense function of the system [1]. At present, ARP spoofing Trojans spread widely in the LAN, the network security to run a huge hidden danger, is the primary threat to LAN security. In this paper, the author summarizes the research status and the key technologies involved in ARP protocol, analyzes the formation mechanism of ARP protocol vulnerability, and analyzes the feasibility of the attack technique. Based on the summary of the common defensive methods, the advantages and disadvantages of each defense method. At the same time, the current defense method is improved, and the advantage of the improved defense algorithm is given. At the end of this paper, the appropriate test method is selected and the test environment is set up. Experiment and test are carried out for each proposed improved defense algorithm.

  16. Simple synchronization protocols for heterogeneous networks : beyond passivity

    NARCIS (Netherlands)

    Proskurnikov, A.V.; Mazo Espinosa, M.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Synchronization among autonomous agents via local interactions is one of the benchmark problems in multi-agent control. Whereas synchronization algorithms for identical agents have been thoroughly studied, synchronization of heterogeneous networks still remains a challenging problem. The existing

  17. Multi-Channel Wireless Sensor Networks: Protocols, Design and Evaluation

    NARCIS (Netherlands)

    Durmaz, O.

    2009-01-01

    Pervasive systems, which are described as networked embedded systems integrated with everyday environments, are considered to have the potential to change our daily lives by creating smart surroundings and by their ubiquity, just as the Internet. In the last decade, “Wireless Sensor Networks��? have

  18. PROTOCOLS FOR INCREASING THE LIFETIME OF NODES OF AD HOC WIRELESS NETWORKS

    Directory of Open Access Journals (Sweden)

    B.Malarkodi

    2010-03-01

    Full Text Available Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. Energy management deals with the process of managing energy resources by means of controlling the battery discharge, adjusting the transmission power and scheduling of power sources so as to increase the lifetime of the nodes of an ad hoc wireless network. In this paper, two protocols are proposed to improve the lifetime of the nodes. The first protocol assumes smart battery packages with L cells and uses dynamic programming (DP to optimally select the set of cells used to satisfy a request for power. The second one proposes a MAC layer protocol denoted as Power Aware medium Access Control (PAMAC protocol which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. The life time of the nodes using the DP based scheduling policy is found through simulation and compared with that obtained using the techniques reported in the literature. It is found that DP based policy increases the lifetime of the mobile nodes by a factor of 1.15 to 1.8. The life expectancy, the average power consumption and throughput of the network using PAMAC protocol are computed through simulation and compared with that of the other MAC layer protocols 802.11, MACA, and CSMA. Besides this, the life expectancy and average power consumption of the network for different values of threshold are also compared. From the simulation results, it is observed that PAMAC consumes the least power and provides the longest lifetime among the various MAC Layer protocols. Moreover, using PAMAC as the MAC layer protocol, the performance obtained using different routing layer

  19. An energy efficient and dynamic time synchronization protocol for wireless sensor networks

    Science.gov (United States)

    Zhang, Anran; Bai, Fengshan

    2017-01-01

    Time synchronization is an important support technology of WSN(Wireless Sensor Network), and plays an irreplaceable role in the development of WSN. In view of the disadvantage of the traditional timing sync protocol for sensor networks (TPSN), we present a Physical Timing-sync Protocol (PTPSN) that aims at reducing the energy consumption of the synchronization process and realizes a dynamic Network. The algorithm broadcasts reference message to select some nodes in specific area. The receiver calculate offset of every selected node, and then calculate the average of offset to compensate for clock skew . At the same time ,we add time-filter process to ensure the security of the algorithm for time synchronization. The experiment results show that our algorithm is efficient in both saving energy consumption and dynamic network, and it can effectively resist attacks.

  20. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation.

    Science.gov (United States)

    Rahayu, Triana Mugia; Lee, Sang-Gon; Lee, Hoon-Jae

    2015-06-26

    The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both.

  1. A Secure Routing Protocol for Wireless Sensor Networks Considering Secure Data Aggregation

    Directory of Open Access Journals (Sweden)

    Triana Mugia Rahayu

    2015-06-01

    Full Text Available The commonly unattended and hostile deployments of WSNs and their resource-constrained sensor devices have led to an increasing demand for secure energy-efficient protocols. Routing and data aggregation receive the most attention since they are among the daily network routines. With the awareness of such demand, we found that so far there has been no work that lays out a secure routing protocol as the foundation for a secure data aggregation protocol. We argue that the secure routing role would be rendered useless if the data aggregation scheme built on it is not secure. Conversely, the secure data aggregation protocol needs a secure underlying routing protocol as its foundation in order to be effectively optimal. As an attempt for the solution, we devise an energy-aware protocol based on LEACH and ESPDA that combines secure routing protocol and secure data aggregation protocol. We then evaluate its security effectiveness and its energy-efficiency aspects, knowing that there are always trade-off between both.

  2. FluxSuite: a New Scientific Tool for Advanced Network Management and Cross-Sharing of Next-Generation Flux Stations

    Science.gov (United States)

    Burba, G. G.; Johnson, D.; Velgersdyk, M.; Beaty, K.; Forgione, A.; Begashaw, I.; Allyn, D.

    2015-12-01

    Significant increases in data generation and computing power in recent years have greatly improved spatial and temporal flux data coverage on multiple scales, from a single station to continental flux networks. At the same time, operating budgets for flux teams and stations infrastructure are getting ever more difficult to acquire and sustain. With more stations and networks, larger data flows from each station, and smaller operating budgets, modern tools are needed to effectively and efficiently handle the entire process. This would help maximize time dedicated to answering research questions, and minimize time and expenses spent on data processing, quality control and station management. Cross-sharing the stations with external institutions may also help leverage available funding, increase scientific collaboration, and promote data analyses and publications. FluxSuite, a new advanced tool combining hardware, software and web-service, was developed to address these specific demands. It automates key stages of flux workflow, minimizes day-to-day site management, and modernizes the handling of data flows: Each next-generation station measures all parameters needed for flux computations Field microcomputer calculates final fully-corrected flux rates in real time, including computation-intensive Fourier transforms, spectra, co-spectra, multiple rotations, stationarity, footprint, etc. Final fluxes, radiation, weather and soil data are merged into a single quality-controlled file Multiple flux stations are linked into an automated time-synchronized network Flux network manager, or PI, can see all stations in real time, including fluxes, supporting data, automated reports, and email alerts PI can assign rights, allow or restrict access to stations and data: selected stations can be shared via rights-managed access internally or with external institutions Researchers without stations could form "virtual networks" for specific projects by collaborating with PIs from

  3. Design and Analysis of Secure Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Wang, Jiong; Zhang, Hua

    2017-09-01

    In recent years, with the development of science and technology and the progress of the times, China's wireless network technology has become increasingly prosperous and it plays an important role in social production and life. In this context, in order to further to enhance the stability of wireless network data transmission and security enhancements, the staff need to focus on routing security and carry out related work. Based on this, this paper analyzes the design of wireless sensor based on secure routing protocol.

  4. Perfect quantum multiple-unicast network coding protocol

    Science.gov (United States)

    Li, Dan-Dan; Gao, Fei; Qin, Su-Juan; Wen, Qiao-Yan

    2018-01-01

    In order to realize long-distance and large-scale quantum communication, it is natural to utilize quantum repeater. For a general quantum multiple-unicast network, it is still puzzling how to complete communication tasks perfectly with less resources such as registers. In this paper, we solve this problem. By applying quantum repeaters to multiple-unicast communication problem, we give encoding-decoding schemes for source nodes, internal ones and target ones, respectively. Source-target nodes share EPR pairs by using our encoding-decoding schemes over quantum multiple-unicast network. Furthermore, quantum communication can be accomplished perfectly via teleportation. Compared with existed schemes, our schemes can reduce resource consumption and realize long-distance transmission of quantum information.

  5. Microcontroller Protocol for Secure Broadcast in Controller Area Networks

    OpenAIRE

    B Vijayalakshmi; Kumar, K

    2014-01-01

    Controller Area Network is a bus commonly used by controllers inside vehicles and in various industrial control applications. In the past controllers were assumed to operate in secure perimeters, but today these environments are well connected to the outside world and recent incidents showed them extremely vulnerable to cyber-attacks. To withstand such threats, one can implement security in the application layer of CAN. Here we design, refine and implement a broadcast authenti...

  6. DDN (Defence Data Network) Protocol Implementations and Vendors Guide

    Science.gov (United States)

    1988-08-01

    Artificial Intelligence Laboratory Room NE43-723 545 Technology Square Cambridge, MA 02139 (617) 253-8843 S John Wroclawski, (JTW@AI.AJ.MIT.EDU...Massachusetts Institute of Technology Artificial Intelligence Laboratory Room NE43-743 545 Technology Square 0 Cambridge, MA 02139 (617) 253-7885 ORDERING...TCP/IP Network Software for PC-DOS Systems CPU: IBM-PC/XT/AT/compatible in conjunction with EXOS 205 Inteligent Ethernet Controller for PCbus 0/s

  7. Acquiring data in real time in Italy from the Antarctic Seismographic Argentinean Italian Network (ASAIN): testing the global capabilities of the EarthWorm and Antelope software suites.

    Science.gov (United States)

    Percy Plasencia Linares, Milton; Russi, Marino; Pesaresi, Damiano; Cravos, Claudio

    2010-05-01

    The Italian National Institute for Oceanography and Experimental Geophysics (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, OGS) is running the Antarctic Seismographic Argentinean Italian Network (ASAIN), made of 7 seismic stations located in the Scotia Sea region in Antarctica and in Tierra del Fuego - Argentina: data from these stations are transferred in real time to the OGS headquarters in Trieste (Italy) via satellite links provided by the Instituto Antártico Argentino (IAA). Data is collected and archived primarily in Güralp Compress Format (GCF) through the Scream! software at OGS and IAA, and transmitted also in real time to the Observatories and Research Facilities for European Seismology (ORFEUS). The main real time seismic data acquisition and processing system of the ASAIN network is based on the EarthWorm 7.3 (Open Source) software suite installed on a Linux server at the OGS headquarters in Trieste. It runs several software modules for data collection, data archiving, data publication on dedicated web servers: wave_serverV, Winston Wave Server, and data analysis and realtime monitoring through Swarm program. OGS is also running, in close cooperation with the Friuli-Venezia Giulia Civil Defense, the North East (NI) Italy seismic network, making use of the Antelope commercial software suite from BRTT as the main acquisition system. As a test to check the global capabilities of the Antelope software suite, we also set up an instance of Antelope acquiring data in real time from both the regional ASAIN seismic network in Antarctica and a subset of the Global Seismic Network (GSN) funded by the Incorporated Research Institution for Seismology (IRIS). The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for real time access to waveform required in this study. The first tests indicated that more than 80% of the earthquakes with magnitude M>5.0 listed in the Preliminary Determination

  8. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Science.gov (United States)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  9. Self-Adaptive Context Aware Routing Protocol for Unicast Communication in Delay and Tolerant Network

    Directory of Open Access Journals (Sweden)

    Yunbo Chen

    2014-05-01

    Full Text Available At present, most of research works in mobile network focus on the network overhead of the known path which exists between the sender and the receiver. However, the trend of the current practical application demands is becoming increasingly distributed and decentralized. The Delay and Tolerant Network (DTN just comes out of such background of the conflicts between them. The DTN could effectively eliminate the gap between the mobile network and the practical application demands. In this paper, a Self-Adaptive Context Aware Routing Protocol (SACARP for the unicast communication in delay and tolerant networks is presented. Meanwhile, according to the real-time context information of DTN, the Kalman filter theory is introduced to predict the information state of mobility for the optional message ferrying node, and then gives the optimal selection strategy of the message ferrying nodes. The simulation experiments have shown that, compared to the familiar single- copy and multi-copy protocols, the SACARP proposed in this paper has better transmission performance and stability, especially when the network is free, the protocol would keep a good performance with fewer connections and less buffer space.

  10. Cluster based architecture and network maintenance protocol for medical priority aware cognitive radio based hospital.

    Science.gov (United States)

    Al Mamoon, Ishtiak; Muzahidul Islam, A K M; Baharun, Sabariah; Ahmed, Ashir; Komaki, Shozo

    2016-08-01

    Due to the rapid growth of wireless medical devices in near future, wireless healthcare services may face some inescapable issue such as medical spectrum scarcity, electromagnetic interference (EMI), bandwidth constraint, security and finally medical data communication model. To mitigate these issues, cognitive radio (CR) or opportunistic radio network enabled wireless technology is suitable for the upcoming wireless healthcare system. The up-to-date research on CR based healthcare has exposed some developments on EMI and spectrum problems. However, the investigation recommendation on system design and network model for CR enabled hospital is rare. Thus, this research designs a hierarchy based hybrid network architecture and network maintenance protocols for previously proposed CR hospital system, known as CogMed. In the previous study, the detail architecture of CogMed and its maintenance protocols were not present. The proposed architecture includes clustering concepts for cognitive base stations and non-medical devices. Two cluster head (CH selector equations are formulated based on priority of location, device, mobility rate of devices and number of accessible channels. In order to maintain the integrity of the proposed network model, node joining and node leaving protocols are also proposed. Finally, the simulation results show that the proposed network maintenance time is very low for emergency medical devices (average maintenance period 9.5 ms) and the re-clustering effects for different mobility enabled non-medical devices are also balanced.

  11. Speedy routing recovery protocol for large failure tolerance in wireless sensor networks.

    Science.gov (United States)

    Lee, Joa-Hyoung; Jung, In-Bum

    2010-01-01

    Wireless sensor networks are expected to play an increasingly important role in data collection in hazardous areas. However, the physical fragility of a sensor node makes reliable routing in hazardous areas a challenging problem. Because several sensor nodes in a hazardous area could be damaged simultaneously, the network should be able to recover routing after node failures over large areas. Many routing protocols take single-node failure recovery into account, but it is difficult for these protocols to recover the routing after large-scale failures. In this paper, we propose a routing protocol, referred to as ARF (Adaptive routing protocol for fast Recovery from large-scale Failure), to recover a network quickly after failures over large areas. ARF detects failures by counting the packet losses from parent nodes, and upon failure detection, it decreases the routing interval to notify the neighbor nodes of the failure. Our experimental results indicate that ARF could provide recovery from large-area failures quickly with less packets and energy consumption than previous protocols.

  12. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks

    Science.gov (United States)

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole. PMID:28121992

  13. A Secure Region-Based Geographic Routing Protocol (SRBGR) for Wireless Sensor Networks.

    Science.gov (United States)

    Adnan, Ali Idarous; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Due to the lack of dependency for routing initiation and an inadequate allocated sextant on responding messages, the secure geographic routing protocols for Wireless Sensor Networks (WSNs) have attracted considerable attention. However, the existing protocols are more likely to drop packets when legitimate nodes fail to respond to the routing initiation messages while attackers in the allocated sextant manage to respond. Furthermore, these protocols are designed with inefficient collection window and inadequate verification criteria which may lead to a high number of attacker selections. To prevent the failure to find an appropriate relay node and undesirable packet retransmission, this paper presents Secure Region-Based Geographic Routing Protocol (SRBGR) to increase the probability of selecting the appropriate relay node. By extending the allocated sextant and applying different message contention priorities more legitimate nodes can be admitted in the routing process. Moreover, the paper also proposed the bound collection window for a sufficient collection time and verification cost for both attacker identification and isolation. Extensive simulation experiments have been performed to evaluate the performance of the proposed protocol in comparison with other existing protocols. The results demonstrate that SRBGR increases network performance in terms of the packet delivery ratio and isolates attacks such as Sybil and Black hole.

  14. FODA: a novel efficient multiple access protocol for highly dynamic self-organizing networks

    Science.gov (United States)

    Li, Hantao; Liu, Kai; Zhang, Jun

    2005-11-01

    Based on the concept of contention reservation for polling transmission and collision prevention strategy for collision resolution, a fair on-demand access (FODA) protocol for supporting node mobility and multihop architecture in highly dynamic self-organizing networks is proposed. In the protocol, a distributed clustering network architecture formed by self-organizing algorithm and a main idea of reserving channel resources to get polling service are adopted, so that the hidden terminal (HT) and exposed terminal (ET) problems existed in traffic transmission due to multihop architecture and wireless transmission can be eliminated completely. In addition, an improved collision prevention scheme based on binary countdown algorithm (BCA), called fair collision prevention (FCP) algorithm, is proposed to greatly eliminate unfair phenomena existed in contention access of newly active ordinary nodes and completely resolve access collisions. Finally, the performance comparison of the FODA protocol with carrier sense multiple access with collision avoidance (CSMA/CA) and polling protocols by OPNET simulation are presented. Simulation results show that the FODA protocol can overcome the disadvantages of CSMA/CA and polling protocols, and achieve higher throughput, lower average message delay and less average message dropping rate.

  15. A Novel Nonlinear Multitarget k-Degree Coverage Preservation Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zeyu Sun

    2016-01-01

    Full Text Available Due to the existence of a large number of redundant data in the process of covering multiple targets, the effective coverage of monitored region decreases, causing the network to consume more energy. To solve this problem, this paper proposes a multitarget k-degree coverage preservation protocol. Firstly, the affiliation between the sensor nodes and target nodes is established in the network model; meanwhile the method used to calculate the coverage expectation value of the monitored region is put forward; secondly, in the aspect of the network energy conversion, use scheduling mechanisms on the sensor nodes to balance the network energy and achieve different network coverage quality with energy conversion between different nodes. Finally, simulation results show that NMCP can improve the network lifetime by effectively reducing the number of active nodes to meet certain coverage requirements.

  16. On stability of queueing models for local area networks with slotted ring protocols

    NARCIS (Netherlands)

    van Arem, B.; van Arem, Bart

    1990-01-01

    A study is made of a queueing system which is intended to model local area networks with slotted ring protocols and which generalizes some previously studied models. The author defines a special type of stability, called ¿-stability, which is related to the slot rotation time ¿. The author also

  17. Investigating a reduced size real-time transport protocol for low-bandwidth networks

    CSIR Research Space (South Africa)

    Kakande, JN

    2011-09-01

    Full Text Available Optimization of bandwidth usage for video streaming is of paramount importance in networks where low bitrate links are typical. Among the solutions proposed to address this problem is header compression. Real-Time Transport Protocol (RTP) and RTP...

  18. Experimental Evaluation of Simulation Abstractions for Wireless Sensor Network MAC Protocols

    NARCIS (Netherlands)

    Halkes, G.P.; Langendoen, K.G.

    2010-01-01

    The evaluation ofMAC protocols forWireless Sensor Networks (WSNs) is often performed through simulation. These simulations necessarily abstract away from reality inmany ways. However, the impact of these abstractions on the results of the simulations has received only limited attention. Moreover,

  19. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication ...

  20. A Survey of MAC Protocols for Cognitive Radio Body Area Networks.

    Science.gov (United States)

    Bhandari, Sabin; Moh, Sangman

    2015-04-20

    The advancement in electronics, wireless communications and integrated circuits has enabled the development of small low-power sensors and actuators that can be placed on, in or around the human body. A wireless body area network (WBAN) can be effectively used to deliver the sensory data to a central server, where it can be monitored, stored and analyzed. For more than a decade, cognitive radio (CR) technology has been widely adopted in wireless networks, as it utilizes the available spectra of licensed, as well as unlicensed bands. A cognitive radio body area network (CRBAN) is a CR-enabled WBAN. Unlike other wireless networks, CRBANs have specific requirements, such as being able to automatically sense their environments and to utilize unused, licensed spectra without interfering with licensed users, but existing protocols cannot fulfill them. In particular, the medium access control (MAC) layer plays a key role in cognitive radio functions, such as channel sensing, resource allocation, spectrum mobility and spectrum sharing. To address various application-specific requirements in CRBANs, several MAC protocols have been proposed in the literature. In this paper, we survey MAC protocols for CRBANs. We then compare the different MAC protocols with one another and discuss challenging open issues in the relevant research.

  1. An Energy-Efficient and Robust Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks.

    Science.gov (United States)

    Singh, Kishor; Moh, Sangman

    2017-09-04

    Routing in cognitive radio ad hoc networks (CRAHNs) is a daunting task owing to dynamic topology, intermittent connectivity, spectrum heterogeneity, and energy constraints. Other prominent aspects such as channel stability, path reliability, and route discovery frequency should also be exploited. Several routing protocols have been proposed for CRAHNs in the literature. By stressing on one of the aspects more than any other, however, they do not satisfy all requirements of throughput, energy efficiency, and robustness. In this paper, we propose an energy-efficient and robust multipath routing (ERMR) protocol for CRAHNs by considering all prominent aspects including residual energy and channel stability in design. Even when the current routing path fails, the alternative routing path is immediately utilized. In establishing primary and alternative routing paths, both residual energy and channel stability are exploited simultaneously. Our simulation study shows that the proposed ERMR outperforms the conventional protocol in terms of network throughput, packet delivery ratio, energy consumption, and end-to-end delay.

  2. A Multipath Routing Protocol Based on Bloom Filter for Multihop Wireless Networks

    Directory of Open Access Journals (Sweden)

    Junwei Jin

    2016-01-01

    Full Text Available On-demand multipath routing in a wireless ad hoc network is effective in achieving load balancing over the network and in improving the degree of resilience to mobility. In this paper, the salvage capable opportunistic node-disjoint multipath routing (SNMR protocol is proposed, which forms multiple routes for data transmission and supports packet salvaging with minimum overhead. The proposed mechanism constructs a primary path and a node-disjoint backup path together with alternative paths for the intermediate nodes in the primary path. It can be achieved by considering the reverse route back to the source stored in the route cache and the primary path information compressed by a Bloom filter. Our protocol presents higher capability in packet salvaging and lower overhead in forming multiple routes. Simulation results show that SNMR outperforms the compared protocols in terms of packet delivery ratio, normalized routing load, and throughput.

  3. Data-centric multiobjective QoS-aware routing protocol for body sensor networks.

    Science.gov (United States)

    Razzaque, Md Abdur; Hong, Choong Seon; Lee, Sungwon

    2011-01-01

    In this paper, we address Quality-of-Service (QoS)-aware routing issue for Body Sensor Networks (BSNs) in delay and reliability domains. We propose a data-centric multiobjective QoS-Aware routing protocol, called DMQoS, which facilitates the system to achieve customized QoS services for each traffic category differentiated according to the generated data types. It uses modular design architecture wherein different units operate in coordination to provide multiple QoS services. Their operation exploits geographic locations and QoS performance of the neighbor nodes and implements a localized hop-by-hop routing. Moreover, the protocol ensures (almost) a homogeneous energy dissipation rate for all routing nodes in the network through a multiobjective Lexicographic Optimization-based geographic forwarding. We have performed extensive simulations of the proposed protocol, and the results show that DMQoS has significant performance improvements over several state-of-the-art approaches.

  4. Delay-Tolerant, Low-Power Protocols for Large Security-Critical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Claudio S. Malavenda

    2012-01-01

    Full Text Available This paper reports the analysis, implementation, and experimental testing of a delay-tolerant and energy-aware protocol for a wireless sensor node, oriented to security applications. The solution proposed takes advantages from different domains considering as a guideline the low power consumption and facing the problems of seamless and lossy connectivity offered by the wireless medium along with very limited resources offered by a wireless network node. The paper is organized as follows: first we give an overview on delay-tolerant wireless sensor networking (DTN; then we perform a simulation-based comparative analysis of state-of-the-art DTN approaches and illustrate the improvement offered by the proposed protocol; finally we present experimental data gathered from the implementation of the proposed protocol on a proprietary hardware node.

  5. W-MAC: a workload-aware MAC protocol for heterogeneous convergecast in wireless sensor networks.

    Science.gov (United States)

    Xia, Ming; Dong, Yabo; Lu, Dongming

    2011-01-01

    The power consumption and latency of existing MAC protocols for wireless sensor networks (WSNs) are high in heterogeneous convergecast, where each sensor node generates different amounts of data in one convergecast operation. To solve this problem, we present W-MAC, a workload-aware MAC protocol for heterogeneous convergecast in WSNs. A subtree-based iterative cascading scheduling mechanism and a workload-aware time slice allocation mechanism are proposed to minimize the power consumption of nodes, while offering a low data latency. In addition, an efficient schedule adjustment mechanism is provided for adapting to data traffic variation and network topology change. Analytical and simulation results show that the proposed protocol provides a significant energy saving and latency reduction in heterogeneous convergecast, and can effectively support data aggregation to further improve the performance.

  6. Statistical Analysis of the Main Configuration Parameters of the Network Dynamic and Adaptive Radio Protocol (DARP

    Directory of Open Access Journals (Sweden)

    Francisco José Estevez

    2017-06-01

    Full Text Available The present work analyses the wireless sensor network protocol (DARP and the impact of different configuration parameter sets on its performance. Different scenarios have been considered, in order to gain a better understanding of the influence of the configuration on network protocols. The developed statistical analysis is based on the method known as Analysis of Variance (ANOVA, which focuses on the effect of the configuration on the performance of DARP. Three main dependent variables were considered: number of control messages sent during the set-up time, energy consumption and convergence time. A total of 20,413 simulations were carried out to ensure greater robustness in the statistical conclusions. The main goal of this work is to discover the most critical configuration parameters for the protocol, with a view to potential applications in Smart City type scenarios.

  7. Experimental evaluation of TCP protocols for high-speed networks

    OpenAIRE

    Li, Yee-Ting; Leith, Douglas J.; Shorten, Robert N.

    2007-01-01

    In this paper, we present experimental results evaluating the performance of the scalable-TCP, HS-TCP, BIC-TCP, FAST-TCP, and H-TCP proposals in a series of benchmark tests. In summary, we find that both Scalable-TCP and FAST-TCP consistently exhibit substantial unfairness, even when competing flows share identical network path characteristics. Scalable-TCP, HS-TCP, FAST-TCP, and BIC-TCP all exhibit much greater RTT unfairness than does standard TCP, to the extent that long RTT flows ma...

  8. Use of the Delay-Tolerant Networking Bundle Protocol from Space

    Science.gov (United States)

    Wood, Lloyd; Ivancic, William D.; Eddy, Wesley M.; Stewart, Dave; Northam, James; Jackson, Chris; daSilvaCuriel, Alex

    2009-01-01

    The Disaster Monitoring Constellation (DMC), constructed by Survey Satellite Technology Ltd (SSTL), is a multisatellite Earth-imaging low-Earth-orbit sensor network where captured image swaths are stored onboard each satellite and later downloaded from the satellite payloads to a ground station. Store-and-forward of images with capture and later download gives each satellite the characteristics of a node in a Delay/Disruption Tolerant Network (DTN). Originally developed for the Interplanetary Internet, DTNs are now under investigation in an Internet Research Task Force (IRTF) DTN research group (RG), which has developed a bundle architecture and protocol. The DMC is currently unique in its adoption of the Internet Protocol (IP) for its imaging payloads and for satellite command and control, based around reuse of commercial networking and link protocols. These satellites use of IP has enabled earlier experiments with the Cisco router in Low Earth Orbit (CLEO) onboard the constellation's UK-DMC satellite. Earth images are downloaded from the satellites using a custom IPbased high-speed transfer protocol developed by SSTL, Saratoga, which tolerates unusual link environments. Saratoga has been documented in the Internet Engineering Task Force (IETF) for wider adoption. We experiment with use of DTNRG bundle concepts onboard the UKDMC satellite, by examining how Saratoga can be used as a DTN convergence layer to carry the DTNRG Bundle Protocol, so that sensor images can be delivered to ground stations and beyond as bundles. This is the first successful use of the DTNRG Bundle Protocol in a space environment. We use our practical experience to examine the strengths and weaknesses of the Bundle Protocol for DTN use, paying attention to fragmentation, custody transfer, and reliability issues.

  9. A survey on temperature-aware routing protocols in wireless body sensor networks.

    Science.gov (United States)

    Oey, Christian Henry Wijaya; Moh, Sangman

    2013-08-02

    The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN) is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node's circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  10. ARQ Protocols in Cognitive Decode-and-Forward Relay Networks: Opportunities Gain

    Directory of Open Access Journals (Sweden)

    Zongsheng Zhang

    2015-04-01

    Full Text Available In this paper, two novel automatic-repeat-request (ARQ based protocols were proposed, which exploit coop- eration opportunity inherent in secondary retransmission to create access opportunities. If the signal was not decoded correctly in destination, another user can be acted as a relay to reduce retransmission rounds by relaying the signal. For comparison, we also propose a Direct ARQ Protocol. Specif- ically, we derive the exact closed-form outage probability of three protocols, which provides an effective means to evalu- ate the effects of several parameters. Moreover, we propose a new metric to evaluate the performance improvement for cognitive networks. Finally, Monte Carlo simulations were presented to validate the theory analysis, and a comparison is made among the three protocols.

  11. A proportional integral estimator-based clock synchronization protocol for wireless sensor networks.

    Science.gov (United States)

    Yang, Wenlun; Fu, Minyue

    2017-11-01

    Clock synchronization is an issue of vital importance in applications of WSNs. This paper proposes a proportional integral estimator-based protocol (EBP) to achieve clock synchronization for wireless sensor networks. As each local clock skew gradually drifts, synchronization accuracy will decline over time. Compared with existing consensus-based approaches, the proposed synchronization protocol improves synchronization accuracy under time-varying clock skews. Moreover, by restricting synchronization error of clock skew into a relative small quantity, it could reduce periodic re-synchronization frequencies. At last, a pseudo-synchronous implementation for skew compensation is introduced as synchronous protocol is unrealistic in practice. Numerical simulations are shown to illustrate the performance of the proposed protocol. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  13. Mobi-Sim: An Emulation and Prototyping Platform for Protocols Validation of Mobile Wireless Sensors Networks

    Directory of Open Access Journals (Sweden)

    Omina Mezghani

    2017-01-01

    Full Text Available The objective of this paper is to provide a new simulator framework for mobile WSN that emulate a sensor node at a laptop i.e. the laptop will model and replace a sensor node within a network. This platform can implement different WSN routing protocols to simulate and validate new developed protocols in terms of energy consumption, loss packets rate, delivery ratio, mobility support, connectivity and exchanged messages number in real time. To evaluate the performance of Mobi-Sim, we implement into it two popular protocols (LEACH-M and LEACH sink-mobile and compare its results to TOSSIM. Then, we propose another routing protocol based on clustering that we compare it to LEACH-M.

  14. Sink-to-Sink Coordination Framework Using RPL: Routing Protocol for Low Power and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Meer M. Khan

    2016-01-01

    Full Text Available RPL (Routing Protocol for low power and Lossy networks is recommended by Internet Engineering Task Force (IETF for IPv6-based LLNs (Low Power and Lossy Networks. RPL uses a proactive routing approach and each node always maintains an active path to the sink node. Sink-to-sink coordination defines syntax and semantics for the exchange of any network defined parameters among sink nodes like network size, traffic load, mobility of a sink, and so forth. The coordination allows sink to learn about the network condition of neighboring sinks. As a result, sinks can make coordinated decision to increase/decrease their network size for optimizing over all network performance in terms of load sharing, increasing network lifetime, and lowering end-to-end latency of communication. Currently, RPL does not provide any coordination framework that can define message exchange between different sink nodes for enhancing the network performance. In this paper, a sink-to-sink coordination framework is proposed which utilizes the periodic route maintenance messages issued by RPL to exchange network status observed at a sink with its neighboring sinks. The proposed framework distributes network load among sink nodes for achieving higher throughputs and longer network’s life time.

  15. A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks.

    Science.gov (United States)

    Naeimi, Soroush; Ghafghazi, Hamidreza; Chow, Chee-Onn; Ishii, Hiroshi

    2012-01-01

    The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.

  16. A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hiroshi Ishii

    2012-05-01

    Full Text Available The past few years have witnessed increased interest among researchers in cluster-based protocols for homogeneous networks because of their better scalability and higher energy efficiency than other routing protocols. Given the limited capabilities of sensor nodes in terms of energy resources, processing and communication range, the cluster-based protocols should be compatible with these constraints in either the setup state or steady data transmission state. With focus on these constraints, we classify routing protocols according to their objectives and methods towards addressing the shortcomings of clustering process on each stage of cluster head selection, cluster formation, data aggregation and data communication. We summarize the techniques and methods used in these categories, while the weakness and strength of each protocol is pointed out in details. Furthermore, taxonomy of the protocols in each phase is given to provide a deeper understanding of current clustering approaches. Ultimately based on the existing research, a summary of the issues and solutions of the attributes and characteristics of clustering approaches and some open research areas in cluster-based routing protocols that can be further pursued are provided.

  17. A Family of ACO Routing Protocols for Mobile Ad Hoc Networks.

    Science.gov (United States)

    Rupérez Cañas, Delfín; Sandoval Orozco, Ana Lucila; García Villalba, Luis Javier; Kim, Tai-Hoon

    2017-05-22

    In this work, an ACO routing protocol for mobile ad hoc networks based on AntHocNet is specified. As its predecessor, this new protocol, called AntOR, is hybrid in the sense that it contains elements from both reactive and proactive routing. Specifically, it combines a reactive route setup process with a proactive route maintenance and improvement process. Key aspects of the AntOR protocol are the disjoint-link and disjoint-node routes, separation between the regular pheromone and the virtual pheromone in the diffusion process and the exploration of routes, taking into consideration the number of hops in the best routes. In this work, a family of ACO routing protocols based on AntOR is also specified. These protocols are based on protocol successive refinements. In this work, we also present a parallelized version of AntOR that we call PAntOR. Using programming multiprocessor architectures based on the shared memory protocol, PAntOR allows running tasks in parallel using threads. This parallelization is applicable in the route setup phase, route local repair process and link failure notification. In addition, a variant of PAntOR that consists of having more than one interface, which we call PAntOR-MI (PAntOR-Multiple Interface), is specified. This approach parallelizes the sending of broadcast messages by interface through threads.

  18. Security enhanced user authentication protocol for wireless sensor networks using elliptic curves cryptography.

    Science.gov (United States)

    Choi, Younsung; Lee, Donghoon; Kim, Jiye; Jung, Jaewook; Nam, Junghyun; Won, Dongho

    2014-06-10

    Wireless sensor networks (WSNs) consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC) for WSNs. However, it turned out that Yeh et al.'s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.'s protocol. However, Shi et al.'s improvement introduces other security weaknesses. In this paper, we show that Shi et al.'s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs.

  19. Security Enhanced User Authentication Protocol for Wireless Sensor Networks Using Elliptic Curves Cryptography

    Directory of Open Access Journals (Sweden)

    Younsung Choi

    2014-06-01

    Full Text Available Wireless sensor networks (WSNs consist of sensors, gateways and users. Sensors are widely distributed to monitor various conditions, such as temperature, sound, speed and pressure but they have limited computational ability and energy. To reduce the resource use of sensors and enhance the security of WSNs, various user authentication protocols have been proposed. In 2011, Yeh et al. first proposed a user authentication protocol based on elliptic curve cryptography (ECC for WSNs. However, it turned out that Yeh et al.’s protocol does not provide mutual authentication, perfect forward secrecy, and key agreement between the user and sensor. Later in 2013, Shi et al. proposed a new user authentication protocol that improves both security and efficiency of Yeh et al.’s protocol. However, Shi et al.’s improvement introduces other security weaknesses. In this paper, we show that Shi et al.’s improved protocol is vulnerable to session key attack, stolen smart card attack, and sensor energy exhausting attack. In addition, we propose a new, security-enhanced user authentication protocol using ECC for WSNs.

  20. Secure Protocol and IP Core for Configuration of Networking Hardware IPs in the Smart Grid

    Directory of Open Access Journals (Sweden)

    Marcelo Urbina

    2018-02-01

    Full Text Available Nowadays, the incorporation and constant evolution of communication networks in the electricity sector have given rise to the so-called Smart Grid, which is why it is necessary to have devices that are capable of managing new communication protocols, guaranteeing the strict requirements of processing required by the electricity sector. In this context, intelligent electronic devices (IEDs with network architectures are currently available to meet the communication, real-time processing and interoperability requirements of the Smart Grid. The new generation IEDs include an Field Programmable Gate Array (FPGA, to support specialized networking switching architectures for the electric sector, as the IEEE 1588-aware High-availability Seamless Redundancy/Parallel Redundancy Protocol (HSR/PRP. Another advantage to using an FPGA is the ability to update or reconfigure the design to support new requirements that are being raised to the standards (IEC 61850. The update of the architecture implemented in the FPGA can be done remotely, but it is necessary to establish a cyber security mechanism since the communication link generates vulnerability in the case the attacker gains physical access to the network. The research presented in this paper proposes a secure protocol and Intellectual Property (IP core for configuring and monitoring the networking IPs implemented in a Field Programmable Gate Array (FPGA. The FPGA based implementation proposed overcomes this issue using a light Layer-2 protocol fully implemented on hardware and protected by strong cryptographic algorithms (AES-GCM, defined in the IEC 61850-90-5 standard. The proposed secure protocol and IP core are applicable in any field where remote configuration over Ethernet is required for IP cores in FPGAs. In this paper, the proposal is validated in communications hardware for Smart Grids.

  1. An Effective Approach for Mobile ad hoc Network via I-Watchdog Protocol

    Directory of Open Access Journals (Sweden)

    Nidhi Lal

    2014-12-01

    Full Text Available Mobile ad hoc network (MANET is now days become very famous due to their fixed infrastructure-less quality and dynamic nature. They contain a large number of nodes which are connected and communicated to each other in wireless nature. Mobile ad hoc network is a wireless technology that contains high mobility of nodes and does not depend on the background administrator for central authority, because they do not contain any infrastructure. Nodes of the MANET use radio wave for communication and having limited resources and limited computational power. The Topology of this network is changing very frequently because they are distributed in nature and self-configurable. Due to its wireless nature and lack of any central authority in the background, Mobile ad hoc networks are always vulnerable to some security issues and performance issues. The security imposes a huge impact on the performance of any network. Some of the security issues are black hole attack, flooding, wormhole attack etc. In this paper, we will discuss issues regarding low performance of Watchdog protocol used in the MANET and proposed an improved Watchdog mechanism, which is called by I-Watchdog protocol that overcomes the limitations of Watchdog protocol and gives high performance in terms of throughput, delay.

  2. Optimal hop position-based minimum energy routing protocol for underwater acoustic sensor networks

    Directory of Open Access Journals (Sweden)

    K.S. Geethu

    2015-05-01

    Full Text Available Development of energy-efficient routing protocols is a major concern in the design of underwater acoustic sensor networks (UASNs since UASN nodes are typically powered by batteries, which are difficult to replace or recharge in aquatic environments. This study proposes an optimal hop position-based energy-efficient routing protocol for UASNs. Initially, the authors present an analytical model to compute the total energy consumption in a multi-hop UASN for deep water scenario, taking into account dependence of usable bandwidth on transmission distance and propagation characteristics of underwater acoustic channel. They derive analytical solution for the optimal hop distance that minimises total energy consumption in the network. They then propose an energy-efficient routing protocol that relies on the computation of optimal hop distance. In their routing scheme, selection of forwarding nodes are based on their depth, residual energy and closeness to the computed optimal hop position corresponding to source node. Simulation results show that total energy consumption of the network gets reduced drastically, leading to improvement in network lifetime. Moreover, the proposed routing scheme makes use of courier nodes to handle coverage-hole problem. The efficient movement of courier nodes improves packet delivery ratio and network throughput.

  3. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Javaid, Nadeem; Ilyas, Naveed; Ahmad, Ashfaq; Alrajeh, Nabil; Qasim, Umar; Khan, Zahoor Ali; Liaqat, Tayyaba; Khan, Majid Iqbal

    2015-11-17

    Most applications of underwater wireless sensor networks (UWSNs) demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS) to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV)-aided efficient data-gathering (AEDG) routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT) algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS) to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  4. An Efficient Data-Gathering Routing Protocol for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2015-11-01

    Full Text Available Most applications of underwater wireless sensor networks (UWSNs demand reliable data delivery over a longer period in an efficient and timely manner. However, the harsh and unpredictable underwater environment makes routing more challenging as compared to terrestrial WSNs. Most of the existing schemes deploy mobile sensors or a mobile sink (MS to maximize data gathering. However, the relatively high deployment cost prevents their usage in most applications. Thus, this paper presents an autonomous underwater vehicle (AUV-aided efficient data-gathering (AEDG routing protocol for reliable data delivery in UWSNs. To prolong the network lifetime, AEDG employs an AUV for data collection from gateways and uses a shortest path tree (SPT algorithm while associating sensor nodes with the gateways. The AEDG protocol also limits the number of associated nodes with the gateway nodes to minimize the network energy consumption and to prevent the gateways from overloading. Moreover, gateways are rotated with the passage of time to balance the energy consumption of the network. To prevent data loss, AEDG allows dynamic data collection at the AUV depending on the limited number of member nodes that are associated with each gateway. We also develop a sub-optimal elliptical trajectory of AUV by using a connected dominating set (CDS to further facilitate network throughput maximization. The performance of the AEDG is validated via simulations, which demonstrate the effectiveness of AEDG in comparison to two existing UWSN routing protocols in terms of the selected performance metrics.

  5. Medium Access Control Protocols for Wireless Sensor Networks with Energy Harvesting

    CERN Document Server

    Iannello, Fabio; Spagnolini, Umberto

    2011-01-01

    The design of Medium Access Control (MAC) protocols for wireless sensor networks (WSNs) has been conventionally tackled by assuming battery-powered devices and by adopting the network lifetime as the main performance criterion. While WSNs operated by energy-harvesting (EH) devices are not limited by network lifetime, they pose new design challenges due to the uncertain amount of harvestable energy. Novel design criteria are thus required to capture the trade-offs between the potentially infinite network lifetime and the uncertain energy availability. This paper addresses the analysis and design of WSNs with EH devices by focusing on conventional MAC protocols, namely TDMA, Framed-ALOHA (FA) and Dynamic-FA (DFA), and by accounting for the performance trade-offs and design issues arising due to EH. A novel metric, referred to as delivery probability, is introduced to measure the capability of a MAC protocol to deliver the measure of any sensor in the network to the intended destination (or fusion center, FC). T...

  6. Routing protocols for wireless sensor networks: What the literature says?

    Directory of Open Access Journals (Sweden)

    Amit Sarkar

    2016-12-01

    Full Text Available Routing in Wireless Sensor Networks (WSNs plays a significant role in the field of environment-oriented monitoring, traffic monitoring, etc. Here, wide contributions that are made toward routing in WSN are explored. The paper mainly aims to categorize the routing problems and examines the routing-related optimization problems. For achieving the motive, 50 papers from the standard journals are collected and primarily reviewed in a chronological way. Later, various features that are related to energy, security, speed and reliability problems of routing are discussed. Subsequently, the literature is analyzed based on the simulation environment and experimental setup, awareness over the Quality of Service (QoS and the deployment against various applications. In addition, the optimization of the routing algorithms and the meta-heuristic study of routing optimization are explored. Routing is a vast area with numerous unsolved issues and hence, various research gaps along with future directions are also presented.

  7. An Environment-Friendly Multipath Routing Protocol for Underwater Acoustic Sensor Network

    Directory of Open Access Journals (Sweden)

    Yun Li

    2017-01-01

    Full Text Available Underwater Acoustic Sensor Network (UASN is a promising technique by facilitating a wide range of aquatic applications. However, routing scheme in UASN is a challenging task because of the characteristics of the nodes mobility, interruption of link, and interference caused by other underwater acoustic systems such as marine mammals. In order to achieve reliable data delivery in UASN, in this work, we present a disjoint multipath disruption-tolerant routing protocol for UASN (ENMR, which incorporates the Hue, Saturation, and Value color space (HSV model to establish routing paths to greedily forward data packets to sink nodes. ENMR applies the mechanism to maintain the network topology. Simulation results show that, compared with the classic underwater routing protocols named PVBF, ENMR can improve packet delivery ratio and reduce network latency while avoiding introducing additional energy consumption.

  8. Energy-Aware Routing Protocol for Ad Hoc Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mann Raminder P

    2005-01-01

    Full Text Available Wireless ad hoc sensor networks differ from wireless ad hoc networks from the following perspectives: low energy, lightweight routing protocols, and adaptive communication patterns. This paper proposes an energy-aware routing protocol (EARP suitable for ad hoc wireless sensor networks and presents an analysis for its energy consumption in various phases of route discovery and maintenance. Based on the energy consumption associated with route request processing, EARP advocates the minimization of route requests by allocating dynamic route expiry times. This paper introduces a unique mechanism for estimation of route expiry time based on the probability of route validity, which is a function of time, number of hops, and mobility parameters. In contrast to AODV, EARP reduces the repeated flooding of route requests by maintaining valid routes for longer durations.

  9. QoS and energy aware cooperative routing protocol for wildfire monitoring wireless sensor networks.

    Science.gov (United States)

    Maalej, Mohamed; Cherif, Sofiane; Besbes, Hichem

    2013-01-01

    Wireless sensor networks (WSN) are presented as proper solution for wildfire monitoring. However, this application requires a design of WSN taking into account the network lifetime and the shadowing effect generated by the trees in the forest environment. Cooperative communication is a promising solution for WSN which uses, at each hop, the resources of multiple nodes to transmit its data. Thus, by sharing resources between nodes, the transmission quality is enhanced. In this paper, we use the technique of reinforcement learning by opponent modeling, optimizing a cooperative communication protocol based on RSSI and node energy consumption in a competitive context (RSSI/energy-CC), that is, an energy and quality-of-service aware-based cooperative communication routing protocol. Simulation results show that the proposed algorithm performs well in terms of network lifetime, packet delay, and energy consumption.

  10. Coordination Protocols for a Reliable Sensor, Actuator, and Device Network (SADN

    Directory of Open Access Journals (Sweden)

    Keiji Ozaki

    2008-01-01

    Full Text Available A sensor, actuator, and device network (SADN is composed of three types of nodes, which are sensor, actuator, and actuation device nodes. Sensor nodes and actuator nodes are interconnected in wireless networks as discussed in wireless sensor and actuator networks (WSANs. Actuator nodes and device nodes are interconnected in types of networks, i.e. wireless and wired network. Sensor nodes sense an physical event and send sensed values of the event to actuator nodes. An actuator node makes a decision on proper actions on receipt of sensed values and then issue the action requests to the device nodes. A device node really acts to the physical world. For example, moves a robot arms by performing the action on receipt of the action request. Messages may be lost and nodes may be faulty. Especially, messages are lost due to noise and collision in a wireless network. We propose a fully redundant model for an SADN where each of sensor, actuator, and device functions is replicated in multiple nodes and each of sensor-actuator and actuator-device communication is realized in many-to-many type of communication protocols. Even if some number of nodes are faulty, the other nodes can perform requested tasks. Here, each sensor node sends sensed values to multiple actuator nodes and each actuator node receives sensed values from multiple sensor nodes. While multiple actuator nodes communicate with multiple replica nodes of a device. Even if messages are lost and some number of nodes are faulty, device nodes can surely receive action requests required for sensed values and the actions are performed. In this paper, we discuss a type of semi-passive coordination (SPC protocol of multiple actuator nodes for multiple sensor nodes. We discuss a type of active coordination protocol for multiple actuator nodes and multiple actuation device nodes. We evaluate the SPC protocol for the sensor-actuator coordination in terms of the number of messages exchanged among

  11. Architecture Design and Experimental Platform Demonstration of Optical Network based on OpenFlow Protocol

    Science.gov (United States)

    Xing, Fangyuan; Wang, Honghuan; Yin, Hongxi; Li, Ming; Luo, Shenzi; Wu, Chenguang

    2016-02-01

    With the extensive application of cloud computing and data centres, as well as the constantly emerging services, the big data with the burst characteristic has brought huge challenges to optical networks. Consequently, the software defined optical network (SDON) that combines optical networks with software defined network (SDN), has attracted much attention. In this paper, an OpenFlow-enabled optical node employed in optical cross-connect (OXC) and reconfigurable optical add/drop multiplexer (ROADM), is proposed. An open source OpenFlow controller is extended on routing strategies. In addition, the experiment platform based on OpenFlow protocol for software defined optical network, is designed. The feasibility and availability of the OpenFlow-enabled optical nodes and the extended OpenFlow controller are validated by the connectivity test, protection switching and load balancing experiments in this test platform.

  12. A review on transport layer protocol performance for delivering video on an adhoc network

    Science.gov (United States)

    Suherman; Suwendri; Al-Akaidi, Marwan

    2017-09-01

    The transport layer protocol is responsible for the end to end data transmission. Transmission control protocol (TCP) provides a reliable connection and user datagram protocol (UDP) offers fast but unguaranteed data transfer. Meanwhile, the 802.11 (wireless fidelity/WiFi) networks have been widely used as internet hotspots. This paper evaluates TCP, TCP variants and UDP performances for video transmission on an adhoc network. The transport protocol - medium access cross-layer is proposed by prioritizing TCP acknowledgement to reduce delay. The NS-2 evaluations show that the average delays increase linearly for all the evaluated protocols and the average packet losses grow logarithmically. UDP produces the lowest transmission delay; 5.4% and 5.8% lower than TCP and TCP variant, but experiences the highest packet loss. Both TCP and TCP Vegas maintain packet loss as low as possible. The proposed cross-layer successfully decreases TCP and TCP Vegas delay about 0.12 % and 0.15%, although losses remain similar.

  13. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-05-01

    Full Text Available This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  14. A Protocol Layer Trust-Based Intrusion Detection Scheme for Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Jian; Jiang, Shuai; Fapojuwo, Abraham O

    2017-05-27

    This article proposes a protocol layer trust-based intrusion detection scheme for wireless sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to the deviations of key parameters at each protocol layer considering the attacks initiated at different protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers. For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer trust, media access control layer trust and network layer trust. The per-layer trust metrics are then combined to determine the overall trust metric of a sensor node. The performance of the proposed intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of false positive and false negative probabilities. Numerical analytical results, validated by simulation results, are presented in different attack scenarios. It is shown that the proposed protocol layer trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.

  15. A Novel MAC Protocol for QoS in Ad Hoc Wireless Networks

    Science.gov (United States)

    Takahashi, Kiyoshi; Terasawa, Takuya; Tsuboi, Toshinori

    We propose a medium access control (MAC) protocol for real-time applications in one-hop ad-hoc wireless networks. It is a distributed mechanism that takes account of priority and has a bounded packet delay. Nodes use energy signals to contend for the right to access the channel. Nodes, which have a packet to transmit, send energy signals or listen to the channel based on their binary frame. The node that has sent energy signals and has not heard any energy signals wins the right to access the channel. We use two schemes to determine the binary frame: at the beginning of a session, a node determines it based on its priority level and a random number; after successful transmission, based on a count of successful packet transmissions. With the first scheme, in order to reduce contention losses, the nodes that had won the right to access the channel but failed in transmission have priority over the other nodes. With the second scheme, the node that has the largest count, the one that has been waiting the longest, can send a packet without risking collision. The protocol provides higher probability of successful transmission and a limit on maximum packet delay. An analysis of the protocol provides conditions for the protocol to be stable. We evaluate the performance of the proposed protocol using simulations of a network with a mixed population of data and real-time nodes, whose source is constant bit rate (CBR) and a two state Markov on/off process.

  16. Overview of the InterGroup protocols

    Energy Technology Data Exchange (ETDEWEB)

    Berket, Karlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Agarwal, Deborah A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Melliar-Smith, P. Michael [Univ. of California, Santa Barbara, CA (United States); Moser, Louise E. [Univ. of California, Santa Barbara, CA (United States)

    2001-03-01

    Existing reliable ordered group communication protocols have been developed for local-area networks and do not, in general, scale well to large numbers of nodes and wide-area networks. The InterGroup suite of protocols is a scalable group communication system that introduces a novel approach to handling group membership, and supports a receiver-oriented selection of service. The protocols are intended for a wide-area network, with a large number of nodes, that has highly variable delays and a high message loss rate, such as the Internet. The levels of the message delivery service range from unreliable unordered to reliable group timestamp ordered.

  17. Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-11-08

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol.

  18. A robust and energy-efficient transport protocol for cognitive radio sensor networks.

    Science.gov (United States)

    Salim, Shelly; Moh, Sangman

    2014-10-20

    A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. CRSNs benefit from cognitive radio capabilities such as dynamic spectrum access and transmission parameters reconfigurability; but cognitive radio also brings additional challenges and leads to higher energy consumption. Motivated to improve the energy efficiency in CRSNs, we propose a robust and energy-efficient transport protocol (RETP). The novelties of RETP are two-fold: (I) it combines distributed channel sensing and channel decision with centralized schedule-based data transmission; and (II) it differentiates the types of data transmission on the basis of data content and adopts different acknowledgment methods for different transmission types. To the best of our knowledge, no transport layer protocols have yet been designed for CRSNs. Simulation results show that the proposed protocol achieves remarkably longer network lifetime and shorter event-detection delay compared to those achieved with a conventional transport protocol, while simultaneously preserving event-detection reliability.

  19. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks.

    Science.gov (United States)

    Pérez-Solano, Juan J; Claver, Jose M; Ezpeleta, Santiago

    2017-07-06

    Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI) values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.

  20. Optimizing the MAC Protocol in Localization Systems Based on IEEE 802.15.4 Networks

    Directory of Open Access Journals (Sweden)

    Juan J. Pérez-Solano

    2017-07-01

    Full Text Available Radio frequency signals are commonly used in the development of indoor localization systems. The infrastructure of these systems includes some beacons placed at known positions that exchange radio packets with users to be located. When the system is implemented using wireless sensor networks, the wireless transceivers integrated in the network motes are usually based on the IEEE 802.15.4 standard. But, the CSMA-CA, which is the basis for the medium access protocols in this category of communication systems, is not suitable when several users want to exchange bursts of radio packets with the same beacon to acquire the radio signal strength indicator (RSSI values needed in the location process. Therefore, new protocols are necessary to avoid the packet collisions that appear when multiple users try to communicate with the same beacons. On the other hand, the RSSI sampling process should be carried out very quickly because some systems cannot tolerate a large delay in the location process. This is even more important when the RSSI sampling process includes measures with different signal power levels or frequency channels. The principal objective of this work is to speed up the RSSI sampling process in indoor localization systems. To achieve this objective, the main contribution is the proposal of a new MAC protocol that eliminates the medium access contention periods and decreases the number of packet collisions to accelerate the RSSI collection process. Moreover, the protocol increases the overall network throughput taking advantage of the frequency channel diversity. The presented results show the suitability of this protocol for reducing the RSSI gathering delay and increasing the network throughput in simulated and real environments.

  1. A Comprehensive study of a New Multipath Energy Aware Routing Protocol for Mobile Ad-hoc Networks

    OpenAIRE

    Chettibi, Saloua

    2009-01-01

    S. Chettibi, M. Benmohammed, "A comprehensive study of a new multipath energy aware routing protocol for mobile ad-hoc networks"; International Conference on Systems and Information Processing, ICSIP'09, May 02 – 04, 2009, Guelma, Algeria; Maximizing network lifetime is a very challenging issue in routing protocol design for Mobile Ad-hoc NETworks (MANETs), since mobile nodes are powered by limited-capacity batteries. Furthermore, replacing or recharging batteries is often impossible in criti...

  2. A Study of the Merits of Precision Time Protocol (IEEE-1588) Across High-Speed Data Networks

    CERN Document Server

    Oliver, David; Neufeld, Niko

    2015-01-01

    By using Precision Time Protocol across high-speed data networks, it is possible to achieve good time synchronisation without requiring the use of custom switches. Even under heavy network loads, the attainable precision far exceeds that which is possible with Network Time Protocol, and is sufficient for many applications. This note explores the attainable precision possible with PTP under various conditions and attempts to provide a measurement of its performance.

  3. A Study of the Merits of Precision Time Protocol (IEEE-1588) Across High-Speed Data Networks

    CERN Document Server

    Oliver, David; Otto, Adam Jedrzej; CERN. Geneva. PH Department

    2015-01-01

    By using Precision Time Protocol across high-speed data networks, it is possible to achieve good time synchronisation using only commercial, off-the-shelve equipment. Even under heavy network loads, the attainable precision far exceeds that which is possible with Network Time Protocol, and is sufficient for many applications. This note explores the time precision possible with PTP under various conditions and attempts to provide a measurement of its performance.

  4. Privacy-preserving data aggregation protocols for wireless sensor networks: a survey.

    Science.gov (United States)

    Bista, Rabindra; Chang, Jae-Woo

    2010-01-01

    Many wireless sensor network (WSN) applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA) protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.

  5. Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Rabindra Bista

    2010-05-01

    Full Text Available Many wireless sensor network (WSN applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.

  6. Distributed synchronization of networked drive-response systems: A nonlinear fixed-time protocol.

    Science.gov (United States)

    Zhao, Wen; Liu, Gang; Ma, Xi; He, Bing; Dong, Yunfeng

    2017-11-01

    The distributed synchronization of networked drive-response systems is investigated in this paper. A novel nonlinear protocol is proposed to ensure that the tracking errors converge to zeros in a fixed-time. By comparison with previous synchronization methods, the present method considers more practical conditions and the synchronization time is not dependent of arbitrary initial conditions but can be offline pre-assign according to the task assignment. Finally, the feasibility and validity of the presented protocol have been illustrated by a numerical simulation. Copyright © 2017. Published by Elsevier Ltd.

  7. Impact of Transport Control Protocol on Full Duplex Performance in 5G Networks

    DEFF Research Database (Denmark)

    Gatnau, Marta; Berardinelli, Gilberto; Mahmood, Nurul Huda

    2016-01-01

    Full duplex (FD) communication has attracted the attention of the industry and the academia as an important feature in the design of the future 5th generation (5G) wireless communication system. Such technology allows a device to simultaneously transmit and receive in the same frequency band......, with the potential of providing higher throughput and lower latency compared to traditional half duplex (HD) systems. In this paper, the interaction between Transport Control Protocol (TCP) and FD in 5G ultra-dense small cell networks is studied. TCP is a well-known transport layer protocol for providing reliability...

  8. A Game Theory Based Congestion Control Protocol for Wireless Personal Area Networks

    Directory of Open Access Journals (Sweden)

    Chuang Ma

    2016-01-01

    Full Text Available In wireless sensor networks (WSNs, the presence of congestion increases the ratio of packet loss and energy consumption and reduces the network throughput. Particularly, this situation will be more complex in Internet of Things (IoT environment, which is composed of thousands of heterogeneous nodes. RPL is an IPv6 routing protocol in low power and lossy networks standardized by IETF. However, the RPL can induce problems under network congestion, such as frequently parent changing and throughput degradation. In this paper, we address the congestion problem between parent nodes and child nodes in RPL-enabled networks, which typically consist of low power and resource constraint devices. To mitigate the effect of network congestion, we design a parent-change procedure by game theory strategy, by which the child nodes can change next hop neighbors toward the sink. Comparing to the ContikiRPL implementation, the simulation results show that our protocol can achieve more than two times improvement in throughput and reduce packet loss rate with less increasing of average hop count.

  9. A NOVEL RESOURCE CONSTRAINT SECURE(RCS ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    R. GEETHA

    2017-02-01

    Full Text Available Geographic routing protocols are the most preferred routing protocols for Wireless Sensor Networks (WSN since they rely on geographic position information. Hence we propose geography based Resource Constraint Secure routing (RCS protocol. The existing routing protocol named Cost Aware SEcure Routing (CASER allows messages to be transmitted using random walking routing strategy. In the Random walking method, there is a chance of choosing low energy node as a relay node. RCS protocol overcomes this by transmitting the data via energy aware route only and it provides authentication by using Modified ElGammal Signature (MES scheme on Elliptic curve algorithm. For security purposes, the content of each message can also be encrypted by using a symmetric key encryption technique and decoded at the sink node by knowing the same secret key used by the source. So, unauthenticated person cannot access the original data. Therefore the protocol ensures a secure message delivery option to maximize the message delivery ratio under adversarial attacks. The performance evaluation results show that RCS performs better than CASER with respect to Packet Delivery Ratio, Energy Balance Factor and End-to-End Delay, Throughput and Routing overhead.

  10. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols.

    Science.gov (United States)

    Shahzad, Aamir; Landry, René; Lee, Malrey; Xiong, Naixue; Lee, Jongho; Lee, Changhoon

    2016-06-14

    Substantial changes have occurred in the Information Technology (IT) sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA) server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  11. Opportunistic Buffered Decode-Wait-and-Forward (OBDWF) Protocol for Mobile Wireless Relay Networks

    CERN Document Server

    Wang, Rui; Huang, Huang

    2011-01-01

    In this paper, we propose an opportunistic buffered decode-wait-and-forward (OBDWF) protocol to exploit both relay buffering and relay mobility to enhance the system throughput and the end-to-end packet delay under bursty arrivals. We consider a point-to-point communication link assisted by K mobile relays. We illustrate that the OBDWF protocol could achieve a better throughput and delay performance compared with existing baseline systems such as the conventional dynamic decode-and-forward (DDF) and amplified-and-forward (AF) protocol. In addition to simulation performance, we also derived closed-form asymptotic throughput and delay expressions of the OBDWF protocol. Specifically, the proposed OBDWF protocol achieves an asymptotic throughput O(logK) with O(1) total transmit power in the relay network. This is a significant gain compared with the best known performance in conventional protocols (O(logK) throughput with O(K) total transmit power). With bursty arrivals, we show that both the stability region and...

  12. A New Cellular Architecture for Information Retrieval from Sensor Networks through Embedded Service and Security Protocols

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2016-06-01

    Full Text Available Substantial changes have occurred in the Information Technology (IT sectors and with these changes, the demand for remote access to field sensor information has increased. This allows visualization, monitoring, and control through various electronic devices, such as laptops, tablets, i-Pads, PCs, and cellular phones. The smart phone is considered as a more reliable, faster and efficient device to access and monitor industrial systems and their corresponding information interfaces anywhere and anytime. This study describes the deployment of a protocol whereby industrial system information can be securely accessed by cellular phones via a Supervisory Control And Data Acquisition (SCADA server. To achieve the study goals, proprietary protocol interconnectivity with non-proprietary protocols and the usage of interconnectivity services are considered in detail. They support the visualization of the SCADA system information, and the related operations through smart phones. The intelligent sensors are configured and designated to process real information via cellular phones by employing information exchange services between the proprietary protocol and non-proprietary protocols. SCADA cellular access raises the issue of security flaws. For these challenges, a cryptography-based security method is considered and deployed, and it could be considered as a part of a proprietary protocol. Subsequently, transmission flows from the smart phones through a cellular network.

  13. An Improved PRoPHET Routing Protocol in Delay Tolerant Network

    Directory of Open Access Journals (Sweden)

    Seung Deok Han

    2015-01-01

    Full Text Available In delay tolerant network (DTN, an end-to-end path is not guaranteed and packets are delivered from a source node to a destination node via store-carry-forward based routing. In DTN, a source node or an intermediate node stores packets in buffer and carries them while it moves around. These packets are forwarded to other nodes based on predefined criteria and finally are delivered to a destination node via multiple hops. In this paper, we improve the dissemination speed of PRoPHET (probability routing protocol using history of encounters and transitivity protocol by employing epidemic protocol for disseminating message m, if forwarding counter and hop counter values are smaller than or equal to the threshold values. The performance of the proposed protocol was analyzed from the aspect of delivery probability, average delay, and overhead ratio. Numerical results show that the proposed protocol can improve the delivery probability, average delay, and overhead ratio of PRoPHET protocol by appropriately selecting the threshold forwarding counter and threshold hop counter values.

  14. A Cross-Layer Duty Cycle MAC Protocol Supporting a Pipeline Feature for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Chon Kim

    2011-05-01

    Full Text Available Although the conventional duty cycle MAC protocols for Wireless Sensor Networks (WSNs such as RMAC perform well in terms of saving energy and reducing end-to-end delivery latency, they were designed independently and require an extra routing protocol in the network layer to provide path information for the MAC layer. In this paper, we propose a new cross-layer duty cycle MAC protocol with data forwarding supporting a pipeline feature (P-MAC for WSNs. P-MAC first divides the whole network into many grades around the sink. Each node identifies its grade according to its logical hop distance to the sink and simultaneously establishes a sleep/wakeup schedule using the grade information. Those nodes in the same grade keep the same schedule, which is staggered with the schedule of the nodes in the adjacent grade. Then a variation of the RTS/CTS handshake mechanism is used to forward data continuously in a pipeline fashion from the higher grade to the lower grade nodes and finally to the sink. No extra routing overhead is needed, thus increasing the network scalability while maintaining the superiority of duty-cycling. The simulation results in OPNET show that P-MAC has better performance than S-MAC and RMAC in terms of packet delivery latency and energy efficiency.

  15. Privacy Preserved and Secured Reliable Routing Protocol for Wireless Mesh Networks.

    Science.gov (United States)

    Meganathan, Navamani Thandava; Palanichamy, Yogesh

    2015-01-01

    Privacy preservation and security provision against internal attacks in wireless mesh networks (WMNs) are more demanding than in wired networks due to the open nature and mobility of certain nodes in the network. Several schemes have been proposed to preserve privacy and provide security in WMNs. To provide complete privacy protection in WMNs, the properties of unobservability, unlinkability, and anonymity are to be ensured during route discovery. These properties can be achieved by implementing group signature and ID-based encryption schemes during route discovery. Due to the characteristics of WMNs, it is more vulnerable to many network layer attacks. Hence, a strong protection is needed to avoid these attacks and this can be achieved by introducing a new Cross-Layer and Subject Logic based Dynamic Reputation (CLSL-DR) mechanism during route discovery. In this paper, we propose a new Privacy preserved and Secured Reliable Routing (PSRR) protocol for WMNs. This protocol incorporates group signature, ID-based encryption schemes, and CLSL-DR mechanism to ensure strong privacy, security, and reliability in WMNs. Simulation results prove this by showing better performance in terms of most of the chosen parameters than the existing protocols.

  16. Performance Analysis of a Cluster-Based MAC Protocol for Wireless Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Jesús Alonso-Zárate

    2010-01-01

    Full Text Available An analytical model to evaluate the non-saturated performance of the Distributed Queuing Medium Access Control Protocol for Ad Hoc Networks (DQMANs in single-hop networks is presented in this paper. DQMAN is comprised of a spontaneous, temporary, and dynamic clustering mechanism integrated with a near-optimum distributed queuing Medium Access Control (MAC protocol. Clustering is executed in a distributed manner using a mechanism inspired by the Distributed Coordination Function (DCF of the IEEE 802.11. Once a station seizes the channel, it becomes the temporary clusterhead of a spontaneous cluster and it coordinates the peer-to-peer communications between the clustermembers. Within each cluster, a near-optimum distributed queuing MAC protocol is executed. The theoretical performance analysis of DQMAN in single-hop networks under non-saturation conditions is presented in this paper. The approach integrates the analysis of the clustering mechanism into the MAC layer model. Up to the knowledge of the authors, this approach is novel in the literature. In addition, the performance of an ad hoc network using DQMAN is compared to that obtained when using the DCF of the IEEE 802.11, as a benchmark reference.

  17. A survey of performance enhancement of transmission control protocol (TCP in wireless ad hoc networks

    Directory of Open Access Journals (Sweden)

    Mast Noor

    2011-01-01

    Full Text Available Abstract Transmission control protocol (TCP, which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches. A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.

  18. Cross-Layer Active Predictive Congestion Control Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yinfeng Wu

    2009-10-01

    Full Text Available In wireless sensor networks (WSNs, there are numerous factors that may cause network congestion problems, such as the many-to-one communication modes, mutual interference of wireless links, dynamic changes of network topology and the memory-restrained characteristics of nodes. All these factors result in a network being more vulnerable to congestion. In this paper, a cross-layer active predictive congestion control scheme (CL-APCC for improving the performance of networks is proposed. Queuing theory is applied in the CL-APCC to analyze data flows of a single-node according to its memory status, combined with the analysis of the average occupied memory size of local networks. It also analyzes the current data change trends of local networks to forecast and actively adjust the sending rate of the node in the next period. In order to ensure the fairness and timeliness of the network, the IEEE 802.11 protocol is revised based on waiting time, the number of the node‟s neighbors and the original priority of data packets, which dynamically adjusts the sending priority of the node. The performance of CL-APCC, which is evaluated by extensive simulation experiments. is more efficient in solving the congestion in WSNs. Furthermore, it is clear that the proposed scheme has an outstanding advantage in terms of improving the fairness and lifetime of networks.

  19. Implementation of CAVENET and Its Usage for Performance Evaluation of AODV, OLSR and DYMO Protocols in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Evjola Spaho

    2010-01-01

    Full Text Available Vehicle Ad-hoc Network (VANET is a kind of Mobile Ad-hoc Network (MANET that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork. In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.

  20. Highly Scalable, UDP-Based Network Transport Protocols for Lambda Grids and 10 GE Routed Networks

    Energy Technology Data Exchange (ETDEWEB)

    PI: Robert Grossman Co-PI: Stephen Eick

    2009-08-04

    Summary of Report In work prior to this grant, NCDM developed a high performance data transport protocol called SABUL. During this grant, we refined SABUL’s functionality, and then extended both the capabilities and functionality and incorporated them into a new protocol called UDP-based Data transport Protocol, or UDT. We also began preliminary work on Composable UDT, a version of UDT that allows the user to choose among different congestion control algorithms and implement the algorithm of his choice at the time he compiles the code. Specifically, we: · Investigated the theoretical foundations of protocols similar to SABUL and UDT. · Performed design and development work of UDT, a protocol that uses UDP in both the data and control channels. · Began design and development work of Composable UDT, a protocol that supports the use of different congestion control algorithms by simply including the appropriate library when compiling the code. · Performed experimental studies using UDT and Composable UDT using real world applications such as the Sloan Digital Sky Survey (SDSS) astronomical data sets. · Released several versions of UDT and Composable, the most recent being v3.1.

  1. A MAC protocol for medical monitoring applications of wireless body area networks.

    Science.gov (United States)

    Shu, Minglei; Yuan, Dongfeng; Zhang, Chongqing; Wang, Yinglong; Chen, Changfang

    2015-06-03

    Targeting the medical monitoring applications of wireless body area networks (WBANs), a hybrid medium access control protocol using an interrupt mechanism (I-MAC) is proposed to improve the energy and time slot utilization efficiency and to meet the data delivery delay requirement at the same time. Unlike existing hybrid MAC protocols, a superframe structure with a longer length is adopted to avoid unnecessary beacons. The time slots are mostly allocated to nodes with periodic data sources. Short interruption slots are inserted into the superframe to convey the urgent data and to guarantee the real-time requirements of these data. During these interruption slots, the coordinator can break the running superframe and start a new superframe. A contention access period (CAP) is only activated when there are more data that need to be delivered. Experimental results show the effectiveness of the proposed MAC protocol in WBANs with low urgent traffic.

  2. A Clustering Protocol for Wireless Sensor Networks Based on Energy Potential Field

    Directory of Open Access Journals (Sweden)

    Zuo Chen

    2013-01-01

    Full Text Available It is the core issue of researching that how to prolong the lifetime of wireless sensor network. The purpose of this paper is to illustrate a clustering protocol LEACH-PF, which is a multihop routing algorithm with energy potential field of divided clusters. In LEACH-PF, the network is divided into a number of subnetworks and each subnetwork has a cluster head. These clusters construct an intercluster routing tree according to the potential difference of different equipotential fields. The other member nodes of the subnetworks communicate with their cluster head directly, so as to complete regional coverage. The results of simulation show that LEACH-PF can reduce energy consumption of the network effectively and prolong the network lifetime.

  3. TCP-M: Multiflow Transmission Control Protocol for Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Recent research has indicated that transmission control protocol (TCP in its base form does not perform well in an ad hoc environment. The main reason identified for this behavior involves the ad hoc network dynamics. By nature, an ad hoc network does not support any form of quality of service. The reduction in congestion window size during packet drops, a property of the TCP used to ensure guaranteed delivery, further deteriorates the overall performance. While other researchers have proposed modifying congestion window properties to improve TCP performance in an ad hoc environment, the authors of this paper propose using multiple TCP flows per connection. The proposed protocol reduces the influence of packet drops that occurred in any single path on the overall system performance. The analysis carried out by the authors indicates a significant improvement in overall performance.

  4. Efficient MAC Protocols for Wireless Sensor Networks Endowed with Directive Antennas: A Cross-Layer Solution

    Directory of Open Access Journals (Sweden)

    Manes Gianfranco

    2007-01-01

    Full Text Available This paper deals with a novel MAC layer protocol, namely, directive synchronous transmission asynchronous reception (D-STAR able to space-time synchronize a wireless sensor network (WSN. To this end, D-STAR integrates directional antennas within the communications framework, while taking into account both sleep/active states, according to a cross-layer design. After characterizing the D-STAR protocol in terms of functional characteristics, the related performance is presented, in terms of network lifetime gain, setup latency, and collision probability. It has shown a remarkable gain in terms of energy consumption reduction with respect to the basic approach endowed with omnidirectional antennas, without increasing the signaling overhead nor affecting the setup latency.

  5. A Group Neighborhood Average Clock Synchronization Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Lin, Lin; Ma, Shiwei; Ma, Maode

    2014-01-01

    Clock synchronization is a very important issue for the applications of wireless sensor networks. The sensors need to keep a strict clock so that users can know exactly what happens in the monitoring area at the same time. This paper proposes a novel internal distributed clock synchronization solution using group neighborhood average. Each sensor node collects the offset and skew rate of the neighbors. Group averaging of offset and skew rate value are calculated instead of conventional point-to-point averaging method. The sensor node then returns compensated value back to the neighbors. The propagation delay is considered and compensated. The analytical analysis of offset and skew compensation is presented. Simulation results validate the effectiveness of the protocol and reveal that the protocol allows sensor networks to quickly establish a consensus clock and maintain a small deviation from the consensus clock. PMID:25120163

  6. BTP: a Block Transfer Protocol for Delay Tolerant Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Biagioni, Edoardo S.

    2010-01-01

    communicate to senders how many packets they are prepared to accept, providing a flow control mechanism to exert back-pressure on the senders. BTP has been evaluated on a real sensor node platform, as well as in simulation.  BTP reduces the average time to transfer blocks of $60$ packets, each 41 bytes long......Wireless sensor networks that are energy-constrained must transmit and receive data as efficiently as possible.  If the transmission is delay tolerant, transferring blocks of accumulated data can be more efficient than transferring each sensed measurement as soon as it is available.  This paper...... proposes a Block Transfer Protocol (BTP) designed for efficient and reliable transmission in wireless sensor networks.  BTP reduces the time it takes to reliably transfer a block of packets compared to conventional link layer protocols, by piggybacking in data packets information about the transfer...

  7. MAC Protocol for Data Gathering in Wireless Sensor Networks with the Aid of Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    VLADUTA, A.-V.

    2016-05-01

    Full Text Available Data gathering in wireless sensor networks by employing unmanned aerial vehicles has been a subject of real interest in the recent years. While drones are seen as an efficient method of data gathering in almost any environment, wireless sensor networks are the key elements for generating data because they have low dimensions, improved flexibility, decreased power consumption and costs. This paper addresses the communication at the Medium Access Control (MAC layer between static deployed sensors and a moving drone whose unique role is to collect data from all sensors on its path. The most important part of the proposed protocol consists of prioritizing the sensors in such a manner that each of them has a fair chance to communicate with the drone. Simulations are performed in NS-2 and results demonstrate the capabilities of the proposed protocol.

  8. Design and Research of a New secure Authentication Protocol in GSM networks

    Directory of Open Access Journals (Sweden)

    Qi Ai-qin

    2016-01-01

    Full Text Available As the first line of defense in the security application system, Authentication is an important security service. Its typical scheme is challenge/response mechanism and this scheme which is simple-structured and easy to realize has been used worldwide. But these protocols have many following problems In the GSM networks such as the leakage of user indentity privacy, no security protection between home registers and foreign registers and the vicious intruders’ information stealing and so on. This paper presents an authentication protocol in GSM networks based on maths operation and modular square root technique . The analysis of the security and performance has also been done. The results show that it is more robust and secure compared to the previous agreements.

  9. Efficient MAC Protocols for Wireless Sensor Networks Endowed with Directive Antennas: A Cross-Layer Solution

    Directory of Open Access Journals (Sweden)

    Gianfranco Manes

    2007-07-01

    Full Text Available This paper deals with a novel MAC layer protocol, namely, directive synchronous transmission asynchronous reception (D-STAR able to space-time synchronize a wireless sensor network (WSN. To this end, D-STAR integrates directional antennas within the communications framework, while taking into account both sleep/active states, according to a cross-layer design. After characterizing the D-STAR protocol in terms of functional characteristics, the related performance is presented, in terms of network lifetime gain, setup latency, and collision probability. It has shown a remarkable gain in terms of energy consumption reduction with respect to the basic approach endowed with omnidirectional antennas, without increasing the signaling overhead nor affecting the setup latency.

  10. A Cloud-Assisted Random Linear Network Coding Medium Access Control Protocol for Healthcare Applications

    Directory of Open Access Journals (Sweden)

    Elli Kartsakli

    2014-03-01

    Full Text Available Relay sensor networks are often employed in end-to-end healthcare applications to facilitate the information flow between patient worn sensors and the medical data center. Medium access control (MAC protocols, based on random linear network coding (RLNC, are a novel and suitable approach to efficiently handle data dissemination. However, several challenges arise, such as additional delays introduced by the intermediate relay nodes and decoding failures, due to channel errors. In this paper, we tackle these issues by adopting a cloud architecture where the set of relays is connected to a coordinating entity, called cloud manager. We propose a cloud-assisted RLNC-based MAC protocol (CLNC-MAC and develop a mathematical model for the calculation of the key performance metrics, namely the system throughput, the mean completion time for data delivery and the energy efficiency. We show the importance of central coordination in fully exploiting the gain of RLNC under error-prone channels.

  11. Clinical and regulatory protocols for the management of impaired vision in the public health care network

    Directory of Open Access Journals (Sweden)

    Jayter Silva Paula

    2011-06-01

    Full Text Available PURPOSE: To describe the procedures used in developing Clinical and Regulatory Protocols for primary care teams to use in the management of the most common scenarios of impaired vision in Southern Brazil. METHODS: A retrospective review of 1.333 referral forms from all primary care practitioners was performed in Ribeirão Preto city, during a 30-day period. The major ophthalmic diagnostic categories were evaluated from those referrals forms. The Clinical and Regulatory Protocols development process was held afterwards and involved scientific cooperation between a university and the health care system, in the form of workshops attended by primary care practitioners and regulatory system team members composed of health care administrators, ophthalmologists, and professors of ophthalmology and social medicine. RESULTS: The management of impaired vision was chosen as the theme, since it accounted for 43.6% of the ophthalmology-related referrals from primary care providers of Ribeirão Preto. The Clinical and Regulatory Protocols developed involve distinctive diagnostic and therapeutic interventions that can be performed at the primary care level and in different health care settings. The most relevant clinical and regulatory interventions were expressed as algorithms in order to facilitate the use of the Clinical and Regulatory Protocols by health care practitioners. CONCLUSIONS: These Clinical and Regulatory Protocols could represent a useful tool for health systems with universal access, as well as for health care networks based on primary care and for regulatory system teams. Implementation of these Clinical and Regulatory Protocols can minimize the disparity between the needs of patients with impaired vision and the treatment modalities offered, resulting in a more cooperative health care network.

  12. A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Khalid

    2017-01-01

    Full Text Available Underwater wireless sensor networks are a newly emerging wireless technology in which small size sensors with limited energy and limited memory and bandwidth are deployed in deep sea water and various monitoring operations like tactical surveillance, environmental monitoring, and data collection are performed through these tiny sensors. Underwater wireless sensor networks are used for the exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance systems, and unmanned underwater vehicles. Sensor nodes consist of a small memory, a central processing unit, and an antenna. Underwater networks are much different from terrestrial sensor networks as radio waves cannot be used in underwater wireless sensor networks. Acoustic channels are used for communication in deep sea water. Acoustic signals have many limitations, such as limited bandwidth, higher end-to-end delay, network path loss, higher propagation delay, and dynamic topology. Usually, these limitations result in higher energy consumption with a smaller number of packets delivered. The main aim nowadays is to operate sensor nodes having a smaller battery for a longer time in the network. This survey has discussed the state-of-the-art localization based and localization-free routing protocols. Routing associated issues in the area of underwater wireless sensor networks have also been discussed.

  13. OTN Transport of Baseband Radio Serial Protocols in C-RAN Architecture for Mobile Network Applications

    DEFF Research Database (Denmark)

    Checko, Aleksandra; Kardaras, Georgios; Lanzani, Christian Fabio Alessandro

    This white paper presents a proof of concept implementation of digital baseband radio data transport over Optical Transport Network (OTN) compliant to 3GPP Long Term Evolution – Advanced (LTE-A) standard enabling Cloud Radio Access Network (C-RAN) architecture. The transport between the baseband...... module and a remote radio module is compliant to Common Public Radio Interface (CPRI) and to the OBSAI reference point 3 - 01 (RP3-01) interface protocols, respectively. The purpose is to demonstrate that data integrity and clocking performance at the radio node still meets the strict standard...

  14. Water quality monitoring protocol for wadeable streams and rivers in the Northern Great Plains Network

    Science.gov (United States)

    Marcia H. Wilson,; Rowe, Barbara L.; Robert A. Gitzen,; Stephen K. Wilson,; Kara J. Paintner-Green,

    2014-01-01

    Preserving the national parks unimpaired for the enjoyment of future generations is a fundamental purpose of the National Park Service (NPS). To address growing concerns regarding the overall physical, chemical, and biological elements and processes of park ecosystems, the NPS implemented science-based management through “Vital Signs” monitoring in 270 national parks (NPS 2007). The Northern Great Plains Network (NGPN) is among the 32 National Park Service Networks participating in this monitoring effort. The NGPN will develop protocols over the next several years to determine the overall health or condition of resources within 13 parks located in Nebraska, North Dakota, South Dakota, and Wyoming.

  15. RELIABLE DYNAMIC SOURCE ROUTING PROTOCOL (RDSRP FOR ENERGY HARVESTING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    B. Narasimhan

    2015-03-01

    Full Text Available Wireless sensor networks (WSNs carry noteworthy pros over traditional communication. Though, unkind and composite environments fake great challenges in the reliability of WSN communications. It is more vital to develop a reliable unipath dynamic source routing protocol (RDSRPl for WSN to provide better quality of service (QoS in energy harvesting wireless sensor networks (EH-WSN. This paper proposes a dynamic source routing approach for attaining the most reliable route in EH-WSNs. Performance evaluation is carried out using NS-2 and throughput and packet delivery ratio are chosen as the metrics.

  16. Optimizing the ASC WAN: evaluating network performance tools for comparing transport protocols.

    Energy Technology Data Exchange (ETDEWEB)

    Lydick, Christopher L.

    2007-07-01

    The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is a high delay-bandwidth network connection between US Department of Energy National Laboratories, is constantly being examined and evaluated for efficiency. One of the current transport-layer protocols which is used, TCP, was developed for traffic demands which are different from that on the ASC WAN. The Stream Control Transport Protocol (SCTP), on the other hand, has shown characteristics which make it more appealing to networks such as these. Most important, before considering a replacement for TCP on any network, a testing tool that performs well against certain criteria needs to be found. In order to try to find such a tool, two popular networking tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested. These tools implement both TCP and SCTP and were evaluated using four metrics: (1) How effectively can the tool reach a throughput near the bandwidth? (2) How much of the CPU does the tool utilize during operation? (3) Is the tool freely and widely available? And, (4) Is the tool actively developed? Following the analysis of those tools, this paper goes further into explaining some recommendations and ideas for future work.

  17. Multihopping Multilevel Clustering Heterogeneity-Sensitive Optimized Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Aslam

    2017-01-01

    Full Text Available Effective utilization of energy resources in Wireless Sensor Networks (WSNs has become challenging under uncertain distributed cluster-formation and single-hop intercluster communication capabilities. So, sensor nodes are forced to operate at expensive full rate transmission power level continuously during whole network operation. These challenging network environments experience unwanted phenomena of drastic energy consumption and packet drop. In this paper, we propose an adaptive immune Multihopping Multilevel Clustering (MHMLC protocol that executes a Hybrid Clustering Algorithm (HCA to perform optimal centralized selection of Cluster-Heads (CHs within radius of centrally located Base Station (BS and distributed CHs selection in the rest of network area. HCA of MHMLC also produces optimal intermediate CHs for intercluster multihop communications that develop heterogeneity-aware economical links. This hybrid cluster-formation facilitates the sensors to function at short range transmission power level that enhances link quality and avoids packet drop. The simulation environments produce fair comparison among proposed MHMLC and existing state-of-the-art routing protocols. Experimental results give significant evidence of better performance of the proposed model in terms of network lifetime, stability period, and data delivery ratio.

  18. Receiver-Based Ad Hoc On Demand Multipath Routing Protocol for Mobile Ad Hoc Networks.

    Directory of Open Access Journals (Sweden)

    Abdulaziz Al-Nahari

    Full Text Available Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV, which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV.

  19. Traffic Adaptive Synchronized Cluster Based MAC Protocol for Cognitive Radio Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Sultana Sahelee

    2017-01-01

    Full Text Available In wireless communication, Cognitive Radio Network (CRN is the contemporary research area to improve efficiency and spectrum utilization. It is structured with both licensed users and unlicensed users. In CRN, unlicensed users also called Cognitive Radio (CR users are permitted to utilize the free/idle of licensed channels without harmful interference to licensed users. However, accessing idle channels is the big challenging issue due to licensed users’ activities. A large number of cluster based MAC protocol have been proposed to solve this issue. In this paper, we have come up with a Traffic Adaptive Synchronized Cluster Based MAC Protocol for Cognitive Radio Ad Hoc Network, with the target of creating cluster structure more vigorous to the licensed users’ channel re-occupancy actions, maximize throughput, and minimize switching delay, so that CR users be able to use the idle spectrum more efficiently. In our protocol, clusters are formed according to Cluster Identification Channel (CIC and inter-communication is completed without gateway nodes. Finally, we have analysed and implemented our protocol through simulation and it provides better performance in terms of different performance metrics.

  20. CROSS LAYERED HYBRID TRANSPORT LAYER PROTOCOL APPROACH TO ENHANCE NETWORK UTILISATION FOR VIDEO TRAFFIC

    Directory of Open Access Journals (Sweden)

    Matilda.S

    2010-03-01

    Full Text Available Video data transfer is the major traffic in today’s Internet. With the emerging need for anytime anywhere communication, applications transmitting video is gaining momentum. Real Time Protocol is the primary standard for transfer of video data, as; it requires timely delivery and can tolerate loss of packets. Streaming is the method used for delivering video content from the source server to the user. But this has many drawbacks: a It sends only the amount of data equivalent to the streaming encoded rate to the client irrespective of the available bandwidth in the path. Hence the links are underutilized; b It utilizes the link for the entire period of transfer and hence the link is not available to service other new clients. Thus as the number of clients increases, the network performance decreases. In this work, the advantages and disadvantages of the combination of different protocols in the application layer and transport layer are analyzed. The significant characteristics of each of these protocols are utilized and a combination of protocols for improving the network performance is arrived at, while retaining the QoS of video transmission.

  1. A Fairness Oriented Neighbor-Channel-Aware MAC Protocol for Airborne Sensor Networks

    Science.gov (United States)

    Gao, Xiaolin; Yan, Jian; Lu, Jianhua

    2017-01-01

    In airborne sensor networks (ASNs), the media access control (MAC) protocol faces a serious unfairness problem due to the traditional protection mechanism of air-to-air communications among aircraft. Actually, by using the binary exponential back-off algorithm at high traffic loads to minimize collisions among users, the latest successful node can always benefit from this kind of MAC to obtain channel resources. Moreover, when taking the existence of the hidden nodes in ASNs into account, the inaccurate traffic load information will further aggravate the system’s unfairness. In this paper, a neighbor-channel-aware (NCA) protocol is proposed to improve the fairness of MAC protocol in ASNs. In the proposal, the NCA frame is firstly added and exchanged between neighbor nodes periodically, which helps to resolve the inaccurate traffic load information, so as to avoid reducing the probability of successful message transmission. Then a traffic-loading based back-off algorithm is involved to make the neighbor nodes cooperatively adjust the inter-frame space (IFS) interval to further reduce the unfairness. The simulation results show that, the proposed MAC protocol can guarantee the satisfied fairness, simultaneously avoiding heavy network overloads to protect key messages’ successful transmissions in ASNs. PMID:28509863

  2. A simulation study of TaMAC protocol using network simulator 2.

    Science.gov (United States)

    Ullah, Sana; Kwak, Kyung Sup

    2012-10-01

    A Wireless Body Area Network (WBAN) is expected to play a significant role in future healthcare system. It interconnects low-cost and intelligent sensor nodes in, on, or around a human body to serve a variety of medical applications. It can be used to diagnose and treat patients with chronic diseases such as hypertensions, diabetes, and cardiovascular diseases. The lightweight sensor nodes integrated in WBAN require low-power operation, which can be achieved using different optimization techniques. We introduce a Traffic-adaptive MAC protocol (TaMAC) for WBAN that supports dual wakeup mechanisms for normal, emergency, and on-demand traffic. In this letter, the TaMAC protocol is simulated using a well-known Network Simulator 2 (NS-2). The problem of multiple emergency nodes is solved using both wakeup radio and CSMA/CA protocol. The power consumption, delay, and throughput performance are closely compared with beacon-enabled IEEE 802.15.4 MAC protocol using extensive simulations.

  3. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks.

    Science.gov (United States)

    Saleem, Kashif; Derhab, Abdelouahid; Orgun, Mehmet A; Al-Muhtadi, Jalal; Rodrigues, Joel J P C; Khalil, Mohammed Sayim; Ali Ahmed, Adel

    2016-03-31

    The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs) composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP) involves an artificial immune system (AIS) that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP) that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2) and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks.

  4. A Fairness Oriented Neighbor-Channel-Aware MAC Protocol for Airborne Sensor Networks.

    Science.gov (United States)

    Gao, Xiaolin; Yan, Jian; Lu, Jianhua

    2017-05-16

    In airborne sensor networks (ASNs), the media access control (MAC) protocol faces a serious unfairness problem due to the traditional protection mechanism of air-to-air communications among aircraft. Actually, by using the binary exponential back-off algorithm at high traffic loads to minimize collisions among users, the latest successful node can always benefit from this kind of MAC to obtain channel resources. Moreover, when taking the existence of the hidden nodes in ASNs into account, the inaccurate traffic load information will further aggravate the system's unfairness. In this paper, a neighbor-channel-aware (NCA) protocol is proposed to improve the fairness of MAC protocol in ASNs. In the proposal, the NCA frame is firstly added and exchanged between neighbor nodes periodically, which helps to resolve the inaccurate traffic load information, so as to avoid reducing the probability of successful message transmission. Then a traffic-loading based back-off algorithm is involved to make the neighbor nodes cooperatively adjust the inter-frame space (IFS) interval to further reduce the unfairness. The simulation results show that, the proposed MAC protocol can guarantee the satisfied fairness, simultaneously avoiding heavy network overloads to protect key messages' successful transmissions in ASNs.

  5. Design and Test of the Cross-Format Schema Protocol (XFSP) for Networked Virtual Environments

    Science.gov (United States)

    2003-03-01

    dense, and explicit join is the sparse mode. For interdomain multicasting the solution was BGP (Border Gateway Protocol) which supports the...systems need fast transmission and high-bandwidth capacity. With these acknowledgement, error recovery and congestion control components it is not...Date> <URL>file://c:/xfsp/xfspNPS.pdu</URL> </FileHeader> 86 provide information about network congestion and can be used to automatically tune

  6. A Group Vehicular Mobility Model for Routing Protocol Analysis in Mobile Ad Hoc Network

    OpenAIRE

    Kulkarni, Shrirang Ambaji; Rao, G Raghavendra

    2010-01-01

    Performance of routing protocols in mobile ad-hoc networks is greatly affected by the dynamic nature of nodes, route failures, wireless channels with variable bandwidth and scalability issues. A mobility model imitates the real world movement of mobile nodes and is central component to simulation based studies. In this paper we consider mobility nodes which mimic the vehicular motion of nodes like Manhattan mobility model and City Section mobility model. We also propose a new Group Vehicular ...

  7. Software-Defined Networking Using OpenFlow: Protocols, Applications and Architectural Design Choices

    Directory of Open Access Journals (Sweden)

    Wolfgang Braun

    2014-05-01

    Full Text Available We explain the notion of software-defined networking (SDN, whose southbound interface may be implemented by the OpenFlow protocol. We describe the operation of OpenFlow and summarize the features of specification versions 1.0–1.4. We give an overview of existing SDN-based applications grouped by topic areas. Finally, we point out architectural design choices for SDN using OpenFlow and discuss their performance implications.

  8. Adaptive enhancement of learning protocol in hippocampal cultured networks grown on multielectrode arrays.

    Science.gov (United States)

    Pimashkin, Alexey; Gladkov, Arseniy; Mukhina, Irina; Kazantsev, Victor

    2013-01-01

    Learning in neuronal networks can be investigated using dissociated cultures on multielectrode arrays supplied with appropriate closed-loop stimulation. It was shown in previous studies that weakly respondent neurons on the electrodes can be trained to increase their evoked spiking rate within a predefined time window after the stimulus. Such neurons can be associated with weak synaptic connections in nearby culture network. The stimulation leads to the increase in the connectivity and in the response. However, it was not possible to perform the learning protocol for the neurons on electrodes with relatively strong synaptic inputs and responding at higher rates. We proposed an adaptive closed-loop stimulation protocol capable to achieve learning even for the highly respondent electrodes. It means that the culture network can reorganize appropriately its synaptic connectivity to generate a desired response. We introduced an adaptive reinforcement condition accounting for the response variability in control stimulation. It significantly enhanced the learning protocol to a large number of responding electrodes independently on its base response level. We also found that learning effect preserved after 4-6 h after training.

  9. Region-Based Collision Avoidance Beaconless Geographic Routing Protocol in Wireless Sensor Networks.

    Science.gov (United States)

    Lee, JeongCheol; Park, HoSung; Kang, SeokYoon; Kim, Ki-Il

    2015-06-05

    Due to the lack of dependency on beacon messages for location exchange, the beaconless geographic routing protocol has attracted considerable attention from the research community. However, existing beaconless geographic routing protocols are likely to generate duplicated data packets when multiple winners in the greedy area are selected. Furthermore, these protocols are designed for a uniform sensor field, so they cannot be directly applied to practical irregular sensor fields with partial voids. To prevent the failure of finding a forwarding node and to remove unnecessary duplication, in this paper, we propose a region-based collision avoidance beaconless geographic routing protocol to increase forwarding opportunities for randomly-deployed sensor networks. By employing different contention priorities into the mutually-communicable nodes and the rest of the nodes in the greedy area, every neighbor node in the greedy area can be used for data forwarding without any packet duplication. Moreover, simulation results are given to demonstrate the increased packet delivery ratio and shorten end-to-end delay, rather than well-referred comparative protocols.

  10. MIMO Network Coding-Based PHY/MAC Protocol for Replacement of CSMA/CA in Efficient Two-Way Multihop Relay Networks

    Directory of Open Access Journals (Sweden)

    Tran GiaKhanh

    2010-01-01

    Full Text Available Backbone wireless mesh networks have attracted much of attention due to their wide-range applications. The use of CSMA/CA based MAC protocols in mesh networks, however, leads to an inefficient resource utilization, and to high latency. Several alternative protocols including directional MAC, multichannel MAC only provide marginal improvement. Recently, a cross-layer design employing multiple antenna techniques and network coding called MIMO network coding was proposed. Owing to multiple access interference cancellation ability of MIMO, bi-directional flow multiplexing capability of network coding in combination with an efficient channel access scheme of TDMA/TDD, MIMO two-way relay provides significantly high end-to-end capacity. In this paper, MIMO network coding is considered as an alternative PHY/MAC protocol of CSMA/CA. This paper provides details of the protocol and develops network simulators for performance evaluation. Furthermore, an efficient retransmission scheme for transmission system employing network coding is proposed. The paper shows that MIMO network coding achieves significant network performance improvement with respect to CSMA/CA mesh networks. The proposed retransmission scheme is also shown to be effective in terms of resource usage as well as QoS guarantee.

  11. Software Defined Coded Networking: Benefits of the PlayNCool protocol in wireless mesh networks

    DEFF Research Database (Denmark)

    Di Paola, Carla; Roetter, Daniel Enrique Lucani; Palazzo, Sergio

    2017-01-01

    the quality of each link and even across neighbouring links and using simulations to show that an additional reduction of packet transmission in the order of 40% is possible. Second, to advocate for the use of network coding (NC) jointly with software defined networking (SDN) providing an implementation...

  12. Energy-efficient boarder node medium access control protocol for wireless sensor networks.

    Science.gov (United States)

    Razaque, Abdul; Elleithy, Khaled M

    2014-03-12

    This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC) for wireless sensor networks (WSNs), which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN), which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS), which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM) model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS), which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  13. Energy-Efficient Boarder Node Medium Access Control Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abdul Razaque

    2014-03-01

    Full Text Available This paper introduces the design, implementation, and performance analysis of the scalable and mobility-aware hybrid protocol named boarder node medium access control (BN-MAC for wireless sensor networks (WSNs, which leverages the characteristics of scheduled and contention-based MAC protocols. Like contention-based MAC protocols, BN-MAC achieves high channel utilization, network adaptability under heavy traffic and mobility, and low latency and overhead. Like schedule-based MAC protocols, BN-MAC reduces idle listening time, emissions, and collision handling at low cost at one-hop neighbor nodes and achieves high channel utilization under heavy network loads. BN-MAC is particularly designed for region-wise WSNs. Each region is controlled by a boarder node (BN, which is of paramount importance. The BN coordinates with the remaining nodes within and beyond the region. Unlike other hybrid MAC protocols, BN-MAC incorporates three promising models that further reduce the energy consumption, idle listening time, overhearing, and congestion to improve the throughput and reduce the latency. One of the models used with BN-MAC is automatic active and sleep (AAS, which reduces the ideal listening time. When nodes finish their monitoring process, AAS lets them automatically go into the sleep state to avoid the idle listening state. Another model used in BN-MAC is the intelligent decision-making (IDM model, which helps the nodes sense the nature of the environment. Based on the nature of the environment, the nodes decide whether to use the active or passive mode. This decision power of the nodes further reduces energy consumption because the nodes turn off the radio of the transceiver in the passive mode. The third model is the least-distance smart neighboring search (LDSNS, which determines the shortest efficient path to the one-hop neighbor and also provides cross-layering support to handle the mobility of the nodes. The BN-MAC also incorporates a semi

  14. Fundamental Lifetime Mechanisms in Routing Protocols for Wireless Sensor Networks: A Survey and Open Issues

    Science.gov (United States)

    Eslaminejad, Mohammadreza; Razak, Shukor Abd

    2012-01-01

    Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes' energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues. PMID:23202008

  15. AeroMTP: A fountain code-based multipath transport protocol for airborne networks

    Directory of Open Access Journals (Sweden)

    Li Jie

    2015-08-01

    Full Text Available Airborne networks (ANs are special types of ad hoc networks that can be used to enhance situational awareness, flight coordination and flight efficiency in civil and military aviation. Compared to ground networks, ANs have some unique attributes including high node mobility, frequent topology changes, mechanical and aerodynamic constrains, strict safety requirements and harsh communication environment. Thus, the performance of conventional transmission control protocol (TCP will be dramatically degraded in ANs. Aircraft commonly have two or more heterogeneous network interfaces which offer an opportunity to form multiple communication paths between any two nodes in ANs. To satisfy the communication requirements in ANs, we propose aeronautical multipath transport protocol (AeroMTP for ANs, which effectively utilizes the available bandwidth and diversity provided by heterogeneous wireless paths. AeroMTP uses fountain codes as forward error correction (FEC codes to recover from data loss and deploys a TCP-friendly rate-based congestion control mechanism for each path. Moreover, we design a packet allocation algorithm based on optimization to minimize the delivery time of blocks. The performance of AeroMTP is evaluated through OMNeT++ simulations under a variety of test scenarios. Simulations demonstrate that AeroMTP is of great potential to be applied to ANs.

  16. Fundamental Lifetime Mechanisms in Routing Protocols for Wireless Sensor Networks: A Survey and Open Issues

    Directory of Open Access Journals (Sweden)

    Shukor Abd Razak

    2012-10-01

    Full Text Available Wireless sensor networks basically consist of low cost sensor nodes which collect data from environment and relay them to a sink, where they will be subsequently processed. Since wireless nodes are severely power-constrained, the major concern is how to conserve the nodes’ energy so that network lifetime can be extended significantly. Employing one static sink can rapidly exhaust the energy of sink neighbors. Furthermore, using a non-optimal single path together with a maximum transmission power level may quickly deplete the energy of individual nodes on the route. This all results in unbalanced energy consumption through the sensor field, and hence a negative effect on the network lifetime. In this paper, we present a comprehensive taxonomy of the various mechanisms applied for increasing the network lifetime. These techniques, whether in the routing or cross-layer area, fall within the following types: multi-sink, mobile sink, multi-path, power control and bio-inspired algorithms, depending on the protocol operation. In this taxonomy, special attention has been devoted to the multi-sink, power control and bio-inspired algorithms, which have not yet received much consideration in the literature. Moreover, each class covers a variety of the state-of-the-art protocols, which should provide ideas for potential future works. Finally, we compare these mechanisms and discuss open research issues.

  17. The BRITNeY Suite Animation Tool

    DEFF Research Database (Denmark)

    Westergaard, Michael; Lassen, Kristian Bisgaard

    2006-01-01

    This paper describes the BRITNeY suite, a tool which enables users to create visualizations of formal models. BRITNeY suite is integrated with CPN Tools, and we give an example of how to extend a simple stop-and-wait protocol with a visualization in the form of message sequence charts. We also show...... examples of animations created during industrial projects to give an impression of what is possible with the BRITNeY suite....

  18. Optimising social information by game theory and ant colony method to enhance routing protocol in opportunistic networks

    Directory of Open Access Journals (Sweden)

    Chander Prabha

    2016-09-01

    Full Text Available The data loss and disconnection of nodes are frequent in the opportunistic networks. The social information plays an important role in reducing the data loss because it depends on the connectivity of nodes. The appropriate selection of next hop based on social information is critical for improving the performance of routing in opportunistic networks. The frequent disconnection problem is overcome by optimising the social information with Ant Colony Optimization method which depends on the topology of opportunistic network. The proposed protocol is examined thoroughly via analysis and simulation in order to assess their performance in comparison with other social based routing protocols in opportunistic network under various parameters settings.

  19. SIMULATION AND ANALYSIS OF GREEDY ROUTING PROTOCOL IN VIEW OF ENERGY CONSUMPTION AND NETWORK LIFETIME IN THREE DIMENSIONAL UNDERWATER WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    SHEENA KOHLI

    2017-11-01

    Full Text Available Underwater Wireless Sensor Network (UWSN comprises of a number of miniature sized sensing devices deployed in the sea or ocean, connected by dint of acoustic links to each other. The sensors trap the ambient conditions and transmit the data from one end to another. For transmission of data in any medium, routing protocols play a crucial role. Moreover, being battery limited, an unavoidable parameter to be considered in operation and analysis of protocols is the network energy and the network lifetime. The paper discusses the greedy routing protocol for underwater wireless sensor networks. The simulation of this routing protocol also takes into consideration the characteristics of acoustic communication like attenuation, transmission loss, signal to noise ratio, noise, propagation delay. The results from these observations may be used to construct an accurate underwater communication model.

  20. TR-MAC: an energy-efficient MAC protocol exploiting transmitted reference modulation for wireless sensor networks

    NARCIS (Netherlands)

    Morshed, S.; Heijenk, Geert

    2014-01-01

    The medium access control (MAC) protocol determines the energy consumption of a wireless sensor node by specifying the listening, transmitting or sleeping time. Therefore MAC protocols play an important role in minimizing the overall energy consumption in a typical wireless sensor network (WSN).

  1. A secure 3-way routing protocols for intermittently connected mobile ad hoc networks.

    Science.gov (United States)

    Sekaran, Ramesh; Parasuraman, Ganesh Kumar

    2014-01-01

    The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

  2. A Secure 3-Way Routing Protocols for Intermittently Connected Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Ramesh Sekaran

    2014-01-01

    Full Text Available The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET. The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

  3. ENERGY EFFICIENT ROUTING PROTOCOLS FOR WIRELESS AD HOC NETWORKS – A SURVEY

    Directory of Open Access Journals (Sweden)

    K. Sankar

    2012-06-01

    Full Text Available Reducing energy consumption, primarily with the goal of extending the lifetime of battery-powered devices, has emerged as a fundamental challenge in wireless communication. The performance of the medium access control (MAC scheme not only has a fairly significant end-result on the behaviour of the routing approach employed, but also on the energy consumption of the wireless network interface card (NIC. We investigate the inadequacies of the MAC schemes designed for ad hoc wireless networks in the context of power awareness herein. The topology changes due to uncontrollable factors such as node mobility, weather, interference, noise, as well as on controllable parameters such as transmission power and antenna direction results in significant amount of energy loss. Controlling rapid topology changes by minimizing the maximum transmission power used in ad hoc wireless networks, while still maintaining networks connectivity can prolong battery life and hence network lifetime considerably. In addition, we systematically explore the potential energy consumption pitfalls of non–power-based and power based routing schemes. We suggest a thorough energy-based performance survey of energy aware routing protocols for wireless mobile ad-hoc networks. We also present the statistical performance metrics measured by our simulations.

  4. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach.

    Science.gov (United States)

    Julie, E Golden; Selvi, S Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  5. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Directory of Open Access Journals (Sweden)

    E. Golden Julie

    2016-01-01

    Full Text Available Wireless sensor networks (WSNs consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.

  6. Development of Energy Efficient Clustering Protocol in Wireless Sensor Network Using Neuro-Fuzzy Approach

    Science.gov (United States)

    Julie, E. Golden; Selvi, S. Tamil

    2016-01-01

    Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269

  7. An Energy-Efficient and Robust Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Kishor Singh

    2017-09-01

    Full Text Available Routing in cognitive radio ad hoc networks (CRAHNs is a daunting task owing to dynamic topology, intermittent connectivity, spectrum heterogeneity, and energy constraints. Other prominent aspects such as channel stability, path reliability, and route discovery frequency should also be exploited. Several routing protocols have been proposed for CRAHNs in the literature. By stressing on one of the aspects more than any other, however, they do not satisfy all requirements of throughput, energy efficiency, and robustness. In this paper, we propose an energy-efficient and robust multipath routing (ERMR protocol for CRAHNs by considering all prominent aspects including residual energy and channel stability in design. Even when the current routing path fails, the alternative routing path is immediately utilized. In establishing primary and alternative routing paths, both residual energy and channel stability are exploited simultaneously. Our simulation study shows that the proposed ERMR outperforms the conventional protocol in terms of network throughput, packet delivery ratio, energy consumption, and end-to-end delay.

  8. 1-RAAP: An Efficient 1-Round Anonymous Authentication Protocol for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Jingwei Liu

    2016-05-01

    Full Text Available Thanks to the rapid technological convergence of wireless communications, medical sensors and cloud computing, Wireless Body Area Networks (WBANs have emerged as a novel networking paradigm enabling ubiquitous Internet services, allowing people to receive medical care, monitor health status in real-time, analyze sports data and even enjoy online entertainment remotely. However, because of the mobility and openness of wireless communications, WBANs are inevitably exposed to a large set of potential attacks, significantly undermining their utility and impeding their widespread deployment. To prevent attackers from threatening legitimate WBAN users or abusing WBAN services, an efficient and secure authentication protocol termed 1-Round Anonymous Authentication Protocol (1-RAAP is proposed in this paper. In particular, 1-RAAP preserves anonymity, mutual authentication, non-repudiation and some other desirable security properties, while only requiring users to perform several low cost computational operations. More importantly, 1-RAAP is provably secure thanks to its design basis, which is resistant to the anonymous in the random oracle model. To validate the computational efficiency of 1-RAAP, a set of comprehensive comparative studies between 1-RAAP and other authentication protocols is conducted, and the results clearly show that 1-RAAP achieves the best performance in terms of computational overhead.

  9. An Efficient Distributed Coverage Hole Detection Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2016-03-01

    Full Text Available In wireless sensor networks (WSNs, certain areas of the monitoring region may have coverage holes and serious coverage overlapping due to the random deployment of sensors. The failure of electronic components, software bugs and destructive agents could lead to the random death of the nodes. Sensors may be dead due to exhaustion of battery power, which may cause the network to be uncovered and disconnected. Based on the deployment nature of the nodes in remote or hostile environments, such as a battlefield or desert, it is impossible to recharge or replace the battery. However, the data gathered by the sensors are highly essential for the analysis, and therefore, the collaborative detection of coverage holes has strategic importance in WSNs. In this paper, distributed coverage hole detection algorithms are designed, where nodes can collaborate to detect the coverage holes autonomously. The performance evaluation of our protocols suggests that our protocols outperform in terms of hole detection time, limited power consumption and control packet overhead to detect holes as compared to other similar protocols.

  10. A Schedule-based Multi-channel MAC Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ilyoung Chong

    2010-10-01

    Full Text Available Due to the half-duplex property of the sensor radio and the broadcast nature of wireless medium, limited bandwidth remains a pressing issue for wireless sensor networks (WSNs. The design of multi-channel MAC protocols has attracted the interest of many researchers as a cost effective solution to meet the higher bandwidth demand for the limited bandwidth in WSN. In this paper, we present a scheduled-based multi-channel MAC protocol to improve network performance. In our protocol, each receiving node selects (schedules some timeslot(s, in which it may receive data from the intending sender(s. The timeslot selection is done in a conflict free manner, where a node avoids the slots that are already selected by others in its interference range. To minimize the conflicts during timeslot selection, we propose a unique solution by splitting the neighboring nodes into different groups, where nodes of a group may select the slots allocated to that group only. We demonstrate the effectiveness of our approach thorough simulations in terms of performance parameters such as aggregate throughput, packet delivery ratio, end-to-end delay, and energy consumption.

  11. An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Caixia Song

    2017-10-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs employ multichannel to provide a variety of safety and non-safety (transport efficiency and infotainment applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. Different types of applications require different levels Quality-of-Service (QoS support. Recently, transport efficiency and infotainment applications (e.g., electronic map download and Internet access have received more and more attention, and this kind of applications is expected to become a big market driver in a near future. In this paper, we propose an Efficient and QoS supported Multichannel Medium Access Control (EQM-MAC protocol for VANETs in a highway environment. The EQM-MAC protocol utilizes the service channel resources for non-safety message transmissions during the whole synchronization interval, and it dynamically adjusts minimum contention window size for different non-safety services according to the traffic conditions. Theoretical model analysis and extensive simulation results show that the EQM-MAC protocol can support QoS services, while ensuring the high saturation throughput and low transmission delay for non-safety applications.

  12. An Enhanced Reservation-Based MAC Protocol for IEEE 802.15.4 Networks

    Science.gov (United States)

    Afonso, José A.; Silva, Helder D.; Macedo, Pedro; Rocha, Luis A.

    2011-01-01

    The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling standard for wireless sensor networks. In order to support applications requiring dedicated bandwidth or bounded delay, it provides a reservation-based scheme named Guaranteed Time Slot (GTS). However, the GTS scheme presents some drawbacks, such as inefficient bandwidth utilization and support to a maximum of only seven devices. This paper presents eLPRT (enhanced Low Power Real Time), a new reservation-based MAC protocol that introduces several performance enhancing features in comparison to the GTS scheme. This MAC protocol builds on top of LPRT (Low Power Real Time) and includes various mechanisms designed to increase data transmission reliability against channel errors, improve bandwidth utilization and increase the number of supported devices. A motion capture system based on inertial and magnetic sensors has been used to validate the protocol. The effectiveness of the performance enhancements introduced by each of the new features is demonstrated through the provision of both simulation and experimental results. PMID:22163826

  13. An Enhanced Reservation-Based MAC Protocol for IEEE 802.15.4 Networks

    Directory of Open Access Journals (Sweden)

    Luis A. Rocha

    2011-03-01

    Full Text Available The IEEE 802.15.4 Medium Access Control (MAC protocol is an enabling standard for wireless sensor networks. In order to support applications requiring dedicated bandwidth or bounded delay, it provides a reservation-based scheme named Guaranteed Time Slot (GTS. However, the GTS scheme presents some drawbacks, such as inefficient bandwidth utilization and support to a maximum of only seven devices. This paper presents eLPRT (enhanced Low Power Real Time, a new reservation-based MAC protocol that introduces several performance enhancing features in comparison to the GTS scheme. This MAC protocol builds on top of LPRT (Low Power Real Time and includes various mechanisms designed to increase data transmission reliability against channel errors, improve bandwidth utilization and increase the number of supported devices. A motion capture system based on inertial and magnetic sensors has been used to validate the protocol. The effectiveness of the performance enhancements introduced by each of the new features is demonstrated through the provision of both simulation and experimental results.

  14. Advertisement-Based Energy Efficient Medium Access Protocols for Wireless Sensor Networks

    Science.gov (United States)

    Ray, Surjya Sarathi

    One of the main challenges that prevents the large-scale deployment of Wireless Sensor Networks (WSNs) is providing the applications with the required quality of service (QoS) given the sensor nodes' limited energy supplies. WSNs are an important tool in supporting applications ranging from environmental and industrial monitoring, to battlefield surveillance and traffic control, among others. Most of these applications require sensors to function for long periods of time without human intervention and without battery replacement. Therefore, energy conservation is one of the main goals for protocols for WSNs. Energy conservation can be performed in different layers of the protocol stack. In particular, as the medium access control (MAC) layer can access and control the radio directly, large energy savings is possible through intelligent MAC protocol design. To maximize the network lifetime, MAC protocols for WSNs aim to minimize idle listening of the sensor nodes, packet collisions, and overhearing. Several approaches such as duty cycling and low power listening have been proposed at the MAC layer to achieve energy efficiency. In this thesis, I explore the possibility of further energy savings through the advertisement of data packets in the MAC layer. In the first part of my research, I propose Advertisement-MAC or ADV-MAC, a new MAC protocol for WSNs that utilizes the concept of advertising for data contention. This technique lets nodes listen dynamically to any desired transmission and sleep during transmissions not of interest. This minimizes the energy lost in idle listening and overhearing while maintaining an adaptive duty cycle to handle variable loads. Additionally, ADV-MAC enables energy efficient MAC-level multicasting. An analytical model for the packet delivery ratio and the energy consumption of the protocol is also proposed. The analytical model is verified with simulations and is used to choose an optimal value of the advertisement period

  15. Cognitive LF-Ant: A Novel Protocol for Healthcare Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marcelo Alencar

    2012-08-01

    Full Text Available In this paper, the authors present the Cognitive LF-Ant protocol for emergency reporting in healthcare wireless sensor networks. The protocol is inspired by the natural behaviour of ants and a cognitive component provides the capabilities to dynamically allocate resources, in accordance with the emergency degree of each patient. The intra-cluster emergency reporting is inspired by the different capabilities of leg-manipulated ants. The inter-cluster reporting is aided by the cooperative modulation diversity with spectrum sensing, which can detect new emergency reporting requests and forward them. Simulations results show the decrease of average delay time as the probability of opportunistic access increases, which privileges the emergency reporting related to the patients with higher priority of resources’ usage. Furthermore, the packet loss rate is decreased by the use of cooperative modulation diversity with spectrum sensing.

  16. Secure publish-subscribe protocols for heterogeneous medical wireless body area networks.

    Science.gov (United States)

    Picazo-Sanchez, Pablo; Tapiador, Juan E; Peris-Lopez, Pedro; Suarez-Tangil, Guillermo

    2014-11-28

    Security and privacy issues in medical wireless body area networks (WBANs) constitute a major unsolved concern because of the challenges posed by the scarcity of resources in WBAN devices and the usability restrictions imposed by the healthcare domain. In this paper, we describe a WBAN architecture based on the well-known publish-subscribe paradigm. We present two protocols for publishing data and sending commands to a sensor that guarantee confidentiality and fine-grained access control. Both protocols are based on a recently proposed ciphertext policy attribute-based encryption (CP-ABE) scheme that is lightweight enough to be embedded into wearable sensors. We show how sensors can implement lattice-based access control (LBAC) policies using this scheme, which are highly appropriate for the eHealth domain. We report experimental results with a prototype implementation demonstrating the suitability of our proposed solution.

  17. Alert: An Adaptive Low-Latency Event-Driven MAC Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Vinod Namboodiri

    2011-01-01

    Full Text Available Collection of rare but delay-critical messages from a group of sensor nodes is a key process in many wireless sensor network applications. This is particularly important for security-related applications like intrusion detection and fire alarm systems. An event sensed by multiple sensor nodes in the network can trigger many messages to be sent simultaneously. We present Alert, a MAC protocol for collecting event-triggered urgent messages from a group of sensor nodes with minimum latency and without requiring any cooperation or prescheduling among the senders or between senders and receiver during protocol execution. Alert is designed to handle multiple simultaneous messages from different nodes efficiently and reliably, minimizing the overall delay to collect all messages along with the delay to get the first message. Moreover, the ability of the network to handle a large number of simultaneous messages does not come at the cost of excessive delays when only a few messages need to be handled. We analyze Alert and evaluate its feasibility and performance with an implementation on commodity hardware. We further compare Alert with existing approaches through simulations and show the performance improvement possible through Alert.

  18. An Access Control Protocol for Wireless Sensor Network Using Double Trapdoor Chameleon Hash Function

    Directory of Open Access Journals (Sweden)

    Tejeshwari Thakur

    2016-01-01

    Full Text Available Wireless sensor network (WSN, a type of communication system, is normally deployed into the unattended environment where the intended user can get access to the network. The sensor nodes collect data from this environment. If the data are valuable and confidential, then security measures are needed to protect them from the unauthorized access. This situation requires an access control protocol (ACP in the design of sensor network because of sensor nodes which are vulnerable to various malicious attacks during the authentication and key establishment and the new node addition phase. In this paper, we propose a secured ACP for such WSN. This protocol is based on Elliptic Curve Discrete Log Problem (ECDLP and double trapdoor chameleon hash function which secures the WSN from malicious attacks such as node masquerading attack, replay attack, man-in-the-middle attack, and forgery attacks. Proposed ACP has a special feature known as session key security. Also, the proposed ACP is more efficient as it requires only one modular multiplication during the initialization phase.

  19. Low Duty-Cycling MAC Protocol for Low Data-Rate Medical Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Chongqing Zhang

    2017-05-01

    Full Text Available Wireless body area networks (WBANs are severely energy constrained, and how to improve the energy efficiency so as to prolong the network lifetime as long as possible is one of the most important goals of WBAN research. Low data-rate WBANs are promising to cut down the energy consumption and extend the network lifetime. Considering the characteristics and demands of low data-rate WBANs, a low duty-cycling medium access control (MAC protocol is specially designed for this kind of WBAN in this paper. Longer superframes are exploited to cut down the energy consumed on the transmissions and receptions of redundant beacon frames. Insertion time slots are embedded into the inactive part of a superframe to deliver the frames and satisfy the quality of service (QoS requirements. The number of the data subsections in an insertion time slot can be adaptively adjusted so as to accommodate low data-rate WBANs with different traffic. Simulation results show that the proposed MAC protocol performs well under the condition of low data-rate monitoring traffic.

  20. Cost-Effective Encryption-Based Autonomous Routing Protocol for Efficient and Secure Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kashif Saleem

    2016-03-01

    Full Text Available The deployment of intelligent remote surveillance systems depends on wireless sensor networks (WSNs composed of various miniature resource-constrained wireless sensor nodes. The development of routing protocols for WSNs is a major challenge because of their severe resource constraints, ad hoc topology and dynamic nature. Among those proposed routing protocols, the biology-inspired self-organized secure autonomous routing protocol (BIOSARP involves an artificial immune system (AIS that requires a certain amount of time to build up knowledge of neighboring nodes. The AIS algorithm uses this knowledge to distinguish between self and non-self neighboring nodes. The knowledge-building phase is a critical period in the WSN lifespan and requires active security measures. This paper proposes an enhanced BIOSARP (E-BIOSARP that incorporates a random key encryption mechanism in a cost-effective manner to provide active security measures in WSNs. A detailed description of E-BIOSARP is presented, followed by an extensive security and performance analysis to demonstrate its efficiency. A scenario with E-BIOSARP is implemented in network simulator 2 (ns-2 and is populated with malicious nodes for analysis. Furthermore, E-BIOSARP is compared with state-of-the-art secure routing protocols in terms of processing time, delivery ratio, energy consumption, and packet overhead. The findings show that the proposed mechanism can efficiently protect WSNs from selective forwarding, brute-force or exhaustive key search, spoofing, eavesdropping, replaying or altering of routing information, cloning, acknowledgment spoofing, HELLO flood attacks, and Sybil attacks.

  1. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  2. A simplified protocol for differentiation of electrophysiologically mature neuronal networks from human induced pluripotent stem cells.

    Science.gov (United States)

    Gunhanlar, N; Shpak, G; van der Kroeg, M; Gouty-Colomer, L A; Munshi, S T; Lendemeijer, B; Ghazvini, M; Dupont, C; Hoogendijk, W J G; Gribnau, J; de Vrij, F M S; Kushner, S A

    2017-04-18

    Progress in elucidating the molecular and cellular pathophysiology of neuropsychiatric disorders has been hindered by the limited availability of living human brain tissue. The emergence of induced pluripotent stem cells (iPSCs) has offered a unique alternative strategy using patient-derived functional neuronal networks. However, methods for reliably generating iPSC-derived neurons with mature electrophysiological characteristics have been difficult to develop. Here, we report a simplified differentiation protocol that yields electrophysiologically mature iPSC-derived cortical lineage neuronal networks without the need for astrocyte co-culture or specialized media. This protocol generates a consistent 60:40 ratio of neurons and astrocytes that arise from a common forebrain neural progenitor. Whole-cell patch-clamp recordings of 114 neurons derived from three independent iPSC lines confirmed their electrophysiological maturity, including resting membrane potential (-58.2±1.0 mV), capacitance (49.1±2.9 pF), action potential (AP) threshold (-50.9±0.5 mV) and AP amplitude (66.5±1.3 mV). Nearly 100% of neurons were capable of firing APs, of which 79% had sustained trains of mature APs with minimal accommodation (peak AP frequency: 11.9±0.5 Hz) and 74% exhibited spontaneous synaptic activity (amplitude, 16.03±0.82 pA; frequency, 1.09±0.17 Hz). We expect this protocol to be of broad applicability for implementing iPSC-based neuronal network models of neuropsychiatric disorders.Molecular Psychiatry advance online publication, 18 April 2017; doi:10.1038/mp.2017.56.

  3. Transparent settlement model between mobile network operator and mobile voice over Internet protocol operator

    Directory of Open Access Journals (Sweden)

    Luzango Pangani Mfupe

    2014-12-01

    Full Text Available Advances in technology have enabled network-less mobile voice over internet protocol operator (MVoIPO to offer data services (i.e. voice, text and video to mobile network operator's (MNO's subscribers through an application enabled on subscriber's user equipment using MNO's packet-based cellular network infrastructure. However, this raises the problem of how to handle interconnection settlements between the two types of operators, particularly how to deal with users who now have the ability to make ‘free’ on-net MVoIP calls among themselves within the MNO's network. This study proposes a service level agreement-based transparent settlement model (TSM to solve this problem. The model is based on concepts of achievement and reward, not violation and punishment. The TSM calculates the MVoIPO's throughput distribution by monitoring the variations of peaks and troughs at the edge of a network. This facilitates the determination of conformance and non-conformance levels to the pre-set throughput thresholds and, subsequently, the issuing of compensation to the MVoIPO by the MNO as a result of generating an economically acceptable volume of data traffic.

  4. A Localization Based Cooperative Routing Protocol for Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nadeem Javaid

    2017-01-01

    Full Text Available Localization is one of the major aspects in underwater wireless sensor networks (UWSNs. Therefore, it is important to know the accurate position of the sensor node in large scale applications like disaster prevention, tactical surveillance, and monitoring. Due to the inefficiency of the global positioning system (GPS in UWSN, it is very difficult to localize a node in underwater environment compared to terrestrial networks. To minimize the localization error and enhance the localization coverage of the network, two routing protocols are proposed; the first one is mobile autonomous underwater vehicle (MobiL-AUV and the second one is cooperative MobiL (CO-MobiL. In MobiL-AUV, AUVs are deployed and equipped with GPS and act as reference nodes. These reference nodes are used to localize all the nonlocalized ordinary sensor nodes in order to reduce the localization error and maximize the network coverage. CO-MobiL is presented in order to improve the network throughput by using the maximal ratio combining (MRC as diversity technique which combines both signals, received from the source and received from the relay at the destination. It uses amplify-and-forward (AF mechanism to improve the signal between the source and the destination. To support our claims, extensive simulations are performed.

  5. Intrusion Detection Algorithm for Mitigating Sinkhole Attack on LEACH Protocol in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ranjeeth Kumar Sundararajan

    2015-01-01

    Full Text Available In wireless sensor network (WSN, the sensors are deployed and placed uniformly to transmit the sensed data to a centralized station periodically. So, the major threat of the WSN network layer is sinkhole attack and it is still being a challenging issue on the sensor networks, where the malicious node attracts the packets from the other normal sensor nodes and drops the packets. Thus, this paper proposes an Intrusion Detection System (IDS mechanism to detect the intruder in the network which uses Low Energy Adaptive Clustering Hierarchy (LEACH protocol for its routing operation. In the proposed algorithm, the detection metrics, such as number of packets transmitted and received, are used to compute the intrusion ratio (IR by the IDS agent. The computed numeric or nonnumeric value represents the normal or malicious activity. As and when the sinkhole attack is captured, the IDS agent alerts the network to stop the data transmission. Thus, it can be a resilient to the vulnerable attack of sinkhole. Above all, the simulation result is shown for the proposed algorithm which is proven to be efficient compared with the existing work, namely, MS-LEACH, in terms of minimum computational complexity and low energy consumption. Moreover, the algorithm was numerically analyzed using TETCOS NETSIM.

  6. A Very Low Power MAC (VLPM Protocol for Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Kyung Sup Kwak

    2011-03-01

    Full Text Available Wireless Body Area Networks (WBANs consist of a limited number of battery operated nodes that are used to monitor the vital signs of a patient over long periods of time without restricting the patient’s movements. They are an easy and fast way to diagnose the patient’s status and to consult the doctor. Device as well as network lifetime are among the most important factors in a WBAN. Prolonging the lifetime of the WBAN strongly depends on controlling the energy consumption of sensor nodes. To achieve energy efficiency, low duty cycle MAC protocols are used, but for medical applications, especially in the case of pacemakers where data have time-limited relevance, these protocols increase latency which is highly undesirable and leads to system instability. In this paper, we propose a low power MAC protocol (VLPM based on existing wakeup radio approaches which reduce energy consumption as well as improving the response time of a node. We categorize the traffic into uplink and downlink traffic. The nodes are equipped with both a low power wake-up transmitter and receiver. The low power wake-up receiver monitors the activity on channel all the time with a very low power and keeps the MCU (Micro Controller Unit along with main radio in sleep mode. When a node [BN or BNC (BAN Coordinator] wants to communicate with another node, it uses the low-power radio to send a wakeup packet, which will prompt the receiver to power up its primary radio to listen for the message that follows shortly. The wake-up packet contains the desired node’s ID along with some other information to let the targeted node to wake-up and take part in communication and let all other nodes to go to sleep mode quickly. The VLPM protocol is proposed for applications having low traffic conditions. For high traffic rates, optimization is needed. Analytical results show that the proposed protocol outperforms both synchronized and unsynchronized MAC protocols like T-MAC, SCP-MAC, B

  7. A very low power MAC (VLPM) protocol for Wireless Body Area Networks.

    Science.gov (United States)

    Ullah, Niamat; Khan, Pervez; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) consist of a limited number of battery operated nodes that are used to monitor the vital signs of a patient over long periods of time without restricting the patient's movements. They are an easy and fast way to diagnose the patient's status and to consult the doctor. Device as well as network lifetime are among the most important factors in a WBAN. Prolonging the lifetime of the WBAN strongly depends on controlling the energy consumption of sensor nodes. To achieve energy efficiency, low duty cycle MAC protocols are used, but for medical applications, especially in the case of pacemakers where data have time-limited relevance, these protocols increase latency which is highly undesirable and leads to system instability. In this paper, we propose a low power MAC protocol (VLPM) based on existing wakeup radio approaches which reduce energy consumption as well as improving the response time of a node. We categorize the traffic into uplink and downlink traffic. The nodes are equipped with both a low power wake-up transmitter and receiver. The low power wake-up receiver monitors the activity on channel all the time with a very low power and keeps the MCU (Micro Controller Unit) along with main radio in sleep mode. When a node [BN or BNC (BAN Coordinator)] wants to communicate with another node, it uses the low-power radio to send a wakeup packet, which will prompt the receiver to power up its primary radio to listen for the message that follows shortly. The wake-up packet contains the desired node's ID along with some other information to let the targeted node to wake-up and take part in communication and let all other nodes to go to sleep mode quickly. The VLPM protocol is proposed for applications having low traffic conditions. For high traffic rates, optimization is needed. Analytical results show that the proposed protocol outperforms both synchronized and unsynchronized MAC protocols like T-MAC, SCP-MAC, B-MAC and X-MAC in terms

  8. A Performance Evaluation of NACK-Oriented Protocols as the Foundation of Reliable Delay- Tolerant Networking Convergence Layers

    Science.gov (United States)

    Iannicca, Dennis; Hylton, Alan; Ishac, Joseph

    2012-01-01

    Delay-Tolerant Networking (DTN) is an active area of research in the space communications community. DTN uses a standard layered approach with the Bundle Protocol operating on top of transport layer protocols known as convergence layers that actually transmit the data between nodes. Several different common transport layer protocols have been implemented as convergence layers in DTN implementations including User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Licklider Transmission Protocol (LTP). The purpose of this paper is to evaluate several stand-alone implementations of negative-acknowledgment based transport layer protocols to determine how they perform in a variety of different link conditions. The transport protocols chosen for this evaluation include Consultative Committee for Space Data Systems (CCSDS) File Delivery Protocol (CFDP), Licklider Transmission Protocol (LTP), NACK-Oriented Reliable Multicast (NORM), and Saratoga. The test parameters that the protocols were subjected to are characteristic of common communications links ranging from terrestrial to cis-lunar and apply different levels of delay, line rate, and error.

  9. A New Resource Allocation Protocol for the Backhaul of Underwater Cellular Wireless Networks

    Directory of Open Access Journals (Sweden)

    Changho Yun

    2018-01-01

    Full Text Available In this paper, an underwater base station initiating (UBSI resource allocation is proposed for underwater cellular wireless networks (UCWNs, which is a new approach to determine the backhaul capacity of underwater base stations (UBSs. This backhaul is a communication link from a UBS to a UBS controller (UBSC. Contrary to conventional resource allocation protocols, a UBS initiates to re-determine its backhaul capacity for itself according to its queue status; it releases a portion of its backhaul capacity in the case of experiencing resource under-utilization, and also requests additional backhaul capacity to the UBSC if packet drops are caused due to queue-overflow. This protocol can be appropriate and efficient to the underwater backhaul link where the transmission rate is quite low and the latency is unneglectable. In order to investigate the applicability of the UBSI resource allocation protocol to the UCWN, its performance is extensively analyzed via system level simulations. In our analysis, considered performance measures include average packet drop rate, average resource utilization, average message overhead, and the reserved capacity of the UBSC. In particular, the simulation results show that our proposed protocol not only utilizes most of the given backhaul capacity (more than 90 percent of resource utilization on the average, but also reduces controlling message overheads induced by resource allocation (less than 2 controlling messages on the average. It is expected that the simulation results and analysis in this paper can be used as operating guidelines to apply our new resource allocation protocol for the UCWN.

  10. Performance Analysis of AODV Routing Protocol for Wireless Sensor Network based Smart Metering

    Science.gov (United States)

    >Hasan Farooq, Low Tang Jung,

    2013-06-01

    Today no one can deny the need for Smart Grid and it is being considered as of utmost importance to upgrade outdated electric infrastructure to cope with the ever increasing electric load demand. Wireless Sensor Network (WSN) is considered a promising candidate for internetworking of smart meters with the gateway using mesh topology. This paper investigates the performance of AODV routing protocol for WSN based smart metering deployment. Three case studies are presented to analyze its performance based on four metrics of (i) Packet Delivery Ratio, (ii) Average Energy Consumption of Nodes (iii) Average End-End Delay and (iv) Normalized Routing Load.

  11. Altruistic Backoff: Collision Avoidance for Receiver-Initiated MAC Protocols for Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Orfanidis, Charalampos; Dragoni, Nicola

    2014-01-01

    In receiver-initiated medium access control (MAC) protocols for wireless sensor networks, communication is initiated by the receiver node which transmits beacons indicating its availability to receive data. In the case of multiple senders having traffic for a given receiver, such beacons form...... points where collisions are likely to happen. In this paper, we present altruistic backoff (AB), a novel collision avoidance mechanism that aims to avoid collisions before the transmission of a beacon. As a result of an early backoff, senders spend less time in idle listening waiting for a beacon, thus...

  12. Routing in Wireless Multimedia Sensor Networks: A Survey of Existing Protocols and Open Research Issues

    Directory of Open Access Journals (Sweden)

    Vikas Bhandary

    2016-01-01

    Full Text Available With the advancement of wireless sensor networks (WSNs and technology, applicability of WSNs as a system is touching new heights. The development of multimedia nodes has led to the creation of another intelligent distributed system, which can transfer real-time multimedia traffic, ubiquitously. Wireless multimedia sensor networks (WMSNs are applicable in a wide range of areas including area monitoring and video surveillance. But due to unreliable error-prone communication medium and application specific quality of service (QoS requirements, routing of real-time multimedia traffic in WMSNs poses a serious problem. The paper discusses various existing routing strategies in WMSNs, with their properties and limitations which lead to open research issues. Further, detailed classification and analytical comparison of discussed protocols are also presented.

  13. An energy-efficient MAC protocol using dynamic queue management for delay-tolerant mobile sensor networks.

    Science.gov (United States)

    Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua

    2011-01-01

    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  14. A Prioritized Multi-Channel Multi-Time slot MAC Protocol For Large-Scale Wireless Sensor Networks

    OpenAIRE

    Ben Sliman, Jamila; Song, Ye-Qiong; Koubâa, Anis

    2009-01-01

    International audience; This paper addresses a new prioritized multichannel multi-time slot MAC protocol (PMCMTP) for large-scale WSNs especially for Ultra-Wide Band (UWB) based networks. To reduce the complexity of resource sharing, the global network is composed of a set of Personal Area Networks (PANs) or cells. According to available resource and PANs duty cycle, PMCMTP can dynamically assign several data channels per PAN and efficiently allocate time slots to each PAN's members. This sig...

  15. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks.

    Science.gov (United States)

    Perumal, Madhumathy; Dhandapani, Sivakumar

    2015-01-01

    Data gathering and optimal path selection for wireless sensor networks (WSN) using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS). This protocol finds the rendezvous point for optimal transmission of data using a "splitting tree" technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the "Biased Random Walk" model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS) is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR) protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  16. Modeling and Simulation of a Novel Relay Node Based Secure Routing Protocol Using Multiple Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Madhumathy Perumal

    2015-01-01

    Full Text Available Data gathering and optimal path selection for wireless sensor networks (WSN using existing protocols result in collision. Increase in collision further increases the possibility of packet drop. Thus there is a necessity to eliminate collision during data aggregation. Increasing the efficiency is the need of the hour with maximum security. This paper is an effort to come up with a reliable and energy efficient WSN routing and secure protocol with minimum delay. This technique is named as relay node based secure routing protocol for multiple mobile sink (RSRPMS. This protocol finds the rendezvous point for optimal transmission of data using a “splitting tree” technique in tree-shaped network topology and then to determine all the subsequent positions of a sink the “Biased Random Walk” model is used. In case of an event, the sink gathers the data from all sources, when they are in the sensing range of rendezvous point. Otherwise relay node is selected from its neighbor to transfer packets from rendezvous point to sink. A symmetric key cryptography is used for secure transmission. The proposed relay node based secure routing protocol for multiple mobile sink (RSRPMS is experimented and simulation results are compared with Intelligent Agent-Based Routing (IAR protocol to prove that there is increase in the network lifetime compared with other routing protocols.

  17. Auction-Based Resource Allocation for Cooperative Video Transmission Protocols over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Zhu Han

    2009-01-01

    Full Text Available Cooperative transmission has been proposed as a novel transmission strategy that takes advantage of broadcast nature of wireless networks, forms virtual MIMO system, and provides diversity gains. In this paper, wireless video transmission protocols are proposed, in which the spectrum resources are first allocated for the source side to broadcast video packets to the relay and destination, and then for the relay side to transmit side information generated from the received packets. The proposed protocols are optimized to minimize the end-to-end expected distortion via choosing bandwidth/power allocation, configuration of side information, subject to bandwidth and power constraints. For multiuser cases, most of current resource allocation approaches cannot be naturally extended and applied to the networks with relay nodes for video transmission. This paper extends the share auction approach into the cooperative video communication scenarios and provides a near-optimal solution for resource allocation. Experimental results have demonstrated that the proposed approach has significant advantage of up to 4 dB gain in single user case and 1.3 dB gain in multiuser case over the reference systems in terms of peak-to-signal-noise ratio. In addition, it reduces the formidable computational complexity of the optimal solution to linear complexity with performance degradation of less than 0.3 dB.

  18. AR-RBFS: Aware-Routing Protocol Based on Recursive Best-First Search Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Farzad Kiani

    2016-01-01

    Full Text Available Energy issue is one of the most important problems in wireless sensor networks. They consist of low-power sensor nodes and a few base station nodes. They must be adaptive and efficient in data transmission to sink in various areas. This paper proposes an aware-routing protocol based on clustering and recursive search approaches. The paper focuses on the energy efficiency issue with various measures such as prolonging network lifetime along with reducing energy consumption in the sensor nodes and increasing the system reliability. Our proposed protocol consists of two phases. In the first phase (network development phase, the sensors are placed into virtual layers. The second phase (data transmission is related to routes discovery and data transferring so it is based on virtual-based Classic-RBFS algorithm in the lake of energy problem environments but, in the nonchargeable environments, all nodes in each layer can be modeled as a random graph and then begin to be managed by the duty cycle method. Additionally, the protocol uses new topology control, data aggregation, and sleep/wake-up schemas for energy saving in the network. The simulation results show that the proposed protocol is optimal in the network lifetime and packet delivery parameters according to the present protocols.

  19. Supporting Symmetric 128-bit AES in Networked Embedded Systems: An Elliptic Curve Key Establishment Protocol-on-Chip

    Directory of Open Access Journals (Sweden)

    Roshan Duraisamy

    2007-02-01

    Full Text Available The secure establishment of cryptographic keys for symmetric encryption via key agreement protocols enables nodes in a network of embedded systems and remote agents to communicate securely in an insecure environment. In this paper, we propose a pure hardware implementation of a key agreement protocol, which uses the elliptic curve Diffie-Hellmann and digital signature algorithms and enables two parties, a remote agent and a networked embedded system, to establish a 128-bit symmetric key for encryption of all transmitted data via the advanced encryption scheme (AES. The resulting implementation is a protocol-on-chip that supports full 128-bit equivalent security (PoC-128. The PoC-128 has been implemented in an FPGA, but it can also be used as an IP within different embedded applications. As 128-bit security is conjectured valid for the foreseeable future, the PoC-128 goes well beyond the state of art in securing networked embedded devices.

  20. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks.

    Science.gov (United States)

    Ogundile, Olayinka O; Alfa, Attahiru S

    2017-05-10

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  1. A Survey on an Energy-Efficient and Energy-Balanced Routing Protocol for Wireless Sensor Networks

    Science.gov (United States)

    Ogundile, Olayinka O.; Alfa, Attahiru S.

    2017-01-01

    Wireless sensor networks (WSNs) form an important part of industrial application. There has been growing interest in the potential use of WSNs in applications such as environment monitoring, disaster management, health care monitoring, intelligence surveillance and defence reconnaissance. In these applications, the sensor nodes (SNs) are envisaged to be deployed in sizeable numbers in an outlying area, and it is quite difficult to replace these SNs after complete deployment in many scenarios. Therefore, as SNs are predominantly battery powered devices, the energy consumption of the nodes must be properly managed in order to prolong the network lifetime and functionality to a rational time. Different energy-efficient and energy-balanced routing protocols have been proposed in literature over the years. The energy-efficient routing protocols strive to increase the network lifetime by minimizing the energy consumption in each SN. On the other hand, the energy-balanced routing protocols protract the network lifetime by uniformly balancing the energy consumption among the nodes in the network. There have been various survey papers put forward by researchers to review the performance and classify the different energy-efficient routing protocols for WSNs. However, there seems to be no clear survey emphasizing the importance, concepts, and principles of load-balanced energy routing protocols for WSNs. In this paper, we provide a clear picture of both the energy-efficient and energy-balanced routing protocols for WSNs. More importantly, this paper presents an extensive survey of the different state-of-the-art energy-efficient and energy-balanced routing protocols. A taxonomy is introduced in this paper to classify the surveyed energy-efficient and energy-balanced routing protocols based on their proposed mode of communication towards the base station (BS). In addition, we classified these routing protocols based on the solution types or algorithms, and the input decision

  2. A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels

    Directory of Open Access Journals (Sweden)

    Xu Xia

    2016-11-01

    Full Text Available Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks.

  3. A Multipath Routing Protocol Based on Clustering and Ant Colony Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2010-05-01

    Full Text Available For monitoring burst events in a kind of reactive wireless sensor networks (WSNs, a multipath routing protocol (MRP based on dynamic clustering and ant colony optimization (ACO is proposed.. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.

  4. AURP: an AUV-aided underwater routing protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Yoon, Seokhoon; Azad, Abul K; Oh, Hoon; Kim, Sunghwan

    2012-01-01

    Deploying a multi-hop underwater acoustic sensor network (UASN) in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol), which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs). In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved.

  5. AURP: An AUV-Aided Underwater Routing Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sunghwan Kim

    2012-02-01

    Full Text Available Deploying a multi-hop underwater acoustic sensor network (UASN in a large area brings about new challenges in reliable data transmissions and survivability of network due to the limited underwater communication range/bandwidth and the limited energy of underwater sensor nodes. In order to address those challenges and achieve the objectives of maximization of data delivery ratio and minimization of energy consumption of underwater sensor nodes, this paper proposes a new underwater routing scheme, namely AURP (AUV-aided underwater routing protocol, which uses not only heterogeneous acoustic communication channels but also controlled mobility of multiple autonomous underwater vehicles (AUVs. In AURP, the total data transmissions are minimized by using AUVs as relay nodes, which collect sensed data from gateway nodes and then forward to the sink. Moreover, controlled mobility of AUVs makes it possible to apply a short-range high data rate underwater channel for transmissions of a large amount of data. To the best to our knowledge, this work is the first attempt to employ multiple AUVs as relay nodes in a multi-hop UASN to improve the network performance in terms of data delivery ratio and energy consumption. Simulations, which are incorporated with a realistic underwater acoustic communication channel model, are carried out to evaluate the performance of the proposed scheme, and the results indicate that a high delivery ratio and low energy consumption can be achieved.

  6. The offer network protocol: Mathematical foundations and a roadmap for the development of a global brain

    Science.gov (United States)

    Heylighen, Francis

    2017-01-01

    The world is confronted with a variety of interdependent problems, including scarcity, unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires coordinated action. The present paper proposes the development of a self-organizing system for coordination, called an "offer network", that would use the distributed intelligence of the Internet to match the offers and needs of all human, technological and natural agents on the planet. This would maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks in which each consumed resource (need) is also produced (offer). After sketching the elements of a mathematical foundation for offer networks, the paper proposes a roadmap for their practical implementation. This includes step-by-step integration with technologies such as the Semantic Web, ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed manner, thus functioning like a Global Brain for humanity.

  7. A Routing Protocol for Multisink Wireless Sensor Networks in Underground Coalmine Tunnels.

    Science.gov (United States)

    Xia, Xu; Chen, Zhigang; Liu, Hui; Wang, Huihui; Zeng, Feng

    2016-11-30

    Traditional underground coalmine monitoring systems are mainly based on the use of wired transmission. However, when cables are damaged during an accident, it is difficult to obtain relevant data on environmental parameters and the emergency situation underground. To address this problem, the use of wireless sensor networks (WSNs) has been proposed. However, the shape of coalmine tunnels is not conducive to the deployment of WSNs as they are long and narrow. Therefore, issues with the network arise, such as extremely large energy consumption, very weak connectivity, long time delays, and a short lifetime. To solve these problems, in this study, a new routing protocol algorithm for multisink WSNs based on transmission power control is proposed. First, a transmission power control algorithm is used to negotiate the optimal communication radius and transmission power of each sink. Second, the non-uniform clustering idea is adopted to optimize the cluster head selection. Simulation results are subsequently compared to the Centroid of the Nodes in a Partition (CNP) strategy and show that the new algorithm delivers a good performance: power efficiency is increased by approximately 70%, connectivity is increased by approximately 15%, the cluster interference is diminished by approximately 50%, the network lifetime is increased by approximately 6%, and the delay is reduced with an increase in the number of sinks.

  8. Comparison of Channel Estimation Protocols for Coherent AF Relaying Networks in the Presence of Additive Noise and LO Phase Noise

    Directory of Open Access Journals (Sweden)

    Stefan Berger

    2010-01-01

    Full Text Available Channel estimation protocols for wireless two-hop networks with amplify-and-forward (AF relays are compared. We consider multiuser relaying networks, where the gain factors are chosen such that the signals from all relays add up coherently at the destinations. While the destinations require channel knowledge in order to decode, our focus lies on the channel estimates that are used to calculate the relay gains. Since knowledge of the compound two-hop channels is generally not sufficient to do this, the protocols considered here measure all single-hop coefficients in the network. We start from the observation that the direction in which the channels are measured determines (1 the number of channel uses required to estimate all coefficient and (2 the need for global carrier phase reference. Four protocols are identified that differ in the direction in which the first-hop and the second-hop channels are measured. We derive a sensible measure for the accuracy of the channel estimates in the presence of additive noise and phase noise and compare the protocols based on this measure. Finally, we provide a quantitative performance comparison for a simple single-user application example. It is important to note that the results can be used to compare the channel estimation protocols for any two-hop network configuration and gain allocation scheme.

  9. Clinical implementation of the ARDS network protocol is associated with reduced hospital mortality compared with historical controls.

    Science.gov (United States)

    Kallet, Richard H; Jasmer, Robert M; Pittet, Jean-Francois; Tang, Julin F; Campbell, Andre R; Dicker, Rochelle; Hemphill, Claude; Luce, John M

    2005-05-01

    To assess the impact of implementing a low tidal volume ventilation strategy on hospital mortality for patients with acute lung injury or acute respiratory distress syndrome. Retrospective, uncontrolled study. Adult medical-surgical and trauma intensive care units at a major inner city, university-affiliated hospital. A total of 292 patients with acute lung injury or acute respiratory distress syndrome. Between the years 2000 and 2003, 200 prospectively identified patients with acute lung injury/acute respiratory distress syndrome were managed by the ARDS Network low tidal volume protocol. A historical control group of 92 acute respiratory distress syndrome patients managed by routine practice from 1998 to 1999 was used for comparison. Patients managed with the ARDS Network protocol had a lower hospital mortality compared with historical controls (32% vs. 51%, respectively; p = .004). Multivariate logistic regression estimated an odds ratio of 0.32 (95% CI, 0.17-0.59; p = .0003) for mortality risk with use of the ARDS Network protocol. Protocol-managed patients had a lower tidal volume (6.2 +/- 1.1 vs. 9.8 +/- 1.5 mL/kg; p < .0001) and plateau pressure (27.5 +/- 6.4 vs. 33.8 +/- 8.9 cm H2O; p < .0001) than historical controls. Adoption of the ARDS Network protocol for routine ventilator management of acute lung injury/acute respiratory distress syndrome patients was associated with a lower mortality compared with recent historical controls.

  10. EMU Suit Performance Simulation

    Science.gov (United States)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based

  11. COALA: A Protocol for the Avoidance and Alleviation of Congestion in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dionisis Kandris

    2017-10-01

    Full Text Available The occurrence of congestion has an extremely deleterious impact on the performance of Wireless Sensor Networks (WSNs. This article presents a novel protocol, named COALA (COngestion ALleviation and Avoidance, which aims to act both proactively, in order to avoid the creation of congestion in WSNs, and reactively, so as to mitigate the diffusion of upcoming congestion through alternative path routing. Its operation is based on the utilization of an accumulative cost function, which considers both static and dynamic metrics in order to send data through the paths that are less probable to be congested. COALA is validated through simulation tests, which exhibit its ability to achieve remarkable reduction of loss ratios, transmission delays and energy dissipation. Moreover, the appropriate adjustment of the weighting of the accumulative cost function enables the algorithm to adapt to the performance criteria of individual case scenarios.

  12. INTEGRATING INTERNET PROTOCOL TELEVISION (IPTV IN DISTANCE EDUCATION: A Constructivist Framework for Social Networking

    Directory of Open Access Journals (Sweden)

    T. Volkan YUZER

    2011-07-01

    Full Text Available New communication technologies and constructivist pedagogy have the great potential to build very powerful paradigm shifts that enhance Internet Protocol Television (IPTV in distance education. Therefore, the main purpose of this chapter is to explore the new concerns, issues and potentials for the IPTV delivery of distance education to multicultural populations. In this study, the design strategies and principles of how to build social networking based on constructivist learning theory are discussed in order to generate a theoretical framework that provides everyday examples and experiences for IPTV in distance education. This framework also shows the needs, expectations and beliefs, and strengths-weaknesses of IPTV in distance. In short, this framework concentrates on discussing the main characteristics of IPTV in distance education and describes how those characteristics can help build constructivist online communities.

  13. Coherence time-based cooperative MAC protocol 1 for wireless ad hoc networks

    Directory of Open Access Journals (Sweden)

    Kim Hyung-jin

    2011-01-01

    Full Text Available Abstract In this article, we address the goal of achieving performance gains under heavy-load and fast fading conditions. CoopMACI protocol proposed in Proceedings of the IEEE International Conference on Communications (ICC, Seoul, Korea, picks either direct path or relay path based on rate comparison to enhance average throughput and delay performances. However, CoopMACI performance deteriorates under fading conditions because of lower direct path or relay path reliability compared to UtdMAC (Agarwal et al. LNCS, 4479, 415-426, 2007. UtdMAC was shown to perform better than CoopMACI in terms of average throughput and delay performances because of improved transmission reliability provided by the backup relay path. Although better than CoopMACI, UtdMAC does not fully benefit from higher throughput relay path (compared to the direct path, since it uses relay path only as a secondary backup path. In this article, we develop a cooperative MAC protocol (termed as instantaneous relay-based cooperative MAC--IrcMAC that uses channel coherence time and estimates signal-to-noise ratio (SNR of source-to-relay, relay-to-destination, and source-to-destination links, to reliably choose between relay path or direct path for enhanced throughput and delay performances. Unique handshaking is used to estimate SNR and single bit feedbacks resolve contentions among relay nodes, which further provides source node with rate (based on SNR information on source-to-destination, source-to-relay, and relay-to-destination links. Simulation results clearly show that IrcMAC significantly outperforms the existing CoopMACI and the UtdMAC protocols in wireless ad hoc network. Results show average throughput improvements of 41% and 64% and average delay improvementd of 98.5% and 99.7% compared with UtdMAC and CoopMACI, respectively.

  14. E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications Using Wireless Medical Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hoon-Jae Lee

    2012-02-01

    Full Text Available A wireless medical sensor network (WMSN can sense humans’ physiological signs without sacrificing patient comfort and transmit patient vital signs to health professionals’ hand-held devices. The patient physiological data are highly sensitive and WMSNs are extremely vulnerable to many attacks. Therefore, it must be ensured that patients’ medical signs are not exposed to unauthorized users. Consequently, strong user authentication is the main concern for the success and large scale deployment of WMSNs. In this regard, this paper presents an efficient, strong authentication protocol, named E-SAP, for healthcare application using WMSNs. The proposed E-SAP includes: (1 a two-factor (i.e., password and smartcard professional authentication; (2 mutual authentication between the professional and the medical sensor; (3 symmetric encryption/decryption for providing message confidentiality; (4 establishment of a secure session key at the end of authentication; and (5 professionals can change their password. Further, the proposed protocol requires three message exchanges between the professional, medical sensor node and gateway node, and achieves efficiency (i.e., low computation and communication cost. Through the formal analysis, security analysis and performance analysis, we demonstrate that E-SAP is more secure against many practical attacks, and allows a tradeoff between the security and the performance cost for healthcare application using WMSNs.

  15. A Routing Protocol Based on Received Signal Strength for Underwater Wireless Sensor Networks (UWSNs

    Directory of Open Access Journals (Sweden)

    Meiju Li

    2017-11-01

    Full Text Available Underwater wireless sensor networks (UWSNs are featured by long propagation delay, limited energy, narrow bandwidth, high BER (Bit Error Rate and variable topology structure. These features make it very difficult to design a short delay and high energy-efficiency routing protocol for UWSNs. In this paper, a routing protocol independent of location information is proposed based on received signal strength (RSS, which is called RRSS. In RRSS, a sensor node firstly establishes a vector from the node to a sink node; the length of the vector indicates the RSS of the beacon signal (RSSB from the sink node. A node selects the next-hop along the vector according to RSSB and the RSS of a hello packet (RSSH. The node nearer to the vector has higher priority to be a candidate next-hop. To avoid data packets being delivered to the neighbor nodes in a void area, a void-avoiding algorithm is introduced. In addition, residual energy is considered when selecting the next-hop. Meanwhile, we establish mathematic models to analyze the robustness and energy efficiency of RRSS. Lastly, we conduct extensive simulations, and the simulation results show RRSS can save energy consumption and decrease end-to-end delay.

  16. Performance Evaluation of the MPW-MAC Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Saad Talib Hasson

    2017-10-01

    Full Text Available Recently Wireless sensor Networks (WSNs take interesting researches due to their important and crucial applications. WSNs have limited energy so all researches focused in designing routing algorithms to save energy and to make each one operating for longer possible time. This paper was implemented the developed a modified predictive-wakeup MAC protocol (MPW-MAC using NetLogo simulators. Also was tested the behavior of the MPW-MAC in relation to the Data Packet delivery Ratio (PDR, average packet loss, average throughput, average delivery latency, and average duty cycle. One important challenge in the WSNs is the energy consumption. A new approach was designed to estimate the energy consumption. The simulation results show improvements in Data Packet delivery Ratio (PDR, average packet loss, average throughput, average delivery latency, and average duty cycle. Nodes distribution, selecting the nodes states, and wakeup times of nodes and the interval wakeup are randomly chosen. Also the result indicates that the MPW-MAC protocol reduces the energy consumption and the number of the switching between states in the node will effects on the amount of the energy consumed by the node.

  17. Use of a mobile social networking intervention for weight management: a mixed-methods study protocol.

    Science.gov (United States)

    Laranjo, Liliana; Lau, Annie Y S; Martin, Paige; Tong, Huong Ly; Coiera, Enrico

    2017-07-12

    Obesity and physical inactivity are major societal challenges and significant contributors to the global burden of disease and healthcare costs. Information and communication technologies are increasingly being used in interventions to promote behaviour change in diet and physical activity. In particular, social networking platforms seem promising for the delivery of weight control interventions.We intend to pilot test an intervention involving the use of a social networking mobile application and tracking devices (Fitbit Flex 2 and Fitbit Aria scale) to promote the social comparison of weight and physical activity, in order to evaluate whether mechanisms of social influence lead to changes in those outcomes over the course of the study. Mixed-methods study involving semi-structured interviews and a pre-post quasi-experimental pilot with one arm, where healthy participants in different body mass index (BMI) categories, aged between 19 and 35 years old, will be subjected to a social networking intervention over a 6-month period. The primary outcome is the average difference in weight before and after the intervention. Secondary outcomes include BMI, number of steps per day, engagement with the intervention, social support and system usability. Semi-structured interviews will assess participants' expectations and perceptions regarding the intervention. Ethics approval was granted by Macquarie University's Human Research Ethics Committee for Medical Sciences on 3 November 2016 (ethics reference number 5201600716).The social network will be moderated by a researcher with clinical expertise, who will monitor and respond to concerns raised by participants. Monitoring will involve daily observation of measures collected by the fitness tracker and the wireless scale, as well as continuous supervision of forum interactions and posts. Additionally, a protocol is in place to monitor for participant misbehaviour and direct participants-in-need to appropriate sources of help.

  18. Outage Analysis of low-latency cooperative wireless networks with threshold-based protocol over composite fading

    OpenAIRE

    Zdravkovic, Nemanja

    2017-01-01

    This paper studies a low-latency decode-and-forward cooperative wireless network subject to composite fading. Assuming temporally correlated channel between cooperating nodes and maximal ratio combining at the destination, outage probability(OP)performance is investigated and novel OP expressions are derived when nodes apply a threshold-based protocol for internode communication. The effects of network dimension, multipath fading and shadowing severity parameters, ...

  19. Cross-layer protocols optimized for real-time multimedia services in energy-constrained mobile ad hoc networks

    Science.gov (United States)

    Hortos, William S.

    2003-07-01

    Mobile ad hoc networking (MANET) supports self-organizing, mobile infrastructures and enables an autonomous network of mobile nodes that can operate without a wired backbone. Ad hoc networks are characterized by multihop, wireless connectivity via packet radios and by the need for efficient dynamic protocols. All routers are mobile and can establish connectivity with other nodes only when they are within transmission range. Importantly, ad hoc wireless nodes are resource-constrained, having limited processing, memory, and battery capacity. Delivery of high quality-ofservice (QoS), real-time multimedia services from Internet-based applications over a MANET is a challenge not yet achieved by proposed Internet Engineering Task Force (IETF) ad hoc network protocols in terms of standard performance metrics such as end-to-end throughput, packet error rate, and delay. In the distributed operations of route discovery and maintenance, strong interaction occurs across MANET protocol layers, in particular, the physical, media access control (MAC), network, and application layers. The QoS requirements are specified for the service classes by the application layer. The cross-layer design must also satisfy the battery-limited energy constraints, by minimizing the distributed power consumption at the nodes and of selected routes. Interactions across the layers are modeled in terms of the set of concatenated design parameters including associated energy costs. Functional dependencies of the QoS metrics are described in terms of the concatenated control parameters. New cross-layer designs are sought that optimize layer interdependencies to achieve the "best" QoS available in an energy-constrained, time-varying network. The protocol design, based on a reactive MANET protocol, adapts the provisioned QoS to dynamic network conditions and residual energy capacities. The cross-layer optimization is based on stochastic dynamic programming conditions derived from time-dependent models of

  20. Instant Spring Tool Suite

    CERN Document Server

    Chiang, Geoff

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A tutorial guide that walks you through how to use the features of Spring Tool Suite using well defined sections for the different parts of Spring.Instant Spring Tool Suite is for novice to intermediate Java developers looking to get a head-start in enterprise application development using Spring Tool Suite and the Spring framework. If you are looking for a guide for effective application development using Spring Tool Suite, then this book is for you.

  1. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    Science.gov (United States)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  2. A receiver-initiated WDM multicast tree construction protocol to support IP dense mode multicast routing in all-optical Lambda-switched networks

    NARCIS (Netherlands)

    Niemegeers, I.G.M.M.; Salvador, M.R.; Heemstra de Groot, S.M.; Dey, D.

    We describe a source-rooted WDM multicast tree construction protocol to support IP dense mode multicast routing protocols in all-optical lambda-switched networks. Using a receiver-initiated approach, the protocol relies on a mechanism that collects information on the capabilities of WDM nodes. This

  3. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  4. CENTERA: A Centralized Trust-Based Efficient Routing Protocol with Authentication for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ayman Tajeddine

    2015-02-01

    Full Text Available In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN. CENTERA utilizes the more powerful base station (BS to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes’ battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node’s bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.

  5. CENTERA: a centralized trust-based efficient routing protocol with authentication for wireless sensor networks.

    Science.gov (United States)

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-02-02

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of "bad" nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics-maliciousness, cooperation, and compatibility-and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates "bad", "misbehaving" or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated "bad" behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to "good" nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations.

  6. CENTERA: A Centralized Trust-Based Efficient Routing Protocol with Authentication for Wireless Sensor Networks

    Science.gov (United States)

    Tajeddine, Ayman; Kayssi, Ayman; Chehab, Ali; Elhajj, Imad; Itani, Wassim

    2015-01-01

    In this paper, we present CENTERA, a CENtralized Trust-based Efficient Routing protocol with an appropriate authentication scheme for wireless sensor networks (WSN). CENTERA utilizes the more powerful base station (BS) to gather minimal neighbor trust information from nodes and calculate the best routes after isolating different types of “bad” nodes. By periodically accumulating these simple local observations and approximating the nodes' battery lives, the BS draws a global view of the network, calculates three quality metrics—maliciousness, cooperation, and compatibility—and evaluates the Data Trust and Forwarding Trust values of each node. Based on these metrics, the BS isolates “bad”, “misbehaving” or malicious nodes for a certain period, and put some nodes on probation. CENTERA increases the node's bad/probation level with repeated “bad” behavior, and decreases it otherwise. Then it uses a very efficient method to distribute the routing information to “good” nodes. Based on its target environment, and if required, CENTERA uses an authentication scheme suitable for severely constrained nodes, ranging from the symmetric RC5 for safe environments under close administration, to pairing-based cryptography (PBC) for hostile environments with a strong attacker model. We simulate CENTERA using TOSSIM and verify its correctness and show some energy calculations. PMID:25648712

  7. A new energy-efficient MAC protocol with noise-based transmitted-reference modulation for wireless sensor network

    NARCIS (Netherlands)

    Morshed, S.; Heijenk, Geert; Meijerink, Arjan; Ye, D.; van der Zee, Ronan A.R.; Bentum, Marinus Jan

    2013-01-01

    Energy-constrained behavior of sensor nodes is one of the most important criteria for successful deployment of wireless sensor networks. The medium access control (MAC) protocol determines to a large extent the time a sensor node transceiver spends listening or transmitting, and hence the energy

  8. The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing

    Science.gov (United States)

    Kevin McCluskey; Katharine B. Barker; Hazel A. Barton; Kyria Boundy-Mills; Daniel R. Brown; Jonathan A. Coddington; Kevin Cook; Philippe Desmeth; David Geiser; Jessie A. Glaeser; Stephanie Greene; Seogchan Kang; Michael W. Lomas; Ulrich Melcher; Scott E. Miller; David R. Nobles; Kristina J. Owens; Jerome H. Reichman; Manuela da Silva; John Wertz; Cale Whitworth; David Smith; Steven E. Lindow

    2017-01-01

    The U.S. Culture Collection Network held a meeting to share information about how culture collections are responding to the requirements of the recently enacted Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Biological Diversity (CBD). The meeting included representatives...

  9. The US Culture Collection Network responding to the requirements of the Nagoya Protocol on Access and Benefit Sharing

    Science.gov (United States)

    The US Culture Collection Network held a meeting to share information about how collections are responding to the requirements of the recently enacted Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from their Utilization to the Convention on Bio...

  10. Fuzzy Extractor and Elliptic Curve Based Efficient User Authentication Protocol for Wireless Sensor Networks and Internet of Things

    Directory of Open Access Journals (Sweden)

    Anup Kumar Maurya

    2017-10-01

    Full Text Available To improve the quality of service and reduce the possibility of security attacks, a secure and efficient user authentication mechanism is required for Wireless Sensor Networks (WSNs and the Internet of Things (IoT. Session key establishment between the sensor node and the user is also required for secure communication. In this paper, we perform the security analysis of A.K.Das’s user authentication scheme (given in 2015, Choi et al.’s scheme (given in 2016, and Park et al.’s scheme (given in 2016. The security analysis shows that their schemes are vulnerable to various attacks like user impersonation attack, sensor node impersonation attack and attacks based on legitimate users. Based on the cryptanalysis of these existing protocols, we propose a secure and efficient authenticated session key establishment protocol which ensures various security features and overcomes the drawbacks of existing protocols. The formal and informal security analysis indicates that the proposed protocol withstands the various security vulnerabilities involved in WSNs. The automated validation using AVISPA and Scyther tool ensures the absence of security attacks in our scheme. The logical verification using the Burrows-Abadi-Needham (BAN logic confirms the correctness of the proposed protocol. Finally, the comparative analysis based on computational overhead and security features of other existing protocol indicate that the proposed user authentication system is secure and efficient. In future, we intend to implement the proposed protocol in real-world applications of WSNs and IoT.

  11. Underwater Wireless Sensor Networks: how do acoustic propagation models impact the performance of higher-level protocols?

    Science.gov (United States)

    Llor, Jesús; Malumbres, Manuel P

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.

  12. Improving Packet Delivery Performance of Publish/Subscribe Protocols in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ernesto García Davis

    2013-01-01

    Full Text Available MQTT-S and CoAP are two protocols able to use the publish/subscribe model in Wireless Sensor Networks (WSNs. The high scalability provided by the publish/subscribe model may incur a high packet loss and therefore requires an efficient reliability mechanism to cope with this situation. The reliability mechanism of MQTT-S and CoAP employs a method which defines a fixed value for the retransmission timeout (RTO. This article argues that this method is not efficient for deploying publish/subscribe in WSN, because it may be unable to recover a packet, therefore resulting in a lower packet delivery ratio (PDR at the subscriber nodes. This article proposes and evaluates an adaptive RTO method, which consists in using a Smooth Round-trip Time and multiplying it by a constant parameter (K. Thanks to this method, the reliability mechanism of MQTT-S and CoAP would be able to react properly to packet loss and would also be lightweight in terms of energy, memory and computing for sensor nodes where these resources are critical. We present a detailed evaluation of the effects of the K value on the calculation of the adaptive RTO method. We also establish the setting for obtaining the highest PDR on the subscriber nodes for single-hop and multi-hop scenarios. The results for single-hop scenario show that use of the appropriate K value for the adaptive RTO method increases the PDR up to 76% for MQTT-S and up to 38% for CoAP when compared with the use of fixed RTO method for both protocols, respectively. Meanwhile the same comparison for multi-hop scenario, the adaptive RTO method increases the PDR up to 36% for MQTT-S and up to 14% for CoAP.

  13. Improving packet delivery performance of publish/subscribe protocols in wireless sensor networks.

    Science.gov (United States)

    Davis, Ernesto García; Calveras, Anna; Demirkol, Ilker

    2013-01-04

    MQTT-S and CoAP are two protocols able to use the publish/subscribe model in Wireless Sensor Networks (WSNs). The high scalability provided by the publish/subscribe model may incur a high packet loss and therefore requires an efficient reliability mechanism to cope with this situation. The reliability mechanism of MQTT-S and CoAP employs a method which defines a fixed value for the retransmission timeout (RTO). This article argues that this method is not efficient for deploying publish/subscribe in WSN, because it may be unable to recover a packet, therefore resulting in a lower packet delivery ratio (PDR) at the subscriber nodes. This article proposes and evaluates an adaptive RTO method, which consists in using a Smooth Round-trip Time and multiplying it by a constant parameter (K). Thanks to this method, the reliability mechanism of MQTT-S and CoAP would be able to react properly to packet loss and would also be lightweight in terms of energy, memory and computing for sensor nodes where these resources are critical. We present a detailed evaluation of the effects of the K value on the calculation of the adaptive RTO method. We also establish the setting for obtaining the highest PDR on the subscriber nodes for single-hop and multi-hop scenarios. The results for single-hop scenario show that use of the appropriate K value for the adaptive RTO method increases the PDR up to 76% for MQTT-S and up to 38% for CoAP when compared with the use of fixed RTO method for both protocols, respectively. Meanwhile the same comparison for multi-hop scenario, the adaptive RTO method increases the PDR up to 36% for MQTT-S and up to 14% for CoAP.

  14. Including 10-Gigabit-capable Passive Optical Network under End-to-End Generalized Multi-Protocol Label Switching Provisioned Quality of Service

    DEFF Research Database (Denmark)

    Brewka, Lukasz Jerzy; Gavler, Anders; Wessing, Henrik

    2012-01-01

    End-to-end quality of service provisioning is still a challenging task despite many years of research and development in this area. Considering a generalized multi-protocol label switching based core/metro network and resource reservation protocol capable home gateways, it is the access part...... of the network where quality of service signaling is bridged. This article proposes strategies for generalized multi-protocol label switching control over next emerging passive optical network standard, i.e., the 10-gigabit-capable passive optical network. Node management and resource allocation approaches...... are discussed, and possible issues are raised. The analysis shows that consideration of a 10-gigabit-capable passive optical network as a generalized multi-protocol label switching controlled domain is valid and may advance end-to-end quality of service provisioning for passive optical network based customers....

  15. Cross Layer Adaptation of Check Intervals in Low Power Listening MAC Protocols for Lifetime Improvement in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Maria-Cristina Marinescu

    2012-08-01

    Full Text Available Preamble sampling-based MAC protocols designed forWireless Sensor Networks (WSN are aimed at prolonging the lifetime of the nodes by scheduling their times of activity. This scheduling exploits node synchronization to find the right trade-off between energy consumption and delay. In this paper we consider the problem of node synchronization in preamble sampling protocols. We propose Cross Layer Adaptation of Check intervals (CLAC, a novel protocol intended to reduce the energy consumption of the nodes without significantly increasing the delay. Our protocol modifies the scheduling of the nodes based on estimating the delay experienced by a packet that travels along a multi-hop path. CLAC uses routing and MAC layer information to compute a delay that matches the packet arrival time. We have implemented CLAC on top of well-known routing and MAC protocols for WSN, and we have evaluated our implementation using the Avrora simulator. The simulation results confirm that CLAC improves the network lifetime at no additional packet loss and without affecting the end-to-end delay.

  16. A General Self-Organized Tree-Based Energy-Balance Routing Protocol for Wireless Sensor Network

    Science.gov (United States)

    Han, Zhao; Wu, Jie; Zhang, Jie; Liu, Liefeng; Tian, Kaiyun

    2014-04-01

    Wireless sensor network (WSN) is a system composed of a large number of low-cost micro-sensors. This network is used to collect and send various kinds of messages to a base station (BS). WSN consists of low-cost nodes with limited battery power, and the battery replacement is not easy for WSN with thousands of physically embedded nodes, which means energy efficient routing protocol should be employed to offer a long-life work time. To achieve the aim, we need not only to minimize total energy consumption but also to balance WSN load. Researchers have proposed many protocols such as LEACH, HEED, PEGASIS, TBC and PEDAP. In this paper, we propose a General Self-Organized Tree-Based Energy-Balance routing protocol (GSTEB) which builds a routing tree using a process where, for each round, BS assigns a root node and broadcasts this selection to all sensor nodes. Subsequently, each node selects its parent by considering only itself and its neighbors' information, thus making GSTEB a dynamic protocol. Simulation results show that GSTEB has a better performance than other protocols in balancing energy consumption, thus prolonging the lifetime of WSN.

  17. Tactical Service Oriented Architecture (SOA) Protocols and Techniques (Briefing Charts)

    Science.gov (United States)

    2011-09-01

    table-driven) routing protocols ( OSPF , OLSR) • Attempt to continuously evaluate all of the routes within a network • When a packet needs to be...Quagga is a routing software suite, fork of GNU Zebra, providing implementations of Open Shortest Path First - OSPF (v2 & v3), Routing Information

  18. WEP, WPA and WPA2 encryption protocols vulnerability on wireless networks with Linux platform

    National Research Council Canada - National Science Library

    Wilmer Antonio Méndez Moreno; Darin Jairo Mosquera Palacios; Edwin Rivas Trujillo

    2015-01-01

    .... This article analyzes the performance of encryption algorithms which work on the protocols WEP, WPA and WPA2 to provide an overview of how and why wireless protocols and encryption protection must...

  19. Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN—A Survey

    Directory of Open Access Journals (Sweden)

    Vignesh Raja Karuppiah Ramachandran

    2016-11-01

    Full Text Available With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close as possible to the source, these implantable devices are able to save lives. A wireless link between medical sensors and implantable medical devices is essential in the case of closed-loop medical devices, in which symptoms of the diseases are monitored by sensors that are not placed in close proximity of the therapeutic device. Medium Access Control (MAC is crucial to make it possible for several medical devices to communicate using a shared wireless medium in such a way that minimum delay, maximum throughput, and increased network life-time are guaranteed. To guarantee this Quality of Service (QoS, the MAC protocols control the main sources of limited resource wastage, namely the idle-listening, packet collisions, over-hearing, and packet loss. Traditional MAC protocols designed for body sensor networks are not directly applicable to Implantable Body Sensor Networks (IBSN because of the dynamic nature of the radio channel within the human body and the strict QoS requirements of IBSN applications. Although numerous MAC protocols are available in the literature, the majority of them are designed for Body Sensor Network (BSN and Wireless Sensor Network (WSN. To the best of our knowledge, there is so far no research paper that explores the impact of these MAC protocols specifically for IBSN. MAC protocols designed for implantable devices are still in their infancy and one of their most challenging objectives is to be ultra-low-power. One of the technological solutions to achieve this objective so is to integrate the concept of Wake-up radio (WuR into the MAC design. In this survey, we present a taxonomy of MAC protocols based on their use of Wu

  20. EDL Sensor Suite Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Air Data Systems (OADS) L.L.C. proposes a LIDAR based remote measurement sensor suite capable of satisfying a significant number of the desired sensing...

  1. Towards designing energy-efficient routing protocol for wireless mesh networks

    CSIR Research Space (South Africa)

    Dludla, AG

    2009-08-01

    Full Text Available except for the energy efficient. Table 1: Comparison of Routing Protocols Routing protocol Protocol Type Energy Efficient Scalable Robust DSDV Table- Driven No Yes No OLSR Table- Driven No Yes No BATMAN Demand- Driven No Yes Yes AODV...

  2. Compromises Between Quality of Service Metrics and Energy Consumption of Hierarchical and Flat Routing Protocols for Wireless Sensors Network

    Directory of Open Access Journals (Sweden)

    Abdelbari BEN YAGOUTA

    2016-11-01

    Full Text Available Wireless Sensor Network (WSN is wireless network composed of spatially distributed and tiny autonomous nodes, which cooperatively monitor physical or environmental conditions. Among the concerns of these networks is prolonging the lifetime by saving nodes energy. There are several protocols specially designed for WSNs based on energy conservation. However, many WSNs applications require QoS (Quality of Service criteria, such as latency, reliability and throughput. In this paper, we will compare three routing protocols for wireless sensors network LEACH (Low Energy Adaptive Clustering Hierarchy, AODV (Ad hoc on demand Distance Vector and LABILE (Link Quality-Based Lexical Routing using Castalia simulator in terms of energy consumption, throughput, reliability and latency time of packets received by sink under different conditions to determinate the best configurations that offers the most suitable compromises between energy conservation and all QoS metrics for each routing protocols. The results show that, the best configurations that offer the suitable compromises between energy conservation and all QoS metrics is a large number of deployed nodes with low packet rate for LEACH (300 nodes and 1 packet/s, a medium number of deployed nodes with low packet rate For AODV (100 nodes and 1 packet/s and a very low nodes density with low packet rate for LABILE (50 nodes and 1 packet/s.

  3. Performance Evaluation of Distributed Mobility Management Protocols: Limitations and Solutions for Future Mobile Networks

    Directory of Open Access Journals (Sweden)

    J. Carmona-Murillo

    2017-01-01

    Full Text Available Mobile Internet data traffic has experienced an exponential growth over the last few years due to the rise of demanding multimedia content and the increasing number of mobile devices. Seamless mobility support at the IP level is envisioned as a key architectural requirement in order to deal with the ever-increasing demand for data and to efficiently utilize a plethora of different wireless access networks. Current efforts from both industry and academia aim to evolve the mobility management protocols towards a more distributed operation to tackle shortcomings of fully centralized approaches. However, distributed solutions face several challenges that can result in lower performance which might affect real-time and multimedia applications. In this paper, we conduct an analytical and simulated evaluation of the main centralized and proposed Distributed Mobility Management (DMM solutions. Our results show that, in some scenarios, when users move at high speed and/or when the mobile node is running long-lasting applications, the DMM approaches incur high signaling cost and long handover latency.

  4. Combined bio-inspired/evolutionary computational methods in cross-layer protocol optimization for wireless ad hoc sensor networks

    Science.gov (United States)

    Hortos, William S.

    2011-06-01

    Published studies have focused on the application of one bio-inspired or evolutionary computational method to the functions of a single protocol layer in a wireless ad hoc sensor network (WSN). For example, swarm intelligence in the form of ant colony optimization (ACO), has been repeatedly considered for the routing of data/information among nodes, a network-layer function, while genetic algorithms (GAs) have been used to select transmission frequencies and power levels, physical-layer functions. Similarly, artificial immune systems (AISs) as well as trust models of quantized data reputation have been invoked for detection of network intrusions that cause anomalies in data and information; these act on the application and presentation layers. Most recently, a self-organizing scheduling scheme inspired by frog-calling behavior for reliable data transmission in wireless sensor networks, termed anti-phase synchronization, has been applied to realize collision-free transmissions between neighboring nodes, a function of the MAC layer. In a novel departure from previous work, the cross-layer approach to WSN protocol design suggests applying more than one evolutionary computational method to the functions of the appropriate layers to improve the QoS performance of the cross-layer design beyond that of one method applied to a single layer's functions. A baseline WSN protocol design, embedding GAs, anti-phase synchronization, ACO, and a trust model based on quantized data reputation at the physical, MAC, network, and application layers, respectively, is constructed. Simulation results demonstrate the synergies among the bioinspired/ evolutionary methods of the proposed baseline design improve the overall QoS performance of networks over that of a single computational method.

  5. A Scalable Context-Aware Objective Function (SCAOF) of Routing Protocol for Agricultural Low-Power and Lossy Networks (RPAL).

    Science.gov (United States)

    Chen, Yibo; Chanet, Jean-Pierre; Hou, Kun-Mean; Shi, Hongling; de Sousa, Gil

    2015-08-10

    In recent years, IoT (Internet of Things) technologies have seen great advances, particularly, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL), which provides a powerful and flexible routing framework that can be applied in a variety of application scenarios. In this context, as an important role of IoT, Wireless Sensor Networks (WSNs) can utilize RPL to design efficient routing protocols for a specific application to increase the ubiquity of networks with resource-constrained WSN nodes that are low-cost and easy to deploy. In this article, our work starts with the description of Agricultural Low-power and Lossy Networks (A-LLNs) complying with the LLN framework, and to clarify the requirements of this application-oriented routing solution. After a brief review of existing optimization techniques for RPL, our contribution is dedicated to a Scalable Context-Aware Objective Function (SCAOF) that can adapt RPL to the environmental monitoring of A-LLNs, through combining energy-aware, reliability-aware, robustness-aware and resource-aware contexts according to the composite routing metrics approach. The correct behavior of this enhanced RPL version (RPAL) was verified by performance evaluations on both simulation and field tests. The obtained experimental results confirm that SCAOF can deliver the desired advantages on network lifetime extension, and high reliability and efficiency in different simulation scenarios and hardware testbeds.

  6. NTRIP: Networked Transport of RTCM via Internet Protocol - Internet Radio Technology for Real-Time GNSS Purposes

    Science.gov (United States)

    Gebhard, H.; Weber, G.

    2003-12-01

    The massive worldwide growing of Internet capacity enables the introduction of new services such as Internet Radio or Internet Video-on-Demand, which transfer continuous data-streams by IP-packages. These services include the data transport via mobile IP-Networks like GSM, GPRS, EDGE, and UMTS where costs are nowadays rapidly decreasing. As a consequence, the global Internet can be used for the real-time collection and exchange of GNSS data, as well as for broadcasting derived differential products. Compared to Multimedia applications, the bandwidth required for streaming GNSS data is relatively small. The introduction of a real time streaming of GNSS data via Internet as a professional service is demanding with respect to network transparency, network security, program stability, access control, remote administration, scalability and client simplicity. This paper will discuss several possible technical/protocol solutions for streaming GNSS date over the Internet: Unicast vs. IP-Multicast, TCP vs. UDP, Client/Server vs. Client/Server/Splitter architecture. Based on this discussion, a novel HTTP-based technique for streaming GNSS data to mobile clients over the Internet is introduced. It allows simultaneous access of a large number of PDAs, Laptops, or GNSS receivers to a broadcasting host via Mobile IP-Networks. The technique establishes a format called "Networked Transport of RTCM via Internet Protocol" (NTRIP). NTRIP is designed for disseminating differential correction data (e.g. in the RTCM-104 format) or other kinds of GNSS streaming data.

  7. A Scalable Context-Aware Objective Function (SCAOF of Routing Protocol for Agricultural Low-Power and Lossy Networks (RPAL

    Directory of Open Access Journals (Sweden)

    Yibo Chen

    2015-08-01

    Full Text Available In recent years, IoT (Internet of Things technologies have seen great advances, particularly, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL, which provides a powerful and flexible routing framework that can be applied in a variety of application scenarios. In this context, as an important role of IoT, Wireless Sensor Networks (WSNs can utilize RPL to design efficient routing protocols for a specific application to increase the ubiquity of networks with resource-constrained WSN nodes that are low-cost and easy to deploy. In this article, our work starts with the description of Agricultural Low-power and Lossy Networks (A-LLNs complying with the LLN framework, and to clarify the requirements of this application-oriented routing solution. After a brief review of existing optimization techniques for RPL, our contribution is dedicated to a Scalable Context-Aware Objective Function (SCAOF that can adapt RPL to the environmental monitoring of A-LLNs, through combining energy-aware, reliability-aware, robustness-aware and resource-aware contexts according to the composite routing metrics approach. The correct behavior of this enhanced RPL version (RPAL was verified by performance evaluations on both simulation and field tests. The obtained experimental results confirm that SCAOF can deliver the desired advantages on network lifetime extension, and high reliability and efficiency in different simulation scenarios and hardware testbeds.

  8. Context-Aware Multicast Protocol for Emergency Message Dissemination in Vehicular Networks

    Directory of Open Access Journals (Sweden)

    Alvin Sebastian

    2012-01-01

    emergency messages may be sent to a large number of vehicles in the area and can be propagated to only one direction. This paper presents a more efficient context-aware multicast protocol that disseminates messages only to endangered vehicles that may be affected by the emergency event. The endangered vehicles can be identified by calculating the interaction among vehicles based on their motion properties. To ensure fast delivery, the dissemination follows a routing path obtained by computing a minimum delay tree. The multicast protocol uses a generalized approach that can support any arbitrary road topology. The performance of the multicast protocol is compared with existing broadcast protocols by simulating chain collision accidents on a typical highway. Simulation results show that the multicast protocol outperforms the other protocols in terms of reliability, efficiency, and latency.

  9. RAJA Performance Suite

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    The RAJA Performance Suite is designed to evaluate performance of the RAJA performance portability library on a wide variety of important high performance computing (HPC) algorithmic lulmels. These kernels assess compiler optimizations and various parallel programming model backends accessible through RAJA, such as OpenMP, CUDA, etc. The Initial version of the suite contains 25 computational kernels, each of which appears in 6 variants: Baseline SequcntiaJ, RAJA SequentiaJ, Baseline OpenMP, RAJA OpenMP, Baseline CUDA, RAJA CUDA. All variants of each kernel perform essentially the same mathematical operations and the loop body code for each kernel is identical across all variants. There are a few kernels, such as those that contain reduction operations, that require CUDA-specific coding for their CUDA variants. ActuaJ computer instructions executed and how they run in parallel differs depending on the parallel programming model backend used and which optimizations are perfonned by the compiler used to build the Perfonnance Suite executable. The Suite will be used primarily by RAJA developers to perform regular assessments of RAJA performance across a range of hardware platforms and compilers as RAJA features are being developed. It will also be used by LLNL hardware and software vendor panners for new defining requirements for future computing platform procurements and acceptance testing. In particular, the RAJA Performance Suite will be used for compiler acceptance testing of the upcoming CORAUSierra machine {initial LLNL delivery expected in late-2017/early 2018) and the CORAL-2 procurement. The Suite will aJso be used to generate concise source code reproducers of compiler and runtime issues we uncover so that we may provide them to relevant vendors to be fixed.

  10. Formats and Network Protocols for Browser Access to 2D Raster Data

    Science.gov (United States)

    Plesea, L.

    2015-12-01

    Tiled web maps in browsers are a major success story, forming the foundation of many current web applications. Enabling tiled data access is the next logical step, and is likely to meet with similar success. Many ad-hoc approaches have already started to appear, and something similar is explored within the Open Geospatial Consortium. One of the main obstacles in making browser data access a reality is the lack of a well-known data format. This obstacle also represents an opportunity to analyze the requirements and possible candidates, applying lessons learned from web tiled image services and protocols. Similar to the image counterpart, a web tile raster data format needs to have good intrinsic compression and be able to handle high byte count data types including floating point. An overview of a possible solution to the format problem, a 2D data raster compression algorithm called Limited Error Raster Compression (LERC) will be presented. In addition to the format, best practices for high request rate HTTP services also need to be followed. In particular, content delivery network (CDN) caching suitability needs to be part of any design, not an after-thought. Last but not least, HTML 5 browsers will certainly be part of any solution since they provide improved access to binary data, as well as more powerful ways to view and interact with the data in the browser. In a simple but relevant application, digital elevation model (DEM) raster data is served as LERC compressed data tiles which are used to generate terrain by a HTML5 scene viewer.

  11. Impact of chest pain protocol in the use of fibrinolytic therapy in a private hospital network with access to telemedicine in a middle income country

    National Research Council Canada - National Science Library

    Pedro Gabriel MB Silva; Antonio Baruzzi; Giuliano Generoso; Henrique Ribeiro; Jose Carlos Teixeira; Marcelo Jamus; Mariana Y Okada; Sheila Simoes; Thiago A Macedo; Valter Furlan

    2015-01-01

    Objective To evaluate the hypothesis of improving the use of reperfusion therapy and benefit in clinical outcomes in patients with STEMI after 2 years of implementation of the protocol in a large chest pain network...

  12. Model-Checking Driven Design of QoS-Based Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2015-01-01

    Full Text Available Accurate and reliable routing protocols with Quality of Service (QoS support determine the mission-critical application efficiency in WSNs. This paper proposes a model-checking design driven framework for designing the QoS-based routing protocols of WSNs, which involves the light-weight design process, the timed automata model, and the alternative QoS verification properties. The accurate feedback of continually model checking in the iterative design process effectively stimulates the parameter tuning of the protocols. We demonstrate the straightforward and modular characteristics of the proposed framework in designing a prototype QoS-based routing protocol. The prototype study shows that the model-checking design framework may complement other design methods and ensure the QoS implementation of the QoS-based routing protocol design for WSNs.

  13. AODV Routing Protocol Modification With Dqueue(dqAODV and Optimization With Neural Network For VANET In City Scenario

    Directory of Open Access Journals (Sweden)

    Saha Soumen

    2016-01-01

    Full Text Available Vehicular ad hoc network (VANET is considered as a sub-set of mobile ad hoc network (MANET. VANET can provide road safety by generating collision warning messages before a collision takes place, lane change assistance; can provide efficient traffic system by introducing cooperation among vehicles; and can also improves in infotainment applications like cooperative file accessing, accessing internet, viewing movies etc. It provides smart Transportation System i.e., wireless ad-hoc communication among vehicles and vehicle to roadside equipments. VANET communication broadly distinguished in two types; 1 vehicle to vehicle interaction, 2 vehicle to infrastructure interaction. The main objective of VANET is to provide safe, secure and automated traffic system. For this automated traffic techniques, there are several types of routing protocols has been developed. MANET routing protocols are not equally applicable in VANET. In the recent past Roy and his group has proposed several study in VANET transmission in [1-3]. In this study, we propose a modified AODV routing protocol in the context of VANET with the help of dqueue introduction into the RREQ header. Recently Saha et al [4] has reported the results showing the nature of modified AODV obtained from the rudimentary version of their simulation code. It is mainly based on packet delivery throughput. It shows greater in-throughput information of packet transmission compare to original AODV. Hence our proposal has less overhead and greater performance routing algorithm compared to conventional AODV. In this study, we propose and implement in the NCTUns-6.0 simulator, the neural network based modified dqueue AODV (dqAODV routing protocol considering Power, TTL, Node distance and Payload parameter to find the optimal route from the source station (vehicle to the destination station in VANET communications. The detail simulation techniques with result and output will be presented in the conference.

  14. A security analysis of version 2 of the Network Time Protocol (NTP): A report to the privacy and security research group

    Science.gov (United States)

    Bishop, Matt

    1991-01-01

    The Network Time Protocol is being used throughout the Internet to provide an accurate time service. The security requirements are examined of such a service, version 2 of the NTP protocol is analyzed to determine how well it meets these requirements, and improvements are suggested where appropriate.

  15. R-bUCRP: A Novel Reputation-Based Uneven Clustering Routing Protocol for Cognitive Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhang

    2016-01-01

    Full Text Available Energy of nodes is an important factor that affects the performance of Wireless Sensor Networks (WSNs, especially in the case of existing selfish nodes, which attracted many researchers’ attention recently. In this paper, we present a reputation-based uneven clustering routing protocol (R-bUCRP considering both energy saving and reputation assessment. In the cluster establishment phase, we adopt an uneven clustering mechanism which controls the competitive scope of cluster head candidates to save the energy of WSNs. In the cluster heads election phase, the residual energy and reputation value are used as the indexes to select the optimal cluster head, where the reputation mechanism is introduced to support reputation assessment. Simulation results show that the proposed R-bUCRP can save node energy consumption, balance network energy distribution, and prolong network lifetime.

  16. Cross-layer protocol design for QoS optimization in real-time wireless sensor networks

    Science.gov (United States)

    Hortos, William S.

    2010-04-01

    The metrics of quality of service (QoS) for each sensor type in a wireless sensor network can be associated with metrics for multimedia that describe the quality of fused information, e.g., throughput, delay, jitter, packet error rate, information correlation, etc. These QoS metrics are typically set at the highest, or application, layer of the protocol stack to ensure that performance requirements for each type of sensor data are satisfied. Application-layer metrics, in turn, depend on the support of the lower protocol layers: session, transport, network, data link (MAC), and physical. The dependencies of the QoS metrics on the performance of the higher layers of the Open System Interconnection (OSI) reference model of the WSN protocol, together with that of the lower three layers, are the basis for a comprehensive approach to QoS optimization for multiple sensor types in a general WSN model. The cross-layer design accounts for the distributed power consumption along energy-constrained routes and their constituent nodes. Following the author's previous work, the cross-layer interactions in the WSN protocol are represented by a set of concatenated protocol parameters and enabling resource levels. The "best" cross-layer designs to achieve optimal QoS are established by applying the general theory of martingale representations to the parameterized multivariate point processes (MVPPs) for discrete random events occurring in the WSN. Adaptive control of network behavior through the cross-layer design is realized through the parametric factorization of the stochastic conditional rates of the MVPPs. The cross-layer protocol parameters for optimal QoS are determined in terms of solutions to stochastic dynamic programming conditions derived from models of transient flows for heterogeneous sensor data and aggregate information over a finite time horizon. Markov state processes, embedded within the complex combinatorial history of WSN events, are more computationally

  17. Graphical user interface for wireless sensor networks simulator

    Science.gov (United States)

    Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy

    2008-01-01

    Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.

  18. Design and Analysis of A Beacon-Less Routing Protocol for Large Volume Content Dissemination in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Miao Hu

    2016-11-01

    Full Text Available Large volume content dissemination is pursued by the growing number of high quality applications for Vehicular Ad hoc NETworks(VANETs, e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well.

  19. Analiza protokola kvaliteta usluga telekomunikacionih mreža / Analysis of quality of service protocols in telecommunication networks

    Directory of Open Access Journals (Sweden)

    Milojko Jevtović

    2003-05-01

    Full Text Available Protokoli kvaliteta usluga (Quality of Service - QoS sadašnjih i budućih telekomunikacionih mreža razvijeni su, pored ostalog, sa ciljem da podrže različite klase usluga (Class of Service - CoS komunikaciju u realnom vremenu, kao i prenos multimedijalnih poruka preko paketskih IP (Internet Protocol mreža. U raduje dat pregled karakteristika tih protokola i ocena njihovih konkretnih mogućnosti u obezbeđenju kvaliteta usluga unutar sistema ('s vrha do dna', tj. vertikalno u OSI arhitekturi kao i 'horizontalno' odnosno s kraja na kraj veze, tj. između izvora i odredišta. / Today's and future telecommunication networks must enable transmission throughout heterogeneous environment, using different Quality of Service protocols, Quality of Service protocols use a variety of complementary mechanisms to enable deterministic end-to-end different data delivery. The analysis of these protocols and their efficiency in providing QoS and CoS has been given in this paper.

  20. Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks.

    Science.gov (United States)

    Song, Caixia

    2017-12-12

    Vehicular Ad Hoc Networks (VANETs) employ multichannel to provide a variety of safety and non-safety applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. The safety applications require timely and reliable transmissions, while the non-safety applications require efficient and high throughput. In the IEEE 1609.4 protocol, operating interval is divided into alternating Control Channel (CCH) interval and Service Channel (SCH) interval with an identical length. During the CCH interval, nodes transmit safety-related messages and control messages, and Enhanced Distributed Channel Access (EDCA) mechanism is employed to allow four Access Categories (ACs) within a station with different priorities according to their criticality for the vehicle's safety. During the SCH interval, the non-safety massages are transmitted. An analytical model is proposed in this paper to evaluate performance, reliability and efficiency of the IEEE 802.11p and IEEE 1609.4 protocols. The proposed model improves the existing work by taking serval aspects and the character of multichannel switching into design consideration. Extensive performance evaluations based on analysis and simulation help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the IEEE 802.11p and IEEE 1609.4 protocols, and enhancement suggestions are given.

  1. Performance Analysis of the IEEE 802.11p Multichannel MAC Protocol in Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Caixia Song

    2017-12-01

    Full Text Available Vehicular Ad Hoc Networks (VANETs employ multichannel to provide a variety of safety and non-safety applications, based on the IEEE 802.11p and IEEE 1609.4 protocols. The safety applications require timely and reliable transmissions, while the non-safety applications require efficient and high throughput. In the IEEE 1609.4 protocol, operating interval is divided into alternating Control Channel (CCH interval and Service Channel (SCH interval with an identical length. During the CCH interval, nodes transmit safety-related messages and control messages, and Enhanced Distributed Channel Access (EDCA mechanism is employed to allow four Access Categories (ACs within a station with different priorities according to their criticality for the vehicle’s safety. During the SCH interval, the non-safety massages are transmitted. An analytical model is proposed in this paper to evaluate performance, reliability and efficiency of the IEEE 802.11p and IEEE 1609.4 protocols. The proposed model improves the existing work by taking serval aspects and the character of multichannel switching into design consideration. Extensive performance evaluations based on analysis and simulation help to validate the accuracy of the proposed model and analyze the capabilities and limitations of the IEEE 802.11p and IEEE 1609.4 protocols, and enhancement suggestions are given.

  2. Design of real-time voice over internet protocol system under bandwidth network

    Science.gov (United States)

    Zhang, Li; Gong, Lina

    2017-04-01

    With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.

  3. Specification and Validation of an Edge Router Discovery Protocol for Mobile Ad Hoc Networks

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Jensen, Kurt

    2004-01-01

    core network in assigning network address prefixes to gateways in mobile ad-hoc networks. This paper focuses on how CP-nets and the CPN computer tools have been applied in the development of ERDP. A CPN model has been constructed that constitutes a formal executable specification of ERDP. Simulation...

  4. Interference-Aware Hybrid MAC protocol for Cognitive Radio Ad-Hoc Networks with Directional Antennas

    Directory of Open Access Journals (Sweden)

    Satish Anamalamudi

    2015-07-01

    Full Text Available CR and PU hidden terminals in multi-channel Cognitive MAC protocols result in increased packet drops. This is due to inefficient node synchronization with existing “Control Channel” design. To date, In-band and Out-of-band CCC based MAC protocols are proposed to avoid PU and CR hidden terminals. But, In-band CCC based CR-MAC protocols cannot efficiently resolve the hidden terminal packet drops due to imperfect node synchronization whereas out-of-band CCC based MAC is vulnerable to intruder attacks and channel saturation. To overcome this, we propose an Interference-aware hybrid CCC cognitive MAC protocol with directional RTS/CTS and data transmission. In addition, adaptive power control algorithm is proposed to avoid interference to hidden PU and CR nodes at edge coverage area. Experimental results show that proposed Hybrid cognitive MAC protocol has increased link aggregate throughput and reduced cognitive control overhead in comparison with existing CCC based CR-MAC protocols.

  5. Scalable Video Streaming for Single-Hop Wireless Networks Using a Contention-Based Access MAC Protocol

    Directory of Open Access Journals (Sweden)

    Monchai Lertsutthiwong

    2008-07-01

    Full Text Available Limited bandwidth and high packet loss rate pose a serious challenge for video streaming applications over wireless networks. Even when packet loss is not present, the bandwidth fluctuation, as a result of an arbitrary number of active flows in an IEEE 802.11 network, can significantly degrade the video quality. This paper aims to enhance the quality of video streaming applications in wireless home networks via a joint optimization of video layer-allocation technique, admission control algorithm, and medium access control (MAC protocol. Using an Aloha-like MAC protocol, we propose a novel admission control framework, which can be viewed as an optimization problem that maximizes the average quality of admitted videos, given a specified minimum video quality for each flow. We present some hardness results for the optimization problem under various conditions and propose some heuristic algorithms for finding a good solution. In particular, we show that a simple greedy layer-allocation algorithm can perform reasonably well, although it is typically not optimal. Consequently, we present a more expensive heuristic algorithm that guarantees to approximate the optimal solution within a constant factor. Simulation results demonstrate that our proposed framework can improve the video quality up to 26% as compared to those of the existing approaches.

  6. Determinants of successful clinical networks: the conceptual framework and study protocol

    Directory of Open Access Journals (Sweden)

    Haines Mary

    2012-03-01

    Full Text Available Abstract Background Clinical networks are increasingly being viewed as an important strategy for increasing evidence-based practice and improving models of care, but success is variable and characteristics of networks with high impact are uncertain. This study takes advantage of the variability in the functioning and outcomes of networks supported by the Australian New South Wales (NSW Agency for Clinical Innovation's non-mandatory model of clinical networks to investigate the factors that contribute to the success of clinical networks. Methods/Design The objective of this retrospective study is to examine the association between external support, organisational and program factors, and indicators of success among 19 clinical networks over a three-year period (2006-2008. The outcomes (health impact, system impact, programs implemented, engagement, user perception, and financial leverage and explanatory factors will be collected using a web-based survey, interviews, and record review. An independent expert panel will provide judgements about the impact or extent of each network's initiatives on health and system impacts. The ratings of the expert panel will be the outcome used in multivariable analyses. Following the rating of network success, a qualitative study will be conducted to provide a more in-depth examination of the most successful networks. Discussion This is the first study to combine quantitative and qualitative methods to examine the factors that contribute to the success of clinical networks and, more generally, is the largest study of clinical networks undertaken. The adaptation of expert panel methods to rate the impacts of networks is the methodological innovation of this study. The proposed project will identify the conditions that should be established or encouraged by agencies developing clinical networks and will be of immediate use in forming strategies and programs to maximise the effectiveness of such networks.

  7. Determinants of successful clinical networks: the conceptual framework and study protocol.

    Science.gov (United States)

    Haines, Mary; Brown, Bernadette; Craig, Jonathan; D'Este, Catherine; Elliott, Elizabeth; Klineberg, Emily; McInnes, Elizabeth; Middleton, Sandy; Paul, Christine; Redman, Sally; Yano, Elizabeth M

    2012-03-13

    Clinical networks are increasingly being viewed as an important strategy for increasing evidence-based practice and improving models of care, but success is variable and characteristics of networks with high impact are uncertain. This study takes advantage of the variability in the functioning and outcomes of networks supported by the Australian New South Wales (NSW) Agency for Clinical Innovation's non-mandatory model of clinical networks to investigate the factors that contribute to the success of clinical networks. The objective of this retrospective study is to examine the association between external support, organisational and program factors, and indicators of success among 19 clinical networks over a three-year period (2006-2008). The outcomes (health impact, system impact, programs implemented, engagement, user perception, and financial leverage) and explanatory factors will be collected using a web-based survey, interviews, and record review. An independent expert panel will provide judgements about the impact or extent of each network's initiatives on health and system impacts. The ratings of the expert panel will be the outcome used in multivariable analyses. Following the rating of network success, a qualitative study will be conducted to provide a more in-depth examination of the most successful networks. This is the first study to combine quantitative and qualitative methods to examine the factors that contribute to the success of clinical networks and, more generally, is the largest study of clinical networks undertaken. The adaptation of expert panel methods to rate the impacts of networks is the methodological innovation of this study. The proposed project will identify the conditions that should be established or encouraged by agencies developing clinical networks and will be of immediate use in forming strategies and programs to maximise the effectiveness of such networks.

  8. Exploring the potential of expatriate social networks to reduce HIV and STI transmission: a protocol for a qualitative study

    Science.gov (United States)

    Crawford, Gemma; Bowser, Nicole Jasmine; Brown, Graham Ernest; Maycock, Bruce Richard

    2013-01-01

    Introduction HIV diagnoses acquired among Australian men working or travelling overseas including  Southeast Asia are increasing. This change within transmission dynamics means traditional approaches to prevention need to be considered in new contexts. The significance and role of social networks in mediating sexual risk behaviours may be influential. Greater understanding of expatriate and traveller behaviour is required to understand how local relationships are formed, how individuals enter and are socialised into networks, and how these networks may affect sexual intentions and behaviours. This paper describes the development of a qualitative protocol to investigate how social networks of Australian expatriates and long-term travellers might support interventions to reduce transmission of HIV and sexually transmitted infections. Methods and analysis To explore the interactions of male expatriates and long-term travellers within and between their environments, symbolic interactionism will be the theoretical framework used. Grounded theory methods provide the ability to explain social processes through the development of explanatory theory. The primary data source will be interviews conducted in several rounds in both Australia and Southeast Asia. Purposive and theoretical sampling will be used to access participants whose data can provide depth and individual meaning. Ethics and dissemination The role of expatriate and long-term traveller networks and their potential to impact health are uncertain. This study seeks to gain a deeper understanding of the Australian expatriate culture, behavioural contexts and experiences within social networks in  Southeast Asia. This research will provide tangible recommendations for policy and practice as the findings will be disseminated to health professionals and other stakeholders, academics and the community via local research and evaluation networks, conference presentations and online forums. The Curtin University Human

  9. Connectivity-Sensed Routing Protocol for Vehicular Ad Hoc Networks: Analysis and Design

    OpenAIRE

    Changle Li; Mengmeng Wang; Lina Zhu

    2015-01-01

    With the fast development of vehicular ad hoc networks (VANETs), various VANET applications, especially safety and infotainment service, have stronger requirements for reliable network connectivity. Intermittent connectivity has become a thorny problem in VANETs, which causes unreliable vehicle to vehicle (V2V) connection due to high vehicle mobility. In this paper, we have studied the network connectivity using a stochastic analysis model and then we prove average intervehicle distance influ...

  10. Energy star compliant voice over internet protocol (VoIP) telecommunications network including energy star compliant VoIP devices

    Energy Technology Data Exchange (ETDEWEB)

    Kouchri, Farrokh Mohammadzadeh

    2012-11-06

    A Voice over Internet Protocol (VoIP) communications system, a method of managing a communications network in such a system and a program product therefore. The system/network includes an ENERGY STAR (E-star) aware softswitch and E-star compliant communications devices at system endpoints. The E-star aware softswitch allows E-star compliant communications devices to enter and remain in power saving mode. The E-star aware softswitch spools messages and forwards only selected messages (e.g., calls) to the devices in power saving mode. When the E-star compliant communications devices exit power saving mode, the E-star aware softswitch forwards spooled messages.

  11. My Home is my Bazaar - A Taxonomy and Classification of Current Wireless Home Network Protocols

    DEFF Research Database (Denmark)

    Hjorth, Theis S.

    2011-01-01

    Recent advances in wireless communication have produced a multitude of related protocols, leading to a growing market of products for home automation systems within energy management, elder care, etc. These systems are different from wired ones in terms of architectures and qualities, which leads......, cost, security, etc. Third, a classification based on the taxonomy and the collected data is presented. In the final discussion, we identify a number of key aspects that could be important technology criteria for future development of home automation protocols....

  12. My home is my bazaar - A taxonomy and classification of current wireless home network protocols

    DEFF Research Database (Denmark)

    Torbensen, Rune; Hansen, Klaus Marius; Hjorth, Theis Solberg

    2011-01-01

    Recent advances in wireless communication have produced a multitude of related protocols, leading to a growing market of products for home automation systems within energy management, elder care, etc. These systems are different from wired ones in terms of architectures and qualities, which leads......, cost, security, etc. Third, a classification based on the taxonomy and the collected data is presented. In the final discussion, we identify a number of key aspects that could be important technology criteria for future development of home automation protocols....

  13. Sensors on speaking terms: Schedule-based medium access control protocols for wireless sensor networks

    NARCIS (Netherlands)

    van Hoesel, L.F.W.

    2007-01-01

    Wireless sensor networks make the previously unobservable, observable. The basic idea behind these networks is straightforward: all wires are cut in traditional sensing systems and the sensors are equipped with batteries and radio's to virtually restore the cut wires. The resulting sensors can be

  14. Receiver-initiated medium access control protocols for wireless sensor networks

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Di Mauro, Alessio; Vithanage, Madava D.

    2015-01-01

    is to provide a comprehensive and self-contained introduction to the fundamentals of the receiver-initiated paradigm, providing newcomers with a quick-start guide on the state of the art of this field and a palette of options, essential for implementing applications or designing new protocols....

  15. A review of tags anti-collision and localization protocols in RFID networks.

    Science.gov (United States)

    Ullah, S; Alsalih, W; Alsehaim, A; Alsadhan, N

    2012-12-01

    Radio Frequency IDentification (RFID) has allowed the realization of ubiquitous tracking and monitoring of physical objects wirelessly with minimum human interactions. It plays a key role in a wide range of applications including asset tracking, contactless payment, access control, transportation and logistics, and other industrial applications. On the other side, RFID systems face several technical challenges that need to be overcome in order to achieve their potential benefits; tags collisions and localization of tagged objects are two important challenges. Numerous anti-collision and localization protocols have been proposed to address these challenges. This paper reviews the state-of-art tags' anti-collision and localization protocols, and provides a deep insight into technical issues of these protocols. The probabilistic and deterministic anti-collision protocols are critically studied and compared in terms of different parameters. We further review distance estimation, scene analysis, and proximity localization schemes and provide useful suggestions. We also introduce a new hybrid direction that utilizes power control to spatially partition the interrogation range of a reader for more efficient anti-collision and localization. Finally, we present the applications of RFID systems in healthcare sectors.

  16. Implementing voice over Internet protocol in mobile ad hoc network – analysing its features regarding efficiency, reliability and security

    Directory of Open Access Journals (Sweden)

    Naveed Ahmed Sheikh

    2014-05-01

    Full Text Available Providing secure and efficient real-time voice communication in mobile ad hoc network (MANET environment is a challenging problem. Voice over Internet protocol (VoIP has originally been developed over the past two decades for infrastructure-based networks. There are strict timing constraints for acceptable quality VoIP services, in addition to registration and discovery issues in VoIP end-points. In MANETs, ad hoc nature of networks and multi-hop wireless environment with significant packet loss and delays present formidable challenges to the implementation. Providing a secure real-time VoIP service on MANET is the main design objective of this paper. The authors have successfully developed a prototype system that establishes reliable and efficient VoIP communication and provides an extremely flexible method for voice communication in MANETs. The authors’ cooperative mesh-based MANET implementation can be used for rapidly deployable VoIP communication with survivable and efficient dynamic networking using open source software.

  17. Energy Analysis of Contention Tree-Based Access Protocols in Dense Machine-to-Machine Area Networks

    Directory of Open Access Journals (Sweden)

    Francisco Vázquez-Gallego

    2015-01-01

    Full Text Available Machine-to-Machine (M2M area networks aim at connecting an M2M gateway with a large number of energy-constrained devices that must operate autonomously for years. Therefore, attaining high energy efficiency is essential in the deployment of M2M networks. In this paper, we consider a dense M2M area network composed of hundreds or thousands of devices that periodically transmit data upon request from a gateway or coordinator. We theoretically analyse the devices’ energy consumption using two Medium Access Control (MAC protocols which are based on a tree-splitting algorithm to resolve collisions among devices: the Contention Tree Algorithm (CTA and the Distributed Queuing (DQ access. We have carried out computer-based simulations to validate the accuracy of the theoretical models and to compare the energy performance using DQ, CTA, and Frame Slotted-ALOHA (FSA in M2M area networks with devices in compliance with the IEEE 802.15.4 physical layer. Results show that the performance of DQ is totally independent of the number of contending devices, and it can reduce the energy consumed per device in more than 35% with respect to CTA and in more than 80% with respect to FSA.

  18. A Power-Efficient Clustering Protocol for Coal Mine Face Monitoring with Wireless Sensor Networks Under Channel Fading Conditions.

    Science.gov (United States)

    Ren, Peng; Qian, Jiansheng

    2016-06-07

    This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs) is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL) protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face.

  19. A Power-Efficient Clustering Protocol for Coal Mine Face Monitoring with Wireless Sensor Networks Under Channel Fading Conditions

    Directory of Open Access Journals (Sweden)

    Peng Ren

    2016-06-01

    Full Text Available This study proposes a novel power-efficient and anti-fading clustering based on a cross-layer that is specific to the time-varying fading characteristics of channels in the monitoring of coal mine faces with wireless sensor networks. The number of active sensor nodes and a sliding window are set up such that the optimal number of cluster heads (CHs is selected in each round. Based on a stable expected number of CHs, we explore the channel efficiency between nodes and the base station by using a probe frame and the joint surplus energy in assessing the CH selection. Moreover, the sending power of a node in different periods is regulated by the signal fade margin method. The simulation results demonstrate that compared with several common algorithms, the power-efficient and fading-aware clustering with a cross-layer (PEAFC-CL protocol features a stable network topology and adaptability under signal time-varying fading, which effectively prolongs the lifetime of the network and reduces network packet loss, thus making it more applicable to the complex and variable environment characteristic of a coal mine face.

  20. A review of protocol implementations and energy efficient cross-layer design for wireless body area networks.

    Science.gov (United States)

    Hughes, Laurie; Wang, Xinheng; Chen, Tao

    2012-11-02

    The issues inherent in caring for an ever-increasing aged population has been the subject of endless debate and continues to be a hot topic for political discussion. The use of hospital-based facilities for the monitoring of chronic physiological conditions is expensive and ties up key healthcare professionals. The introduction of wireless sensor devices as part of a Wireless Body Area Network (WBAN) integrated within an overall eHealth solution could bring a step change in the remote management of patient healthcare. Sensor devices small enough to be placed either inside or on the human body can form a vital part of an overall health monitoring network. An effectively designed energy efficient WBAN should have a minimal impact on the mobility and lifestyle of the patient. WBAN technology can be deployed within a hospital, care home environment or in the patient’s own home. This study is a review of the existing research in the area of WBAN technology and in particular protocol adaptation and energy efficient cross-layer design. The research reviews the work carried out across various layers of the protocol stack and highlights how the latest research proposes to resolve the various challenges inherent in remote continual healthcare monitoring.